

 [image: _images/django-forms-builder.png]
 [http://travis-ci.org/stephenmcd/django-forms-builder]
django-forms-builder

Created by Stephen McDonald [http://twitter.com/stephen_mcd]

A Django reusable app providing the ability for admin users to create
their own forms within the admin interface, drawing from a range of
field widgets such as regular text fields, drop-down lists and file
uploads. Options are also provided for controlling who gets sent email
notifications when a form is submitted. All form entries are made
available in the admin via filterable reporting with CSV/XLS export.

Form builder:

[image: _images/fields.png]
Data reporting:

[image: _images/report.png]

HTML5 Features

The following HTML5 form features are supported.

	placeholder attributes

	required attributes

	email fields

	date fields

	datetime fields

	number fields

	url fields

Installation

The easiest way to install django-forms-builder is directly from PyPi
using pip [http://www.pip-installer.org/] by running the command below:

$ pip install -U django-forms-builder

Otherwise you can download django-forms-builder and install it directly
from source:

$ python setup.py install

Once installed you can configure your project to use
django-forms-builder with the following steps.

Add forms_builder.forms to INSTALLED_APPS in your project’s
settings module:

INSTALLED_APPS = (
 # other apps
 'forms_builder.forms',
)

If you haven’t already, ensure django.core.context_processors.request
is in the TEMPLATE_CONTEXT_PROCESSORS setting in your project’s
settings module:

TEMPLATE_CONTEXT_PROCESSORS = (
 # other context processors
 "django.core.context_processors.request",
 # Django 1.6 also needs:
 'django.contrib.auth.context_processors.auth',
)

Then add forms_builder.forms.urls to your project’s urls
module:

from django.conf.urls.defaults import patterns, include, url
import forms_builder.forms.urls # add this import

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 # other urlpatterns
 url(r'^admin/', include(admin.site.urls)),
 url(r'^forms/', include(forms_builder.forms.urls)),
)

Finally, sync your database:

$ python manage.py syncdb

As of version 0.5, django-forms-builder provides South [http://south.aeracode.org/] migrations.
If you use south in your project, you’ll also need to run migrations:

$ python manage.py migrate forms

Usage

Once installed and configured for your project just go to the admin
page for your project and you will see a new Forms section. In this
you can create and edit forms. Forms are then each viewable with their
own URLs. A template tag render_built_form is also available for
displaying forms outside of the main form view provided. It will
display a form when given an argument in one of the following
formats, where form_instance is an instance of the Form model:

{% load forms_builder_tags %}

{% render_built_form form_instance %}
{% render_built_form form=form_instance %}
{% render_built_form id=form_instance.id %}
{% render_built_form slug=form_instance.slug %}

This allows forms to be displayed without having a form instance, using
a form’s slug or ID, which could be hard-coded in a template, or stored
in another model instance.

File Uploads

It’s possible for admin users to create forms that allow file uploads
which can be accessed via a download URL for each file that is provided
in the CSV export. By default these uploaded files are stored in an
obscured location under your project’s MEDIA_ROOT directory but
ideally the should be stored somewhere inaccessible to the public. To
set the location where files are stored to be somewhere outside of your
project’s MEDIA_ROOT directory you just need to define the
FORMS_BUILDER_UPLOAD_ROOT setting in your project’s settings
module. Its value should be an absolute path on the web server that
isn’t accessible to the public.

Configuration

The following settings can be defined in your project’s settings
module.

	FORMS_BUILDER_FIELD_MAX_LENGTH - Maximum allowed length for
field values. Defaults to 2000

	FORMS_BUILDER_LABEL_MAX_LENGTH - Maximum allowed length for
field labels. Defaults to 20

	FORMS_BUILDER_EXTRA_FIELDS - Sequence of custom fields that
will be added to the form field types. Defaults to ()

	FORMS_BUILDER_UPLOAD_ROOT - The absolute path where files will
be uploaded to. Defaults to None

	FORMS_BUILDER_USE_HTML5 - Boolean controlling whether HTML5 form
fields are used. Defaults to True

	FORMS_BUILDER_USE_SITES - Boolean controlling whether forms are
associated to Django’s Sites framework.
Defaults to "django.contrib.sites" in settings.INSTALLED_APPS

	FORMS_BUILDER_EDITABLE_SLUGS - Boolean controlling whether form
slugs are editable in the admin. Defaults to False

	FORMS_BUILDER_CHOICES_QUOTE - Char to start a quoted choice with.
Defaults to the backtick char: `

	FORMS_BUILDER_CHOICES_UNQUOTE - Char to end a quoted choice with.
Defaults to the backtick char: `

	FORMS_BUILDER_CSV_DELIMITER - Char to use as a field delimiter
when exporting form responses as CSV. Defaults to a comma: ,

	FORMS_BUILDER_EMAIL_FAIL_SILENTLY - Bool used for Django’s
fail_silently argument when sending email.
Defaults to settings.DEBUG.

Custom Fields and Widgets

You can also add your own custom fields or widgets to the choices of
fields available for a form. Simply define a sequence for the
FORMS_BUILDER_EXTRA_FIELDS setting in your project’s settings
module, where each item in the sequence is a custom field that will
be available.

Each field in the sequence should be a three-item sequence containing
an ID, a dotted import path for the field class, and a field name, for
each custom field type. The ID is simply a numeric constant for the
field, but cannot be a value already used, so choose a high number
such as 100 or greater to avoid conflicts:

FORMS_BUILDER_EXTRA_FIELDS = (
 (100, "django.forms.BooleanField", "My cool checkbox"),
 (101, "my_module.MyCustomField", "Another field"),
)

You can also define custom widget classes for any of the existing or
custom form fields via the FORMS_BUILDER_EXTRA_WIDGETS setting.
Each field in the sequence should be a two-item sequence containing
the same ID referred to above for the form field class, and a dotted
import path for the widget class:

FORMS_BUILDER_EXTRA_WIDGETS = (
 (100, "my_module.MyCoolWidget"),
 (101, "my_other_module.AnotherWidget"),
)

Note that using the FORMS_BUILDER_EXTRA_WIDGETS setting to define
custom widgets for field classes of your own is somewhat redundant,
since you could simply define the widgets on the field classes directly
in their code.

Email Templates

The django-email-extras [https://github.com/stephenmcd/django-email-extras] package is used to send multipart email
notifications using Django’s templating system for constructing the
emails, to users submitting forms, and any recipients specified when
creating a form via Django’s admin.

Templates for HTML and text versions of the email can be found in the
templates/email_extras directory. This allows you to customize the
look and feel of emails that are sent to form submitters. Along with
each of the form_response email templates which are used to email
the form submitter, you’ll also find corresponding
form_response_copies templates, that extend the former set - these
are used as the templates for emailing any extra recipients specified
for the form in the admin interface. By default they simply extend
the form_response templates, but you can modify them should you
need to customize the emails sent to any extra recipients.

Note

With django-email-extras installed, it’s also possible to
configure PGP [http://en.wikipedia.org/wiki/Pretty_Good_Privacy] encrypted emails to be send to staff members,
allowing forms to be built for capturing sensitive information.
Consult the django-email-extras [https://github.com/stephenmcd/django-email-extras] documentation for more info.

Signals

Two signals are provided for hooking into different states of the form
submission process.

	form_invalid(sender=request, form=form) - Sent when the form is
submitted with invalid data.

	form_valid(sender=request, form=form, entry=entry) - Sent when
the form is submitted with valid data.

For each signal the sender argument is the current request. Both
signals receive a form argument is given which is the
FormForForm instance, a ModelForm for the FormEntry model.
The form_valid signal also receives a entry argument, which is
the FormEntry model instance created.

Some examples of using the signals would be to monitor how users are
causing validation errors with the form, or a pipeline of events to
occur on successful form submissions. Suppose we wanted to store a
logged in user’s username against each form when submitted, given
a form containing a field with the label Username with its
field_type set to Hidden:

from django.dispatch import receiver
from forms_builder.forms.signals import form_valid

@receiver(form_valid)
def set_username(sender=None, form=None, entry=None, **kwargs):
 request = sender
 if request.user.is_authenticated():
 field = entry.form.fields.get(label="Username")
 field_entry, _ = entry.fields.get_or_create(field_id=field.id)
 field_entry.value = request.user.username
 field_entry.save()

Dynamic Field Defaults

As of version 0.6, you can use Django template code for default field
values. For example you could enter {{ request.user.username }} and
the field will be pre-populated with a user’s username if they’re
authenticated.

XLS Export

By default, django-forms-builder provides export of form entries via
CSV file. You can also enable export via XLS file (Microsoft Excel)
by installing the xlwt [http://www.python-excel.org/] package:

$ pip install xlwt

Index

 nav.xhtml

 Table of Contents

 		
 django-forms-builder

_images/fields.png
e LI e i o

(s | (wbosisas ¢ 0 L . L o}
(— T i; s s 11—
(— L L s s)
[E——— T i s 1C 11—

_images/report.png
View Entries

s Icute ritrby
ot © (osavesan T8
nermame: o |Emm—
foctco: | © | (G
owestun G
Comwnorr | @ | (emmTTE)
oerime © | (Emem T
[v o | o v | oo
Entries (5)

O Ommentmun | weman | e
o seesn senepsocy | e
O s sengismar | sen
o s senepmoc | e
O s senepnery e

sacksotorm| [EITEIEE]

) we (=

i0]e=0] =m0

13,2014 348 5m.
13,2014, 348 5m.

_static/file.png

_static/down-pressed.png

_images/django-forms-builder.png
“build passing

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

