
django-fancypages Documentation
Release 0.1.0

Sebastian Vetter

October 26, 2014

Contents

1 Getting Started 3
1.1 Basic Concepts . 3
1.2 Installation . 5

2 Recipes 7
2.1 Create a Custom Template Block . 7

3 API Reference 9

4 Indices and tables 11

Python Module Index 13

i

ii

django-fancypages Documentation, Release 0.1.0

Contents:

Contents 1

django-fancypages Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Getting Started

The core principle of fancypages (FP) is to provide the user with a way to edit and enhance content without giving
them too much control over style and layout. The objective is to maintain the overall design of the website.

The project was born out of the need to add content editing capabilities to an e-commerce project based on django-
oscar.

1.1 Basic Concepts

Before we get started with the installation and setup of fancypages (FP), let’s take a look a the underlying concepts to
understand the components it’s assembled of. There are three major components in FP that you should know about
are containers, blocks and pages.

Containers and blocks are strongly related and form the most important part of fancypages. As the name suggests, a
container is an object that holds an arbitrary number of other objects, in our case the blocks. These, in turn, are the
basic building blocks of FP.

1.1.1 Blocks

A content block in FP is a Django model that defines specific content that is editable by the user. This can be a simple
CharField, an ImageField or any model field really. These fields are then editable on the front-end through the
editor panel.

3

https://github.com/tangentlabs/django-oscar
https://github.com/tangentlabs/django-oscar

django-fancypages Documentation, Release 0.1.0

In addition to the actual content, each block also defines a template that provides that specific layout for this content
block. This works similar to views in Django itself where template_name on a TemplateView can be used to
specify the path to a template file relative to the template directory.

A simple content block providing editable rich text might look similar to this:

from fancypages.models.blocks import ContentBlock
from fancypages.library import register_content_block

@register_content_block
class TextBlock(ContentBlock):

name = _("Text")
code = ’text’
template_name = "fancypages/blocks/textblock.html"

text = models.TextField(_("Text"), default="Your text goes here.")

1.1.2 Containers

To be able to place content block on a page we need to be able to specify where these blocks can be placed on any
given page. That’s where containers come in. They are basically placeholders in a template file that define where
blocks can be added. They are agnostic of their surrounding and simply expand to the maximum area they can occupy
within their enclosing HTML element.

Adding a container to a template will make sure that all block added to this container are rendered whenever the
template is rendered. Additionally, they are an indication for FP to display the editor panel to users with the right
permissions.

Let’s look at how you can define containers in your own templates to get a better idea of how they work. FP knows
two different types of containers and to illustrate the difference and how you can use them we’ll look at the following
two examples:

1. The named container behaves similar to a variable. You specify a name for you container and wherever you
use that name in a template the same container including all it’s blocks is rendered. A simple example could
look something like this:

{% load fp_container_tags %}
...
<div class="row">

{% fp_container my-first-container %}
</div>
...

This defines a container named my-first-container. When you now go to the page that uses this template,
the FP editor panel will be displayed (assuming you are logged in as admin user) and you can add blocks to
the container. Note: You don’t have to create the container yourself. The first time the template is rendered the
container is created if it doesn’t already exist.

2. The model-related container is similar in that it has to have a name. The difference is that we attach this
container to a specific model instance by passing it into the template tag. Where does that make sense? Let’s
look at a simple blog app that contains a template for the detail page of each blog post. If you use a regular
named container the exact same container with the exact same blocks will show up on all blog post pages. But
that might not be what you want. If you want to be able to enhance the content of block posts individually you
have to use a model-related container and attach it to the individual blog post. In a template it would look like
this (assuming the blog post instance in the context is called post):

{% load fp_container_tags %}
...

4 Chapter 1. Getting Started

django-fancypages Documentation, Release 0.1.0

<h1>{{ post.title }}</h1>

{% fp_object_container blog-post-container post %}

<div class="content">{{ post.content|safe }}</div>

1.2 Installation

To use django-fancypages in your own project follow these steps:

1. Install via pip into you virtualenv (for now you have to install from the github repo because we haven’t released
it to PyPI yet):

$ pip install git+https://github.com/tangentlabs/django-fancypages.git

2. Add the required apps to your INSTALLED_APPS by simply using the convenience function get_apps in
the fancypages module:

from fancyages import get_required_apps, get_fancypages_apps

YOUR_OTHER_APPS = [
...

]
INSTALLED_APPS = YOUR_OTHER_APPS + get_required_apps() + get_fancypages_apps()

3. Add the editor middleware that provides the editing panel to every fancypage or page that contains an FP
container:

MIDDLEWARE_CLASSES = (
...
’fancypages.middleware.EditorMiddleware’,

)

4. Add the urls for django-fancypages to your project’s main urls.py. Make sure that it is at the end of
you definitions otherwise the it will prevent your other URLs from working because it defines a rather generic
URL pattern for its pages:

urlpatterns = patterns(’’,
...
url(r’^’, include(fancypages.urls)),

)

5. Fancypages requires several default settings to be added. To make sure that you have all the default settings in
your settings, you can use the defaults provided by fancypages itself. Add the following in your settings file
before you overwrite specific settings:
...

from fancypages.defaults import *

...

1.2. Installation 5

django-fancypages Documentation, Release 0.1.0

6 Chapter 1. Getting Started

CHAPTER 2

Recipes

2.1 Create a Custom Template Block

Start off by creating a new app in your project, e.g. a blocks app. Conent blocks in fancypages are basically Django
models that require a few additional attributes and definitions.

Let’s assume we want to create a simple widget that displays a custom template without providing any additional data
that can be edited. All we need to do is define the following model:

from fancypages.models.blocks import ContentBlock
from fancypages.library import register_content_block

@register_content_block
class MyTemplateBlock(ContentBlock):

name = _("My template")
code = u’my-template’
group = u’My Blocks’
template_name = u’blocks/my_template_block.html’

def __unicode__(self):
return self.name

The first three attributes name, code and group are important and have to be specified on every new content block.

name Display name of the content block
code Unique code for the block to be identified by
group Blocks can be grouped by using the same group name here

7

django-fancypages Documentation, Release 0.1.0

8 Chapter 2. Recipes

CHAPTER 3

API Reference

fancypages.get_fancypages_paths(path)
Get absolute paths for path relative to the project root

9

django-fancypages Documentation, Release 0.1.0

10 Chapter 3. API Reference

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

11

django-fancypages Documentation, Release 0.1.0

12 Chapter 4. Indices and tables

Python Module Index

f
fancypages, 9

13

django-fancypages Documentation, Release 0.1.0

14 Python Module Index

Index

F
fancypages (module), 9

G
get_fancypages_paths() (in module fancypages), 9

15

	Getting Started
	Basic Concepts
	Installation

	Recipes
	Create a Custom Template Block

	API Reference
	Indices and tables
	Python Module Index

