

    
      
          
            
  
django-generic-confirmation

Django-generic-confirmation makes it easy for developers to add forms to a
webapplication where the submitted data should only be used after an out-of-band
confirmation was done. For example if a user wants to change his email address,
generic-confirmation will make it really easy for the developer to add an
out-of-band confirmation process (sending an email with a random link to the
user) before saving the new email address to the database.

The core of django-generic-confirmation is fully unit-tested and the app is in
use at a few real-world projects confirming email addresses and mobile phone
numbers. Feel free to read about the usage.


Contents



	Using django-generic-confirmation
	Use-cases

	API example

	Notification















          

      

      

    

  

    
      
          
            
  
Using django-generic-confirmation

django-generic-confirmation tries to solve a few real use-cases I stumpled
upon in different projects in a generic way.


Use-cases

Use-cases include but are not limited to:


	New user signs up and the account should only be activated after the email
address is confirmed by clicking a link in an email sent to the user.

	An already registered user wants to change his email address. Bevor doing
the change, the user gets an email and has to click a link to confirm
the change.

	A user enters his mobile phone numer. To confirm, that the user owns the
number, a short random code is sent via sms and the user has to enter the
code into a form to confirm the number.

	A postal address should be confirmed by sending the user a letter with a
short random code, the user receives the letter and has to enter the
code into a form to confirm his address.

	Same as above for bank accounts. You send the user a small amount of
money together with a short code.



django-generic-confirmation will solve this use-cases and make it easy
for you to integrate this and any other things into your project with
minimal effort.

Based on these use-cases a pattern of deferred modelform saving emerged.

Inheriting from DeferredForm you get a ModelForm which will not modify or
create the object on save() but will store everything needed to finish the
action in the database identified by a random token. Later, whenever this
token is received by the application (and if it’s not expired), the
form will be saved as if the data was received just now instead of the token.

One caveat: If a form is defered which involves ForeignKey oder ManyToMany
Fields and the related objects are deleted while the form is deferred, than
an error will be raised on confirmation.

For the developer the DeferredForm works like a normal ModelForm and all
you have to do to is write your view as if it should change the data right
now, under the hood it is not executed until it is confirmed.

I created this project because I think too many apps exist to solve a very
similar problem. Take a look at:


	django-registration: Creates User objects and activates them if the email is
confirmed by visiting a random link sent to the email address.

	django-email-confirmation: Based on django-registration, but used to manage
the case, where a user has more than one email address and every new
address has to be confirmed.

	django-confirmation: based on django-registration and django-email-registration,
exists to confirm object-creation via email, much like django-registration
but a bit more flexible because any django model can be used. Marks objects
as confirmed by changing a field on the object.






API example

This is the code you have to write to turn some normal editing workflow into
a edit-and-confirm workflow.

def my_view(request):
    """
    example view to change the user's email address
    """
    if request.method == 'POST':
        form = EmailChangeForm(request.POST, instance=request.user)
        if form.is_valid():
            form.save()
            # redirect user and display a message explaining how to
            # confirm the change
            # request.user.message_set.create(message=u"...")
            # return HttpResponseRedirect(...)
            # _or_
            # send user to a page which explains the confirmation process
            return render_to_response(...)
    else:
        form = EmailChangeForm()
    return render_to_response(...)





the magic happens in the form, which should be inherited from
generic_confirmation.forms.DeferredForm.

class EmailChangeForm(DeferredForm):
    class Meta:
        model = User
        fields = ('email',)





your url-conf:

(r'^confirm/', include('generic_confirmation.urls'))








Notification

The one part left is how to get the random token to the user who has to
confirm the change. This does not neccessarily has to be the user who made
the change in the first step. This could also be some site-moderator for
example.

Notification of someone about some action which should be confirmed can
happen via different channels, most notably email and sms.
django-notification would be great for this, but the pluggable-backend
branch is not finished yet (isn’t it?) ...


Signal-based notification

To make a long story short, currently only the signal confirmation_required
is fired and it’s your task to listen for it and take the appropriate action.

from generic_confirmation import signals

def send_notification(sender, instance, **kwargs):
        """ a signal receiver which does some tests """
        print sender # the class which is edited
        print instance # the DeferredAction
        print instance.token # needed to confirm the action


signals.confirmation_required.connect(send_notification)





If you pass user=request.user to the form.save()-method, then the signal
will provide a user argument pointing to the user who requested the change.
It’s also possible to pass another user to save method to inform an admin or so.

def send_notification(sender, instance, user, **kwargs):
    body = render_to_string('confirmation_mail.html', {'user': user, 'token': instance.token})
    send_mail("subject", body, recipient_list=[user.email,])
    # _or_
    # send_mail("subject", body, recipient_list)

signals.confirmation_required.connect(send_notification)








Form-based notification

The second way is to provide a method named send_notification on the
form-class itself. The method takes the request.user (if given) and
the instance which should be confirmed as arguments.

class EmailChangeForm(DeferredForm):
    def send_notification(self, user=None, instance=None):
        send_mail("please confirm your new address",
            render_to_string("confirm_mail.txt", {'token': instance.token, 'user': user}),
            recipient_list=[self.cleaned_data['email'],])

    class Meta:
        model = User
        fields = ('email',)



class PhoneNumberChangeForm(DeferredForm):
    def send_notification(self, user=None, instance=None):
        send_sms({'to': self.cleaned_data['mobile_number'],
                'text': render_to_string('confirm_phone.txt',
                        {'token': instance.token, 'user': user})
                })
    class Meta:
        model = UserProfile
        fields = ('mobile_number',)





Some of the default notification methods will be provided as mixin classes soon.









          

      

      

    

  

    
      
          
            
  run

sphinx-build . build/

to build the documentation into the a directory named ./build/



          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		django-generic-confirmation


        		Using django-generic-confirmation
          
          		Use-cases


          		API example


          		Notification
            
            		Signal-based notification


            		Form-based notification


            


          


          


        


      


    
  

_static/minus.png





_static/up-pressed.png





_static/down-pressed.png





_static/down.png





_static/comment.png





_static/plus.png





_static/ajax-loader.gif





_static/up.png





_static/comment-bright.png





_static/file.png





_static/comment-close.png





