

Welcome to Django Chatter’s documentation!

Re-usable Django chat application for Django developers.

Chat is a crucial aspect of many web apps at present. However, Django’s package
repository does not have well-maintained reusable chat packages that Django
developers can integrate into their platforms.

Django Chatter is an attempt to change that. This is an open-source fully reusable
chat application that has mechanisms to support group chats in place.

The HTML front-end for this app is built with Flexbox, making it responsive to
numerous viewports.

[More work to be done] Added to that, it can also possibly be used as a REST API,
since all the views generate standard JSON responses that need to be parsed by
the websockets present in the front-end of the app using this package.

This app makes use of Django Channels 2 [http://channels.readthedocs.io] and uses
Redis [https://redis.io/] as the message broker.

To run chatter properly, you’ll require python>=3.5 and Redis.
Note: For development, we are currently using redis-5.0.3,
built from source on Ubuntu machines.

The core mechanisms of Chatter follows the instructions provided in the
Django Channels Tutorial [https://channels.readthedocs.io/en/latest/tutorial/index.html]
section, with some added modifications and a little theming.

Contents

	Installation and Use
	Pre-requisites

	Installation

	Usage Notes

	Example(s)

	Customizing Django Chatter Templates

	Utilities
	Available

	To Do

	Tests

	Get Involved with Django Chatter!
	Get Started

	Features Yet to Come

	Credits

	Changelog
	v 1.0.7

	v 1.0.6

	v 1.0.5

	v 1.0.4

	v 1.0.3

	v 1.0.2

	v 1.0.1

	v 1.0.0

	v 0.2.2

Installation and Use

Installing Chatter requires several simple steps. While previous exposure to
Django Channels would help you, it’s not required.

Pre-requisites

Chatter only supports Python >= 3.5 and Django >= 2.0.9 as far as the developers
are concerned. So, to be able to integrate Chatter, you’re going to need them
installed.

Added to that, Chatter uses Redis as its message broker. This means that all the
chat messages are communicated between all connected users through the Redis
datastore. Given that, you have to have Redis installed on your system. Details on
installing Redis can be found on their Downloads [https://redis.io/download]
page.

Installation

	Chatter is on PyPi [https://pypi.org/project/django-chatter/] now!
To install it, run

pip install django-chatter

This should install all the required dependencies for Chatter.

	Once you’re done with that, add it to your settings.INSTALLED_APPS:

INSTALLED_APPS = [
 ...
 'django_chatter',
 ...
]

	Since we use Redis as our message broker, you need to enable channel layers
for Chatter’s ChatConsumer
(see Channels’ Consumers [https://channels.readthedocs.io/en/latest/topics/consumers.html]
for more details). To enable that, you need to add the following lines to
your project’s settings.py file:

CHANNEL_LAYERS = {
 'default': {
 'BACKEND': 'channels_redis.core.RedisChannelLayer',
 'CONFIG': {
 'hosts': [('127.0.0.1', 6379)],
 },
 },
}

	If you haven’t already, create a file named routing.py in your
project’s configuration folder.
This is because Django Channels uses a specification called
ASGI [https://channels.readthedocs.io/en/latest/asgi.html]
for its websocket protocol. To enable Channels on your app, you have to add
a file that routes all websocket requests to a Channels app
(in this case, Chatter).
This should be the same as the folder where your settings.py
file is located.

In routing.py, add the following lines:

from channels.auth import AuthMiddlewareStack
from channels.routing import ProtocolTypeRouter, URLRouter
import django_chatter.routing

application = ProtocolTypeRouter({
 'websocket': AuthMiddlewareStack(
 URLRouter(
 django_chatter.routing.websocket_urlpatterns # send request to chatter's urls
)
)
})

This routes all websocket requests to Chatter, with the logged in User
object. If you are using different
django-channels [https://channels.readthedocs.io/en/latest/]
applications other than Chatter, you may already have this file, and can add
the appropriate URL for chatter to handle.
More details can be found on Django Channels’
Routing [https://channels.readthedocs.io/en/latest/topics/routing.html] page.

If you know how the middleware wrapping in
Channels [https://github.com/django/channels/blob/master/channels/auth.py]
works, then feel free to replace AuthMiddlewareStack with what you use
as your auth middleware for User object processing (if you’re curious to know
about this, get in touch! We’d be happy to talk to you about it).

	Now that you’re done setting up routing.py, add the following line in
your settings.py file to enable routing websocket requests to the
appropriate app:

ASGI_APPLICATION = 'mysite.routing.application'

	Link django_chatter.urls to the URL you want in your
URLConf (<project>/urls.py).

Example:

from django.urls import path, include

...
urlpatterns = [
 ...,
 path('chat/', include('django_chatter.urls')),
 ...
]

	Run migrations:

$ python manage.py makeimigrations django_chatter
$ python manage.py migrate

	Start your app’s development server and go to your '/chat/' URL,
and you will see Chatter’s homepage.

Usage Notes

	Chatter, as of right now, provides a very minimal interface for users to chat
with other users.For starters, while group chatting is supported on the model
layer, the corresponding templates and front-end logic have not yet been setup.

	If you’re using chatter as a package in your own app, you have to make sure
that you handle user authentication in your app. Chatter, by default, provides
views that require user authentication. If you’re developing Chatter on the other
hand, the usage will vary a bit. The notes for that can be found in the
Get Involved section.

Example(s)

An example video of Chatter in action will be posted here
very soon. Thanks for waiting!

Customizing Django Chatter Templates

	Host Chatter Templates Inside Your App

You can add chatter templates inside your own app’s HTML files. For example, if you have
reusable headers and footers in a base.html file, then you can include
that file’s location in your settings file like so:

CHATTER_BASE_TEMPLATE="<your app templates directory>/base.html"

Depending on how your template directories are defined, Django will try to find the
template located in the location you’ve defined, and use it as a container for Chatter.

Utilities

Available

Chatter has the following utilities available:

	Middleware to Support Multitenancy

Added in: Chatter 0.1.0

Django Chatter now supports multitenant SaaS applications made using
django-tenants [https://github.com/tomturner/django-tenants].
This is made available as middlewares in the utils.py module.
Both these middlwares require CookieMiddleware and SessionMiddleware stacked
higher in the ASGI application routing stack.

	MTSchemaMiddleware:

This middleware attaches schema_name as well as a boolean named
multitenant into a websocket consumer’s scope. This enables
you to access the schema name from any consumer that’s wrapped inside this
middleware. To do this, you have to add it into your middleware stack in your
project’s routing.py file like so:

from django_chatter.utils import MTSchemaMiddleware

application = ProtocolTypeRouter({
 'websocket': <your stack>(
 MTSchemaMiddleware(
 URLRouter(
 django_chatter.routing.websocket_urlpatterns
)
)
)
})

After doing this, your consumers will have access to the schema_name that you
can use with django-tenant’s schema_context.

	MTAuthMiddleware:

This middleware is Chatter’s version of attaching a user object to a
websocket’s scope. This automatically attaches the logged in user’s
information from the client’s session cookies depending on which tenant
they’re accessing Chatter from. You can use it in your project’s
routing.py by the following method:

from django_chatter.utils import MTAuthMiddleware

application = ProtocolTypeRouter({
 'websocket': <your stack>(
 MTAuthMiddleware(
 URLRouter(
 django_chatter.routing.websocket_urlpatterns
)
)
)
})

There’s a high chance that you’d want to be using both these middlewares. To
make things easy, these two are combined with CookieMiddleware and
SessionMiddleware to make ChatterMTMiddlewareStack which you
can use like this:

from django_chatter.utils import ChatterMTMiddlewareStack

application = ProtocolTypeRouter({
 'websocket': <your stack>(
 ChatterMTMiddlewareStack(
 URLRouter(
 django_chatter.routing.websocket_urlpatterns
)
)
)
})

	Create Room Function

Added in: Chatter 0.1.1

This function takes in a _list_ of User objects and returns the ID of a new room
containing the given users. If the room already exists in the database, it
returns the existing room’s ID. With the ID, you can then call upon Chatter’s
chatroom view from your view. An example is below:

from django_chatter.utils import create_room
from django_chatter.views import chatroom
from myapp.models import User

def my_view(request):
 user1 = request.user # User requesting the view
 user2 = User.objects.get(username="user2") # example user in your db
 room_id = create_room([user1, user2])
 return chatroom(request, room_id)

The above code would create a room from your view, and direct the user to the
newly formed room.

To Do

Some utilities would be nice to have integrated with Chatter.
For example, we could have the following:

	A module that takes in a list of User objects and creates
a room with them in it, and returns the UUID of the new Room.

Tests

This project comes with unit tests to make sure the code is reliable. We welcome
test contributions from developers. Especially, the multitenancy support testing
is still in progress, so that needs a lot of work.

Get Involved with Django Chatter!

We’d highly appreciate contributions to this project! The source code is currently
hosted on GitHub [https://www.github.com/dibs-devs/chatter]. If you caught a
bug or have suggestions, we welcome pull requests and issues!

Currently, Ahmed Ishtiaque [https://ishtiaque06.github.io] is the primary maintainer
for this project. If you have any questions or suggestions, feel free to
reach out to him as well.

Get Started

To start developing Chatter, follow the following steps:

	Install Python 3 [https://www.python.org/] if you don’t have it already.

	Clone the GitHub Repo [https://github.com/dibs-devs/chatter].

	Spawn up a new virtual environment, cd into your working directory
and run

$ pip install -r dev-requirements.txt

This will install all the prerequisites needed to run Chatter.

	If you don’t have Redis, you can install it from
their Download page [https://redis.io/download].

	Since we’re phasing into implementing multitenancy support on Chatter with
django-tenants [https://www.github.com/tomturner/django-tenants], we will
be using PostgreSQL as the database. Install PostgreSQL from
PostgreSQL [https://www.postgresql.org/].

After this, create user for chatter database:

	Open the postgres terminal:

$ sudo su - postgres

	Connect to your psql server:

$ psql

	Run the following commands (don’t miss the semi-colons):

$ CREATE DATABASE chatter;
$ CREATE USER chatteradmin WITH PASSWORD 'chatter';
$ ALTER ROLE chatteradmin SET client_encoding TO 'utf8';
$ ALTER ROLE chatteradmin SET default_transaction_isolation TO 'read committed';
$ ALTER ROLE chatteradmin SET timezone TO 'America/New_York';
$ GRANT ALL PRIVILEGES ON DATABASE chatter TO chatteradmin;
$ \q

The instructions should be pretty intuitive. This is a replication of the
detailed PostgreSQL install guide on
DigitalOcean [https://www.digitalocean.com/community/tutorials/how-to-use-postgresql-with-your-django-application-on-ubuntu-14-04].

	Exit the postgres session:

$ exit

	Run migrations:

$ python manage.py makemigrations django_chatter
$ python manage.py migrate

	Create public tenant to enable multitenancy testing support with django-tenants:

$ python manage.py shell

from tenants.models import Client, Domain

create your public tenant
tenant = Client(schema_name='public',
 name='Schemas Inc.')
tenant.save()

Add one or more domains for the tenant
domain = Domain()
domain.domain = 'localhost' # don't add your port or www here! on a local server you'll want to use localhost here
domain.tenant = tenant
domain.is_primary = True
domain.save()

	Run the tests:

$ pytest

All tests in the master branch should pass.

	Create a superuser for chatter:

$ python manage.py createsuperuser

	Run the development server:

$ python manage.py runserver

	(Optional) if you want to streamline the login/logout mechanisms, feel free to
add a login.html file to django_chatter/templates/registration folder. This
should give you a form to log in. Django’s
template [https://docs.djangoproject.com/en/2.1/topics/auth/default/#django.contrib.auth.views.LoginView]
for that is pretty adequate.

The following is a list of features and hooks that we plan on bringing to Chatter:

Features Yet to Come

	Add a “Create Group” option for users on the templates

	Add ‘Seen by user x’ functionality

	Add time to when messages were sent

Credits

We would like to thank Andrew Godwin [https://github.com/andrewgodwin],
along with the Django Software Foundation [https://www.djangoproject.com/foundation/],
for providing the wonderful and easy-to-use Django Channels
framework to base our websocket-based app on.

Changelog

v 1.0.7

	Bugfix: Properly selecting the last 10 rooms when loading a chat window.

v 1.0.6

	UI improvement: the Opponent username bubble has alignment flex-end to ensure it’s in the bottom

	Cache usernames of all users present in a room to save database queries

v 1.0.5

	Major change: Now, whenever a user/client connects to a room, the UI gets updated
if they receive messages in a separate room. This is achieved by connecting to
an additional websocket that is defined by the user’s username. New alerts are
received in this websocket and the update is added to the UI.

	Tests are added to test this new websocket consumer’s behavior.

	Refactored more of the JS code into their own files and added the dependencies
on the top of each file.

	Minor UI improvements to keep things intuitive

v 1.0.4

	Bugfixes: The last message preview on chatroom-list updates as the websocket
receives new messages. Overflow of text in the preview has been adjusted for.

v 1.0.3

	Minor bugfix: Use relative URL when fetching messages to account for parent
app’s URL settings.

v 1.0.2

	On click, messages show when they were sent.

	Fresh UI, inspired by Google’s Messages Web and Facebook Messenger.

	ChatConsumer now sends and receives JSON data by default.

	More modern dropdown for selecting users. This has been put in place to
allow group chat formation in the future.

	Infinite scroll to retrieve previous messages has been implemented.

v 1.0.1

	Cleaned up some testing code

	Bugfix in MTSchemaMiddleware - hostname to search tenant with was only
the first part of the domain instead of the whole domain.

v 1.0.0

	This version removes the context processor get_chatroom_list that used to fetch a list of all rooms a
logged in user is a member of. This is to prevent unnecessary database access in the
request-response cycle. For users using django_chatter < 1.0.0, this will create
compatibility issues, which can be solved by simply removing the context processor
from their settings.

	Multiple tests have been added to maintain reliability of the code.

	On multitenant systems, MTSchemaMiddleware checks if a tenant with the given
schema name exists. If not, it raises an Http404 error.

v 0.2.2

	Added testing framework for multitenancy support

	Switched to class-based views to promote clearer code style

	index page bugfix [https://github.com/dibs-devs/chatter/issues/4]

	Added coverage and Travis CI information

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Django Chatter’s documentation!

 		
 Installation and Use

 		
 Pre-requisites

 		
 Installation

 		
 Usage Notes

 		
 Example(s)

 		
 Customizing Django Chatter Templates

 		
 Utilities

 		
 Available

 		
 To Do

 		
 Tests

 		
 Get Involved with Django Chatter!

 		
 Get Started

 		
 Features Yet to Come

 		
 Credits

 		
 Changelog

 		
 v 1.0.7

 		
 v 1.0.6

 		
 v 1.0.5

 		
 v 1.0.4

 		
 v 1.0.3

 		
 v 1.0.2

 		
 v 1.0.1

 		
 v 1.0.0

 		
 v 0.2.2

_static/comment-bright.png

_static/ajax-loader.gif

