

 Navigation

 	
 index

 	django-debreach 1.4.1 documentation

django-debreach

Basic/extra mitigation against the BREACH attack [http://breachattack.com/]
for Django projects.

When combined with rate limiting in your web-server, or by using something
like django-ratelimit [http://django-ratelimit.readthedocs.org/], the
techniques here should provide at least some protection against the BREACH
attack.

[image: PyPI]
 [https://badge.fury.io/py/django-debreach][image: Build status]
 [https://travis-ci.org/lpomfrey/django-debreach][image: Coverage]
 [https://coveralls.io/r/lpomfrey/django-debreach?branch=master]
Installation

Install from PyPI using:

$ pip install django-debreach

Add to your INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'debreach',
 ...
)

Configuration

CSRF token masking (for Django < 1.10)

Django 1.10+ provides built-in support for masking CSRF tokens so you should
use that. Including the middleware in a Django 1.10 project will raise an
ImproperlyConfigured exception.

To mask CSRF tokens in the template add the
debreach.context_processors.csrf context processor to the end of your
TEMPLATE_CONTEXT_PROCESSORS:

TEMPLATE_CONTEXT_PROCESSORS = (
 ...
 'debreach.context_processors.csrf',
)

And add the debreach.middleware.CSRFCryptMiddleware to your middleware,
before django.middleware.csrf.CSRFMiddleware:

MIDDLEWARE_CLASSES = (
 'debreach.middleware.CSRFCryptMiddleware',
 ...
 'django.middleware.csrf.CSRFMiddleware',
 ...
)

This works by xor-ing the CSRF token when it is added to the template,
so that {% csrf_token %} now produces a hidden field with a value that is
"<random-string>$<actual-csrf-token-xor-ed-with-random-string>".
Then, when the form is POSTed, the middleware xors the CSRF token back into
it’s original form. This ensures that the CSRF content is never the same
between requests. If you are passing the token using the X-CSRFToken
header (e.g. using XHR) that header will also be processed in the same way.

Note that values that are unchanged by django-debreach, or rather, don’t
contain a delimiting $, will be left unmodified. The middleware will
also not operate on views marked as being exempt from CSRF protection
using the django.views.decorators.csrf.csrf_exempt decorator.

CSRF protection using csrf_protect

If you don’t use the CSRF middleware from django but, instead, apply the
django.views.decorators.csrf.csrf_protect decorator to selected
views, and don’t want to use the debreach.middleware.CSRFCryptMiddleware,
then you can use the debreach.decorators.csrf_decrypt decorator.

To use the debreach.decorators.csrf_decrypt decorator simply wrap
your CSRF protected view with the decorator, like so:

@csrf_protect
@csrf_decrypt
def view(request, *args, **kwargs):
 return HttpResponse('')

Content length modification

django-debreach also enables you to counter the BREACH attack by randomising the
content length of each response. This is acheived by adding a random string of
between 12 and 25 characters as a comment to the end of the HTML content. Note
that this will only be applied to responses with a content type of
text/html.

To enable content length modification for all responses, add the
debreach.middleware.RandomCommentMiddleware to the start of your
middleware, but after the GzipMiddleware if you are using that.:

MIDDLEWARE_CLASSES = (
 'debreach.middleware.RandomCommentMiddleware',
 ...
)

or:

MIDDLEWARE_CLASSES = (
 'django.middleware.gzip.GzipMiddleware',
 'debreach.middleware.RandomCommentMiddleware',
 ...
)

If you wish to disable this feature for selected views, simply apply the
debreach.decorators.random_comment_exempt decorator to the view.

If you only want to protect a subset of views with content length modification
then it may be easier to not use the middleware, but to selectively apply the
debreach.decorators.append_random_comment decorator to the views you want
protected.

 Copyright 2013, Luke Pomfrey.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	django-debreach 1.4.1 documentation

Index

 Copyright 2013, Luke Pomfrey.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		django-debreach 1.4.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Luke Pomfrey.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

