
django-formtools Documentation
Release 2.4.1

Django Software Foundation and individual contributors

May 13, 2023

Contents

1 Form preview 3
1.1 Overview . 3
1.2 How to use FormPreview . 3
1.3 FormPreview classes . 4
1.4 FormPreview templates . 4
1.5 Required methods . 5
1.6 Optional methods . 5

2 Form wizard 7
2.1 How it works . 7
2.2 Usage . 7
2.3 Advanced WizardView methods . 12
2.4 Providing initial data for the forms . 15
2.5 Handling files . 16
2.6 Conditionally view/skip specific steps . 16
2.7 How to work with ModelForm and ModelFormSet . 17
2.8 Usage of NamedUrlWizardView . 17
2.9 Advanced NamedUrlWizardView methods . 18

3 Changelog 19
3.1 2.4.1 (2023-05-13) . 19
3.2 2.4 (2022-09-28) . 19
3.3 2.3 (2021-04-18) . 19
3.4 2.2 (2019-12-05) . 20
3.5 2.1 (2017-10-04) . 20
3.6 2.0 (2017-01-07) . 20
3.7 1.0 (2015-03-25) . 20

4 Installation 21

5 Internationalization 23

6 Releases 25

7 How to migrate 27

8 Indices and tables 29

i

Python Module Index 31

Index 33

ii

django-formtools Documentation, Release 2.4.1

django-formtools is a collection of assorted utilities that are useful for specific form use cases.

Currently there are two tools: a helper for form previews and a form wizard view.

Contents 1

django-formtools Documentation, Release 2.4.1

2 Contents

CHAPTER 1

Form preview

Django comes with an optional “form preview” application that helps automate the following workflow:

“Display an HTML form, force a preview, then do something with the submission.”

To force a preview of a form submission, all you have to do is write a short Python class.

Note: Form preview doesn’t work with file uploads.

1.1 Overview

Given a Form subclass that you define, this application takes care of the following workflow:

1. Displays the form as HTML on a Web page.

2. Validates the form data when it’s submitted via POST. a. If it’s valid, displays a preview page. b. If it’s not
valid, redisplays the form with error messages.

3. When the “confirmation” form is submitted from the preview page, calls a hook that you define – a done()
method that gets passed the valid data.

The framework enforces the required preview by passing a shared-secret hash to the preview page via hidden form
fields. If somebody tweaks the form parameters on the preview page, the form submission will fail the hash-
comparison test.

1.2 How to use FormPreview

1. Point Django at the default FormPreview templates. There are two ways to do this:

• Add 'formtools' to your INSTALLED_APPS setting.

3

http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form
http://docs.djangoproject.com/en/dev/ref/settings/#std-setting-INSTALLED_APPS

django-formtools Documentation, Release 2.4.1

This will work if your TEMPLATES setting includes the app_directories template loader (which is
the case by default).

See the template loader docs for more.

• Otherwise, determine the full filesystem path to the formtools/templates directory and add that
directory to your DIRS option in the TEMPLATES setting.

2. Create a FormPreview subclass that overrides the done() method:

from django.http import HttpResponseRedirect

from formtools.preview import FormPreview
from myapp.models import SomeModel

class SomeModelFormPreview(FormPreview):

def done(self, request, cleaned_data):
Do something with the cleaned_data, then redirect
to a "success" page.
return HttpResponseRedirect('/form/success')

This method takes an HttpRequest object and a dictionary of the form data after it has been validated and
cleaned. It should return an HttpResponseRedirect that is the end result of the form being submitted.

3. Change your URLconf to point to an instance of your FormPreview subclass:

from django import forms

from myapp.forms import SomeModelForm
from myapp.preview import SomeModelFormPreview

. . . and add the following line to the appropriate model in your URLconf:

path('post/', SomeModelFormPreview(SomeModelForm)),

where SomeModelForm is a Form or ModelForm class for the model.

4. Run the Django server and visit /post/ in your browser.

1.3 FormPreview classes

class formtools.preview.FormPreview

A FormPreview class is a simple Python class that represents the preview workflow. FormPreview classes must
subclass FormPreview and override the done() method. They can live anywhere in your codebase.

1.4 FormPreview templates

FormPreview.form_template

FormPreview.preview_template

By default, the form is rendered via the template formtools/form.html, and the preview page is rendered via
the template formtools/preview.html.

4 Chapter 1. Form preview

http://docs.djangoproject.com/en/dev/ref/settings/#std-setting-TEMPLATES
http://docs.djangoproject.com/en/dev/ref/templates/api/#template-loaders
http://docs.djangoproject.com/en/dev/ref/settings/#std-setting-TEMPLATES-DIRS
http://docs.djangoproject.com/en/dev/ref/settings/#std-setting-TEMPLATES
http://docs.djangoproject.com/en/dev/ref/request-response/#django.http.HttpRequest
http://docs.djangoproject.com/en/dev/ref/request-response/#django.http.HttpResponseRedirect

django-formtools Documentation, Release 2.4.1

These values can be overridden for a particular form preview by setting preview_template and
form_template attributes on the FormPreview subclass. See formtools/templates for the default tem-
plates.

1.5 Required methods

FormPreview.done(request, cleaned_data)
Does something with the cleaned_data data and then needs to return an HttpResponseRedirect, e.g.
to a success page.

1.6 Optional methods

FormPreview.get_auto_id()
Hook to override the auto_id kwarg for the form. Needed when rendering two form previews in the same
template.

FormPreview.get_initial(request)
Takes a request argument and returns a dictionary to pass to the form’s initial kwarg when the form is being
created from an HTTP get.

FormPreview.get_context(request, form)
Context for template rendering.

FormPreview.parse_params(request, *args, **kwargs)
Given captured args and kwargs from the URLconf, saves something in self.state and/or raises Http404 if
necessary.

For example, this URLconf captures a user_id variable:

path('contact/<int:user_id>/', MyFormPreview(MyForm)),

In this case, the kwargs variable in parse_params would be {'user_id': 32} for a request to '/
contact/32/'. You can use that user_id to make sure it’s a valid user and/or save it for later, for use
in done().

FormPreview.process_preview(request, form, context)
Given a validated form, performs any extra processing before displaying the preview page, and saves any extra
data in context.

By default, this method is empty. It is called after the form is validated, but before the context is modified with
hash information and rendered.

FormPreview.security_hash(request, form)
Calculates the security hash for the given HttpRequest and Form instances.

Subclasses may want to take into account request-specific information, such as the IP address.

FormPreview.failed_hash(request)
Returns an HttpResponse in the case of an invalid security hash.

1.5. Required methods 5

http://docs.djangoproject.com/en/dev/ref/request-response/#django.http.HttpResponseRedirect
http://docs.djangoproject.com/en/dev/topics/http/views/#django.http.Http404
http://docs.djangoproject.com/en/dev/ref/request-response/#django.http.HttpRequest
http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form
http://docs.djangoproject.com/en/dev/ref/request-response/#django.http.HttpResponse

django-formtools Documentation, Release 2.4.1

6 Chapter 1. Form preview

CHAPTER 2

Form wizard

The form wizard application splits forms across multiple Web pages. It maintains state in one of the backends so
that the full server-side processing can be delayed until the submission of the final form.

You might want to use this if you have a lengthy form that would be too unwieldy for display on a single page. The
first page might ask the user for core information, the second page might ask for less important information, etc.

The term “wizard”, in this context, is explained on Wikipedia.

2.1 How it works

Here’s the basic workflow for how a user would use a wizard:

1. The user visits the first page of the wizard, fills in the form and submits it.

2. The server validates the data. If it’s invalid, the form is displayed again, with error messages. If it’s valid, the
server saves the current state of the wizard in the backend and redirects to the next step.

3. Step 1 and 2 repeat, for every subsequent form in the wizard.

4. Once the user has submitted all the forms and all the data has been validated, the wizard processes the data –
saving it to the database, sending an email, or whatever the application needs to do.

2.2 Usage

This application handles as much machinery for you as possible. Generally, you just have to do these things:

1. Define a number of Form classes – one per wizard page.

2. Create a WizardView subclass that specifies what to do once all of your forms have been submitted and
validated. This also lets you override some of the wizard’s behavior.

3. Create some templates that render the forms. You can define a single, generic template to handle every one of
the forms, or you can define a specific template for each form.

7

http://docs.djangoproject.com/en/dev/ref/forms/api/#module-django.forms
http://en.wikipedia.org/wiki/Wizard_%28software%29
http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form

django-formtools Documentation, Release 2.4.1

4. Add formtools to your INSTALLED_APPS list in your settings file.

5. Point your URLconf at your WizardView as_view() method.

2.2.1 Defining Form classes

The first step in creating a form wizard is to create the Form classes. These should be standard django.forms.
Form classes, covered in the forms documentation. These classes can live anywhere in your codebase, but
convention is to put them in a file called forms.py in your application.

For example, let’s write a “contact form” wizard, where the first page’s form collects the sender’s email address and
subject, and the second page collects the message itself. Here’s what the forms.py might look like:

from django import forms

class ContactForm1(forms.Form):
subject = forms.CharField(max_length=100)
sender = forms.EmailField()

class ContactForm2(forms.Form):
message = forms.CharField(widget=forms.Textarea)

Note: In order to use FileField in any form, see the section Handling files below to learn more about what to do.

2.2.2 Creating a WizardView subclass

class formtools.wizard.views.SessionWizardView

class formtools.wizard.views.CookieWizardView

The next step is to create a formtools.wizard.views.WizardView subclass. You can also use the
SessionWizardView or CookieWizardView classes which preselect the backend used for storing information
during execution of the wizard (as their names indicate, server-side sessions and browser cookies respectively).

Note: To use the SessionWizardView follow the instructions in the sessions documentation on how to
enable sessions.

We will use the SessionWizardView in all examples but is completely fine to use the CookieWizardView
instead. As with your Form classes, this WizardView class can live anywhere in your codebase, but convention is
to put it in views.py.

The only requirement on this subclass is that it implement a done() method.

WizardView.done(form_list, form_dict, **kwargs)
This method specifies what should happen when the data for every form is submitted and validated. This method
is passed a list and dictionary of validated Form instances.

In this simplistic example, rather than performing any database operation, the method simply renders a template
of the validated data:

from django.shortcuts import render
from formtools.wizard.views import SessionWizardView

(continues on next page)

8 Chapter 2. Form wizard

http://docs.djangoproject.com/en/dev/ref/settings/#std-setting-INSTALLED_APPS
http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form
http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form
http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form
http://docs.djangoproject.com/en/dev/ref/forms/api/#module-django.forms
http://docs.djangoproject.com/en/dev/ref/forms/fields/#django.forms.FileField
http://docs.djangoproject.com/en/dev/topics/http/sessions/#module-django.contrib.sessions
http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form
http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form

django-formtools Documentation, Release 2.4.1

(continued from previous page)

class ContactWizard(SessionWizardView):
def done(self, form_list, **kwargs):

return render(self.request, 'done.html', {
'form_data': [form.cleaned_data for form in form_list],

})

Note that this method will be called via POST, so it really ought to be a good Web citizen and redirect after
processing the data. Here’s another example:

from django.http import HttpResponseRedirect
from formtools.wizard.views import SessionWizardView

class ContactWizard(SessionWizardView):
def done(self, form_list, **kwargs):

do_something_with_the_form_data(form_list)
return HttpResponseRedirect('/page-to-redirect-to-when-done/')

In addition to form_list, the done() method is passed a form_dict, which allows you to access the
wizard’s forms based on their step names. This is especially useful when using NamedUrlWizardView , for
example:

def done(self, form_list, form_dict, **kwargs):
user = form_dict['user'].save()
credit_card = form_dict['credit_card'].save()
...

Changed in version 1.7: Previously, the form_dict argument wasn’t passed to the done method.

See the section Advanced WizardView methods below to learn about more WizardView hooks.

2.2.3 Creating templates for the forms

Next, you’ll need to create a template that renders the wizard’s forms. By default, every form uses a tem-
plate called formtools/wizard/wizard_form.html. You can change this template name by overriding
either the template_name attribute or the get_template_names() method, which are documented in the
TemplateResponseMixin documentation. The latter one allows you to use a different template for each form
(see the example below).

This template expects a wizard object that has various items attached to it:

• form – The Form or BaseFormSet instance for the current step (either empty or with errors).

• steps – A helper object to access the various steps related data:

– step0 – The current step (zero-based).

– step1 – The current step (one-based).

– count – The total number of steps.

– first – The first step.

– last – The last step.

– current – The current (or first) step.

– next – The next step.

– prev – The previous step.

2.2. Usage 9

http://docs.djangoproject.com/en/dev/ref/class-based-views/mixins-simple/#django.views.generic.base.TemplateResponseMixin.template_name
http://docs.djangoproject.com/en/dev/ref/class-based-views/mixins-simple/#django.views.generic.base.TemplateResponseMixin.get_template_names
http://docs.djangoproject.com/en/dev/ref/class-based-views/mixins-simple/#django.views.generic.base.TemplateResponseMixin
http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form
http://docs.djangoproject.com/en/dev/topics/forms/formsets/#django.forms.formsets.BaseFormSet

django-formtools Documentation, Release 2.4.1

– index – The index of the current step.

– all – A list of all steps of the wizard.

You can supply additional context variables by using the get_context_data() method of your WizardView
subclass.

Here’s a full example template:

{% extends "base.html" %}
{% load i18n %}

{% block head %}
{{ wizard.form.media }}
{% endblock %}

{% block content %}
<p>Step {{ wizard.steps.step1 }} of {{ wizard.steps.count }}</p>
<form action="" method="post">{% csrf_token %}
<table>
{{ wizard.management_form }}
{% if wizard.form.forms %}

{{ wizard.form.management_form }}
{% for form in wizard.form.forms %}

{{ form.as_table }}
{% endfor %}

{% else %}
{{ wizard.form }}

{% endif %}
</table>
{% if wizard.steps.prev %}
<button name="wizard_goto_step" type="submit" value="{{ wizard.steps.first }}">{%
→˓translate "first step" %}</button>
<button name="wizard_goto_step" type="submit" value="{{ wizard.steps.prev }}">{%
→˓translate "prev step" %}</button>
{% endif %}
<input type="submit" value="{% translate "submit" %}"/>
</form>
{% endblock %}

Note: Note that {{ wizard.management_form }} must be used for the wizard to work properly.

2.2.4 Hooking the wizard into a URLconf

WizardView.as_view()

Finally, we need to specify which forms to use in the wizard, and then deploy the new WizardView object at a
URL in the urls.py. The wizard’s as_view() method takes a list of your Form classes as an argument during
instantiation:

from django.path import path

from myapp.forms import ContactForm1, ContactForm2
from myapp.views import ContactWizard

urlpatterns = [
(continues on next page)

10 Chapter 2. Form wizard

http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form

django-formtools Documentation, Release 2.4.1

(continued from previous page)

path('contact/', ContactWizard.as_view([ContactForm1, ContactForm2])),
]

You can also pass the form list as a class attribute named form_list:

class ContactWizard(WizardView):
form_list = [ContactForm1, ContactForm2]

2.2.5 Using a different template for each form

As mentioned above, you may specify a different template for each form. Consider an example using a form wizard to
implement a multi-step checkout process for an online store. In the first step, the user specifies a billing and shipping
address. In the second step, the user chooses payment type. If they chose to pay by credit card, they will enter credit
card information in the next step. In the final step, they will confirm the purchase.

Here’s what the view code might look like:

from django.http import HttpResponseRedirect
from formtools.wizard.views import SessionWizardView

FORMS = [("address", myapp.forms.AddressForm),
("paytype", myapp.forms.PaymentChoiceForm),
("cc", myapp.forms.CreditCardForm),
("confirmation", myapp.forms.OrderForm)]

TEMPLATES = {"address": "checkout/billingaddress.html",
"paytype": "checkout/paymentmethod.html",
"cc": "checkout/creditcard.html",
"confirmation": "checkout/confirmation.html"}

def pay_by_credit_card(wizard):
"""Return true if user opts to pay by credit card"""
Get cleaned data from payment step
cleaned_data = wizard.get_cleaned_data_for_step('paytype') or {'method': 'none'}
Return true if the user selected credit card
return cleaned_data['method'] == 'cc'

class OrderWizard(SessionWizardView):
def get_template_names(self):

return [TEMPLATES[self.steps.current]]

def done(self, form_list, **kwargs):
do_something_with_the_form_data(form_list)
return HttpResponseRedirect('/page-to-redirect-to-when-done/')
...

The urls.py file would contain something like:

urlpatterns = [
path('checkout/', OrderWizard.as_view(FORMS, condition_dict={'cc': pay_by_credit_

→˓card})),
]

The condition_dict can be passed as attribute for the as_view() method or as a class attribute named
condition_dict:

2.2. Usage 11

django-formtools Documentation, Release 2.4.1

class OrderWizard(WizardView):
condition_dict = {'cc': pay_by_credit_card}

Note that the OrderWizard object is initialized with a list of pairs. The first element in the pair is a string that
corresponds to the name of the step and the second is the form class.

In this example, the get_template_names() method returns a list containing a single template, which is selected
based on the name of the current step.

2.3 Advanced WizardView methods

class formtools.wizard.views.WizardView
Aside from the done() method, WizardView offers a few advanced method hooks that let you customize
how your wizard works.

Some of these methods take an argument step, which is a zero-based counter as string representing the current
step of the wizard. (E.g., the first form is '0' and the second form is '1')

WizardView.get_form_prefix(step=None, form=None)
Returns the prefix which will be used when calling the form for the given step. step contains the step name,
form the form class which will be called with the returned prefix.

If no step is given, it will be determined automatically. By default, this simply uses the step itself and the
form parameter is not used.

For more, see the form prefix documentation.

WizardView.get_form_initial(step)
Returns a dictionary which will be passed as the initial argument when instantiating the Form instance for
step step. If no initial data was provided while initializing the form wizard, an empty dictionary should be
returned.

The default implementation:

def get_form_initial(self, step):
return self.initial_dict.get(step, {})

WizardView.get_form_kwargs(step)
Returns a dictionary which will be used as the keyword arguments when instantiating the form instance on given
step.

The default implementation:

def get_form_kwargs(self, step):
return {}

WizardView.get_form_instance(step)
This method will be called only if a ModelForm is used as the form for step step.

Returns an Model object which will be passed as the instance argument when instantiating the ModelForm
for step step. If no instance object was provided while initializing the form wizard, None will be returned.

The default implementation:

def get_form_instance(self, step):
return self.instance_dict.get(step, None)

12 Chapter 2. Form wizard

http://docs.djangoproject.com/en/dev/ref/class-based-views/mixins-simple/#django.views.generic.base.TemplateResponseMixin.get_template_names
http://docs.djangoproject.com/en/dev/ref/forms/api/#form-prefix
http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form.initial
http://docs.djangoproject.com/en/dev/topics/forms/modelforms/#django.forms.ModelForm
http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model

django-formtools Documentation, Release 2.4.1

WizardView.get_context_data(form, **kwargs)
Returns the template context for a step. You can overwrite this method to add more data for all or some steps.
This method returns a dictionary containing the rendered form step.

The default template context variables are:

• Any extra data the storage backend has stored

• wizard – a dictionary representation of the wizard instance with the following key/values:

– form – Form or BaseFormSet instance for the current step

– steps – A helper object to access the various steps related data

– management_form – all the management data for the current step

Example to add extra variables for a specific step:

def get_context_data(self, form, **kwargs):
context = super().get_context_data(form=form, **kwargs)
if self.steps.current == 'my_step_name':

context.update({'another_var': True})
return context

WizardView.get_prefix(request, *args, **kwargs)
This method returns a prefix for use by the storage backends. Backends use the prefix as a mechanism to allow
data to be stored separately for each wizard. This allows wizards to store their data in a single backend without
overwriting each other.

You can change this method to make the wizard data prefix more unique to, e.g. have multiple instances of one
wizard in one session.

Default implementation:

def get_prefix(self, request, *args, **kwargs):
use the lowercase underscore version of the class name
return normalize_name(self.__class__.__name__)

Changed in version 1.0: The request parameter was added.

WizardView.get_form(step=None, data=None, files=None)
This method constructs the form for a given step. If no step is defined, the current step will be determined
automatically. If you override get_form, however, you will need to set step yourself using self.steps.
current as in the example below. The method gets three arguments:

• step – The step for which the form instance should be generated.

• data – Gets passed to the form’s data argument

• files – Gets passed to the form’s files argument

You can override this method to add extra arguments to the form instance.

Example code to add a user attribute to the form on step 2:

def get_form(self, step=None, data=None, files=None):
form = super().get_form(step, data, files)

determine the step if not given
if step is None:

step = self.steps.current

(continues on next page)

2.3. Advanced WizardView methods 13

http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form
http://docs.djangoproject.com/en/dev/topics/forms/formsets/#django.forms.formsets.BaseFormSet

django-formtools Documentation, Release 2.4.1

(continued from previous page)

if step == '1':
form.user = self.request.user

return form

WizardView.process_step(form)
Hook for modifying the wizard’s internal state, given a fully validated Form object. The Form is guaranteed to
have clean, valid data.

This method gives you a way to post-process the form data before the data gets stored within the storage backend.
By default it just returns the form.data dictionary. You should not manipulate the data here but you can use
it to do some extra work if needed (e.g. set storage extra data).

Note that this method is called every time a page is rendered for all submitted steps.

The default implementation:

def process_step(self, form):
return self.get_form_step_data(form)

WizardView.process_step_files(form)
This method gives you a way to post-process the form files before the files gets stored within the storage backend.
By default it just returns the form.files dictionary. You should not manipulate the data here but you can use
it to do some extra work if needed (e.g. set storage extra data).

Default implementation:

def process_step_files(self, form):
return self.get_form_step_files(form)

WizardView.render_goto_step(step, goto_step, **kwargs)
This method is called when the step should be changed to something else than the next step. By default, this
method just stores the requested step goto_step in the storage and then renders the new step.

If you want to store the entered data of the current step before rendering the next step, you can overwrite this
method.

WizardView.render_revalidation_failure(step, form, **kwargs)
When the wizard thinks all steps have passed it revalidates all forms with the data from the backend storage.

If any of the forms don’t validate correctly, this method gets called. This method expects two arguments, step
and form.

The default implementation resets the current step to the first failing form and redirects the user to the invalid
form.

Default implementation:

def render_revalidation_failure(self, step, form, **kwargs):
self.storage.current_step = step
return self.render(form, **kwargs)

WizardView.get_form_step_data(form)
This method fetches the data from the form Form instance and returns the dictionary. You can use this method
to manipulate the values before the data gets stored in the storage backend.

Default implementation:

def get_form_step_data(self, form):
return form.data

14 Chapter 2. Form wizard

http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form

django-formtools Documentation, Release 2.4.1

WizardView.get_form_step_files(form)
This method returns the form files. You can use this method to manipulate the files before the data gets stored
in the storage backend.

Default implementation:

def get_form_step_files(self, form):
return form.files

WizardView.render(form, **kwargs)
This method gets called after the GET or POST request has been handled. You can hook in this method to, e.g.
change the type of HTTP response.

Default implementation:

def render(self, form=None, **kwargs):
form = form or self.get_form()
context = self.get_context_data(form=form, **kwargs)
return self.render_to_response(context)

WizardView.get_cleaned_data_for_step(step)
This method returns the cleaned data for a given step. Before returning the cleaned data, the stored values are
revalidated through the form. If the data doesn’t validate, None will be returned.

WizardView.get_all_cleaned_data()
This method returns a merged dictionary of all form steps’ cleaned_data dictionaries. If a step contains
a FormSet, the key will be prefixed with formset- and contain a list of the formset’s cleaned_data
dictionaries. Note that if two or more steps have a field with the same name, the value for that field from the
latest step will overwrite the value from any earlier steps.

2.4 Providing initial data for the forms

WizardView.initial_dict
Initial data for a wizard’s Form objects can be provided using the optional initial_dict keyword argument.
This argument should be a dictionary mapping the steps to dictionaries containing the initial data for each step.
The dictionary of initial data will be passed along to the constructor of the step’s Form:

>>> from myapp.forms import ContactForm1, ContactForm2
>>> from myapp.views import ContactWizard
>>> initial = {
... '0': {'subject': 'Hello', 'sender': 'user@example.com'},
... '1': {'message': 'Hi there!'}
... }
>>> # This example is illustrative only and isn't meant to be run in
>>> # the shell since it requires an HttpRequest to pass to the view.
>>> wiz = ContactWizard.as_view([ContactForm1, ContactForm2], initial_
→˓dict=initial)(request)
>>> form1 = wiz.get_form('0')
>>> form2 = wiz.get_form('1')
>>> form1.initial
{'sender': 'user@example.com', 'subject': 'Hello'}
>>> form2.initial
{'message': 'Hi there!'}

The initial_dict can also take a list of dictionaries for a specific step if the step is a FormSet.

2.4. Providing initial data for the forms 15

http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form
http://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.Form

django-formtools Documentation, Release 2.4.1

The initial_dict can also be added as a class attribute named initial_dict to avoid having the initial
data in the urls.py.

2.5 Handling files

WizardView.file_storage

To handle FileField within any step form of the wizard, you have to add a file_storage to your
WizardView subclass.

This storage will temporarily store the uploaded files for the wizard. The file_storage attribute should be a
Storage subclass.

Django provides a built-in storage class (see the built-in filesystem storage class):

from django.conf import settings
from django.core.files.storage import FileSystemStorage

class CustomWizardView(WizardView):
...
file_storage = FileSystemStorage(location=os.path.join(settings.MEDIA_ROOT,

→˓'photos'))

Warning: Please remember to take care of removing old temporary files, as the WizardView will only remove
these files if the wizard finishes correctly.

2.6 Conditionally view/skip specific steps

WizardView.condition_dict

The as_view() method accepts a condition_dict argument. You can pass a dictionary of boolean values or
callables. The key should match the steps names (e.g. ‘0’, ‘1’).

If the value of a specific step is callable it will be called with the WizardView instance as the only argument. If the
return value is true, the step’s form will be used.

This example provides a contact form including a condition. The condition is used to show a message form only if a
checkbox in the first step was checked.

The steps are defined in a forms.py file:

from django import forms

class ContactForm1(forms.Form):
subject = forms.CharField(max_length=100)
sender = forms.EmailField()
leave_message = forms.BooleanField(required=False)

class ContactForm2(forms.Form):
message = forms.CharField(widget=forms.Textarea)

We define our wizard in a views.py:

16 Chapter 2. Form wizard

http://docs.djangoproject.com/en/dev/ref/forms/fields/#django.forms.FileField
http://docs.djangoproject.com/en/dev/ref/files/storage/#django.core.files.storage.Storage
http://docs.djangoproject.com/en/dev/topics/files/#builtin-fs-storage

django-formtools Documentation, Release 2.4.1

from django.shortcuts import render
from formtools.wizard.views import SessionWizardView

def show_message_form_condition(wizard):
try to get the cleaned data of step 1
cleaned_data = wizard.get_cleaned_data_for_step('0') or {}
check if the field ``leave_message`` was checked.
return cleaned_data.get('leave_message', True)

class ContactWizard(SessionWizardView):

def done(self, form_list, **kwargs):
return render(self.request, 'done.html', {

'form_data': [form.cleaned_data for form in form_list],
})

We need to add the ContactWizard to our urls.py file:

from django.urls import path

from myapp.forms import ContactForm1, ContactForm2
from myapp.views import ContactWizard, show_message_form_condition

contact_forms = [ContactForm1, ContactForm2]

urlpatterns = [
path('contact/', ContactWizard.as_view(contact_forms,

condition_dict={'1': show_message_form_condition}
)),

]

As you can see, we defined a show_message_form_condition next to our WizardView subclass and added
a condition_dict argument to the as_view() method. The key refers to the second wizard step (because of
the zero based step index).

2.7 How to work with ModelForm and ModelFormSet

WizardView.instance_dict

WizardView supports ModelForms and ModelFormSets. Additionally to initial_dict, the as_view()
method takes an instance_dict argument that should contain model instances for steps based on ModelForm
and querysets for steps based on ModelFormSet.

2.8 Usage of NamedUrlWizardView

class formtools.wizard.views.NamedUrlWizardView

class formtools.wizard.views.NamedUrlSessionWizardView

class formtools.wizard.views.NamedUrlCookieWizardView

NamedUrlWizardView is a WizardView subclass which adds named-urls support to the wizard. This al-
lows you to have separate URLs for every step. You can also use the NamedUrlSessionWizardView or
NamedUrlCookieWizardView classes which preselect the backend used for storing information (Django ses-
sions and browser cookies respectively).

2.7. How to work with ModelForm and ModelFormSet 17

http://docs.djangoproject.com/en/dev/ref/forms/models/#module-django.forms.models
http://docs.djangoproject.com/en/dev/topics/forms/modelforms/#model-formsets

django-formtools Documentation, Release 2.4.1

To use the named URLs, you should not only use the NamedUrlWizardView instead of WizardView , but you
will also have to change your urls.py.

The as_view() method takes two additional arguments:

• a required url_name – the name of the url (as provided in the urls.py)

• an optional done_step_name – the name of the done step, to be used in the URL

This is an example of a urls.py for a contact wizard with two steps, step 1 named contactdata and step 2 named
leavemessage:

from django.urls import path, re_path

from myapp.forms import ContactForm1, ContactForm2
from myapp.views import ContactWizard

named_contact_forms = (
('contactdata', ContactForm1),
('leavemessage', ContactForm2),

)

contact_wizard = ContactWizard.as_view(named_contact_forms,
url_name='contact_step', done_step_name='finished')

urlpatterns = [
re_path(r'^contact/(?P<step>.+)/$', contact_wizard, name='contact_step'),
path('contact/', contact_wizard, name='contact'),

]

2.9 Advanced NamedUrlWizardView methods

NamedUrlWizardView.get_step_url(step)

This method returns the URL for a specific step.

Default implementation:

def get_step_url(self, step):
return reverse(self.url_name, kwargs={'step': step})

18 Chapter 2. Form wizard

CHAPTER 3

Changelog

This page details the changes in the various django-formtools releases.

3.1 2.4.1 (2023-05-13)

• Fixed a regression causing a recursion error when getting get_form_list() from a form condition (#220).

• Removed Python 3.6 support and added Python 3.11 to test matrix.

• Dropped testing for Django < 3.2 and confirmed support for Django 4.2.

3.2 2.4 (2022-09-28)

• Updated translations from Transifex.

• Any kwarg passed to render_goto_step() is passed over to render.

• WizardView is using get_form_list() instead of directly accessing form_list (#168).

• Added Python 3.10 to test matrix.

• Dropped testing for Django 3.1.

• Confirmed support for Django 4.0 and 4.1.

3.3 2.3 (2021-04-18)

• Dropped testing for Django 1.11, 2.0 and 2.1.

• Added support for Django 3.1 and Python 3.9.

• Added support for Django 3.2.

19

django-formtools Documentation, Release 2.4.1

• Dropped support for Django 3.0.

• Dropped support for Python 3.5.

3.4 2.2 (2019-12-05)

• Dropped testing for Django 1.8, 1.9, 1.10.

• Dropped support for Python 2.

• Added support for Django 2.1, 2.2, 3.0, and Python 3.7.

• Updated translations from Transifex.

3.5 2.1 (2017-10-04)

• Added testing for Django 1.11 (no code changes were required).

• Added support for Django 2.0.

• Dropped testing for Python 3.3 (now end-of-life) on Django 1.8.

3.6 2.0 (2017-01-07)

• Added the request parameter to FormPreview.parse_params().

• Added support for Django 1.10.

• Dropped support for Django 1.7 and Python 3.2 on Django 1.8.

3.7 1.0 (2015-03-25)

• Added the request parameter to WizardView.get_prefix().

This was originally reported and fixed in the main Django repository:

https://code.djangoproject.com/ticket/19981

• A form wizard using the CookieWizardView will now ignore an invalid cookie, and the wizard will restart
from the first step. An invalid cookie can occur in cases of intentional manipulation, but also after a secret
key change. Previously, this would raise WizardViewCookieModified, a SuspiciousOperation,
causing an exception for any user with an invalid cookie upon every request to the wizard, until the cookie is
removed.

This was originally reported and fixed in the main Django repository:

https://code.djangoproject.com/ticket/22638

• Added missing form element to default wizard form template formtools/wizard/wizard_form.html.

20 Chapter 3. Changelog

https://code.djangoproject.com/ticket/19981
https://code.djangoproject.com/ticket/22638

CHAPTER 4

Installation

To install django-formtools use your favorite packaging tool, e.g.pip:

pip install django-formtools

Or download the source distribution from PyPI at https://pypi.python.org/pypi/django-formtools, decompress the file
and run python setup.py install in the unpacked directory.

Then add 'formtools' to your INSTALLED_APPS setting:

INSTALLED_APPS = (
...
'formtools',

)

Note: Adding 'formtools' to your INSTALLED_APPS setting is required for translations and templates to work.
Using django-formtools without adding it to your INSTALLED_APPS setting is not recommended.

21

https://pypi.python.org/
https://pypi.python.org/pypi/django-formtools
http://docs.djangoproject.com/en/dev/ref/settings/#std-setting-INSTALLED_APPS

django-formtools Documentation, Release 2.4.1

22 Chapter 4. Installation

CHAPTER 5

Internationalization

Formtools has its own catalog of translations, in the directory formtools/locale, and it’s not loaded automati-
cally like Django’s general catalog in django/conf/locale. If you want formtools’s texts to be translated, like
the templates, you must include formtools in the INSTALLED_APPS setting, so the internationalization system
can find the catalog, as explained in How Django discovers translations.

23

http://docs.djangoproject.com/en/dev/ref/settings/#std-setting-INSTALLED_APPS
http://docs.djangoproject.com/en/dev/topics/i18n/translation/#how-django-discovers-translations

django-formtools Documentation, Release 2.4.1

24 Chapter 5. Internationalization

CHAPTER 6

Releases

New releases of django-formtools should always be compatible with the latest stable release of Django. If a new
version of Django contains backwards incompatible changes that affect formtools, a new release of formtools will be
issued shortly after the release of the new Django version. Version numbers follow the appropriate Python standards,
e.g. PEPs 386 and 440.

25

http://www.python.org/dev/peps/pep-0386/
http://www.python.org/dev/peps/pep-0440/

django-formtools Documentation, Release 2.4.1

26 Chapter 6. Releases

CHAPTER 7

How to migrate

If you’ve used the old django.contrib.formtools package follow these two easy steps to update your code:

1. Install the third-party django-formtools package.

2. Change your app’s import statements to reference the new packages.

For example, change this:

from django.contrib.formtools.wizard.views import WizardView

. . . to this:

from formtools.wizard.views import WizardView

The code in the new package is the same (it was copied directly from Django), so you don’t have to worry about
backwards compatibility in terms of functionality. Only the imports have changed.

27

django-formtools Documentation, Release 2.4.1

28 Chapter 7. How to migrate

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

29

django-formtools Documentation, Release 2.4.1

30 Chapter 8. Indices and tables

Python Module Index

f
formtools, ??
formtools.preview, 3
formtools.wizard.views, 7

31

django-formtools Documentation, Release 2.4.1

32 Python Module Index

Index

A
as_view() (formtools.wizard.views.WizardView

method), 10

C
condition_dict (form-

tools.wizard.views.WizardView attribute),
16

CookieWizardView (class in form-
tools.wizard.views), 8

D
done() (formtools.preview.FormPreview method), 5
done() (formtools.wizard.views.WizardView method), 8

F
failed_hash() (formtools.preview.FormPreview

method), 5
file_storage (formtools.wizard.views.WizardView

attribute), 16
form_template (formtools.preview.FormPreview at-

tribute), 4
FormPreview (class in formtools.preview), 4
formtools (module), 1
formtools.preview (module), 3
formtools.wizard.views (module), 7

G
get_all_cleaned_data() (form-

tools.wizard.views.WizardView method),
15

get_auto_id() (formtools.preview.FormPreview
method), 5

get_cleaned_data_for_step() (form-
tools.wizard.views.WizardView method),
15

get_context() (formtools.preview.FormPreview
method), 5

get_context_data() (form-
tools.wizard.views.WizardView method),
12

get_form() (formtools.wizard.views.WizardView
method), 13

get_form_initial() (form-
tools.wizard.views.WizardView method),
12

get_form_instance() (form-
tools.wizard.views.WizardView method),
12

get_form_kwargs() (form-
tools.wizard.views.WizardView method),
12

get_form_prefix() (form-
tools.wizard.views.WizardView method),
12

get_form_step_data() (form-
tools.wizard.views.WizardView method),
14

get_form_step_files() (form-
tools.wizard.views.WizardView method),
14

get_initial() (formtools.preview.FormPreview
method), 5

get_prefix() (formtools.wizard.views.WizardView
method), 13

get_step_url() (form-
tools.wizard.views.NamedUrlWizardView
method), 18

I
initial_dict (formtools.wizard.views.WizardView

attribute), 15
instance_dict (formtools.wizard.views.WizardView

attribute), 17

N
NamedUrlCookieWizardView (class in form-

tools.wizard.views), 17

33

django-formtools Documentation, Release 2.4.1

NamedUrlSessionWizardView (class in form-
tools.wizard.views), 17

NamedUrlWizardView (class in form-
tools.wizard.views), 17

P
parse_params() (formtools.preview.FormPreview

method), 5
preview_template (formtools.preview.FormPreview

attribute), 4
process_preview() (form-

tools.preview.FormPreview method), 5
process_step() (form-

tools.wizard.views.WizardView method),
14

process_step_files() (form-
tools.wizard.views.WizardView method),
14

R
render() (formtools.wizard.views.WizardView

method), 15
render_goto_step() (form-

tools.wizard.views.WizardView method),
14

render_revalidation_failure() (form-
tools.wizard.views.WizardView method), 14

S
security_hash() (formtools.preview.FormPreview

method), 5
SessionWizardView (class in form-

tools.wizard.views), 8

W
WizardView (class in formtools.wizard.views), 12

34 Index

	Form preview
	Overview
	How to use FormPreview
	FormPreview classes
	FormPreview templates
	Required methods
	Optional methods

	Form wizard
	How it works
	Usage
	Advanced WizardView methods
	Providing initial data for the forms
	Handling files
	Conditionally view/skip specific steps
	How to work with ModelForm and ModelFormSet
	Usage of NamedUrlWizardView
	Advanced NamedUrlWizardView methods

	Changelog
	2.4.1 (2023-05-13)
	2.4 (2022-09-28)
	2.3 (2021-04-18)
	2.2 (2019-12-05)
	2.1 (2017-10-04)
	2.0 (2017-01-07)
	1.0 (2015-03-25)

	Installation
	Internationalization
	Releases
	How to migrate
	Indices and tables
	Python Module Index
	Index

