

django-dynamic-scraper - مستندات

Django Dynamic Scraper (DDS) یک برنامه برای ساخت جنگو در بالای چارچوب Scrapy است. در حالی که بسیاری از ویژگی های Scrapy را حفظ می کند، به شما امکان می دهد که از طریق رابط کاربری Django به صورت پویا عنکبوت را ایجاد و مدیریت کنید.

Note

Lot’s of new features added recently :

	Django 1.10/1.11/Scrapy 1.4 support

	Python 3.4+ support

	Javascript rendering

	Scraping JSON content

	More flexible ID and detail page URL(s) concept

	Several checkers for a single scraper

	Custom HTTP Header/Body, Cookies, GET/POST requests

	Scrapy Meta attributes

	Scraper/Checker Monitoring

See Release Notes for further details!

Features

	Create and manage scrapers for your Django models in the Django admin interface

	Many features of Scrapy [http://www.scrapy.org] like regular expressions, processors, pipelines (see Scrapy Docs [http://doc.scrapy.org])

	Image/screenshot scraping

	Dynamic scheduling depending on crawling success via Django Celery

	Checkers to check if items once scraped are still existing

User Manual

	Introduction

	Installation
	Requirements

	Release Compatibility Table

	Installation with Pip

	Manual Installation

	Setting up Scrapy

	Getting started
	Creating your Django models

	Defining the object to be scraped

	Defining your scrapers

	Connecting Scrapy with your Django objects

	Running/Testing your scraper

	Advanced topics
	Defining/Running item checkers

	Scheduling scrapers/checkers

	Advanced Request Options

	Pagination

	Scraping JSON content

	Scraping images/screenshots

	Where to go from here

	Basic services
	Logging / Log Markers

	Monitoring

	Reference
	Settings

	Django Model Reference

	API Reference

	Processors

	Development
	How to contribute

	Running the test suite

	Release Notes

	Roadmap

Indices and tables

	Index

	Module Index

	Search Page

Introduction

With Django Dynamic Scraper (DDS) you can define your Scrapy [http://www.scrapy.org] scrapers dynamically via the Django admin interface
and save your scraped items in the database you defined for your Django project.
Since it simplifies things DDS is not usable for all kinds of scrapers, but it is well suited for the relatively
common case of regularly scraping a website with a list of updated items (e.g. news, events, etc.) and then dig
into the detail page to scrape some more infos for each item.

Here are some examples for some use cases of DDS:
Build a scraper for …

	Local music events for different event locations in your city

	New organic recipes for asian food

	The latest articles from blogs covering fashion and style in Berlin

	…Up to your imagination! :-)

Django Dynamic Scraper tries to keep its data structure in the database as separated as possible from the
models in your app, so it comes with its own Django model classes for defining scrapers, runtime information
related to your scraper runs and classes for defining the attributes of the models you want to scrape.
So apart from a few foreign key relations your Django models stay relatively independent and you don’t have
to adjust your model code every time DDS’s model structure changes.

The DDS repository on GitHub contains an example project in the example_project folder, showing how to
create a scraper for open news content on the web (starting with Wikinews [http://en.wikinews.org/wiki/Main_Page]
from Wikipedia). The source code from this example is used in the Getting started guide.

Installation

Requirements

The basic requirements for Django Dynamic Scraper are:

	Python 2.7+ or Python 3.4+

	Django [https://www.djangoproject.com/] 1.8/1.9/1.10/1.11 (newer versions untested)

	Scrapy [http://www.scrapy.org] 1.4

	scrapy-djangoitem [https://github.com/scrapy-plugins/scrapy-djangoitem] 1.1

	Python JSONPath RW 1.4+ [https://github.com/kennknowles/python-jsonpath-rw]

	Python-Future (preparing the code base to run with Python 2/3) 0.15+ [http://python-future.org/]

If you want to use the scheduling mechanism of DDS you also have to install django-celery:

	django-celery [http://ask.github.com/django-celery/] 3.2.1

For scraping images you will need the Pillow Library:

	Pillow Libray (PIL fork) 2.5+ [https://python-pillow.github.io/]

Since v.0.4.1 DDS has basic Splash support for rendering/processing Javascript before
scraping the page. For this to work you have to install and configure `Splash and the connecting (see: Setting up Splash (Optional))
scrapy-splash library:

	scrapy-splash [https://github.com/scrapy-plugins/scrapy-splash] 0.7

Release Compatibility Table

Have a look at the following table for an overview which Django, Scrapy,
Python and django-celery versions are supported by which DDS version.
Due to dev resource constraints backwards compatibility for older Django or
Scrapy releases for new DDS releases normally can not be granted.

	DDS Version

	Django

	Scrapy

	Python

	django-celery/Celery/Kombu

	0.13

	1.8/1.9/1.10/1.11

	1.4

	2.7+/3.4+

	3.2.1/3.1.25/3.0.37

	0.11/0.12

	1.8/1.9/1.10/1.11

	1.1/1.2(?)/1.3/1.4

	2.7+/3.4+

	3.2.1/3.1.25/3.0.37

	0.4-0.9

	1.7/1.8

	0.22/0.24

	2.7

	3.1.16 (newer untested)

	0.3

	1.4-1.6

	0.16/0.18

	2.7

	3.0+ (3.1+ untested)

	0.2

	1.4

	0.14

	2.7

	(3.0 untested)

Note

Please get in touch (GitHub [https://github.com/holgerd77/django-dynamic-scraper]) if you have any additions to this table. A library version is counted as supported if the
DDS testsuite is running through (see: Running the test suite).

Installation with Pip

Django Dynamic Scraper can be found on the PyPI Package Index (see package description) [http://pypi.python.org/pypi/django-dynamic-scraper].
For the installation with Pip, first install the requirements above. Then install DDS with:

pip install django-dynamic-scraper

Manual Installation

For manually installing Django Dynamic Scraper download the DDS source code from GitHub or clone the project with
git into a folder of your choice:

git clone https://github.com/holgerd77/django-dynamic-scraper.git .

Then you have to met the requirements above. You can do this by
manually installing the libraries you need with pip or easy_install, which may be a better choice
if you e.g. don’t want to risk your Django installation to be touched during the installation process.
However if you are sure that there
is no danger ahead or if you are running DDS in a new virtualenv environment, you can install all the
requirements above together with:

pip install -r requirements.txt

Then either add the dynamic_scraper folder to your
PYTHONPATH or your project manually or install DDS with:

python setup.py install

Note, that the requirements are NOT included in the setup.py script since this caused some problems
when testing the installation and the requirements installation process with pip turned out to be
more stable.

Now, to use DDS in your Django project add 'dynamic_scraper' to your INSTALLED_APPS in your
project settings.

Setting up Scrapy

Scrapy Configuration

For getting Scrapy [http://www.scrapy.org] to work the recommended way to start a new Scrapy project normally is to create a directory
and template file structure with the scrapy startproject myscrapyproject command on the shell first.
However, there is (initially) not so much code to be written left and the directory structure
created by the startproject command cannot really be used when connecting Scrapy to the Django Dynamic Scraper
library. So the easiest way to start a new scrapy project is to just manually add the scrapy.cfg
project configuration file as well as the Scrapy settings.py file and adjust these files to your needs.
It is recommended to just create the Scrapy project in the same Django app you used to create the models you
want to scrape and then place the modules needed for scrapy in a sub package called scraper or something
similar. After finishing this chapter you should end up with a directory structure similar to the following
(again illustrated using the open news example):

example_project/
 scrapy.cfg
 open_news/
 models.py # Your models.py file
 (tasks.py)
 scraper/
 settings.py
 spiders.py
 (checkers.py)
 pipelines.py

Your scrapy.cfg file should look similar to the following, just having adjusted the reference to the
settings file and the project name:

[settings]
default = open_news.scraper.settings

#Scrapy till 0.16
[deploy]
#url = http://localhost:6800/
project = open_news

#Scrapy with separate scrapyd (0.18+)
[deploy:scrapyd1]
url = http://localhost:6800/
project = open_news

And this is your settings.py file:

import os

PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__))
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "example_project.settings") #Changed in DDS v.0.3

BOT_NAME = 'open_news'

SPIDER_MODULES = ['dynamic_scraper.spiders', 'open_news.scraper',]
USER_AGENT = '%s/%s' % (BOT_NAME, '1.0')

#Scrapy 0.20+
ITEM_PIPELINES = {
 'dynamic_scraper.pipelines.ValidationPipeline': 400,
 'open_news.scraper.pipelines.DjangoWriterPipeline': 800,
}

#Scrapy up to 0.18
ITEM_PIPELINES = [
 'dynamic_scraper.pipelines.ValidationPipeline',
 'open_news.scraper.pipelines.DjangoWriterPipeline',
]

The SPIDER_MODULES setting is referencing the basic spiders of DDS and our scraper package where
Scrapy will find the (yet to be written) spider module. For the ITEM_PIPELINES setting we have to
add (at least) two pipelines. The first one is the mandatory pipeline from DDS, doing stuff like checking
for the mandatory attributes we have defined in our scraper in the DB or preventing double entries already
existing in the DB (identified by the url attribute of your scraped items) to be saved a second time.

Setting up Splash (Optional)

More and more webpages only show their full information load after various Ajax calls and/or Javascript
function processing. For being able to scrape those websites DDS supports Splash for basic JS rendering/processing.

For this to work you have to install Splash (the Javascript rendering service) installed - probably via Docker-
(see installation instructions [https://splash.readthedocs.org/en/latest/install.html]).

Tested versions to work with DDS:

	Splash 1.8

	Splash 2.3

Then scrapy-splash with:

pip install scrapy-splash

Afterwards follow the configuration instructions on the scrapy-splash GitHub page [https://github.com/scrapy-plugins/scrapy-splash#configuration].

For customization of Splash args DSCRAPER_SPLASH_ARGS setting can be used (see: Settings).

Splash can later be used via activating it for certain scrapers in the corresponding Django Admin form.

Note

Resources needed for completely rendering a website on your scraping machine are vastly larger then for just
requesting/working on the plain HTML text without further processing, so make use of Splash capability
on when needed!

Getting started

Creating your Django models

Create your model classes

When you want to build a Django app using Django Dynamic Scraper to fill up your models with data you have
to provide two model classes. The first class stores your scraped data, in our news example this is a
class called Article storing articles scraped from different news websites.
The second class is a reference class for this first model class, defining where
the scraped items belong to. Often this class will represent a website, but it could also represent a
category, a topic or something similar. In our news example we call the class NewsWebsite. Below is the
code for this two model classes:

from django.db import models
from dynamic_scraper.models import Scraper, SchedulerRuntime
from scrapy_djangoitem import DjangoItem

class NewsWebsite(models.Model):
 name = models.CharField(max_length=200)
 url = models.URLField()
 scraper = models.ForeignKey(Scraper, blank=True, null=True, on_delete=models.SET_NULL)
 scraper_runtime = models.ForeignKey(SchedulerRuntime, blank=True, null=True, on_delete=models.SET_NULL)

 def __unicode__(self):
 return self.name

class Article(models.Model):
 title = models.CharField(max_length=200)
 news_website = models.ForeignKey(NewsWebsite)
 description = models.TextField(blank=True)
 url = models.URLField()
 checker_runtime = models.ForeignKey(SchedulerRuntime, blank=True, null=True, on_delete=models.SET_NULL)

 def __unicode__(self):
 return self.title

class ArticleItem(DjangoItem):
 django_model = Article

As you can see, there are some foreign key fields defined in the models referencing DDS models.
The NewsWebsite class has a reference to the Scraper DDS model, which contains the main
scraper with information about how to scrape the attributes of the article objects. The scraper_runtime
field is a reference to the SchedulerRuntime class from the DDS models. An object of this class stores
scheduling information, in this case information about when to run a news website scraper for the next time.
The NewsWebsite class also has to provide the url to be used during the scraping process. You can either
use (if existing) the representative url field of the model class, which is pointing to the nicely-layouted
overview news page also visited by the user. In this case we are choosing this way with taking the url
attribute of the model class as the scrape url. However, it often makes sense to provide a dedicated scrape_url
(you can name the attribute freely) field for cases, when the representative url differs from the scrape url
(e.g. if list content is loaded via ajax, or if you want to use another format of the content - e.g. the rss
feed - for scraping).

The Article class to store scraped news articles also has a reference to the SchedulerRuntime DDS
model class called checker_runtime. In this case the scheduling object holds information about the next
existance check (using the url field from Article) to evaluate if the news article
still exists or if it can be deleted (see Defining/Running item checkers).

Last but not least: Django Dynamic Scraper uses the DjangoItem [https://scrapy.readthedocs.org/en/latest/topics/djangoitem.html] class from Scrapy for
being able to directly store the scraped data into the Django DB. You can store the item class
(here: ArticleItem) telling Scrapy which model class to use for storing the data directly underneath the
associated model class.

Note

For having a loose coupling between your runtime objects and your domain model objects you should declare
the foreign keys to the DDS objects with the blank=True, null=True, on_delete=models.SET_NULL
field options. This will prevent a cascading delete of your reference object as well as the associated
scraped objects when a DDS object is deleted accidentally.

Deletion of objects

If you delete model objects via the Django admin interface, the runtime objects are not
deleted as well. If you want this to happen, you can use Django’s
pre_delete signals [https://docs.djangoproject.com/en/dev/topics/db/models/#overriding-model-methods]
in your models.py to delete e.g. the checker_runtime when deleting an article:

@receiver(pre_delete)
def pre_delete_handler(sender, instance, using, **kwargs):

 if isinstance(instance, Article):
 if instance.checker_runtime:
 instance.checker_runtime.delete()

pre_delete.connect(pre_delete_handler)

Defining the object to be scraped

If you have done everything right up till now and even synced your DB :-) your Django admin should look
similar to the following screenshot below, at least if you follow the example project:

[image: _images/screenshot_django-admin_overview.png]
Before being able to create scrapers in Django Dynamic Scraper you have to define which parts of the Django
model class you defined above should be filled by your scraper. This is done via creating a new
ScrapedObjClass in your Django admin interface and then adding several ScrapedObjAttr
datasets to it, which is done inline in the form for the ScrapedObjClass. All attributes for the
object class which are marked as to be saved to the database have to be named like the attributes in your
model class to be scraped. In our open news example
we want the title, the description, and the url of an Article to be scraped, so we add these attributes with
the corresponding names to the scraped obj class.

The reason why we are redefining these attributes here, is that we can later define x_path elements for each
of theses attributes dynamically in the scrapers we want to create. When Django Dynamic Scraper
is scraping items, the general workflow of the scraping process is as follows:

	The DDS scraper is scraping base elements from the overview page of items beeing scraped, with each base
element encapsulating an item summary, e.g. in our open news example an article summary containing the
title of the article, a screenshot and a short description. The encapsuling html tag often is a div,
but could also be a td tag or something else.

	If provided the DDS scraper is then scraping the url from this item summary block leading to a detail page of the
item providing more information to scrape

	All the real item attributes (like a title, a description, a date or an image) are then scraped either from
within the item summary block on the overview page or from a detail page of the item. This can be defined later
when creating the scraper itself.

To define which of the scraped obj attributes are just simple standard attributes to be scraped, which one
is the base attribute (this is a bit of an artificial construct) and which one eventually is a url to be followed
later, we have to choose an attribute type for each attribute defined. There is a choice between the following
types (taken from dynamic_scraper.models.ScrapedObjAttr):

ATTR_TYPE_CHOICES = (
 ('S', 'STANDARD'),
 ('T', 'STANDARD (UPDATE)'),
 ('B', 'BASE'),
 ('U', 'DETAIL_PAGE_URL'),
 ('I', 'IMAGE'),
)

STANDARD, BASE and DETAIL_PAGE_URL should be clear by now, STANDARD (UPDATE) behaves like STANDARD,
but these attributes are updated with the new values if the item is already in the DB. IMAGE represents attributes which will
hold images or screenshots. So for our open news example we define a base attribute called ‘base’ with
type BASE, two standard elements ‘title’ and ‘description’ with type STANDARD
and a url field called ‘url’ with type DETAIL_PAGE_URL. Your definition form for your scraped obj class
should look similar to the screenshot below:

[image: _images/screenshot_django-admin_add_scraped_obj_class.png]
To prevent double entries in the DB you also have to set one or more object attributes of type STANDARD or
DETAIL_PAGE_URL as ID Fields. If you provide a DETAIL_PAGE_URL for your object scraping, it is often a
good idea to use this also as an ID Field, since the different URLs for different objects should be unique by
definition in most cases. Using a single DETAIL_PAGE_URL ID field is also prerequisite if you want to use the
checker functionality (see: Defining/Running item checkers) of DDS for dynamically detecting and deleting items not existing
any more.

Also note that these ID Fields just provide unique identification of an object for within the scraping process. In your
model class defined in the chapter above you can use other ID fields or simply use a classic numerical auto-incremented
ID provided by your database.

Note

If you define an attribute as STANDARD (UPDATE) attribute and your scraper reads the value for this attribute from the detail page
of the item, your scraping process requires much more page requests, because the scraper has to look at all the detail pages
even for items already in the DB to compare the values. If you don’t use the update functionality, use the simple STANDARD
attribute instead!

Note

The order attribute for the different object attributes is just for convenience and determines the
order of the attributes when used for defining XPaths in your scrapers. Use 10-based or 100-based steps
for easier resorting (e.g. ‘100’, ‘200’, ‘300’, …).

Defining your scrapers

General structure of a scraper

Scrapers for Django Dynamic Scraper are also defined in the Django admin interface. You first have to give the
scraper a name and select the associated ScrapedObjClass. In our open news example we call the scraper
‘Wikinews Scraper’ and select the ScrapedObjClass named ‘Article’ defined above.

The main part of defining a scraper in DDS is to create several scraper elements, each connected to a
ScrapedObjAttr from the selected ScrapedObjClass. Each scraper element define how to extract
the data for the specific ScrapedObjAttr by following the main concepts of Scrapy [http://www.scrapy.org] for scraping
data from websites. In the fields named ‘x_path’ and ‘reg_exp’ an XPath and (optionally) a regular expression
is defined to extract the data from the page, following Scrapy’s concept of
XPathSelectors [http://readthedocs.org/docs/scrapy/en/latest/topics/selectors.html]. The ‘request_page_type’
select box tells the scraper if the data for the object attibute for the scraper element should be extracted
from the overview page or a detail page of the specific item. For every chosen page type here you have to define a
corresponding request page type in the admin form above. The fields ‘processors’ and ‘processors_ctxt’ are
used to define output processors for your scraped data like they are defined in Scrapy’s
Item Loader section [http://readthedocs.org/docs/scrapy/en/latest/topics/loaders.html].
You can use these processors e.g. to add a string to your scraped data or to bring a scraped date in a
common format. More on this later. Finally, the ‘mandatory’ check box is indicating whether the data
scraped by the scraper element is a necessary field. If you define a scraper element as necessary and no
data could be scraped for this element the item will be dropped. You always have to keep attributes
mandatory if the corresponding attributes of your domain model class are mandatory fields, otherwise the
scraped item can’t be saved in the DB.

For the moment, keep the status to MANUAL to run the spider via the command line during this tutorial.
Later you will change it to ACTIVE.

Creating the scraper of our open news example

Let’s use the information above in the context of our Wikinews [http://en.wikinews.org/wiki/Main_Page] example. Below you see a screenshot of an
html code extract from the Wikinews [http://en.wikinews.org/wiki/Main_Page] overview page like it is displayed by the developer tools in Google’s
Chrome browser:

[image: _images/screenshot_wikinews_overview_page_source.png]
The next screenshot is from a news article detail page:

[image: _images/screenshot_wikinews_detail_page_source.png]
We will use these code snippets in our examples.

Note

If you don’t want to manually create the necessary DB objects for the example project, you can also run
python manage.py loaddata open_news/open_news_dds_[DDS_VERSION].json from within the example_project
directory in your favorite shell to have all the objects necessary for the example created automatically.
Use the file closest to the current DDS version. If you run into problems start installing the fitting
DDS version for the fixture, then update the DDS version and apply the latest Django migrations.

Note

The WikiNews site changes its code from time to time. I will try to update the example code and text in the
docs, but I won’t keep pace with the screenshots so they can differ slightly compared to the real world example.

1. First we have to define a base
scraper element to get the enclosing DOM elements for news item
summaries. On the Wikinews [http://en.wikinews.org/wiki/Main_Page] overview page all news summaries are enclosed by <td> tags with a class
called ‘l_box’, so //td[@class="l_box"] should do the trick. We leave the rest of the field for the
scraper element on default.

2. It is not necessary but just for the purpose of this example let’s scrape the title of a news article
from the article detail page. On an article detail page the headline of the article is enclosed by a
<h1> tag with an id named ‘firstHeading’. So //h1[@id="firstHeading"]/text() should give us the headline.
Since we want to scrape from the detail page, we have to activate the ‘from_detail_page’ check box.

3. All the standard elements we want to scrape from the overview page are defined relative to the
base element. Therefore keep in mind to leave the trailing double slashes of XPath definitions.
We scrape the short description of a news item from within a tag with a class named ‘l_summary’.
So the XPath is p/span[@class="l_summary"]/text().

4. And finally the url can be scraped via the XPath span[@class="l_title"]/a/@href. Since we only scrape
the path of our url with this XPath and not the domain, we have to use a processor for the first time to complete
the url. For this purpose there is a predefined processor called ‘pre_url’. You can find more predefined
processors in the dynamic_scraper.utils.processors module - see Processors for processor reference - ‘pre_url’ is simply doing what we want,
namely adding a base url string to the scraped string. To use a processor, just write the function name
in the processor field. Processors can be given some extra information via the processors_ctxt field.
In our case we need the spefic base url our scraped string should be appended to. Processor context
information is provided in a dictionary like form: 'processor_name': 'context', in our case:
'pre_url': 'http://en.wikinews.org'. Together with our scraped string this will create
the complete url.

[image: _images/screenshot_django-admin_scraper_1.png]
[image: _images/screenshot_django-admin_scraper_2.png]
This completes the xpath definitions for our scraper. The form you have filled out should look similar to the screenshot above
(which is broken down to two rows due to space issues).

Note

You can also scrape attributes of your object from outside the base element by using the .. notation
in your XPath expressions to get to the parent nodes!

Note

Starting with DDS v.0.8.11 you can build your detail page URLs with
placeholders for main page attributes in the form of {ATTRIBUTE_NAME}, see Attribute Placeholders for further reference.

Adding corresponding request page types

For all page types you used for your ScraperElemes you have to define corresponding RequestPageType objects
in the Scraper admin form. There has to be exactly one main page and 0-25 detail page type objects.

[image: _images/screenshot_django-admin_request_page_type_example.png]
Within the RequestPageType object you can define request settings like the content type (HTML, XML,…),
the request method (GET or POST) and others for the specific page type. With this it is e.g. possible to
scrape HTML content from all the main pages and JSON content from the followed detail pages. For more information
on this have a look at the Advanced Request Options section.

Create the domain entity reference object (NewsWebsite) for our open news example

Now - finally - we are just one step away of having all objects created in our Django admin.
The last dataset we have to add is the reference object of our domain, meaning a NewsWebsite
object for the Wikinews Website.

To do this open the NewsWebsite form in the Django admin, give the object a meaningful name (‘Wikinews’),
assign the scraper and create an empty SchedulerRuntime object with SCRAPER as your
runtime_type.

[image: _images/screenshot_django-admin_add_domain_ref_object.png]

Connecting Scrapy with your Django objects

For Scrapy to work with your Django objects we finally set up two static classes, the one being a spider class,
inheriting from DjangoSpider, the other being a finalising pipeline for saving our scraped objects.

Adding the spider class

The main work left to be done in our spider class - which is inheriting from the DjangoSpider class
of Django Dynamic Scraper - is to instantiate the spider by connecting the domain model classes to it
in the __init__ function:

from dynamic_scraper.spiders.django_spider import DjangoSpider
from open_news.models import NewsWebsite, Article, ArticleItem

class ArticleSpider(DjangoSpider):

 name = 'article_spider'

 def __init__(self, *args, **kwargs):
 self._set_ref_object(NewsWebsite, **kwargs)
 self.scraper = self.ref_object.scraper
 self.scrape_url = self.ref_object.url
 self.scheduler_runtime = self.ref_object.scraper_runtime
 self.scraped_obj_class = Article
 self.scraped_obj_item_class = ArticleItem
 super(ArticleSpider, self).__init__(self, *args, **kwargs)

Adding the pipeline class

Since you maybe want to add some extra attributes to your scraped items, DDS is not saving the scraped items
for you but you have to do it manually in your own item pipeline:

import logging
from django.db.utils import IntegrityError
from scrapy.exceptions import DropItem
from dynamic_scraper.models import SchedulerRuntime

class DjangoWriterPipeline(object):

 def process_item(self, item, spider):
 if spider.conf['DO_ACTION']: #Necessary since DDS v.0.9+
 try:
 item['news_website'] = spider.ref_object

 checker_rt = SchedulerRuntime(runtime_type='C')
 checker_rt.save()
 item['checker_runtime'] = checker_rt

 item.save()
 spider.action_successful = True
 dds_id_str = str(item._dds_item_page) + '-' + str(item._dds_item_id)
 spider.struct_log("{cs}Item {id} saved to Django DB.{ce}".format(
 id=dds_id_str,
 cs=spider.bcolors['OK'],
 ce=spider.bcolors['ENDC']))

 except IntegrityError as e:
 spider.log(str(e), logging.ERROR)
 spider.log(str(item._errors), logging.ERROR)
 raise DropItem("Missing attribute.")
 else:
 if not item.is_valid():
 spider.log(str(item._errors), logging.ERROR)
 raise DropItem("Missing attribute.")

 return item

The things you always have to do here is adding the reference object to the scraped item class and - if you
are using checker functionality - create the runtime object for the checker. You also have to set the
action_successful attribute of the spider, which is used internally by DDS when the spider is closed.

Running/Testing your scraper

You can run/test spiders created with Django Dynamic Scraper from the command line similar to how you would run your
normal Scrapy spiders, but with some additional arguments given. The syntax of the DDS spider run command is
as following:

scrapy crawl [--output=FILE --output-format=FORMAT] SPIDERNAME -a id=REF_OBJECT_ID
 [-a do_action=(yes|no) -a run_type=(TASK|SHELL)
 -a max_items_read={Int} -a max_items_save={Int}
 -a max_pages_read={Int}
 -a start_page=PAGE -a end_page=PAGE
 -a output_num_mp_response_bodies={Int} -a output_num_dp_response_bodies={Int}]

	With -a id=REF_OBJECT_ID you provide the ID of the reference object items should be scraped for,
in our example case that would be the Wikinews NewsWebsite object, probably with ID 1 if you haven’t
added other objects before. This argument is mandatory.

	By default, items scraped from the command line are not saved in the DB. If you want this to happen,
you have to provide -a do_action=yes.

	With -a run_type=(TASK|SHELL) you can simulate task based scraper runs invoked from the
command line. This can be useful for testing, just leave this argument for now.

	With -a max_items_read={Int} and -a max_items_save={Int} you can override the scraper settings for these
params.

	With -a max_pages_read={Int} you can limit the number of pages read when using pagination

	With -a start_page=PAGE and/or -a end_page=PAGE it is possible to set a start and/or end page

	With -a output_num_mp_response_bodies={Int} and -a output_num_dp_response_bodies={Int} you can log
the complete response body content of the {Int} first main/detail page responses to the screen for debugging
(beginnings/endings are marked with a unique string in the form RP_MP_{num}_START for using full-text
search for orientation)

	If you don’t want your output saved to the Django DB but to a custom file you can use Scrapy`s build-in
output options --output=FILE and --output-format=FORMAT to scrape items into a file. Use this without
setting the -a do_action=yes parameter!

So, to invoke our Wikinews scraper, we have the following command:

scrapy crawl article_spider -a id=1 -a do_action=yes

If you have done everything correctly (which would be a bit unlikely for the first run after so many single steps,
but just in theory… :-)), you should get some output similar to the following, of course with other
headlines:

[image: _images/screenshot_scrapy_run_command_line.png]
In your Django admin interface you should now see the scraped articles listed on the article overview page:

[image: _images/screenshot_django-admin_articles_after_scraping.png]
Phew.

Your first scraper with Django Dynamic Scraper is working. Not so bad! If you do a second run and there
haven’t been any new bugs added to the DDS source code in the meantime, no extra article objects should be added
to the DB. If you try again later when some news articles changed on the Wikinews overview page, the new
articles should be added to the DB.

Advanced topics

Defining/Running item checkers

Django Dynamic Scraper comes with a built-in mechanism to check, if items once scraped are still existing
or if they could be deleted from the database. The entity providing this mechanism in DDS is called a
checker. A checker is like a scraper also using the scraping logic from Scrapy. But instead of
building together a new scraped item, it just checks the detail page referenced by a DETAIL_PAGE_URL
of a scraped item. Depending on the checker_type and the result of the detail page check, the scraped
item is kept or will be deleted from the DB.

Creating a checker class

To get a checker up and running you first have to create a checker class for each of your scraped object domain
models. In our open news example, this would be a class called ArticleChecker in a module called checkers
in our scraper directory:

from dynamic_scraper.spiders.django_checker import DjangoChecker
from open_news.models import Article

class ArticleChecker(DjangoChecker):

 name = 'article_checker'

 def __init__(self, *args, **kwargs):
 self._set_ref_object(Article, **kwargs)
 self.scraper = self.ref_object.news_website.scraper
 #self.scrape_url = self.ref_object.url (Not used any more in DDS v.0.8.3+)
 self.scheduler_runtime = self.ref_object.checker_runtime
 super(ArticleChecker, self).__init__(self, *args, **kwargs)

The checker class inherits from the DjangoChecker class from DDS and mainly gives the checker the
information what to check and what parameters to use for checking. Be careful that the reference object
is now the scraped object itself, since the checker is scraping from the item page url of this object.
Furthermore the checker needs its configuration data from the scraper of the reference object. The scheduler
runtime is used to schedule the next check. So if you want to use checkers for your scraped object, you have
to provide a foreign key to a SchedulerRuntime object in your model class. The scheduler runtime object
also has to be saved manually in your pipeline class (see: Adding the pipeline class).

Checker Configuration

You can create one or more checkers per scraper in the Django admin. A checker is connected to a
DETAIL_PAGE_URL attribute and has a certain type, defining the checker behaviour. If you define
more than one checker for a scraper an item is deleted when one of the checkers succeed.

There are momentarily the following checker types to choose from:

	404

	Item is deleted after check has returned 404 HTTP status code 2x in a row

	404_OR_X_PATH

	Same as 404 + check for an x_path value in the result

[image: _images/screenshot_django-admin_checker_params.png]
For selecting a checker type and providing the parameters for an x_path checker
you have to look for an example item page url from the website
to be scraped which references an item not existing any more. If the urls to your scraped items are build
using an item ID you can e.g. try to lower this ID or increase it to a very large number. Be creative!
In our Wikinews example it is a bit different, since the news article url there is build using the title of the
article. So for the checker we take a random article url to a not existing article:
“http://en.wikinews.org/wiki/Random_article_text”.

If your url found is responding with a 404 when invoked, you can simply choose 404 as your checker type.
For a 404_OR_X_PATH checker you have to provide an XPath
for your chosen url which will extract a string from that url uniquely
indicating, that the content originally expected is not there any more. For our Wikinews example and the url
we choose above there is a text and a url provided suggesting to create the currently not existing wiki page,
so we can use the XPath //a[@href="http://en.wikinews.org/wiki/This_wiki_article_doesnt_exist"]/text()
and the result string “create this page” to uniquely identifying a scraped item not existing any more.
It is also possible to leave out the result string. Then the checker already succeeds when the
given xpath is finding elements on the page.

Note

Be sure to add your new checkers module to the SPIDERS_MODULES list in scrapy’s settings.py.

Note

Attention! Make sure that the XPath/result string combination you choose is NOT succeeding on normal
item pages, otherwise the checker will delete all your items!

Note

To make sure your items aren’t deleted accidentally on a 404 response, 404 checks are only deleted on
the second try while XPath checks are deleted at once. So to save crawling resources always try to realize
your checking with XPath checks, otherwise the crawler need double the amount of checks!

Running your checkers

You can test your DDS checkers the same way you would run your scrapers:

scrapy crawl CHECKERNAME -a id=REF_OBJECT_ID
 [-a do_action=(yes|no) -a run_type=(TASK|SHELL)
 -a output_response_body=(yes|no)]

As a reference object ID you now have to provide the ID of a scraped item to be checked. With do_action=yes
an item is really deleted, otherwise the checker is only tested without actually manipulating the DB.

Here is an example of a checker run actually keeping the still-existing item:

[image: _images/screenshot_command_line_checker_run.png]
If you want to test a check on an item scraped in the open news example project, change the url of the item in
the DB to the checker reference url, look for the item ID and then run:

scrapy crawl article_checker -a id=ITEM_ID -a do_action=yes

If everything works well, your item should have been deleted.

Run checker tests

Django Dynamic Scraper comes with a build-in scraper called checker_test which can be used to test your checkers
against the defined reference url. You can run this checker on the command line with the following command:

scrapy crawl checker_test -a id=SCRAPER_ID
 -a output_response_body=(yes|no)]

This scraper is useful both to look, if you have chosen a valid checker_x_path_ref_url and corresponding checker_x_path
and checker_x_path_result values as well as to see over time if your reference urls stay valid.

[image: _images/screenshot_command_line_checker_test_run.png]
For running all checker tests at once there exists a simple Django management command called run_checker_tests,
which executes the checker_test scraper for all of your defined scrapers and outputs Scrapy log messages
on WARNING level and above:

python manage.py run_checker_tests [--only-active --report-only-errors --send-admin-mail]

The option only-active will limit execution to active scrapers, --report-only-errors will more
generously pass the test on some not so severe cases (e.g. a checker ref url returning 404 for a
404_OR_X_PATH checker type).
Executing the command with the --send-admin-mail flag will send an email to Django admins if checker
configurations are not working which can be useful if you want to run this command as a cronjob.

Scheduling scrapers/checkers

Introduction

Django Dynamic Scraper comes with a build-in mechanism to schedule the runs of your scrapers as well as your
checkers. After each run DDS dynamically calculates the next execution time depending on the success of the run.
For a scraper that means, that the time between two scraper runs is shortened when new items could be scraped
from a page and is prolonged if not. For a checker, it means that a next check is prolonged if the check
was not successful, meaning that the item was not deleted. If it was deleted - well: than it was deleted!
No further action! :-) The parameters for this calculation (e.g. a min/max time period between two actions)
are defined for each ScrapedObjClass in the DB.

DDS is using django-celery [http://ask.github.com/django-celery/] to actually run your scrapers. Celery is a distributed task queue system for
Python, which means that you can run a celery daemon which takes task orders from somewhere and then executes
the corresponding tasks in a sequential way so that no task is lost, even if the system is under heavy load.
In our use case Celery is “just” working as a comfortable cron job replacement, which can be controlled via
the Django admin interface. The scheduler of DDS is using the scheduler runtime objects we defined for our
example scraper and checker in the sections before. The scheduler runtime objects contain some dynamic
information for the calculation of the next execution time of the scraper as well as the next execution time
itself. For django-celery a task for each ScrapedObjClass has to be defined, which can than be
started and stopped in the Django admin interface. Each task is executed periodically in a configurable
time frame (e.g. ever hour). The task is then running all the scrapers associated with its ScrapedObjClass,
which next execution time lies in the past. After each run, the next next execution time is calculated
by the scraper and saved into its scheduler runtime object. The next time this time lies in the past,
the scraper is run again.

Note

The number of spiders/checkers run at each task run is limited by the DSCRAPER_MAX_SPIDER_RUNS_PER_TASK
and DSCRAPER_MAX_CHECKER_RUNS_PER_TASK settings which can be adopted in your custom settings file (see: Settings).

Installing/configuring django-celery for DDS

This paragraph is covering only the specific installation issues with django-celery [http://ask.github.com/django-celery/] in regard of installing
it for the use with DDS, so you should be familiar with the basic functionality of Celery and take general
installation infos from the django-celery [http://ask.github.com/django-celery/] website. If you have successfully installed and configured
django-celery, you should see the Djcelery tables in the Django admin interface:

[image: _images/screenshot_django-admin_overview.png]
For django-celery to work, Celery also needs a message broker for the actual message transport. For our
relatively simple use case, kombu [http://pypi.python.org/pypi/kombu] is the easiest and recommended choice. Kombu is automatically installed
as a dependency when you install django-celery and you can add it to your INSTALLED_APPS:

 INSTALLED_APPS = (
 ...
 'kombu.transport.django',
 'djcelery',
)

Then we can configure django-celery [http://ask.github.com/django-celery/] in combination with kombu [http://pypi.python.org/pypi/kombu] in our settings.py file. A starter
configuration could look similar to this:

django-celery settings
import djcelery
djcelery.setup_loader()
BROKER_HOST = "localhost"
BROKER_PORT = 5672
BROKER_BACKEND = "django"
BROKER_USER = "guest"
BROKER_PASSWORD = "guest"
BROKER_VHOST = "/"
CELERYBEAT_SCHEDULER = 'djcelery.schedulers.DatabaseScheduler'

Defining your tasks

For defining tasks for your scrapers and checkers which can be selected for periodical runs in the Django
admin interface, you have to define two short methods in a Python module in which your tasks are declared and make
sure, that your tasks are found by django-celery [http://ask.github.com/django-celery/]. The easiest way to do this is by placing your methods in a
module called tasks.py in the main directory of your app. The tasks should then be found automatically.
The two methods in our open news example look like this:

from celery.task import task
from django.db.models import Q
from dynamic_scraper.utils.task_utils import TaskUtils
from open_news.models import NewsWebsite, Article

@task()
def run_spiders():
 t = TaskUtils()
 #Optional: Django field lookup keyword arguments to specify which reference objects (NewsWebsite)
 #to use for spider runs, e.g.:
 kwargs = {
 'scrape_me': True, #imaginary, model NewsWebsite hat no attribute 'scrape_me' in example
 }
 #Optional as well: For more complex lookups you can pass Q objects vi args argument
 args = (Q(name='Wikinews'),)
 t.run_spiders(NewsWebsite, 'scraper', 'scraper_runtime', 'article_spider', *args, **kwargs)

@task()
def run_checkers():
 t = TaskUtils()
 #Optional: Django field lookup keyword arguments to specify which reference objects (Article)
 #to use for checker runs, e.g.:
 kwargs = {
 'check_me': True, #imaginary, model Article hat no attribute 'check_me' in example
 }
 #Optional as well: For more complex lookups you can pass Q objects vi args argument
 args = (Q(id__gt=100),)
 t.run_checkers(Article, 'news_website__scraper', 'checker_runtime', 'article_checker', *args, **kwargs)

The two methods are decorated with the Celery task decorator to tell Celery that these methods should be
regarded as tasks. In each task, a method from the TaskUtils module from DDS is called to run the
spiders/checkers ready for the next execution.

Now you can create a peridoc task both for your scraper and your checker in the Django admin interface:

[image: _images/screenshot_django-admin_peridoc_task.png]
In the peridoc task form you should be able to select your tasks defined above. Create an interval how often
these tasks are performed. In our open news example, 2 hours should be a good value. Please keep in mind, that
these are not the values how often a scraper/checker is actually run. If you define a two hour timeframe here,
it just means, that ever two hours, the task method executed is checking for scrapers/checkers with a next
execution time (defined by the associated scheduler_runtime) lying in the past and run these scrapers.
The actual time period between two runs is determined by the next execution time itself which is calculated
dynamically and depending on the scheduling configuration you’ll learn more about below. For the scrapers to
run, remember also that you have to set the scraper active in the associated scraper object.

Run your tasks

To actually run the task (respectively set our scheduling system to work as a whole) we have to run two different
daemon processes. The first one is the celeryd daemon from django-celery [http://ask.github.com/django-celery/] which is responsible for collecting
and executing tasks. We have to run celeryd with the -B option to also run the celerybeat
task scheduler which executes periodical tasks defined in Celery. Start the daemon with:

python manage.py celeryd -l info -B --settings=example_project.settings

If everything works well, you should now see the following line in your command line output:

[2011-12-12 10:20:01,535: INFO/MainProcess] Celerybeat: Starting...

As a second daemon process we need the server from the separate scrapyd project
to actually crawl the different websites targeted with our scrapers.
Make sure you have deployed your Scrapy project (see: Scrapy Configuration) and run the
server with:

scrapyd

You should get an output similar to the following:

[image: _images/screenshot_shell_scrapy_server.png]

For testing your scheduling system, you can temporarily set your time interval of your periodic task to
a lower interval, e.g. 1 minute. Now you should see a new task coming in and being executed every minute:

Got task from broker: open_news.tasks.run_spiders[5a3fed53-c26a-4f8f-b946-8c4a2c7c5c83]
Task open_news.tasks.run_spiders[5a3fed53-c26a-4f8f-b946-8c4a2c7c5c83] succeeded in 0.052549123764s: None

The executed task should then run the scrapers/checkers which you should see in the output of the Scrapy
server:

Process started: project='default' spider='article_spider' job='41f27199259e11e192041093e90a480a' pid=5932...
Process finished: project='default' spider='article_spider' job='41f27199259e11e192041093e90a480a' pid=5932...

Note

Note that you can vary the log level for debugging as well as other run parameters when you start
the servers, see the man/help pages of the celery and the Scrapy daemons.

Note

Please see this configuration described here just as a hint to get started. If you want to use
this in production you have to provide extra measures to make sure that your servers run constantly and that
they are secure. See the specific server documentation for more information.

Note

	There is a known bug causing scheduling not to work when LOG_STDOUT is set to True in the scraper

	settings. If you know the cause or a fix for this, please report on GitHub!

Scheduling configuration

Now coming to the little bit of magic added to all this stuff with dynamic scheduling. The basis for the dynamic
scheduling in DDS is layed both for your scrapers and your checkers with the scheduling configuration parameters
in your scraped object class definitions in the Django admin interface. The default configuration for a
scraper looks like this:

"MIN_TIME": 15,
"MAX_TIME": 10080,
"INITIAL_NEXT_ACTION_FACTOR": 10,
"ZERO_ACTIONS_FACTOR_CHANGE": 20,
"FACTOR_CHANGE_FACTOR": 1.3,

Scheduling now works as follows: the inital time period between two scraper runs is calculated by taking the
product of the MIN_TIME and the INITIAL_NEXT_ACTION_FACTOR, with minutes as the basic time unit for
MIN_TIME and MAX_TIME:

initial time period := 15 Minutes (MIN_TIME) * 10 (INITIAL_NEXT_ACTION_FACTOR) = 150 Minutes = 2 1/2 Hours

Now, every time a scraper run was successful, the new next action factor is calculated by dividing the actual
next action factor by the FACTOR_CHANGE_FACTOR. So a successful scraper run would lead to the following new
time period:

new next action factor (NAF) := 10 (INITIAL_NEXT_ACTION_FACTOR) / 1.3 (FACTOR_CHANGE_FACTOR) = 7.69 (rounded)
time period after successful run := 15 Minutes * 7.69 (NAF) = 115 Minutes

So if it turns out that your scraper always find new items the time period between two runs gets smaller and smaller
until the defined MIN_TIME is reached which is taken as a minimum time period between two scraper runs.
If your scraper was not successful (meaning, that no new items were found) these unsucessful actions (scraper runs)
are counted as ZERO_ACTIONS. If a number of unsuccessful actions greater than ZERO_ACTIONS_FACTOR_CHANGE
is counted, a new next action factor is calculated, this time by taking the product of the actual action factor
and the FACTOR_CHANGE_FACTOR (calculation restarting from initial values for the example):

new next action factor (NAF) := 10 (INITIAL_NEXT_ACTION_FACTOR) * 1.3 (FACTOR_CHANGE_FACTOR) = 13
time period after 21 unsuccessful runs := 15 Minutes * 13 (NAF) = 195 Minutes

So the time period between two scraper runs becomes larger. If there is never a new item found for your scraper
this will go on until the calculated time period reaches the MAX_TIME defined.

In the real world application of this mechanism normally neither the MIN_TIME nor the MAX_TIME should be
reached. The normal situation is that your scraper often finds nothing new on the page to be scraped and than
after x executed runs finds new items provided on the website to be scraped. If this x is generally lower than
your defined ZERO_ACTIONS_FACTOR_CHANGE number, the time period is becoming shorter over time. But since this
means more scraper runs in the same time chances are high that with these narrower scheduled
runs less zero actions occur and leads at some point to an again increased next action factor. So some kind of
(relatively) stable next action factor should be reached over time, representing in the best case a good compromise
between the needs of actuality of your scrapers and not to much resources wasted on running your scraper
on websites not updated in between two runs.

Note

Since this is a relatively complex mechanism also depending on a large part on the update process of your
scraped website, it will probably take some time to get a bit a feeling for how the scheduling is developing
and to what action factors it tends to, so don’t try to find the perfect solution in the first run. Instead,
start with a (maybe rather too conservatively calculated) start configuration and adjust your parameters over
time. You can observe the development of your action factors in the scheduler runtime objects.

Note

Please be aware that scraping is a resource consuming task, for your server but as well for the server of
the websites you are scraping. Try to find a balanced solution, not just setting your MIN_TIME to 1 minute
or similar.

Note

If you don’t need dynamic scheduling, you can also just set the MIN_TIME and the MAX_TIME to the same
values and just ignore the rest.

Scheduling of your checkers works very similar to the scraper scheduling, the inital configuration is as follows:

"MIN_TIME": 1440,
"MAX_TIME": 10080,
"INITIAL_NEXT_ACTION_FACTOR": 1,
"ZERO_ACTIONS_FACTOR_CHANGE": 5,
"FACTOR_CHANGE_FACTOR": 1.3,

Since the checker scheduling is terminated with the success of a checker run (meaning the item and the associated
scheduler runtime is deleted), there is only the prolonging time period part of the scheduler actually working.
So scraped items are checked in a (relatively, defined by your configuration) short time period at first.
If the item turns out to be persistently existing, the checks are prolonged till MAX_TIME is reached.

Advanced Request Options

Since DDS v.0.7+ you have more options to fine-tune your scraping requests by e.g. providing additional values for
cookies or HTTP headers. These values are internally passed to Scrapy’s Request object [http://doc.scrapy.org/en/latest/topics/request-response.html#request-objects]. You can find the extended request options in the
Request options tab in the Scraper form of your Django project admin. For the different page types
like the (paginated) main pages and the detail pages following scraped urls you can define different request options.

Note

Parameters for the different options are passed as JSON dicts. Make sure to use double quotes
for attribute values and to leave the comma for the last attribute key-value pair.

Request Type and Method

[image: _images/screenshot_django-admin_scraper_request_type_and_method.png]
The request type - corresponding to Scrapy’s Request classes [http://doc.scrapy.org/en/latest/topics/request-response.html#request-objects] - and the type of the request being sent as GET or POST. Normally you will choose GET
together with a classic Request and POST with a FormRequest but for
special cases you are free too choose here.

HTTP Headers

[image: _images/screenshot_django-admin_scraper_request_http_headers.png]
For setting/changing specific HTTP header fields like the referer URL use the headers text field in the request options.

You can use attribute placeholders (e.g. “{title}”) to inject results of item attributes scraped from the main page
(no escaping of curly brackets inside JSON value strings).

You can also use the {page} placeholder. This placeholder is replaced for consecutive pages according
to your pagination parameters (see: Pagination).

HTTP Body

[image: _images/screenshot_django-admin_scraper_request_body.png]
Setting/changing the HTTP body. This can be useful for some special-case scenarios, for example if you want
to send a POST request with content type for the request altered and sending POST parameters as a JSON dict.

You can use attribute placeholders (e.g. “{title}”) to inject results of item attributes scraped from the main page.

You can also use the {page} placeholder. This placeholder is replaced for consecutive pages according
to your pagination parameters (see: Pagination).

Note

Don’t be fooled, especially by the example provided: data for the body attribute is NOT provided as JSON but
as a string. While e.g. the Headers field always has to be in JSON format, the Body text is just
randomly JSON in this example, but it could also be This is my body text..

Request Cookies

[image: _images/screenshot_django-admin_scraper_request_cookies.png]
Sometime the output of a website you want to scrape might depend on the values of some cookies sent to the server.
For this occasion you can use the Cookies form in the request options tab, e.g. for setting the language of a
website to english.

You can use attribute placeholders (e.g. “{title}”) to inject results of item attributes scraped from the main page
(no escaping of curly brackets inside JSON value strings).

You can also use the {page} placeholder. This placeholder is replaced for consecutive pages according
to your pagination parameters (see: Pagination).

Note

If you want to pass a session ID for a site as a cookie, you can open the desired website in your browser
and copy-paste the session ID from the development console for immediately following scraper runs.

Scrapy Meta Options

[image: _images/screenshot_django-admin_scraper_request_scrapy_meta_data.png]
Changing Scrapy meta attributes, see
Scrapy docs for reference.

Form Data

[image: _images/screenshot_django-admin_scraper_request_form_data.png]
If you want to scrape data provided on a website via a web form, data is often returned via POST request after
sending various POST request parameters for narrowing the results. For this scenario use the FormRequest request
type and POST as method in the scraper admin and provide the adequate form data as a JSON dictionary in the request options.

You can use attribute placeholders (e.g. “{title}”) to inject results of item attributes scraped from the main page
(no escaping of curly brackets inside JSON value strings).

You can also use the {page} placeholder. This placeholder is replaced for consecutive pages according
to your pagination parameters (see: Pagination).

Pagination

Django Dynamic Scraper supports two layers of pagination for scraping your objects from several overview
pages or archives. The following screenshot shows the pagination parameters which can be defined in the
Django admin for each scraper:

[image: _images/screenshot_django-admin_pagination.png]
For using pagination you have to switch the pagination_type in your scraper definition from NONE to
your desired type.

First Pagination Layer: Static Pagination

The main concept of the static pagination layer is, that you define a pagination_append_str with a
placeholder {page}, which is replaced through a list generated by selecting the pagination_type and
giving a corresponding pagination_page_replace context. There are the following pagination types to
choose from:

Pagination type: RANGE_FUNCT (+FOLLOW)

This pagination type uses the python range function [http://docs.python.org/library/functions.html#range].
As a replace context the same arguments like in the range function are used: range([start], stop[, step]).
The integer list created by this function will be used as an input to replace the “{page}” template tag in the
append string to form the different urls.

So the parameters in our example above in the screenshot will lead - together with “http://www.urltoscrape.org”
as the base scrape url of your scraper runtime - to the following urls to be scraped:

	http://www.urltoscrape.org/articles/0

	http://www.urltoscrape.org/articles/10

	http://www.urltoscrape.org/articles/20

	http://www.urltoscrape.org/articles/30

Pagination type: FREE_LIST (+FOLLOW)

If the urls from an archive are formed differently you can use this pagination type and just provide a list
with different fitting replacements, the syntax is as follow: 'Replace text 1', 'Some other text 2',
'Maybe a number 3',

So if you define a list as follows: 'a-d', 'e-h', 'i-n', 'o-z', you get the following urls:

	http://www.urltoscrape.org/articles/a-d

	http://www.urltoscrape.org/articles/e-h

	http://www.urltoscrape.org/articles/i-n

	http://www.urltoscrape.org/articles/o-z

Second Pagination Layer: Dynamic Follow Pagination

The second pagination layer allows for dynamic following of pages (e.g. from a pagination on the
website to be scraped), by defining an XPath to extract the URL to be followed and an optional additional
XPath for the page number/name which can be used in the {follow_page} placeholder.

For this follow pagination an extra RequestPageType (RPT) FOLLOW can be defined. If there is no such RPT,
the main page RPT is used (in the definition of your elements/attributes to scrape, always assign the main page
RPT though).

The follow pagination can be used as stand-alone pagination or in combination with the static pagination types.
In the second case pages are followed starting from all static main pages scraped.

Scraping JSON content

Beside creating HTML or XML scrapers where you can use classic XPath notation, DDS supports also scraping pages encoded in JSON (v.0.5.0 and above), e.g. for crawling web APIs or ajax call result pages.

For scraping JSON, JSONPath is used, an XPath-like expression language for digging into JSON.
For reference see expressions as defined here:

	GitHub - python-jsonpath-rw Library [https://github.com/kennknowles/python-jsonpath-rw]

	JSONPath - XPath for JSON [http://goessner.net/articles/JsonPath/]

Note

Using JSONPath in DDS works for standard JSON page results, but is not as heavily tested as using
XPath for data extraction. If you are working with more complex JSONPath queries and run into problems,
please report them on GitHub [https://github.com/holgerd77/django-dynamic-scraper]!

Example

Consider the following simple JSON example:

{
 "response": {
 "num_results": 3,
 "results": [
 {
 "title": "Example Title",
 "description": "Example Description"
 },
 //...
]
 }
}

The title elements of the results can then be scraped by defining response.results JSONPath as the
base element and title as the JSONPath for the scraped object attribute.

Using the $ for refering to the JSON root is actually optional, so response.results is
equivalent to $.response.results. Sometimes it might be necessary to use the $ though, e.g.
if you directly want to point to the root of the JSON file, e.g. to reference the objects in
a JSON array file.

Note

The example project actually contains a working (most of the time :-)) JSON example scraper!

Scraping images/screenshots

Django Dynamic Scraper is providing a custom image pipeline build on Scrapy’s item pipeline for downloading
images [http://readthedocs.org/docs/scrapy/en/latest/topics/images.html] to scrape and download images
associated to your items scraped and and save a reference to each image together with the scraped item in the DB.

Configuration

For using image scraping in DDS you have to provide some additional parameters in your Scrapy
settings.py file:

import os.path

PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__))

ITEM_PIPELINES = [
 'dynamic_scraper.pipelines.DjangoImagesPipeline',
 'dynamic_scraper.pipelines.ValidationPipeline',
 'open_news.scraper.pipelines.DjangoWriterPipeline',
]

IMAGES_STORE = os.path.join(PROJECT_ROOT, '../thumbnails')

IMAGES_THUMBS = {
 'small': (170, 170),
}

In your settings file you have to add the DjangoImagesPipeline from DDS to your ITEM_PIPELINES and define
a folder to store images scraped. Don’t forget to create this folder in your file system and give it adequate
permissions. You can also use the thumbnail creation capabilities already build in Scrapy
by defining the thumbnail size via the IMAGES_THUMBS parameter.

Choosing store format for images

Different from Scrapy behaviour DDS is by default storing only one image in a flat store format directly under
the IMAGES_STORE directory (Scrapy is creating a full/ subdirectory for the original image). If you use the
IMAGES_THUMBS setting, the scaled down thumbnail image will replace the image with the original size.
Due to this simplification you can only use one entry in your IMAGES_THUMBS dictionary and the name of the
key there doesn’t matter.

Starting with DDS v.0.3.9 you can change this behaviour with the DSCRAPER_IMAGES_STORE_FORMAT setting:

DSCRAPER_IMAGES_STORE_FORMAT = 'FLAT' # The original image or - if available - one thumbnail image
DSCRAPER_IMAGES_STORE_FORMAT = 'ALL' # Both the original image and all given thumbnail sizes
DSCRAPER_IMAGES_STORE_FORMAT = 'THUMBS' # Only the thumbnails

FLAT is the default setting with the behaviour described above. The ALL setting restores the Scrapy behaviour,
the original images are stored in a full/ directory under IMAGES_STORE, thumbnail files - if available - in separate
sub directories for different thumbnail sizes (e.g. thumbs/small/).

Setting DSCRAPER_IMAGES_STORE_FORMAT to THUMBS, keeps only the thumbnail files, this setting makes only sense
with setting the IMAGES_THUMBS setting as well. With ALL or THUMBS you can also use different sizes for
thumbnail creation.

Note

Differing from the Scrapy output, an image is stored in the DB just by name, omitting path information like full/

Note

For image scraping to work you need the Pillow Library (PIL fork) [https://python-pillow.github.io/].

Updating domain model class/scraped obj class definition

When Scrapy is downloading images it creates a new unique random file name for each image saved in your image
folder defined above. To keep a reference to the image associated with a scraped item DDS will save this filename
in a field you have to define in your model class. In our open news example, we use ‘thumbnail’ as a field name:

class Article(models.Model):
 title = models.CharField(max_length=200)
 news_website = models.ForeignKey(NewsWebsite)
 description = models.TextField(blank=True)
 thumbnail = models.CharField(max_length=200)
 checker_runtime = models.ForeignKey(SchedulerRuntime)

 def __unicode__(self):
 return self.title

Note, that since there is just the filename of the image saved, you should declare this field as a simple
CharField and not using UrlField or ImageField.

Now you have to update your ScrapedObjClass definition in the Django admin interface. Add a new attribute
with the same name like in your model class and choose IMAGE as the attribute type. IMAGE is a special
type to let your scraper know, that the image pipeline of DDS should be used when scraping this attribute.

Extending/Testing the scraper

At last we have to add a new scraper elem to our scraper, again in the Django admin interface, which scrapes and
builds together the url of the image for the image pipeline to download later. Let’s have a look at the Wikinews [http://en.wikinews.org/wiki/Main_Page]
website of our open news example. On the news article overview page there is also an image presented with each
article summary, which we want to scrape. div[@class="l_image"]/a/img/@src should provide us with the url
of that image. Since the image urls we scrape with our XPath are starting with a double slash ‘//’ and not with
‘http://’, we also have to use a pre_url processor with 'pre_url': 'http:' as the processor context to
complete the url.

That’s it! If you now run your scraper, you should see lines like the following in the output (if you are in
debug mode) and you should end up with the images saved in your defined images folder and the names of these
images stored in the image field of your domain model in the DB:

DEBUG: Image (downloaded): Downloaded image from <GET http://upload.wikimedia.org/wikipedia/commons/thumb/...
...
u'thumbnail': '1bb3308a4c70b912ba6cf9d67344bb53476d70a2.jpg',

So now you have all these images, but how to rid of them if you don’t need them any more? If you use
a checker to delete scraped items not existing any more, your images will be automatically deleted as well.
However, if you manually delete scraped items in your database, you have to delete the associated file yourself.

Where to go from here

So now that you have got your scraper up and running and maybe even integrated some of the advanced stuff
like pagination or scraping images, does that mean that life will become boring because there is nothing
to be done left? Definitely not! Here are some ideas about what to do next:

	Contribute to Django Dynamic Scraper through the experiences you made while using it (see How to contribute)

	Make your scraped data searchable with Django Haystack [http://haystacksearch.org/]

	Provide an API to your scraped data so that others can use it with Django Tastypie [https://github.com/toastdriven/django-tastypie]

	Or… just do something no one has ever done before! :-)

Basic services

Logging / Log Markers

Introduction

Django Dynamic Scraper provides its own logging mechanism in addition to the build-in
logging from Scrapy [http://doc.scrapy.org/en/latest/topics/logging.html]. While
the Scrapy logging is mainly for debugging your scrapers during creation time, the
DDS logging aims to get an overview how your scheduled scraper runs are doing over
time, if scrapers and checkers defined with DDS are still working and how often
scraper or cheker runs go wrong.

[image: _images/screenshot_django-admin_logging.png]
In the screenshot above you see an overview of the log table in the Django admin
in which new log messages are saved. In addition context information like the
name of the spider run or the associated reference object or scraper
is provided. By using the filtering options it is possible to track down the
messages targeted to the actual needs, e.g. you can filter all the errors
occurred while running your checkers.

Logging: When and Where

When DDS scrapers are run from the command line both the logging messages from
Scrapy as well as the DDS logging messages are provided. In the Django model log
table, only the DDS messages are kept.

DDS only saves the DDS log messages in the DB when running with run_type=TASK
and do_action=yes. This is configuration used when running scrapers or
checkers via the scheduler. When you run your scraper via the command line you
have to provide these options manually to have your DDS log messages saved in the DB
(see Running/Testing your scraper) in addition to be displayed on the screen.

Log Markers: Meaning to your logs

Going through log entries and finding out what’s wrong with your scrapers can be relatively tricky.
One reason for that is that not all log entries are equally meaningful. Sometimes scraping errors could
just be planned when creating the scraper, e.g. when using pagination for pages from 1 to 100, knowing
that there are no items on some pages in between, leading to “No base objects” log entries.
Or the data being scraped is a bit dirty, occasionally missing a mandatory field.

[image: _images/screenshot_django-admin_add_log_marker.png]
To get more meaning from your logs log markers come into play. Log markers are rules to mark all new log
entries with a special type while the log marker exists. For the pagination above you can
e.g. create a log marker, which marks all log entries as “Planned Error” type which contain the message
“No base objects” and are coming from the corresponding scraper. With creating rules for the most common
types of errors like these it becomes easier to concentrate on the potentially more severe errors by
filtering down to the “None” type entries in your logs.

Note

Attention! Keep in mind that log markers can only be hints to a certain source of an error.
When looking at the pagination example above it can also be the case that a “No base objects”
error occur on a page where there should be some items and the scraper really not working any more.
So be cautious!
Log markers can only give a better orientation with your log entries and don’t necessarily are
telling the truth in all situations.

Configuration

You can configure DDS logging behaviour by providing some settings in your settings.py
configuration file (see Settings).

Monitoring

Configuration

There is a montoring section in the DDS scraper admin form with basic settings which can be used to monitor scraper/checker
functionality by checking when the last_scraper_save or last_checker_delete occurred:

[image: _images/screenshot_django-admin_monitoring_section.png]
If last_scraper_save_alert_period or last_checker_delete_alert_period is set with an alert period in the
format demanded it is indicated by red timestamps on the admin scraper overview page if a scraper save or checker delete
is getting too old, indicating that the scraper/checker might not be working any more.

[image: _images/screenshot_django-admin_scraper_overview_last_checker_delete_alert.png]

Monitoring Automation

You can use the following Django management commands to monitor your scrapers and checkers on a regular basis:

python manage.py check_last_scraper_saves [--send-admin-mail] [--with-next-alert]
python manage.py check_last_checker_deletes [--send-admin-mail] [--with-next-alert]

Standard behaviour of the commands is to check, if the last scraper save or last checker delete occured is older
than the corresponding alert period set (see configuration section above). If the --send-admin-mail flag is set
an alert mail will be send to all admin users defined in the Django settings.py file. Additionally the next
alert timestamps (see Django admin form) will be set to the current timestamp.

Practically this leads to a lot of alerts/mails (depending on the frequency of your cronjobs) once an alert
situation triggers. If you want to switch from a Report-Always to a Report-Once (more or less) behaviour
you can set the --with-next-alert flag.

This will run alert checks only for scrapers where the corresponding next alert timestamp has passed.
The timestamp is then updated by the alert period set as the earliest time for a new alert.

An alert for a scraper with an alert period of 2 weeks will then trigger first after the last item was scraped
more than 2 weeks ago. With the above flag, the next alert will then be earliest 2 weeks after the first alert.

Note

Using the --with-next-alert flag only makes sense if your periods for your alerts are significantly
longer (e.g. 1 week+) than your cronjob frequency (e.g. every day).

Reference

Settings

For the configuration of Django Dynamic Scraper you can use all the basic settings from
Scrapy [http://doc.scrapy.org/en/latest/topics/settings.html], though some settings may
not be useful to change in the context of DDS. In addition DDS defines some extra settings
with the prefix DSCRAPER. You can also place these settings in the Scrapy settings.py
configuration file. At the moment this is the only way to define DDS settings and you can’t
change DDS settings via command line parameters.

DSCRAPER_IMAGES_STORE_FORMAT

Default: FLAT

Store format for images (see Scraping images/screenshots for more info).

	FLAT

	Storing only either original or one thumbnail image, no sub folders

	ALL

	Storing original (in full/) and thumbnail images (e.g. in thumbs/small/)

	THUMBS

	Storing only the thumbnail images (e.g. in thumbs/small/)

DSCRAPER_CUSTOM_PROCESSORS

Default: []

List with Python paths to custom processor modules, e.g.:

DSCRAPER_CUSTOM_PROCESSORS = [
 'scraper_module.scraper.processors',
 'scraper_module.scraper.more_processors',
 //...
]

DSCRAPER_SPLASH_ARGS

Default: { 'wait': 0.5 }

Customize Splash args when ScrapyJS/Splash is used for Javascript rendering.

DSCRAPER_LOG_ENABLED

Default: True

Enable/disable the DDS logging.

Note

	The DSCRAPER_LOG_* settings customize the behaviour DDS logs for

	post analysis of your scraper runs in the DB (see Logging / Log Markers for more info).
Console output log is controlled by the regularly Scrapy log settings/options.

DSCRAPER_LOG_LEVEL

Default: ERROR

Set the log level for DDS logging. Possible values are CRITICAL, ERROR, WARNING, INFO and DEBUG.

DSCRAPER_LOG_LIMIT

Default: 250

The number of log entries in the Django database table.

DSCRAPER_MAX_SPIDER_RUNS_PER_TASK

Default: 10

Maximum number of spider runs executed per task run.

DSCRAPER_MAX_CHECKER_RUNS_PER_TASK

Default: 25

Maximum number of checker runs executed per task run.

Django Model Reference

TODO

ScrapedObjClass

TODO

ScrapedObjAttr

TODO

Scraper

status

Status of the scraper, influencing in which context the scraper is executed.

	ACTIVE

	Scraper can be run manually and is included on scheduled task execution

	MANUAL

	Scraper can only be run manually and is ignored on scheduled task execution

	PAUSE

	Scraper is not executed, use for short pausing

	INACTIVE

	Scraper is not executed, use for longer interruption of scraper use

ScraperElem

TODO

SchedulerRuntime

TODO

API Reference

TODO

DjangoSpider

TODO

DjangoChecker

TODO

Processors

General Functionality

Default Processors

For convenience TakeFirst processor from Scrapy and DDS string_strip processors are applied
to every attribute scraped as default processors. The default processors can be deactived separately for
every scraped attribute in the Django admin scraper definition.

Note

DDS is expecting an attribute to be a string after processor runs. Leaving with other data
types might lead to unexpected behaviour (especially for non-STANDARD attribute elements).

Attribute Placeholders

Processors can use placeholders referencing other scraped attributes in the form of {ATTRIBUTE_NAME}.
These placeholders are then replaced with the other scraped attribute string after all other processing
steps (scraping, regex, processors).

Attribute placeholders can also be used to form detail page URLs. This can be used for more flexible
detail page creation, e.g. by defining a non-saved help attribute tmp_attr_1 in your ScrapedObjClass
definition and using a pre_url processor like 'pre_url': 'http://someurl.org/{tmp_attr_1}'.

Note

Placeholders for detail page URLs can only be used with attributes scraped from the main page!

Predefined Processors

join

	Description

	Joins a list of string analogue to the Join processor from
Scrapy, separated by the separator provided in the proc context

	Usable with other processors

	Default processors have to be deactivated, otherwise: Yes

	Context definition (Example)

	'join': '-' (optional, default: ‘ ‘)

	Result (Example)

	“[‘Example’, ‘Text’,]” -> “Example Text”

string_strip

	Description

	Applies the python strip function to remove leading and trailing
characters

	Usable with other processors

	Yes

	Context definition (Example)

	'string_strip': ' .!' (optional, default: ‘ ntr’)

	Result (Example)

	” … Example Text!!!” -> “Example Text”

remove_chars

	Description

	Removing of characters or character pattern using the python
re.sub function by providing a regex pattern

	Usable with other processors

	Yes

	Context definition (Example)

	'remove_chars': '[-\.]+'

	Result (Example)

	“Example… Text–!–!!” -> “Example Text!!!”

pre_string

	Description

	Adds a string before the scraped text

	Usable with other processors

	Yes

	Context definition (Example)

	'pre_string': 'BEFORE_'

	Result (Example)

	“Example Text” -> “BEFORE_Example Text”

post_string

	Description

	Appends a string after the scraped text

	Usable with other processors

	Yes

	Context definition (Example)

	'post_string': '_AFTER'

	Result (Example)

	“Example Text” -> “Example Text_AFTER”

pre_url

	Description

	Adding a domain to scraped url paths, works like pre_string with
some url specific enhancements (throwing away defined domain when
scraped text has a leading “http://” e.g.)

	Usable with other processors

	Yes

	Context definition (Example)

	'pre_url': 'http://example.org/'

	Result (Example)

	“/path/to/page.html” -> “http://example.org/path/to/page.html”

replace

	Description

	When the scraper succeeds in scraping the attribute value, the text
scraped is replaced with the replacement given in the processor
context.

	Usable with other processors

	No

	Context definition (Example)

	'replace': 'This is a replacement'

	Result (Example)

	“This text was scraped” -> “This is a replacement”

substr_replace

	Description

	A substring occurring one or multiple times in the scraped element
is replaced by a target string provided (Strings are separated by
a “:” char, for use in text please mask “:” char like this: “:”).

	Usable with other processors

	Yes

	Context definition (Syntax)

	'substr_replace': '[SUBSTRING]:[TARGET STRING]'

	Context definition (Example)

	'substr_replace': 'Title\: Hello:New Title\: Hi'

	Result (Example)

	“Title: Hello my dear friend” -> “New Title: Hi my dear friend”

static

	Description

	No matter if the scraper succeeds in scraping the attribute value
or not, the static value is used as an attribute value. This
processor is also useful for testing for not relying on too many
x_path values having to succeed at once.

	Usable with other processors

	No

	Context definition (Example)

	'static': 'Static text'

	Result (Example)

	“No matter if this text was scraped or not” -> “Static text”

date

	Description

	Tries to parse a date with Python’s strptime function
(extra sugar: recognises ‘yesterday’, ‘gestern’, ‘today’, ‘heute’,
‘tomorrow’, ‘morgen’)

	Usable with other processors

	Yes

	Context definition (Example)

	'date': '%d.%m.%Y'

	Result (Example)

	“04.12.2011” -> “2011-12-04”

time

	Description

	Tries to parse a time with Python’s strptime function

	Usable with other processors

	Yes

	Context definition (Example)

	'time': '%H hours %M minutes'

	Result (Example)

	“22 hours 15 minutes” -> “22:15”

ts_to_date

	Description

	Tries to extract the local date of a unix timestamp

	Usable with other processors

	Yes

	Context definition (Example)

	No context definition

	Result (Example)

	“1434560700” -> “2015-06-17”

ts_to_time

	Description

	Tries to extract the local time of a unix timestamp

	Usable with other processors

	Yes

	Context definition (Example)

	No context definition

	Result (Example)

	“1434560700” -> “19:05:00”

duration

	Description

	Tries to parse a duration, works like time processor but with
time unit overlap breakdown

	Usable with other processors

	Yes

	Context definition (Example)

	'duration': '%M Minutes'

	Result (Example)

	“77 Minutes” -> “01:17:00”

Custom Processors

If the existing predefined processors don’t fit your needs you can write your own custom processors.

A processor is just a simple Python function taking a string as input (the scraped data) together
with the context information provided in the Django admin and return a somehow modified string.

To get an idea how processors work have a look at the predefined processors in the
dynamic_scraper.utils.processors module.

To tell DDS about your custom processors provide the path(s) to your processor module(s) via the
DSCRAPER_CUSTOM_PROCESSORS setting.

Development

How to contribute

You can contribute to improve Django Dynamic Scraper in many ways:

	If you stumbled over a bug or have suggestions for an improvements or a feature addition report
an issue on the GitHub page with a good description.

	If you have already fixed the bug or added the feature in the DDS code you can also make a pull request
on GitHub. While I can’t assure that every request will be taken over into the DDS source I will look
at each request closely and integrate it if I fell that it’s a good fit!

	Since this documentation is also available in the Github repository of DDS you can also make pull
requests for documentation!

Here are some topics for which suggestions would be especially interesting:

	If you worked your way through the documentation and you were completely lost at some point, it would
be helpful to know where that was.

	If there are unnecessary limitations of the Scrapy functionality in the DDS source which could be
eliminated without adding complexity to the way you can use DDS that would be very interesting to know.

And finally: please let me know about how you are using Django Dynamic Scraper!

Running the test suite

Overview

Tests for DDS are organized in a separate tests Django project in the root folder of the repository.
Due to restrictions of Scrapy’s networking engine Twisted [http://twistedmatrix.com/], DDS test cases directly
testing scrapers have to be run as new processes and can’t be executed sequentially via python manage.py test.

For running the tests first go to the tests directory and start a test server with:

./testserver.sh

Then you can run the test suite with:

./run_tests.sh

Note

If you are testing for DDS Django/Scrapy version compatibility: there might be 2-3 tests generally not working
properly, so if just a handful of tests don’t pass have a closer look at the test output.

Django test apps

There are currently two Django apps containing tests. The basic app testing scraper unrelated functionality
like correct processor output or scheduling time calculations. These tests can be run on a per-file-level:

python manage.py test basic.processors_test.ProcessorsTest

The scraper app is testing scraper related functionality. Tests can either be run via shell script (see above)
or on a per-test-case level like this:

python manage.py test scraper.scraper_run_test.ScraperRunTest.test_scraper #Django 1.6+
python manage.py test scraper.ScraperRunTest.test_scraper #Django up to 1.5

Have a look at the run_tests.sh shell script for more examples!

Running ScrapyJS/Splash JS rendering tests

Unit tests testing ScrapyJS/Splash Javascript rendering functionality need a working ScrapyJS/Splash (docker)
installation and are therefor run separately with:

./run_js_tests.sh

Test cases are located in scraper.scraper_js_run_test.ScraperJSRunTest. Some links:

	Splash Documentation [http://splash.readthedocs.org/en/latest/]

	ScrapyJS GitHub [https://github.com/scrapinghub/scrapyjs]

	Installation of Docker on OS X with Homebrew [http://blog.javabien.net/2014/03/03/setup-docker-on-osx-the-no-brainer-way/]

SPLASH_URL in scraper.settings.base_settings.py has to be adopted to your local installation to get this running!

Docker container can be run with:

docker run -p 5023:5023 -p 8050:8050 -p 8051:8051 -d scrapinghub/splash

Release Notes

Changes in version 0.13.1-beta (2017-11-07)

	Replaced hard-coded port 6800 for scheduled scraper/checker runs with setting from
Scrapyd (thanks @DeanSherwin for the PR [https://github.com/holgerd77/django-dynamic-scraper/pull/97])

	Renamed internal item variables item._dds_item_page to item._dds_item_page_num,
and item._dds_item_follow_page to item._dds_item_follow_page_num (eventually
have a look at your custom pipelines.py file if used there), use item._dds_item_page
for storing the page from the pagination

Changes in version 0.13.0-beta (2017-06-29)

	Pre-note: Due to an increasing test burden, this library might drop Python 2.7 support
in the foreseable future (not decided yet, if so, probably within 6-12 month).
If you haven’t already done so you might want to start upgrading your projects to run on a
Python 3 basis.

	New, second pagination layer with FOLLOW pagination type, building upon pull request
#24 [https://github.com/holgerd77/django-dynamic-scraper/pull/24] and allow for dynamic
pagination by extracting an URL to follow from consequent pages (for example to follow
pagination on the website to scrape). This can be combined with other pagination types
(currently RANGE_FUNC and FREE_LIST). See the updated Pagination section
for further details.

[image: _images/screenshot_django-admin_pagination.png]

	Dropped support for Scrapy 1.1, 1.2 and 1.3, please update your
Scrapy version to the latest 1.4 release version

	Using response.follow function from Scrapy 1.4 for following detail page URLs
links (supports relative URLs)

	New migrations 0022, 0023, 0024 and 0024,please run python manage.py migrate command

Added short forms for command line options:

[image: _images/screenshot_dds_command_line_help.png]

	Allowing/enabling {page} placeholders for HEADERS, BODY, COOKIES fields
and FORM DATA for detail page URL requests (so you can inject the current page from
the main page into the detail page URL request)

	Output DDS configuration dict on DEBUG log level

	Added a general settings tab for the scraper form in the Django admin

	Fixed scraper elem textarea resize for the Django admin scraper form

	Added new option UNRESOLVED to scraper work_status

Changes in version 0.12.4-beta (2017-06-12)

Added possibility to select an internal work_status for a scraper to ease getting an
overview where work needs to be done, following values are possible:

WORK_STATUS_CHOICES = (
 ('R2', 'REVISION NEEDED (MAJOR)'),
 ('R1', 'REVISION NEEDED (MINOR)'),
 ('BR', 'BROKEN'),
 ('W', 'WORKING'),
 ('RC', 'RELEASE CANDIDATE'),
 ('BE', 'BETA'),
 ('A', 'ALPHA'),
 ('D', 'DRAFT'),
 ('S', 'SUSPENDED'),
 ('U', 'UNKNOWN'),
 ('N', 'NOT SET'),
)

	Added owner attribute to scraper to assign scrapers to different owners
when working on scrapers with various people (implemented as a simple/short
plain text field to not endanger ex-/importability of scrapers)

	New migrations 0020, 0021 please run python manage.py migrate command

Changes in version 0.12.3-beta (2017-06-09)

	Allowing placeholders with item attributes scraped from the main page in HEADERS, BODY, COOKIES fields
and FORM DATA for detail page URL requests

	Fixing a bug causing log level setting on CL (with -L or --loglevel)
not setting the correct log levels for different loggers

	Using log level WARNING for a condensed output format for many-items/pages scraper runs
by adding structural information (“Starting to crawl item x.”, “Item x saved.”) to the log output

	New spider method struct_log(msg) used for logging structural information like above,
if you want to include the “Item saved” log output in the WARNING log level output adopt your
custom pipelines.py file according to the one in the example project (see: Adding the pipeline class)

	Added DEBUG log level output for placeholder replacements

	Added additional logging output for calling detail page URLs and the additional request information (Headers, Body,…) sent

Changes in version 0.12.2-beta (2017-06-07)

	Added use_default_procs attribute to scraper elems to allow switching of the usage
of the default processors (Scrapy TakeFirst, DDS string_strip) (see: Default Processors),
new migration 0018, please run python manage.py migrate command

	New join processor for convenience (see: Predefined Processors) analogue to Join
processor from Scrapy, has to be used with default processors deactivated

	Official support for Scrapy 1.4 (no changes in the codebase though)

	Declared Python 3.4+ support as stable

	Closing DB connection when spider run is finished
(GitHub issue #84 [https://github.com/holgerd77/django-dynamic-scraper/issues/84])

	Set LOG_STDOUT to False in example project scraper settings due to a bug
prevent scheduling from working when setting is activated
(GitHub issue #80 [https://github.com/holgerd77/django-dynamic-scraper/issues/80])

	Also define an attribute update (STANDARD (UPDATE)) field as a successful action causing
the scheduler to reset the zero actions counter and not increase time between scraper
runs up to the max time (GitHub issue #88 [https://github.com/holgerd77/django-dynamic-scraper/issues/88])

Changes in version 0.12.1-beta (2017-06-03)

	HOTFIX RELEASE! PLEASE UPDATE WHEN USING PYTHON 2.7!

	Fixed twisted logging filter, causing DDS completely refuse working under Python 2.7

Changes in version 0.12.0-beta (2017-05-12)

This release comes with a completely overhauled output formatting for scraper
runs on the command line which should
make it a lot easier to quickly grasp what your scrapers are doing and where things
go wrong. Here is a sample output of a scraper run:

[image: _images/screenshot_scrapy_run_command_line.png]
This is the output from the INFO log level (log level is taken from the
Scrapy LOG_LEVEL setting) which should in most cases now suffice for
normal scraper runs and debugging.

Some of the goodies:

	Formatted attribute output with extra info on attribute source (MP, DP) and request type

	Numbering of attributes by page, item number combination to easier track
attributes belonging to one scraped object

	Colors for structuring the scraping output and indicate success/failure (works
on both dark/light background terminals, dark theme is recommended though)

	Largely reducing the noise by supressing twisted traceroute output on INFO
log level

If you want item numbering and colors also in your “Item saved.” log output
messages you have to adopt your custom pipelines.py class (see: Adding the pipeline class,
adopt the spider.log command).

Note

There is still a known bug of the -L LOG_LEVEL setting from the command line
not properly taken in some cases, if you have problems here use the LOG_LEVEL
setting in your settings.py file.

There is now also an easier way to get help on the different command line options
for scraper/checker runs and scraper test by typing the command without any options,
e.g.:

scrapy crawl article_spider

[image: _images/screenshot_dds_command_line_help.png]
Other changes:

	New -a start_page=PAGE and -a end_page=PAGE options for setting a range
of pages to scrape

	Fixed a bug with STANDARD (UPDATE) scraped object attributes

	Replaced DOUBLE keyword-injecting (and bug causing?) workaround mechanism with
_is_double meta attribute for scraped items

Changes in version 0.11.6-beta (2017-04-21)

	Fixed severe bug preventing scheduling to work with Python 3

Changes in version 0.11.5-beta (2017-04-20)

	Fixed broken management commands check_last_checker_deletes, check_last_scraper_saves
(see Monitoring Automation) and run_checker_tests (see Run checker tests)

Changes in version 0.11.4-beta (2017-03-28)

	Added initial migrations for example project

	New optional argument output_response_body for checker run and checker test commands for easier checker debugging
(see: Running your checkers and Run checker tests)

Changes in version 0.11.3-beta (2016-11-06)

	New processor substr_replace for replacing a substring occurring one or multiple times in the scraped
element with a target string (see: Predefined Processors)

Changes in version 0.11.2-beta (2016-08-15)

	IMPORTANT BUG FIX RELEASE! Fixes a bug saving only one thumbnail size when several thumbnail sizes
are defined with IMAGES_THUMBS setting, bug was introduced with changes in DDS v.0.11.0

Changes in version 0.11.1-beta (2016-08-05)

	Easier way for writing/integrating Custom Processors for post-processing scraped data strings,
new associated DSCRAPER_CUSTOM_PROCESSORS setting

Changes in version 0.11.0-beta (2016-05-13)

	First major release version with support for new Scrapy 1.0+ structure
(only Scrapy 1.1 officially supported)

	From this release on older Scrapy versions like 0.24 are not supported any more,
please update your Scrapy version!

	Beta Python 3 support

	Support for Django 1.9

	The following manual adoptions in your project are necessary:

	Scrapy’s DjangoItem class has now moved from scrapy.contrib.djangoitem
to a separate repository scrapy-djangoitem
(see Scrapy docs [http://doc.scrapy.org/en/1.0/news.html#full-list-of-relocations]).
The package has to be separately
installed with pip install scrapy-djangoitem and the import in your models.py
class has to be changed to from scrapy_djangoitem import DjangoItem
(see: Creating your Django models)

	Due to Scrapy`s switch to Python`s build-in logging functionality the logging calls
in your custom pipeline class have to be slightly changed, removing the
from scrapy import log import and changing the log.[LOGLEVEL] attribute
handover in the log function call to logging.[LOGLEVEL]
(see: Adding the pipeline class)

	Change except IntegrityError, e: to except IntegrityError as e: in your custom
pipelines.py module (see: Adding the pipeline class)

	Following changes have been made:

	Changed logging to use Python’s build-in logging module

	Updated import paths according to Scrapy release documentation

	Running most of the unit tests in parallel batches (when using the shell scripts)
to speed up test runs

	Updated django-celery version requirement to 3.1.17 to work with Django 1.9

	Updated open_news example fixture, introduction of versioned fixture data dumps

	Removed dependency on scrapy.xlib.pydispatch being removed in Scrapy 1.1
(former DDS v.0.10 releases will break with Scrapy 1.1)

	If you use Scrapy/Splash for Javascript rendering:

	Updated dependencies, replaced scrapyjs with scrapy-splash (renaming),
please update your dependencies accordingly!

	Bugfixes:

	Fixed bug with DSCRAPER_IMAGES_STORE_FORMAT set to THUMBS not working correctly

Changes in version 0.10.0-beta EXPERIMENTAL (2016-01-27)

	Experimental release branch no longer maintained, please see release notes for 0.11.

Changes in version 0.9.6-beta (2016-01-26)

	Fixed a severe bug causing scrapers to break when scraping unicode text

	Making unicode text scraping more robust

	Added several unit tests testing unicode string scraping/usage in various contexts

	Reduce size of textarea fields in scraper definitions

	Added order attribute for scraped object attributes for convenience when editing scrapers
(see: Defining the object to be scraped)

	New migration 0017, run Django migrate command

Changes in version 0.9.5-beta (2016-01-18)

	Fixed a severe bug when using non-saved detail page URLs in scrapers

Changes in version 0.9.4-beta (2016-01-15)

	Fixed a critical bug when using non-saved fields for scraping leading to incorrect data attribution to items

Changes in version 0.9.3-beta (2016-01-14)

	New command line options output_num_mp_response_bodies and output_num_dp_response_bodies
for logging the complete response bodies of the first {Int} main/detail page responses to the screen
for debugging (for the really hard cases :-)) (see: Running/Testing your scraper)

Changes in version 0.9.2-beta (2016-01-14)

	New processor remove_chars (see: Processors) for removing one or several type of chars from
a scraped string

Changes in version 0.9.1-beta (2016-01-13)

	Allowing empty x_path scraper attribute fields for easier appliance of static processor to fill
in static values

	Enlargening x_path, reg_exp and processor fields in Django admin scraper definition from
CharField to TextField for more extensive x_path, reg_exp and processor definitions
and more comfortable input/editing

	New command line option max_pages_read for limiting the number of pages read on test runs
(see: Running/Testing your scraper)

	New migration 0016, run Django migrate command

Changes in version 0.9.0-beta (2016-01-11)

	BREAKING!!! This release slighly changes the semantics of the internal ValidationPipeline class
in dynamic_scraper/pipelines.py to also pass items to your custom user pipeline when the
do_action command line parameter (see: Running/Testing your scraper) is not set. This creates the need
of an additional if spider.conf['DO_ACTION']: restriction in your custom user pipeline function
(see: Adding the pipeline class). Make sure to add this line, otherwise you will get unwanted side
effects. If you do more stuff in your custom pipeline class also have a broader look if this new
behaviour changes your processing (you should be save though if you apply the if restriction above
to all of your code in the classs).

	Decoupling of DDS Django item save mechanism for the pipeline processing to allow the usage
of Scrapy`s build-in output options --output=FILE and --output-format=FORMAT to scrape items
into a file instead of the DB (see: Running/Testing your scraper).

	The above is the main change, not touching too much code. Release number nevertheless jumped up a whole
version number to indicate a major breaking change in using the library!

	Another reason for the new 0.9 version number is the amount of new features being added throuhout
minor 0.8 releases (more flexible checker concept, monitoring functionality, attribute placeholders)
to point out the amount of changes since 0.8.0.

Changes in version 0.8.13-beta (2016-01-07)

	Expanded detail page URL processor placeholder concept to generic attribute placeholders (Attribute Placeholders)

	Unit test for new functionality

Changes in version 0.8.12-beta (2016-01-06)

	Fixed Clone Scraper Django admin action omitting the creation of RequestPageType and Checker
objects introduced in the 0.8 series

	Narrowing the requirements for Pillow to 3.x versions to reduce possible future side effects

Changes in version 0.8.11-beta (2016-01-05)

	New Attribute Placeholders (previously: detail page URL placeholder) which can be used for more flexible detail page URL creation

	Unit test for new functionality

Changes in version 0.8.10-beta (2015-12-04)

	New --with-next-alert flag for monitoring management cmds to reduce amount of mail alerts,
see updated Monitoring section for details

	More verbose output for monitoring management cmds

	New migration 0015, run Django migrate command

Changes in version 0.8.9-beta (2015-12-01)

	Minor changes

Changes in version 0.8.8-beta (2015-12-01)

	Fixed a bug in Django admin from previous release

Changes in version 0.8.7-beta (2015-12-01)

	New syntax/semantics of management commands check_last_checker_deletes
and check_last_scraper_saves

	Added last_scraper_save_alert_period and last_checker_delete_alert_period alert period fields
for scraper, new migration 0014, run Django migrate command

	New fields are used for providing time periods for the lowest accepted value for last scraper saves and checker deletes,
these values are then checked by the management commands above (see: Monitoring)

	Older timestamps for current values of a scraper for last_scraper_save and last_checker_delete also
trigger a visual warning indication in the Django admin scraper overview page

Changes in version 0.8.6-beta (2015-11-30)

	Two new management commands check_last_checker_deletes and check_last_scraper_saves which can be run as a cron job
for basic scraper/checker monitoring (see: Monitoring)

Changes in version 0.8.5-beta (2015-11-30)

	New last_scraper_save, last_checker_delete datetime attributes for Scraper model for monitoring/
statistis purposes (can be seen on Scraper overview page in Django admin)

	New migration 0013, run Django migrate command

Changes in version 0.8.4-beta (2015-11-27)

Starting update process for Python 3 support with this release (not there yet!)

	Fixed severe bug in task_utils.py preventing checker scheduling to work

	New dependency on Python-Future 0.15+ [http://python-future.org/] to support integrated Python 2/3 code base,
please install with pip install future

	Updating several files for being Python 2/3 compatible

Changes in version 0.8.3-beta (2015-10-01)

	More flexible checker concept now being an own Checker model class and allowing for more than one checker for a
single scraper. This allows checking for different URLs or xpath conditions.

	Additional comment fields for RequestPageTypes and Checkers in admin for own notes

	Adopted unit tests to reflect new checker structure

	self.scrape_url = self.ref_object.url assignment in checker python class not used any more
(see: Creating a checker class), you might directly want to remove this from your project class
definition to avoid future confusion

	Some docs rewriting for Checker creation (see: Defining/Running item checkers)

	New migrations 0011, 0012, run Django migrate command

Changes in version 0.8.2-beta (2015-09-24)

	Fixed bug preventing checker tests to work

	Added Javascript rendering to checkers

	Fixed a bug letting checkers/checker tests choose the wrong detail page URL for checking under certain circumstances

Changes in version 0.8.1-beta (2015-09-22)

	Fixed packaging problem not including custom static Django admin JS file (for RequestPageType admin form collapse/expand)

Changes in version 0.8.0-beta (2015-09-22)

	New request page types for main page and detail pages of scrapers (see: Adding corresponding request page types):

	Cleaner association of request options like content or request type to main or detail pages (see: Advanced Request Options)

	More flexibility in using different request options for main and detail pages (rendering Javascript on main but not on
detail pages, different HTTP header or body values,…)

	Allowance of several detail page URLs per scraper

	Possibility for not saving the detail page URL used for scraping by unchecking corresponding new ScrapedObjClass
attribute save_to_db

	ATTENTION! This release comes with heavy internal changes regarding both DB structure and scraping logic.
Unit tests are running through, but there might be untested edge cases. If you want to use the new functionality in a production
environment please do this with extra care. You also might want to wait for 2-3 weeks after release
and/or for a following 0.8.1 release (not sure if necessary yet). If you upgrade it is HIGHLY RECOMMENDED TO BACKUP YOUR
PROJECT AND YOUR DB before!

	Replaced Scrapy Spider with CrawlSpider class being the basis for DjangoBaseSpider, allowing
for more flexibility when extending

	Custom migration for automatically creating new RequestPageType objects for existing scrapers

	Unit tests for new functionality

	Partly restructured documentation, separate Installation section

	Newly added static files, run Django collectstatic command (collaps/expand for RequestPageType inline admin form)

	New migrations 0008, 0009, 0010, run Django migrate command

Changes in version 0.7.3-beta (2015-08-10)

	New attribute dont_filter for Scraper request options (see: Advanced Request Options), necessary
for some scenarios where Scrapy falsely marks (and omits) requests as being duplicate (e.g. when scraping uniform
URLs together with custom HTTP header pagination)

	Fixed bug preventing processing of JSON with non-string data types (e.g. Number) for scraped attributes,
values are now automatically converted to String

	New migration 0007, run Django migrate command

Changes in version 0.7.2-beta (2015-08-06)

	Added new method attribute to Scraper not binding HTTP method choice (GET/POST) so strictly to choice of request_type
(allowing e.g. more flexible POST requests), see: Advanced Request Options

	Added new body attribute to Scraper allowing for sending custom request HTTP message body data, see:
Advanced Request Options

	Allowing pagination for headers, body attributes

	Allowing of ScrapedObjectClass definitions in Django admin with no attributes defined as ID field
(omits double checking process when used)

	New migration 0006, run Django migrate command

Changes in version 0.7.1-beta (2015-08-03)

	Fixed severe bug preventing pagination for cookies and form_data to work properly

	Added a new section in the docs for Advanced Request Options

	Unit tests for some scraper request option selections

Changes in version 0.7.0-beta (2015-07-31)

	Adding additional HTTP header attributes to scrapers in Django admin

	Cookie support for scrapers

	Passing Scraper specific Scrapy meta data

	Support for form requests, passing form data within requests

	Pagination support for cookies, form data

	New migration 0005, run Django migrate command

	All changes visible in Scraper form of Django admin

	ATTENTION! While unit tests for existing functionality all passing through, new functionality is not heavily
tested yet due to problems in creating test scenarios. If you want to use the new functionality in a production
environment please test with extra care. You also might want to wait for 2-3 weeks after release
and/or for a following 0.7.1 release (not sure if necessary yet)

	Please report problems/bugs on GitHub [https://github.com/holgerd77/django-dynamic-scraper].

Changes in version 0.6.0-beta (2015-07-14)

	Replaced implicit and static ID concept of mandatory DETAIL_PAGE_URL type attribute serving as ID with a more
flexible concept of explicitly setting ID Fields for ScrapedObjClass in Django admin
(see: Defining the object to be scraped)

	New attribute id_field for ScrapedObjClass, please run Django migrate command (migration 0004)

	DETAIL_PAGE_URL type attribute not necessary any more when defining the scraped object class allowing for more
scraping use cases (classic and simple/flat datasets not referencing a certain detail page)

	Single DETAIL_PAGE_URL type ID Field still necessary for using DDS checker functionality
(see: Defining/Running item checkers)

	Additional form checks for ScrapedObjClass definition in Django admin

Changes in version 0.5.2-beta (2015-06-18)

	Two new processors ts_to_date and ts_to_time to extract local date/time from unix timestamp string (see: Processors)

Changes in version 0.5.1-beta (2015-06-17)

	Make sure that Javascript rendering is only activated for pages with HTML content type

Changes in version 0.5.0-beta (2015-06-10)

	Support for creating JSON/JSONPath scrapers for scraping JSON encoded pages (see: Scraping JSON content)

	Added new separate content type choice for detail pages and checkers (e.g. main page in HTML, detail page in JSON)

	New Scraper model attribute detail_page_content_type, please run Django migration command (migration 0003)

	New library dependency python-jsonpath-rw 1.4+ (see Requirements)

	Updated unit tests to support/test JSON scraping

Changes in version 0.4.2-beta (2015-06-05)

	Possibility to customize Splash args with new setting DSCRAPER_SPLASH_ARGS (see: Setting up Splash (Optional))

Changes in version 0.4.1-beta (2015-06-04)

	Support for Javascript rendering of scraped pages via ScrapyJS/Splash

	Feature is optional and needs a working ScrapyJS/Splash deployment, see Requirements and
Setting up Splash (Optional)

	New attribute render_javascript for Scraper model, run python manage.py migrate dynamic_scraper to
apply (migration 0002)

	New unit tests for Javascript rendering (see: Running ScrapyJS/Splash JS rendering tests)

Changes in version 0.4.0-beta (2015-06-02)

	Support for Django 1.7/1.8 and Scrapy 0.22/0.24. Earlier versions not supported any more from this release on,
if you need another configuration have a look at the DDS 0.3.x branch (new features won’t be back-ported though)
(see Release Compatibility Table)

	Switched to Django migrations, removed South dependency

	Updated core library to work with Django 1.7/1.8 (Django 1.6 and older not working any more)

	Replaced deprecated calls logged when run under Scrapy 0.24 (Scrapy 0.20 and older not working any more)

	Things to consider when updating Scrapy: new ITEM_PIPELINES dict format, standalone scrapyd with changed
scrapy.cfg settings and new deployment procedure (see: Scrapy Configuration)

	Adopted example_project and tests Django projects to work with the updated dependecies

	Updated open_news.json example project fixture

	Changed DDS status to Beta

Changes in version 0.3.14-alpha (2015-05-30)

	Pure documentation update release to get updated Scrapy 0.20/0.22/.24 compatibility info in the
docs (see: Release Compatibility Table)

Changes in version 0.3.13-alpha (2015-05-29)

	Adopted test suite to pass through under Scrapy 0.18 (Tests don’t work with Scrapy 0.16 any more)

	Added Scrapy 0.18 to release compatibility table (see: Release Compatibility Table)

Changes in version 0.3.12-alpha (2015-05-28)

	Added new release compatibility overview table to docs (see: Release Compatibility Table)

	Adopted run_tests.sh script to run with Django 1.6

	Tested Django 1.5, Django 1.6 for compatibility with DDS v.0.3.x

	Updated title xpath in fixture for Wikinews example scraper

Changes in version 0.3.11-alpha (2015-04-20)

	Added only-active and --report-only-erros options to run_checker_tests management command (see: Run checker tests)

Changes in version 0.3.10-alpha (2015-03-17)

	Added missing management command for checker functionality tests to distribution (see: Run checker tests)

Changes in version 0.3.9-alpha (2015-01-23)

	Added new setting DSCRAPER_IMAGES_STORE_FORMAT for more flexibility with storing original and/or thumbnail images (see Scraping images/screenshots)

Changes in version 0.3.8-alpha (2014-10-14)

	Added ability for duration processor to break down and parse second values greater than one hour in total
(>= 3600 seconds) (see: Processors)

Changes in version 0.3.7-alpha (2014-03-20)

	Improved run_checker_tests management command with --send-admin-mail flag for usage of command in
cronjob (see: Run checker tests)

Changes in version 0.3.6-alpha (2014-03-19)

	Added new admin action clone_scrapers to get a functional copy of scrapers easily

Changes in version 0.3.5-alpha (2013-11-02)

	Add super init method to call init method in Scrapy BaseSpider class to DjangoBaseSpider init method (see Pull Request #32 [https://github.com/holgerd77/django-dynamic-scraper/pull/32])

Changes in version 0.3.4-alpha (2013-10-18)

	Fixed bug displaying wrong message in checker tests

	Removed run_checker_tests celery task (which wasn’t working anyway) and replaced it with
a simple Django management command run_checker_tests to run checker tests for all scrapers

Changes in version 0.3.3-alpha (2013-10-16)

	Making status list editable in Scraper admin overview page for easier status change for many scrapers at once

	Possibility to define x_path checkers with blank checker_x_path_result, the checker is then succeeding if
elements are found on page (before this lead to an error message)

Changes in version 0.3.2-alpha (2013-09-28)

	Fixed the exception when scheduler string was processed (see Pull Request #27 [https://github.com/holgerd77/django-dynamic-scraper/pull/27])

	Allowed Checker Reference URLs to be longer than the the default 200 characters (DB Migration 0004, see Pull Request #29 [https://github.com/holgerd77/django-dynamic-scraper/pull/29])

	Changed __unicode__ method for SchedulerRuntime to prevent TypeError (see Google Groups Discussion [https://groups.google.com/forum/#!topic/django-dynamic-scraper/FSNUGhFY7YY])

	Refer to ID instead of PK (see commit in nextlanding repo [https://github.com/nextlanding/django-dynamic-scraper/commit/c4dfaa6e167293c7d35188c8f94f08974a32f310])

Changes in version 0.3.1-alpha (2013-09-03)

	Possibility to add keyword arguments to spider and checker task method to specify which reference objects
to use for spider/checker runs (see: Defining your tasks)

Changes in version 0.3-alpha (2013-01-15)

	Main purpose of release is to upgrade to new libraries (Attention: some code changes necessary!)

	Scrapy 0.16: The DjangoItem class used by DDS moved from scrapy.contrib_exp.djangoitem
to scrapy.contrib.djangoitem. Please update your Django model class accordingly (see: Creating your Django models).

	Scrapy 0.16: BOT_VERSION setting no longer used in Scrapy/DDS settings.py file (see: Setting up Scrapy)

	Scrapy 0.16: Some minor import changes for DDS to get rid of deprecated settings import

	Django 1.5: Changed Django settings configuration, please update your Scrapy/DDS settings.py file (see: Setting up Scrapy)

	django-celery 3.x: Simpler installation, updated docs accordingly (see: Installing/configuring django-celery for DDS)

	New log output about which Django settings used when running a scraper

Changes in version 0.2-alpha (2012-06-22)

	Substantial API and DB layout changes compared to version 0.1

	Introduction of South for data migrations

Changes in version 0.1-pre-alpha (2011-12-20)

	Initial version

Roadmap

[THIS ROADMAP IS PARTIALLY OUTDATED!]

pre-alpha

Django Dynamic Scraper’s pre-alpha phase was meant to be for
people interested having a first look at the library and give some feedback if things were making generally
sense the way they were worked out/conceptionally designed or if a different approach on implementing
some parts of the software would have made more sense.

alpha

DDS is currently in alpha stadium, which means that the library has proven itself in (at least) one
production environment and can be (cautiously) used for production purposes. However being still very
early in develpment, there are still API and DB changes for improving the lib in different ways.
The alpha stadium will
be used for getting most parts of the API relatively stable and eliminate the most urgent bugs/flaws
from the software.

beta (current)

In the beta phase the API of the software should be relatively stable, though occasional changes will
still be possible if necessary. The beta stadium should be the first period where it is save to use
the software in production and beeing able to rely on its stability. Then the software should remain in
beta for some time.

Version 1.0

Version 1.0 will be reached when the software has matured in the beta phase and when at least 10+
projects are using DDS productively for different purposes.

Index

 _images/screenshot_django-admin_add_domain_ref_object.png
Change news website

Name: Wikinews
urt: hitp:/ fen.wikinews.org wiki/Main_Page
Scraper: Wikinews Scraper (Article) | § &
Scraper i a4

runtime:

*Delee Saveand s sntter | Saveand cominue aicns |]

_images/screenshot_django-admin_add_log_marker.png
Home » Dynamic_scraper > Log markers » Add log marker
Add log marker

Message
contains:

Ref object:

Mark with type: ¥/
Planned Error
Dirty Data,
Important
Custom type: lgnore
Miscellaneous
Ccustom F
—

enter your own type in the next feld for a custo type.

Spider name:

Scraper:

*

_images/screenshot_command_line_checker_test_run.png
'scrapy.extensions.logstats. LogStats",
*scrapy.extensions. corestats. CoreStats' ,
"scrapy.extensions. telnet. TelnetConsole']

2017-05-12 06 [dds] INFO: Running in Test Mode (do_action not set).

2017-05-12 06 [dds] INFO: Use ALL images store format (Scrapy behaviour, save both original and thumbnail images)
2017-05-12 06 [dds] INFO: Runtime config: {}

2017-05-12 06 [scrapy.core. engine] INFO: Spider opened

2017-05-12 06 [scrapy.extensions.logstats] INFO: Crawled O pages (at © pages/min), scraped 0 items (at 0 items/min)
2017-05-12 07 [dds] INFO: Checker configuration working (ref url request returning 404) (url (Article) > 404).
2017-05-12 07 [scrapy.spidermiddlenares. httperror] INFO: Ignoring response <404 ttps://en.wikinews.org/wiki/This_w
2017-05-12 07 [scrapy.core.engine] INFO: Closing spider (finished)

2017-05-12 03:56:07 [scrapy. statscollectors] INFO: Dumping Scrapy stats:

" downloader/request_bytes': 529,
* downloader/request_count”: 2,

* downloader/request_method_count/GET": 2,
* downloader/response_bytes': 8055,

donnloader/response_count”: 2,
' downlloader/response_status_count/301

_images/screenshot_dds_command_line_help.png
2017-06-13 ©8:

00 [scrapy.middlenare] INFO: Enabled extensions:

['scrapy. extensions.memusage . MemoryUsage' ,
*scrapy. extensions. corestats. CoreStats' ,
*scrapy.extensions. logstats. Logstats',
*scrapy.extensions. telnet. TelnetConsole']

2017-06-13 08;
2017-06-13 08;
2017-06-13 08
2017-06-13 08;
2017-06-13 08
2017-06-13 08
2017-06-13 08;
2017-06-13 08;
2017-06-13 08;
2017-06-13 08;
2017-06-13 08;
2017-06-13 08;
2017-06-13 08;
2017-06-13 08;
2017-06-13 08;
2017-06-13 08;
2017-06-13 08;
2017-06-13 08;
2017-06-13 08;

00 [dds] ERROR: You have to provide the ID of the reference Country object.

00 [dds] INFO: DD Usage
00 [dds] INFO: mmmeme
00 [dds] INFO: scrapy crawl [scrapy_options] SPIDERNAME -a id=REF_OBJECT_ID [dds_options]

00 [dds] INFO: Options

00 [dds] INFO: -------

00 [dds] INFO: -a do_action=(yesno) Save output to DB, default: no (Test Mode)

00 [dds] INFO: -L LOG_LEVEL (scrapy option) Setting the log level for both Scrapy and DDS
00 [dds] INFO: ‘-a run_type| rt=(TASKISHELL) Simulate task based scraper run, default: SHELL
00 [dds] INFO: -a max_items_read|mir=[Int] Limit number of items to read

00 [dds] INFO: -a max_items_save|mis=[Int] Limit number of items to save

00 [dds] INFO: -a max_pages_read Impr=[Int] Limit number of pages to read

00 [dds] INFO: -a start_page|sp=[PAGE] Start at page PAGE, e.g. 5, F

00 [dds] INFO: -a end_page|ep=[PAGE] End scraping at page PAGE, e.g. 10, M

00 [dds] INFO: -a output_num_mp_response_bodies|omp=[Int] Output response body content of MP for debugging
00 [dds] INFO: -a output_num_dp_response_bodies|odb=[Int] Output response body content of DP for debugging

Unhandled error in Deferred:

_images/screenshot_django-admin_checker_params.png
(Hide) Checker: url (Article) > 404) Delete

Attribute of type DETAIL_PAGE_URL, several checkers for same DETAIL_PAGE_URL aturibute possible.

E—

Checker x path:

Checker x path
result:

Checker ref url: ~ Currently: http:/ fen.wikinews.org/wiki/This_wiki_article_doesnt_exist
Change: | http:/ fen.wikinews.org wiki/This_wiki_article_doesnt_exist

Comments:

4 Add another Checker

_images/screenshot_django-admin_logging.png
Home » Dynamic_scraper > Logs.

Select log to change

P —
Action: @ 0 of 5 selected

() Message

(O Scheduler runtime updated (Next
action time: 2012-02-07 09:02,
Next action factor: 7.692, Zero
actions: 0)

O Item saved.

O Item saved.

O Item saved.

Ref object

NewsWebsite
)

NewsWebsite
i

NewsWebsite
)

NewsWebsite
i

Level
INFO

INFO

INFO

INFO

Spider name

article_spider

article_spider

article_spider

article_spider

Scraper

Wikinews
Scraper

Wikinews
Scraper

Wikinews
Scraper

Wikinews
Scraper

Date

2012-

07:59

By level
Al
CRITICAL
ERROR
WARNING
INFO
DEBUG

By spider name
Al
article_spider

By scraper
Al

Wikinews Scraper (Article)
(None)

_images/screenshot_django-admin_add_scraped_obj_class.png
Scraped obj attrs

Name Order Aur ype
base hrice)

base 10 Loase)
e it

e 2 | STANDARD.

ar e

ut 30 | DETAIL_PAGE_URL
descripion e

description w0 | STANDARD. B
humbrai (e

humbnail s0 | mace

_images/screenshot_django-admin_articles_after_scraping.png
Home » Open_news > Articies
Select article to change
Action Go] 0.0f5 selected

Article
Scotland: Northern Constabulary launch murder investigation over teen death
Alleged racist tram ranter remanded after court hearing

Former Israeli president Moshe Katsav goes to prison for rape

Human Rights Watch report talks of South Africas LGBT people 'in constant fear

Oooo0oocoo

India seeks web crackdown after failed talks with industry

5 articles

_images/screenshot_django-admin_monitoring_section.png
Lastscraper 1w
save alert
period:

‘Optional, used for scraper moritoring with check last_scraper_saves' management cmd, syntax: [HOURSIh or [DAYSId
or IWEEKSlw (e.9. 'Sh', 'S’ '2w)

Next last Date: 2015-12-04 | Today | 5]
scrapersave S
S Time: 03:36:06 | Now | D

Note: You are 7 hours ahead of server time.

Next time the last scraper save will be alerted, normaly set on management cmd run.

Last checker |14

delete alert
period:
Opiona, used for scraper moritring with check Jast_checker. deletes' management cd,synax: [HOURSh or[DAYSId
or IWEEKSw (e, 'K, ', ‘20
Next last Date: 2015-12-04 | Today |
checker delete
ere Time: [03:36:06 | Now | D)

Note: You are 7 hours ahead of server time.
Next time the last checker delete will be alerted, normally set on management cmd run.

_images/screenshot_django-admin_overview.png
Site administration

Groups 4Add # Change
users 4Add # Change

Recent Actions

My Actions.
None available

Crontabs #Add & Change
Intervals #Add & Change
Periodic tasks #Add & Change
Tasks #Change
Workers #Add 2 Change
e —
Logs #Add & Change
Scheduler runtimes #Add & Change
Scraped obj classs #Add & Change
scrapers #Add 2 Change

Articles

News websites

4Add # Change
4Add # Change

Sites.

4Add # Change

_images/screenshot_command_line_checker_run.png
['scrapy.extensions. telnet. TelnetConsole’,
*scrapy. extensions. corestats. CoreStats',

*scrapy. extensions. logstats. LogStats']

2017-05-12 03:55:10 [dds] INFO: Django settings used: example_project.settings

2017-05-12 03:55:10 [dds] INFO: Use ALL images store format (Scrapy behaviour, save both original and thumbnail inages)
2017-05-12 03:55:10 [dds] INFO: Runtime config: do_action True

2017-05-12 03:55:10 [dds] INFO: Checker for Article "Turkey blocks Wikipedia, alleging smear campaign” (140) initialized.
2017-05-12 03:55:10 [scrapy. core. engine] INFO: Spider opened

2017-05-12 03:55:10 [scrapy.extensions. logstats] INFO: Crawled 0 pages (at @ pages/min), scraped 0 items (at 0 items/min)
2017-05-12 03:55:11 [dds] INFO: No 404 result (url (Article) > 404 checker type).

2017-05-12 03:55:11 [dds] INFO: Ttem kept.

2017-05-12 03:55:11 [scrapy. core. engine] INFO: Closing spider (finished)
2017-05-12 03:55:11 [scrapy. statscollectors] INFO: Dumping Scrapy stats:
{’downloader/request_bytes": sss,

* downloader/request_count':

dmm\wder/rwur_-wnd_mnvﬁzr'

donnloader/response. status_count,/200"
 downloader/response_status_count/301"

_images/screenshot_django-admin_pagination.png
Pagination type:

t Layer Pagination (Static) (Hide)

Pagination on start

Pagination append str:

Pagination page replace:

RANGE_FUNCT (+FOLLOW)

&page=(page) J
Syt somepartoturlpage)moreathim

02

4

Second Layer Pagination (Dynamic) (Hide)

Follow pages url xpath:

Follow pages page xpath:

Num pages follow:

"RANGE_FUNCT. uses Python range funct. syntax: start stopl, stepl, FREE_LIST: ‘Replace text 1, ‘Some other text 2, Maybe a number 3,

Optional follow lnks from a single non-paginated or al statically paginated (ANGE_FUNCT, FREE_LIST) main pages.

‘Optional additional XPath for the page number, can be used in {fllow.page} placeholder.

‘Optionally limit number of pages to follow (default: ollow until XPath ails)

nav.xhtml

 Table of Contents

 		
 django-dynamic-scraper - مستندات

 		
 Introduction

 		
 Installation

 		
 Requirements

 		
 Release Compatibility Table

 		
 Installation with Pip

 		
 Manual Installation

 		
 Setting up Scrapy

 		
 Scrapy Configuration

 		
 Setting up Splash (Optional)

 		
 Getting started

 		
 Creating your Django models

 		
 Create your model classes

 		
 Deletion of objects

 		
 Defining the object to be scraped

 		
 Defining your scrapers

 		
 General structure of a scraper

 		
 Creating the scraper of our open news example

 		
 Adding corresponding request page types

 		
 Create the domain entity reference object (NewsWebsite) for our open news example

 		
 Connecting Scrapy with your Django objects

 		
 Adding the spider class

 		
 Adding the pipeline class

 		
 Running/Testing your scraper

 		
 Advanced topics

 		
 Defining/Running item checkers

 		
 Creating a checker class

 		
 Checker Configuration

 		
 Running your checkers

 		
 Run checker tests

 		
 Scheduling scrapers/checkers

 		
 Introduction

 		
 Installing/configuring django-celery for DDS

 		
 Defining your tasks

 		
 Run your tasks

 		
 Scheduling configuration

 		
 Advanced Request Options

 		
 Request Type and Method

 		
 HTTP Headers

 		
 HTTP Body

 		
 Request Cookies

 		
 Scrapy Meta Options

 		
 Form Data

 		
 Pagination

 		
 First Pagination Layer: Static Pagination

 		
 Second Pagination Layer: Dynamic Follow Pagination

 		
 Scraping JSON content

 		
 Example

 		
 Scraping images/screenshots

 		
 Configuration

 		
 Choosing store format for images

 		
 Updating domain model class/scraped obj class definition

 		
 Extending/Testing the scraper

 		
 Where to go from here

 		
 Basic services

 		
 Logging / Log Markers

 		
 Introduction

 		
 Logging: When and Where

 		
 Log Markers: Meaning to your logs

 		
 Configuration

 		
 Monitoring

 		
 Configuration

 		
 Monitoring Automation

 		
 Reference

 		
 Settings

 		
 DSCRAPER_IMAGES_STORE_FORMAT

 		
 DSCRAPER_CUSTOM_PROCESSORS

 		
 DSCRAPER_SPLASH_ARGS

 		
 DSCRAPER_LOG_ENABLED

 		
 DSCRAPER_LOG_LEVEL

 		
 DSCRAPER_LOG_LIMIT

 		
 DSCRAPER_MAX_SPIDER_RUNS_PER_TASK

 		
 DSCRAPER_MAX_CHECKER_RUNS_PER_TASK

 		
 Django Model Reference

 		
 ScrapedObjClass

 		
 ScrapedObjAttr

 		
 Scraper

 		
 ScraperElem

 		
 SchedulerRuntime

 		
 API Reference

 		
 DjangoSpider

 		
 DjangoChecker

 		
 Processors

 		
 General Functionality

 		
 Predefined Processors

 		
 Custom Processors

 		
 Development

 		
 How to contribute

 		
 Running the test suite

 		
 Overview

 		
 Django test apps

 		
 Running ScrapyJS/Splash JS rendering tests

 		
 Release Notes

 		
 Roadmap

_images/screenshot_django-admin_scraper_1.png
Scraped obj attr Xpath Reg exp

ScraperElem object

base (Article) P

Scraperelem object

it (Article) +

Scraperelem object

description (Article) |+

Scraperelem object

url (Article) 4 spani@class="1_title")/a/@href

_images/screenshot_django-admin_scraper_2.png
Request page type _Processors. Proc ctxt Mandatory | Delete?

[Main Page 0
| Detail page 1 a]
[Main Page 0
| Main Page pre_url ‘pre_url hitp:/ fen.wikinews.org" o

_images/screenshot_django-admin_peridoc_task.png
Home » Dicelery » Periodic tasks » Run spiders: every 30 seconds

Change periodic task

Name: Run spiders

Useful description

Task (registered): ‘open_news.tasks.run_spiders |+

Task (custom):

0 Enabled
Interval: every2hours & &
Crontab: s

Use one of intervalcrontab.

Arguments (Show)

Execution Options (Show)

*Delee e and ot eiing | avean 0 anctver | [

_images/screenshot_django-admin_request_page_type_example.png
Request page types

(Hide) Request page type: Main Page
Page type:

Scraped obj
aur:

Empty for main page, atribute of type URL scraped from main page for detail pages.

Contenttype

Data type format for scraped pages of page type (for SON use JSONPath instead of XPath)

) Render javascript
Render Javascript on pages (Scrapy/Spash deployment needed, carefu:resourceinense)

Request type: | Request
Normal (tpically GET) request (default) or form request (typically POST), using Scrapys corresponding reque:
(not used for checker).

Method:
HTTP request via GET or POST.

Headers:

)

‘Optional HTTP headers sent with each request, provided as a JSON dict (e.. {Referer”*htp: eferer_urf},
‘quotes), can use {page} placeholder of pagination.

_images/screenshot_django-admin_scraper_request_cookies.png
Cookies:

‘Optional cookies as JSON dict(use double quotes!), can use {page} placeholder of pagination.

_images/screenshot_django-admin_scraper_request_form_data.png
Form data: (
“country”:"SE',
“amount" *10000",

| pasepasel”

)
‘Optional HTML form data as JSON dict(use double quotest), oy used with FormRequest request type, can use {page} placeholder of pagination.

_images/screenshot_django-admin_scraper_overview_last_checker_delete_alert.png
Home > Dynamic_Scraper » Scrapers
Select scraper to change

N —

Action: (cw=-- %) (Go| 0.of 2 selected
010 Name 14 Scrapedobjclass 2 a Status Maxitems read | Max items save | Pagination type | Rpts | Checkers | Last scraper save | Last checker delete
() 2 USDepartment Aricee acve &) 10 None) NONE 2 2015-11-25 2015-11-25 10:11

of Justice - 011 (aw)

Press Release

Scraper

1| wikinews Article AcTvE &) (None) None) NONE 2 2015-11-30 2015-11-30 06:11
Scraper 1011 (w) ag)

2 scrapers m

_images/screenshot_django-admin_scraper_request_body.png
Request type: | Request
Normal typcaly GET) request eful o form equet (ypically POST, usingScapys correspondin request classes rt used

forchecken).
Method:
HTTP request via GET or POST.
Request options (
Headers: (

“Content-Type': "application/jsan;charset=UTF-§"
)

)

‘Optional HTTP headers sent with each request, provided as a JSON dict(e.g. {Referer” http: eferer_urf), use double quotes!
‘can use {page} placeholder of pagination.

Body: iyear: 2015, search=null, sort. ‘name" }

_images/screenshot_django-admin_scraper_request_http_headers.png
Headers:

(
| eferer g fefere_ur

‘Opional HTTP headers sent with each request, provided as a JSON dict (e.g. {Referer" *htp: eferer_urf} use double quotest).

_images/screenshot_django-admin_scraper_request_scrapy_meta_data.png
Meta:

(
PO e your_proxyutert

‘Opional Scrapy meta attributes as JSON dic (use double quotes), see Scrapy docs for reference.

_images/screenshot_django-admin_scraper_request_type_and_method.png
Request type: | Request

Normal (tpically GET) request (defauit) or form request (typically POST), using Scrapys corresponding request classes
(not used for checker).

Method:

HTTP request via GET or POST.

_images/screenshot_wikinews_detail_page_source.png
<i— firstHeading —
ve<hl id="firstHeading” class="firstHeading">
“Human Rights Watch report talks of South Africa's LGBT people 'in constant fear'"
</h1>
<1 /firstHeading

_images/screenshot_wikinews_overview_page_source.png
<ing alt="Human Rights Watch report talks of South Africa's LGBT people 'in constant fear' sr

</div>
<div class="1_ing_type"></div>
vespan class="1_title">
v<a href="/wiki/Hunan_Rights_Watch_report_talks_of_South_Africa%27s_LGBT_people_%27in_constant_fears
“Hunan Rights Watch report talks of South Africa's LGBT people 'in constant fear'"
</2>

b <poac/p>
b <poae/p>
</td>

_images/screenshot_scrapy_run_command_line.png
2017-05-11 06:43:26 [dds] INFO:

2017-05-11 06:43:26 [dds] INFO:

2017-05-11 06:43:26 [dds] INFO: Scraping data from page 1.

2017-05-11 06:43:26 [dds] INFO: URL: http://en.wikinews.org/wiki/Main Page

2017-05-11 06:43:26 [dds] INFO:

2017-05-11 06:43:27 [dds] INFO:

2017-05-11 06:43:27 [dds] INFO: Starting to crawl item 1 from page 1.

2017-05-11 06:43:27 [dds] INFO:

2017-05-11 06:43:27 [dds] INFO: MP HTMLIGET url 1-1 http://en.wikinens.org/wiki/President_Trum
2017-05-11 06:43:27 [dds] INFO: MP HTMLIGET description 1-1 On Tuesday, U.S. President Donald Trump dis

n (FBD). Officially, Coney was fired for mishandlingforner presidential candidate illary Clinton's alleged misuse of p
whether the real reason may have been that Comey was leading the investiga..

2017-05-11 06:43:27 [dds] INFO: MP HTMLIGET ‘thumbnail 1-1 https://upload. wikimedia. org/wikipedia/comn
ptenber_2013. jpg’

2017-05-11 06:43:27 [dds] INFO:

2017-05-11 06:43:27 [dds] INFO: Starting to crawl item 2 from page 1.

2017-05-11 06:43:27 [dds] INFO:

2017-05-11 06:43:27 [dds] INFO: MP HTMLIGET url 1-2 http://en.wikinens.org/wiki/Emmanuel_Macron
2017-05-11 06:43:27 [dds] INFO: MP HTMLIGET description 1-2 On Sunday,’

2017-05-11 06:43:27 [dds] INFO: MP HTMLIGET ‘thumbnail 1-2 https://upload. wikimedia.org/wikipedia/comn
%29. jpg/100px-French_Election-_Celebrations_at._The_LouvreX2C_Paris_X2833707026433%29. jpg"

2017-05-11 06:43:28 [dds] INFO: DPL HTMLIGET title 1-1 President Trump fires FBI Director James Co
2017-05-11 06:43:28 [dds] INFO: Item 1-1 saved to Django DB.

2017-05-11 06:43:28 [dds] INFO: DPL HTMLIGET title 1-2 Emmanuel Macron wins French presidential el
2017-05-11 06:43:28 [dds] ERROR: Double item 1-2, not saved.

2017-05-11 06:43:28 [scrapy. core.engine] INFO: Closing spider (finished)

2017-05-11 06:43:28 [scrapy. statscollectors] INFO: Dumping Scrapy stats:
{'downloader/request_bytes': 1981,
*downloader/request_count" : 6,
* downloader/request_method_count/GET"

_images/screenshot_shell_scrapy_server.png
2011-12-13
2011-12-13
2011-12-13
2011-12-13
2011-12-13

12140100

210100
2140100
2140100
2140100

[-1 Log opened.

[-] Scrapyd web console available at htep://localhost:6800/
[Launcher] Scrapyd started: max_proc=s, runner='scrapyd.runmer

[-] Site starting on 6300

[-] Starting factory <twisted.ueb.server.Site instance at 0x10coeDef>

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

