

django-firefence’s Documentation

	Overview
	Installation

	Concepts

	Settings

	Recipes
	Middleware

	Decorator

	Fence

	Custom Backend

Indices and tables

	Index

	Module Index

	Search Page

Overview

django-firefence is a project developed to provide firewall style request filtering to a Django
project at the application level or at the view level.

The library is compatible with Django >= 1.8.

Installation

Installing django-firefence is easily done using pip [https://github.com/pypa/pip]. Assuming it is installed just run the
following from the command line:

$ pip install django-firefence

This command will download the latest version of django-firefence from the Python Package Index [https://pypi.python.org/pypi/django-firefence]
and install it to your system. More information about pip and pypi can be found here:

	install pip [https://pip.pypa.io/en/latest/installing.html]

	pypi [https://pypi.python.org/pypi]

Alternatively you can install from the distribution using the setup.py script:

$ python setup.py install

You could also install the development version [https://github.com/rehandalal/django-firefence/tarball/master#egg=django-firefence-dev] by running the following:

$ pip install django-firefence==dev

Or simply install from a clone of the git repo [https://github.com/rehandalal/django-firefence] (recommended for contributors to the project):

$ git clone https://github.com/rehandalal/django-firefence.git
$ mkvirtualenv django-firefence
$ pip install -r requirements.txt
$ pip install --editable .

Concepts

Rules

A Rule is the basic building block of django-firefence. They are objects that define what
characterists of a request to match on and what action to take if they match.

You must define an action for all rules. This action must be one of either 'ALLOW' or
'DENY'.

You may also define a host for a rule. This host will match against the hostname or the IP
address of the incoming request. This can be a simple hostname of the remote machine(eg:
'localhost'), an IPv4 address (eg: '192.168.1.1'), an IPv6 address (eg:
'2001:0db8:85a3:0000:0000:8a2e:0370:7334'), an IPv4 subnet in CIDR notation (eg:
'192.168.1.0/24') or and IPv6 subnet in CIDR notation (eg: '2001:0db8::/32').

Finally, you may define a port for a rule. This will match the server port that the request is
made to. Typically requests are made to port 80 for HTTP and port 443 for HTTPS but if you have
some kind of non-standard setup you can use this to filter accordingly. The port can be an
integer or a string (eg: 80 or '80'), a string representing a range of ports (eg:
'80:90'), a string with a comma-separated list of ports (eg: '80, 443') or a list or tuple
of integers or strings (eg: ('80', '443') or [80, 443]).

If the host is not defined the rule will match all IPs or hostnames. Similarly, if the port
is not defined the rule will match all ports. If both are defined, both must match.

RuleSets

``RuleSet``s are an ordered, iterable collection of ``Rule``s. They provide the list of
rules for a request to be matched against. Rules are applied to requests in order. When a request
matches a rule, that rule’s action is applied and all subsequent rules are ignored.

If there are no rules in a RuleSet there is no action taken. If for some reason you wanted to
block all requests you would need to add a rule with the action set to 'DENY' and no host or
port specified.

If a RuleSet only has rules with 'DENY' as the action, it will allow all requests except
the ones that match one of the rules. However, if there are any rules in a RuleSet that have
'ALLOW' as an action, then requests are denied by default unless they match an allow-rule.

Fences

A Fence is a backend object that takes a RuleSet and defines what to do if a denial-rule
is matched. The default backend provided by django-firefence simply raises a PermissionDenied
error when a denial occurs.

Settings

All the settings are optional and can be set in your Django settings file as follows:

FIREFENCE = {
 'RULES': [
 {
 'action': 'ALLOW',
 'host': '192.168.1.1',
 'port': '80, 443',
 }
],
 'DEFAULT_BACKEND': 'firefence.backends.Fence',
}

These are the available settings:

	RULES

	A list or tuple of default rules. These will be used by the middleware or the decorator
(if not specified).

Each rule may be a dict or a Rule object.

DEFAULT: ()

	DEFAULT_BACKEND

	An import path for the backend class to use. This backend will be used by the
middleware and the decorator (if not specified).

DEFAULT: 'firefence.backends.Fence'

Recipes

There are many different ways in which you may choose to use django-firefence. Here are some of
the basic patterns that you can use:

Middleware

The easiest, but least flexible way to use django-firence is to simply install the
FirefenceMiddleware middleware and define some default rules:

MIDDLEWARE += ['firefence.middleware.FirefenceMiddleware']

FIREFENCE= {
 'RULES': [
 {
 'action': 'ALLOW',
 'host': '192.168.1.1',
 'port': '80, 443',
 }
],
}

When using the middleware, ALL requests are filtered through the default rules.

By default the middleware uses the provided Fence backend, however you may change the
DEFAULT_BACKEND setting to use a custom backend.

Decorator

django-firefence comes with a view decorator that you can use to protect individual views.

This decorator allows you to specify a set of rules to use as well what backend class to use. If
either is not provided the defaults specified in the settings will be used.

Here are some examples of how to use the decorator

from firefence.decorators import fence_protected
from firefence.rules import Rule

from my_project.firefence_backends import CustomFence

Use the default rules and backend
@fence_protected()
def my_view(request):
 return render(request, 'template.html')

Use a custom set of rules
@fence_protected(rules=[
 Rule(action=Rule.ALLOW, host='192.168.1.1')
])
def another_view(request):
 return render(request, 'template.html')

Use a custom backend
@fence_protected(backend_class=CustomFence)
def third_view(request):
 return render(request, 'template.html')

Fence

Sometimes you may have a common set of rules you wish to apply to a number of views. One way that
you could do this is to create an instance of the Fence backend with those rules and use it
to decorate the views:

from firefence.backends import Fence
from firefence.rules import Rule

fence = Fence([
 Rule(action=Rule.DENY, host='192.168.1.1', port=80),
 Rule(action=Rule.ALLOW, port=[80, 443]),
])

@fence.protect
def my_view(request):
 return render(request, 'template.html')

@fence.protect
def another_view(request):
 return render(request, 'template.html')

Custom Backend

The provided Fence backend raises a PermissionDenied error when a denial occurs. If this
is not the desired behaviour, you must use a custom backend.

To make the process easy we provide a AbstractFence class that you can extend to easily create
new backends. All you have to do is implement a reject method on the new backend. This method
must either raise an exception that Django can handle or return an HttpResponse object.

from firefence.backends import AbstractFence

class CustomFence(AbstractFence):
 def reject(self, request):
 return render(request, 'denied.html')

Index

Concepts

Rules

A Rule is the basic building block of django-firefence. They are objects that define what
characterists of a request to match on and what action to take if they match.

You must define an action for all rules. This action must be one of either 'ALLOW' or
'DENY'.

You may also define a host for a rule. This host will match against the hostname or the IP
address of the incoming request. This can be a simple hostname of the remote machine(eg:
'localhost'), an IPv4 address (eg: '192.168.1.1'), an IPv6 address (eg:
'2001:0db8:85a3:0000:0000:8a2e:0370:7334'), an IPv4 subnet in CIDR notation (eg:
'192.168.1.0/24') or and IPv6 subnet in CIDR notation (eg: '2001:0db8::/32').

Finally, you may define a port for a rule. This will match the server port that the request is
made to. Typically requests are made to port 80 for HTTP and port 443 for HTTPS but if you have
some kind of non-standard setup you can use this to filter accordingly. The port can be an
integer or a string (eg: 80 or '80'), a string representing a range of ports (eg:
'80:90'), a string with a comma-separated list of ports (eg: '80, 443') or a list or tuple
of integers or strings (eg: ('80', '443') or [80, 443]).

If the host is not defined the rule will match all IPs or hostnames. Similarly, if the port
is not defined the rule will match all ports. If both are defined, both must match.

RuleSets

``RuleSet``s are an ordered, iterable collection of ``Rule``s. They provide the list of
rules for a request to be matched against. Rules are applied to requests in order. When a request
matches a rule, that rule’s action is applied and all subsequent rules are ignored.

If there are no rules in a RuleSet there is no action taken. If for some reason you wanted to
block all requests you would need to add a rule with the action set to 'DENY' and no host or
port specified.

If a RuleSet only has rules with 'DENY' as the action, it will allow all requests except
the ones that match one of the rules. However, if there are any rules in a RuleSet that have
'ALLOW' as an action, then requests are denied by default unless they match an allow-rule.

Fences

A Fence is a backend object that takes a RuleSet and defines what to do if a denial-rule
is matched. The default backend provided by django-firefence simply raises a PermissionDenied
error when a denial occurs.

Settings

All the settings are optional and can be set in your Django settings file as follows:

FIREFENCE = {
 'RULES': [
 {
 'action': 'ALLOW',
 'host': '192.168.1.1',
 'port': '80, 443',
 }
],
 'DEFAULT_BACKEND': 'firefence.backends.Fence',
}

These are the available settings:

	RULES

	A list or tuple of default rules. These will be used by the middleware or the decorator
(if not specified).

Each rule may be a dict or a Rule object.

DEFAULT: ()

	DEFAULT_BACKEND

	An import path for the backend class to use. This backend will be used by the
middleware and the decorator (if not specified).

DEFAULT: 'firefence.backends.Fence'

Installation

Installing django-firefence is easily done using pip [https://github.com/pypa/pip]. Assuming it is installed just run the
following from the command line:

$ pip install django-firefence

This command will download the latest version of django-firefence from the Python Package Index [https://pypi.python.org/pypi/django-firefence]
and install it to your system. More information about pip and pypi can be found here:

	install pip [https://pip.pypa.io/en/latest/installing.html]

	pypi [https://pypi.python.org/pypi]

Alternatively you can install from the distribution using the setup.py script:

$ python setup.py install

You could also install the development version [https://github.com/rehandalal/django-firefence/tarball/master#egg=django-firefence-dev] by running the following:

$ pip install django-firefence==dev

Or simply install from a clone of the git repo [https://github.com/rehandalal/django-firefence] (recommended for contributors to the project):

$ git clone https://github.com/rehandalal/django-firefence.git
$ mkvirtualenv django-firefence
$ pip install -r requirements.txt
$ pip install --editable .

Middleware

The easiest, but least flexible way to use django-firence is to simply install the
FirefenceMiddleware middleware and define some default rules:

MIDDLEWARE += ['firefence.middleware.FirefenceMiddleware']

FIREFENCE= {
 'RULES': [
 {
 'action': 'ALLOW',
 'host': '192.168.1.1',
 'port': '80, 443',
 }
],
}

When using the middleware, ALL requests are filtered through the default rules.

By default the middleware uses the provided Fence backend, however you may change the
DEFAULT_BACKEND setting to use a custom backend.

Custom Backend

The provided Fence backend raises a PermissionDenied error when a denial occurs. If this
is not the desired behaviour, you must use a custom backend.

To make the process easy we provide a AbstractFence class that you can extend to easily create
new backends. All you have to do is implement a reject method on the new backend. This method
must either raise an exception that Django can handle or return an HttpResponse object.

from firefence.backends import AbstractFence

class CustomFence(AbstractFence):
 def reject(self, request):
 return render(request, 'denied.html')

Decorator

django-firefence comes with a view decorator that you can use to protect individual views.

This decorator allows you to specify a set of rules to use as well what backend class to use. If
either is not provided the defaults specified in the settings will be used.

Here are some examples of how to use the decorator

from firefence.decorators import fence_protected
from firefence.rules import Rule

from my_project.firefence_backends import CustomFence

Use the default rules and backend
@fence_protected()
def my_view(request):
 return render(request, 'template.html')

Use a custom set of rules
@fence_protected(rules=[
 Rule(action=Rule.ALLOW, host='192.168.1.1')
])
def another_view(request):
 return render(request, 'template.html')

Use a custom backend
@fence_protected(backend_class=CustomFence)
def third_view(request):
 return render(request, 'template.html')

Fence

Sometimes you may have a common set of rules you wish to apply to a number of views. One way that
you could do this is to create an instance of the Fence backend with those rules and use it
to decorate the views:

from firefence.backends import Fence
from firefence.rules import Rule

fence = Fence([
 Rule(action=Rule.DENY, host='192.168.1.1', port=80),
 Rule(action=Rule.ALLOW, port=[80, 443]),
])

@fence.protect
def my_view(request):
 return render(request, 'template.html')

@fence.protect
def another_view(request):
 return render(request, 'template.html')

 _static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

nav.xhtml

 Table of Contents

 		django-firefence's Documentation

 		Overview

 		Installation

 		Concepts

 		Rules

 		RuleSets

 		Fences

 		Settings

 		Recipes

 		Middleware

 		Decorator

 		Fence

 		Custom Backend

