
django-chemtrails Documentation
Release 0.0.19

Inonit AS

Sep 04, 2017

Table of Contents:

1 Configuration 3
1.1 Chemtrails settings . 3

2 Graph based permissions 5
2.1 The idea . 8
2.2 Access rules . 8

3 About 15

4 Features 17

5 Installation 19

6 Requirements 21

7 Changelog 23

8 Indices and tables 25

i

ii

django-chemtrails Documentation, Release 0.0.19

Table of Contents: 1

django-chemtrails Documentation, Release 0.0.19

2 Table of Contents:

CHAPTER 1

Configuration

Add chemtrails to INSTALLED_APPS in your settings.py file.

#
settings.py
#

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
...
'chemtrails', # Core functionality
'chemtrails.contrib.permissions' # If you want to use the permission system

→˓(requires django-rest-framework)
]

Chemtrails settings

Settings for chemtrails are all namespaced in the CHEMTRAILS setting dictionary.

#
settings.py
#

CHEMTRAILS = {
Flip the chemtrails-switch. Boolean value to indicate that mind-control fluid

→˓should
be released and all the worlds knowledge written to the Neo4j database.
Defaults to True.
'ENABLED': True,

Maximum depth of recursive connections to be made when synchronizing a node.
Defaults to 1, which means that the node will recursively connect to other

→˓nodes,

3

django-chemtrails Documentation, Release 0.0.19

which has a direct connection to the source node. Setting a value of 2 will
→˓cause

each connected node to recursively connect their directly connected nodes and
→˓so on.

Setting to 0 will disable connecting relationships.
'MAX_CONNECTION_DEPTH': 1,

If True, relationships will be named (loosely) after the attribute name
on the Django model. If False, relationships will have a generic name of
either 'RELATES_TO', 'RELATES_FROM' or 'MUTUAL_RELATION' based on the

→˓relationship type.
Defaults to True.
'NAMED_RELATIONSHIPS': True,

If True, make a META relation between the meta-node instance and the node
instances for this type.
Defaults to False.
'CONNECT_META_NODES': False,

A list of models that should be excluded from mirroring.
Defaults to the example shown below.
'IGNORE_MODELS': [

'migrations.migration'
],

}

4 Chapter 1. Configuration

5

django-chemtrails Documentation, Release 0.0.19

CHAPTER 2

Graph based permissions

6 Chapter 2. Graph based permissions

django-chemtrails Documentation, Release 0.0.19

Once we have the database mapped and synchronized we have the ability to read relationship data in a brand new way.
We now can generate paths, and inspect the way our dataset is related in a much broader way than we can with a pure
relational database.

One thing we can do is to exploit this and build a permission system on top of it. Let’s say we have a user Esther in
the picture above (I know she’s not there, it’s an old image) which authenticates into the book store application. We
want her to access all books she has written. This can be achieved by the executing the following Cypher statement.

MATCH (u:UserNode {pk:69})-[AUTHOR]->(a:AuthorNode)-[BOOK]-(b:BookNode) RETURN b

Further, if we want to return all books which is in the same store as one or more books Esther has written, we could
easily extend the above cypher query. Let’s store the results in a path variable as well and see what happens.

MATCH path = (u:UserNode {pk:69})-[*..3]->(s:StoreNode)-[BOOKS]-(b:BookNode) RETURN
→˓path

The above query first finds a UserNode with property pk:69, then looks at all relationships 3 steps out, looking
for a StoreNode which it will follow through a relationship called BOOKS to all nodes of type BookNode. Finally
return the path variable.

As you can see, Cypher is a quite expressive query language.

7

https://neo4j.com/developer/cypher-query-language/#_about_cypher

django-chemtrails Documentation, Release 0.0.19

The idea

So, the general idea is to store these queries in a database. When a requests come in and want to access some object,
we’ll look up the authenticated user in the graph. Next we’ll see if we have the requested object represented in the
graph. Finally we’ll check if we have any stored query which can generate a path from the user node to the object
node. If so, return the object.

What’s nice about an approach like this, is that we have a truly dynamic rule set for our application. We can choose
to deactivate some rules for a limited time, or we can add or remove rules on the fly in order to let users either access
new kind of data, or restrict their access to already available data.

In order to do that, we’ll use Access rules.

Access rules

If you have enabled both chemtrails and chemtrails.contrib.permissions in the Django settings file
under INSTALLED_APPS, you should have a similar entry in the Django admin interface.

When evaluating access rules, the permission system will dynamically identify what kind of objects we’re dealing
with using the ContentType framework which ships with Django.

8 Chapter 2. Graph based permissions

django-chemtrails Documentation, Release 0.0.19

Content Types

When dealing with authenticated web requests, we’ll almost always use user as our Source content type. This is the
kind of object we want to calculate the Cypher path from. As for Target content type, choose whatever object
type you want the current access rule to evaluate. Let’s follow the example from before (Graph based permissions)
and create a rule which lets Esther look at all the books in the same book store she has her books.

So, proceed setting the Target content type to book. Next write a good description for what the rule is doing.
This is very important as you might end up with hundreds of rules in a large application.

Permissions

Next up is permissions. What kind of permissions should the new rule grant? We don’t necessarily want all users that
can view an object to also delete them. Let’s grant view permission for our new access rule.

2.2. Access rules 9

django-chemtrails Documentation, Release 0.0.19

Note: view is not a standard Django permission. It can be added relatively easily by using custom permissions.

Relation types

Next up is the Relation types field. This field contains a JSON-ish string which will be parsed and converted to
Cypher whenever the access rule engine parses the rule.

Todo

Create a GUI widget for creating relation types so end-users don’t have to understand the weird and confusing syntax.

Unfortunately, this is rather confusing and difficult to work with at the moment, so plans exist in order to make a GUI
widget which will take this fields place. The following piece of JSON should do:

{"AUTHOR":{"name":"Esther"}},
{"BOOK":null},
{"STORE":null},
{"BOOKS":null}

Important: What’s important to notice here is that we only specify the relationships! The formatting in the input
field must be a comma separated list of JSON objects, where each object has a single key being the relationship name,
and either null or a nested object containing properties which should be matched for the relationship target.

Read the above message once more, and make sure you understand whats going on here!

Click the “Save and continue editing” button and you should get a nice preview of the generated Cypher statement
right below the Relation types field.

10 Chapter 2. Graph based permissions

https://docs.djangoproject.com/en/dev/topics/auth/customizing/#custom-permissions

django-chemtrails Documentation, Release 0.0.19

Take a minute to study the generated code and compare it to the JSON input. Upon evaluation the pk property in the
Source content type node will be replaced by whatever primary key the authenticated user has, so we’re sure
the path is calculated from the correct node. Also, the generator algorithm will inspect the Django field type and make
sure the path is calculated using the correct relationships.

Special syntax

Back references

We have a few special syntax rules in order to do back references when generating the cypher statement. Imagine you
want to create a path based on a condition in another node. If we look at the example from before, say we want to get
all books written by Esther which are co-authored by Kelly. We want to force the cypher generator engine to traverse
back to exactly the same node (BookNode) as we came from.

2.2. Access rules 11

django-chemtrails Documentation, Release 0.0.19

{"AUTHOR":{"name":"Esther"}},
{"BOOK":null},
{"AUTHORS":{"name":"Kelly"}},
{"{1:BOOK}":null} // <- Note the "{1:BOOK}" syntax

By inserting {"{1:BOOK}":null} as the relationship name we make a back reference to target1:
BookNode in the generated Cypher statement. This might not seem very intuitive (and it isn’t) at first, so it might
take some time in order to make it right.

12 Chapter 2. Graph based permissions

django-chemtrails Documentation, Release 0.0.19

Source reference

The other special reference we have is {source}. This can be used in order to reference properties on the source
node. Using the example above we could do something like the below in order to match Esther’s age to her primary
key value (which is a rather absurd thing to do, but you get the idea).

{"AUTHOR":{"name":"Esther"}},
{"BOOK":null},
{"AUTHORS":{"age":"{source}.pk"}}

Would generate the following Cypher statement:

MATCH path = (source0: UserNode {pk: 69})-[:AUTHOR {type: "OneToOneRel", is_meta:
→˓False, remote_field: "auth.user.author", target_field: "testapp.author.id"}]->
→˓(target0: AuthorNode {name: "Esther"})-[:BOOK {type: "ManyToManyRel", is_meta:
→˓False, remote_field: "testapp.author.book_set", target_field: "testapp.book.id"}]->
→˓(target1: BookNode)-[:AUTHORS {type: "ManyToManyField", is_meta: False, remote_
→˓field: "testapp.book.authors", target_field: "testapp.author.id"}]->(target2:
→˓AuthorNode {age: 69}) RETURN path;

Other security measures

Finally we have the Requires staff and the Is active fields. They should be pretty self-explanatory, where
the first requires the authenticated user to be a staff user, and the latter can be used to deactivate a rule instead of
deleting it. Inactive rules will not be evaluated.

2.2. Access rules 13

django-chemtrails Documentation, Release 0.0.19

14 Chapter 2. Graph based permissions

CHAPTER 3

About

This project aims to solve complex object based permissions by utilizing the relationships between entities in a graph.

15

django-chemtrails Documentation, Release 0.0.19

16 Chapter 3. About

CHAPTER 4

Features

• Synchronize Django model instances to Neo4j

• Recursively connect related nodes

17

django-chemtrails Documentation, Release 0.0.19

18 Chapter 4. Features

CHAPTER 5

Installation

$ pip install django-chemtrails

19

django-chemtrails Documentation, Release 0.0.19

20 Chapter 5. Installation

CHAPTER 6

Requirements

• A Django project

• Neo4j running and accepting connections using the bolt protocol

21

django-chemtrails Documentation, Release 0.0.19

22 Chapter 6. Requirements

CHAPTER 7

Changelog

Some day...

23

django-chemtrails Documentation, Release 0.0.19

24 Chapter 7. Changelog

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

25

	Configuration
	Chemtrails settings

	Graph based permissions
	The idea
	Access rules

	About
	Features
	Installation
	Requirements
	Changelog
	Indices and tables

