

 Navigation

 	
 index

 	
 next |

 	Django CTE Trees 1.0.0b2 documentation

Django CTE Trees

Django Adjacency-List trees using PostgreSQL Common Table Expressions (CTE). Its
aim is to completely hide the management of tree structure.

Although handling tree structure in a transparent way is a desirable
characteristic for many applications, the currently known limitations of
including CTE (see below) will be a show-stopper for many other applications.
Unless you know beforehand that these limitations will not affect your
application, this module is not suitable for you, and you should use an
actively managed tree structure (such as
django-mptt [https://github.com/django-mptt/django-mptt/] or
django-treebeard [http://code.tabo.pe/django-treebeard/]).

Characteristics

	Simple: inheriting from an abstract node model is sufficient to obtain
tree functionality for any Model.

	Seamless: does not use RawQuerySet, so queries using CTE can be
combined with normal Django queries, and won’t confuse the
SQLCompiler or other QuerySets, including using multiple
databases.

	Self-contained: tree nodes can be manipulated without worrying about
maintaining tree structure in the database.

	Single query: all tree traversal operations can be performed through a
single query, including children, siblings, ancestors, roots, and descendants.

	Powerful ordering: supports (a subset of) normal Django ordering as well
as ordering on tree structure information, including depth and path, in DFS
and BFS orders.

	Multiple delete semantics: supports Pharaoh, Grandmother, and Monarchy
deletion patterns.

	Code: unit tests, code coverage, documentation, comments.

Known limitations

	Virtual fields not usable in external queries: it is not yet possible to
use the virtual fields which describe the tree structure (depth, path, and
ordering information) in queries other than directly on the CTE Nodes.
Consequently, you cannot order on these fields any Model other than the CTE
Nodes themselves. See the technical notes for details.

	Cannot merge queries with OR: because CTE relies on custom WHERE clauses
added through extra, the bitwise OR operator cannot be used with query
composition.

	Cannot use new Nodes without loading: immediately after creating a CTE
Node, it must be read from the database if you need to use its tree structure
(depth, path, and ordering information).

	Cannot order descending: you cannot order on structure fields (depth,
path) or additional normal fields combined with structure fields in descending
order.

Prerequisites

Core:

	PostgreSQL >= 8.4

	Python >= 2.4

	psycopg2 >= 2.4

	Django >= 1.2

Obtaining

	Author’s website for the project: http://www.petrounias.org/software/django-cte-trees/

	Git repository on GitHub: https://github.com/petrounias/django-cte-trees/

	Mercurial repository on BitBucket: http://www.bitbucket.org/petrounias/django-cte-trees/

Installation

Via setup tools:

python setup.py install

Via pip and pypi:

pip install django-cte-trees

Include the cte_tree module as an application in your Django project through the
INSTALLED_APPS list in your settings:

INSTALLED_APPS = (
 ...,
 'cte_tree',
 ...,
)

Table of Contents

	Basic Usage
	Defining a Node

	Ordering

	Advanced Usage
	Extending and Inheritance

	Dummy Fields

	Examples

	Module cte_tree.models
	CTENode

	CTENodeManager

	Technical Notes
	CTE Trees

	Custom Query

	Custom Query Compiler

	Performance

	Testing

Release Notes

	v0.9.0 @ 3 May 2011 Initial public release.

	v0.9.1 @ 19 November 2011 Added is_branch utility method to CTENode Model.

	v0.9.2 @ 3 March 2012 Introduced structural operations for representing trees
as dictionaries, traversing attributes and structure (visitor pattern), and
‘drilldown’ facility based on attribute path filtering. Added documentation
and removed whitespace.

	v1.0.0, 17 July 2013 Beta version 1; cleaned up package and comments, updated
pypi data, added documentation, and updated Django multiple database support
for compatibility with latest version.

	v1.0.0, 27 July 2013 Beta version 2; several optimisations to reduce compiled
query size; fixed an issue with descendants where the offset node was returned
as the first descendant; introduced support for CTE table prefixing on virtual
fields when used in ordering; introduced support for UPDATE queries; added
documentation for ordering, further technical notes, and advanced usage.

Development Status

Actively developed and maintained since 2011. Currently used in production in
proprietary projects by the author and his team, as well as other third parties.

Future Work

	Abstract models for sibling ordering semantics (integer total and partial
orders, and lexicographic string orders) [high priority, easy task].

	Support for dynamic specification of traversal and ordering [normal priority,
hard task].

	Support other databases (which feature CTE in some way) [low priority, normal
difficulty task].

Contributors

Written and maintained by Alexis Petrounias < http://www.petrounias.org/ >

License

Released under the OSI-approved BSD license.

Copyright (c) 2011 - 2013 Alexis Petrounias < www.petrounias.org >,
all rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

Neither the name of the author nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011 - 2013 Alexis Petrounias <www.petrounias.org>.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django CTE Trees 1.0.0b2 documentation

Basic Usage

All imports are from:

from cte_tree.models import ...

	Defining a Node

	Ordering

Defining a Node

Define a Model which inherits from cte_tree.models.CTENode:

class Category(CTENode):

 name = CharField(max_length = 128, null = False)

 def __unicode__(self):
 return '%s @ %s' % (self.name, self.depth)

The Category Model will now have a parent foreign key to self, as well as
all the tree structure virtual fields (depth, path, ordering) and methods
inherited from CTENode, and a custom Manager for performing the custom CTE
queries.

The following is an example usage of Category:

>>> root = Category.objects.create(name = 'root')
>>> middle = Category.objects.create(name = 'middle', parent = root)
>>> bottom = Category.objects.create(name = 'bottom', parent = middle)
>>> print(Category.objects.all())
[<Category: root @ 1>, <Category: middle @ 2>, <Category: bottom @ 3>]

See the module documentation and examples for a comprehensive guide on using the
CTE Node and its manager.

Ordering

By default, CTE Nodes are ordered based on their primary key. This means there
is no guarantee of the traversal order before Nodes are created, nor when new
Nodes are added (although between no changes to the tree the order remains the
same). In most situations (especially test cases) automatic primary keys are
generated in an ascending order, which may give the false impression of
deterministic ordering!

To specify a tree ordering, use the ‘_cte_node_order_by’ parameter, which is a
list of fields with which to order similar to Django’s order_by. This parameter
will create the ‘ordering’ virtual field for the CTE Node, which also supports
ordering on multiple fields by supporting arrays for the ‘ordering’ field. For
example, the following Category features an ‘order’ integer field:

class Category(CTENode):

 name = CharField(max_length = 128, null = False)

 order = PositiveIntegerField(null = False, default = 0)

 _cte_node_order_by = ('order',)

 def __unicode__(self):
 return '%s @ %s : %s' % (self.name, self.depth, self.ordering)

The following is an example usage of the ordered Category:

>>> root = Category.objects.create(name = 'root')
>>> first_middle = Category.objects.create(name = 'first middle', parent = root, order = 1)
>>> second_middle = Category.objects.create(name = 'second middle', parent = root, order = 2)
>>> first_bottom = Category.objects.create(name = 'first bottom', parent = first_middle, order = 1)
>>> second_bottom = Category.objects.create(name = 'second bottom', parent = second_middle, order = 1)
>>> Category.objects.all()
[<Category: root @ 1 : [0]>,
 <Category: first middle @ 2 : [0, 1]>,
 <Category: first bottom @ 3 : [0, 1, 1]>,
 <Category: second middle @ 2 : [0, 2]>,
 <Category: second bottom @ 3 : [0, 2, 1]>]

which is a depth-first ordering. A breadth-first ordering (in this example
through Django’s ‘order_by’ query, which overrides the default ordering
specified via ‘_cte_node_order_by’) is achieved via:

>>> Category.objects.all().order_by('depth', 'order')
[<Category: root @ 1 : [0]>,
 <Category: first middle @ 2 : [0, 1]>,
 <Category: second middle @ 2 : [0, 2]>,
 <Category: first bottom @ 3 : [0, 1, 1]>,
 <Category: second bottom @ 3 : [0, 2, 1]>]

Hence, quite exotic ordering can be achieved. As a last example, a descending
in-order breadth-first search, but with ascending siblings:

>>> Category.objects.all().order_by('-depth', 'order')
[<Category: first bottom @ 3 : [0, 1, 1]>,
 <Category: second bottom @ 3 : [0, 2, 1]>,
 <Category: first middle @ 2 : [0, 1]>,
 <Category: second middle @ 2 : [0, 2]>,
 <Category: root @ 1 : [0]>]

and so on.

 Copyright 2011 - 2013 Alexis Petrounias <www.petrounias.org>.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django CTE Trees 1.0.0b2 documentation

Advanced Usage

All imports are from:

from cte_tree.models import ...

	Extending and Inheritance

	Dummy Fields

Extending and Inheritance

If a custom Manager is specified, it must inherit from CTENodeManager:

class CategoryManager(CTENodeManager):

 ...

class Category(CTENode):

 name = CharField(max_length = 128, null = False)

 objects = CategoryManager()

 def __unicode__(self):
 return '%s @ %s' % (self.name, self.depth)

Dummy Fields

It is possible to add the fields for ‘depth’, ‘path’, and ‘ordering’ as normal
fields to a Django model, so that mechanics of Django, third party, or your own
modules find them. Doing so will create columns for them in the database, but
their values will always be overridden by the materialized CTE table. They will
also never be written (unless you explicitly do so) through an UPDATE query,
meaning the columns will remain empty. Although this is wasteful, it may be
useful or even necessary, given that Django does not cater for non-managed
fields (only entire models).

Therefore, the fields package provides three such fields which are automatically
set to null, blank, and non-editable, and can be used as such:

from cte_tree.fields import DepthField, PathField, OrderingField

class Category(CTENode):

 depth = DepthField()
 path = PathField()
 ordering = OrderingField()

 name = CharField(max_length = 128, null = False)

 objects = CategoryManager()

 def __unicode__(self):
 return '%s @ %s' % (self.name, self.depth)

 Copyright 2011 - 2013 Alexis Petrounias <www.petrounias.org>.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django CTE Trees 1.0.0b2 documentation

Examples

Coming soon.

 Copyright 2011 - 2013 Alexis Petrounias <www.petrounias.org>.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django CTE Trees 1.0.0b2 documentation

Module cte_tree.models

Any Model can be turned into a tree by inheriting from the abstract
CTENode. By default, this model will feature a ForeignKey to
self named parent, and with a related_name of children. Furthermore, it
will feature a custom CTENodeManager through the
CTENode.objects attribute.

Each instance of a CTENode will feature three virtual fields, by
default named depth, path, and ordering; these fields
are populated through a custom CTE SQL query, and contain, respectively, the
depth of a node (starting with root nodes of depth one), the path (an array of
primary keys, or an encoded string if the primary key type requires this), and
a custom ordering key (usually starting with the DFS or BFS order key, and then
extended with custom ordering specified by the concrete Model).

All parameters regarding the configuration of the tree are specified as
attributes in the concrete Model inheriting from CTENode, and have the
form _cte_node_*. See below for a complete listing and interpretation of
each parameter.

An important caveat when using CTE queries is ordering: any CTE query which is
cloned and processed through an order_by() invocation will result in the
CTE ordering of the nodes to be overridden. Therefore, if you wish to maintain
proper tree ordering, you must specify any custom fields to order by through the
_cte_node_order_by attribute (see below). Unfortunately, it is not
possible to re-create tree ordering through an order_by() invocation (see
technical notes for an explanation).

In case custom ordering among siblings is desired (such as using an integer, or
lexicographic order of a string name, and so on), the move() method
accepts a parameter position which, if not None, is expected to be a
callable that is invoked with the destination and the node currently being
moved as arguments, before any modification to the parent relationship is made.
Thus, the move() method delegates to this callable in order to specify or
modify order-related attributes, enforce constraints, or even change the
attributes of siblings (such as creating a hole in a contiguous integer total
order).

	CTENode

	CTENodeManager

CTENode

	
class cte_tree.models.CTENode(*args, **kwargs)

	Abstract Model which implements a node in a CTE tree. This
model features a mandatory foreign key to the parent node (hence to
self), which, when None, indicates a root node. Multiple nodes
with a None parent results in a forest, which can be constrained
either with custom SQL constraints or through application logic.

It is necessary for any custom Manager of this model to inherit
from CTENodeManager, as all functionality of the CTE tree is
implemented in the manager.

It is possible to manipulate individual nodes when not loaded through
the custom manager, or when freshly created either through the
create() method or through the constructor, however, any operation
which requires tree information (the depth, path,
and ordering virtual fields) will not work, and any attempt to
invoke such methods will result in an ImproperlyConfigured
exception being raised.

Many runtime properties of nodes are specified through a set of
parameters which are stored as attributes of the node class, and begin
with _cte_node_. Before any of these parameters are used, the
manager will attempt to load and verify them, raising an
ImproperlyConfigured exception if any errors are encountered.
All parameters have default values.

All QuerySet objects involving CTE nodes use the
QuerySet.extra() semantics in order to specify additional
SELECT, WHERE, and ORDER_BY SQL semantics, therefore, they
cannot be combined through the OR operator (the | operator).

The following parameters can optionally be specified at the class level:

	_cte_node_traversal:

A string from one of TREE_TRAVERSAL_METHODS, which
specifies the default tree traversal order. If this parameters is
None or TREE_TRAVERSAL_NONE, then
DEFAULT_TREE_TRAVERSAL method is used (which is dfs
for depth-first).

	_cte_node_order_by:

A list of strings or tuples specifying the ordering of siblings
during tree traversal (in the breadth-first method, siblings are
ordered depending on their parent and not the entire set of nodes at
the given depth of the tree).

The entries in this list can be any of the model fields, much like
the entries in the ordering of the model’s Meta
class or the arguments of the order_by() method of
QuerySet.

These entries may also contain the virtual field depth,
which cannot be used by the normal QuerySet because Django
cannot recognize such virtual fields.

In case of multiple entries, they must all be of the same database
type. For VARCHAR fields, their values will be cast to TEXT, unless
otherwise specified. It is possible to specify the database type
into which the ordering field values are cast by providing tuples of
the form (fieldname, dbtype) in the ordering sequence.

Specifying cast types is necessary when combining different data
types in the ordering sequence, such as an int and a float (casting
the int into a float is probably the desired outcome in this
situation). In the worst case, TEXT can be specified for all casts.

	_cte_node_delete_method:

A string specifying the desired default deletion semantics, which
may be one of DELETE_METHODS. If this parameter is missing
or None or DELETE_METHOD_NONE, then the default
deletion semantics DEFAULT_DELETE_METHOD will be used
(which is DELETE_METHOD_PHARAOH or pharaoh for the
Pharaoh deletion semantics).

	_cte_node_parent:

A string referencing the name of the ForeignKey field which
implements the parent relationship, typically called parent and
automatically inherited from this class.

If this parameter is missing, and no field with the name parent
can be found, then the first ForeignKey which relates to
this model will be used as the parent relationship field.

	_cte_node_children:

A string referencing the related_name attribute of the
ForeignKey field which implements the parent relationship,
typically called parent (specified in
DEFAULT_CHILDREN_NAME) and automatically
inherited from this class.

	_cte_node_table:

The name of the temporary table to use with the WITH CTE SQL
statement when compiling queries involving nodes. By default this is
DEFAULT_TABLE_NAME (which is cte).

	_cte_node_primary_key_type:

A string representing the database type of the primary key, if the
primary key is a non-standard type, and must be cast in order to be
used in the path or ordering virtual fields
(similarly to the _cte_node_order_by parameter above).

A VARCHAR primary key will be automatically cast to TEXT,
unless explicitly specified otherwise through this parameter.

	_cte_node_path, _cte_node_depth, _cte_node_ordering:

Strings specifying the attribute names of the virtual fields
containing the path, depth, and ordering prefix of each node, by
default, respectively, VIRTUAL_FIELD_PATH (which is
path), VIRTUAL_FIELD_DEPTH (which is depth), and
VIRTUAL_FIELD_ORDERING (which is ordering).

	
ancestors()

	Returns a QuerySet of all ancestors of this node.

	Returns:	A QuerySet of all ancestors of this node.

	
as_tree(visitor=None, children=None)

	Recursively traverses each tree (starting from each root) in order
to generate a dictionary-based tree structure of the entire forest.
Each level of the forest/tree is a list of nodes, and each node
consists of a dictionary representation, where the entry
children (by default) consists of a list of dictionary
representations of its children.

See CTENodeManager.as_tree() and
CTENodeManager.node_as_tree() for details on how this method
works, as well as its expected arguments.

	Parameters:	
	visitor – optional function responsible for generating the
dictionary representation of a node.

	children – optional function responsible for generating a
children key and list for a node.

	Returns:	a dictionary representation of the structure of the forest.

	
attribute_path(attribute, missing=None, visitor=None)

	Generates a list of values of the attribute of all ancestors of
this node (as well as the node itself). If a value is None, then
the optional value of missing is used (by default None).

By default, the getattr(node, attribute, None) or missing
mechanism is used to obtain the value of the attribute for each
node. This can be overridden by supplying a custom visitor
function, which expects as arguments the node and the attribute, and
should return an appropriate value for the required attribute.

	Parameters:	
	attribute – the name of the attribute.

	missing – optional value to use when attribute value is None.

	visitor – optional function responsible for obtaining the
attribute value from a node.

	Returns:	a list of values of the required attribute of the
ancestor path of this node.

	
delete(method=None, position=None, save=True)

	Prepares the tree for deletion according to the deletion semantics
specified for the CTENode Model, and then delegates to the
CTENode superclass delete method.

Default deletion method and position callable can be overridden
by being supplied as arguments to this method.

	Parameters:	
	method – optionally a particular deletion method, overriding
the default method specified for this model.

	position – optional callable to invoke prior to each move
operation, should the delete method require any moves.

	save – optional flag indicating whether this model’s
save() method should be invoked after each move operation,
should the delete method require any moves.

	
descendants()

	Returns a QuerySet of all descendants of this node.

	Returns:	A QuerySet of all descendants of this node.

	
is_ancestor_of(subject)

	Returns True if the node is an ancestor of the given subject
node, False otherwise. This method uses the path virtual
field, and so does not perform any query.

	Parameters:	subject – the CTENode for which to determine whether
one of its ancestors is this node.

	Returns:	True if this node is an ancestor of subject,
False otherwise.

	
is_branch()

	Returns True if this node is a branch (has at least one child),
False otherwise.

	Returns:	True if this node is a branch, False otherwise.

	
is_child_of(subject)

	Returns True if this node is a child of the given subject
node, False otherwise. This method used the parent
field, and so does not perform any query.

	Parameters:	subject – the CTENode for which to determine whether
one of its children is this node.

	Returns:	True if this node is a child of subject, False
otherwise.

	
is_descendant_of(subject)

	Returns True if the node is a descendant of the given subject
node, False otherwise. This method uses the path virtual
field, and so does not perform any query.

	Parameters:	subject – the CTENode for which to determine whether
one of its descendants is this node.

	Returns:	True if this node is a descendant of subject,
False otherwise.

	
is_leaf()

	Returns True if this node is a leaf (has no children), False
otherwise.

	Returns:	True if this node is a leaf, False otherwise.

	
is_parent_of(subject)

	Returns True if this node is the parent of the given subject
node, False otherwise. This method uses the parent
field, and so does not perform any query.

	Parameters:	subject – the CTENode for which to determine whether
its parent is this node.

	Returns:	True if this node is the parent of subject,
False otherwise.

	
is_sibling_of(subject)

	Returns True if this node is a sibling of the given subject
node, False otherwise. This method uses the parent
field, and so does not perform any query.

	Parameters:	subject – the CTENode for which to determine whether
one of its siblings is this node.

	Returns:	True if this node is a sibling of subject, False
otherwise.

	
move(destination=None, position=None, save=False)

	Moves this node and places it as a child node of the destination
CTENode (or makes it a root node if destination is
None).

Optionally, position can be a callable which is invoked prior to
placement of the node with this node and the destination node as the
sole two arguments; this can be useful in implementing specific
sibling ordering semantics.

Optionally, if save is True, after the move operation
completes (after the parent foreign key is updated and the
position callable is called if present), a call to
Model.save() is made.

	Parameters:	
	destination – the destination node of this move, None
denoting that the node will become a root node.

	position – optional callable invoked prior to placement for
purposes of custom sibling ordering semantics.

	save – optional flag indicating whether this model’s
save() method should be invoked after the move.

	Returns:	this node.

	
root()

	Returns the CTENode which is the root of the tree in which this
node participates.

	
siblings()

	Returns a QuerySet of all siblings of this node.

	Returns:	A QuerySet of all siblings of this node.

CTENodeManager

	
class cte_tree.models.CTENodeManager

	Custom Manager which ensures all queries involving
CTENode objects are processed by the custom SQL compiler.
Additionally, provides tree traversal queries for obtaining node
children, siblings, ancestors, descendants, and roots.

If your Model inherits from CTENode and use your own custom
Manager, you must ensure the following three:

	your Manager inherits from CTENodeManager,

2) if you override the get_query_set() method in order to
return a custom QuerySet, then your QuerySet must also
inherit from CTENodeManager.CTEQuerySet, and

3) invoke the _ensure_parameters() on your Manager
at least once before using a QuerySet which inherits from
CTENodeManager.CTEQuerySet, unless you have supplied the
necessary CTE node attributes on the CTENode Model in
some other way.

The methods prepare_delete(), prepare_delete_pharaoh(),
prepare_delete_grandmother(), and
prepare_delete_monarchy() can be directly used to prepare
nodes for deletion with either the default or explicitly-specified
deletion semantics. The CTENode abstract Model
defines a CTENode.delete() method which delegates preparation
to this manager.

	
ancestors(node)

	Returns a QuerySet of all ancestors of a given
CTENode node.

	Parameters:	node – A CTENode whose ancestors are required.

	Returns:	A QuerySet of all ancestors of the given node.

	
as_tree(visitor=None, children=None)

	Recursively traverses each tree (starting from each root) in order
to generate a dictionary-based tree structure of the entire forest.
Each level of the forest/tree is a list of nodes, and each node
consists of a dictionary representation, where the entry
children (by default) consists of a list of dictionary
representations of its children.

Optionally, a visitor callback can be used, which is responsible
for generating a dictionary representation of a given
CTENode. By default, the _default_node_visitor() is
used which generates a dictionary with the current node as well as
structural properties. See _default_node_visitor() for the
appropriate signature of this callback.

Optionally, a children callback can be used, which is responsible
for determining which CTENode`s are children of each visited
:class:`CTENode, resulting in a key (by default children) and a
list of children CTENode objects, which are then included
in the dictionary representation of the currently-visited node. See
_default_node_children() for the appropriate signature of this
callback.

For each node visited, the CTENode.as_tree() method is invoked
along with the optional visitor and children arguments. This
method, if not overridden, will delegate to node_as_tree(),
which is responsible for invoking the visitor() and
:meth:`children methods, as well as updating the dictionary
representation of the node with the representation of the children
nodes.

	Parameters:	
	visitor – optional function responsible for generating the
dictionary representation of a node.

	children – optional function responsible for generating a
children key and list for a node.

	Returns:	a dictionary representation of the structure of the forest.

	
attribute_path(node, attribute, missing=None, visitor=<function <lambda> at 0x7f4dcf9df230>)

	Generates a list of values of the attribute of all ancestors of
the given node (as well as the node itself). If a value is
None, then the optional value of missing is used (by default
None).

By default, the getattr(node, attribute, None) or missing
mechanism is used to obtain the value of the attribute for each
node. This can be overridden by supplying a custom visitor
function, which expects as arguments the node and the attribute, and
should return an appropriate value for the required attribute.

	Parameters:	
	node – the CTENode for which to generate the
attribute path.

	attribute – the name of the attribute.

	missing – optional value to use when attribute value is None.

	visitor – optional function responsible for obtaining the
attribute value from a node.

	Returns:	a list of values of the required attribute of the
ancestor path of the given node.

	
branches()

	Returns a QuerySet of all branch nodes (nodes with at least
one child).

	Returns:	A QuerySet of all leaf nodes (nodes with at least
one child).

	
descendants(node)

	Returns a QuerySet with all descendants for a given
CTENode node.

	Parameters:	node – the CTENode whose descendants are required.

	Returns:	A QuerySet with all descendants of the given
node.

	
drilldown(attributes, path)

	Recursively descends the tree/forest (starting from each root node)
in order to find a CTENode which corresponds to the given
path. The path is expected to be an iterable of tuples, called
path components, consisting of attribute values with which to filter
through the QuerySet API. The name of the attribute to which each
value corresponds is specified in attributes, which is expected
to conform to Django’s QuerySet API for the filter semantics. Each
value in the path component tuple will be mapped to its
corresponding attribute name before being passed to the filter
method.

For example, if the node model features the integer field x
and the boolean field y, we can drill down in the following way:

drilldown((‘x__gte’, ‘y’),[(35, True), (37, False)])

The simplest form of drilldown is to match with equality on a single
attribute, such as name, as in the following example:

drilldown((‘name’,), [(‘path’,), (‘to’,), (‘my’,), (‘node’,)])

Don’t forget the trailing comma if specifying singleton tuples! If
you need very simple, one-attribute path components, it is suggested
you extend the manager with your own convenience method; the above
will, for instance, become:

	def drilldown_by_name(self, path):

	
	return self.drilldown((‘name’,),

	[(component,) for component in path])

Failure to find the required node results in a DoesNotExist
exception being raised.

An empty path will result in the first root node being returned (if
at least one root node exists).

	
get_query_set()

	Returns a custom QuerySet which provides the CTE
functionality for all queries concerning CTENode objects.
This method overrides the default get_query_set() method of
the Manager class.

	Returns:	a custom QuerySet which provides the CTE
functionality for all queries concerning CTENode
objects.

	
is_ancestor_of(node, subject)

	Returns True if the given node is an ancestor of the given
subject node, False otherwise. This method uses the
path virtual field, and so does not perform any query.

	Parameters:	
	node – the CTENode' for which to determine whether it
is an ancestor of the `subject.

	subject – the CTENode for which to determine whether
one of its ancestors is the node.

	Returns:	True if node is an ancestor of subject, False
otherwise.

	
is_branch(node)

	Returns True if the given node is a branch (has at least one
child), False otherwise.

	Parameters:	node – the CTENode for which to determine whether it
is a branch.

	Returns:	True if node is a branch, False otherwise.

	
is_child_of(node, subject)

	Returns True if the given node is a child of the given
subject node, False otherwise. This method used the
parent field, and so does not perform any query.

	Parameters:	
	node – the CTENode' for which to determine whether it
is a child of the `subject.

	subject – the CTENode for which to determine whether
one of its children is the node.

	Returns:	True if node is a child of subject, False
otherwise.

	
is_descendant_of(node, subject)

	Returns True if the given node is a descendant of the given
subject node, False otherwise. This method uses the
path virtual field, and so does not perform any query.

	Parameters:	
	node – the CTENode' for which to determine whether it
is a descendant of the `subject.

	subject – the CTENode for which to determine whether
one of its descendants is the node.

	Returns:	True if node is a descendant of subject, False
otherwise.

	
is_leaf(node)

	Returns True if the given node is a leaf (has no children),
False otherwise.

	Parameters:	node – the CTENode for which to determine whether it
is a leaf.

	Returns:	True if node is a leaf, False otherwise.

	
is_parent_of(node, subject)

	Returns True if the given node is the parent of the given
subject node, False otherwise. This method uses the
parent field, and so does not perform any query.

	Parameters:	
	node – the CTENode' for which to determine whether it
is a parent of the `subject.

	subject – the CTENode for which to determine whether
its parent is the node.

	Returns:	True if node is the parent of subject, False
otherwise.

	
is_sibling_of(node, subject)

	Returns True if the given node is a sibling of the given
subject node, False otherwise. This method uses the
parent field, and so does not perform any query.

	Parameters:	
	node – the CTENode' for which to determine whether it
is a sibling of the `subject.

	subject – the CTENode for which to determine whether
one of its siblings is the node.

	Returns:	True if node is a sibling of subject, False
otherwise.

	
leaves()

	Returns a QuerySet of all leaf nodes (nodes with no
children).

	Returns:	A QuerySet of all leaf nodes (nodes with no
children).

	
move(node, destination, position=None, save=False)

	Moves the given CTENode node and places it as a child
node of the destination CTENode (or makes it a root node
if destination is None).

Optionally, position can be a callable which is invoked prior to
placement of the node with the node and the destination node
as the sole two arguments; this can be useful in implementing
specific sibling ordering semantics.

Optionally, if save is True, after the move operation
completes (after the CTENode.parent foreign key is updated
and the position callable is called if present), a call to
Model.save() is made.

	Parameters:	
	destination – the destination node of this move, None
denoting that the node will become a root node.

	position – optional callable invoked prior to placement for
purposes of custom sibling ordering semantics.

	save – optional flag indicating whether this model’s
save() method should be invoked after the move.

	Returns:	this node.

	
node_as_tree(node, visitor=<function <lambda> at 0x7f4dcf9df398>, children=<function <lambda> at 0x7f4dcf9df410>)

	Visits a CTENode node and delegates to the (optional)
visitor callback, as well as the (optional) children callback,
in order to generate a dictionary representation of the node along
with its children nodes.

	Parameters:	
	node – the CTENode for which to generate the
representation.

	visitor – optional function responsible for generating the
dictionary representation of the node.

	children – optional function responsible for generating a
children key and list for the node.

	Returns:	a dictionary representation of the structure of the node
and its descendant tree.

	
prepare_delete(node, method, position=None, save=True)

	Prepares a given CTENode node for deletion, by executing
the required deletion semantics (Pharaoh, Grandmother, or Monarchy).

The method argument can be one of the valid
DELETE_METHODS choices. If it is
DELETE_METHOD_NONE or None, then the default delete
method will be used (as specified from the optional
_cte_node_delete_method).

Under the DELETE_METHOD_GRANDMOTHER and
DELETE_METHOD_MONARCHY delete semantics, descendant nodes
may be moved; in this case the optional position can be a
callable which is invoked prior to each move operation (see
move() for details).

Furthermore, by default, after each move operation, sub-tree nodes
which were moved will be saved through a call to Model.save()
unless save is False.

This method delegates move operations to move().

	Parameters:	
	node – the CTENode to prepare for deletion.

	method – optionally, a delete method to use.

	position – optionally, a callable to invoke prior to each
move operation.

	save – flag indicating whether to save after each move
operation, True by default.

	
prepare_delete_grandmother(node, position=None, save=True)

	Prepares a given CTENode node for deletion, by executing
the DELETE_METHOD_GRANDMOTHER semantics. Descendant nodes,
if present, will be moved; in this case the optional position can
be a callable which is invoked prior to each move operation (see
move() for details).

By default, after each move operation, sub-tree nodes which were
moved will be saved through a call to Model.save() unless
save is False.

This method delegates move operations to move().

	Parameters:	
	node – the CTENode to prepare for deletion.

	position – optionally, a callable to invoke prior to each
move operation.

	save – flag indicating whether to save after each move
operation, True by default.

	
prepare_delete_monarchy(node, position=None, save=True)

	Prepares a given CTENode node for deletion, by executing
the DELETE_METHOD_MONARCHY semantics. Descendant nodes,
if present, will be moved; in this case the optional position can
be a callable which is invoked prior to each move operation (see
move() for details).

By default, after each move operation, sub-tree nodes which were
moved will be saved through a call to Model.save() unless
save is False.

This method delegates move operations to move().

	Parameters:	
	node – the CTENode to prepare for deletion.

	position – optionally, a callable to invoke prior to each
move operation.

	save – flag indicating whether to save after each move
operation, True by default.

	
prepare_delete_pharaoh(node, position=None, save=True)

	Prepares a given CTENode node for deletion, by executing
the DELETE_METHOD_PHARAOH semantics.

This method does not perform any sub-tree reorganization, and hence
no move operation, so the position and save arguments are
ignored; they are present for regularity purposes with the rest of
the deletion preparation methods.

	Parameters:	
	node – the CTENode to prepare for deletion.

	position – this is ignored, but present for regularity.

	save – this is ignored, but present for regularity.

	
root(node)

	Returns the CTENode which is the root of the tree in which
the given node participates (or node if it is a root node). This
method functions through the get() method.

	Parameters:	node – A CTENode whose root is required.

	Returns:	A CTENode which is the root of the tree in which
the given node participates (or the given node if it is a
root node).

	
roots()

	Returns a QuerySet of all root CTENode objects.

	Returns:	a QuerySet of all root CTENode objects.

	
siblings(node)

	Returns a QuerySet of all siblings of a given
CTENode node.

	Parameters:	node – a CTENode whose siblings are required.

	Returns:	A QuerySet of all siblings of the given node.

 Copyright 2011 - 2013 Alexis Petrounias <www.petrounias.org>.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 previous |

 	Django CTE Trees 1.0.0b2 documentation

Technical Notes

	CTE Trees

	Custom Query

	Custom Query Compiler

	Performance

	Testing

CTE Trees

See PostgreSQL WITH queries: http://www.postgresql.org/docs/devel/static/queries-with.html

And the PostgreSQL wiki on CTE: http://wiki.postgresql.org/wiki/CTEReadme

Custom Query

The custom query compiler generates the following SQL:

WITH RECURSIVE {cte} (
 "{depth}", "{path}", "{ordering}", "{pk}") AS (

 SELECT 1 AS depth,
 array[{pk_path}] AS {path},
 {order} AS {ordering},
 T."{pk}"
 FROM {db_table} T
 WHERE T."{parent}" IS NULL

 UNION ALL

 SELECT {cte}.{depth} + 1 AS {depth},
 {cte}.{path} || {pk_path},
 {cte}.{ordering} || {order},
 T."{pk}"
 FROM {db_table} T
 JOIN {cte} ON T."{parent}" = {cte}."{pk}")

where the variables are obtained from the CTE Node parameters.

Custom Query Compiler

The compiler constructs the ad hoc variables which will be used in the SELECT
query, synthesizes the WHERE clause, as well as the order-by parameter, and then
uses the Query’s ‘add_extra’ method. The table ‘cte’ is added, as well as an
‘ExtraWhere’ node which ensures that the primary key of the ‘cte’ table matches
the primary key of the model’s table. If the CTE recursion is to be started from
an offset Node, then an ExtraWhere is also added ensuring that all Nodes which
are to be returned contain the primary key of the offset Node in their
materialized ‘path’ virtual field (hence the offset Node is also included
itself, which means descendant lookups must explicitly exclude it).

In order to allow Django model fields and corresponding columns for the virtual
fields ‘depth’, ‘path’, and ‘ordering’, appropriate prefixing is ensured for
all queries involving the CTE compiler. So, for example, assuming the CTE Node
model features an integer field ‘order’, specifying that ordering should be
descending breadth first search (but ascending for siblings), you would write:

order_by(‘-depth’, ‘order’)

and the compiler would translate this to [‘-“cte”.depth’, ‘order’] because the
‘depth’ field is provided by the CTE query but the ‘order’ field is provided by
the SELECT query.

PostgreSQL array type is used in order to materialize the ‘path’ and the
‘ordering’ virtual fields; automatic casting is done by the compiler so primary
keys and fields contributing to the order can be more ‘exotic’, such as a UUID
primary key, converting VARCHAR to TEXT, and so on.

Performance

There is no straightforward way to compare the performance of CTE trees with
alternatives (such as Django-treebeard or Django-mptt) because actively-managed
tree structures perform multiple SQL queries for certain operations, as well as
perform many operations in the application layer. Therefore, performance
comparison will make sense depending on your application and the kinds of
operations it performs on trees.

Generally, each SQL query involving a node Model will create the recursive CTE
temporary table, even if the virtual fields are not selected (deferred).

Note that INSERT and UPDATE operations are not affected at all from the CTE
compiler, and thus impose no overhead.

Testing

Use the cte_tree_test Django dummy application and module. By default, it uses
a localhost database ‘dummy’ with user ‘dummy’ and password ‘dummy’.

 Copyright 2011 - 2013 Alexis Petrounias <www.petrounias.org>.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	Django CTE Trees 1.0.0b2 documentation

Index

 A
 | B
 | C
 | D
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S

A

 	

 	ancestors() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

 	as_tree() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

 	

 	attribute_path() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

B

 	

 	branches() (cte_tree.models.CTENodeManager method)

C

 	

 	CTENode (class in cte_tree.models)

 	

 	CTENodeManager (class in cte_tree.models)

D

 	

 	delete() (cte_tree.models.CTENode method)

 	descendants() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

 	

 	drilldown() (cte_tree.models.CTENodeManager method)

G

 	

 	get_query_set() (cte_tree.models.CTENodeManager method)

I

 	

 	is_ancestor_of() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

 	is_branch() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

 	is_child_of() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

 	is_descendant_of() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

 	

 	is_leaf() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

 	is_parent_of() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

 	is_sibling_of() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

L

 	

 	leaves() (cte_tree.models.CTENodeManager method)

M

 	

 	move() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

N

 	

 	node_as_tree() (cte_tree.models.CTENodeManager method)

P

 	

 	prepare_delete() (cte_tree.models.CTENodeManager method)

 	prepare_delete_grandmother() (cte_tree.models.CTENodeManager method)

 	

 	prepare_delete_monarchy() (cte_tree.models.CTENodeManager method)

 	prepare_delete_pharaoh() (cte_tree.models.CTENodeManager method)

R

 	

 	root() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

 	

 	roots() (cte_tree.models.CTENodeManager method)

S

 	

 	siblings() (cte_tree.models.CTENode method)

 	

 	(cte_tree.models.CTENodeManager method)

 Copyright 2011 - 2013 Alexis Petrounias <www.petrounias.org>.
 Created using Sphinx 1.2b1.

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		Django CTE Trees 1.0.0b2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011 - 2013 Alexis Petrounias <www.petrounias.org>.
 Created using Sphinx 1.2b1.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

