
django-easyfilters Documentation
Release 0.6

Luke Plant

June 12, 2016

Contents

1 Installation 3

2 Overview 5
2.1 Model . 5
2.2 View . 5
2.3 URLs . 5
2.4 Template . 5
2.5 Create a Filterset . 6
2.6 Change the template . 6
2.7 FilterSet title attribute . 7
2.8 Example . 7

3 FilterSet 9

4 Filters 11
4.1 Custom Filter classes . 12

5 Development 15
5.1 Tests . 15
5.2 Editing test fixtures . 15
5.3 Demo . 16

6 Indices and tables 17

i

ii

django-easyfilters Documentation, Release 0.6

django-easyfilters provides a UI for filtering a Django QuerySet by clicking on links. It is similar in some ways
to list_filter and date_hierarchy in Django’s admin, but for use outside the admin. Importantly, it also
includes result counts for the choices, and it has a bigger emphasis on intelligent display and things ‘just working’.

Contents:

Contents 1

django-easyfilters Documentation, Release 0.6

2 Contents

CHAPTER 1

Installation

Install using pip or easy_install. Nothing further is required.

If you’d like to install django-easyfilters so that you can also easily edit the source code, you can use:

pip install -e
hg+ssh://hg@bitbucket.org/spookylukey/django-easyfilters#egg=django-easyfilters

3

django-easyfilters Documentation, Release 0.6

4 Chapter 1. Installation

CHAPTER 2

Overview

2.1 Model

Suppose your models.py looks something like this:

class Book(models.Model):
name = models.CharField(max_length=100)
binding = models.CharField(max_length=2, choices=BINDING_CHOICES)
authors = models.ManyToManyField(Author)
genre = models.ForeignKey(Genre)
price = models.DecimalField(max_digits=6, decimal_places=2)
date_published = models.DateField()

(with BINDING_CHOICES, Author and Genre omitted for brevity).

2.2 View

You might want to present a list of Book objects, allowing the user to filter on the various fields. Your views.py would
be something like this:

from django.shortcuts import render

from myapp.models import Book

def booklist(request):
books = Book.objects.all()
return render(request, "booklist.html", {'books': books})

2.3 URLs

And you’d need to add a pattern to your URL conf:

url(r'^booklist/$', views.booklist)

2.4 Template

And the template:

5

django-easyfilters Documentation, Release 0.6

{% for book in books %}

{{ book }}
{% endfor %}

2.5 Create a Filterset

So far, you have simple set-up that lists all the Book objects.

To add the filters, in views.py add a FilterSet subclass and change the view code as follows:

from django.shortcuts import render
from django_easyfilters import FilterSet

from myapp.models import Book

class BookFilterSet(FilterSet):
fields = [

'binding',
'authors',
'genre',
'price',
]

def booklist(request):
books = Book.objects.all()
booksfilter = BookFilterSet(books, request.GET)
return render(request, "booklist.html", {'books': booksfilter.qs,

'booksfilter': booksfilter})

Notice that the books item put in the context has been replaced by bookfilter.qs, so that the QuerySet passed
to the template has filtering applied to it, as defined by BookFilterSet and the information from the query string
(request.GET).

The booksfilter item has been added to the context in order for the filters to be displayed on the template.

2.6 Change the template

Just add {{ booksfilter }} to the template:

{{ booksfilter }}

{% for book in books %}

{{ book }}
{% endfor %}

2.6.1 Pagination

You can also use pagination, for example using django-pagination:

6 Chapter 2. Overview

https://pypi.python.org/pypi/django-pagination/

django-easyfilters Documentation, Release 0.6

{% load pagination_tags %}

{% autopaginate books 20 %}

{{ booksfilter }}

{% paginate %}

{% for book in books %}

{{ book }}
{% endfor %}

2.7 FilterSet title attribute

The FilterSet also provides a ‘title’ attribute that can be used to provide a simple summary of what filters are
currently being applied. It is made up of a comma-separated list of chosen fields. For example, if the user has selected
genre ‘Classics’ and binding ‘Hardback’ in the example above, you would get the following:

>>> books = Book.objects.all()
>>> booksfilter = BookFilterSet(books, request.GET)
>>> booksfilter.title
u"Hardback, Classics"

The fields used for the title attribute, and the order they are used, can be customised by adding a title_fields
attribute to your FilterSet:

class BookFilterSet(FilterSet):
fields = [

'binding',
'authors',
'genre',
'price',
]

title_fields = ['genre', 'binding']

Customisation of the filters can be done in various ways - see the FilterSet documentation for how to do this, and the
Filters documentation for options that can be specified.

2.8 Example

A full example can be found in django_easyfilters/tests which is included in the source distribution. See
the books view in views.py:

https://bitbucket.org/spookylukey/django-easyfilters/src/default/django_easyfilters/tests/views.py

The book_search view gives an example of how to integrate with other searching and filtering. Remember to check
the templates:

https://bitbucket.org/spookylukey/django-easyfilters/src/default/django_easyfilters/tests/templates/

See the development documentation if you want to run this example code as a demo.

2.7. FilterSet title attribute 7

https://bitbucket.org/spookylukey/django-easyfilters/src/default/django_easyfilters/tests/views.py
https://bitbucket.org/spookylukey/django-easyfilters/src/default/django_easyfilters/tests/templates/

django-easyfilters Documentation, Release 0.6

8 Chapter 2. Overview

CHAPTER 3

FilterSet

class django_easyfilters.filterset.FilterSet
This is meant to be used by subclassing. The only required attribute is fields, which must be a list of fields
to produce filters for. For example, given the following model definition:

class Book(models.Model):
name = models.CharField(max_length=100)
authors = models.ManyToManyField(Author)
genre = models.ForeignKey(Genre)
date_published = models.DateField()

...you could create a BookFilterSet like this:

class BookFilterSet(FilterSet):
fields = [

'genre',
'authors',
'date_published',

]

Each item in the fields attribute can also be a two-tuple containing first the field name and second a dictionary of
options to be passed to the filters as keyword arguments, or a three-tuple containing the field name, a dictionary
of options, and a Filter class. In this way you can override default options and the default filter type used e.g.:

from django_easyfilters.filters import ValuesFilter

class BookFilterSet(FilterSet):
fields = [

('genre', dict(order_by_count=True)),
('date_published', {}, ValuesFilter),

]

This also allows custom Filter classes to be used.

To use the BookFilterSet, please see the overview instructions. The public API of FilterSet for use consists
of:

__init__(queryset, params)
queryset must be a QuerySet, which can already be filtered.

params must be a QueryDict, normally request.GET.

qs
This attribute contains the input QuerySet filtered according to the data in params.

9

django-easyfilters Documentation, Release 0.6

title
This attribute contains a title summarising the filters that have been selected.

In addition, there are methods/attributes that can be overridden to customise the FilterSet:

get_template(field_name)
This method is called for each field in the filterset, with the field name being passed in.

It is expected to return a Django Template instance. This template will then be rendered with the following
Context data:

•filterlabel - the label for the filter (derived from verbose_name of the field)

•choices - a list of choices for the filter. Each one has the following attributes:

–link_type: either remove, add or display, depending on the type of the choice.

–label: the text to be displayed for this choice.

–url for those that are remove or add, a URL for selecting that filter.

–count: for those that are add links, the number of items in the QuerySet that match that choice.

template_file
The path to a file containing a Django template, used to render all the filters. It is used by the de-
fault get_template method, see above. By default, “django-easyfilters/default.html” is used. If the
template attribute (below) is provided, template_file will be ignored.

template
A string containing a Django template, used to render all the filters. It is used by the default
get_template method, see above.

title_fields
By default, the fields used to create the title attribute are all fields specified in the fields attribute, in
that order. Specify title_fields to override this.

10 Chapter 3. FilterSet

CHAPTER 4

Filters

When you specify the fields attribute on a FilterSet subclass, various different Filter classes will be chosen
depending on the type of field. They are listed below, with the keyword argument options that they take.

class django_easyfilters.filters.Filter
This is the base class for all filters, and provides some options:

•query_param:

The parameter in the query string that will be used for this field. This can be useful for shortening the
query strings that are generated.

•order_by_count:

Default: False

If True, this will cause the choices to be sorted so that the choices with the largest ‘count’ appear first.

class django_easyfilters.filters.ForeignKeyFilter
This is used for ForeignKey fields

class django_easyfilters.filters.ManyToManyFilter
This is used for ManyToMany fields

class django_easyfilters.filters.ChoicesFilter
This is used for fields that have ‘choices’ defined (normally passed in to the field constructor). The choices
presented will be in the order specified in ‘choices’.

class django_easyfilters.filters.DateTimeFilter
This is the most complex of the filters, as it allows drill-down from year to month to day. It takes the following
options:

•max_links

Default: 12

The maximum number of links to display. If the number of choices at any level does not fit into this value,
ranges will be used to shrink the number of choices.

•max_depth

Default: None

If ’year’ or ’month’ is specified, the drill-down will be limited to that level.

class django_easyfilters.filters.NumericRangeFilter
This filter produces ranges of values for a numeric field. It is the default filter for decimal fields, but can also be
used with integer fields. It attempts to make the ranges ‘look nice’ using rounded numbers in an automatic way.
It uses ‘drill-down’ like DateTimeFilter.

11

django-easyfilters Documentation, Release 0.6

It takes the following options:

•max_links

Default: 5

The maximum number of links to display. If there are fewer distinct values than this in the data, single
values will be shown, and ranges otherwise.

•ranges

Default: None

If this is specified, it will override the (initial) automatic range. The value should be a list of ranges, where
each item in the list is either:

–a two-tuple containing the beginning and end range values

–a three-tuple containing the beginning and end range values and a custom label.

•drilldown

Default: True

If False, only one level of choices will be displayed.

The ‘end points’ of ranges are handled in the following way: the lower bound is exclusive, and the upper bound
is inclusive, apart from for the first range, where both are inclusive. This is designed for a fairly intuitive
behaviour.

class django_easyfilters.filters.ValuesFilter
This is the fallback that is used when nothing else matches.

4.1 Custom Filter classes

As described in the FilterSet documentation, you can provide your own Filter class for a field. If you do so, it is
expected to have the following API:

• __init__(field, model, params, **kwargs)

Constructor. field is the string identifying the field, model is the model class, params is a QueryDict (i.e.
normally request.GET). kwargs contains any custom options specified for the filter.

• apply_filter(qs)

This method takes the QuerySet qs and returns a QuerySet that has filters applied to it, where the filter param-
eters are defined in the params that were passed to the constructor. The method must be able to extract the
relevant parameter, if it exists, and filter the QuerySet accordingly.

• get_choices(qs)

This method is passed a fully filtered QuerySet, and must return a list of choices to present to the user. The
choices should be instances of django_easyfilters.filters.FilterChoice, which has the at-
tributes:

– label: User presentable text string for the choice

– link_type: choice of FILTER_ADD, FILTER_REMOVE, FILTER_DISPLAY

– count: the number of items for this choice (only for FILTER_ADD)

– params: parameters used to create a link for this option, as a QueryDict

12 Chapter 4. Filters

django-easyfilters Documentation, Release 0.6

If you want to use a provided Filter and subclass from it, at the moment only the following additional methods are
considered public:

• render_choice_object(choice)

This method is responsible for generating the label for a choice (whether it is an ‘add’ or ‘remove’ choice). It is
passed a choice object that is derived either from the query string (for ‘remove’ choices) or from the database
(for ‘add’ choices).

Different subclasses of Filter pass different types of object in. Currently the following can be relied on:

– ForeignKeyFilter and ManyToManyFilter pass in the related database model instances as
‘choice’.

– ValuesFilter and ChoicesFilter pass in the underlying raw database value as ‘choice’.

All other methods of Filter and subclasses are considered private implementation details and may change without
warning.

4.1. Custom Filter classes 13

django-easyfilters Documentation, Release 0.6

14 Chapter 4. Filters

CHAPTER 5

Development

5.1 Tests

To run the test suite, do:

./manage.py test django_easyfilters

This requires that the directory containing the django_easyfilters directory is on your Python path (virtualenv
recommended), and Django is installed.

Alternatively, to run it on all supported platforms, install tox and do:

tox

This will create all the necessary virtualenvs for you, and is the preferred way of working, but will take longer initially.
Once you have run it once, you can activate a specific virtualenv by doing, for example:

. .tox/py33-django15/bin/activate

5.2 Editing test fixtures

To edit the test fixtures, you can edit the fixtures in django_easyfilters/tests/fixtures/, or you can do it via an admin
interface:

First create an empty db:

rm tests.db
./manage.py syncdb

Then load with current test fixture:

./manage.py loaddata django_easyfilters_tests

Then edit in admin at http://localhost:8000/admin/

./manage.py runserver

Or from a Python shell.

Then dump data:

./manage.py dumpdata tests --format=json --indent=2 > django_easyfilters/tests/fixtures/django_easyfilters_tests.json

15

http://localhost:8000/admin/

django-easyfilters Documentation, Release 0.6

5.3 Demo

Once the test fixtures have been loaded into the DB, and the devserver is running, as above, you can view a test page
at http://localhost:8000/books/

16 Chapter 5. Development

http://localhost:8000/books/

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

django-easyfilters Documentation, Release 0.6

18 Chapter 6. Indices and tables

Index

Symbols
__init__() (django_easyfilters.filterset.FilterSet method),

9

C
ChoicesFilter (class in django_easyfilters.filters), 11

D
DateTimeFilter (class in django_easyfilters.filters), 11

F
Filter (class in django_easyfilters.filters), 11
FilterSet (class in django_easyfilters.filterset), 9
ForeignKeyFilter (class in django_easyfilters.filters), 11

G
get_template() (django_easyfilters.filterset.FilterSet

method), 10

M
ManyToManyFilter (class in django_easyfilters.filters),

11

N
NumericRangeFilter (class in django_easyfilters.filters),

11

Q
qs (django_easyfilters.filterset.FilterSet attribute), 9

T
template (django_easyfilters.filterset.FilterSet attribute),

10
template_file (django_easyfilters.filterset.FilterSet at-

tribute), 10
title (django_easyfilters.filterset.FilterSet attribute), 9
title_fields (django_easyfilters.filterset.FilterSet at-

tribute), 10

V
ValuesFilter (class in django_easyfilters.filters), 12

19

	Installation
	Overview
	Model
	View
	URLs
	Template
	Create a Filterset
	Change the template
	FilterSet title attribute
	Example

	FilterSet
	Filters
	Custom Filter classes

	Development
	Tests
	Editing test fixtures
	Demo

	Indices and tables

