

    
      
          
            
  
Welcome to django-data-migration’s documentation!

django-data-migration is a reusable Django app that migrates your legacy
data into your new django app. The only thing you have to supply is an
appropriate SQL query that transforms your data fromthe old schema into your
model structure. Dependencies between these migrations will be resolved
automatically. Give it a try!


Warning

This documentation is a work in progress. Please open an issue on
Github if any information are missing.




Contents:



	Installing

	Writing Migrations
	What is a Migration?

	A complete Migration example

	Migration details
	Setup Database Connection

	What can be configured in every migration

	Writing effective Migration-queries

	Define dependencies

	Describe special columns

	Using Migration Hooks

	Implement updateable Migrations









	Migrating your data

	Troubleshooting
	GROUP_CONCAT column size limit in Mysql is too low





	Changelog
	Version 0.2.1

	Version 0.2.0

	Version < 0.2.0















          

      

      

    

  

    
      
          
            
  
Installing

Installation of django-data-migration is straight forward, as it only
requires the following steps (assuming you have already set up virtualenv
and pip).


	Install using pip:

pip install django-data-migration







	Add django-data-migration to your requirements.txt



	Add to INSTALLED_APPS:

'data_migration',







	Run ./manage.py migrate or ./manage.py syncdb to create the included
models









          

      

      

    

  

    
      
          
            
  
Writing Migrations


What is a Migration?

A migration is a Python class that should be placed in a file called
data_migration_spec.py in one of your app-directories.
django-data-migrations searches in each app, included in
INSTALLED_APPS, for this file and imports all from it automatically.

Your migration normally specifies the following things:


	A database connection to your legacy data (whereever this is)



	The model class, the migration should create instances for



	A corresponding SQL-Query, which maps the old DB-schema to the new
Django-model-schema



	You can specify what should be done with special columns, returned by the
query (Many2Many-, ForeignKey-, One2One-Relations). With minimal
configuration, these things can be migrated automatically.








	Dependencies to other models can be specified. This is used, to determine the
order each migration can be applied. e.g. If a migration specifies
a model as dependency, his migration will be executed before our migration
will be processed.



	You can implement different hooks, where you normally manipulate the data
returned by the query or do some things which are not possible by SQL itself.



	You can specify, if your migration should look for new instances on a second
run. This is not the default case.








A complete Migration example

To give you an overview, how a common migration looks, the following listing
shows a migration for a Post model. This is an excerpt from a
data_migration_spec.py which can be found in a testing app, which is used by
django-data-migration itself.

The complete app can be found here ... [https://github.com/pboehm/django-data-migration/tree/master/data_migration/test_apps/blog]

class PostMigration(BaseMigration):
    query = """
    SELECT id,
        Title as title,
        Body as body,
        Posted as posted,
        Author as author,
        (
            SELECT
                GROUP_CONCAT(id)
            FROM comments c
            WHERE c.Post = p.id
        ) as comments
    FROM posts p;
    """
    model = Post
    depends_on = [ Author, Comment ]
    column_description = {
        'author': is_a(Author, search_attr="id", fk=True, prefetch=False),
        'comments': is_a(Comment, search_attr="id", m2m=True,
                         delimiter=",", prefetch=False)
    }

    @classmethod
    def hook_after_save(self, instance, row):
        # because of the auto_now_add flag, we have to set it hard to this value
        instance.posted = row['posted']
        instance.save()





As you can see, PostMigration inherits from a class called BaseMigration.
This is one of the classes which is listed here Setup Database Connection.




Migration details


Setup Database Connection

django-data-migration should support as many databases as possible, so the
connection part is not implemented directly for each database. You have to
override the open_db_connection classmethod in your migration.


Tip

The connection handling should be implemented once in a
BaseMigration where all other Migrations inherit from.




Important

django-data-migration requires that the database returns a
DictCursor, where each row is a dict with column names as keys
and the row as corresponding values.




SQLite

The following code implements an example database connection for SQLite:

import sqlite3

class BaseMigration(Migration):

    @classmethod
    def open_db_connection(self):
        conn = sqlite3.connect(......)

        def dict_factory(cursor, row):
            d = {}
            for idx, col in enumerate(cursor.description):
                d[col[0]] = row[idx]
            return d

        conn.row_factory = dict_factory
        return conn








MySQL

You have to install the corresponding MySQL-Python-driver by executing:

pip install MySQL-python





The following code implements an example database connection for MySQL.

import MySQLdb

class BaseMigration(Migration):

    @classmethod
    def open_db_connection(self):
        return MySQLdb.connect(......,
            cursorclass=MySQLdb.cursors.DictCursor
        )








PostgreSQL

You have to install the corresponding PostgreSQL-Python-driver by executing:

pip install psycopg2






Important

a version of psycopg >= 2.5 is required as it allows the
cursor_factory to be specified through connect()
instead of get_cursor().



The following code implements an example database connection for PostgreSQL.

import psycopg2
import psycopg2.extras

class BaseMigration(Migration):

    @classmethod
    def open_db_connection(self):
        return psycopg2.connect(......,
            cursor_factory=psycopg2.extras.RealDictCursor
        )








MS-SQL

@aidanlister [https://github.com/aidanlister] contributed a sample DB
connection for MS-SQL using pyodbc, which has to be installed first:

pip install pyodbc





The following code implements an example database connection for MS-SQL.

import pyodbc

class ConnectionWrapper(object):
    def __init__(self, cnxn):
        self.cnxn = cnxn

    def __getattr__(self, attr):
        return getattr(self.cnxn, attr)

    def cursor(self):
        return CursorWrapper(self.cnxn.cursor())


class CursorWrapper(object):
    def __init__(self, cursor):
        self.cursor = cursor

    def __getattr__(self, attr):
        return getattr(self.cursor, attr)

    def fetchone(self):
        row = self.cursor.fetchone()
        if not row:
            return None
        return dict((t[0], value) for t, value in zip(self.cursor.description, row))

    def fetchall(self):
        rows = self.cursor.fetchall()
        if not rows:
            return None

        dictrows = []
        for row in rows:
            row = dict((t[0], value) for t, value in zip(self.cursor.description, row))
            dictrows.append(row)
        return dictrows


class BaseMigration(Migration):
    @classmethod
    def open_db_connection(self):
        dsn = "DRIVER={SQL Server Native Client 11.0};SERVER=X;DATABASE=X;UID=X;PWD=X"

        cnxn = pyodbc.connect(dsn)
        wrapped_connection = ConnectionWrapper(cnxn)
        return wrapped_connection










What can be configured in every migration

In your migration classes you have several configuration options, which are
listed below with a short description. For an in-depth explanation you can
consult the paragraphs below.




Writing effective Migration-queries


Important

TODO






Define dependencies


Important

TODO






Describe special columns

Your query can include special columns, that are represented as special
Django-relations (ForeignKey-, Many2Many- or One2One-Relations). Or you can
exclude specific columns from automatic processing. You will normally define
these settings with an invocation of the is_a-function, which does some
tests and returns the required settings. This will then be used by
django-data-migration in different places.

Some examples for is_a can be found here: A complete Migration example.




Using Migration Hooks

data_migration.migration.Migration defines a number of different
hook-functions which will be called at different places allowing you to
customize the migration work at different levels.


Error-Handling

In case of an exception when creating the instances, a default error handler
will be called, to print the current row to stderr and than reraise the
exception.

You can override this hook in your migration if it requires special handling of
errors. When this method returns without an exception, the next row from the
query will be processed.




Hook-Flowchart

The following graphic shows each Hook-method and when it is called in contrast
to the model handling which is done by django-data-migration.

+------------------+
|hook_before_all() |
+--------------+---+
               |
    +-----+    |
    |     |    |
    |  +--v----v--------------------+
    |  |hook_before_transformation()|
    |  +-------+--------------------+
    |          |
    |      +---v--------------------+
    |      |instance = model(**data)|
    |      +---+--------------------+
    |          |
    |  +-------v----------+
    |  |hook_before_save()|
    |  +-------+----------+
    |          |
    |      +---v-----------+
    |      |instance.save()|
    |      +---+-----------+
    |          |
    |  +-------v---------+
    |  |hook_after_save()|
    |  +-------+---------+
    |          |
    +-------+--+
            |
            |
+-----------v-----+
|hook_after_all() |
+-----------------+










Implement updateable Migrations


Important

TODO











          

      

      

    

  

    
      
          
            
  
Migrating your data

After you wrote all of your Migrations, you can put them in action by executing
the migrate_legacy_data management command:

./manage.py migrate_legacy_data [--commit]





If you omit the --commit-flag, the data is not saved to the DB. This is
useful when you develop your migrations and have some failing migrations, but
the db is not cluttered with any incomplete data. When your migrations are
succesful you can add --commit and your data is saved when no errors occur.


Note

In older versions of this library, the management command is called
migrate_this_shit. This has been deprecated, but it is still there.
migrate_legacy_data should be more appropriate.







          

      

      

    

  

    
      
          
            
  
Troubleshooting


GROUP_CONCAT column size limit in Mysql is too low

Mysql has fairly low limit for rows that can be merged by the GROUP_CONCAT
function. For large result sets, this has to be increased. This can be done
with the following SQL statement, which can be executed in
open_db_connection.:

@classmethod
def open_db_connection(self):
    conn = MySQLdb.connect(....)
    cursor = conn.cursor()

    cursor.execute('SET SESSION group_concat_max_len = 60000000;')
    return conn











          

      

      

    

  

    
      
          
            
  
Changelog


Version 0.2.1


	atomic() is now used instead of commit_on_success() when it is
available. This prevents deprecation warnings that are displayed with Django
>= 1.7.






Version 0.2.0


	Introduced some performance improvements by implementing prefetching of
related objects, that reduces the number of issued SQL-Queries dramatically.
There is now the opportunity to assign related objects by their id instead of
a full instance, which can reduce the memory usage.

	There are two new arguments in is_a: prefetch=True and
assign_by_id=False. Because prefetching is enabled by default, it
should bring a massive performance boost only by upgrading to this version

	Switching to a new minor release because of the changed behaviour in
get_object






Version < 0.2.0

There is no explicit Changelog until 0.2.0. Use git log to get the
information from git.







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   d
   


   
     		 	

     		
       d	

     
       	[image: -]
       	
       data_migration	
       

     
       	
       	   
       data_migration.migration	
       

   



          

      

      

    

  

    
      
          
            

Index



 D
 


D


  	
      	data_migration.migration (module)


  







          

      

      

    

  _static/plus.png





nav.xhtml

    
      Table of Contents


      
        		Welcome to django-data-migration's documentation!


        		Installing


        		Writing Migrations
          
          		What is a Migration?


          		A complete Migration example


          		Migration details
            
            		Setup Database Connection


            		What can be configured in every migration


            		Writing effective Migration-queries


            		Define dependencies


            		Describe special columns


            		Using Migration Hooks


            		Implement updateable Migrations


            


          


          


        


        		Migrating your data


        		Troubleshooting
          
          		GROUP_CONCAT column size limit in Mysql is too low


          


        


        		Changelog
          
          		Version 0.2.1


          		Version 0.2.0


          		Version < 0.2.0


          


        


      


    
  

_static/ajax-loader.gif





_static/up.png





_static/comment-bright.png





_static/file.png





_static/comment-close.png





_static/down.png





_static/down-pressed.png





_static/comment.png





_static/minus.png





_static/up-pressed.png





