

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-fancypages 0.1.0 documentation

Welcome to django-fancypages’s documentation!

The core principle of fancypages (FP) is to provide the user with a way to
edit and enhance content without giving them too much control over style and
layout. The objective is to maintain the overall design of the website.

The project was born out of the need to add content editing capabilities to an
e-commerce project based on django-oscar [https://github.com/tangentlabs/django-oscar].

Warning

Django 1.7 support is currently only available for the standalone
version of fancypages. The fancypages.contrib.oscar_fancypages
integration package doesn’t support it yet because django-oscar [https://github.com/tangentlabs/django-oscar] doesn’t
support it yet which makes it impossible to create migrations for
oscar_fancypages.

Contents:

	Installation
	Installing Fancypages

	Standalone Setup

	Setup Alongside Oscar

	Running Migrations

	Basic Concepts
	Blocks

	Containers

	Content Blocks
	Form Block

	Recipes
	Create a Custom Template Block

	Changing Rich Text Editor

	Customising Rich Text Editor

	Contributing
	Integration Tests

	API Reference
	Models

	Mixins

	Blocks

	Template Tags

	Editor Middleware

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-fancypages 0.1.0 documentation

Installation

You can use django-fancypages as standalone app in your Django project or you
can integrate it with your django-oscar [http://django-oscar.readthedocs.org] shop using the included extension
module. In the following sections, the standalone setup of django-fancypages
will be referred to as FP and the Oscar integration as OFP.

#Most of the installation steps are exactly the same for both so let’s
#go through these steps first. After you have completed them, follow the

Note

The two sandbox sites in FP show an example integration
with django-oscar [http://django-oscar.readthedocs.org] and as standalone project. They both use
django-configurations [http://django-configurations.readthedocs.org] maintained by the awesome Jannis Leidel to make
dealing with Django settings much simpler. Using it is not a requirement for
django-fancypages it’s just a personal preference. The following settings
explain the setup using the basic Django settings.py but I recommend
checking out django-configurations.

Installing Fancypages

For both FP and OFP, you have to install the python package django-fancypages
which is available on PyPI and can be installed with:

$ pip install django-fancypages

or you can install the latest version directly from the github repo [https://github.com/tangentlabs/django-fancypages/tree/master/fancypages]:

$ pip install git+https://github.com/tangentlabs/django-fancypages.git

Standalone Setup

Let’s start with adding all required apps to you INSTALLED_APPS. FP relies
on several third-party apps in addition to the fancypages app itself. For
convenience, FP provides two functions get_required_apps and
get_fancypages_apps that make it easy to add all apps in one additional
line of code:

from fancypages import get_required_apps, get_fancypages_apps

INSTALLED_APPS = [
 ...
] + get_required_apps() + get_fancypages_apps()

Note

FP supports Django 1.7 which replaces South migrations with a new
migration system integrated in Django. The fancypages.migrations module
containse the new-style migrations and will only work for Django 1.7+.
For Django 1.5 and 1.6, you have to add south to your installed
apps and specify an alternative migrations module in the
SOUTH_MIGRATION_MODULES settings. Add the following to your settings
when using either of these versions:

SOUTH_MIGRATION_MODULES = {
 'fancypages': "fancypages.south_migrations",
}

It will then behave in exactly the same way as before.

Next you have add a piece of middleware that provide the content editor
functionality on pages that are managed by FP. The content editor works similar
to django-debug-toolbar [http://django-debug-toolbar.readthedocs.org] and uses the same middleware mechanism to inject
additional mark up into every FP-enabled page if the current user has admin
privileges. Add the FP middleware to the end of your MIDDLEWARE_CLASSES:

MIDDLEWARE_CLASSES = (
 ...
 'fancypages.middleware.EditorMiddleware',
)

Fancypages requires several default settings to be added. To make sure
that you have all the default settings in your settings, you can use
the defaults provided by fancypages itself. Add the following in your
settings file before you overwrite specific settings:

...
from fancypages.defaults import *

override the defaults here (if required)
...

Finally, you have to add URLs to your urls.py to make the fancypages
dashboard and all FP-enabled pages available on your sight. FP uses a very
broad matching of URLs to ensure that you can have nicely nested URLs with your
pages. This will match all URLs it encounters, so make sure that you add
them as the very last entry in your URL patterns:

urlpatterns = patterns('',
 ...
 url(r'^', include('fancypages.urls')),
)

If you would like the home page of your project to be an FP-enabled page as
well, you have to add one additional URL pattern:

urlpatterns = patterns('',
 url(r'^$', views.HomeView.as_view(), name='home'),
 ...
 url(r'^', include('fancypages.urls')),
)

This view behaves slightly different from a regular FancyPageView: if no
FancyPage instance exists with the name
Home (and the corresponding slug home), this page will be created
automatically as a “Draft” page. Make sure that you publish the page to be able
to see it as non-admin user.

Setup Alongside Oscar

Note

The following instructions assume that you have Oscar set up succesfully
by following Oscar’s documentation. Addressing Oscar-specific set up
details aren’t considered here. We recommend that you take a close look at
Oscar’s documentation before continuing.

Setting up django-fancypages alongside your django-oscar [http://django-oscar.readthedocs.org] shop is very
similar to the standalone setup. You also have to add extra apps to your
INSTALLED_APPS and once again, you can use the convenience function
provided by fancypages. Note that we pass use_with_oscar=True to ensure
that the fancypages.contrib.oscar_fancypages app is added:

from fancypages import get_required_apps, get_fancypages_apps

INSTALLED_APPS = [
 ...
] + fp.get_required_apps() \
 + fp.get_fancypages_apps(use_with_oscar=True) \
 + get_core_apps()

Note

Once again, FP ships the new-style migrations for Django 1.7+ by default.
If you are using Django 1.5 or 1.6, you have to make sure that you have
south in your INSTALLED_APPS and add the following setting to point
to the alternative South migrations:

SOUTH_MIGRATION_MODULES = {
 'fancypages': "fancypages.south_migrations",
 'oscar_fancypages': 'fancypages.contrib.oscar_fancypages.south_migrations', # noqa
}

You can now use syncdb and migrate as you would normally.

Next you have add a piece of middleware that provide the content editor
functionality on pages that are managed by FP. The content editor works similar
to django-debug-toolbar [http://django-debug-toolbar.readthedocs.org] and uses the same middleware mechanism to inject
additional mark up into every FP-enabled page if the current user has admin
privileges. Add the FP middleware to the end of your MIDDLEWARE_CLASSES:

MIDDLEWARE_CLASSES = (
 ...
 'fancypages.middleware.EditorMiddleware',
)

Similar to the standalone setup, you have to import the default settings for
FP in your settings.py. However, to make the integration with Oscar
seamless, you have to set the FP_NODE_MODEL to Oscar’s Category model.
The reason for this is, that categories in Oscar already provide a
tree-structure on the site that we can leverage. Switching the page node
from FP’s internal model to Oscar’s Category is as easy as:

...
from fancypages.defaults import *

FP_NODE_MODEL = 'catalogue.Category'
FP_PAGE_DETAIL_VIEW = 'fancypages.contrib.oscar_fancypages.views.FancyPageDetailView'
...

In addition, you should integrate the page management dashboard with Oscar’s
builtin dashboard. We recommend replacing the entry “Catalogue > Categories”
with FP’s page management by replacing:

OSCAR_DASHBOARD_NAVIGATION = [
 ...
 {
 'label': _('Categories'),
 'url_name': 'dashboard:catalogue-category-list',
 },
 ...
]

with:

OSCAR_DASHBOARD_NAVIGATION = [
 ...
 {
 'label': _('Pages / Categories'),
 'url_name': 'fp-dashboard:page-list',
 },
 ...
]

This usually means, you have to copy the entire OSCAR_DASHBOARD_NAVIGATION
dictionary from oscar.defaults to overwrite it with your own.

The last thing to configure is the URLs for the pages. Conceptually, a
FancyPage is equivalent to a
Category in Oscar, therefore, a FancyPage wraps the Category model
and adds FP-specific behaviour. Therefore, we have to modify Oscar’s URLs to
replace the category URLs with those for our FP pages. This sounds more
complicated than it actually is:

from fancypages.app import application as fancypages_app
from fancypages.contrib.oscar_fancypages import views

from oscar.app import Shop
from oscar.apps.catalogue.app import CatalogueApplication

class FancyCatalogueApplication(CatalogueApplication):
 category_view = views.FancyPageDetailView

class FancyShop(Shop):
 catalogue_app = FancyCatalogueApplication()

urlpatterns = patterns('',
 ...
 url(r'', include(FancyShop().urls)),
 ...
 url(r'^', include(fancypages_app.urls)),
)

All we are doing here is, replacing the CategoryView in Oscar with the
FancyPageDetailView from OFP, which will display the same details as
Oscar’s template.

Replacing the home page with a FP page works exactly the same way as described
in Standalone Setup.

Running Migrations

Before you are ready to go, make sure that you’ve applied the migrations for
FP and OFP (depending on your setup) by running:

$./manage.py migrate

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-fancypages 0.1.0 documentation

Basic Concepts

Before we get started with the installation and setup of fancypages (FP),
let’s take a look a the underlying concepts to understand the components it’s
assembled of. There are three major components in FP that you should know
about are containers, blocks and pages.

Containers and blocks are strongly related and form the most important part of
fancypages. As the name suggests, a container is an object that holds an
arbitrary number of other objects, in our case the blocks. These, in turn,
are the basic building blocks of FP.

Blocks

A content block in FP is a Django model that defines specific content that is
editable by the user. This can be a simple CharField, an ImageField or
any model field really. These fields are then editable on the front-end through
the editor panel.

[image: _images/text_image_block_example.jpg]
In addition to the actual content, each block also defines a template that
provides that specific layout for this content block. This works similar to
views in Django itself where template_name on a TemplateView can be
used to specify the path to a template file relative to the template directory.

A simple content block providing editable rich text might look similar to
this:

from fancypages.models.blocks import ContentBlock
from fancypages.library import register_content_block

@register_content_block
class TextBlock(ContentBlock):
 name = _("Text")
 code = 'text'
 template_name = "fancypages/blocks/textblock.html"

 text = models.TextField(_("Text"), default="Your text goes here.")

Containers

To be able to place content block on a page we need to be able to specify where
these blocks can be placed on any given page. That’s where containers come in.
They are basically placeholders in a template file that define where blocks can
be added. They are agnostic of their surrounding and simply expand to the
maximum area they can occupy within their enclosing HTML element.

Adding a container to a template will make sure that all block added to this
container are rendered whenever the template is rendered. Additionally, they
are an indication for FP to display the editor panel to users with the right
permissions.

Let’s look at how you can define containers in your own templates to get a
better idea of how they work. FP knows two different types of containers and
to illustrate the difference and how you can use them we’ll look at the
following two examples:

	The named container behaves similar to a variable. You specify a
name for you container and wherever you use that name in a template the
same container including all it’s blocks is rendered. A simple example
could look something like this:

{% load fp_container_tags %}
...
<div class="row">
 {% fp_container my-first-container %}
</div>
...

This defines a container named my-first-container. When you now go to
the page that uses this template, the FP editor panel will be displayed
(assuming you are logged in as admin user) and you can add blocks to the
container.
Note: You don’t have to create the container yourself. The first time the
template is rendered the container is created if it doesn’t already exist.

	The model-related container is similar in that it has to have a name.
The difference is that we attach this container to a specific model instance
by passing it into the template tag. Where does that make sense? Let’s look
at a simple blog app that contains a template for the detail page of each
blog post. If you use a regular named container the exact same container
with the exact same blocks will show up on all blog post pages.
But that might not be what you want. If you want to be able to enhance the
content of block posts individually you have to use a model-related
container and attach it to the individual blog post.
In a template it would look like this (assuming the blog post instance in
the context is called post):

{% load fp_container_tags %}
...
<h1>{{ post.title }}</h1>

{% fp_object_container blog-post-container post %}

<div class="content">{{ post.content|safe }}</div>

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-fancypages 0.1.0 documentation

Content Blocks

Form Block

Generating freely configurable form on the front-end is difficult to get right
and usually has drawbacks in terms of validation of the content that is passed
through. The form block in FP provides a more restrictive way of defining form
by only allowing pre-configurated forms to be selected. All available forms
are configurated as settings and can be selected when editing the form block.

Defining Selectable Forms

The FormBlock <fancypages.models.blocks.content.FormBlock> uses a setting
named FP_FORM_BLOCK_CHOICES to specify all available forms with their
respective action URLs and (optionally) a template to render the form. An
example would be:

FP_FORM_BLOCK_CHOICES = {
 'contact-us': {
 'name': "Contact Us Form",
 'form': 'contact_us.forms.ContactUsForm',
 'url': 'contact-us',
 'template_name': 'contact_us/contact_us_form.html',
 }
}

The key contact-us is the unique identifier used to store the form used
in a form block. This value will be stored on the block model. Each of the keys
has to provide at least name, form and url in its configuration.

	name
	
The name displayed in the form block selection.

	form
	
Dotted path to a form class subclassing

fancypages.form.BaseBlockForm.

	url
	
The URL used in th``action`` attribute of the form. This can

be a Django URL pattnern name that can be used in reverse

or a fully qualified URL including a valid scheme.

In addition to these mandatory options, a template_name can be specified
that will be used instead of the default form template
fancypages/templates/fancypages/blocks/formblock.html.

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-fancypages 0.1.0 documentation

Recipes

Create a Custom Template Block

Start off by creating a new app in your project, e.g. a blocks app. Conent
blocks in fancypages are basically Django models that require a few additional
attributes and definitions.

Let’s assume we want to create a simple widget that displays a custom template
without providing any additional data that can be edited. All we need to do is
define the following model:

from fancypages.models.blocks import ContentBlock
from fancypages.library import register_content_block

@register_content_block
class MyTemplateBlock(ContentBlock):
 name = _("My template")
 code = u'my-template'
 group = u'My Blocks'
 template_name = u'blocks/my_template_block.html'

 def __unicode__(self):
 return self.name

The first three attributes name, code and group are important and
have to be specified on every new content block.

	name
	Display name of the content block

	code
	Unique code for the block to be identified by

	group
	Blocks can be grouped by using the same group name here

Changing Rich Text Editor

Fancypages uses Trumbowyg [http://alex-d.github.io/Trumbowyg] as the rich text editor by default. It is an
open-source tool licensed under the MIT license and provides the basics
required for rich text editing in the fancypages editor panel.

Alternatively, other rich text editors can be used instead. Fancypages comes
with an alternative setup for Froala [http://editor.froala.com/]. Although Froala is a more
comprehensive editor, it is not the default because of its license. It is only
free to use for personal and non-profit project, commercial projects require
a license.

Switching to Froala

The Froala editor can be enabled in three simple steps but before we get
started, you have to download Froala [http://editor.froala.com/download] from their website and unpack it.

Step 1: Copy the files froala_editor.min.js and
froala_editor.min.css into your project’s static file directory. This would
usually be something like static/libs/froala/.

Step 2: Override the fancypages partials that define JavaScript and CSS
files required to the editor panel. Copy the following three files from
fancypages into your template directory:

templates/fancypages/editor/head.html
templates/fancypages/editor/partials/cdn_scripts.html
templates/fancypages/editor/partials/extrascripts.html

Remove the trumbowyg.css and trumbowyg.min.js files forom the
head.html and extrascripts.html respectively and replace them with
the corresponding CSS and JavaScript files for Froala. You’ll also need to
add Font Awesome [http://fortawesome.github.io/Font-Awesome/] to the cdn_scripts.html, e.g.:

<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.1.0/css/font-awesome.min.css" rel="stylesheet">

Step 3: Set the rich text editor to Froala when initialising the
Fancypages app in the editor panel by overwriting
templates/fancypages/editor/body.html and starting the application using:

$(document).ready(function(){
 FancypageApp.start({'editor': 'froala'});
});

The rich text editors in the editor panel should now use Froala instead of the
default Trumbowyg editor.

Using a custom editor

You can also use your favourite editor by adding all the JavaScript and CSS
requirements similar to the Froala example and providing a Backbone/Marionette
view class that provides the necessary initialisations. For an example, take a
look at the FroalaEditor and TrumbowygEditor views in the Marionette
views for Fancypages [https://github.com/tangentlabs/django-fancypages/blob/master/fancypages/static/fancypages/src/js/views.js]. To enable your editor set the editor option
for the Fancypages app to custom and pass you view class as the
editorView. An example might look like this:

$(document).ready(function(){
 FancypageApp.start({
 editor: 'custom',
 editorView: myownjavascript.Views.FavouriteEditor
 });
});

Customising Rich Text Editor

In addition to choose the editor you want to use for rich text editing, you can
also configure the way the editor behaves by passing editor-specific options
to the fancypages app when it is initialised in the
fancypages/editor/body.html template. Simply overwrite the template and
update the script section at the bottom with something like this:

.. code-block:: javascript

	$(document).ready(function(){

	
	FancypageApp.start({

	editor: ‘trumbowyg’,
editorOptions: {

fullscreenable: true
btns: [

‘viewHTML’,
‘|’, ‘formatting’,
‘|’, ‘link’,
‘|’, ‘insertImage’,
‘|’, ‘insertHorizontalRule’

]

},

});

});

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-fancypages 0.1.0 documentation

Contributing

Integration Tests

The test that are based on Django’s LiveServerTestCase are considered
integration test. We use splinter [http://splinter.cobrateam.info] that runs on top of Selenium [https://code.google.com/p/selenium/] for that.
All integration tests are based on the SplinterTestCase
<fancypages.test.testcases.SplinterTestCase> and carry the py.test marker
integration that is excluded from the default running of tests. To run
integration tests run:

py.test -m integration

There are a couple of settings that allow changes to the way selenium/splinter
is run. Setting SPLINTER_WEBDRIVER to a valid Selenium webdriver allows
for changing the default webdriver to whatever you want (assuming the required
driver is installed). Another helpful variable is SPLINTER_DEBUG which
prevents the Selenium browser from being closed after finishing a test run so
you can inspect the state of the site. Using both settings a test could be run
like this:

SPLINTER_DEBUG=true SPLINTER_WEBDRIVER=chrome py.test -m integration

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-fancypages 0.1.0 documentation

API Reference

	
fancypages.get_fancypages_paths(path, use_with_oscar=False)

	Get absolute paths for path relative to the project root

Models

	
class fancypages.abstract_models.AbstractPageGroup(*args, **kwargs)

	A page group provides a way to group fancy pages and retrieve only
pages within a specific group.

	Parameters:	
	uuid (ShortUUIDField) – Unique id

	name (CharField) – Name

	slug (SlugField) – Slug

	
class fancypages.abstract_models.AbstractPageNode(*args, **kwargs)

	Define the tree structure properties of the fancy page. This is a
separate abstract class to make sure that it can be easily replaced
by another tree handling library or none if needed.

	Parameters:	
	path (CharField) – Path

	depth (PositiveIntegerField) – Depth

	numchild (PositiveIntegerField) – Numchild

	name (CharField) – Name

	slug (SlugField) – Slug

	image (ImageField) – Image

	description (TextField) – Description

	
move(target, pos=None)

	Moves the current node and all its descendants to a new position
relative to another node.

See https://tabo.pe/projects/django-treebeard/docs/1.61/api.html

Mixins

	
class fancypages.mixins.TemplateNamesModelMixin

	Mixin that provides a generalised way of generating template names for a
a Django model. It uses relies on at least one of two class attributes:
template_name and default_template_names to generate a list of
templates to look for according to Django’s rules for template lookup.

The template_name attribute specifies a specific template to be used
when rendering this model. If this attribute is not None it takes
precedence over all other template names and therefore will appear at the
top of the templates. The default_template_names is a list of template
names that provides default behaviour and a fallback in case no template
name is given or it can’t be found by the template engine. Specifying both
a template name and a list of default templates will result in a list of
template names similar to this:

>>> from django.db import models
>>> from fancypages.mixins import TemplateNamesModelMixin
>>>
>>> class Container(TemplateNamesModelMixin, models.Model):
... template_name = 'container.html'
... default_template_names = ['default_container.html']
...
... class Meta: app_label = 'fakeapp'
>>>
>>>
>>> c = Container()
>>> c.get_template_names()
['container.html', 'default_container.html']

Each template name provided in template_name or
default_template_names is also run through standard Python string
formatting providing the model name as provide in
self._meta.module_name which allows parametrized template names.
Additional keyword arguments can be passed into get_template_names to
provide additional formatting keywords. Here’s an example:

>>> class Pony(TemplateNamesModelMixin, models.Model):
... template_name = 'container_{module_name}_{magic}.html'
...
... class Meta: app_label = 'fakeapp'
>>>
>>> c = Pony()
>>> c.get_template_names(magic='rainbow')
['container_pony_rainbow.html']

In addition to the above, language-specific template names are added
if the model has a language_code attribute specified. This allows
different templates for different languages to customise the appearance
of the rendered data based on the language. This makes sense for langugages
such as Persian where the reading direction is from left to right.
Language-specific templates have the corresponding language code added as a
suffix to the filename just before the file extension. In cases such as
English where the language is split up into different regions such as
British (en-gb) and American English (en-us) a generic template for ‘en’ is
added as well. For a British language code this will be the list of
templates:

>>> class Pony(TemplateNamesModelMixin, models.Model):
... template_name = '{module_name}.html'
... language_code = models.CharField(max_length=6)
...
... class Meta: app_label = 'fakeapp'
>>>
>>> c = Pony(language_code='en-gb')
>>> c.get_template_names()
['pony_en-gb.html', 'pony_en.html', 'pony.html']

	
get_template_names(**kwargs)

	Get a list of template names in order of precedence as used by the
Django template engine. Keyword argument passed in are used during
string formatting of the template names. This fails silently if a
argument is specified in a template name but is not present in
kwargs.

	Rtype list:	A list of template names (unicode).

Blocks

	
class fancypages.models.blocks.content.CarouselBlock(*args, **kwargs)

	CarouselBlock(id, uuid, container_id, display_order, contentblock_ptr_id)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	link_url_1 (CharField) – Link url 1

	link_url_2 (CharField) – Link url 2

	link_url_3 (CharField) – Link url 3

	link_url_4 (CharField) – Link url 4

	link_url_5 (CharField) – Link url 5

	link_url_6 (CharField) – Link url 6

	link_url_7 (CharField) – Link url 7

	link_url_8 (CharField) – Link url 8

	link_url_9 (CharField) – Link url 9

	link_url_10 (CharField) – Link url 10

	image_1_id (AssetKey) – Image 1

	image_2_id (AssetKey) – Image 2

	image_3_id (AssetKey) – Image 3

	image_4_id (AssetKey) – Image 4

	image_5_id (AssetKey) – Image 5

	image_6_id (AssetKey) – Image 6

	image_7_id (AssetKey) – Image 7

	image_8_id (AssetKey) – Image 8

	image_9_id (AssetKey) – Image 9

	image_10_id (AssetKey) – Image 10

	
class fancypages.models.blocks.content.ContentBlock(*args, **kwargs)

	ContentBlock(id, uuid, container_id, display_order)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	
class fancypages.models.blocks.content.FormBlock(*args, **kwargs)

	FormBlock(id, uuid, container_id, display_order, contentblock_ptr_id, form_selection)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	form_selection (CharField) – Form selection

	
class fancypages.models.blocks.content.ImageAndTextBlock(*args, **kwargs)

	ImageAndTextBlock(id, uuid, container_id, display_order, contentblock_ptr_id, title, alt_text, link, image_asset_id, text)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	title (CharField) – Image title

	alt_text (CharField) – Alternative text

	link (CharField) – Link url

	image_asset_id (AssetKey) – Image asset

	text (TextField) – Text

	
class fancypages.models.blocks.content.ImageBlock(*args, **kwargs)

	ImageBlock(id, uuid, container_id, display_order, contentblock_ptr_id, title, alt_text, link, image_asset_id)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	title (CharField) – Image title

	alt_text (CharField) – Alternative text

	link (CharField) – Link url

	image_asset_id (AssetKey) – Image asset

	
class fancypages.models.blocks.content.PageNavigationBlock(*args, **kwargs)

	PageNavigationBlock(id, uuid, container_id, display_order, contentblock_ptr_id, depth, origin)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	depth (PositiveIntegerField) – Navigation depth

	origin (CharField) – Navigation origin

	
class fancypages.models.blocks.content.TextBlock(*args, **kwargs)

	TextBlock(id, uuid, container_id, display_order, contentblock_ptr_id, text)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	text (TextField) – Text

	
class fancypages.models.blocks.content.TitleTextBlock(*args, **kwargs)

	TitleTextBlock(id, uuid, container_id, display_order, contentblock_ptr_id, title, text)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	title (CharField) – Title

	text (TextField) – Text

	
class fancypages.models.blocks.layouts.FourColumnLayoutBlock(*args, **kwargs)

	FourColumnLayoutBlock(id, uuid, container_id, display_order, contentblock_ptr_id)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	
class fancypages.models.blocks.layouts.HorizontalSeparatorBlock(*args, **kwargs)

	HorizontalSeparatorBlock(id, uuid, container_id, display_order, contentblock_ptr_id)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	
class fancypages.models.blocks.layouts.TabBlock(*args, **kwargs)

	TabBlock(id, uuid, container_id, display_order, contentblock_ptr_id)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	
class fancypages.models.blocks.layouts.ThreeColumnLayoutBlock(*args, **kwargs)

	ThreeColumnLayoutBlock(id, uuid, container_id, display_order, contentblock_ptr_id)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	
class fancypages.models.blocks.layouts.TwoColumnLayoutBlock(*args, **kwargs)

	TwoColumnLayoutBlock(id, uuid, container_id, display_order, contentblock_ptr_id, left_width)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	left_width (PositiveIntegerField) – Left width

	
left_span

	Returns the bootstrap span class for the left container.

	
right_span

	Returns the bootstrap span class for the left container.

	
class fancypages.models.blocks.social.TwitterBlock(*args, **kwargs)

	TwitterBlock(id, uuid, container_id, display_order, contentblock_ptr_id, username, max_tweets)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	username (CharField) – Twitter username

	max_tweets (PositiveIntegerField) – Maximum tweets

	
class fancypages.models.blocks.social.VideoBlock(*args, **kwargs)

	VideoBlock(id, uuid, container_id, display_order, contentblock_ptr_id, source, video_code)

	Parameters:	
	id (AutoField) – Id

	uuid (ShortUUIDField) – Unique id

	container_id (ForeignKey) – Container

	display_order (PositiveIntegerField) – Display order

	contentblock_ptr_id (OneToOneField) – Contentblock ptr

	source (CharField) – Video type

	video_code (CharField) – Video code

Template Tags

	
fancypages.templatetags.fp_container_tags.fp_block_container(parser, token)

	Template tag for convenience to use within templates for e.g. layout blocks
where the container is assigned to the widget rather then the object in the
context. The same could be achieved using:

{% fp_object_container some-name fp_block %}

	
fancypages.templatetags.fp_container_tags.fp_object_container(parser, token)

	Template tag specifying a fancypages container to be rendered in the
template at the given location. It takes up to three arguments. The first
argument is the name of the container which is mandatory. The object that
this tag is attached to is the second argument and is optional. If it is
not specified, the ‘object’ variable in the current context is used. The
third argument is an optional language code that specify the language that
should be used for the container. Without a language code specified, the
current language is retrieved using Django’s internationalisation helpers.

Valid template tags are:

{% fp_object_container container-name %}

and with a specific object:

{% fp_object_container container-name my_object %}

and with a language code:

{% fp_object_container container-name my_object "de-de" %}
{% fp_object_container container-name object_name=my_object language="de-de" %}

	
fancypages.templatetags.fp_container_tags.parse_arguments(parser, token, params=None)

	Parse positional arguments and keyword arguments into a dictionary for the
known arguments given in params in the given order. If the number of
arguments in token is greater than the known number of arguments, a
TemplateSyntaxError is raised. The same is true if no tokens are
provided.

	Parameters:	
	parser – Parser as passed into the template tag.

	token – Token object as passed into the template tag.

	params – List of expected arguments in the order in which they appear
when not using keyword arguments. Default to [‘container_name’,
‘object_name’, ‘language’].

	Rtype dict:	containing the parsed content for the arguments above.

Editor Middleware

	
fancypages.middleware.replace_insensitive(string, target, replacement)

	Similar to string.replace() but is case insensitive
Code borrowed from:
http://forums.devshed.com/python-programming-11/case-insensitive-string-replace-490921.html

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-fancypages 0.1.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 fancypages	

 	
 	
 fancypages.abstract_models	

 	
 	
 fancypages.middleware	

 	
 	
 fancypages.mixins	

 	
 	
 fancypages.models.blocks.content	

 	
 	
 fancypages.models.blocks.layouts	

 	
 	
 fancypages.models.blocks.social	

 	
 	
 fancypages.templatetags.fp_container_tags	

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-fancypages 0.1.0 documentation

Index

 A
 | C
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | T
 | V

A

 	

 	AbstractPageGroup (class in fancypages.abstract_models)

 	

 	AbstractPageNode (class in fancypages.abstract_models)

C

 	

 	CarouselBlock (class in fancypages.models.blocks.content)

 	

 	ContentBlock (class in fancypages.models.blocks.content)

F

 	

 	fancypages (module)

 	fancypages.abstract_models (module)

 	fancypages.middleware (module)

 	fancypages.mixins (module)

 	fancypages.models.blocks.content (module)

 	fancypages.models.blocks.layouts (module)

 	

 	fancypages.models.blocks.social (module)

 	fancypages.templatetags.fp_container_tags (module)

 	FormBlock (class in fancypages.models.blocks.content)

 	FourColumnLayoutBlock (class in fancypages.models.blocks.layouts)

 	fp_block_container() (in module fancypages.templatetags.fp_container_tags)

 	fp_object_container() (in module fancypages.templatetags.fp_container_tags)

G

 	

 	get_fancypages_paths() (in module fancypages)

 	

 	get_template_names() (fancypages.mixins.TemplateNamesModelMixin method)

H

 	

 	HorizontalSeparatorBlock (class in fancypages.models.blocks.layouts)

I

 	

 	ImageAndTextBlock (class in fancypages.models.blocks.content)

 	

 	ImageBlock (class in fancypages.models.blocks.content)

L

 	

 	left_span (fancypages.models.blocks.layouts.TwoColumnLayoutBlock attribute)

M

 	

 	move() (fancypages.abstract_models.AbstractPageNode method)

P

 	

 	PageNavigationBlock (class in fancypages.models.blocks.content)

 	

 	parse_arguments() (in module fancypages.templatetags.fp_container_tags)

R

 	

 	replace_insensitive() (in module fancypages.middleware)

 	

 	right_span (fancypages.models.blocks.layouts.TwoColumnLayoutBlock attribute)

T

 	

 	TabBlock (class in fancypages.models.blocks.layouts)

 	TemplateNamesModelMixin (class in fancypages.mixins)

 	TextBlock (class in fancypages.models.blocks.content)

 	ThreeColumnLayoutBlock (class in fancypages.models.blocks.layouts)

 	

 	TitleTextBlock (class in fancypages.models.blocks.content)

 	TwitterBlock (class in fancypages.models.blocks.social)

 	TwoColumnLayoutBlock (class in fancypages.models.blocks.layouts)

V

 	

 	VideoBlock (class in fancypages.models.blocks.social)

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 _images/text_image_block_example.jpg
@ | Block #12 | Container Right-Container-12 L |

7 Bacon ipsum dolor sit amet salami leberkas spare ribs, ham hock
turducken beef ribs bresaola strip steak meatloaf. Ground round
fatback ball tip t-bone. Andouille pork loin shankle, beef short lin
venison jerky pork belly ball tip spare ribs tenderloin ground round
shoulder. Ball tip venison beef corned beef rump, cow boudin.
Drumstick hamburger andouille pancetia venison, beef pork bresaola
sausage. Drumstick t-bone short loin ball tip corned beef, venison
andouille pastrami. Cow andouille pancetta beef ground round pork
drumstick, pork belly hamburger chicken bresaola turkey tongue
jerky. Ground round tenderloin pig turkey. Jow ball tp bresaola, pork
_ belly ham corned beef rump short loin shankle ham hock. Beef beef
ribs meatball tongue tenderloin capicola meatloaf. Turkey sausage shoulder bresaola tenderloin, swine kielbasa filet
mignon pork chop balltip beef ribs jerky tail meatball pork. Tongue tail drumstick short ribs kielbasa. Pork chop jow!
swine turducken chuck prosciutto. Ham beef jowl doner, bresaola filet mignon salami strip steak jerky shankle ribeye
comed beef kielbasa leberkas. Sausage hamburger cow drumstick filet mignon andouille tail pastrami. Fatback
hamburger venison turducken beef ribs chicken kielbasa kevin. Tail turducken rump flank tri-tip. Salami jerky
sausage, t-bone pig short loin shank frankiurter hamburger tail beef ribs boudin corned beef meatball ground round.
Brisket cow hamburger meatball ground round. Tongue hamburger pancetta ham hock, cow andouille short ribs.
pork loin capicola pig ground round. Sausage tongue shoulder filet mignon spare ribs turkey t-bone flank chuck jerky
pork chop hamburger. Frankfurter brisket ground round, pork belly swine short ribs meatball sausage cow beef ribs
jerky pork tenderloin. Ball tip beef ribs pork chop meatloaf hamburger salami prosciutto. Pancetta ham hock shank
doner. Meatball beef salami, jow! shankle ham hock pig kielbasa kevin drumstick comed beef sausage tenderloin
turkey. Drumsti

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-fancypages 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

