
Django Deployments Cookbook
Documentation

Agiliq and Contributors

Feb 20, 2019

Table of Contents:

1 Using Zappa deploy in Lambda & use Aurora Serverless 1

2 Using Apex-Up deploy in Lambda and use Aurora Serverless 17

3 Using Zeit-Now & use RDS Postgres 23

4 Deploy in AWS Fargate 31

5 Indices and tables 45

i

ii

CHAPTER 1

Using Zappa deploy in Lambda & use Aurora Serverless

We will see how to deploy a Django application onto AWS Lambda using Zappa and use AWS Aurora-Serverless
as the DB.

AWS Lambda is a serverless computing platform by amazon, which is completely event driven and it automatically
manages the computing resources. It scales automatically when needed, depending upon the requests the application
gets.

Zappa is a python framework used for deploying python applications onto AWS-Lambda. Zappa handles all of the
configuration and deployment automatically for us.

And Aurora Serverless is an on-demand, auto-scaling Relational Database System by Amazon AWS(presently com-
patible with only MySQL). It automatically starts up & shuts down the DB depending on the requirement.

1.1 Install and Configure the Environment

1.1.1 Configure AWS Credentials

First, before using AWS, we have to make sure we have a valid AWS account and have the aws environment
variables(access-keys).

then, create a folder at the root level

$ mkdir .aws

Now, create a file called credentials and store the aws_access_key_id and aws_secret_access_key. To
find these access credentials

• Go to IAM dashboard in AWS console

• Click on Users

• Click on your User name

• Then, go to Security credentials tab

1

https://aws.amazon.com/lambda/
https://www.zappa.io/
https://aws.amazon.com/rds/aurora/serverless/

Django Deployments Cookbook Documentation

• Go down to Access keys

• Note down the access_key_id. secret_access_key is only visible when you are creating new user or
when creating a new access key, so you need to note down both the access_key_id and secret_access_key at the
time of user creation only or create a new access key so that we can get both the keys.

###~/.aws/credentials
[default]
aws_access_key_id= XXXXXXXXXXXXXXXXXXXX
aws_secret_access_key=XX

1.1.2 Go to Django app

After setting up the aws credentials file, now let us go to the django project, here we used Pollsapi (https://github.com/
agiliq/building-api-django) as the django project. Now go inside the pollsapi app in this repo.

Create a virtual env for the project and do $ pip install -r requirements.txt.

1.1.3 Install & Configure Zappa

Next install zappa

$ pip install zappa

After installing Zappa, let us initilise zappa

$ zappa init

which will ask us for the following:

• Name of environment - default ‘dev’

• S3 bucket for deployments. If the bucket does not exist, zappa will create it for us. Zappa uses this bucket to
hold the zappa package temporarily while it is being transferred to AWS lambda, which is then deleted after
deployment.

(Its better to create an S3 bucket, which we will later also use to host the static files of our application)

• Project’s settings - (which will take the ‘pollsapi.settings’)

Zappa will automatically find the correct Django settings file and the python runtime version

$ zappa init

Welcome to Zappa!

Zappa is a system for running server-less Python web applications on AWS Lambda and
→˓AWS API Gateway.
This `init` command will help you create and configure your new Zappa deployment.
Let's get started!

(continues on next page)

2 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

https://github.com/agiliq/building-api-django
https://github.com/agiliq/building-api-django

Django Deployments Cookbook Documentation

(continued from previous page)

Your Zappa configuration can support multiple production stages, like 'dev', 'staging
→˓', and 'production'.
What do you want to call this environment (default 'dev'):

AWS Lambda and API Gateway are only available in certain regions. Let's check to make
→˓sure you have a profile set up inone that will work.
Okay, using profile default!

Your Zappa deployments will need to be uploaded to a private S3 bucket.
If you don't have a bucket yet, we'll create one for you too.
What do you want to call your bucket? (default 'zappa-xpxpcmpap'):zappa-
→˓staticfiles1234

It looks like this is a Django application!
What is the module path to your projects's Django settings?
We discovered: pollsapi.settings
Where are your project's settings? (default 'pollsapi.settings'):

You can optionally deploy to all available regions in order to provide fast global
→˓service.
If you are using Zappa for the first time, you probably don't want to do this!
Would you like to deploy this application globally? (default 'n') [y/n/(p)rimary]: n

Okay, here's your zappa_settings.json:

{
"dev": {

"django_settings": "pollsapi.settings",
"profile_name": "default",
"project_name": "pollsapi",
"runtime": "python3.6",
"s3_bucket": "zappa-staticfiles1234"

}
}

Does this look okay? (default 'y') [y/n]: y

After accepting the info. A file zappa_settings.json gets created which looks like

{
"dev": {
"django_settings": "pollsapi.settings",
"profile_name": "default",
"project_name": "pollsapi",
"runtime": "python3.6",
"s3_bucket": "zappa-staticfiles1234"

}
}

Now, before deploying we have to mention the aws_region(where we want ot deploy the django app). Make sure
that you have the s3_bucket and aws_region in the same region.

{
"dev": {
"django_settings": "pollsapi.settings",

(continues on next page)

1.1. Install and Configure the Environment 3

Django Deployments Cookbook Documentation

(continued from previous page)

"profile_name": "default",
"project_name": "pollsapi",
"runtime": "python3.6",
"s3_bucket": "zappa-staticfiles1234",

"aws_region": "us-east-2" // aws_region
}

}

Now let us deploy the app

$ zappa deploy dev

which will show us

$ zappa deploy dev

Calling deploy for stage dev..
Downloading and installing dependencies..
- markupsafe==1.1.0: Using locally cached manylinux wheel
- sqlite==python36: Using precompiled lambda package

Packaging project as zip.
Uploading pollsapi-dev-1548143620.zip (36.2MiB)..
100%|| 37.9M/37.9M [00:14<00:00, 2.69MB/s]
Scheduling..
Scheduled pollsapi-dev-zappa-keep-warm-handler.keep_warm_callback with expression
→˓rate(4 minutes)!
Uploading pollsapi-dev-template-1548143703.json (1.6KiB)..
100%|| 1.61K/1.61K [00:00<00:00, 3.40KB/s]
Waiting for stack pollsapi-dev to create (this can take a bit)..
100%|| 4/4 [00:10<00:00, 2.72s/res]
Deploying API Gateway..
Deployment complete!: https://1astmowyfc.execute-api.us-east-2.amazonaws.com/dev

Now, when we click on the link we will see this

4 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

Django Deployments Cookbook Documentation

So, we will add the host to our to our ALLOWED_HOSTS in pollsapi/settings.py

ALLOWED_HOSTS = ['127.0.0.1', '1astmowyfc.execute-api.us-east-2.amazonaws.com',]

After this, we have update zappa,

$ zappa update dev

and after updating the app when we refresh the page we see,

The Static files are not available !!

1.2 Serving Static Files

For serving static files we use S3 bucket(which we have created earlier).

We have to enable CORS for the S3 bucket, which enables browsers to get resources/files from different urls. Go to
S3 Bucket properties and then to Permissions, and click CORS Configuration, and paste these lines

<CORSConfiguration>
<CORSRule>

<AllowedOrigin>*</AllowedOrigin>
<AllowedMethod>GET</AllowedMethod>
<MaxAgeSeconds>3000</MaxAgeSeconds>
<AllowedHeader>Authorization</AllowedHeader>

</CORSRule>
</CORSConfiguration>

1.2.1 Configure Django for S3

$ pip install django-s3-storage

and also add it in the requirements.txt file.

1.2. Serving Static Files 5

Django Deployments Cookbook Documentation

...
django-s3-storage==0.12.4
...

Now update the settings.py file to add ‘djangos3_storage’_ to INSTALLED_APPS

INSTALLED_APPS = (
...,
'django_s3_storage',

)

and also add these lines at the bottom

S3_BUCKET = "zappa-staticfiles1234"

STATICFILES_STORAGE = "django_s3_storage.storage.StaticS3Storage"

AWS_S3_BUCKET_NAME_STATIC = S3_BUCKET

STATIC_URL = "https://%s.s3.amazonaws.com/" % S3_BUCKET

Push the static files to the cloud

we can push the static files by

$ python manage.py collectstatic --noinput

and do

$ zappa update dev

and after updating zappa, let us check by refreshing the page

6 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

Django Deployments Cookbook Documentation

1.3 Setup Serverless MySQL Database

Let us create an AWS Aurora MySQL serverless.

Go to AWS console and go to RDS and create a new Database

select Amazon Aurora and choose the edition which is Aurora serverless and click next

Select the Serverless radio button.

And in DB cluster identifier enter MyClusterName

Set the Master username and password and remember them for later use. And click Next.

In next page, Configure advanced settings , in Capacity setting section, select the Minimum & Maximum Aurora
capacity units.

And in Network & Security section, under Virtual Private Cloud (VPC) list, select Create new VPC. Under Subnet
group list, select Create new DB Subnet Group. Under VPC security groups list, select Create new VPC security

1.3. Setup Serverless MySQL Database 7

Django Deployments Cookbook Documentation

8 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

Django Deployments Cookbook Documentation

1.3. Setup Serverless MySQL Database 9

Django Deployments Cookbook Documentation

group.

And Click Create database

Now our Serverless Database is created, click on the db-cluster name to see the details

We will use the VPC, Subnet Ids and the security-group later.

1.4 Connect Django to MySQL DB

Now our MySQL db is created, we have to link it to our app.

We use mysqlclient to connect django to the MySQl Database Server.

10 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

Django Deployments Cookbook Documentation

$ pip install mysqlclient

and add it to the requirements.txt file

requirements.txt
...
mysqlclient==1.3.14
...

Now we need to update pollsapi/settings.py file,

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.mysql',
'NAME': 'pollsdb', # dbname
'USER': 'polls_admin', # master username
'PASSWORD': 'pollsadmin', # master password
'HOST': 'pollsapi-cluster.cluster-chcxxxxx.us-east-2.rds.amazonaws.com', #

→˓Endpoint
'PORT': '3306',

}
}

1.4.1 Configure Zappa Settings for RDS

Now go to Lambda Management console and click on functions and click on our lambda function(pollsapi)

Then we will go to the configuration page, Under the Network section, in Virtual Private Cloud (VPC)

select the same VPC as in Aurora DB

As Aurora Serverless DB clusters do not have publically accessible endpoints, our MyClusterName RDS can
only be accessed from within the same VPC.

Then in Subnets select all the subnets as in Aurora DB

and for Security groups select a different security group than the one on Aurora DB.

Update Security Group Endpoint

Now we have to update the security group Inbound endpoint.

In the RDS console, go to databases section and click on our DB name, which will take us to

Now click on the security group and we will be taken to the Security Group page

Go to Inbound tab in the bottom and click on the edit button

Here click on Add Rule and enter Type as MYSQL/Aurora & in Source enter the Security Group Id of the Lambda
function and save it.

Setup the Database

Now let us create a management command our polls app

1.4. Connect Django to MySQL DB 11

Django Deployments Cookbook Documentation

12 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

Django Deployments Cookbook Documentation

1.4. Connect Django to MySQL DB 13

Django Deployments Cookbook Documentation

$ cd polls
$ mkdir management
$ cd management
$ touch __init__.py
$ mkdir commands
$ cd commands
$ touch __init__.py
$ touch create_db.py

polls/management/commands/create_db.py
import sys
import logging
import MySQLdb

from django.core.management.base import BaseCommand, CommandError
from django.conf import settings

rds_host = 'pollsapi-cluster.cluster-chc62yjp918f.us-east-2.rds.amazonaws.com'
db_name = 'pollsdb'
user_name = 'polls_admin'
password = 'pollsadmin'
port = 3306

logger = logging.getLogger()
logger.setLevel(logging.INFO)

class Command(BaseCommand):
help = 'Creates the initial database'

(continues on next page)

14 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

Django Deployments Cookbook Documentation

(continued from previous page)

def handle(self, *args, **options):
print('Starting db creation')
try:

db = MySQLdb.connect(host=rds_host, user=user_name,
password=password, db="mysql", connect_timeout=5)

c = db.cursor()
print("connected to db server")
c.execute("""CREATE DATABASE pollsdb;""")
c.execute(

"""GRANT ALL PRIVILEGES ON db_name.* TO 'polls_admin' IDENTIFIED BY
→˓'pollsadmin';""")

c.close()
print("closed db connection")

except:
logger.error(

"ERROR: Unexpected error: Could not connect to MySql instance.")
sys.exit()

Now let us update zappa

$ zappa update dev

And create the databse using the management command

$ zappa manage dev create_db

which will show us

$ zappa manage dev create_db
[START] RequestId: 5c2de49d-856e-4d75-963d-017a98660XXX Version: $LATEST
[DEBUG] 2019-01-22T14:55:28.387Z 5c2de49d-856e-4d75-963d-017a98660XXX Zappa Event: {
→˓'manage': 'create_db'}
Starting db creation
connected to db server
closed db connection
[END] RequestId: 5c2de49d-856e-4d75-963d-017a98660XXX
[REPORT] RequestId: 5c2de49d-856e-4d75-963d-017a98660XXX
Duration: 218.58 ms
Billed Duration: 300 ms
Memory Size: 512 MB
Max Memory Used: 83 MB

We have to migrate now

$ zappa manage dev migrate

Now let us create the admin user

$ zappa invoke --raw dev "from django.contrib.auth.models import User; User.objects.
→˓create_superuser('admin', 'anmol@agiliq.com', 'somerandompassword')"

Now let us check by logging in the admin page

NOW OUR DJANGO APP IS COMPLETELY SERVERLESS !!

We can check the lambda logs by zappa dev tail

1.4. Connect Django to MySQL DB 15

Django Deployments Cookbook Documentation

16 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

CHAPTER 2

Using Apex-Up deploy in Lambda and use Aurora Serverless

We will try to deploy a basic django app onto AWS Lambda using Apex Up.

AWS Lambda is a serverless computing platform by amazon, which is completely event driven and it automatically
manages the computing resources. It scales automatically when needed, depending upon the requests the application
gets.

Apex Up is a Open Source framework used for deploying serverless applications onto AWS-Lambda. Up currently
supports Node.js, Golang, Python, Java, Crystal, and static sites out of the box. Up is platform-agnostic, supporting
AWS Lambda and API Gateway.

Note :

• Apex-Up currently supports only Node.js lambda environment, but we can use python 2.7 and 3.4 in it.

• We have to use Django 2.0 as it is the only latest version which supports python3.4

2.1 Install and Configure the Environment

First configure the AWS credentials

https://books.agiliq.com/projects/django-deployments-cookbook/en/latest/using_zappa_lambda_aurora.html#
configure-aws-credentials.

2.1.1 Install Apex Up

Currently Up has only binary form releases and can be installed by

$ curl -sf https://up.apex.sh/install | sh

this installs Up in /usr/local/bin by default.

We can verify the installation by

17

https://aws.amazon.com/lambda/
https://up.docs.apex.sh/
https://books.agiliq.com/projects/django-deployments-cookbook/en/latest/using_zappa_lambda_aurora.html#configure-aws-credentials
https://books.agiliq.com/projects/django-deployments-cookbook/en/latest/using_zappa_lambda_aurora.html#configure-aws-credentials
https://github.com/apex/up/releases

Django Deployments Cookbook Documentation

$ up version

or

$ up --help

2.1.2 Go to Django app

We will use Pollsapi (https://github.com/agiliq/building-api-django) as the django project.

Note: We cannot see the django error messages in the url(even if we have DEBUG=True), we can see them in
the apex-up logs only

Now go inside the pollsapi app in this repo.

Next create a virtualenv with python34 and install requirements.txt

$ pip install -r requirements.txt

$ django-admin --version # check the django version
2.0.3

Now rename the manage.py to app.py for apex-up to work.

$ python app.py runserver

which will show us

and in polls/settings.py add aws subdomain to the ‘ALLOWED_HOSTS’

18 Chapter 2. Using Apex-Up deploy in Lambda and use Aurora Serverless

https://github.com/agiliq/building-api-django

Django Deployments Cookbook Documentation

...
ALLOWED_HOSTS = [".amazonaws.com", "127.0.0.1"] # lambda subdomain and localhost
...

2.1.3 Serving Static Files

To configure static files in django https://www.agiliq.com/blog/2019/01/complete-serverless-django/
#serving-static-files

2.1.4 Setup Serverless MySQL Database

To set up Aurora serverless DB follow https://www.agiliq.com/blog/2019/01/complete-serverless-django/
#setup-serverless-mysql-database

2.1.5 Connect Our App to MySQL DB

To connect our Django App to aurora db, follow https://www.agiliq.com/blog/2019/01/complete-serverless-django/
#connect-django-to-mysql-db

After configuring our settings.py file should have a similar database config

...

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.mysql',
'NAME': 'pollsdb', # dbname
'USER': 'polls_admin', # master username
'PASSWORD': 'pollsadmin', # master password
'HOST': 'pollsapi-cluster.cluster-chcxxxxx.us-east-2.rds.amazonaws.com', #

→˓Endpoint
'PORT': '3306',

}
}
...

Now create a file in the same level as the app.py file named ‘‘up.json‘‘ and add the following lines

{
"name": "pollsapi",
"profile": "default",
"regions": [
"us-east-2"

],
"proxy": {
"command": "python3 app.py runserver 0.0.0.0:$PORT"

}
}

here name is the name of the project to be deployed

profile is the aws credentials profile name

region is the region of the lambda function

2.1. Install and Configure the Environment 19

https://www.agiliq.com/blog/2019/01/complete-serverless-django/#serving-static-files
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#serving-static-files
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#setup-serverless-mysql-database
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#setup-serverless-mysql-database
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#connect-django-to-mysql-db
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#connect-django-to-mysql-db

Django Deployments Cookbook Documentation

proxy acts as a reverse proxy in front of our server, which provides features like CORS, redirection, script injection
and middleware style features.

We have to include the following configuration to our proxy object

Add command Command run through the shell to start our server (Default ./server)

In the proxy command we have to give the command to start the django server ie runserver .

As presently Up supports only Node.js lambda runtime environment, but we can use python 2.7 and 3.4 in it. So we
can use python3 by mentioning the command as python3 app.py runserver 0.0.0.0:$PORT where the
$PORT is the port where our app runs(which is generated dynamically).

for more configuration settings like using custom domains, secrets, deploying to multiple AWS regions or multiple
stages(test/staging/prod etc) check the docs

Now let us test the app by deploying it,

$ up
or
$ up deploy
or
$ up -v # verbose

$ up

build: 4,752 files, 16 MB (9.463s)
deploy: staging (commit 3asdfjj) (17.103s)
stack: complete (26.324s)
endpoint: https://Xpiix0c1.execute-api.us-east-2.amazonaws.com/staging/

Please consider subscribing to Up Pro for additional features and to help keep
→˓the project alive!

Visit https://github.com/apex/up#pro-features for details.

to get the url of the application

$ up url
or
$ up url --open

Now when we open the url, we get

The logs can be checked by these commands

$ up logs
or
$ up logs -f # for live logs

Up also sends our logs to AWS cloudwatch, so we can search for the logs there also.

2.1.6 To run Django Migrations

We have to add the migrate command to the proxy.command in the up.json file.

{
"name": "pollsapi",
"profile": "default",

(continues on next page)

20 Chapter 2. Using Apex-Up deploy in Lambda and use Aurora Serverless

https://up.docs.apex.sh/#configuration

Django Deployments Cookbook Documentation

(continued from previous page)

"regions": [
"us-east-2"

],
"proxy": {
"command": "python3 app.py migrate && python3 app.py runserver 0.0.0.0:$PORT"

}
}

2.2 Troubleshooting

We should note that we cannot see the django error messages in the url(even if we have DEBUG=True), we can
see them in the apex-up logs

We can check for the errors by

$ up logs error # Shows error logs.

$ up logs 'error or fatal' # Shows error and fatal logs.

$ up logs 'status >= 400' # Shows 4xx and 5xx responses.

To delete the deployment

$ up stack delete # delete the deployment

We have to note that we have only python 2.7 and python 3.4 versions available at present in Apex-Up

2.2. Troubleshooting 21

Django Deployments Cookbook Documentation

22 Chapter 2. Using Apex-Up deploy in Lambda and use Aurora Serverless

CHAPTER 3

Using Zeit-Now & use RDS Postgres

We will see how to deploy a Django application using *Zeit Now* and use *RDS Postgres* as the DB.

‘Zeit Now <https://zeit.co/now>‘__ is a serverless deployment platform with its own CLI and a desktop app.

‘RDS Postgres <https://aws.amazon.com/rds/postgresql/>‘__ is the open source relational database for Postgres by
AWS.

3.1 Get Zeit Now

1. First we have to create an account in Zeit.

2. Then we have to install the Now CLI or the Now Desktop App(which includes CLI) .

we can download the Now Desktop which does not require Node.js. Now Desktop comes with Now CLI (our command
line interface)

or we can install Now Cli using npm

$ npm install -g now

To check if Now CLI has been installed

$ now --version

3.2 Go to Django app

After installing Zeit Now, let us set up our django project, here we used Pollsapi (https://github.com/agiliq/
building-api-django) as the django project.

23

https://zeit.co/signup
https://zeit.co/download#now-cli
https://zeit.co/download#now-cli
https://github.com/agiliq/building-api-django
https://github.com/agiliq/building-api-django

Django Deployments Cookbook Documentation

3.2.1 Configure Django Settings

We have to add our host to the ALLOWED_HOSTS in the setting.py file

...
ALLOWED_HOSTS = [".now.sh"] # add this subdomain

3.2.2 Configure Django for S3

We will use AWS S3 bucket to serve our static files, so let us configure Django for S3

$ pip install django-s3-storage

and also add it in the requirements.txt file.

...
django-s3-storage==0.12.4
...

Now update the settings.py file to add ‘django_s3_storage’ to INSTALLED_APPS

INSTALLED_APPS = (
...,
'django_s3_storage',

)

and also add these lines at the bottom

S3_BUCKET = "now-staticfiles1234"

STATICFILES_STORAGE = "django_s3_storage.storage.StaticS3Storage"

AWS_S3_BUCKET_NAME_STATIC = S3_BUCKET

STATIC_URL = "https://%s.s3.amazonaws.com/" % S3_BUCKET

Push the static files to the cloud

$ python manage.py collectstatic

3.2.3 Setup now.json

Now go inside the pollsapi folder in this repo, and create a file named now.json, and add the following:

{
"version": 2,
"name": "django-pollsapi",
"builds": [
{

"src": "index.py",
"use": "@contextualist/python-wsgi",
"config": { "maxLambdaSize": "60mb" }

(continues on next page)

24 Chapter 3. Using Zeit-Now & use RDS Postgres

Django Deployments Cookbook Documentation

(continued from previous page)

}
],
"routes": [{ "src": "/.*", "dest": "/" }]

}

• "version" Specifies the Now Platform version the deployment should use and to work with. Type is String.

• "name" is used to organise the deployment into a project. Is is also used as the perfix for all new deployment
instances. Type is Number.

• ‘‘”builds”‘‘ Builders are modules that take a deployment’s source and return an output, consisting of either
static files or dynamic Lambdas.

The builds property is an array of objects where each object is a build step, including a src and a use property,
at least. If our project has source files that require transformation to be served to users, Builders enable this
ability when deploying.

Builds object consists of:

– "src" (String): A glob expression or pathname. If more than one file is resolved, one build will be
created per matched file. It can include _* and **_.

– "use" (String): A npm module to be installed by the build process. It can include a semver compatible
version (e.g.: @org/proj@1).

– "config" (Object): Optionally, an object including arbitrary metadata(like maxLambdaSize etc) to be
passed to the Builder.

We are using builder - "@contextualist/python-wsgi" as we want python with wsgi.

• "routes" consists of a list of route definitions.

– "src": A regular expression that matches each incoming pathname (excluding querystring).

– "dest": A destination pathname or full URL, including querystring, with the ability to embed capture
groups

Let us create a file named index.py, and copy all lines from wsgi.py to this file

import os
from django.core.wsgi import get_wsgi_application

os.environ.setdefault("DJANGO_SETTINGS_MODULE", "pollsapi.settings")
app = get_wsgi_application() # application = get_wsgi_application()

Now we have to rename application to app, as the builder will search for the app to run.

After this add these lines to the the index.py file

...
os.system("python manage.py migrate")
os.system("python manage.py runserver")

At present we cannot change the python version of the Zeit Now environment(which is python 3.4), but this
feature will be added in the future.

Now deploy the app

$ now
> Deploying ~/building-api-django/pollsapi under anmol@agiliq.com
> Using project django-pollsapi

(continues on next page)

3.2. Go to Django app 25

Django Deployments Cookbook Documentation

(continued from previous page)

> Synced 1 file (234B) [1s]
> https://django-pollsapi-4l2pyh2um.now.sh [v2] [in clipboard] [2s]
index.py Ready [1m]

𝜆 index.py (20.53MB) [sfo1]
> Success! Deployment ready [1m]

Now go to the url, we will see that our project is running

Now we have to link it with the Database

3.3 Linking with RDS Postgres

We are using AWS RDS Postgres as our Database.

So first create an RDS postgres instance (which also comes in Free tier) and copy the endpoint (which we will use
to link in the DATABASES in settings.py file)

so let us add postgres adapter to our requirements.txt file

psycopg2==2.7.7

and change the settings.py file for postgres

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql',
'NAME': 'nowdb', # dbname
'USER': 'now_admin', # master username
'PASSWORD': 'nowadmin', # master password
'HOST': 'nowdb.chc62yjp9.us-east-2.rds.amazonaws.com', # Endpoint
'PORT': '5432',

}
}

But before using postgres in our Django App,

26 Chapter 3. Using Zeit-Now & use RDS Postgres

Django Deployments Cookbook Documentation

we have to first download a custom compiled psycopg2 C-library for Python from https://github.com/jkehler/
awslambda-psycopg2

Using psycopg2 via requirements.txt will not sufficient for lambda, as psycopg2 C library for
Python is missing in default lambda.

As Zeit Now uses AWS Lambda to deploy our project, we need to use this custom pre-compiled library to use
postgres.

First we have to download the repository and copy the folder psycopg2-3.6 to our project and in the same level as
our now.json and rename the folder from psycopg2-3.6 to psycopg2.

this will make our app work with the Postgres-DB

After this we have to create an admin-user for our django-app so that we can access the admin

$ cd polls
$ mkdir management
$ cd management
$ touch __init__.py
$ mkdir commands
$ cd commands
$ touch __init__.py
$ touch create_admin_user.py

polls/management/commands/create_admin_user.py
import sys
import logging

from django.core.management.base import BaseCommand, CommandError
from django.contrib.auth.models import User
from django.conf import settings

class Command(BaseCommand):
help = 'Creates the initial admin user'

def handle(self, *args, **options):
if User.objects.filter(username="admin").exists():

print("admin exists")
else:

u = User(username='admin')
u.set_password('adminpass')
u.is_superuser = True
u.is_staff = True
u.save()
print("admin created")

sys.exit()

this command will create the admin user if it does not exists

let us update the index.py by adding the command to create the admin user below the migrate command

...
os.system("python manage.py migrate")
os.system("python manage.py create_admin_user") # add this line
os.system("python manage.py runserver")

Now let us deploy the app with the updated database settings and the custom postgres library

3.3. Linking with RDS Postgres 27

https://github.com/jkehler/awslambda-psycopg2
https://github.com/jkehler/awslambda-psycopg2

Django Deployments Cookbook Documentation

$ now
> Deploying ~/building-api-django/pollsapi under anmol@agiliq.com
> Using project django-pollsapi
> Synced 1 file (234B) [1s]
> https://django-pollsapi-1asdsdfum.now.sh [v2] [in clipboard] [2s]
index.py Ready [1m]

𝜆 index.py (20.53MB) [sfo1]
> Success! Deployment ready [1m]

we can check the logs of the deployment by adding /_logs after our url like https://django-pollsapi-1asdsdfum.now.
sh/_logs

Let us check the url

https://django-pollsapi-1asdsdfum.now.sh

https://django-pollsapi-1asdsdfum.now.sh/admin

28 Chapter 3. Using Zeit-Now & use RDS Postgres

https://django-pollsapi-1asdsdfum.now.sh/_logs
https://django-pollsapi-1asdsdfum.now.sh/_logs
https://django-pollsapi-1asdsdfum.now.sh
https://django-pollsapi-1asdsdfum.now.sh/admin

Django Deployments Cookbook Documentation

Now let us login to our admin

Now our Django app is linked to postgres and deployed using Zeit Now.

3.3. Linking with RDS Postgres 29

Django Deployments Cookbook Documentation

30 Chapter 3. Using Zeit-Now & use RDS Postgres

CHAPTER 4

Deploy in AWS Fargate

We will deploy a Django app in AWS Fargate and use Aurora serverless as the db.

AWS Fargate lets users build and deploy containerized applications without having to manage the underlying servers
themselves.

Fargate is a compute engine that allows running containers in Amazon ECS without needing to manage the EC2
servers for cluster. We only deploy our Docker applications and set the scaling rules for it. Fargate is an execution
method from ECS.

With AWS Fargate, we pay only for the amount of vCPU and memory resources that our containerized application
requests ie We pay only for what we use.

Docker is a tool designed to make it easier to create, deploy, and run applications by using containers. Containers
allow us to package up an application with all of the parts it needs, like libraries and other dependencies, and ship it
all out as one package.

And Aurora Serverless is an on-demand, auto-scaling Relational Database System by Amazon AWS(presently com-
patible with only MySQL). It automatically starts up & shuts down the DB depending on the requirement.

Prerequisites: AWS account and configure the system with aws credentials & aws-cli and Docker in the system.

4.1 Go to Django app

We will use Pollsapi (https://github.com/agiliq/building-api-django) as the django project.

Now go inside the pollsapi app in this repo.

Let us create a virtual environment and install the requirement.txt

$ pip install -r requirements.txt

and in polls/settings.py add aws subdomain to the ‘ALLOWED_HOSTS’

31

https://aws.amazon.com/fargate/
https://docs.docker.com//
https://aws.amazon.com/rds/aurora/serverless/
https://github.com/agiliq/building-api-django

Django Deployments Cookbook Documentation

...
ALLOWED_HOSTS = ["*"] # for all domains - only for development
...

And run the application

$./manage.py runserver

which will show us

4.2 Build the application using Docker

Now lets now containerize our application using Docker. Let us create a file named Dockerfile in the pollsapi
folder and in the same level as manage.py .

$ touch Dockerfile

and add the following lines

In this Dockerfile, we install Python and our application and then specify how we want to run our application in the
container.

Let us Build the Docker container for our pollsapi app

$ docker build -t pollsapi-app .

The docker build command builds Docker images from a Dockerfile. We will run the container we created in the
previous step.

$ docker run -p 8800:8800 -t pollsapi-app
February 19, 2019 - 13:22:46
Django version 2.0.3, using settings 'pollsapi.settings'
Starting development server at http://0.0.0.0:8800/
Quit the server with CONTROL-C.

now when we go to the url 0.0.0.0:8800, we will see

32 Chapter 4. Deploy in AWS Fargate

Django Deployments Cookbook Documentation

4.3 Deploying our application using AWS Fargate

Here, we will deploy our container to Amazon’s Elastic Container Repository (ECR) and then launch the application
using Fargate.

4.3.1 Create a new repository in ECR

Run the following command to create a new repository for the application:

$ aws ecr create-repository --repository-name pollsapi-app --region us-east-1

If the command is successful, we should see:

{
"repository": {

"repositoryArn": "arn:aws:ecr:us-east-1:822502757923:repository/pollsapi-app",
"registryId": "822502757923",
"repositoryName": "pollsapi-app",
"repositoryUri": "822502757923.dkr.ecr.us-east-1.amazonaws.com/pollsapi-app",
"createdAt": 1550555101.0

}
}

This will create a repository by name pollsapi-app in AWS ECR

Now click on the repository name and go inside

we will see that we have no image here, click on Push Commands to get a list of commands that we need to run to
be able to push our image to ECR. Follow the steps as they are given.

Now we have pushed our image in ECR.

After pushing the image, we can see the image-url

4.3. Deploying our application using AWS Fargate 33

https://console.aws.amazon.com/ecr/repositories?region=us-east-1

Django Deployments Cookbook Documentation

34 Chapter 4. Deploy in AWS Fargate

Django Deployments Cookbook Documentation

4.3.2 Create Fargate Application

Now, let us go to the link https://console.aws.amazon.com/ecs/home?region=us-east-1#/getStarted and create a new
Fargate Application. Click on Get Started.

Now select under the container definition choose Custom and click on Configure.

In the popup, enter a name for the container and add the URL to the container image. We should be able to get the
URL from ECR. The format of the URL should be similar to the one listed below.

4.3. Deploying our application using AWS Fargate 35

https://console.aws.amazon.com/ecs/home?region=us-east-1#/getStarted

Django Deployments Cookbook Documentation

36 Chapter 4. Deploy in AWS Fargate

Django Deployments Cookbook Documentation

4.3. Deploying our application using AWS Fargate 37

Django Deployments Cookbook Documentation

In the cluster section, give the cluster name.

Now we can see the status of the service we just created. Wait for the steps to complete and then click on View
Service.

Once on the services page, click on the Tasks tab to see the different tasks running for our application. Click on the
task id.

Now let us go to the url in the public-ip with the port http://3.88.173.94:8800, we can see

to check logs we have to go to the logs tab in the services page

Now let us create an Aurora Serverless to link it with

38 Chapter 4. Deploy in AWS Fargate

Django Deployments Cookbook Documentation

4.3. Deploying our application using AWS Fargate 39

Django Deployments Cookbook Documentation

40 Chapter 4. Deploy in AWS Fargate

Django Deployments Cookbook Documentation

4.4 Setup Serverless MySQL Database

To set up Aurora serverless DB follow https://www.agiliq.com/blog/2019/01/complete-serverless-django/
#setup-serverless-mysql-database

4.5 Connect Our App to MySQL DB

While creating Aurora-serverless make sure that Fargate and Aurora are in same VPC

To connect our Django App to aurora db, follow https://www.agiliq.com/blog/2019/01/complete-serverless-django/
#connect-django-to-mysql-db

After configuring our settings.py file should have a similar database config

...

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.mysql',
'NAME': 'pollsdb', # dbname
'USER': 'polls_admin', # master username
'PASSWORD': 'pollsadmin', # master password
'HOST': 'pollsapi-cluster.cluster-chcxxxxx.us-east-2.rds.amazonaws.com', #

→˓Endpoint
'PORT': '3306',

}
}
...

4.5.1 Update Security Group Endpoint

Update Security Group Endpoint of Aurora and add Security Group of Fargate in the inbound rules, follow https:
//www.agiliq.com/blog/2019/01/complete-serverless-django/#update-security-group-endpoint

4.4. Setup Serverless MySQL Database 41

https://www.agiliq.com/blog/2019/01/complete-serverless-django/#setup-serverless-mysql-database
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#setup-serverless-mysql-database
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#connect-django-to-mysql-db
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#connect-django-to-mysql-db
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#update-security-group-endpoint
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#update-security-group-endpoint

Django Deployments Cookbook Documentation

4.5.2 Setup the Database

We will write a command to create the database. To setup the database follow,

$ cd polls
$ mkdir management
$ cd management
$ touch __init__.py
$ mkdir commands
$ cd commands
$ touch __init__.py
$ touch create_db.py

polls/management/commands/create_db.py
import sys
import logging
import MySQLdb

from django.core.management.base import BaseCommand, CommandError
from django.conf import settings

rds_host = 'pollsapi-cluster.cluster-chc62yjp918f.us-east-2.rds.amazonaws.com'
db_name = 'pollsdb'
user_name = 'polls_admin'
password = 'pollsadmin'
port = 3306

logger = logging.getLogger()
logger.setLevel(logging.INFO)

class Command(BaseCommand):
help = 'Creates the initial database'

def handle(self, *args, **options):
print('Starting db creation')
try:

db = MySQLdb.connect(host=rds_host, user=user_name,
password=password, db="mysql", connect_timeout=5)

c = db.cursor()
print("connected to db server")
c.execute("""CREATE DATABASE pollsdb;""")
c.execute(

"""GRANT ALL PRIVILEGES ON db_name.* TO 'polls_admin' IDENTIFIED BY
→˓'pollsadmin';""")

c.close()
print("closed db connection")

except:
logger.error(

"ERROR: Unexpected error: Could not connect to MySql instance.")
sys.exit()

Now let us create another command to create admin, follow

$ cd polls
$ mkdir management
$ cd management

(continues on next page)

42 Chapter 4. Deploy in AWS Fargate

Django Deployments Cookbook Documentation

(continued from previous page)

$ touch __init__.py
$ mkdir commands
$ cd commands
$ touch __init__.py
$ touch create_admin_user.py

polls/management/commands/create_admin_user.py
import sys
import logging

from django.core.management.base import BaseCommand, CommandError
from django.contrib.auth.models import User
from django.conf import settings

class Command(BaseCommand):
help = 'Creates the initial admin user'

def handle(self, *args, **options):
if User.objects.filter(username="admin").exists():

print("admin exists")
else:

u = User(username='admin')
u.set_password('adminpass')
u.is_superuser = True
u.is_staff = True
u.save()
print("admin created")

sys.exit()

this command will create the admin user if it does not exists

Now next create a shell script file with name start.sh, and write the following

$ touch start.sh

#!/bin/sh
python manage.py create_db
python manage.py migrate
python manage.py create_admin_user
python manage.py runserver 0.0.0.0:8800
exec "$@"

And give it permissions

$ chmod +x start.sh

And Now update the Dockerfile

Now lets push the updated container image to ECS by following the Push Commands.

With Fargate, our containers are always started with the latest ECS image and Docker version.

Let us go to the http://3.88.173.94:8800/admin, we can see Now we can see that we can login and that
our Database connection is established fine.

Now our Django app is running in AWS Fargate and used Aurora Serverless as the DB.

4.5. Connect Our App to MySQL DB 43

Django Deployments Cookbook Documentation

44 Chapter 4. Deploy in AWS Fargate

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

45

	Using Zappa deploy in Lambda & use Aurora Serverless
	Using Apex-Up deploy in Lambda and use Aurora Serverless
	Using Zeit-Now & use RDS Postgres
	Deploy in AWS Fargate
	Indices and tables

