Django Deployments Cookbook
Documentation

Agiliq and Contributors

Feb 20, 2019

Table of Contents:

Using Zappa deploy in Lambda & use Aurora Serverless
Using Apex-Up deploy in Lambda and use Aurora Serverless
Using Zeit-Now & use RDS Postgres

Deploy in AWS Fargate

Indices and tables

17

23

31

45

CHAPTER 1

Using Zappa deploy in Lambda & use Aurora Serverless

We will see how to deploy a Django application onto AWS Lambda using Zappa and use AWS Aurora-Serverless
as the DB.

AWS Lambda is a serverless computing platform by amazon, which is completely event driven and it automatically
manages the computing resources. It scales automatically when needed, depending upon the requests the application
gets.

Zappa is a python framework used for deploying python applications onto AWS-Lambda. Zappa handles all of the
configuration and deployment automatically for us.

And Aurora Serverless is an on-demand, auto-scaling Relational Database System by Amazon AWS(presently com-
patible with only MySQL). It automatically starts up & shuts down the DB depending on the requirement.

1.1 Install and Configure the Environment

1.1.1 Configure AWS Credentials

First, before using AWS, we have to make sure we have a valid AWS account and have the aws environment
variables(access-keys).

then, create a folder at the root level

$ mkdir .aws

Now, create a file called credentials and store the aws_access_key_id and aws_secret_access_key. To
find these access credentials

¢ Go to IAM dashboard in AWS console
¢ Click on Users
¢ Click on your User name

* Then, go to Security credentials tab

https://aws.amazon.com/lambda/
https://www.zappa.io/
https://aws.amazon.com/rds/aurora/serverless/

Django Deployments Cookbook Documentation

* Go down to Access keys

* Note down the access_key_id. secret_access_key is only visible when you are creating new user or
when creating a new access key, so you need to note down both the access_key_id and secret_access_key at the
time of user creation only or create a new access key so that we can get both the keys.

###~/.aws/credentials

[default]

aws_access_key_id= XXXXXXXXXXXXXXXXXXXX
aws_secret_access_key=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXKXKXX

1.1.2 Go to Django app

After setting up the aws credentials file, now let us go to the django project, here we used Pollsapi (https://github.com/
agilig/building-api-django) as the django project. Now go inside the pollsapi app in this repo.

Create a virtual env for the projectanddo $ pip install -r requirements.txt.

1.1.3 Install & Configure Zappa

Next install zappa

’$ pip install zappa

After installing Zappa, let us initilise zappa

’$ zappa init

which will ask us for the following:
* Name of environment - default ‘dev’

* S3 bucket for deployments. If the bucket does not exist, zappa will create it for us. Zappa uses this bucket to
hold the zappa package temporarily while it is being transferred to AWS lambda, which is then deleted after
deployment.

(Its better to create an S3 bucket, which we will later also use to host the static files of our application)
* Project’s settings - (which will take the ‘pollsapi.settings’)

Zappa will automatically find the correct Django settings file and the python runtime version

$ zappa init

Welcome to Zappa!

Zappa 1s a system for running server-less Python web applications on AWS Lambda and
—AWS API Gateway.

This "init’ command will help you create and configure your new Zappa deployment.
Let's get started!

(continues on next page)

2 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

https://github.com/agiliq/building-api-django
https://github.com/agiliq/building-api-django

Django Deployments Cookbook Documentation

(continued from previous page)

Your Zappa configuration can support multiple production stages, like 'dev', 'staging
—', and 'production'.
What do you want to call this environment (default 'dev'):

AWS Lambda and API Gateway are only available in certain regions. Let's check to make
—sure you have a profile set up inone that will work.
Okay, using profile default!

Your Zappa deployments will need to be uploaded to a private S3 bucket.
If you don't have a bucket yet, we'll create one for you too.

What do you want to call your bucket? (default 'zappa—-xpxpcmpap') :zappa-—
—staticfiles1234

It looks like this is a Django application!

What is the module path to your projects's DJjango settings?

We discovered: pollsapi.settings

Where are your project's settings? (default 'pollsapi.settings'):

You can optionally deploy to all available regions in order to provide fast global

—service.
If you are using Zappa for the first time, you probably don't want to do this!
Would you like to deploy this application globally? (default 'n') [y/n/(p)rimaryl: n

Okay, here's your zappa_settings.json:

"dev": {
"django_settings": "pollsapi.settings",
"orofile_name": "default",
"project_name": "pollsapi",
"runtime": "python3.6",
"s3_bucket": "zappa-staticfilesl1234"
}
}
Does this look okay? (default 'y') [y/nl: y

After accepting the info. A file zappa_settings. json gets created which looks like

{
"dev": {
"django_settings": "pollsapi.settings",
"profile_name": "default",
"project_name": "pollsapi",
"runtime": "python3.6",
"s3_bucket": "zappa-staticfilesl234"

Now, before deploying we have to mention the aws_ region(where we want ot deploy the django app). Make sure
that you have the s3_bucket and aws_region in the same region.

{
"dev": {
"django_settings": "pollsapi.settings",

(continues on next page)

1.1. Install and Configure the Environment 3

Django Deployments Cookbook Documentation

(continued from previous page)

"profile_name": "default",
"project_name": "pollsapi",
"runtime": "python3.6",

"s3_bucket": "zappa-staticfilesl1234",

"aws_region": "us-east-2" // aws_region

Now let us deploy the app

$ zappa deploy dev

which will show us

$ zappa deploy dev

Calling deploy for stage dev..
Downloading and installing dependencies..
— markupsafe==1.1.0: Using locally cached manylinux wheel
- sglite==python36: Using precompiled lambda package
Packaging project as zip.
Uploading pollsapi-dev-1548143620.zip (36.2MiB)..
100% || 37.9M/37.9M [00:14<00:00, 2.69MB/s]
Scheduling..
Scheduled pollsapi-dev-zappa-keep-warm-handler.keep_warm_callback with expression,
—rate (4 minutes) !
Uploading pollsapi-dev-template-1548143703.json (1.6KiB)..
100%1| 1.61K/1.61K [00:00<00:00, 3.40KB/s]
Waiting for stack pollsapi-dev to create (this can take a bit)..
100%|| 4/4 [00:10<00:00, 2.72s/res]
Deploying API Gateway..
Deployment complete!: https://lastmowyfc.execute-api.us—-east-2.amazonaws.com/dev

Now, when we click on the link we will see this

DisallowedHost at /

Invalid HTTP_HOST header: 'c3gyzd6475.execute-api.us-east-2.amazonaws.com'. You may need to add 'c3gyzd6475.execute-api.us-east-2.amazonaws.com' to
ALLOWED_HOSTS.

Request Method: GET
Request URL: https:/c3gyzd6475.execute-api.us-east-2.amazonaws.comidav/
Django Version: 2.0.3
Exception Type: DisallowedH
Exception Val i =
Exception Locat httpireguest.py in getl_hos
Python Executable: /varflang/bin/python3.6
Python Version:
Python Path:

c3gyz ute-api.us-east-2.amazonaws.com'. ¥ou may aesd to add 'clgyzdE47S.execute-spl.us-sast-2.amazonsws.com' to ALLOWED HOSTS.

L, line 105

Server time:

s/utils/depreeation.py i _call
93. response = self.process_request(request)
P Local vars

go/middleware /soms

py in process_requese
host = request.get host()

P Local vars

4 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

Django Deployments Cookbook Documentation

So, we will add the host to our to our ALLOWED_HOSTS in pollsapi/settings.py

’ALLOWED_HOSTS = ['127.0.0.1", 'lastmowyfc.execute—-api.us-east-2.amazonaws.com',] ‘

After this, we have update zappa,

’$ zappa update dev ‘

and after updating the app when we refresh the page we see,

Dijango REST framework

* Api Root

GET

Api Root

GET /dev/

HTTP 401 Unauthorized

Allow: GET, HEAD, OPTIONS
Content-Type: application/json

Vary: Accept
WWW-Authenticate: Token

"detail”: “Authentication credentials were not provided.

The Static files are not available !!

1.2 Serving Static Files

For serving static files we use S3 bucket(which we have created earlier).

We have to enable CORS for the S3 bucket, which enables browsers to get resources/files from different urls. Go to
S3 Bucket properties and then to Permissions, and click CORS Configuration, and paste these lines

<CORSConfiguration>

<CORSRule>
<AllowedOrigin>«+</AllowedOrigin>
<AllowedMethod>GET</AllowedMethod>
<MaxAgeSeconds>3000</MaxAgeSeconds>
<AllowedHeader>Authorization</AllowedHeader>

</CORSRule>

</CORSConfiguration>

1.2.1 Configure Django for S3

$ pip install django-s3-storage

and also add it in the requirements. txt file.

1.2. Serving Static Files

Django Deployments Cookbook Documentation

django-s3-storage==0.12.4

Now update the settings.py file to add ‘djangos3_storage’_to INSTALLED_APPS

INSTALLED_APPS = (
-7
'django_s3_storage',

and also add these lines at the bottom

S3_BUCKET = "zappa-staticfilesl1234"
STATICFILES_STORAGE = "django_s3_storage.storage.StaticS3Storage"
AWS_S3_BUCKET_NAME_STATIC = S3_BUCKET

STATIC_URL = "https://%s.s3.amazonaws.com/" % S3_BUCKET

Push the static files to the cloud

we can push the static files by

’$ python manage.py collectstatic —--noinput

and do

’$ zappa update dev

and after updating zappa, let us check by refreshing the page

Django

Api Root

Api Root

HTTP 481 Unauthorized

Allow: GET, HEAD, DPTIONS
Content-Type: application/jsen
Vary: Accept
WWi-Authenticate: Token

“detail "Authentication credentials were not provided."”

6 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

Django Deployments Cookbook Documentation

1.3 Setup Serverless MySQL Database

Let us create an AWS Aurora MySQL serverless.

Go to AWS console and go to RDS and create a new Database

select Amazon Aurora and choose the edition which is Aurora serverless and click next
Select the Serverless radio button.

And in DB cluster identifier enter MyClusterName

Set the Master username and password and remember them for later use. And click Next.

Step RDS Create database
Select engine

Configure advanced settings

Step 2

Specify DB details

Step 3 Capacity settings
Configure advanced Billing estimate is based on published prices. Learn more E
settings
Minimum Aurera capacity unit Info Maximum Aurcra capacity unit Info

2

- |

Additional scaling configuration

In next page, Configure advanced settings , in Capacity setting section, select the Minimum & Maximum Aurora
capacity units.

Network & Security

Virtual Private Cloud (VPC) Info

WPC defines the virtual netwarking enviranment for this DB irsE nCe.

Create new VPC

.I\ﬂ

LN a cormesponding subnet group are Lsted.

Subnet group Info
DB subnet group that defines which subnets and IP ranges the DB instance can use in the VPC you selected

Create new DB Subnet Group v

VPC security groups
Security groups have rules authorizing connections from all the EC2 instances and devices that need to access the DB
instance.

£ Create new WPC security group

Choose existing VPC security groups

And in Network & Security section, under Virtual Private Cloud (VPC) list, select Create new VPC. Under Subnet
group list, select Create new DB Subnet Group. Under VPC security groups list, select Create new VPC security

1.3. Setup Serverless MySQL Database 7

Django Deployments Cookbook Documentation

Select engine

Engine options

© Amazen Aurora (1 Preview - Parallel Query [Mys0QL
Amazon Amazon
Aurora Aurora

MariaDB () PostgreSQL () Oracle

ORACLE

Microsoft SQL Server

77 $B1 server

Amazon Aurora

Amazon Aurora is a MySQL- and PostgreSQL-compatible enterprise-class database, starting at =%1/day.
s Upto 5 times the throughput of MySQL and 3 times the throughput of PostgresQL

Up to 64TiB of auto-scaling 550 storage

s B-way replication across three Availability Zones

Up to 15 Read Replicas with sub-10ms replica lag

Automatic monitoring and failover in less than 30 seconds

Edition

© ™MySQL 5.6-compatible

Aurora Serverless capacity is only available with this edition.

| My50QL 5.7-compatible

| PostgresQL-compatible

Django Deployments Cookbook Documentation

Specify DB details

Configuration

Estimate your monthly costs for the DB Instance using the AWS Simple Monthly Calculator.

DB engine
Aurora - compatible with MySQL 5.6.10a

Capacity type Info
[Provisioned
You provision and manage the server instance sizes.

Info
e minimum and madmum of resources for 3 DB cluster. Aurora scales the capacity based on database load
{currently available for Aurora MyS0L 5.8).

Settings

DE cluster identifier
Type & name for youwr DB cluster. The name must be unique across all DB clusters owned by your AWS account in the current
AWS Region.

MyClusterName

The DB cluster identifier is a case-sensitive, but is stored as all lowercase(as in "mydbcluster®). Constraints: 1 to &0
glphanumeric characters or hyphens (1 to 15 for SQL Server). First character must be a letter. Can't contain two consecutive
hyphens. Can't end with a hyphen.

Master username Info
Specify an alphanumeric string that defines the login ID for the master user.

[—] |

Master Usermame must start with a letter. Must contzin 1 to 16 alphanumeric characters.

Master password Info Confirm password Info

1 o

Master Pazsword must be at least eight characters long, as in
"mypassword”. Can be any printable ASCI character except
= or .

Cancel Previous g

1.3. Setup Serverless MySQL Database

Django Deployments Cookbook Documentation

group.
And Click Create database
aws, Services v Resource Groups ~ * Ja\ Ohio ~ Support ~
Amazon RDS x RDS) Clusters
Dashboard Clusters (1)
Instances
Q 1 @
Clusters
Performance Insights DB cluster identifier A Engine Engine version Status Type Maintenance

Snapshots
Reserved instances | myclustername | Aurora MySQL 5.6.10a © available Serverless none

Subnet groups

Parameter groups

Option groups

Events

Event subscriptions

Recommendations

Now our Serverless Database is created, click on the db-cluster name to see the details

RDS Databases ollsapi-cluste:

pollsapi-cluster

Summary

DE cluster id cPU Info Current capacity
pollsapi-cluster - 11.35% G) Available 0 capacity units
Role Current activity Engine Region & AZ
Serverless Aurora MySQL us-east-2
Connectivity Monitoring Logs & events Configuration Maintenance & backups Tags

Connectivity

Endpaint & port Networking Security
Endpoint VPC VPC security groups
pollsapi-cluster.cluster-chcb2yjp918f.us-east-2.rds.amazonaws.com vp:_ rds-launch-wizard (59-0 Geiiiiieliie
(active)
Port Subnet group
3306 default-vpc Deigl e ——
Subnets
subnet diidiii
subnet di .
subnet- ek,

We will use the VPC, Subnet Ids and the security-group later.

1.4 Connect Django to MySQL DB

Now our MySQL db is created, we have to link it to our app.

We use mysglclient to connect django to the MySQIl Database Server.

10 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

Django Deployments Cookbook Documentation

$ pip install mysqglclient

and add it to the requirements. txt file

requirements.txt

mysglclient==1.3.14

Now we need to update pollsapi/settings.py file,

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.mysql',

'NAME': 'pollsdb', # dbname

'USER': 'polls_admin', # master username

'"PASSWORD': 'pollsadmin', # master password

'"HOST': 'pollsapi-cluster.cluster-chcxxxxx.us-east-2.rds.amazonaws.com', #_

—Endpoint
'"PORT': '3306"',
}

1.4.1 Configure Zappa Settings for RDS

Now go to Lambda Management console and click on functions and click on our lambda function(pollsapi)
Then we will go to the configuration page, Under the Network section, in Virtual Private Cloud (VPC)
select the same VPC as in Aurora DB

As Aurora Serverless DB clusters do not have publically accessible endpoints, our MyClusterName RDS can
only be accessed from within the same VPC.

Then in Subnets select all the subnets as in Aurora DB

and for Security groups select a different security group than the one on Aurora DB.

Update Security Group Endpoint

Now we have to update the security group Inbound endpoint.

In the RDS console, go to databases section and click on our DB name, which will take us to
Now click on the security group and we will be taken to the Security Group page

Go to Inbound tab in the bottom and click on the edit button

Here click on Add Rule and enter Type as MYSQL/Aurora & in Source enter the Security Group Id of the Lambda
function and save it.

Setup the Database

Now let us create a management command our polls app

1.4. Connect Django to MySQL DB 11

Django Deployments Cookbook Documentation

Metwork

Wirtual Private Cloud (VPC) Info
Choose a VPC for your function to access.

vpo-Odfc2e06] o (172.320.0.0/16) v

Subnets
Select the VPC subnets for Lambda to use to set up your VPC configuration. Format: "subnet-id (cidr-
block) | az name-tag".

| subnet-08c43d21 2 wileie (172.30.1.0/24) | us-east-2b X |

| subnet-0f1d0ceb4 Wiy (172.30.2.0/24) | us-east-2c X |

subnet-OedfSaca 71 SESE (172.30.0.0/24) | us-cast-2a X |

Security groups
Choose the VPC security groups for Lambda to use to set up your YPC configuration. Format: "sg-id
{sg-name) | name-tag". The table below shows the inbound and owtbound rules for the seourity
groups that you chose.

sg-05a42236 1 gl (default) X

@ When you enable a VPC, yvour Lambda function loses default internet access, If you require external
internet access for your function, make sure that your security group allows cutbound connections
and that your VPC has a NAT gateway.

12 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

Django Deployments Cookbook Documentation

RDS Databases cluste

pollsapi-cluster

Summary
DB cluster id cPU
pollsapi-cluster - 111.35%

Role

Serverless

Connectivity Monitoring Logs & events

Connectivity

Endpoint & port

Endpoint

2.rds.amazonaws.com

pollsapi-cluster.cluster-che62yjp218f.us.

Port
3306

Configuration

Info

Available

Engine

Aurora MySQL

Maintenance & backups Tags

Networking

WPC

vpc ettt

Subnet group

default-vpe W
Subnets

subnet i
sUBNe! i
subnet- m

Current capacity

@ capacity units

Region & AZ

us-gast-2

Security

VPC security groups

rds-launch-wizard (sg-0leidilifedie

[active)

EC2 Dashboard

Create Security Group T LIERY
.

Events
Tags Q| search : 39-08a251896330d0704 | Add filte
Reports & | Mame ~| GroupID «| Group Name - wpeID - | Deseription
Limits

] 50022 e rds-aunch-wizard vpe-001c2 Created from
Instances

Launch Templates
Spot Requests
Reserved Instances
Dedicated Hosts

Capacity Reservations

AMIS

Bundle Tasks

Volumes
Snapshots

Lifecycle Manager
Security Group: 5g-08a25189¢330d0704

Security Groups Description | Inbound | | Outsound | Tags

Elastic IPs

Placement Groups Edit 4———_

Key Pairs

Network Interfaces Type (I Protocol (i

=) LoAL MYSQLAUrera TCP
Load Balancers

Target Groups.

Launch Configurations

Aute Scaling Groups

Port Range (i

3306

A O 8 0

(-] 1to1of1

the RDS Management Console: 2019/01/22 11:16:49

Source (i Description (i

183.83.

1.4. Connect Django to MySQL DB

13

Django Deployments Cookbook Documentation

Edit inbound rules X
Type @ Protocol (i Port Range @ Source (i Description [
| MYSOL/Auror ¥ | TCP 3308 | Custom %) [183.83.159.155/32 e.0. S8H for Admin Desktop [x]

Add Rule‘

NOTE: Any edits made on existing rules will result in the edited rule being deleted and a new rule created with the new details. This will cause traffic that depends
on that rule to be dropped for a very brief period of time until the new rule can be created.
Cancel m

Edit inbound rules X

Type @ Protocol (i Port Range 0] Source (i) Description ()]
| MYSQL/Auror ¥ | TCP 3306 | Custom +) 183.83.159.155/32 e.g. S5H for Admin Desktop [x]
| MYSOL/Auror ¥ | TCP 3306 [Custom 3| =g-05a422361 Nedeiidde: e.g. S5H for Admin Desktop [x]

Add Rule

MOTE: Any edits made on existing rules will result in the edited rule being deleted and a new rule created with the new details. This will cause traffic that depends
an that rule to be dropped for a very brief period of time until the new rule can be created.
Cancel m

cd polls

mkdir management
cd management
touch __init__ .py
mkdir commands

cd commands

touch __init__ .py
touch create_db.py

v W W Ay O Uy

polls/management/commands/create_db.py
import sys

import logging

import MySQLdb

from django.core.management .base import BaseCommand, CommandError
from django.conf import settings

rds_host = 'pollsapi-cluster.cluster-chc62yjp918f.us-east-2.rds.amazonaws.com'
db_name = 'pollsdb'

user_name = 'polls_admin'

password = 'pollsadmin'

port = 3306
logger = logging.getLogger ()

logger.setLevel (logging. INFO)

class Command (BaseCommand) :
help = 'Creates the initial database'

(continues on next page)

14 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

Django Deployments Cookbook Documentation

(continued from previous page)

def handle(self, =xargs, =x+*options):
print ('Starting db creation')
try:
db = MySQLdb.connect (host=rds_host, user=user_name,
password=password, db="mysgl", connect_timeout=5)

c = db.cursor ()
print ("connected to db server")
c.execute ("""CREATE DATABASE pollsdb;""")

c.execute (

"MUMGRANT ALL PRIVILEGES ON db_name.* TO 'polls_admin' IDENTIFIED BY

— 'pollsadmin';""")
c.close()
print ("closed db connection")
except:

logger.error (
"ERROR: Unexpected error: Could not connect to MySgl instance.")

sys.exit ()

Now let us update zappa

’$ zappa update dev ‘

And create the databse using the management command

’$ zappa manage dev create_db ‘

which will show us

$ zappa manage dev create_db
[START] RequestId: 5c2ded49d-856e-4d75-963d-017a98660XXX Version: SLATEST

[DEBUG] 2019-01-22T14:55:28.387Z 5c2de49d-856e-4d75-963d-017a98660XXX Zappa Event: {
—'manage': 'create_db'}

Starting db creation

connected to db server

closed db connection

[END] RequestId: 5c2de49d-856e-4d75-963d-017a98660XXX
[REPORT] RequestId: 5c2de49d-856e-4d75-963d-017a98660XXX
Duration: 218.58 ms

Billed Duration: 300 ms

Memory Size: 512 MB

Max Memory Used: 83 MB

We have to migrate now

$ zappa manage dev migrate

Now let us create the admin user

$ zappa invoke —--raw dev "from django.contrib.auth.models import User; User.objects.

—create_superuser ('admin', 'anmol@agilig.com', 'somerandompassword')"

Now let us check by logging in the admin page
NOW OUR DJANGO APP IS COMPLETELY SERVERLESS !!

We can check the lambda logs by zappa dev tail

1.4. Connect Django to MySQL DB 15

Django Deployments Cookbook Documentation

WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG OUT

Django administration

Site administration

,
Recent actions

Tokens + Add Change
My actions
—
Groups + Add Change
Users + Add Change
Choices + Add Change
Polls + Add Change

16 Chapter 1. Using Zappa deploy in Lambda & use Aurora Serverless

CHAPTER 2

Using Apex-Up deploy in Lambda and use Aurora Serverless

We will try to deploy a basic django app onto AWS Lambda using Apex Up.

AWS Lambda is a serverless computing platform by amazon, which is completely event driven and it automatically
manages the computing resources. It scales automatically when needed, depending upon the requests the application
gets.

Apex Up is a Open Source framework used for deploying serverless applications onto AWS-Lambda. Up currently
supports Node.js, Golang, Python, Java, Crystal, and static sites out of the box. Up is platform-agnostic, supporting
AWS Lambda and API Gateway.

Note :
* Apex-Up currently supports only Node.js lambda environment, but we can use python 2.7 and 3.4 in it.

¢ We have to use Django 2.0 as it is the only latest version which supports python3.4

2.1 Install and Configure the Environment

First configure the AWS credentials

https://books.agiliq.com/projects/django-deployments-cookbook/en/latest/using_zappa_lambda_aurora.html#
configure-aws-credentials.

2.1.1 Install Apex Up

Currently Up has only binary form releases and can be installed by

$ curl -sf https://up.apex.sh/install | sh

this installs Up in /usr/local/bin by default.

We can verify the installation by

17

https://aws.amazon.com/lambda/
https://up.docs.apex.sh/
https://books.agiliq.com/projects/django-deployments-cookbook/en/latest/using_zappa_lambda_aurora.html#configure-aws-credentials
https://books.agiliq.com/projects/django-deployments-cookbook/en/latest/using_zappa_lambda_aurora.html#configure-aws-credentials
https://github.com/apex/up/releases

Django Deployments Cookbook Documentation

$ up version
or

$ up —--help

2.1.2 Go to Django app

We will use Pollsapi (https://github.com/agilig/building-api-django) as the django project.

Note: We cannot see the django error messages in the url(even if we have DEBUG=True), we can see them in
the apex-up logs only

Now go inside the pollsapi app in this repo.

Next create a virtualenv with python34 and install requirements.txt

$ pip install -r requirements.txt

$ django-admin —--version # check the django version
2.0.3

Now rename the manage . py to app . py for apex-up to work.

$ python app.py runserver

which will show us

django View release notes for Django 2.0

\

The install worked successfully! Congratulations!
You are seeing this page because DEBUG=True is in

your settings file and you have not configured any
URLs.

(© Django Documentation ¢» Tutorial: A Polling App 2o Django Community
= Topics, references, & how-to's Get started with Django Connect, get help, or contribute

and in polls/settings.py add aws subdomain to the ‘ALLOWED_HOSTS’

18 Chapter 2. Using Apex-Up deploy in Lambda and use Aurora Serverless

https://github.com/agiliq/building-api-django

Django Deployments Cookbook Documentation

ALLOWED_HOSTS = [".amazonaws.com", "127.0.0.1"] # lambda subdomain and localhost

2.1.3 Serving Static Files

To configure static files in django https://www.agiliq.com/blog/2019/01/complete-serverless-django/
#serving-static-files

2.1.4 Setup Serverless MySQL Database

To set up Aurora serverless DB follow https://www.agilig.com/blog/2019/01/complete-serverless-django/
#setup-serverless-mysql-database

2.1.5 Connect Our App to MySQL DB

To connect our Django App to aurora db, follow https://www.agilig.com/blog/2019/01/complete-serverless-django/
#connect-django-to-mysql-db

After configuring our settings.py file should have a similar database config

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.mysqgl',

'NAME': 'pollsdb', # dbname

'USER': 'polls_admin', # master username

'PASSWORD': 'pollsadmin', # master password

'HOST': 'pollsapi-cluster.cluster-chcxxxxx.us-east-2.rds.amazonaws.com', #_
—Endpoint

'PORT': '3306',

}

Now create a file in the same level as the app . py file named ‘‘up.json‘¢ and add the following lines

{

"name": "pollsapi",
"profile": "default",
"regions": [

"us-east-2"
]I
"proxy": {

"command": "python3 app.py runserver 0.0.0.0:S$PORT"
}

here name is the name of the project to be deployed
profile is the aws credentials profile name

region is the region of the lambda function

2.1. Install and Configure the Environment 19

https://www.agiliq.com/blog/2019/01/complete-serverless-django/#serving-static-files
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#serving-static-files
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#setup-serverless-mysql-database
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#setup-serverless-mysql-database
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#connect-django-to-mysql-db
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#connect-django-to-mysql-db

Django Deployments Cookbook Documentation

proxy acts as a reverse proxy in front of our server, which provides features like CORS, redirection, script injection
and middleware style features.

We have to include the following configuration to our proxy object
Add command Command run through the shell to start our server (Default ./server)
In the proxy command we have to give the command to start the django server ie runserver .

As presently Up supports only Node.js lambda runtime environment, but we can use python 2.7 and 3.4 in it. So we
can use python3 by mentioning the command as python3 app.py runserver 0.0.0.0:S$PORT where the
SPORT is the port where our app runs(which is generated dynamically).

for more configuration settings like using custom domains, secrets, deploying to multiple AWS regions or multiple
stages(test/staging/prod etc) check the docs

Now let us test the app by deploying it,

deploy

Ly #H o 0
=
e}

up -v # verbose

build: 4,752 files, 16 MB (9.463s)

deploy: staging (commit 3asdfjj) (17.103s)

stack: complete (26.324s)

endpoint: https://Xpiix0Ocl.execute-api.us-east-2.amazonaws.com/staging/

Please consider subscribing to Up Pro for additional features and to help keep,,
—the project alive!
Visit https://github.com/apex/upf#pro-features for details.

to get the url of the application

$ up url
or
$ up url —--open

Now when we open the url, we get

The logs can be checked by these commands

$ up logs
or
$ up logs -f # for live logs

Up also sends our logs to AWS cloudwatch, so we can search for the logs there also.

2.1.6 To run Django Migrations

We have to add the migrate command to the proxy . command in the up.json file.

{
"name": "pollsapi",
"profile": "default",

(continues on next page)

20 Chapter 2. Using Apex-Up deploy in Lambda and use Aurora Serverless

https://up.docs.apex.sh/#configuration

Django Deployments Cookbook Documentation

Django REST framework

Api Root

Api Root [cer -]

GET

HTTP 401 Unauthorized

Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

WWi-Authenticate: Token

"detail": "Authentication credentials were not provided."

(continued from previous page)

"regions": [
"us—-east-2"
]I
"proxy": {
"command": "python3 app.py migrate && python3 app.py runserver 0.0.0.0:$SPORT"

2.2 Troubleshooting

We should note that we cannot see the django error messages in the url(even if we have DEBUG=True), we can
see them in the apex-up logs

We can check for the errors by

$ up logs error # Shows error logs.
$ up logs 'error or fatal' # Shows error and fatal logs.
$ up logs 'status >= 400' # Shows 4xx and 5xx responses.

To delete the deployment

S up stack delete # delete the deployment

We have to note that we have only python 2.7 and python 3.4 versions available at present in Apex-Up

2.2. Troubleshooting 21

Django Deployments Cookbook Documentation

22

Chapter 2. Using Apex-Up deploy in Lambda and use Aurora Serverless

CHAPTER 3

Using Zeit-Now & use RDS Postgres

We will see how to deploy a Django application using *Zeit Now* and use *RDS Postgres* as the DB.
‘Zeit Now <https://zeit.co/now>‘__is a serverless deployment platform with its own CLI and a desktop app.

‘RDS Postgres <https://aws.amazon.com/rds/postgresql/>‘__is the open source relational database for Postgres by
AWS.

3.1 Get Zeit Now

1. First we have to create an account in Zeit.
2. Then we have to install the Now CLI or the Now Desktop App(which includes CLI) .

we can download the Now Desktop which does not require Node.js. Now Desktop comes with Now CLI (our command
line interface)

or we can install Now Cli using npm

’$ npm install -g now

To check if Now CLI has been installed

’$ now —--version

3.2 Go to Django app

After installing Zeit Now, let us set up our django project, here we used Pollsapi (https://github.com/agilig/
building-api-django) as the django project.

23

https://zeit.co/signup
https://zeit.co/download#now-cli
https://zeit.co/download#now-cli
https://github.com/agiliq/building-api-django
https://github.com/agiliq/building-api-django

Django Deployments Cookbook Documentation

3.2.1 Configure Django Settings

We have to add our host to the ALLOWED_HOSTS in the setting.py file

ALLOWED_HOSTS = [".now.sh"] # add this subdomain

3.2.2 Configure Django for S3

We will use AWS S3 bucket to serve our static files, so let us configure Django for S3

$ pip install django-s3-storage

and also add it in the requirements.txt file.

django-s3-storage==0.12.4

Now update the settings.py file to add ‘django_s3_storage’ to INSTALLED_APPS

INSTALLED_APPS = (
-7

'django_s3_storage',

and also add these lines at the bottom

S3_BUCKET = "now-staticfilesl234"
STATICFILES_STORAGE = "django_s3_storage.storage.StaticS3Storage"
AWS_S3_BUCKET_NAME_STATIC = S3_BUCKET

STATIC_URL = "https://%s.s3.amazonaws.com/" % S3_BUCKET

Push the static files to the cloud

$ python manage.py collectstatic

3.2.3 Setup now.json

Now go inside the pollsapi folder in this repo, and create a file named now . json, and add the following:

{

"version": 2,
"name": "django-pollsapi",
"builds": [
{
"src": "index.py",
"use": "@contextualist/python-wsgi",
"config": { "maxLambdaSize": "60mb" }

(continues on next page)

24 Chapter 3. Using Zeit-Now & use RDS Postgres

Django Deployments Cookbook Documentation

(continued from previous page)

}
1y

"routes": [{ "srol. H/.*"’ "dest": ll/H }J

* "version" Specifies the Now Platform version the deployment should use and to work with. Type is String.

* "name" is used to organise the deployment into a project. Is is also used as the perfix for all new deployment
instances. Type is Number.

e ‘“’huilds”¢¢ Builders are modules that take a deployment’s source and return an output, consisting of either
static files or dynamic Lambdas.

The builds property is an array of objects where each object is a build step, including a src and a use property,
at least. If our project has source files that require transformation to be served to users, Builders enable this
ability when deploying.

Builds object consists of:

— "src" (String): A glob expression or pathname. If more than one file is resolved, one build will be
created per matched file. It can include _* and **_.

— "use" (String): A npm module to be installed by the build process. It can include a semver compatible
version (e.g.: @org/proj@1).

— "config" (Object): Optionally, an object including arbitrary metadata(like maxLambdaSize etc) to be
passed to the Builder.

We are using builder - "@contextualist/python-wsgi" as we want python with wsgi.
* "routes" consists of a list of route definitions.
— "src": A regular expression that matches each incoming pathname (excluding querystring).

— "dest": A destination pathname or full URL, including querystring, with the ability to embed capture
groups

Let us create a file named index . py, and copy all lines from wsgi . py to this file

import os
from django.core.wsgi import get_wsgi_application

os.environ.setdefault ("DJANGO_SETTINGS_MODULE", "pollsapi.settings")
app = get_wsgi_application() # application = get_wsqgi_application()

Now we have to rename application to app, as the builder will search for the app to run.

After this add these lines to the the index . py file

os.system("python manage.py migrate")
os.system("python manage.py runserver")

At present we cannot change the python version of the Zeit Now environment(which is python 3.4), but this
feature will be added in the future.

Now deploy the app

$ now
> Deploying ~/building-api-django/pollsapi under anmol@Ragiliqg.com
> Using project django-pollsapi

(continues on next page)

3.2. Go to Django app 25

Django Deployments Cookbook Documentation

(continued from previous page)

> Synced 1 file (234B) [1ls]

> https://django-pollsapi-412pyh2um.now.sh [v2] [in clipboard] [2s]
index.py Ready [1m]

L— X index.py (20.53MB) [sfol]

> Success! Deployment ready [1lm]

Now go to the url, we will see that our project is running

Api Root

Api Root [oer -]

GET

HTTP 481 Unauthorized

Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
WWA-Authenticate: Token

“detail”: “Authentication credentials were not provided.”

Now we have to link it with the Database

3.3 Linking with RDS Postgres

We are using AWS RDS Postgres as our Database.

So first create an RDS postgres instance (which also comes in Free tier) and copy the endpoint (which we will use
to link in the DATABASES in settings.py file)

so let us add postgres adapter to our requirements.txt file

psycopg2==2.7.7

and change the settings.py file for postgres

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql',

'NAME': 'nowdb', # dbname

'USER': 'now_admin', # master username

'"PASSWORD': 'nowadmin', # master password

'"HOST': 'nowdb.chc62yjp9.us—east-2.rds.amazonaws.com', # Endpoint
"PORT': '5432',

But before using postgres in our Django App,

26 Chapter 3. Using Zeit-Now & use RDS Postgres

Django Deployments Cookbook Documentation

we have to first download a custom compiled psycopg2 C-library for Python from https://github.com/jkehler/
awslambda-psycopg?2

Using psycopg?2 via requirements.txt will not sufficient for lambda, as psycopg2 C library for
Python is missing in default lambda.

As Zeit Now uses AWS Lambda to deploy our project, we need to use this custom pre-compiled library to use
postgres.

First we have to download the repository and copy the folder psycopg2-3. 6 to our project and in the same level as
our now . json and rename the folder from psycopg2-3.6 to psycopg?2.

this will make our app work with the Postgres-DB

After this we have to create an admin-user for our django-app so that we can access the admin

cd polls

mkdir management

cd management

touch __init__ .py

mkdir commands

cd commands

touch __init__ .py

touch create_admin_user.py

v A W

polls/management/commands/create_admin_user.py
import sys
import logging

from django.core.management .base import BaseCommand, CommandError
from django.contrib.auth.models import User
from django.conf import settings

class Command (BaseCommand) :
help = 'Creates the initial admin user'

def handle(self, =xargs, =+*options):
if User.objects.filter (username="admin") .exists():
print ("admin exists")
else:
u = User (username='admin')
u.set_password ('adminpass')
u.is_superuser = True
u.lis_staff = True
u.save ()
print ("admin created")
sys.exit ()

this command will create the admin user if it does not exists

let us update the index . py by adding the command to create the admin user below the migrate command

os.system("python manage.py migrate™)
os.system("python manage.py create_admin_user") # add this line
os.system("python manage.py runserver")

Now let us deploy the app with the updated database settings and the custom postgres library

3.3. Linking with RDS Postgres 27

https://github.com/jkehler/awslambda-psycopg2
https://github.com/jkehler/awslambda-psycopg2

Django Deployments Cookbook Documentation

now
Deploying ~/building-api-django/pollsapi under anmol@Ragiliqg.com
Using project django-pollsapi

Synced 1 file (234B) [ls]
https://django-pollsapi-lasdsdfum.now.sh [v2] [in clipboard] [2s]
index.py Ready [1m]

L— X index.py (20.53MB) [sfoll]

> Success! Deployment ready [1lm]

vV V. V V W\

we can check the logs of the deployment by adding /_1ogs after our url like https://django-pollsapi- lasdsdfum.now.
sh/_logs

Let us check the url

https://django-pollsapi- lasdsdfum.now.sh

Api Root

Api Root [cer -]

GET

HTTP 401 Unauthorized

Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
WWd-Authenticate: Token

“detail”: "Authentication credentials were not provided."

https://django-pollsapi- 1asdsdfum.now.sh/admin

Django administration

Username:

Password:

28 Chapter 3. Using Zeit-Now & use RDS Postgres

https://django-pollsapi-1asdsdfum.now.sh/_logs
https://django-pollsapi-1asdsdfum.now.sh/_logs
https://django-pollsapi-1asdsdfum.now.sh
https://django-pollsapi-1asdsdfum.now.sh/admin

Django Deployments Cookbook Documentation

Now let us login to our admin

Django administration WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG DUT

Site administration

Recent actions

Tokens +Add & Change
My actions
Groups 4 Add & Change
Users +Add & Change
Choices 4+4Add & Change
Polls +Add & Change

Now our Django app is linked to postgres and deployed using Zeit Now.

3.3. Linking with RDS Postgres 29

Django Deployments Cookbook Documentation

30

Chapter 3. Using Zeit-Now & use RDS Postgres

CHAPTER 4

Deploy in AWS Fargate

We will deploy a Django app in AWS Fargate and use Aurora serverless as the db.

AWS Fargate lets users build and deploy containerized applications without having to manage the underlying servers
themselves.

Fargate is a compute engine that allows running containers in Amazon ECS without needing to manage the EC2
servers for cluster. We only deploy our Docker applications and set the scaling rules for it. Fargate is an execution
method from ECS.

With AWS Fargate, we pay only for the amount of vCPU and memory resources that our containerized application
requests ie We pay only for what we use.

Docker is a tool designed to make it easier to create, deploy, and run applications by using containers. Containers
allow us to package up an application with all of the parts it needs, like libraries and other dependencies, and ship it
all out as one package.

And Aurora Serverless is an on-demand, auto-scaling Relational Database System by Amazon AWS(presently com-
patible with only MySQL). It automatically starts up & shuts down the DB depending on the requirement.

Prerequisites: AWS account and configure the system with aws credentials & aws-cli and Docker in the system.

4.1 Go to Django app

We will use Pollsapi (https://github.com/agiliq/building-api-django) as the django project.
Now go inside the pollsapi app in this repo.

Let us create a virtual environment and install the requirement.txt

$ pip install -r requirements.txt

and in polls/settings.py add aws subdomain to the ‘ALLOWED_HOSTS’

31

https://aws.amazon.com/fargate/
https://docs.docker.com//
https://aws.amazon.com/rds/aurora/serverless/
https://github.com/agiliq/building-api-django

Django Deployments Cookbook Documentation

ALLOWED_HOSTS = ["*"] # for all domains — only for development

And run the application

$./manage.py runserver

which will show us

Api Root

Api Root [oer -]

GET

HTTP 481 Unauthorized

Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept

WWd-Authenticate: Token

“detail”: "Authentication credentials were not provided.”

4.2 Build the application using Docker

Now lets now containerize our application using Docker. Let us create a file named Dockerfile in the pollsapi
folder and in the same level as manage.py .

’$ touch Dockerfile

and add the following lines

In this Dockerfile, we install Python and our application and then specify how we want to run our application in the
container.

Let us Build the Docker container for our pollsapi app

$ docker build -t pollsapi-app

The docker build command builds Docker images from a Dockerfile. We will run the container we created in the
previous step.

$ docker run -p 8800:8800 -t pollsapi-app

February 19, 2019 - 13:22:46

Django version 2.0.3, using settings 'pollsapi.settings'
Starting development server at http://0.0.0.0:8800/
Quit the server with CONTROL-C.

now when we gototheurl 0.0.0.0:8800, we will see

32 Chapter 4. Deploy in AWS Fargate

Django Deployments Cookbook Documentation

Api Root

Api Root [cer -]

GET

HTTP 401 Unauthorized

Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
WWi-Authenticate: Token

"detail": "Authentication credentials were not provided."

4.3 Deploying our application using AWS Fargate

Here, we will deploy our container to Amazon’s Elastic Container Repository (ECR) and then launch the application
using Fargate.

4.3.1 Create a new repository in ECR

Run the following command to create a new repository for the application:

$ aws ecr create-repository —--repository-name pollsapi-app —--region us-east-1

If the command is successful, we should see:

{

"repository": {
"repositoryArn": "arn:aws:ecr:us—east-1:822502757923:repository/pollsapi-app",
"registryId": "822502757923",
"repositoryName": "pollsapi-app",
"repositoryUri": "822502757923.dkr.ecr.us-east-1.amazonaws.com/pollsapi-app",

"createdAt": 1550555101.0

This will create a repository by name pollsapi-app in AWS ECR
Now click on the repository name and go inside

we will see that we have no image here, click on Push Commands to get a list of commands that we need to run to
be able to push our image to ECR. Follow the steps as they are given.

Now we have pushed our image in ECR.

After pushing the image, we can see the image-url

4.3. Deploying our application using AWS Fargate 33

https://console.aws.amazon.com/ecr/repositories?region=us-east-1

Django Deployments Cookbook Documentation

Amazon Container X ECR Repositories
Services

Repositories

Q 1 @

Amazon ECS

Clusters

Task definitions Repository name 4 Created at v

Amazon EKS pollsapi-app 822502757923.dkr.ecr.us-east-1.amazonaws.com/pollsapi-app 02/19/19, 11:27:35 PM

Clusters \\

Amazon ECR

Repositories

ECR Repositories pollsapi-app

pollsapi-app

Images

Q 1

Image tag Image URI Pushed at v Digest Size (MB) v

No images

No images to display

ECR Repositories pollsapi-app

pollsapi-app

Images
Q 1
Size
Image tag Image URI Pushed at v Digest ™B) ¥
TERTRARSPeR3. dkr.ecr.us-east- 02/20/19, = i
fatest 1.amazonaws.com/pollsapi-app:latest 12:11:00 AM shaZ56:a71a771f4. .. 577.09

34 Chapter 4. Deploy in AWS Fargate

Django Deployments Cookbook Documentation

4.3.2 Create Fargate Application

Now, let us go to the link https://console.aws.amazon.com/ecs/homeregion=us-east- 1 #/getStarted and create a new
Fargate Application. Click on Get Started.

Now select under the container definition choose Custom and click on Configure.

Container definition Edit

Choose an image for your container below to get started quickly or define the container image to use.

sample-app nginx
image : httpd:2.4 image : nginclatest
memory : 0.5GB (512) memory : 0.5GB (512)
cpu: 0.25 vCPU (256) cpu: 0.25 vCPU (256)
tomcat-webserver custom Configure
image : tomcat image : ==
memory : 2GB (2048) memory : --
epu: 1vCPU [1024) epu: -—-
Task definition Edit

A task definition is a blueprint for your application, and describes one or more containers through attributes. Some attributes are
configured at the task level but the majority of attributes are configured per container.

Task definition name first-run-task-definition

Metwork mode awsvpc

Task execution role Create new

e @ @ @

Compatibilities FARGATE
Task memory 0.5GB (512)

Task CPU 0.25 vCPU (256)

*Required Cancel m

In the popup, enter a name for the container and add the URL to the container image. We should be able to get the
URL from ECR. The format of the URL should be similar to the one listed below.

4.3. Deploying our application using AWS Fargate 35

https://console.aws.amazon.com/ecs/home?region=us-east-1#/getStarted

Django Deployments Cookbook Documentation

Edit container x
~ Standard
Container name* | fargate-pollsapi <l [i]
Image*

............... dkr.ecrus-east:1.amazonaws.comvpolisapi-appilatest +-—

Custom image format: [registry-urll/[namespace]/[image]:[tag]

Private repository [i]
authentication*
Memory Limits (MiB) | Softlimit « | 728 Li]

© Add Hard limit

Define hard and/or soft memory limits in MIB for your container. Hard and soft limits correspond to
the ‘'memory’ and ‘memoryReservation’ parameters, respectively, in task definitions.
ECS recommends 300-500 MIB as a starting point for web applications.

Port mappings

8800 tep -

© Add port mapping

Host port mappings are not valid when the network mode for a task definition is host or awsvpe. To specify different host and container port
mappings, choose the Bridge network mode. \

» Advanced container configuration

* Required Cancel

36 Chapter 4. Deploy in AWS Fargate

Django Deployments Cookbook Documentation

Container definition

Choose an image for your container below to get started quickly or define the container image to use.

sample-app
image : httpd:2.4
memory : 0.5GB (512)
cpu: 0.256 vCPU (258)

tomecat-webserver
image : tomeat

memory : 2GB (2048)
cpu: 1vCPU [1024)

Task definition

nginx

image : nginxclatest
memory : 0.5GB (512)
cpu : 0.25 vCPU (258)

fargate-pollsapi Configure

image :
PN 3. dkr.ecr.us-east-

1.amazonaws.com/pollsapi-
app:latest

memary :

cpu:

A task definition is a blueprint for your application, and describes one or more containers through attributes. Some attributes are
configured at the task level but the majority of attributes are configured per container.

Task definition name
Network mode

Task execution role
Compatibilities

Task memary

Task CPU

*Required

first-run-task-definition

awsvpe

Create new

2 @ @ @

FARGATE

0.5GB (512)

0.25 vCPU (256)

4.3.

Deploying our application using AWS Fargate

37

Django Deployments Cookbook Documentation

Define your service

A service allows you to run and maintain a specified number (the "desired count”) of simultaneous instances of a task definition in an

ECS cluster.
Service name
Number of desired tasks
Security group
Load balancer type
*Required

Configure your cluster

fargate-pollsapi-service
1

Automatically create new

A security group is created to allew all public traffic to your service only on the contalner port specified.
You can further configure security groups and netwerk access outside of this wizard.

@ None
Application Load Balancer

Cancel Previous m

The infrastructure in a Fargate cluster is fully managed by AWS. Your containers run without you managing and configuring individual

Amazon EC2 instances.

To see key differences between Fargate and standard ECS clusters, see the Amazon ECS documentation.

Cluster name

|| <

VPC ID

Subnets

*Required

Cluster names are unique per account per region. Up to 255 letters (uppercase and lowercasa), numbers,

hyphens, and underscores are allowed.

Automatically create new

Automatically create new

In the cluster section, give the cluster name.

Cancel Previous m

Now we can see the status of the service we just created. Wait for the steps to complete and then click on View
Service.

Once on the services page, click on the Tasks tab to see the different tasks running for our application. Click on the
task id.

Now let us go to the url in the public-ip with the port http://3.88.173.94:8800, we can see

to check logs we have to go to the 1ogs tab in the services page

Now let us create an Aurora Serverless to link it with

38

Chapter 4. Deploy in AWS Fargate

Django Deployments Cookbook Documentation

Review

Review the configuration you've set up before creating your task definition, service, and cluster.

Task definition Edit
Task definition name first-run-task-definition
Network mode awsvpc
Task execution role Create new
Container name fargate-pollsapi
Image “WEDe0lPUPs23. dkr.ecr.us-east-
1.amazonaws.com/pollsapi-app:latest
Memory 512
Port BB00
Protocol HTTP
Service Edit
Service name fargate-pollsapi-service
Number of desired tasks 1
Cluster Edit
Cluster name pollsapi-cluster
VPCID Automatically create new
Subnets Automatically create new
*Required Cancel Previous Create
Getting Started with Amazon Elastic Container Service (Amazon ECS) using Fargate
Launch Status
We are creating resources for your service. This may take up to 10 minutes. When we’re complete, you can view your service.
Back Enabled after service creation completes successfully
Additional features that you can add to your service after creation
Scale based on metrics
You can mnl\gure scalmg rules based on CloudWatch metrics
Preparing service : 3 of 9 complete
ECS resource creation s sesessessssnsnassasenssasanssasenssssssnsrasenssessssersssserssassssssssesssassnsssssssorassnssetsssenssssssssassnnssassnssassnssassnsnres pending €)
Cluster pollsapi-cluster s ssssssssassns +« complete @
Task definition first-run-task-definition:10 + « » =+« complete ®
Service sssssssssssssssssssassass s pending€)
AWS service . . pending€)
Log group The log group [/ecs/fi complete @
CloudFormation stack - pending &)

. pending {)
- pending &)
. pending {)
- pending €)

4.3.

Deploying our application using AWS Fargate

39

Django Deployments Cookbook Documentation

Clusters > pollsapi-cluster

Service : fargate-pollsapi-service

» Service: fargate-pollsapi-service

o

Cluster pollsapi-cluster Desired count 1
Status ACTIVE Pending count 0
Task definition first-run-task-definition:10 Running count 1
Service type REPLICA
Launch type FARGATE
Platform version LATEST(1.3.0)
Service role AWSServiceRoleForECS
Details Tasks Events Auto Scaling Deployments Metrics Tags Logs
Last updated on February 20, 2018 12:44:27 AM (Om ago) | & | @
Task status: Stopped
T Filter in this page < 1-1 : Pagesize 50
Task Task Definition Last status Desired status Group Launch type Platform version
1edB84b1c-80a5-41ea-9... first-run-task-definition:10 RUNNING RUNNING service:fargate-pollsapi-... FARGATE 13.0

™~

Clusters > pollsapi-cluster > Task: 1e484b1c-80a5-41ea-9a45-11cbd1ed6b16

Task : 1e484b1c-80a5-41ea-9a45-11c5d1ed6b16

Details

Tags Logs

Cluster

Launch type
Platform version
Task definition
Group

Task role

Last status
Desired status
Created at

Started at

Network

Network mode
ENI Id
Subnet Id

Private IP

polisapi-cluster

FARGATE

1.3.0
first-run-task-definition:10
service:fargate-pollsapi-service
MNone

RUNNING

RUNNING

2019-02-20 00:19:48 +0530

2018-02-20 00:20:33 +0530

awsvpe
eni-0d4feBec1f919632
subnet-0ad16a58f806T72b2c

10.0.0.211

I Public IP

3.88.173.94 I

Mac address

Ciontainars

12:74:7d:99:82:74

40

Chapter 4. Deploy in AWS Fargate

Django Deployments Cookbook Documentation

Api Root

Api Root [cer -]

GET

HTTP 401 Unauthorized

Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
WWi-Authenticate: Token

"detail": "Authentication credentials were not provided."

4.4 Setup Serverless MySQL Database

To set up Aurora serverless DB follow https://www.agilig.com/blog/2019/01/complete-serverless-django/
#setup-serverless-mysql-database

4.5 Connect Our App to MySQL DB

While creating Aurora-serverless make sure that Fargate and Aurora are in same VPC

To connect our Django App to aurora db, follow https://www.agiliq.com/blog/2019/01/complete-serverless-django/
#connect-django-to-mysql-db

After configuring our settings.py file should have a similar database config

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.mysqgl',

'NAME': 'pollsdb', # dbname

'USER': 'polls_admin', # master username

'PASSWORD': 'pollsadmin', # master password

'"HOST': 'pollsapi-cluster.cluster-chcxxxxx.us-east-2.rds.amazonaws.com', #_
—Endpoint

'PORT': '3306',

}

4.5.1 Update Security Group Endpoint

Update Security Group Endpoint of Aurora and add Security Group of Fargate in the inbound rules, follow https:
/Iwww.agilig.com/blog/2019/01/complete-serverless-django/#update-security- group-endpoint

4.4. Setup Serverless MySQL Database 41

https://www.agiliq.com/blog/2019/01/complete-serverless-django/#setup-serverless-mysql-database
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#setup-serverless-mysql-database
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#connect-django-to-mysql-db
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#connect-django-to-mysql-db
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#update-security-group-endpoint
https://www.agiliq.com/blog/2019/01/complete-serverless-django/#update-security-group-endpoint

Django Deployments Cookbook Documentation

4.5.2 Setup the Database

We will write a command to create the database. To setup the database follow,

cd polls

mkdir management
cd management
touch __init_ .py
mkdir commands

cd commands

touch __init__ .py
touch create_db.py

r Ay Uy 0 0y O A

polls/management/commands/create_db.py
import sys

import logging

import MySQLdb

from django.core.management .base import BaseCommand, CommandError
from django.conf import settings

rds_host = 'pollsapi-cluster.cluster-chc62yjp918f.us-east-2.rds.amazonaws.com'
db_name = 'pollsdb'

user_name = 'polls_admin'

password = 'pollsadmin'

port = 3306

logger = logging.getLogger ()
logger.setLevel (logging.INFO)

class Command (BaseCommand) :
help = 'Creates the initial database'

def handle(self, =xargs, =+*options):
print ('Starting db creation')
try:
db = MySQLdb.connect (host=rds_host, user=user_name,
password=password, db="mysgl", connect_timeout=5)

c db.cursor ()
print ("connected to db server")
c.execute ("""CREATE DATABASE pollsdb;""")
c.execute (
"""GRANT ALL PRIVILEGES ON db_name.* TO 'polls_admin' IDENTIFIED BY
— 'pollsadmin';""")
c.close()
print ("closed db connection")
except:
logger.error (
"ERROR: Unexpected error: Could not connect to MySgl instance.")
sys.exit ()

Now let us create another command to create admin, follow

$ cd polls
$ mkdir management
$ cd management

(continues on next page)

42 Chapter 4. Deploy in AWS Fargate

Django Deployments Cookbook Documentation

(continued from previous page)

touch __init__ .py

mkdir commands

cd commands

touch __init__ .py

touch create_admin_user.py

Uy Wy A

polls/management/commands/create_admin_user.py
import sys
import logging

from django.core.management.base import BaseCommand, CommandError
from django.contrib.auth.models import User
from django.conf import settings

class Command (BaseCommand) :
help = 'Creates the initial admin user'

def handle(self, *args, =**options):
if User.objects.filter (username="admin") .exists () :
print ("admin exists")
else:
u = User (username="'admin')
u.set_password('adminpass"')
u.is_superuser = True
u.ls_staff = True
u.save ()
print ("admin created")
sys.exit ()

this command will create the admin user if it does not exists

Now next create a shell script file with name start . sh, and write the following

$ touch start.sh

#!/bin/sh

python manage.py create_db

python manage.py migrate

python manage.py create_admin_user
python manage.py runserver 0.0.0.0:8800
exec "S@"

And give it permissions

$ chmod +x start.sh

And Now update the Dockerfile
Now lets push the updated container image to ECS by following the Push Commands.
With Fargate, our containers are always started with the latest ECS image and Docker version.

Let us go to the http://3.88.173.94:8800/admin, we can see Now we can see that we can login and that
our Database connection is established fine.

Now our Django app is running in AWS Fargate and used Aurora Serverless as the DB.

4.5. Connect Our App to MySQL DB 43

Django Deployments Cookbook Documentation

ECR > Repositories > pollsapi-app

pollsapi-app
Images (2} - Delete

‘ Q, Find Images < 1 2
Size
Image tag Image URI Pushed at v Digest MB) ¥
PPBORPSTEES dkr.ecr.us-east- 02/20/19, 9:23:11 - i
latest 1.amazonaws com/pallsapi-appatest M sha256: 8a2cedb5f. . . 377.09
BITELFEPEPT dkr.ecr.us-east- 02/20/19, - .
<untagged> 1.amazonaws.com/pollsapi-app 12:11:00 AM shaZ56:a71a771f4. .. 37708

o administration

Username:

Password:

WELGCOME, ABMIN. VIEW SITE

Django administration

Site administration

Recent actions

Tokens +Add # Change

My actions

AUTHENTICATION AND AUTHORIZATION None available

Groups +add & Change

Users +4Add & Change

POLLS
Choices +add & Change

Polls +Add # Change

44 Chapter 4. Deploy in AWS Fargate

CHAPTER B

Indices and tables

* genindex
* modindex

e search

45

	Using Zappa deploy in Lambda & use Aurora Serverless
	Using Apex-Up deploy in Lambda and use Aurora Serverless
	Using Zeit-Now & use RDS Postgres
	Deploy in AWS Fargate
	Indices and tables

