
Django Daguerre Documentation
Release 3.0.0

Stephen Burrows, Harris Lapiroff

Apr 08, 2020

Contents

1 Contents 3
1.1 Installation and Setup . 3
1.2 Template Tags . 4
1.3 Smart Cropping with Areas . 6
1.4 Management Commands . 9
1.5 Custom settings . 10

2 API Docs 11
2.1 Adjustments . 11
2.2 Models . 13

3 Release Notes 15
3.1 Release Notes . 15

4 Indices and tables 17

Python Module Index 19

Index 21

i

ii

Django Daguerre Documentation, Release 3.0.0

Fig.
1:
Louis
Da-
guerre,
Fa-
ther
of
Pho-
tog-
ra-
phy

Django Daguerre manipulates images on the fly. Use it to scale images up or down. Use it to generate
thumbnails in bulk or sets of responsive images without slowing down your templates. Or customize it to do
even more powerful image processing.

You don’t need to run a cron job ahead of time. You don’t need to make any changes to your models. It just
works.

{% load daguerre %}

{% adjust_
→˓bulk my_queryset "method.image" "fill" width=200 height=400 as adjusted_list %}
{% for my_model, image in adjusted_list %}

{% endfor %}

Code http://github.com/melinath/django-daguerre

Docs http://readthedocs.org/docs/django-daguerre/

Build status

Contents 1

http://en.wikipedia.org/wiki/Louis_Daguerre
http://github.com/melinath/django-daguerre
http://readthedocs.org/docs/django-daguerre/
http://travis-ci.org/melinath/django-daguerre/branches

Django Daguerre Documentation, Release 3.0.0

2 Contents

CHAPTER 1

Contents

1.1 Installation and Setup

1.1.1 Installation

Install the latest version of Daguerre using pip:

pip install django-daguerre

You can also clone the repository or download a package at https://github.com/melinath/django-daguerre.

1.1.2 Setup

Add 'daguerre' to your project’s INSTALLED_APPS:

INSTALLED_APPS = (
'daguerre',
...

)

Add Daguerre’s URL patterns to your URLconf:

urlpatterns = patterns('',
url(r'^daguerre/', include('daguerre.urls')),
...

)

Run the migration command to create the database models:

python manage.py migrate daguerre

Now you’re ready to use Daguerre’s template tags!

3

https://github.com/melinath/django-daguerre

Django Daguerre Documentation, Release 3.0.0

1.1.3 Versions and Requirements

• Python 3.5+

• Pillow

• Django 1.11 – 3.0

Daguerre may work with earlier versions of these packages, but they are not officially supported.

1.2 Template Tags

1.2.1 adjust

The easiest way to use Daguerre is through the {% adjust %} template tag:

{% load daguerre %}

The {% adjust %} tag works directly with any ImageField (or storage path). There is no magic. You don’t need
to change your models. It Just Works.

Daguerre provides a number of built-in adjustments (such as ‘fill’) which can be used with the {% adjust %} out
of the box, as well as an API for registering custom adjustments.

Take this picture:

Fig. 1: Full size: 800x600. This photograph, by Wikipedia user Sloesch, is licensed as CC BY-SA.

Let’s use {% adjust %} with width 200 (25%) and height 300 (50%), with three of the built-in adjustments.

4 Chapter 1. Contents

http://de.wikipedia.org/wiki/Benutzer:Sloesch
http://creativecommons.org/licenses/by-sa/3.0/

Django Daguerre Documentation, Release 3.0.0

“fit” “fill” “crop”

Fits the entire image into
the given dimensions without
distorting it.

Fills the entire space given by the dimensions by
cropping to the same width/height ratio and then
scaling down or up.

Crops the image to the
given dimensions without
any resizing.

Chaining Adjustments

You can also use the {% adjust %} tag to chain multiple adjustments. Take the following:

{% load daguerre %}
{% adjust my_model.image 'ratiocrop' ratio='16:9' 'fit' width=200 %}

This tag first crops the image to a 16:9 ratio, then scales as much as needed to fit within a 200-pixel width. In other
words:

See also:

daguerre.adjustments for more built-in adjustments.

1.2. Template Tags 5

Django Daguerre Documentation, Release 3.0.0

Getting adjusted width and height

{% load daguerre %}
{% adjust my_model.image 'fit' width=128 height=128 as image %}

The object being set to the image context variable is an AdjustmentInfoDict instance. In addition to rendering
as the URL for an image, this object provides access to some other useful pieces of information—in particular, the
width and height that the adjusted image will have, based on the width and height of the original image and the
parameters given to the tag. This can help you avoid changes to page flow as adjusted images load.

Let’s be lazy

So the {% adjust %} tag renders as a URL to adjusted image, right? Yes, but as lazily as possible. If the adjustment
has already been performed, the adjusted image’s URL is fetched from the database. If the adjustment has not been
performed, the tag renders as a URL to a view which, when accessed, will create an adjusted version of the image and
return a redirect to the adjusted image’s actual URL.

This does have the downside of requiring an additional request/response cycle when unadjusted images are fetched by
the user – but it has the upside that no matter how many {% adjust %} tags you have on a page, the initial load of
the page won’t be slowed down by (potentially numerous, potentially expensive) image adjustments.

Note: The adjustment view has some light security in place to make sure that users can’t run arbitrary image resizes
on your servers.

1.2.2 adjust_bulk

If you are using a large number of similar adjustments in one template - say, looping over a queryset and adjusting the
same attribute each time - you can save yourself queries by using {% adjust_bulk %}.

{% load daguerre %}
{% adjust_bulk my_queryset "method.image" "fill" width=200 height=400 as adjusted_
→˓list %}
{% for my_model, image in adjusted_list %}

{% endfor %}

The syntax is similar to {% adjust %}, except that:

• as <varname> is required.

• an iterable (my_queryset) and a lookup to be performed on each item in the iterable ("method.image")
are provided in place of an image file or storage path. (If the iterable is an iterable of image files or storage
paths, the lookup is not required.)

You’ve got everything you need now to use Daguerre and resize images like a champ. But what if you need more
control over how your images are cropped? Read on to learn about Smart Cropping with Areas.

1.3 Smart Cropping with Areas

Daguerre allows you to influence how images are cropped with Areas.

6 Chapter 1. Contents

Django Daguerre Documentation, Release 3.0.0

1.3.1 Use the AreaWidget

Daguerre provides a widget which can be used with any ImageField to edit Areas for that image file. Add this
formfield override to your ModelAdmin to enable the widget.

from daguerre.widgets import AreaWidget

class YourModelAdmin(admin.ModelAdmin):
formfield_overrides = {

models.ImageField: {'widget': AreaWidget},
}
...

Fig. 2: The AreaWidget allows you to define areas of an image with click-and-drag. (Screenshot includes Grap-
pelli.)

1.3.2 Adjustments with Areas

After you define Areas for an image in the admin, adjustments that remove parts of the image (such as crop) will
protect those parts of the image during processing. See the difference in this adjustment.

Result without ‘face’ Area defined

1.3. Smart Cropping with Areas 7

http://grappelliproject.com/
http://grappelliproject.com/

Django Daguerre Documentation, Release 3.0.0

Result with ‘face’ Area defined

1.3.3 Areas and namedcrop

You can also use the built-in “namedcrop” adjustment force a specific crop.

8 Chapter 1. Contents

Django Daguerre Documentation, Release 3.0.0

1.4 Management Commands

1.4.1 ./manage.py daguerre clean

Cleans out extra or invalid data stored by daguerre:

• AdjustedImages and Areas that reference storage paths which no longer exist.

• Duplicate AdjustedImages.

• Adjusted image files which don’t have an associated AdjustedImage.

• AdjustedImage instances with missing adjusted image files.

1.4.2 ./manage.py daguerre preadjust [--remove] [--nocreate]

Looks for a DAGUERRE_PREADJUSTMENTS setting using the following structure:

1.4. Management Commands 9

Django Daguerre Documentation, Release 3.0.0

from daguerre.adjustments import Fit, Fill
DAGUERRE_PREADJUSTMENTS = (

('myapp.MyModel',
[Fit(width=800, height=500)],
'template.style.lookup'),

(OtherModel.objects.filter(field=value),
[Fill(width=300, height=216)].
'template.style.lookup'),

...
)

Essentially, this is expected to be an iterable of tuples, where each tuple contains three items:

1. '<applabel>.<model>', a model class, a queryset, or any iterable.

2. A non-empty iterable of adjustment instances to be applied to each image.

3. A template-style lookup (or None).

Each time the command is run, the first item will be used to generate a fresh iterable of model instances. The lookup
will be applied to each instance to get an ImageFile or storage path, which will then have the list of adjustments
applied it to create a new adjusted version of the image, if one doesn’t exist already. (This is essentially the same
functionality as the {% adjust_bulk %} template tag.)

If --remove is specified, the command will delete all AdjustedImage instances which would not be generated
by the parameters specified in DAGUERRE_PREADJUSTMENTS.

If --nocreate is specified, the command will not create any new AdjustedImage instances. This can be used
with --remove to just prune instances that aren’t specified in DAGUERRE_PREADJUSTMENTS without creating
new pre-adjusted instances. Specifying --nocreate without --remove makes this command a no-op.

1.5 Custom settings

1.5.1 Adjust the image path

The variations are stored under a hashed directory path that starts with the dg directory by default (e.g. dg/
ce/2b/7014c0bdbedea0e4f4bf.jpeg). This setting can be modified in the project’s settings by setting the
DAGUERRE_ADJUSTED_IMAGE_PATH variable.

Example:

settings.py
DAGUERRE_ADJUSTED_IMAGE_PATH = 'img'

which would produce the following path: img/ce/2b/7014c0bdbedea0e4f4bf.jpeg

Warning: The maximum length of the DAGUERRE_ADJUSTED_IMAGE_PATH string is 13 characters. If the
string has more than 13 characters, it will gracefully fall back to the the default value, i.e. dg

10 Chapter 1. Contents

CHAPTER 2

API Docs

2.1 Adjustments

Daguerre provides a variety of adjustments to use when processing images, as well as an API for registering custom
adjustments.

class daguerre.adjustments.Adjustment(**kwargs)
Base class for all adjustments which can be carried out on an image. The adjustment itself represents a set of
parameters, which can then be applied to images (taking areas into account if applicable).

Adjustment subclasses need to define two methods: calculate() and adjust(). If the method doesn’t
use areas, you can set the uses_areas attribute on the method to False to optimize adjustment.

Parameters kwargs – The requested kwargs for the adjustment. The keys must be in
parameters or the adjustment is invalid.

adjust(image, areas=None)
Manipulates and returns the image. Must be implemented by subclasses.

Parameters

• image – PIL Image which will be adjusted.

• areas – iterable of Area instances to be considered in performing the adjustment.

calculate(dims, areas=None)
Calculates the dimensions of the adjusted image without actually manipulating the image. By default, just
returns the given dimensions.

Parameters

• dims – (width, height) tuple of the current image dimensions.

• areas – iterable of Area instances to be considered in calculating the adjustment.

parameters = ()
Accepted parameters for this adjustment - for example, "width", "height", "color",
"unicorns", etc.

11

Django Daguerre Documentation, Release 3.0.0

2.1.1 Built-In Adjustments

class daguerre.adjustments.Fit(**kwargs)
Resizes an image to fit entirely within the given dimensions without cropping and maintaining the width/height
ratio.

If neither width nor height is specified, this adjustment will simply return a copy of the image.

parameters = ('width', 'height')

class daguerre.adjustments.Fill(**kwargs)
Crops the image to the requested ratio (using the same logic as Crop to protect Area instances which are passed
in), then resizes it to the actual requested dimensions. If width or height is not given, then the unspecified
dimension will be allowed to expand up to max_width or max_height, respectively.

parameters = ('width', 'height', 'max_width', 'max_height')

class daguerre.adjustments.Crop(**kwargs)
Crops an image to the given width and height, without scaling it. Area instances which are passed in will be
protected as much as possible during the crop.

parameters = ('width', 'height')

class daguerre.adjustments.RatioCrop(**kwargs)
Crops an image to the given aspect ratio, without scaling it. Area instances which are passed in will be protected
as much as possible during the crop.

parameters = ('ratio',)
ratio should be formatted as "<width>:<height>"

class daguerre.adjustments.NamedCrop(**kwargs)
Crops an image to the given named area, without scaling it. Area instances which are passed in will be protected
as much as possible during the crop.

If no area with the given name exists, this adjustment is a no-op.

parameters = ('name',)

When used with the template tag, these adjustments should be referred to by their lowercase name:

{% adjust image "fit" width=300 %}

See Template Tags for examples.

2.1.2 Custom Adjustments

You can easily add custom adjustments for your particular project. For example, an adjustment to make an image
grayscale might look something like this:

Somewhere that will be imported.
from daguerre.adjustments import Adjustment, registry
from PIL import ImageOps

@registry.register
class GrayScale(Adjustment):

def adjust(self, image, areas=None):
return ImageOps.grayscale(image)

adjust.uses_areas = False

Now you can use your adjustment in templates:

12 Chapter 2. API Docs

Django Daguerre Documentation, Release 3.0.0

{% adjust image "grayscale" %}

2.2 Models

class daguerre.models.AdjustedImage(*args, **kwargs)
Represents a managed image adjustment.

exception DoesNotExist

exception MultipleObjectsReturned

class daguerre.models.Area(*args, **kwargs)
Represents an area of an image. Can be used to specify a crop. Also used for priority-aware automated image
cropping.

exception DoesNotExist

exception MultipleObjectsReturned

clean()
Hook for doing any extra model-wide validation after clean() has been called on every field by
self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field;
it will have a special-case association with the field defined by NON_FIELD_ERRORS.

clean_fields(exclude=None)
Clean all fields and raise a ValidationError containing a dict of all validation errors if any occur.

2.2. Models 13

Django Daguerre Documentation, Release 3.0.0

14 Chapter 2. API Docs

CHAPTER 3

Release Notes

3.1 Release Notes

3.1.1 3.0.0 (2020-04-08)

• Added official support for Django 3.0

• Added official support for Python 3.8

• Dropped support for Django < 1.11

• Dropped support for Python 2

• Dropped support for PIL

3.1.2 2.3.1 (2020-04-06)

• Bugfix: Made {% adjust . . . as var %} template tag correctly use an info dict instead of a helper instance so that
width and height are available. Thanks @pembeci for the report!

3.1.3 2.3.0 (2020-04-02)

• Added official support for Django 2.0-2.2

• Dropped official support for Python 3.3 and Python 3.4

• Updated get_image_dimensions implementation to better match current Django implementation

3.1.4 2.2.3 (2017-04-27)

• Doc updates

• Corrected preadjust behavior

15

Django Daguerre Documentation, Release 3.0.0

• Corrected rounding of floating point numbers (thanks @fitodic!)

• Allowed customizing the image storage path, and improved the default path (thanks @fitodic!)

• Added official support for Django 1.10 & 1.11

3.1.5 2.2.2 (2016-05-10)

• Fixed incorrect requirements in setup.py.

• Fixed tests for adjusting broken images so they’re compatible with all versions of Pillow.

3.1.6 2.2.1 (2016-05-05)

• Added compatibility with Django 1.9 (thanks @ajhi!)

3.1.7 2.2.0 (2016-04-13)

• Improved efficiency of adjusted image queries (thanks @mislavcimpersak!)

• Fixed some minor image adjustment bugs.

• Added Jinja template support.

• Added compatibility with Django 1.8

16 Chapter 3. Release Notes

https://github.com/fitodic
https://github.com/fitodic
https://github.com/ajhi
https://github.com/mislavcimpersak

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

Django Daguerre Documentation, Release 3.0.0

18 Chapter 4. Indices and tables

Python Module Index

d
daguerre.adjustments, 11
daguerre.models, 13
daguerre.templatetags.daguerre, 4

19

Django Daguerre Documentation, Release 3.0.0

20 Python Module Index

Index

Symbols
{% adjust %}

template tag, 4
{% adjust_bulk %}

template tag, 6

A
adjust() (daguerre.adjustments.Adjustment method),

11
AdjustedImage (class in daguerre.models), 13
AdjustedImage.DoesNotExist, 13
AdjustedImage.MultipleObjectsReturned,

13
Adjustment (class in daguerre.adjustments), 11
Area (class in daguerre.models), 13
Area.DoesNotExist, 13
Area.MultipleObjectsReturned, 13

C
calculate() (daguerre.adjustments.Adjustment

method), 11
clean() (daguerre.models.Area method), 13
clean_fields() (daguerre.models.Area method), 13
Crop (class in daguerre.adjustments), 12

D
daguerre.adjustments (module), 11
daguerre.models (module), 13
daguerre.templatetags.daguerre (module), 4

F
Fill (class in daguerre.adjustments), 12
Fit (class in daguerre.adjustments), 12

N
NamedCrop (class in daguerre.adjustments), 12

P
parameters (daguerre.adjustments.Adjustment at-

tribute), 11

parameters (daguerre.adjustments.Crop attribute), 12
parameters (daguerre.adjustments.Fill attribute), 12
parameters (daguerre.adjustments.Fit attribute), 12
parameters (daguerre.adjustments.NamedCrop

attribute), 12
parameters (daguerre.adjustments.RatioCrop at-

tribute), 12

R
RatioCrop (class in daguerre.adjustments), 12

T
template tag

{% adjust %}, 4
{% adjust_bulk %}, 6

21

	Contents
	Installation and Setup
	Template Tags
	Smart Cropping with Areas
	Management Commands
	Custom settings

	API Docs
	Adjustments
	Models

	Release Notes
	Release Notes

	Indices and tables
	Python Module Index
	Index

