

Welcome to django-email-pal’s documentation!

Contents:

	Introduction
	“What kinds of emails are we sending out?”

	“Wait, we have to write our email’s HTML like it’s 1995?”

	“There are people who can’t read HTML email?”

	Quick start guide
	Prerequisites

	Installation

	Required settings

	Your first email

	Registering the email with the gallery

	Sending the email

	Adding smoke tests

	Reference
	Sendable emails

	Really simple template

	Developing django-email-pal
	Running the example app

	Running tests

	Writing documentation

Indices and tables

	Index

	Module Index

	Search Page

Introduction

django-email-pal attempts to solve a number of issues we’ve
had when iterating on projects at 18F [https://18f.gsa.gov/].

“What kinds of emails are we sending out?”

Throughout the life of a project, designers and content authors
often have a difficult time figuring out what kinds of emails
their project sends out, because they’re not easily discoverable
or well-documented.

django-email-pal attempts to solve this by providing a built-in
“example email gallery” that showcases example versions of every
kind of email that can be sent out, in both HTML and plaintext
formats, with accompanying documentation.

This gallery also makes it very easy to iterate on the content and
design of an email: instead of constantly sending oneself
an email through the app, a designer can just make changes to
a template and see the immediate effects in their browser, iterating
on it just as they’d do with any other Django view.

“Wait, we have to write our email’s HTML like it’s 1995?”

Simply getting started with HTML email can be daunting due to
the lack of standards and wide variety of email clients one must
support. It should be easy to send HTML emails that look nice,
without having to figure out a bunch of arcane tricks to ensure
they don’t break on popular email clients.

Solutions to this problem are varied. django-email-pal gives you
the freedom to choose your own HTML email framework if you need to,
but it also comes with a nice solution out-of-the-box: Lee Munroe’s
Really Simple Responsive HTML Email Template [https://github.com/leemunroe/responsive-html-email-template].

“There are people who can’t read HTML email?”

Email is often designed in HTML form first, with the plaintext
alternative left as an afterthought.

Some projects just strip the HTML tags to generate the plaintext.
However, this doesn’t always result in an intelligible email, as
there may have been buttons or hyperlinked phrases in the original HTML
version that no longer make much sense.

Other projects have completely separate HTML and plaintext versions
that are specified independently of one another. Yet this is
cumbersome too, as both versions are mostly identical and can
easily get out of sync.

django-email-pal attempts to solve this by providing a simple two-pass
template rendering strategy that allows both the HTML and plaintext
versions of an email to be generated from the same template. This
allows most of the content to be reused, but also allows for minor
modifications based on the email’s content type.

Quick start guide

Prerequisites

	You’ll need Django 1.11.1 or later.

	Your project needs to use either Django’s default
DjangoTemplates [https://docs.djangoproject.com/en/1.11/topics/templates/#django.template.backends.django.DjangoTemplates]
or Jinja2 [https://docs.djangoproject.com/en/1.11/topics/templates/#django.template.backends.jinja2.Jinja2]
template engine.

	Your project needs to use Python 3.5 or later.

Installation

This package isn’t on PyPI yet, so you’ll need to install it directly
from GitHub for now:

pip install git+git://github.com/18F/django-email-pal

Required settings

Add emailpal.apps.EmailPalConfig to your INSTALLED_APPS setting, e.g.:

INSTALLED_APPS = (
 # ...
 'emailpal.apps.EmailPalConfig',
 # ...
)

Then add the following to your project’s urls.py:

from django.conf.urls import include, url

urlpatterns = [
 # ...
 url(r'^examples/', include('emailpal.urls')),
 # ...
]

This sets up the email example gallery at /examples/ on your app. You
can change it to something else if you want, or you can hide it behind
some logic if you only want it to be exposed during development.

Your first email

Let’s get started by adding an email example to your project. We’re
going to assume that your project has an app called example in it.

Create a file at example\emails.py and put the following in it:

from emailpal import SendableEmail

class MySendableEmail(SendableEmail):
 """
 This is a simple example email.
 """

 template_name = 'example/my_template.html'
 subject = 'Check this out, {full_name}!'
 example_ctx = {'full_name': 'Jane Doe'}

Then create a file at example\templates\example\my_template.html and
put this in it:

{% extends "emailpal/really_simple/base.html" %}

{% block content %}
<p>Hello {{ full_name }},</p>

<p>This is a simple email which uses Lee Munroe's Really Simple
Responsive HTML Email Template to be easily viewable across a
wide range of mail clients.</p>

{% include "emailpal/really_simple/cta.html" with action="learn more about the template" url="https://github.com/leemunroe/responsive-html-email-template" %}

<p>Hopefully it will be useful.</p>
{% endblock %}

Important

If you’re using Jinja2, you’ll want to put the template at
example\jinja2\example\my_template.html.

Also, replace the line containing the {% include %} directive
with the following:

{% with action="learn more about the template",
 url="https://github.com/leemunroe/responsive-html-email-template" %}
{% include "emailpal/really_simple/cta.html" %}
{% endwith %}

As you can probably guess, the email expects the context variable
full_name to contain the full name of the recipient. The example
version of the email will use “Jane Doe”.

The email will also contain a call-to-action (CTA) that directs the
user to a website.

Registering the email with the gallery

Now we just need to let the email example gallery know about the
existence of your new template. Do this by adding the following to
your project’s settings.py:

SENDABLE_EMAILS = [
 'example.emails.MySendableEmail',
]

Now you’re set! Start your app and visit /examples/; you should
see the email gallery with a single entry, and be able to view your
example email as HTML and plaintext.

Sending the email

You can create a Django EmailMessage [https://docs.djangoproject.com/en/1.11/topics/email/#django.core.mail.EmailMessage] with your
email’s create_message() method like so:

msg = MySendableEmail().create_message(
 {'full_name': 'boop jones'},
 from_email='foo@example.org',
 to=['bar@example.org'],
 headers={'Message-ID': 'blah'},
)

Then you can send the message with msg.send().

Adding smoke tests

Since your email has an example context, it’s straightforward
to add smoke tests for it: just render the email with the
example context and make sure nothing explodes. In fact,
django-email-pal comes with tooling that makes this
particularly easy.

Just create a new test module and add the following
to it:

from unittest import TestCase
from emailpal import EmailSmokeTestsMixin

class EmailTests(TestCase, EmailSmokeTestsMixin):
 pass

Now when you run manage.py test (or whatever your
choice of test runners is), all the emails you’ve listed
in settings.SENDABLE_EMAILS will be rendered with their
example context to ensure that they don’t throw any exceptions.

Reference

Contents

	Sendable emails

	Really simple template
	Base template

	Call-to-action (CTA)

Sendable emails

	
class emailpal.SendableEmail

	This abstract base class represents a template-based email that can
be sent in HTML and plaintext formats.

When generating the email, the template is actually rendered
twice: once as HTML, and again as plain text. As explained in
“There are people who can’t read HTML email?”, this
allows both formats to share most of their content, yet also
deviate where necessary.

So, aside from the context your code provides, the following
context variables are provided when rendering your template:

	is_html_email is True if (and only if) the
template is being used to render the email’s HTML representation.

	is_plaintext_email is True if (and only if) the
template is being used to render the email’s plaintext
representation.

Note that when rendering the email as plaintext, HTML tags
are automatically stripped from the generated content.

	
create_message(ctx: T, from_email=None, to=None, bcc=None, connection=None, attachments=None, headers=None, alternatives=None, cc=None, reply_to=None) → django.core.mail.message.EmailMessage

	Creates and returns a django.core.mail.EmailMessage [https://docs.djangoproject.com/en/1.11/topics/email/#django.core.mail.EmailMessage]
which contains the plaintext and HTML versions of the email,
using the context specified by ctx.

Aside from ctx, arguments to this method are the
same as those for EmailMessage [https://docs.djangoproject.com/en/1.11/topics/email/#django.core.mail.EmailMessage].

	
example_ctx

	An example context with which the email can be rendered.

	
subject

	The subject line of the email. This is processed by
str.format() [https://docs.python.org/3.5/library/stdtypes.html#str.format] and passed the same context that is
passed to templates when rendering the email, so you can
include context variables via brace notation, e.g.
"Hello {full_name}!".

	
template_name

	The path to the template used to render the email, e.g.
"my_app/my_email.html".

Really simple template

This package comes with an optional template based on Lee Munroe’s
Really Simple Responsive HTML Email Template [https://github.com/leemunroe/responsive-html-email-template] that makes it
easy to get started with sending HTML emails that look nice.

For an example of this template in use, see Your first email.

Base template

Emails can use the base template by extending
emailpal/really_simple/base.html.

Variables used

This template has no special variables aside from the ones you
include in your context and the ones defined by
emailpal.SendableEmail.

Blocks defined

These can be overridden by templates that inherit from the base. Unless
otherwise stated, all blocks default to empty content.

	content

	The content for the email.

	preheader

	The contents of a with a class of preheader, which some email clients will show as a preview.

	title

	The HTML title of the email (not the subject line).

	footer

	The footer of the email.

Call-to-action (CTA)

CTAs can be included via the emailpal/really_simple/cta.html template.

Here’s an example of using the CTA with Django templates:

{% include "emailpal/really_simple/cta.html" with action="view the site" url="https://example.org" %}

And here’s the equivalent in Jinja2:

{% with action="view the site", url="https://example.org" %}
 {% include "emailpal/really_simple/cta.html" %}
{% endwith %}

In the HTML version of the email, the above snippet will appear as a large
button with the text “View The Site” on it; clicking the button will
take the user to example.org.

In the plaintext version of the email, the snippet will appear like this:

To view the site, visit:
https://example.org

Variables required

	action

	The human-readable name of the action the reader is being asked to take, e.g. "view the website".

	url

	The URL the user should visit to take the action.

Developing django-email-pal

Important

This section is about developing django-email-pal
itself, not using it in your Django project. For
details on the latter, see the Quick start guide.

First, clone the git repository:

git clone https://github.com/18F/django-email-pal

Then create a virtualenv for the project and install
development dependencies:

virtualenv -p python3 venv
source venv/bin/activate
pip install -r requirements-dev.txt

Then install django-email-pal in development mode:

python setup.py develop

Running the example app

An example Django project provides basic integration with
django-email-pal. It can be used to manually ensure that everything
works as expected.

To use it, run the following from the root of the repository:

cd example
python manage.py migrate
python manage.py runserver

At this point you should be able to visit the locally-hosted project.

Running tests

You can run all the tests with code coverage:

pytest

You can also ensure that there aren’t any linting errors:

flake8

To run all tests, linters, and other automated QA against
all supported runtimes and dependencies, run:

tox

Writing documentation

If you want to work on documentation, you can run the development
documentation server with:

python setup.py devdocs

Index

 C
 | E
 | S
 | T

C

 	
 	create_message() (emailpal.SendableEmail method)

E

 	
 	example_ctx (emailpal.SendableEmail attribute)

S

 	
 	SendableEmail (class in emailpal)

 	
 	subject (emailpal.SendableEmail attribute)

T

 	
 	template_name (emailpal.SendableEmail attribute)

 _static/comment-bright.png

nav.xhtml

 Table of Contents

 		Welcome to django-email-pal's documentation!

 		Introduction

 		“What kinds of emails are we sending out?”

 		“Wait, we have to write our email's HTML like it's 1995?”

 		“There are people who can't read HTML email?”

 		Quick start guide

 		Prerequisites

 		Installation

 		Required settings

 		Your first email

 		Registering the email with the gallery

 		Sending the email

 		Adding smoke tests

 		Reference

 		Sendable emails

 		Really simple template

 		Base template

 		Call-to-action (CTA)

 		Developing django-email-pal

 		Running the example app

 		Running tests

 		Writing documentation

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

