

django-formrenderingtools

Customize layout of Django forms [https://docs.djangoproject.com/en/1.4/topics/forms/#customizing-the-form-template] in templates, not in Python code.

Rather than using {{ form.as_p }} and Python code, set up and reuse templates
to render Django’s form elements.

As an example, to reproduce Django’s {{ form.as_p }}:

{% load form_layouts %}
<form>
 {% form layout="as_p" %}
 <input type="submit">
</form>

For the impatient, jump to the Demo project to discover and try the application
in a sandbox.

Note

Django-formrenderingtools is not intended to customize widgets.
Have a look at django-floppyforms [http://pypi.python.org/pypi/django-floppyforms] for this purpose.

Contents

	Overview
	Rendering forms with Django is boring

	Introducing the “form_layouts” template tag library

	Concepts

	Installation
	Install Python package

	Update Django project settings

	Demo project
	Install

	Look at the demo

	Experiment

	Reference
	Template tags

	Settings

	Template names and directory structure

	Cascading style sheets

	Migrate from Django’s builtins to django-formrenderingtools
	Install django-formrenderingtools

	Replace {{ form }} by {% form %} in your templates

	Migrate custom layouts and includes

	Best practices

	Contribution guidelines
	Get a development environment

	Guidelines

	About django-formrenderingtools
	Alternatives

	License

	Authors

	Changes

Resources

	Online documentation [http://packages.python.org/django-formrenderingtools/]

	PyPI page [http://pypi.python.org/pypi/django-formrenderingtools]

	Source code repository [http://bitbucket.org/benoitbryon/django-formrenderingtools]

	Bugtracker [http://bitbucket.org/benoitbryon/django-formrenderingtools/issues]

Credits and license

This application is published under the BSD license. See License
and Authors for details.

Overview

This Django application provides tools for the web designer to customize
the rendering of forms in templates.

Rendering forms with Django is boring

For an introduction to Django forms, see the Django documentation about forms [http://docs.djangoproject.com/en/dev/ref/forms/].

The following section will point out some limitations of the Django’s standard
way to display forms in templates. Here is a short list of common problems:

	how to add CSS classes to the form elements?

	how to display the fields in a different order than specified in the form’s
python class definition?

	how to display only a subset of the form? How to display fieldsets?

	how to customize only a few fields in the form?

If you are already aware of these problems, you can read about
the form_layouts template tag library in the
next section.

Otherwise, let’s begin by considering the following Django form:

from django import forms

class ContactForm(forms.Form):
 subject = forms.CharField(max_length=100)
 message = forms.CharField()
 sender = forms.EmailField()
 cc_myself = forms.BooleanField(required=False)

Django’s standard way to render forms is to use the form.as_p() method or
similar:

{{ my_form.as_p }}

You get something like this:

<p>
 <label for="id_subject">Subject:</label>
 <input id="id_subject" type="text" name="subject" maxlength="100" />
</p>
<p>
 <label for="id_message">Message:</label>
 <input type="text" name="message" id="id_message" />
</p>
<p>
 <label for="id_sender">Sender:</label>
 <input type="text" name="sender" id="id_sender" />
</p>
<p>
 <label for="id_cc_myself">Cc myself:</label>
 <input type="checkbox" name="cc_myself" id="id_cc_myself" />
</p>

Seems magic...

HTML output is fully controlled by Python scripts. This is efficient, but the
template designer does not have control on it. This does not contribute to
the separation between logic and design.

Now, what if the template designer wants to add a “required” CSS class
attribute to the required fields in a form? He has to write code.
As explained in the the Django documentation about form templates [http://docs.djangoproject.com/en/dev/topics/forms/#customizing-the-form-template],
you can write a loop:

{% for field in form %}
<div class="fieldWrapper{% if field.field.required %} required{% endif %}">
 {{ field.errors }}
 {{ field.label_tag }}: {{ field }}
</div>
{% endfor %}

Now what if the template designer want to customize only one field in the form?
He has to write down the complete form. Here is an example where subject’s
help text is displayed before field, and message label is “Your message”:

<div class="fieldWrapper">
 {{ form.subject.errors }}
 {{ form.subject.label_tag }}:
 {{ form.subject.help_text }}</p>
 {{ form.subject }}
</div>
<div class="fieldWrapper">
 {{ form.message.errors }}
 <label for="id_message">Your message:</label>
 {{ form.message }}
 {{ form.message.help_text }}</p>
</div>
<div class="fieldWrapper">
 {{ form.sender.errors }}
 {{ form.sender.label_tag }}:
 {{ form.sender }}
</div>
<div class="fieldWrapper">
 {{ form.cc_myself.errors }}
 {{ form.cc_myself.label_tag }}:
 {{ form.cc_myself }}
</div>

And what if you want to customize many fields in many forms? Then it gets
really boring, isn’t it?

The Django documentation about reusable form templates [http://docs.djangoproject.com/en/dev/topics/forms/#reusable-form-templates]
says:

If you find yourself doing this often, you might consider creating a custom
inclusion tag.

So, here comes django-formrenderingtools.
This application uses templates to render forms, wherever it is possible.
Default templates can be reused, and specific templates can be created if
necessary.

Introducing the “form_layouts” template tag library

Consider the form used in the previous section.

Here is how you can use django-formrenderingtools to display it:

{% load form_layouts %}
{% form %}

Now, if you want to customize the “subject” field, create a
“form_layouts/contact/fields/subject.html” template.
Write “Hello world!” in this template.

By doing this, you have created a “contact” form layout (the directory name)
and a custom template for the “subject” field.
So the new template code is:

{% load form_layouts %}
{% form layout="contact" %}

Refresh your page. You should see “Hello world!” instead of the subject field.

Notice that the template name is important. If the template does not have
the “good” name, then the template tag will not be able to find it.
See Template names and directory structure for details.

Have a look on the “djc/formrenderingtools/templates/form_layouts/default/”
directory to get the default templates used by the “form_layouts”
template tags.

You can customize more fields, forms, labels by creating templates.

You can reuse the “contact” form layout for other forms.

You can override the default form layout so that it fits your coding
conventions.

Learn more by reading the Reference or Demo project sections of
this documentation.

Concepts

The goal of this application is to provide a pack of template tags which helps
you render each element in a form: full form, list of fields, non field errors
(global errors), field errors (specific errors), field, label, help text...
It is intended to be simple to learn and easy to extend.

Every form element has a corresponding template tag, which uses templates to
generate the output. Template designers no longer rely on developers to
customize the form output.

This application provides a “form_layouts” template tag library
which itself provides the following template tags:

	form: renders a full form, i.e. non field errors, all fields, field
errors, labels and help texts

	form_errors: renders global form errors, i.e. non field errors

	field_list: renders a set of fields in a form, with corresponding
field errors, labels and help texts

	field: renders a field, with field errors, label and help text

	field_errors: renders errors related to a field

	label: renders a field’s label

	help_text: renders a field’s help text

For a deeper description of each template tag, see
Template tags.

This application uses a template-naming system that lets you reuse generic
templates or use specific ones, depending on your needs. You can reuse built-in
templates, override them or create your own templates. See
Template names and directory structure for details.

Installation

The code is published under the BSD license. See License for
details.

If you just want to discover the application, you may have a look at the
Demo project.

If you want to contribute to the code, you should go to Contribution guidelines
documentation.

Install Python package

Install the package with your favorite Python installer. As an example, with
pip:

pip install django-formrenderingtools

Update Django project settings

Add djc.formrenderingtools to the INSTALLED_APPS list in your Django
project settings:

INSTALLED_APPS = (
 # ...
 'djc.formrenderingtools',
 # ...
)

Depending on you configuration, you may also check TEMPLATE_LOADERS and
TEMPLATE_DIRS to make sure that templates distributed within
django-formrenderingtools are discovered.

Demo project

Django-formrenderingtools sourcecode contains a demonstration project in the
demo/ folder.

The demo produces a presentation of django-formrenderingtools usage with
examples.

Install

Get the source.
hg clone http://bitbucket.org/benoitbryon/django-formrenderingtools
cd django-formrenderingtools/
Install.
make develop
You can run the server!
bin/django runserver

If everything went fine, you have a everything you need in the folder. Have a
look at the provided Makefile for details.

If a problem occurred, look at the provided Makefile. It is the live
install-for-demo documentation.

Look at the demo

	Run Django’s development server:

bin/django runserver

	Open http://localhost:8000/ in your browser.

	Read the sourcecode in the demo/ folder of your
django-formrenderingtools installation.

Experiment

Use the demo project as a sandbox!

Note

Demo is part of the development process and part of the documentation. It
has been created to both help users discover the application and developers
to test features with real-world use cases.

Reference

	Template tags
	form

	form_errors

	field_list

	field

	field_errors

	label

	help_text

	Settings
	FORMRENDERINGTOOLS_TEMPLATE_DIR

	FORMRENDERINGTOOLS_DEFAULT_LAYOUT

	FORMRENDERINGTOOLS_DEFAULT_TEMPLATE

	Template names and directory structure
	Overview

	How to use other templates?

	Priority

	Additional variables

	Cascading style sheets
	General styles

	Field specific styles

Template tags

django-formrenderingtools provides the “form_layouts” template tag library,
which itself provides the following template tags:

	form: renders a full form, with all errors (field and non field
errors), fields and labels.

	form_errors: renders global form errors, i.e. non field errors

	field_list: renders a list of fields, with field errors, fields and
labels. By default, uses {% field %}.

	field: renders a field, with field errors and label. By default, uses
{% label %}.

	field_errors: renders errors related to a field

	label: renders a field’s label

	help_text: renders a field’s help text

form

Renders a full form, with all errors (field and non field errors), fields and
labels.

By default, uses field_list.

Minimal usage

{% load form_layouts %}
{% form %}

In this case:

	a context variable named “form” is required. You can use {% with %} for this
purpose.

	the default layout will be used

	all fields in the form will be displayed, in the order specified in the
form’s python class definition.

Usage with options

{% load form_layouts %}
{% form form=my_form layout="my_layout" fields="a_field_name,another_field" exclude_fields="some_field_to_ignore" %}

Input parameters

	form

	optional, a context variable, the form instance to be rendered.
If empty, the template tag searches for a context variable named “form”.

	layout

	optional, defaults to settings.FORMRENDERINGTOOLS_DEFAULT_LAYOUT (“default”
by default), a context variable or a string, the layout to be used.
Through this parameter, you implicitely specify the template directory to
use. See Template names and directory structure for details.

	fields

	optional, defaults to None, a list or comma-separated (no spaces allowed)
string which represents the names of fields that you want to be displayed.
Only those fields will be displayed. If a field is in both “fields” and
“exclude_fields”, then it won’t be displayed.

	exclude_fields

	optional, defaults to None, a list or comma-separated string which
represents the names of fields that you do not want to be displayed. Only
other fields will be displayed. If a field is in both “fields” and
“exclude_fields”, then it won’t be displayed.

	template

	optional, defaults to “default.html”, a string, the template name to use.
See Template names and directory structure for details.

form_errors

Renders non field errors of a form.

Input parameters are the same as the form template tag.

field_list

Renders several fields.

Input parameters are the same as the form template tag.

field

Renders a field: errors, label, field and help_text.

Notice that Django-formrenderingtools is not intended to customize widgets.
Have a look at django-floppyforms [http://pypi.python.org/pypi/django-floppyforms] for this purpose.

Input parameters

	field

	optional, a context variable, the field instance to be rendered.
If empty, the template tag searches for a context variable named “field”.

	layout

	optional, defaults to settings.FORMRENDERINGTOOLS_DEFAULT_LAYOUT (“default”
by default), a context variable or a string, the layout to be used.
Through this parameter, you implicitely specify the template directory to
use. See Template names and directory structure for details.

	template

	optional, defaults to “default.html”, a string, the template name to use.
See Template names and directory structure for details.

field_errors

Renders the errors attached to a field.

Input parameters are the same as the field template tag.

label

Renders the label of a field.

Input parameters are the same as the field template tag.

help_text

Renders the help text of a field.

Input parameters are the same as the field template tag.

Settings

The django-formrenderingtools settings are prefixed with
“FORMRENDERINGTOOLS_”.

It is recommended not to change the following settings if you are aware of the
“convention over configuration” practice.

These settings were originally created for the developer convenience
and to enable tests.

FORMRENDERINGTOOLS_TEMPLATE_DIR

By default:

FORMRENDERINGTOOLS_TEMPLATE_DIR_TEMPLATE_DIR = 'form_layouts'

By default, the “form_layouts” template tag library searches for templates
within the “form_layouts/” folder in template directories.

You can change this behaviour by overriding FORMRENDERINGTOOLS_TEMPLATE_DIR in
your project’s settings.

FORMRENDERINGTOOLS_DEFAULT_LAYOUT

By default:

FORMRENDERINGTOOLS_DEFAULT_LAYOUT = 'default'

When you call a template tag without specifying the
optional “layout” argument, then it fallbacks to
settings.FORMRENDERINGTOOLS_DEFAULT_LAYOUT.

FORMRENDERINGTOOLS_DEFAULT_TEMPLATE

By default:

FORMRENDERINGTOOLS_DEFAULT_TEMPLATE = 'default.html'

When you call a template tag without specifying the
optional “template” argument, then it fallbacks to
settings.FORMRENDERINGTOOLS_DEFAULT_TEMPLATE.

Template names and directory structure

As introduced in the previous chapter, the “form_layouts” template tag library
lets you customize several levels of form rendering. The template tag library
searches for templates in a particular directory structure.

Overview

The default structure provided by Django-formrenderingtools is:

	templates => a template directory, included in settings.TEMPLATE_DIRS
	form_layouts => a directory for the form_layouts material
	default => the default layout
	field => templates for fields

	field_errors

	field_list

	form

	form_errors

	help_text

	label

Every element in the list above is a folder. It contains one default.html
template.

If you look at the templates provided by formrenderingtools, you will notice
that “templates/form_layouts” also contains the following folders:

	as_ul => a layout that reproduces {{ form.as_ul }}

	as_p => a layout that reproduces {{ form.as_p }}

	as_table => a layout that reproduces {{ form.as_table }}

These layouts exist for demonstration and migration purposes. They are based
on the default layout. You can read the template code to create your own
layouts.

How to use other templates?

Several parameters allow you to change the locations where template selection
occurs:

	the “layout” parameter of the tags in the “form_layouts” template tag
library. You can use whatever you want provided it is a valid directory name,
without leading and trailing slashes:

{% form layout="contact_form" %}
{% form layout="user_account/register" %}

The “layout” parameter affects nested elements. It means that using
{% form layout=”contact” %} will generate implicit
{% field layout=”contact” %} calls.

	the “template” parameter of the tags in the “form_layouts” template tag
library. You can use whatever you want provided it is a valid file name.
Do not forget the extension:

{% form template="contact_form.html" %}
{% form template="user/register.html" %}

The “template” parameter affects only the current element. It means that
using {% form template=”contact.html” %} will generate implicit calls with
default template, as {% field template=”default.html” %}.

Priority

As an example, if you didn’t change the default template and layout names,
{% form layout=’LAYOUT/DIR’ template=”TEMPLATE/NAME.html” %} will use the
first existing template in the following list:

	form_layouts/LAYOUT/DIR/form/TEMPLATE/NAME.html

	form_layouts/default/form/TEMPLATE/NAME.html

	form_layouts/LAYOUT/DIR/form/default.html

	form_layouts/default/form/default.html

Similar rules are used for other elements.

Additional variables

Keep in mind that, in general use case, the “layout” and “template” parameters
should be enough to get the result you want. The following parameters are
documented for contributors:

	settings.FORMRENDERINGTOOLS_DEFAULT_LAYOUT: allows you to change the implicit
value of the “layout” parameter. Default value is “default”. Notice that you
can get exactly the same result by overriding the form_layouts/default/*
templates: simply make sure that the templates in your project/application
have priority over the ones provided by formrenderingtools.

	settings.FORMRENDERINGTOOLS_DEFAULT_TEMPLATE: allows you to change the
implicit value of the “template” parameter. Default value is “default.html”.
Notice that you can get exactly the same result by overriding the
form_layouts/default/{ELEMENT_NAME}/default.html templates: simply make sure
that the templates in your project/application have priority over the ones
provided by formrenderingtools.

	settings.FORMRENDERINGTOOLS_TEMPLATE_DIR. A prefix for all templates used by
the django-formrenderingtools application. It is not recommended to change
it, because you should be able to perform the same thing by using one of the
previously described tip.

Cascading style sheets

The django-formrenderingtools application uses a set of default CSS classes.
So you may want to write a CSS stylesheet. Here is the list of classes
that are used.

General styles

The following CSS classes are applied by the default form layout:

ul.errorlist{} /* non field error list container */
ul.errorlist li{} /* non field error */
.formItem{} /* container for each field (field errors, label, input and help text) */
.formItem.required{} /* fields that are required */
.formItem.hasErrors{} /* fields that have errors */
.formItem ul.errorlist{} /* field error list */
.formItem ul.errorlist li{} /* field error */
.formItem label{} /* field label */
.formItem.required label{} /* label of required fields */
.formItem.hasErrors label{} /* label of fields that have errors */
.formItem .help{} /* container for field help text */

You may also declare additional styles for inputs.

Notice that hidden fields are not rendered in a “formItem” container.

Field specific styles

If the input is not hidden, then the HTML name of the field is appended
as a CSS class at the field container level.

As an example, customizing the CSS class ”.formItem.email” and children
will affect only the form fields named “email”. So, to customize the input you
will have to customize ”.formItem.email input”.

Migrate from Django’s builtins to django-formrenderingtools

How to safely migrate an existing project from standard Django’s practices to
django-formrenderingtools? Here are some guidelines.

Install django-formrenderingtools

See Installation for details.

Replace {{ form }} by {% form %} in your templates

In the templates you edit, feel free to replace any:

	{{ form }} by {% form layout="as_table" %}

	{{ form.as_p }} by {% form layout="as_p" %}

	{{ form.as_ul }} by {% form layout="as_ul" %}

	{{ form.as_table }} by {% form layout="as_table" %}

Note

django-formrenderingtools’ builtin “as_*” layouts reproduce Django’s
behavior. Tests are written to check this fact.

Migrate custom layouts and includes

Search for any {{ form.* }} occurrence in templates. You should be able to
replace these occurrence with some django-formrenderingtools features.

If you already used snippets via {% include %}, you should consider
migrating the templates to django-formrenderingtools (see
Template names and directory structure):

	it proposes a convention of directory structure;

	if new features (such as template loading optimizations) are released, you’ll
automatically get them.

Best practices

Here are some of the guidelines about form rendering, followed in this
application.

	Where a web designer contributes to project, use templates rather than
Python scripts

	Put CSS classes to container, so that both container and contained element
can be styled.
As an example use:

rather than:

because the graphic designer may want the DIV’s background or the INPUT’s
border to be red.

Contribution guidelines

Get a development environment

Get the source.
hg clone http://bitbucket.org/benoitbryon/django-formrenderingtools
cd django-formrenderingtools/
Install.
make develop
You can run the tests!
make test

If everything went fine, you have a everything you need in the folder. Have a
look at the provided Makefile for details.

If a problem occurred, look at the provided Makefile. It is the live
install-for-development documentation.

Guidelines

	Create issues, preferably before starting to hack, so that we can discuss as
soon as possible.

	Work in branches, ideally one branch per issue.

	Write tests and run them with make test.

	Write documentation in docs/. Build it with make documentation.

	Update the demo project in demo/.

About django-formrenderingtools

This project was initiated in 2008 in order to help web designers focus on
templates (pseudo-HTML) and CSS, whereas developers focus on Python code.

	Alternatives

	License

	Authors

	Changes

Alternatives

This document lists some projects which provide similar or complementary
functionalities.

django-floppyforms

django-floppyforms [http://pypi.python.org/pypi/django-floppyforms] [1] deals with form widgets, which are not in the scope of
django-formrenderingtools. The two projects offer complementary
functionalities.

Gsoc2011: Revised form rendering

In 2011, the Revised form rendering project [http://www.google-melange.com/gsoc/project/google/gsoc2011/gregmuellegger/5001] [2], during Google Summer of Code,
tried to:

	merge django-floppyforms [http://pypi.python.org/pypi/django-floppyforms] [1] in core Django;

	add similar functionality for form layouts in core Django.

Part one was done pretty quick.

Part two raised lots of discussions. The resulting plan was quite big. And
(as far as I know) didn’t succeed.

Even if django-formrenderingtools introduced the #2 basic functionalities
more than one year before, it wasn’t well known (I guess it remains quite
invisible as of July 2012) and wasn’t considered as a candidate for
implementation. It was mentioned in discussions. Some concepts influenced Gsoc
proposal. But not more.

The Gsoc ended, Django 1.4 was released in 2012. As of July 2012, there is no
template-based form rendering in core Django.

So, django-formrenderingtools keeps on being an option...

Note

One big point in discussions during Gsoc was about performances: using
templates can generate many disk access and some overhead.
django-floppyforms [http://pypi.python.org/pypi/django-floppyforms] [1] has benchmarks and implemented optimizations.
django-formrenderingtools has none currently, but contributions
are welcome!

django-crispy-forms

django-crispy-forms [http://pypi.python.org/pypi/django-crispy-forms/1.1.4] [3] is about form layouts too. The main part is in Python
code: helpers and layout classes (configuration).

It could be an interesting alternative when you don’t mind the layouts to be
configured in Python code, i.e. when your web designers can contribute to
Python code or when your developers do the web design.

More?

Of course there are other projects!
As an example, around the Gsoc2011, some “proof-of-concept” projects appear.

You can find some of them at http://www.djangopackages.com/grids/g/forms/

References

	[1]	(1, 2, 3) http://pypi.python.org/pypi/django-floppyforms

	[2]	http://www.google-melange.com/gsoc/project/google/gsoc2011/gregmuellegger/5001

	[3]	http://pypi.python.org/pypi/django-crispy-forms/1.1.4

License

Copyright (c) 2008-2012, Benoît Bryon <benoit@marmelune.net>.
See Authors for a full list of contributors.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the author nor the names of other contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Authors

	Benoît Bryon <benoit@marmelune.net>

Changes

0.2.3 (2012-07-25)

	Fixed packaging: VERSION file was missing in distribution.

0.2.2 (2012-07-25)

	Fixed issue #27: templates are distributed with the package.

	Improved documentation.

	Improved development process.

0.2.1 (2011-05-22)

	Python module rename: from django-formrenderingtools to
djc.formrenderingtools. The package name does not change (still
django-formrenderingtools on Pypi).

	Improved documentation

	Improved packaging. Buildout integration.

	A demo project is now part of the sourcecode, so that one can quickly
discover the application and perform experiments in a sandbox.

	Replaced dependency of Django >= 1.1 by Django >= 1.0

0.1 (2010-06-03)

	Initial release as a package

	Release on PyPI.

0.0 (2008-10-14)

	Initial commit.

	Closed-source and not packaged at the beginning.

Index

 _static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		django-formrenderingtools

 		Overview

 		Rendering forms with Django is boring

 		Introducing the “form_layouts” template tag library

 		Concepts

 		Installation

 		Install Python package

 		Update Django project settings

 		Demo project

 		Install

 		Look at the demo

 		Experiment

 		Reference

 		Template tags

 		form

 		form_errors

 		field_list

 		field

 		field_errors

 		label

 		help_text

 		Settings

 		FORMRENDERINGTOOLS_TEMPLATE_DIR

 		FORMRENDERINGTOOLS_DEFAULT_LAYOUT

 		FORMRENDERINGTOOLS_DEFAULT_TEMPLATE

 		Template names and directory structure

 		Overview

 		How to use other templates?

 		Priority

 		Additional variables

 		Cascading style sheets

 		General styles

 		Field specific styles

 		Migrate from Django's builtins to django-formrenderingtools

 		Install django-formrenderingtools

 		Replace {{ form }} by {% form %} in your templates

 		Migrate custom layouts and includes

 		Best practices

 		Contribution guidelines

 		Get a development environment

 		Guidelines

 		About django-formrenderingtools

 		Alternatives

 		django-floppyforms

 		Gsoc2011: Revised form rendering

 		django-crispy-forms

 		More?

 		References

 		License

 		Authors

 		Changes

 		0.2.3 (2012-07-25)

 		0.2.2 (2012-07-25)

 		0.2.1 (2011-05-22)

 		0.1 (2010-06-03)

 		0.0 (2008-10-14)

