
django-floppyforms Documentation
Release dev

Bruno Renié

Nov 17, 2017

Contents

1 Installation 3

2 Using django-floppyforms 5
2.1 Usage . 5
2.2 Provided widgets . 7
2.3 Customization . 9
2.4 Widgets reference . 11
2.5 GeoDjango widgets . 16
2.6 Form layouts . 24
2.7 Template tags . 29
2.8 Differences with django.forms . 33
2.9 Example widgets . 35
2.10 Layout example with Bootstrap . 40
2.11 Changelog . 42

3 Getting help 47

4 Why the name? 49

5 Performance 51

Python Module Index 53

i

ii

django-floppyforms Documentation, Release dev

django-floppyforms is an application that gives you full control of the output of forms rendering. The forms API
and features are exactly the same as Django’s, the key difference is that fields and widgets are rendered in templates
instead of using string interpolation, giving you full control of the output using Django templates.

The widgets API allows you to customize and extend the widgets behaviour, making it very easy to define custom
widgets. The default widgets are very similar to the default Django widgets, except that they implement some nice
features of HTML5 forms, such as the placeholder and required attribute, as well as the new <input> types.
For more information, read this if you haven’t yet.

The form rendering API is a set of template tags that lets you render forms using custom layouts. This is very similar
to Django’s as_p, as_ul or as_table, except that you can customize and add layouts to your convenience.

The source code is hosted on github.

Contents 1

http://diveintohtml5.info/forms.html
https://github.com/gregmuellegger/django-floppyforms

django-floppyforms Documentation, Release dev

2 Contents

CHAPTER 1

Installation

As a requirement of django-floppyforms, you will need to have Django in version 1.4 or higher installed and use
Python 2.7 or newer. Python >=3.3 and PyPy are supported!

Two-step process to install django-floppyforms:

• pip install django-floppyforms

• Add 'floppyforms' to your INSTALLED_APPS

When you’re done you can jump to the usage section. For the impatient reader, there’s also an examples section.

3

django-floppyforms Documentation, Release dev

4 Chapter 1. Installation

CHAPTER 2

Using django-floppyforms

2.1 Usage

2.1.1 Forms

Floppyforms are supposed to work just like Django forms:

import floppyforms as forms

class ProfileForm(forms.Form):
name = forms.CharField()
email = forms.EmailField()
url = forms.URLField()

With some template code:

<form method="post" action="/some-action/">
{% csrf_token %}
{{ form.as_p }}
<p><input type="submit" value="Yay!"></p>

</form>

The form will be rendered using the floppyforms/layouts/p.html template. See the documentation about
layouts for details.

Each field has a default widget and widgets are rendered using templates.

Default templates are provided and their output is relatively similar to Django widgets, with a few minor differences:

• HTML5 <input> types are supported: url, email, date, datetime, time, number, range, search,
color, tel.

• The required and placeholder attributes are also supported.

Widgets are rendered with the following context variables:

5

django-floppyforms Documentation, Release dev

• hidden: set to True if the field is hidden.

• required: set to True if the field is required.

• type: the input type. Can be text, password, etc. etc.

• name: the name of the input.

• attrs: the dictionnary passed as a keyword argument to the widget. It contains the id attribute of the widget
by default.

Each widget has a template_name attribute which points to the template to use when rendering the widget. A basic
template for an <input> widget may look like:

<input {% for key, val in attrs.items %}
{{ key }}="{{ val }}"

{% endfor %}
type="{{ type }}"
name="{{ name }}"
{% if value %}value="{{ value }}"{% endif %}>

The default floppyforms template for an <input> widget is slightly more complex.

Some widgets may provide extra context variables and extra attributes:

Widget Extra context Extra attrs
Textarea rows, cols
NumberInput min, max, step
RangeInput min, max, step
Select optgroups, multiple
RadioSelect optgroups, multiple
NullBooleanSelect optgroups, multiple
SelectMultiple optgroups, multiple (True)
CheckboxSelectMultiple optgroups, multiple (True)

Furthermore, you can specify custom attrs during widget definition. For instance, with a field created this way:

bar = forms.EmailField(widget=forms.EmailInput(attrs={'placeholder': 'john@example.com
→˓'}))

Then the placeholder variable is available in the attrs template variable.

2.1.2 ModelForms

You can use ModelForms with floppyforms as you would use a ordinary django ModelForm. Here is an example
showing it for a basic Profile model:

class Profile(models.Model):
name = models.CharField(max_length=255)
url = models.URLField()

Now create a ModelForm using floppyforms:

import floppyforms.__future__ as forms

class ProfileForm(forms.ModelForm):
class Meta:

model = Profile
fields = ('name', 'url')

6 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

The ProfileForm will now have form fields for all the model fields. So there will be a floppyforms.
CharField used for the Profile.name model field and a floppyforms.URLField for Profile.url.

Note: Please note that you have to import from floppyforms.__future__ to use this feature. Here is why:

This behaviour changed in version 1.2 of django-floppyforms. Before, no alterations were made to the widgets of
a ModelForm. So you had to take care of assigning the floppyforms widgets to the django form fields yourself to
use the template based rendering provided by floppyforms. Here is an example of how you would have done it with
django-floppyforms 1.1 and earlier:

import floppyforms as forms

class ProfileForm(forms.ModelForm):
class Meta:

model = Profile
fields = ('name', 'url')
widgets = {

'name': forms.TextInput,
'url': forms.URLInput,

}

Since the change is backwards incompatible, we decided to provide a deprecation path. If you create a ModelForm
with django-floppyforms 1.2 and use import floppyforms as forms as the import you will get the old be-
haviour and you will see a DeprecationWarning.

To use the new behaviour, you can use import floppyforms.__future__ as forms as the import.

Please make sure to test your code if your modelforms work still as expected with the new behaviour. The old version’s
behaviour will be removed completely with django-floppyforms 1.4.

2.2 Provided widgets

2.2.1 Default widgets for form fields

The first column represents the name of a django.forms field. FloppyForms aims to implement all the Django
fields with the same class name, in the floppyforms namespace.

2.2. Provided widgets 7

django-floppyforms Documentation, Release dev

Fields Widgets Specificities
BooleanField CheckboxInput
CharField TextInput
ComboField TextInput
ChoiceField Select
TypedChoiceField Select
FilePathField Select
ModelChoiceField Select
DateField DateInput <input type=”date”>
DateTimeField DateTimeInput <input type=”datetime”>
DecimalField NumberInput <input type=”number”>
EmailField EmailInput <input type=”email”>
FileField ClearableFileInput
FloatField NumberInput <input type=”number”>
ImageField ClearableFileInput
IntegerField NumberInput <input type=”number”>
MultipleChoiceField SelectMultiple
TypedMultipleChoiceField SelectMultiple
ModelMultipleChoiceField SelectMultiple
NullBooleanField NullBooleanSelect
TimeField TimeInput <input type=”time”>
URLField URLInput <input type=”url”>
SlugField SlugInput <input pattern=”[-\w]+”>
RegexField TextInput <input [pattern=...]>
IPAddressField IPAddressInput <input pattern=...>
GenericIPAddressField TextInput
MultiValueField None (abstract)
SplitDateTimeField SplitDateTimeWidget

Note: Textarea

The Textarea widget renders a <textarea> HTML element and is available with django-floppyforms. It doesn’t
appear on the table above since no field has it as a default widget.

Note: RegexField

In Django, RegexField takes a required regex argument. The version shipped in floppyforms also takes an
optional js_regex argument, for client-side validation of the regex. The js_regex must be a regex written in
javascript syntax. Example:

class RegexForm(forms.Form):
re_field = forms.RegexField(r'^\d{3}-[a-z]+$', # regex

'\d{3}-[a-z]+') # js_regex

If you don’t provide the js_regex argument, there will be no client-side validation of the field. Although the the
two versions of the regex may be identical, the distinction allows you to pass compiled regexes as a regex argument.

2.2.2 Extra widgets

Django provides “extra” widgets in django.forms.extras.widgets. In fact, a single extra widget is
implemented: SelectDateWidget. The template-based version is available under the floppyforms.

8 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

SelectDateWidget name.

By defaut, this widget with split the date into three select (year, month and day). You can overload the template so that
it is displayed in a different order or with 3 inputs:

<input type="text" name="{{ day_field }}" value="{{ day_val|stringformat:"02d" }}" id=
→˓"{{ day_id }}"{% for attr in attrs.items %} {{ attr.0 }}="{{ attr.1 }}"{% endfor %}
→˓/>
<input type="text" name="{{ month_field }}" value="{{ month_val|stringformat:"02d" }}
→˓" id="{{ month_id }}"{% for attr in attrs.items %} {{ attr.0 }}="{{ attr.1 }}"{%
→˓endfor %}/>
<input type="text" name="{{ year_field }}" value="{{ year_val|stringformat:"04d" }}"
→˓id="{{ year_id }}"{% for attr in attrs.items %} {{ attr.0 }}="{{ attr.1 }}"{%
→˓endfor %}/>

2.2.3 Other (HTML5) widgets

Some HTML5 widgets are also provided, although browser support may not be there yet:

• SearchInput: a widget that renders <input type="search">.

• ColorInput: <input type="color"> (currently only supported by Chrome 20+ and Opera 11+).

• RangeInput: <input type="range">, for sliders instead of spinboxes for numbers.

• PhoneNumberInput: <input type="tel">. For phone numbers.

You can easily check browser support for the various (HTML5) input types on caniuse.com.

2.3 Customization

2.3.1 Override default templates

Widgets have a template_name attribute that points to the template that is used when rendering the form. Default
templates are provided for all built-in widgets. In most cases the default implementation of these templates have no
specific behaviour and simply inherit from floppyforms/input.html. They are provided mainly to give an
easy way for a site-wide customization of how a specifig widget is rendered.

You can easily override these templates in your project-level TEMPLATE_DIRS, assuming they take precedence over
app-level templates.

2.3.2 Custom widgets with custom templates

If you want to override the rendering behaviour only for a few widgets, you can extend a Widget class from Floppy-
Forms and override the template_name attribute:

import floppyforms as forms

class OtherEmailInput(forms.EmailInput):
template_name = 'path/to/other_email.html'

Then, the output can be customized in other_email.html:

2.3. Customization 9

http://caniuse.com/#search=input

django-floppyforms Documentation, Release dev

<input type="email"
name="{{ name }}"
id="{{ attrs.id }}"
placeholder="john@example.com"
{% if value %}value="{{ value }}"{% endif %}>

Here we have a hardcoded placeholder without needing to instantiate the widget with an attrs dictionary:

class EmailForm(forms.Form):
email = forms.EmailField(widget=OtherEmailInput())

You can also customize the template_name without subclassing, by passing it as an argument when instantiating
the widget:

class EmailForm(forms.Form):
email = forms.EmailField(

widget=forms.EmailInput(template_name='path/to/other_email.html'))

For advanced use, you can even customize the template used per-render, by passing a template_name argument to
the widget’s render() method.

2.3.3 Adding more template variables

There is also a way to add extra context. This is done by subclassing the widget class and extending the
get_context() method:

class OtherEmailInput(forms.EmailInput):
template_name = 'path/to/other.html'

def get_context(self, name, value, attrs):
ctx = super(OtherEmailInput, self).get_context(name, value, attrs)
ctx['foo'] = 'bar'
return ctx

And then the other.html template can make use of the {{ foo }} context variable.

get_context() takes name, value and attrs as arguments, except for all Select widgets which take an
additional choices argument.

In case you don’t need the arguments passed to get_context(), you can extend get_context_data() which
doesn’t take any arguments:

class EmailInput(forms.EmailInput):
def get_context_data(self):

ctx = super(EmailInput, self).get_context_data()
ctx.update({

'placeholder': 'hello@example.com',
})
return ctx

2.3.4 Altering the widget’s attrs

All widget attibutes except for type, name, value and required are put in the attrs context variable, which
you can extend in get_context():

10 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

def get_context(self, name, value, attrs):
ctx = super(MyWidget, self).get_context(name, value, attrs)
ctx['attrs']['class'] = 'mywidget'
return ctx

This will render the widget with an additional class="mywidget" attribute.

If you want only the attribute’s key to be rendered, set it to True:

def get_context(self, name, value, attrs):
ctx = super(MyWidget, self).get_context(name, value, attrs)
ctx['attrs']['awesome'] = True
return ctx

This will simply add awesome as a key-only attribute.

2.4 Widgets reference

For each widgets, the default class attributes.

class floppyforms.widgets.Input

datalist
A list of possible values, which will be rendered as a <datalist> element tied to the input. Note that the
list of options passed as datalist elements are only suggestions and are not related to form validation.

template_name
A path to a template that should be used to render this widget. You can change the template name per
instance by passing in a keyword argument called template_name. This will override the default
that is set by the widget class. You can also change the template used for rendering by an argument to
the Input.render() method. See more about exchanging the templates in the documentation about
customization.

class floppyforms.widgets.TextInput

template_name
'floppyforms/text.html'

input_type
text

class floppyforms.widgets.PasswordInput

template_name
'floppyforms/password.html'

input_type
password

class floppyforms.widgets.HiddenInput

template_name
'floppyforms/hidden.html'

2.4. Widgets reference 11

django-floppyforms Documentation, Release dev

input_type
hidden

class floppyforms.widgets.SlugInput

template_name
'floppyforms/slug.html'

input_type
text

An text input that renders as <input pattern="[-\w]+" ...> for client-side validation of the slug.

class floppyforms.widgets.IPAddressInput

template_name
'floppyforms/ipaddress.html'

input_type
text

An text input that renders as <input pattern="..." ...> for client-side validation. The pattern checks
that the entered value is a valid IPv4 address.

class floppyforms.widgets.FileInput

template_name
'floppyforms/file.html'

input_type
file

class floppyforms.widgets.ClearableFileInput

template_name
'floppyforms/clearable_input.html'

input_type
file

initial_text
_('Currently')

input_text
_('Change')

clear_checkbox_label
_('Clear')

The initial_text, input_text and clear_checkbox_label attributes are provided in the template
context.

class floppyforms.widgets.EmailInput

template_name
'floppyforms/email.html'

input_type
email

12 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

class floppyforms.widgets.URLInput

template_name
'floppyforms/url.html'

input_type
url

class floppyforms.widgets.SearchInput

template_name
'floppyforms/search.html'

input_type
search

class floppyforms.widgets.ColorInput

template_name
'floppyforms/color.html'

input_type
color

class floppyforms.widgets.PhoneNumberInput

template_name
'floppyforms/phonenumber.html'

input_type
tel

class floppyforms.widgets.DateInput

template_name
'floppyforms/date.html'

input_type
date

A widget that renders as <input type="date" value="...">. Value is rendered in ISO-8601 format
(i.e. YYYY-MM-DD) regardless of localization settings.

class floppyforms.widgets.DateTimeInput

template_name
'floppyforms/datetime.html'

input_type
datetime

class floppyforms.widgets.TimeInput

template_name
'floppyforms/time.html'

2.4. Widgets reference 13

django-floppyforms Documentation, Release dev

input_type
time

class floppyforms.widgets.NumberInput

template_name
'floppyforms/number.html'

input_type
number

min
None

max
None

step
None

min, max and step are available in the attrs template variable if they are not None.

class floppyforms.widgets.RangeInput

NumberInput.template_name
'floppyforms/range.html'

input_type
range

min
None

max
None

step
None

min, max and step are available in the attrs template variable if they are not None.

class floppyforms.widgets.Textarea

template_name
'floppyforms/textarea.html'

rows
10

cols
40

rows and cols are available in the attrs variable.

class floppyforms.widgets.CheckboxInput

template_name
'floppyforms/checkbox.html'

input_type
checkbox

14 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

class floppyforms.widgets.Select

template_name
'floppyforms/select.html'

class floppyforms.widgets.NullBooleanSelect

template_name
'floppyforms/select.html'

class floppyforms.widgets.RadioSelect

template_name
'floppyforms/radio.html'

class floppyforms.widgets.SelectMultiple

template_name
'floppyforms/select_multiple.html'

class floppyforms.widgets.CheckboxSelectMultiple

template_name
'floppyforms/checkbox_select.html'

class floppyforms.widgets.MultiWidget
The same as django.forms.widgets.MultiWidget. The rendering can be customized by overriding
format_output, which joins all the rendered widgets.

class floppyforms.widgets.SplitDateTimeWidget
Displays a DateInput and a TimeInput side by side.

class floppyforms.widgets.MultipleHiddenInput
A multiple <input type=”hidden”> for fields that have several values.

class floppyforms.widgets.SelectDateWidget
A widget that displays three <select> boxes, for the year, the month and the date.

Available context:

• year_field: the name for the year’s <select> box.

• month_field: the name for the month’s <select> box.

• day_field: the name for the day’s <select> box.

template_name
The template used to render the widget. Default: 'floppyforms/select_date.html'.

none_value
A tuple representing the value to display when there is no initial value. Default: (0, '---').

day_field
The way the day field’s name is derived from the widget’s name. Default: '%s_day'.

month_field
The way the month field’s name is derived. Default: '%s_month'.

year_field
The way the year field’s name is derived. Default: '%s_year'.

2.4. Widgets reference 15

django-floppyforms Documentation, Release dev

2.5 GeoDjango widgets

django-floppyforms provides fields and rich widgets for easy manipulation of GEOS geometry fields. All geometry
types are supported thanks to OpenLayers and a custom WKT parser/serializer implementing some Django-specific
tweaks.

Note: Since GeoDjango doesn’t provide any rich widget out of the box (except for the admin), the API described
here is not trying to look like any existing API in GeoDjango.

The geographic fields and widgets are provided under the floppyforms.gis namespace.

2.5.1 Setting up

To make sure you’re ready to use the geographic widgets, follow the installation instructions for GeoDjango closely.
You need to have 'django.contrib.gis' in your INSTALLED_APPS setting.

Next, you need to serve the javascript library provided by django-floppyforms (located in floppyforms/static/
floppyforms/js/MapWidget.js).

You might want to use django.contrib.staticfiles, so that the javascript library will be picked up auto-
matically and gets served by the development server. Just make sure you run manage.py collectstatic once
you deploy your project.

2.5.2 Widget types

django-floppyforms provides base widgets and geometry-specific widgets:

16 Chapter 2. Using django-floppyforms

https://docs.djangoproject.com/en/dev/ref/contrib/gis/install/

django-floppyforms Documentation, Release dev

• base widgets are in charge of rendering a map from a specific map provider (Metacarta, Google Maps, Open-
StreetMap. . .). They are not aware of the type of geometry, they need to be complemented by geometry-specific
widgets.

• geometry-specific widgets are here to make base widgets aware of the type of geometry to edit: is the ge-
ometry a point? A polygon? A collection? Geometry-specific widgets provides these information so that the
corresponding controls are activated.

To get a fully working geometry widget, you need to define a class that inherits from a base widget (to specify the
map provider) and a geometry-specific widget (to specify the type of geometry you want to create). Here is a quick
example:

import floppyforms as forms

class PointWidget(forms.gis.PointWidget, forms.gis.BaseOsmWidget):
pass

Here BaseOsmWidget is the base widget (i.e. I want to see an OpenStreetMap) and PointWidget is the
geometry-specific widget (i.e. I want to draw a point on the map).

Base Widgets

The following base widgets are provided:

• BaseMetacartaWidget: this base widget renders a map using the Vector Level 0 map from Metacarta.

• BaseOsmWidget: this base widget renders a map using OpenStreetMap.

• BaseGMapWidget: this base widget renders a map using the Google Maps API. It uses the v3 javascript
API and requires an API Key (which can be obtained at Google Developers). Subclasses must set the attribute
google_maps_api_key, otherwise the map will fail to load.

import floppyforms as forms

class PointWidget(forms.gis.PointWidget, forms.gis.BaseGMapWidget):
google_maps_api_key = 'YOUR-GOOGLE-MAPS-API-KEY-HERE'

Geometry-specific widgets

For each geographic model field, here are the corresponding form fields and form widgets provided by django-
floppyforms:

GeoDjango model field Floppyforms form field Floppyforms form widget
PointField PointField PointWidget
MultiPointField MultiPointField MultiPointWidget
LineStringField LineStringField LineStringWidget
MultiLineStringField MultiLineStringField MultiLineStringWidget
PolygonField PolygonField PolygonWidget
MultiPolygonField MultiPolygonField MultiPolygonWidget
GeometryField GeometryField GeometryWidget
GeometryCollectionField GeometryCollectionField GeometryCollectionWidget

Each form field has a default form widget, using the corresponding geometry-specific widget and the Metacarta base
widget. A form defined using nothing more than floppyforms fields will be displayed using the Metacarta WMS map
service. For instance:

2.5. GeoDjango widgets 17

http://earth-info.nga.mil/publications/vmap0.html
http://metacarta.com/
http://www.openstreetmap.org/
https://developers.google.com/maps/documentation/javascript/get-api-key

django-floppyforms Documentation, Release dev

forms.py
import floppyforms as forms

class GeoForm(forms.Form):
point = forms.gis.PointField()

{# template.html #}
<html>

<head>
{{ form.media }}

</head>
<body>
<form method="post" action="/some-url/">

{% csrf_token %}
{{ form.as_p }}
<p><input type="submit" value="Submit"></p>

</form>
</body>

</html>

And the result will looks like this:

2.5.3 Customization

The philosophy of this widgets library is to avoid building a complex layer of abstraction that would generate some
javascript / OpenLayers code out of Python class attributes or methods. Everything that can be done in the template or
JavaScript code should be done there.

Therefore there are few options to customize the map on the widget classes. Only basic customization can be made in
python, the rest should be done in the templates using the JavaScript library.

18 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

Widget attributes and arguments

The following attributes can be set on the widget class:

• map_width: the width of the map, in pixels. Default: 600.

• map_height: the height of the map, in pixels. Default: 400.

• map_srid: the SRID to use on the map. When existing geometries are edited, they are transformed to this
SRID. The javascript code doesn’t transform geometries so it’s important to set this to the SRID used with your
map provider. Default: 4326.

• display_wkt: whether to show the textarea in which the geometries are serialized. Usually useful for
debugging. Default: False.

These options can be set as class attributes or passed into the attrs dictionnary used when instantiating a widget.
The following snippets are equivalent:

import floppyforms as forms

class OsmPointWidget(forms.gis.PointWidget, forms.gis.BaseOsmWidget):
pass

class CustomPointWidget(OsmPointWidget):
map_width = 1000
map_height = 700

class GeoForm(forms.Form):
point = forms.gis.PointField(widget=CustomPointWidget)

and:

import floppyforms as forms

class OsmPointWidget(forms.gis.PointWidget, forms.gis.BaseOsmWidget):
pass

class GeoForm(forms.Form):
point = forms.gis.PointField(widget=OsmPointWidget(attrs={

'map_width': 1000,
'map_height': 700,

}))

Of course, the traditional template_name class attribute is also supported.

Template context

The following variables are available in the template context:

• ADMIN_MEDIA_PREFIX: this setting, yes. It’s useful to display some icons that are missing in OpenLayers.
Deprecated, please switch to use the staticfiles machinery

• LANGUAGE_BIDI: the current locale direction.

• attrs: the traditional attrs dictionnary. This is the attrs dict for a textarea widget, it contains the id, cols
and rows attributes.

• display_wkt: the value from the widget class.

• geom_type: the OGR geometry type for the geometry being edited.

2.5. GeoDjango widgets 19

django-floppyforms Documentation, Release dev

• hidden: set to False, textareas can’t be hidden.

• is_collection: whether the geometry is a collection.

• is_linestring: whether the geometry is a line string.

• is_point: whether the geometry is a point.

• is_polygon: whether the geometry is a polygon.

• map_width: the width, from the class attribute.

• map_height: the height, from the class attribute.

• map_srid: the SRID, from the class attribute.

• module: the name to use for the javascript object that contains the map.

• name: the name of the field.

• required: True if the field is required.

• type: the input type, None in this case.

• value: the WKT serialization of the geometry, expressed in the projection defined by map_srid.

Javascript library

The javascript library provided by django-floppyforms relies on OpenLayers. It creates a map container based on a
series of options. A minimal widget can be created like this:

var options = {
geom_type: OpenLayers.Geometry.Point,
id: 'id_point',
is_point: true,
map_id: 'point_map',
name: 'My awesome point'

};
var point_map = new MapWidget(options);

With these options, you need in your HTML code a <textarea id="id_point"> and an empty <div
id="point_map">. The size of the map can be set by styling the div with CSS.

Generally you don’t have to touch the geom_type, id, is_point, map_id and name attributes: django-
floppyforms generates them for you. However, the template structure makes it easy to specify some custom options.
The base template defines a map_options and an options block. They can be altered like this (let’s say we want
to re-implement the Google Maps base widget):

forms.py
from django.template.defaultfilters import safe
import floppyforms as forms

class BaseGMapWidget(forms.gis.BaseGeometryWidget):
map_srid = 900913 # Use the google projection
template_name = 'forms/google_map.html'

class Media:
js = (

'http://openlayers.org/dev/OpenLayers.js',
'floppyforms/js/MapWidget.js',

Needs safe() because the ampersand (&):

20 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

safe('http://maps.google.com/maps/api/js?'
'v=3&key=YOUR-GOOGLE-MAPS-API-KEY-HERE'),

)

Here we need the development version of OpenLayers because OpenLayers 2.10 doesn’t implement version 3 of the
Google Maps API. We also specify that we’re using the google projection.

{# forms/google_map.html #}
{% extends "floppyforms/gis/openlayers.html" %}

{% block options %}
{{ block.super }}
options['base_layer'] = new OpenLayers.Layer.Google("Google Streets",

{numZoomLevels: 20,
units: 'm'});

options['point_zoom'] = 14;
{% endblock %}

Calling block.super generates the options dictionary with all the required options. We can then safely alter it at
will. In this case we can directly add an OpenLayers.Layer instance to the map options and it will be picked up as a
base layer.

The following options can be passed to the widget constructor:

• base_layer: an OpenLayers.Layer instance (or an instance of a subclass) that will be used as a base layer
for the map. Default: Metacarta’s base WMS layer.

• color: the color of the features drawn on the map. Default: 'ee9900'.

• default_lon: the default longitude to center the map on if there is no feature. Default: 0.

• default_lat: the default latitude to center the map on if there is no feature. Default: 0.

• default_zoom: the default zoom level to use when there is no feature. Default: 4.

• geom_type: an OpenLayers.Geometry.* class name.

• id: the id of the textarea to whih the feature is serialized.

• is_collection: whether the feature to draw is a collection. Default: false.

• is_linestring: whether the feature to draw is a linestring. Default: false.

• is_point: whether the feature to draw is a point. Default: false.

• is_polygon: whether the feature to draw is a polygon. Default: false.

• layerswitcher: whether to show OpenLayers’ layerswitcher control. Default: false.

• map_id: the id of the div containing the map.

• map_options: a dictionnary for the options passed to the OpenLayers.Map constructor. Default: {}.

• map_srid: the SRID to use for the map. Default: 4326.

• modifiable: whether the feature can be modifiable or not. Default: true.

• mouse_position: whether to show the coordinates of the mouse on the side of the map. Default: false.

• name: the name of the layer containing the feature to draw.

• opacity: the opacity of the inner parts of the drawn features (mostly, polygons). Default: 0.4.

• point_zoomm: the zoom level to set when a map is displayed with a single point on it. For other feature types,
the map is focused automatically on the feature. Default: 12.

2.5. GeoDjango widgets 21

django-floppyforms Documentation, Release dev

• scale_text: whether to show the scale information on the side of the map. Default: false.

• scrollable: if set to false, the user won’t be able to scroll to zoom in and out.

There is also a map_options block that can be overridden. Its purpose is to declare a map_options dictionnary
that can be passed to the OpenLayers.Map constructor. For instance:

{% block map_options %}
var map_options = {

maxExtend: new OpenLayers.Bounds(-20037508,-20037508,20037508,20037508),
maxResolution: 156543.0339,
numZoomLevels: 20,
units: 'm'

};
{% endblock %}

Here we don’t need to call block.super since the base template only instantiates an empty dictionnary.

Going further

If the options or the map options don’t give you enough flexibility, you can, not necessarily in that order:

• Redefine the template structure, based on the default OpenLayers template.

• Extend the MapWidget javascript library.

In either way, digging into floppyforms’ code (templates, widgets, javascript lib) is more than encouraged. Of course,
if you end up implementing additional base widgets for new map providers, feel free to contribute them back!

If you need a custom base widget, it is important to inherit from floppyforms.gis.BaseGeometryWidget:
if you inherit from an existing base widget, you may end up with conflicting media files. BaseGeometryWidget
doesn’t specify any javascript file so get more control by subclassing it.

2.5.4 Examples

OpenStreetMap

forms.py
import floppyforms as forms

class OsmLineStringWidget(forms.gis.BaseOsmWidget,
forms.gis.LineStringWidget):

pass

class OsmForm(forms.Form):
line = forms.gis.LineStringField(widget=OsmLineStringWidget)

Result:

22 Chapter 2. Using django-floppyforms

https://github.com/gregmuellegger/django-floppyforms

django-floppyforms Documentation, Release dev

Google Maps

forms.py
import floppyforms as forms

class GMapPolygonWidget(forms.gis.BaseGMapWidget,
forms.gis.PolygonWidget):

google_maps_api_key = 'YOUR-GOOGLE-MAPS-API-KEY-HERE'

class GmapForm(forms.Form):
poly = forms.gis.PolygonField(widget=GMapPolygonWidget)

Result:

2.5. GeoDjango widgets 23

django-floppyforms Documentation, Release dev

2.6 Form layouts

New in version 1.0.

2.6.1 Using form layouts

django-floppyforms tries to make displaying Django forms in a template a bit easier by using the concept of a reusable
form layout. A layout is basically just a single template that knows how to render a form into HTML. Here is a simple
example demonstrating how to use a layout:

<form action="/contact/" method="post">{% csrf_token %}
{% form contact_form using "floppyforms/layouts/p.html" %}
<input type="submit" value="Submit" />

</form>

Usually a form layout doesn’t include the surrounding <form> tags and the submit button. So you need to take care
of that.

{% form myform using "floppyforms/layouts/p.html" %}will output the form with each field and
accompanying label wrapped in a paragraph and is meant as a replacement for django’s {{ myform.as_p }}
method. Here is the possible output for our example:

<form action="/contact/" method="post">
<p>

<label for="id_subject">Subject:</label>
<input id="id_subject" type="text" name="subject" maxlength="100" />

</p>
<p>

<label for="id_message">Message:</label>

24 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

<input type="text" name="message" id="id_message" />
</p>
<p>

<label for="id_sender">Sender:</label>
<input type="text" name="sender" id="id_sender" />

</p>
<p>

<label for="id_cc_myself">Cc myself:</label>
<input type="checkbox" name="cc_myself" id="id_cc_myself" />

</p>
<input type="submit" value="Submit" />

</form>

You can also use floppyforms/layouts/table.html to output table rows (you’ll need to provide your own
<table> tags) and floppyforms/layouts/ul.html to output list items. See the list of built-in form layouts
for more information.

2.6.2 Customizing the layout template

If the default layouts are not to your taste, you can completely customize the way a form is presented using the Django
template language. Extending the above example:

<form action="/contact/" method="post">
{% form contact_form using "my_layout.html" %}
<p><input type="submit" value="Send message" /></p>

</form>

my_layout.html is able to extend one of the built-in layouts, modifying the parts you want to change:

{% extends "floppyforms/layouts/table.html" %}

{% block errors %}
<p>Following errors occurred that cannot be matched to a field:</p>
{{ block.super }}

{% endblock %}

See the form layout reference for a detailed description on how you can structure your custom layouts.

You can also specify your form layout “inline” rather than in a separate template file, if you don’t plan to reuse it. This
is also done with the form tag:

<form action="/signup/" method="post">
{% form signup_form using %}
<div><label for="id_username">Username:</label>

{% formfield form.username %}<div>
<div><label for="id_password">Password:</label>

{% formfield form.password %}</div>
<div>

<label for="id_firstname">First- and Lastname:</label>

{% formfield form.firstname %}
{% formfield form.lastname %}

</div>
{% endform %}
<p><input type="submit" value="Send message" /></p>

</form>

2.6. Form layouts 25

django-floppyforms Documentation, Release dev

Note that the signup_form variable will also be available as form inside the templatetag. This is for convenience
and having always the same memorizable name makes using the same template a lot easier.

Something new in the example is also the formfield tag. It is used to render the widget of a form field so that you don’t
have to type out all the <input /> tags yourself.

But just displaying the widget is not all that you need to take into account when you are creating your own design.
You also need to take care where to display errors if a field’s validation fails, how to display the help text that might
be defined for a field, etc. Because of this it is in most cases easier to split out these form rows (containing one or
more fields) into their own templates. They work just like form layouts but for a subset of fields and taking care of the
errors, help text and other HTML that appears for every field. Here is how it might look like:

<form action="/signup/" method="post">
{% form signup_form using %}

{% formrow form.username using "div_row.html" %}
{% formrow form.password using "div_row.html" %}
{% formrow form.firstname form.lastname using "many_fields_div_row.html" with

→˓label="First- and Lastname" %}
{% endform %}
<p><input type="submit" value="Sign up" /></p>

</form>

2.6.3 Rendering multiple forms

Sometimes you want to render multiple forms at once, all with the same layout without repeating yourself. You can
do that by passing either a list or multiple single forms into {% form %}:

<form action="" method="post">
{% form myform1 myform2 using "floppyforms/layouts/p.html" %}
<p><input type="submit" value="Submit" /></p>

</form>

For the built-in layouts, the output is the same as for:

<form action="" method="post">
{% form myform1 using "floppyforms/layouts/p.html" %}
{% form myform2 using "floppyforms/layouts/p.html" %}
<p><input type="submit" value="Submit" /></p>

</form>

Your own layouts can change their behaviour depending on how many forms you have specified, like wrapping them
in a fieldset and giving those unique ids etc.

Using layouts with formsets

Here is how rendering a formset might look like:

<form action="" method="post">
{{ formset.management_form }}
{% form formset.forms %}
<p><input type="submit" value="submit" /></p>

</form>

26 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

2.6.4 Built-in layouts

django-floppyforms ships with three standard form layouts:

Paragraph

Renders the form fields in <p> tags using the floppyforms/layouts/p.html template.

The default row template is floppyforms/rows/p.html.

The recommended way to use layouts is by using the {% form %} templatetag. However django-floppyforms will
hook for your convenience into django’s as_* methods so that they use templates and can be modified to your needs.
The p layout will be used for all {{ form.as_p }}.

Unordered list

Renders the form fields as tags using the floppyforms/layouts/ul.html template. It does not display
the surrounding . So infact you also can use it with a .

The default row template is floppyforms/rows/li.html.

This layout will be used for all {{ form.as_ul }}.

Table

Renders the form fields as <tr> tags using the floppyforms/layouts/table.html template. It does not
display the surrounding <table> or <tbody>. Please take care of that.

The default row template is floppyforms/rows/tr.html.

This layout will be used for all {{ form.as_table }}.

Default template

django-floppyforms uses the default template layout floppyforms/layouts/default.html when calling {%
form myform %} without the using parameter.

The actual code in the default layout looks like:

{% extends "floppyforms/layouts/table.html" %}

You can drop in your own default form layout, for use when no specific layout is defined, by placing a
floppyforms/layouts/default.html in your templates directory.

The default row template is floppyforms/rows/default.html

This layout will be used as default for all {{ form }}.

2.6.5 Create custom layouts

Sometimes the sample layouts mentioned above just don’t meet your needs. In that case there are some possibilities
to customize them.

The simplest way is to use Django’s template inheritance to extend a built-in layout, only overwriting the bits you
want to modify. In this case, use the layout that matches your needs best and customize it by overriding one of the
following blocks:

2.6. Form layouts 27

django-floppyforms Documentation, Release dev

• formconfig: In this block are all the formconfig templatetags that are used in the layout. The built-in layouts
configure their row level template here.

• forms: This block wraps all the actual markup output. Use this to add markup before or after the rendered
forms:

{% extends "floppyforms/layouts/p.html" %}

{% block forms %}
<form action="" method="post">{% csrf_token %}

{{ block.super }}
<p><input type="submit" value="submit" /></p>

</form>
{% endblock %}

The preceding example shows a custom form layout that renders all elements in a paragraph based layout that
also contains the necessary <form> tag and a submit button.

• errors: All non field errors and errors of hidden fields are rendered in this block (the default layouts render
errors by including the form/errors.html template).

• rows: The rows block contains a for loop that iterates over all visible fields and displays them in the row
block. Hidden fields are rendered in the last row.

• row: This block is wrapped around the {% formrow %} templatetag.

Alternatively it is of course possible to write your own form layout from scratch. Have a look at the existing ones to
get an idea what is possible, what cases to take into account and how the template code could look like.

Creating reusable layouts

When you try to create reusable layouts, it is in most cases usefull to provide some configuration options via arguments.
In general the global template context is available to the layout as well as you can pass extra variables into the form:

{% form contact_form using "my_form_layout.html" with headline="Fill in your enquiry"
→˓%}

Whereas my_form_layout.html could look like:

{% extends "floppyforms/layouts/p.html" %}

{% block forms %}
{% if headline %}<h1>{{ headline }}</h1>{% endif %}
{{ block.super }}

{% endblock %}

Form rows

A vital part of any form layout is one or are many templates for form rows. A row can be used to render one or multiple
fields in a repeating manner.

The built-in row templates render each passed in field in a separate row. You can extend and override these like you
can with complete form layouts as described above. Use the following blocks to customize them to your needs:

• row: This is the most outer block and wraps all the generated HTML. Use it to wrap the row into additional
markup.

• field: You can use this block to wrap every single field into additional markup.

28 Chapter 2. Using django-floppyforms

https://github.com/gregmuellegger/django-floppyforms/tree/master/floppyforms/templates/floppyforms/layouts/

django-floppyforms Documentation, Release dev

• errors: Errors are displayed as a list. Override the errors block to customize their appearance.

• label: Change the label markup by overriding this block.

• widget: This one contains just the {% formfield %} templatetag that will render the field’s widget.

• help_text: Change the help text markup by overriding this block.

• hidden_fields: The built-in row templates allow hidden fields to be passed into the row with the template
variable named hidden_fields. The form layouts pass all the form’s hidden fields into the last rendered
form row.

2.7 Template tags

To load the floppyforms template library you have to load it on top of your templates first:

{% load floppyforms %}

2.7.1 form

New in version 1.0.

The form tag is used to render one or more form instances using a template.

{% form myform using "floppyforms/layouts/p.html" %}
{% form myform another_form form3 using "floppyforms/layouts/p.html" %}

django-floppyforms provides three built-in layouts:

• floppyforms/layouts/p.html: wraps each field in a <p> tag.

• floppyforms/layouts/ul.html: wraps each field in a tag.

• floppyforms/layouts/table.html: wraps each form row with a <tr>, the label with a <th> and the
widget with a <td> tag.

See the documentation on layouts and how to customize them for more details.

You can use a default layout by leaving the using ... out:

{% form myform %}

In this case the floppyforms/layouts/default.html template will be used, which by default is the same as
floppyforms/layouts/p.html.

Sometimes it is necessary to pass additional template variables into the context of a form layout. This can be done in
the same way and with the same syntax as django’s include template tag:

{% form myform using "layout_with_title.html" with title="Please fill in the form"
→˓only %}

The only keyword, as shown in the example above, acts also the same way as it does in the include tag. It prevents
other, not explicitly specified, variables from being available in the layout’s template context.

2.7. Template tags 29

https://docs.djangoproject.com/en/dev/ref/templates/builtins/#std:templatetag-include

django-floppyforms Documentation, Release dev

Inline layouts

Inlining the form layout is also possible if you don’t plan to reuse it somewhere else. This is done by not specifying a
template name after the using keyword:

{% form myform using %}
... your form layout here ...

{% endform %}

2.7.2 formconfig

New in version 1.0.

The formconfig tag can be used to configure some of the form template tags arguments upfront so that they don’t
need to be specified over and over again.

The first argument specifies which part of the form should be configured:

row

The formrow tag takes arguments to specify which template is used to render the row and whether additional
variables are passed into this template. These parameters can be configured for multiple form rows with a {%
formconfig row ... %} tag. The syntax is the same as with formrow:

{% formconfig row using "floppyforms/rows/p.html" %}
{% formconfig row using "my_form_layout.html" with hide_errors=1 only %}

Please note that form configurations will only be available in a form layout or wrapped by a form template tag. They
also only apply to all the form tags that come after the formconfig. It is possible to overwrite already set options.
Here is a valid example:

{% form myform using %}
<form action="" method="post" id="signup">{% csrf_token %}

{% formconfig row using "floppyforms/rows/p.html" %}
{% formrow form.username %}
{% formrow form.password %}

{% formconfig row using "floppyforms/rows/tr.html" %}
<table>
{% formrow form.firstname form.lastname %}
{% formrow form.age %}
{% formrow form.city form.street %}
</table>

<p><input type="submit" value="Signup!" /></p>
</form>
{% endform %}

However a configuration set with formconfig will only be available inside the form tag that it was specified in.
This makes it possible to scope the configuration with an extra use of the form tag. See this example:

{% form myform using %}
<form action="" method="post" id="signup">{% csrf_token %}

{# will use default row template #}
{% formrow form.username %}

30 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

{% form form using %}

{# this config will not be available outside of the wrapping form tag #}
{% formconfig row using "floppyforms/rows/li.html" %}

{# will use configured li row template #}
{% formrow form.password form.password2 %}

{% endform %}

{# will use default row template #}
{% formrow form.firstname form.lastname %}

<p><input type="submit" value="Signup!" /></p>
</form>
{% endform %}

field

A form field takes the same arguments as a form row does, so the same configuration options are available here, in
addition to a for keyword to limit which fields the specified configuration will apply to.

Using the for keyword allows you to limit the configuration to a specific field or a set of fields. After the for
keyword, you can give:

• a form field, like form.field_name

• the name of a specific field, like "username"

• a class name of a form field, like "CharField"

• a class name of a widget, like "Textarea"

The configuration applied by {% formconfig field ... %} is then only available on those fields that match
the given criteria.

Here is an example to clarify things. The formconfig in the snippet below will only affect the second formfield
tag but the first one will be left untouched:

{% formconfig field using "input.html" with type="password" for userform.password %}
{% formfield userform.username %}
{% formfield userform.password %}

And some more examples showing the filtering applied on field names, field types and widget types:

{% formconfig field with placeholder="Type to search ..." for "search" %}
{% formfield myform.search %}

{% formconfig field using "forms/widgets/textarea.html" for "CharField" %}
{% formfield myform.comment %}

{% formconfig field using class="text_input" for "TextInput" %}
{% formfield myform.username %}

Note: Please note that the filterings that act on the field class name and widget class name (like "CharField") also
match on subclasses of those field. This means if your class inherits from django.forms.fields.CharField

2.7. Template tags 31

django-floppyforms Documentation, Release dev

it will also get the configuration applied specified by {% formconfig field ... for "CharField" %}.

2.7.3 formfield

New in version 1.0.

Renders a form field using the associated widget. You can specify a widget template with the using keyword.
Otherwise it will fall back to the widget’s default template.

It also accepts include-like parameters:

{% formfield userform.password using "input.html" with type="password" %}

The formfield tag should only be used inside a form layout, usually in a row template.

2.7.4 formrow

New in version 1.0.

The formrow tag is a quite similar to the form tag but acts on a set of form fields instead of complete forms. It takes
one or more fields as arguments and a template which should be used to render those fields:

{% formrow userform.firstname userform.lastname using "floppyforms/rows/p.html" %}

It also accepts include-like parameters:

{% formrow myform.field using "my_row_layout.html" with hide_errors=1 only %}

The formrow tag is usually only used in form layouts.

See the documentation on row templates and how they are customized for more details.

2.7.5 widget

New in version 1.0.

The widget tag lets you render a widget with the outer template context available. By default widgets are rendered
using a completely isolated context. In some cases you might want to access the outer context, for instance for using
floppyforms widgets with django-sekizai:

{% for field in form %}
{% if not field.is_hidden %}

{{ field.label_tag }}
{% widget field %}
{{ field.errors }}

{% else %}
{% widget field %}

{% endif %}
{% endfor %}

You can safely use the widget tag with non-floppyforms widgets, they will be properly rendered. However, since
they’re not template-based, they won’t be able to access any template context.

32 Chapter 2. Using django-floppyforms

http://django-sekizai.readthedocs.org/en/latest/

django-floppyforms Documentation, Release dev

2.8 Differences with django.forms

So, you have a project already using django.forms, and you’re considering a switch to floppyforms? Here’s what
you need to know, assuming the only change you’ve made to your code is a simple change, from:

from django import forms

to:

import floppyforms as forms

Note: django.forms.* modules

Other modules contained by django.forms, such as forms, utils and formsets have not been aliased.

2.8.1 HTML 5 forms!

Floppyforms adds a couple of HTML 5 features on top of the standard Django widgets: HTML syntax, more native
widget types, the required attribute and client-side validation.

HTML syntax instead of XHTML

Floppyforms uses an HTML syntax instead of Django’s XHTML syntax. You will see <input type="text"
... > and not <input type="text" />.

Native widget types

Floppyforms tries to use the native HTML5 widgets whenever it’s possible. Thus some widgets which used to be
simple TextInputs in django.forms are now specific input that will render as <input type="..."> with
the HTML5 types such as url, email. See Default widgets for form fields for a detailed list of specific widgets.

For instance, if you have declared a form using django.forms:

class ThisForm(forms.Form):
date = forms.DateField()

The date field will be rendered as an <input type="text">. However, by just changing the forms library to
floppyforms, the input will be an <input type="date">.

Required attribute

In addition to the various input types, every required field has the required attribute set to True on its wid-
get. That means that every <input> widget for a required field will be rendered as <input type="..." ...
required>. This is used for client-side validation: for instance, Firefox 4 won’t let the user submit the form unless
he’s filled the input. This saves HTTP requests but doesn’t mean you can stop validating user input.

2.8. Differences with django.forms 33

django-floppyforms Documentation, Release dev

Client-side validation

Like with the required attribute, the pattern attribute is especially interesting for slightly more complex client-
side validation. The SlugField and the IPAddressField both have a pattern attached to the <input>.

However having these validations backed directly into the HTML and therefore allowing the browser to validate the
user input might not always what you want to have. Sometimes you just want to have a form where it should be
allowed to submit invalid data. In that case you can use the novalidate attribute on the <form> HTML tag or the
formnovalidate attribute on the submit button:

<form action="" novalidate>
This input will not be validated:
<input type="text" required />

</form>

<form action="">
Another way to not validate the form in the browser is using the
formnovalidate attribute on the submit button:
<input type="submit" value="cancel" formnovalidate>

</form>

Read the corresponding documentation for novalidate and formnovalidate on the Mozilla Developer Network if you
want to know more.

2.8.2 ModelForms

Prior to version 1.2 of django-floppyforms, you had to take some manual efforts to make your modelforms work with
floppyforms. This is now done seemlesly, but since this was introduced a backwards incompatible change, it was
necessary to provde a deprecation path.

So if you start out new with django-floppyforms just use import floppyforms.__future__ as forms as
your import instead of import floppyforms as forms when you want to define modelforms.

For more information see the section about modelforms in the usage documentation.

2.8.3 help_text values are autoescaped by default

If you use HTML in the help_text value for a Django form field and are not using django-floppyforms, then you
will get the correct HTML rendered in the template. For example you have this form:

from django import forms

class DjangoForm(forms.Form):
myfield = forms.CharField(help_text='A help text.')

When you now use this form with {{ form.as_p }} in the template, you will get the help text put in the template
as it is, with no HTML escaping. That might imply a security risk if your help text contains content from untrusted
sources. django-floppyforms applies autoescaping by default to the help text. So if you define:

import floppyforms as forms

class FloppyForm(forms.Form):
myfield = forms.CharField(help_text='A help text.')

And then use {{ form.as_p }}, you will get an output that contains A <strong&;gt;help</
strong> text.. You can disable the autoescaping of the help text by using Django’s mark_safe helper:

34 Chapter 2. Using django-floppyforms

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/form#attr-novalidate
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button#attr-formnovalidate

django-floppyforms Documentation, Release dev

from django.utils.html import mark_safe
import floppyforms as forms

class FloppyForm(forms.Form):
myfield = forms.CharField(help_text=mark_safe('A help text.'))

2.8.4 TEMPLATE_STRING_IF_INVALID caveats

The use of a non-empty TEMPLATE_STRING_IF_INVALID setting can impact rendering. Missing template vari-
ables are rendered using the content of TEMPLATE_STRING_IF_INVALID but filters used on non-existing variables
are not applied (see django’s documentation on how invalid template variables are handled for more details).

django-floppyforms assumes in its predefined form layouts that all filters are applied. You can work around this by
making your TEMPLATE_STRING_IF_INVALID evaluate to False but still keep its string representation. Here is
an example how you could achieve this in your settings.py:

on Python 2
class InvalidVariable(unicode):

def __nonzero__(self):
return False

on Python 3
class InvalidVariable(str):

def __bool__(self):
return False

TEMPLATE_STRING_IF_INVALID = InvalidVariable(u'INVALID')

2.8.5 Getting back Django’s behaviour

If you need to get the same output as standard Django forms:

• Override floppyforms/input.html, floppyforms/radio.html, floppyforms/
clearable_input.html, floppyforms/textarea.html and floppyforms/
checkbox_select.html to use an XHTML syntax

• Remove the required attribute from the same templates, as well as floppyforms/select.html

• Make sure your fields which have HTML5 widgets by default get simple TextInputs instead:

class Foo(forms.Form):
url = forms.URLField(widget=forms.TextInput)

2.9 Example widgets

2.9.1 A date picker

This snippet implements a rich date picker using the browser’s date picker if the date input type is supported and
falls back to a jQuery UI date picker.

2.9. Example widgets 35

https://docs.djangoproject.com/en/dev/ref/templates/api/#invalid-template-variables

django-floppyforms Documentation, Release dev

forms.py
import floppyforms as forms

class DatePicker(forms.DateInput):
template_name = 'datepicker.html'

class Media:
js = (

'js/jquery.min.js',
'js/jquery-ui.min.js',

)
css = {

'all': (
'css/jquery-ui.css',

)
}

class DateForm(forms.Form):
date = forms.DateField(widget=DatePicker)

{# datepicker.html #}
{% include "floppyforms/input.html" %}

<script type="text/javascript">
$(document).ready(function() {
// Checking support for <input type="date"> using Modernizr:
// http://modernizr.com/
if (!Modernizr.inputtypes.date) {

var options = {
dateFormat: 'yy-mm-dd'

};
$('#{{ attrs.id }}').datepicker(options);

}
});

</script>

Here is how chromium renders it with its native (but sparse) date picker:

And here is the jQuery UI date picker as shown by Firefox:

36 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

2.9.2 An autofocus input

A text input with the autofocus attribute and a fallback for browsers that doesn’t support it.

forms.py
import floppyforms as forms

class AutofocusInput(forms.TextInput):
template_name = 'autofocus.html'

def get_context_data(self):
self.attrs['autofocus'] = True
return super(AutofocusInput, self).get_context_data()

class AutofocusForm(forms.Form):
text = forms.CharField(widget=AutofocusInput)

{# autofocus.html #}
{% include "floppyforms/input.html" %}

<script type="text/javascript">
window.onload = function() {
if (!("autofocus" in document.createElement("input"))) {

document.getElementById("{{ attrs.id }}").focus();
}

};
</script>

2.9.3 A slider

A range input that uses the browser implementation or falls back to jQuery UI.

2.9. Example widgets 37

django-floppyforms Documentation, Release dev

forms.py
import floppyforms as forms

class Slider(forms.RangeInput):
min = 5
max = 20
step = 5
template_name = 'slider.html'

class Media:
js = (

'js/jquery.min.js',
'js/jquery-ui.min.js',

)
css = {

'all': (
'css/jquery-ui.css',

)
}

class SlideForm(forms.Form):
num = forms.IntegerField(widget=Slider)

def clean_num(self):
num = self.cleaned_data['num']
if not 5 <= num <= 20:

raise forms.ValidationError("Enter a value between 5 and 20")

if not num % 5 == 0:
raise forms.ValidationError("Enter a multiple of 5")

return num

{# slider.html #}
{% include "floppyforms/input.html" %}
<div id="{{ attrs.id }}-slider"></div>

<script type="text/javascript">
$(document).ready(function() {
var type = $('<input type="range" />').attr('type');
if (type == 'text') { // No HTML5 support

$('#{{ attrs.id }}').attr("readonly", true);
$('#{{ attrs.id }}-slider').slider({
{% if value %}value: {{ value }},{% endif %}
min: {{ attrs.min }},
max: {{ attrs.max }},
step: {{ attrs.step }},
slide: function(event, ui) {
$('#{{ attrs.id }}').val(ui.value);

}
});

}
});

</script>

Here is how chromium renders it with its native slider:

38 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

And here is the jQuery UI slider as shown by Firefox:

2.9.4 A placeholder with fallback

An <input> with a placeholder attribute and a javascript fallback for broader browser support.

forms.py
import floppyforms as forms

class PlaceholderInput(forms.TextInput):
template_name = 'placeholder_input.html'

class MyForm(forms.Form):
text = forms.CharField(widget=PlaceholderInput(

attrs={'placeholder': _('Some text here')},
))

{# placeholder_input.html #}

{% include "floppyforms/input.html" %}

<script type="text/javascript">
window.onload = function() {

if (!('placeholder' in document.createElement('input'))) {
var input = document.getElementById('{{ attrs.id }}');
input.value = '{{ attrs.placeholder }}';

input.onblur = function() {
if (this.value == '')

this.value='{{ attrs.placeholder }}';
};

input.onfocus = function() {
if (this.value == '{{ attrs.placeholder }}')

this.value = '';
};

}
};

</script>

2.9.5 An image clearable input with thumbnail

If we have an image set for the field, display the image and propose to clear or to update.

2.9. Example widgets 39

django-floppyforms Documentation, Release dev

forms.py
import floppyforms as forms

class ImageThumbnailFileInput(forms.ClearableFileInput):
template_name = 'floppyforms/image_thumbnail.html'

class ImageForm(forms.ModelForm):
class Meta:

model = Item
fields = ('image',)
widgets = {'image': ImageThumbnailFileInput}

{# image_thumbnail.html #}
{% load i18n %}
{% if value.url %}{% trans "Currently:" %}
→˓
{% if not required %}
<p><input type="checkbox" name="{{ checkbox_name }}" id="{{ checkbox_id }}">
<label for="{{ checkbox_id }}">{% trans "Clear" %}</label></p>

{% else %}

{% endif %}
{% trans "Change:" %}
{% endif %}
<input type="{{ type }}" name="{{ name }}"{% if required %} required{% endif %}{%
→˓include "floppyforms/attrs.html" %}>

You now have your image:

2.10 Layout example with Bootstrap

If you use Floppyforms with Bootstrap you might be interested in using a bootstrap layout for your form.

What you have to do is to create those two templates:

40 Chapter 2. Using django-floppyforms

django-floppyforms Documentation, Release dev

floppyforms/templates/floppyforms/layouts/bootstrap.html:

{% load floppyforms %}{% block formconfig %}{% formconfig row using "floppyforms/rows/
→˓bootstrap.html" %}{% endblock %}

{% block forms %}{% for form in forms %}
{% block errors %}

{% for error in form.non_field_errors %}
<div class="alert alert-error">

×
{{ error }}

</div><!--- .alert.alert-error -->
{% endfor %}
{% for error in form|hidden_field_errors %}

<div class="alert alert-error">
×
{{ error }}

</div><!--- .alert.alert-error -->
{% endfor %}

{% endblock errors %}
{% block rows %}

{% for field in form.visible_fields %}
{% if forloop.last %}{% formconfig row with hidden_fields=form.hidden_

→˓fields %}{% endif %}
{% block row %}{% formrow field %}{% endblock %}

{% endfor %}
{% if not form.visible_fields %}{% for field in form.hidden_fields %}{%

→˓formfield field %}{% endfor %}{% endif %}
{% endblock %}
{% endfor %}{% endblock %}

floppyforms/templates/floppyforms/rows/bootstrap.html:

{% load floppyforms %}{% block row %}{% for field in fields %}
<div class="control-group{% if field.errors %} error{% endif %}">

{% with classes=field.css_classes label=label|default:field.label help_text=help_
→˓text|default:field.help_text %}

{% block label %}{% if field|id %}<label class="control-label" for="{{ field|id }}
→˓">{% endif %}{{ label }}{% if field.field.required %} *</
→˓span>{% endif %}{% if label|last not in ".:!?" %}:{% endif %}{% if field|id %}</
→˓label>{% endif %}{% endblock %}

{% block field %}
<div class="controls {{ classes }} field-{{ field.name }}">

{% block widget %}{% formfield field %}{% endblock %}
{% block errors %}{% include "floppyforms/errors.html" with errors=field.

→˓errors %}{% endblock %}
{% block help_text %}{% if field.help_text %}

<p class="help-block">{{ field.help_text }}</p>
{% endif %}{% endblock %}
{% block hidden_fields %}{% for field in hidden_fields %}{{ field.as_

→˓hidden }}{% endfor %}{% endblock %}
</div><!--- .controls -->

{% endblock %}
{% endwith %}

</div><!--- .control-group{% if field.errors %}.error{% endif %} -->
{% endfor %}{% endblock %}

You can also define this layout by default:

2.10. Layout example with Bootstrap 41

django-floppyforms Documentation, Release dev

floppyforms/templates/floppyforms/layouts/default.html:

{% extends "floppyforms/layouts/bootstrap.html" %}

You can also make a change to the error display:

floppyforms/templates/floppyforms/errors.html:

{% if errors %}{% for error in errors %}{{ error }}{% if
→˓not forloop.last %}
{% endif %}{% endfor %}{% endif %}

And that’s it, you now have a perfect display for your form with bootstrap.

2.11 Changelog

2.11.1 1.8.0 (in development)

• #176: Fix HTML validation for hidden textarea used with GIS widgets.

• #191: Support for Django 1.10. Thanks to MrJmad for the patch.

• #194: Remove official support for Python 2.6 and Python 3.2.

2.11.2 1.7.0

• #171: Fix path to GIS widget images in openlayers.html template. The files coming with Django admin
where used, but the naming changed in 1.9. We vendor these know to have better control over it.

• #174: Support for setting your own Google Maps key in the BaseGMapWidget. See the documentation for
details

2.11.3 1.6.2

• #169: Use the attributes ClearableFileInput.initial_text, ClearableFileInput.
input_text, ClearableFileInput.clear_checkbox_label to determine the used text in
the template. This was inconsistent so far with Django’s behaviour.

2.11.4 1.6.1

• #167: Fix django-floppyforms’ CheckboxInput.value_from_datadict which was inconsistent with
Django’s behaviour.

2.11.5 1.6.0

• #160: Django 1.9 support! Thanks to Jonas Haag for the patch.

2.11.6 1.5.2

• #156: The min, max, step attributes for DecimalField and FloatFieldwere localized which can result
in invalid values (rendering 0.01 as 0,01 in respective locales). Those attributes won’t get localized anymore.
Thanks to Yannick Chabbert for the fix.

42 Chapter 2. Using django-floppyforms

https://github.com/gregmuellegger/django-floppyforms/issues/176
https://github.com/gregmuellegger/django-floppyforms/pull/191
https://github.com/gregmuellegger/django-floppyforms/pull/194
https://github.com/gregmuellegger/django-floppyforms/issues/171
https://github.com/gregmuellegger/django-floppyforms/pull/174
http://django-floppyforms.readthedocs.io/en/latest/geodjango.html
https://github.com/gregmuellegger/django-floppyforms/issues/169
https://github.com/gregmuellegger/django-floppyforms/issues/167
https://github.com/gregmuellegger/django-floppyforms/pull/160
https://github.com/gregmuellegger/django-floppyforms/pull/156

django-floppyforms Documentation, Release dev

2.11.7 1.5.1

• FloatField‘ now fills in min, max, and step attributes to match the behaviour of DecimalField. Leaving out
the step attribute would result in widgets that only allow integers to be filled in (HTML 5 default for step is
1).

2.11.8 1.5.0

• #148: Added support for custom label_suffix arguments in forms and fields.

• The contents in floppyforms/input.html is now wrapped in a {% block content %} for easier
extending.

• #70: DecimalField‘ now fills in min, max, and step attributes for better client side validation. Use the
novalidate attribute on your <form> tag to disable HTML5 input validation in the browser. Thanks to
caacree for the patch.

2.11.9 1.4.1

• Fixed source distribution to include all files in floppyforms/static/floppyforms/openlayers.

2.11.10 1.4.0

• Every widget is now using its own template. Previously all widgets that are based on the HTML <input> tag
used the generic floppyforms/input.html template. Now the widgets each have a custom element for
easier customisation. For example CheckboxInput now uses floppyforms/checkbox.html instead
of floppyforms/input.html. See Widgets reference for a complete list of available widgets and which
templates they use.

• Adjusting the SRIDs used in the GeoDjango widgets to conform with Django 1.7. Thanks to Tyler Tipton for
the patch.

• Python 3.2 is now officially supported.

• Django 1.8 is now officially supported. django-floppyforms no longers triggers Django deprecation warnings.

• Adding OpenLayers distribution to django-floppyforms static files in order to better support HTTPS setups when
GIS widgets are used (See #15 for more details).

• Fix: python setup.py bdist_rpm failed because of wrong string encodings in setup.py. Thanks to Yuki
Izumi for the fix.

• Fix: The CheckboxInput widget did detect different values in Python 2 when given 'False' and
u'False' as data. Thanks to @artscoop for the patch.

• Fix: MultipleChoiceField can now correctly be rendered as hidden field by using the as_hidden helper
in the template. That was not working previously as there was no value set for MultipleChoiceField.
hidden_widget.

2.11.11 1.3.0

• DateInput widget renders hardcoded “%Y-%m-%d” format. We don’t allow custom formats there since the
“%Y-%m-%d” format is what browsers are submitting with HTML5 date input fields. Thanks to Bojan Mihelac
for the patch.

2.11. Changelog 43

https://github.com/gregmuellegger/django-floppyforms/issues/148
https://github.com/gregmuellegger/django-floppyforms/issues/70
http://django-floppyforms.readthedocs.org/en/latest/widgets-reference.html
http://openlayers.org/

django-floppyforms Documentation, Release dev

• Adding supports_microseconds attribute to all relevant widget classes. Thanks to Stephen Burrows for
the patch.

• Using a property for Widget.is_hidden attribute on widgets to be in conformance with Django 1.7 default
widget implementation.

• The docs mentioned that the current ModelForm behaviour in floppyforms.__future__ will become
the default in 1.3. This is postpone for one release and will be part of 1.4.

2.11.12 1.2.0

• Subclasses of floppyforms.models.ModelForm did not convert widgets of form fields that were auto-
matically created for the existing model fields into the floppyform variants. This is now changed, thanks to a
patch by Stephen Burrows.

Previously you had to set the widgets your self in a model form. For example you would write:

import floppyforms as forms

class ProfileForm(forms.ModelForm):
class Meta:

model = Profile
widgets = {

'name': forms.TextInput,
'url': forms.URLInput,
...

}

Now this is done automatically. But since this is a kind-of backwardsincompatible change, you need to use a
special import:

import floppyforms.__future__ as forms

class ProfileForm(forms.ModelForm):
class Meta:

model = Profile

This feature will become the default behaviour in floppyforms 2.0.

See the documentation for more information: http://django-floppyforms.readthedocs.org/en/latest/usage.html#
modelforms

• If you added an attribute with value 1 to the attrs kwargs (e.g. {'value': 1}, you would get no attribute
value in the rendered html (e.g. value instead of value="1"). That’s fixed now, thanks to Viktor Ershov for
the report.

• All floppyform widget classes now take a template_name argument in the __init__ and rendermethod.
Thanks to Carl Meyer for the patch.

2.11.13 1.1.1

• Fix for Django 1.6

• Fix for GIS widgets on Django 1.4 and some versions of GEOS.

44 Chapter 2. Using django-floppyforms

http://django-floppyforms.readthedocs.org/en/latest/usage.html#modelforms
http://django-floppyforms.readthedocs.org/en/latest/usage.html#modelforms

django-floppyforms Documentation, Release dev

2.11.14 1.1

• Added GenericIPAddressField.

• Django 1.5 and Python 3.3 support added.

• Django 1.3 support dropped.

• GIS widgets switched to stable OpenLayers release instead of a dev build.

• Fixed Textarea widget template to work with a non-empty TEMPLATE_STRING_IF_INVALID setting.
Thanks to Leon Matthews for the report.

• Fixed context handling in widget rendering. It didn’t take care of popping the context as often as it was pushed
onto. This could cause strange behaviour in the template by leaking variables into outer scopes. Thanks to
David Danier for the report.

• Added missing empty choice for selectboxes in SelectDateWidget. Thanks fsx999 for the report.

• IntegerField now automatically passes its min_value and max_value (if provided) to the
NumberInput widget.

• Added basic support for <datalist> elements for suggestions in Input widgets.

• date, datetime and time inputs are not localized anymore. The HTML5 spec requires the rendered values
to be RFC3339-compliant and the browsers are in charge of localization. If you still want localized date/time
inputs, use those provided by Django or override the _format_value() method of the relevant widgets.

2.11.15 1.0

• cleaned up the behaviour of attrs

• compatible with Django 1.3 and 1.4

• <optgroup> support in select widgets

• Select widgets: renamed choices context variable to optgroups. This is backwards-incompatible: if
you have custom templates for Select widgets, they need to be updated.

• get_context() is more reliable

• Added form, formrow, formfield, formconfig and widget template tags.

• Added template-based form layout system.

• Added ability to render widgets with the broader page context, for instance for django-sekizai compatibility.

2.11.16 0.4

• All widgets from Django have their floppyforms equivalent

• Added widgets for GeoDjango

2.11. Changelog 45

django-floppyforms Documentation, Release dev

46 Chapter 2. Using django-floppyforms

CHAPTER 3

Getting help

Feel free to join the #django-floppyforms IRC channel on freenode.

47

django-floppyforms Documentation, Release dev

48 Chapter 3. Getting help

CHAPTER 4

Why the name?

• There aren’t enough packages with silly names in the Django community. So, here’s one more.

• The name reflects the idea that a widget can take any kind of shape, if that makes any sense.

49

django-floppyforms Documentation, Release dev

50 Chapter 4. Why the name?

CHAPTER 5

Performance

Each time a widget is rendered, there is a template inclusion. To what extent does it affect performance? You can try
with this little script:

import timeit

django = """from django import forms

class DjangoForm(forms.Form):
text = forms.CharField()
slug = forms.SlugField()
some_bool = forms.BooleanField()
email = forms.EmailField()
date = forms.DateTimeField()
file_ = forms.FileField()

rendered = DjangoForm().as_p()"""

flop = """import floppyforms as forms

class FloppyForm(forms.Form):
text = forms.CharField()
slug = forms.SlugField()
some_bool = forms.BooleanField()
email = forms.EmailField()
date = forms.DateTimeField()
file_ = forms.FileField()

rendered = FloppyForm().as_p()"""

def time(stmt):
t = timeit.Timer(stmt=stmt)
return t.timeit(number=1000)

print "Plain django:", time(django)
print "django-floppyforms:", time(flop)

51

django-floppyforms Documentation, Release dev

The result varies if you’re doing template caching or not. To put it simply, here is the average time for a single iteration
on a MacBookPro @ 2.53GHz.

Method Time without template caching Time with template caching
Plain Django 1.63973999023 msec 1.6320669651 msec
django-floppyforms 9.05481505394 msec 3.0161819458 msec

Even with template caching, the rendering time is doubled. However the impact is probably not noticeable since
rendering the form above takes 3 milliseconds instead of 1.6: it still takes no time :). The use of template caching in
production is, of course, encouraged.

52 Chapter 5. Performance

Python Module Index

f
floppyforms.widgets, 11

53

django-floppyforms Documentation, Release dev

54 Python Module Index

Index

C
CheckboxInput (class in floppyforms.widgets), 14
CheckboxSelectMultiple (class in floppyforms.widgets),

15
clear_checkbox_label (floppy-

forms.widgets.ClearableFileInput attribute),
12

ClearableFileInput (class in floppyforms.widgets), 12
ColorInput (class in floppyforms.widgets), 13
cols (floppyforms.widgets.Textarea attribute), 14

D
datalist (floppyforms.widgets.Input attribute), 11
DateInput (class in floppyforms.widgets), 13
DateTimeInput (class in floppyforms.widgets), 13
day_field (floppyforms.widgets.SelectDateWidget at-

tribute), 15

E
EmailInput (class in floppyforms.widgets), 12

F
FileInput (class in floppyforms.widgets), 12
floppyforms.widgets (module), 11

H
HiddenInput (class in floppyforms.widgets), 11

I
initial_text (floppyforms.widgets.ClearableFileInput at-

tribute), 12
Input (class in floppyforms.widgets), 11
input_text (floppyforms.widgets.ClearableFileInput at-

tribute), 12
input_type (floppyforms.widgets.CheckboxInput at-

tribute), 14
input_type (floppyforms.widgets.ClearableFileInput at-

tribute), 12
input_type (floppyforms.widgets.ColorInput attribute), 13

input_type (floppyforms.widgets.DateInput attribute), 13
input_type (floppyforms.widgets.DateTimeInput at-

tribute), 13
input_type (floppyforms.widgets.EmailInput attribute),

12
input_type (floppyforms.widgets.FileInput attribute), 12
input_type (floppyforms.widgets.HiddenInput attribute),

11
input_type (floppyforms.widgets.IPAddressInput at-

tribute), 12
input_type (floppyforms.widgets.NumberInput attribute),

14
input_type (floppyforms.widgets.PasswordInput at-

tribute), 11
input_type (floppyforms.widgets.PhoneNumberInput at-

tribute), 13
input_type (floppyforms.widgets.RangeInput attribute),

14
input_type (floppyforms.widgets.SearchInput attribute),

13
input_type (floppyforms.widgets.SlugInput attribute), 12
input_type (floppyforms.widgets.TextInput attribute), 11
input_type (floppyforms.widgets.TimeInput attribute), 13
input_type (floppyforms.widgets.URLInput attribute), 13
IPAddressInput (class in floppyforms.widgets), 12

M
max (floppyforms.widgets.NumberInput attribute), 14
max (floppyforms.widgets.RangeInput attribute), 14
min (floppyforms.widgets.NumberInput attribute), 14
min (floppyforms.widgets.RangeInput attribute), 14
month_field (floppyforms.widgets.SelectDateWidget at-

tribute), 15
MultipleHiddenInput (class in floppyforms.widgets), 15
MultiWidget (class in floppyforms.widgets), 15

N
none_value (floppyforms.widgets.SelectDateWidget at-

tribute), 15

55

django-floppyforms Documentation, Release dev

NullBooleanSelect (class in floppyforms.widgets), 15
NumberInput (class in floppyforms.widgets), 14

P
PasswordInput (class in floppyforms.widgets), 11
PhoneNumberInput (class in floppyforms.widgets), 13

R
RadioSelect (class in floppyforms.widgets), 15
RangeInput (class in floppyforms.widgets), 14
rows (floppyforms.widgets.Textarea attribute), 14

S
SearchInput (class in floppyforms.widgets), 13
Select (class in floppyforms.widgets), 14
SelectDateWidget (class in floppyforms.widgets), 15
SelectMultiple (class in floppyforms.widgets), 15
SlugInput (class in floppyforms.widgets), 12
SplitDateTimeWidget (class in floppyforms.widgets), 15
step (floppyforms.widgets.NumberInput attribute), 14
step (floppyforms.widgets.RangeInput attribute), 14

T
template_name (floppyforms.widgets.CheckboxInput at-

tribute), 14
template_name (floppy-

forms.widgets.CheckboxSelectMultiple at-
tribute), 15

template_name (floppyforms.widgets.ClearableFileInput
attribute), 12

template_name (floppyforms.widgets.ColorInput at-
tribute), 13

template_name (floppyforms.widgets.DateInput at-
tribute), 13

template_name (floppyforms.widgets.DateTimeInput at-
tribute), 13

template_name (floppyforms.widgets.EmailInput at-
tribute), 12

template_name (floppyforms.widgets.FileInput attribute),
12

template_name (floppyforms.widgets.HiddenInput
attribute), 11

template_name (floppyforms.widgets.Input attribute), 11
template_name (floppyforms.widgets.IPAddressInput at-

tribute), 12
template_name (floppyforms.widgets.NullBooleanSelect

attribute), 15
template_name (floppyforms.widgets.NumberInput at-

tribute), 14
template_name (floppyforms.widgets.PasswordInput at-

tribute), 11
template_name (floppy-

forms.widgets.PhoneNumberInput attribute),
13

template_name (floppyforms.widgets.RadioSelect at-
tribute), 15

template_name (floppy-
forms.widgets.RangeInput.NumberInput
attribute), 14

template_name (floppyforms.widgets.SearchInput at-
tribute), 13

template_name (floppyforms.widgets.Select attribute), 15
template_name (floppyforms.widgets.SelectDateWidget

attribute), 15
template_name (floppyforms.widgets.SelectMultiple at-

tribute), 15
template_name (floppyforms.widgets.SlugInput at-

tribute), 12
template_name (floppyforms.widgets.Textarea attribute),

14
template_name (floppyforms.widgets.TextInput at-

tribute), 11
template_name (floppyforms.widgets.TimeInput at-

tribute), 13
template_name (floppyforms.widgets.URLInput at-

tribute), 13
Textarea (class in floppyforms.widgets), 14
TextInput (class in floppyforms.widgets), 11
TimeInput (class in floppyforms.widgets), 13

U
URLInput (class in floppyforms.widgets), 12

Y
year_field (floppyforms.widgets.SelectDateWidget

attribute), 15

56 Index

	Installation
	Using django-floppyforms
	Usage
	Provided widgets
	Customization
	Widgets reference
	GeoDjango widgets
	Form layouts
	Template tags
	Differences with django.forms
	Example widgets
	Layout example with Bootstrap
	Changelog

	Getting help
	Why the name?
	Performance
	Python Module Index

