
django-data-migration Documentation
Release 0.2.1

Philipp Böhm

Sep 27, 2017

Contents

1 Contents: 3
1.1 Installing . 3
1.2 Writing Migrations . 3

1.2.1 What is a Migration? . 3
1.2.2 A complete Migration example . 4
1.2.3 Migration details . 4

1.3 Migrating your data . 9
1.4 Troubleshooting . 9

1.4.1 GROUP_CONCAT column size limit in Mysql is too low 9
1.5 Changelog . 9

1.5.1 Version 0.2.1 . 9
1.5.2 Version 0.2.0 . 9
1.5.3 Version < 0.2.0 . 10

Python Module Index 11

i

ii

django-data-migration Documentation, Release 0.2.1

django-data-migration is a reusable Django app that migrates your legacy data into your new django app. The
only thing you have to supply is an appropriate SQL query that transforms your data fromthe old schema into your
model structure. Dependencies between these migrations will be resolved automatically. Give it a try!

Warning: This documentation is a work in progress. Please open an issue on Github if any information are
missing.

Contents 1

django-data-migration Documentation, Release 0.2.1

2 Contents

CHAPTER 1

Contents:

Installing

Installation of django-data-migration is straight forward, as it only requires the following steps (assuming
you have already set up virtualenv and pip).

1. Install using pip:

pip install django-data-migration

2. Add django-data-migration to your requirements.txt

3. Add to INSTALLED_APPS:

'data_migration',

4. Run ./manage.py migrate or ./manage.py syncdb to create the included models

Writing Migrations

What is a Migration?

A migration is a Python class that should be placed in a file called data_migration_spec.py in one of your
app-directories. django-data-migrations searches in each app, included in INSTALLED_APPS, for this file
and imports all from it automatically.

Your migration normally specifies the following things:

• A database connection to your legacy data (whereever this is)

• The model class, the migration should create instances for

• A corresponding SQL-Query, which maps the old DB-schema to the new Django-model-schema

3

django-data-migration Documentation, Release 0.2.1

– You can specify what should be done with special columns, returned by the query (Many2Many-,
ForeignKey-, One2One-Relations). With minimal configuration, these things can be migrated automat-
ically.

• Dependencies to other models can be specified. This is used, to determine the order each migration can be
applied. e.g. If a migration specifies a model as dependency, his migration will be executed before our migration
will be processed.

• You can implement different hooks, where you normally manipulate the data returned by the query or do some
things which are not possible by SQL itself.

• You can specify, if your migration should look for new instances on a second run. This is not the default case.

A complete Migration example

To give you an overview, how a common migration looks, the following listing shows a migration for a Post model.
This is an excerpt from a data_migration_spec.py which can be found in a testing app, which is used by
django-data-migration itself.

The complete app can be found here ...

class PostMigration(BaseMigration):
query = """
SELECT id,

Title as title,
Body as body,
Posted as posted,
Author as author,
(

SELECT
GROUP_CONCAT(id)

FROM comments c
WHERE c.Post = p.id

) as comments
FROM posts p;
"""
model = Post
depends_on = [Author, Comment]
column_description = {

'author': is_a(Author, search_attr="id", fk=True, prefetch=False),
'comments': is_a(Comment, search_attr="id", m2m=True,

delimiter=",", prefetch=False)
}

@classmethod
def hook_after_save(self, instance, row):

because of the auto_now_add flag, we have to set it hard to this value
instance.posted = row['posted']
instance.save()

As you can see, PostMigration inherits from a class called BaseMigration. This is one of the classes which
is listed here Setup Database Connection.

Migration details

4 Chapter 1. Contents:

https://github.com/pboehm/django-data-migration/tree/master/data_migration/test_apps/blog

django-data-migration Documentation, Release 0.2.1

Setup Database Connection

django-data-migration should support as many databases as possible, so the connection part is not imple-
mented directly for each database. You have to override the open_db_connection classmethod in your migration.

Tip: The connection handling should be implemented once in a BaseMigrationwhere all other Migrations inherit
from.

Important: django-data-migration requires that the database returns a DictCursor, where each row is a
dict with column names as keys and the row as corresponding values.

SQLite

The following code implements an example database connection for SQLite:

import sqlite3

class BaseMigration(Migration):

@classmethod
def open_db_connection(self):

conn = sqlite3.connect(......)

def dict_factory(cursor, row):
d = {}
for idx, col in enumerate(cursor.description):

d[col[0]] = row[idx]
return d

conn.row_factory = dict_factory
return conn

MySQL

You have to install the corresponding MySQL-Python-driver by executing:

pip install MySQL-python

The following code implements an example database connection for MySQL.

import MySQLdb

class BaseMigration(Migration):

@classmethod
def open_db_connection(self):

return MySQLdb.connect(......,
cursorclass=MySQLdb.cursors.DictCursor

)

1.2. Writing Migrations 5

django-data-migration Documentation, Release 0.2.1

PostgreSQL

You have to install the corresponding PostgreSQL-Python-driver by executing:

pip install psycopg2

Important: a version of psycopg >= 2.5 is required as it allows the cursor_factory to be specified through
connect() instead of get_cursor().

The following code implements an example database connection for PostgreSQL.

import psycopg2
import psycopg2.extras

class BaseMigration(Migration):

@classmethod
def open_db_connection(self):

return psycopg2.connect(......,
cursor_factory=psycopg2.extras.RealDictCursor

)

MS-SQL

@aidanlister contributed a sample DB connection for MS-SQL using pyodbc, which has to be installed first:

pip install pyodbc

The following code implements an example database connection for MS-SQL.

import pyodbc

class ConnectionWrapper(object):
def __init__(self, cnxn):

self.cnxn = cnxn

def __getattr__(self, attr):
return getattr(self.cnxn, attr)

def cursor(self):
return CursorWrapper(self.cnxn.cursor())

class CursorWrapper(object):
def __init__(self, cursor):

self.cursor = cursor

def __getattr__(self, attr):
return getattr(self.cursor, attr)

def fetchone(self):
row = self.cursor.fetchone()
if not row:

return None

6 Chapter 1. Contents:

https://github.com/aidanlister

django-data-migration Documentation, Release 0.2.1

return dict((t[0], value) for t, value in zip(self.cursor.description, row))

def fetchall(self):
rows = self.cursor.fetchall()
if not rows:

return None

dictrows = []
for row in rows:

row = dict((t[0], value) for t, value in zip(self.cursor.description,
→˓row))

dictrows.append(row)
return dictrows

class BaseMigration(Migration):
@classmethod
def open_db_connection(self):

dsn = "DRIVER={SQL Server Native Client 11.0};SERVER=X;DATABASE=X;UID=X;PWD=X"

cnxn = pyodbc.connect(dsn)
wrapped_connection = ConnectionWrapper(cnxn)
return wrapped_connection

What can be configured in every migration

In your migration classes you have several configuration options, which are listed below with a short description. For
an in-depth explanation you can consult the paragraphs below.

Writing effective Migration-queries

Important: TODO

Define dependencies

Important: TODO

Describe special columns

Your query can include special columns, that are represented as special Django-relations (ForeignKey-, Many2Many-
or One2One-Relations). Or you can exclude specific columns from automatic processing. You will normally define
these settings with an invocation of the is_a-function, which does some tests and returns the required settings. This
will then be used by django-data-migration in different places.

Some examples for is_a can be found here: A complete Migration example.

1.2. Writing Migrations 7

django-data-migration Documentation, Release 0.2.1

Using Migration Hooks

data_migration.migration.Migration defines a number of different hook-functions which will be called
at different places allowing you to customize the migration work at different levels.

Error-Handling

In case of an exception when creating the instances, a default error handler will be called, to print the current row to
stderr and than reraise the exception.

You can override this hook in your migration if it requires special handling of errors. When this method returns without
an exception, the next row from the query will be processed.

Hook-Flowchart

The following graphic shows each Hook-method and when it is called in contrast to the model handling which is done
by django-data-migration.

+------------------+
|hook_before_all() |
+--------------+---+

|
+-----+ |
| | |
| +--v----v--------------------+
| |hook_before_transformation()|
| +-------+--------------------+
| |
| +---v--------------------+
| |instance = model(**data)|
| +---+--------------------+
| |
| +-------v----------+
| |hook_before_save()|
| +-------+----------+
| |
| +---v-----------+
| |instance.save()|
| +---+-----------+
| |
| +-------v---------+
| |hook_after_save()|
| +-------+---------+
| |
+-------+--+

|
|

+-----------v-----+
|hook_after_all() |
+-----------------+

Implement updateable Migrations

8 Chapter 1. Contents:

django-data-migration Documentation, Release 0.2.1

Important: TODO

Migrating your data

After you wrote all of your Migrations, you can put them in action by executing the migrate_legacy_data
management command:

./manage.py migrate_legacy_data [--commit]

If you omit the --commit-flag, the data is not saved to the DB. This is useful when you develop your migrations and
have some failing migrations, but the db is not cluttered with any incomplete data. When your migrations are succesful
you can add --commit and your data is saved when no errors occur.

Note: In older versions of this library, the management command is called migrate_this_shit. This has been
deprecated, but it is still there. migrate_legacy_data should be more appropriate.

Troubleshooting

GROUP_CONCAT column size limit in Mysql is too low

Mysql has fairly low limit for rows that can be merged by the GROUP_CONCAT function. For large result
sets, this has to be increased. This can be done with the following SQL statement, which can be executed in
open_db_connection.:

@classmethod
def open_db_connection(self):

conn = MySQLdb.connect(....)
cursor = conn.cursor()

cursor.execute('SET SESSION group_concat_max_len = 60000000;')
return conn

Changelog

Version 0.2.1

• atomic() is now used instead of commit_on_success() when it is available. This prevents deprecation
warnings that are displayed with Django >= 1.7.

Version 0.2.0

• Introduced some performance improvements by implementing prefetching of related objects, that reduces the
number of issued SQL-Queries dramatically. There is now the opportunity to assign related objects by their id
instead of a full instance, which can reduce the memory usage.

1.3. Migrating your data 9

django-data-migration Documentation, Release 0.2.1

• There are two new arguments in is_a: prefetch=True and assign_by_id=False. Because prefetch-
ing is enabled by default, it should bring a massive performance boost only by upgrading to this version

• Switching to a new minor release because of the changed behaviour in get_object

Version < 0.2.0

There is no explicit Changelog until 0.2.0. Use git log to get the information from git.

10 Chapter 1. Contents:

Python Module Index

d
data_migration.migration, 7

11

django-data-migration Documentation, Release 0.2.1

12 Python Module Index

Index

D
data_migration.migration (module), 7

13

	Contents:
	Installing
	Writing Migrations
	What is a Migration?
	A complete Migration example
	Migration details

	Migrating your data
	Troubleshooting
	GROUP_CONCAT column size limit in Mysql is too low

	Changelog
	Version 0.2.1
	Version 0.2.0
	Version < 0.2.0

	Python Module Index

