

Django Bulkmodel

This projects adds a number of features missing from Django’s ORM. It enables heterogeneous updates,
concurrent writes, retrieving records after bulk-creating them, and offline connection management to name a few
features it provides.

Getting Started

	Installation and Getting Started
	Full Installation

	Partial Installation

	Optional Settings

	Overview of All Features

What BulkModel does, by example

Suppose you have the following model:

from bulkmodel.models import BulkModel

class Foo(BulkModel):
 name = models.CharField(max_length=50, blank=False)
 value = models.IntegerField(null=False)

Some things you can do:

Retrieve bulk-created model instances

from random import randint, random, string

ls = []
for i in range(10):
 ls.append(Foo(
 # random string
 name = ''.join(random.choices(string.ascii_uppercase, 25)),

 # random value
 value = randint(0, 1000),
))

create instances and return a queryset of the created items
foos = Foo.objects.bulk_create(ls, return_queryset=True)

Heterogeneously update data

The .update() method on a queryset performs a homogeneous update. That is, one or more columns for
all the records in the queryset are updated to the same value.

Django-bulkmodel lets you set different values for different primary keys, with a simple and intuitive API,
by introducing a method on a queryset called update_fields().

for foo in foos:
 foo.value += randint(100, 200)

update all fields that changed
foos.update_fields()

or update just the value field
foos.update_fields('value')

Concurrent writes

The batch_size flag that ships with django inserts data synchronously, blocking on each batch to be written into the database.

If your database hardware is sufficient and you’re on Python 3.4+ you can decrease overall write time by batch
inserting concurrently. With django-bulkmodel you simply turn on the concurrency flag into any write operation.

foos = ...

concurrently write foos into the database
Foo.objects.bulk_create(foos, concurrent=True, batch_size=1000, max_concurrent_workers=10)

a regular (homogeneous) update can be written concurrently
foos.update(concurrent=True, batch_size=1000, max_concurrent_workers=10)

and so can a heterogeneous update
foos.update_fields(concurrent=True, batch_size=1000, max_concurrent_workers=10)

In-Depth Guides

	1. Bulk Create
	1.1. Returning queryset

	1.2. Writing data by copying from a buffer

	1.3. Missing signals

	1.4. Concurrent writes

	2. Bulk Updates

	3. Concurrent writes
	3.1. Parameters

	4. Connection Management
	4.1. Example

	5. Copy TO / FROM support
	5.1. Examples

	6. Signals
	6.1. Bulk-create signals

	6.2. Update signals

Reference

	QuerySet API Reference
	QuerySet

	Model Manager

	Signals API Reference
	Bulk create signals

	Update signals

	Copy to / from signals

	Helpers

	Concurrency Executor

Indices and tables

	Index

	Module Index

	Search Page

Installation and Getting Started

Install the package from pypi:

pip install django-bulkmodel

Add bulkmodel app to your INSTALLED_APPS list in settings.py:

INSTALLED_APPS = [
 ...
 'bulkmodel',
]

Full Installation

Fully installing BulkModel requires inheriting your models from bulkmodel.models.BulkModel:

from django.db import models
from bulkmodel.models import BulkModel

class MyModel(BulkModel):
 ...

And migrate the database.

Create migrations

If you’re creating a new app from scratch:

./manage.py makemigrations <name-of-your-app>

Do this for each new app you create that have BulkModels.

Otherwise, if this app already exists and has migrations:

./manage.py makemigrations

Apply migrations

And apply the migrations:

./manage.py migrate

Partial Installation

If you don’t want to migrate your database schema for whatever reason you can skip that step
and BulkModel will degrade gracefully. With this route you’ll lose the ability
to retrieve a queryset after bulk creating data, and some signals will lose functionality.

With this route you’ll need to point your objects reference on each BulkModel.

from django.db import models
from bulkmodel.models import BulkModel
from bulkmodel.managers import BulkModelManager

class MyModel(BulkModel):
 ...

 objects = BulkModelManager()

Optional Settings

Place the following in your settings.py to set global behavior of your bulkmodels:

	MAX_CONCURRENT_BATCH_WRITES

When set, this is the maximum number of concurrent workers that will be available to any concurrent write across your entire project.
The default leaves this value unset.

	ALWAYS_USE_CONCURRENT_BATCH_WRITES

If True, django-bulkmodel will always use concurrent writes. The default is False.

Overview of All Features

The goal of django-bulkmodel is to expand on Django’s ORM so that it’s better suited for interacting with bulk data.

	Updating data heterogeneously

The update() method that ships with Django applies a homogeneous update. That is, all model instances
in the queryset are updated to the be same value for the columns specified.

A BulkModel includes a new method named update_fields(), which allows you to update the database
with different values for each model instance in the queryset through a single query execution.

For more details see bulk update user guide and the
queryset API reference.

	Getting querysets of bulk-created data

Sometimes you need to create some data and then do some further processing on the created records.
However the bulk_create method returns what the database returns: the number of records returned.

A BulkModel allows you to optionally return the queryset of objects created. So unless you can predict
the primary key ahead of time, or can uniquely identify the data being inserted from some other combination
you won’t be able to get back the inserted data as it’s represented in the database, with an assigned primary key.

For more details see the bulk create user guide and the
queryset API reference.

	Concurrent writes

In many cases and with a sufficiently capable database server you can accelerate bulk loading of data
into the database by executing a concurrent write.

BulkModels make this very easy– exposing three parameters to give you full control over how your writes are constructed.

In each queryset write method (which includes bulk_create, copy_from_objects, update and update_fields)
has the following parameters:

	batch_size: The size of each chunk to write into the database; this parameter can be used with or without concurrency

	concurrent: If true, a write will happen concurrently. The default is False

	max_concurrent_workers: The total number of concurrent workers involved in the event loop.

For more details see the concurrent writes user guide and the
queryset API reference.

	Offline connection management

Django manages the database connection inside a request / response cycle. A BulkModel is expecting data
to be interacted with “offline” (meaning outside of the webserver) and checks or refreshes the connection if
necessary when interacting with data in bulk.

You can force a database connection check / refresh with the ensure_connected() queryset method.

For more details see the connection management user guide and the
queryset API reference.

	Missing signals

Django ships with the following signals for interacting with data:

	Saving a single instance: pre_save and post_save

	Deleting data: pre_delete and post_delete

	Changing a many to many relationship: m2m_changed

What’s missing from this list are signals when data is created in bulk and updated in bulk.

A BulkModel adds these signals and optionally lets you turn them off when calling any bulk write function.

For more details see the signals user guide and the
signals reference.

	Copying data to / from buffers

A BulkModel allows you write and read data by copying from and to a buffer, for databases that support it.

For details on how to do this see the copy to/from user guide and the
queryset API reference.

1. Bulk Create

Django ships with a bulk_create method that supports a batch_size parameter for batch writing.

Django-bulkmodel expands on this queryset method with some new options.

1.1. Returning queryset

Creating data in bulk returns what the database returns: the number of records created.

However there many cases where you want to obtain the created records for further manipulation, and
there’s no way to do with this without have the primary keys associated with each record.

Django-bulkmodel exposes a parameter called return_queryset which returns created data as a queryset.

from random import randint, random, string
from bulkmodel.models import BulkModel

class Foo(BulkModel):
 name = models.CharField(max_length=50, blank=False)
 value = models.IntegerField(null=False)

foo_objects = []
for i in range(10):
 foo_objects.append(Foo(
 # random string
 name = ''.join(random.choices(string.ascii_uppercase, 25)),

 # random value
 value = randint(0, 1000),
))

create instances and return a queryset of the created items
foos = Foo.objects.bulk_create(foo_objects, return_queryset=True)

1.2. Writing data by copying from a buffer

Bulk create will perform several inserts. Depending on your schema and database it may be faster to load
data from a path or buffer.

For supported databases, a BulkModel queryset exposes this functionality.

foos = []
for i in range(10):
 foos.append(Foo(
 # random string
 name = ''.join(random.choices(string.ascii_uppercase, 25)),

 # random value
 value = randint(0, 1000),
))

foos = Foo.objects.copy_from_objects(ls, return_queryset=True)

The return_queryset is available on all write methods. See the Queryset Reference for more details.

1.3. Missing signals

A BulkModel adds several signals, including signals around creating data in bulk.

These signals are coupled to the two methods of creating data, as documented above:

	pre_bulk_create / post_bulk_create: signals fired when data is created from bulk_create

	pre_copy_from_instances / post_copy_from_instances: signals fired when data is created using copy_from_objects

You can optionally turn off emitting signals when creating data.

foo_objects = ...

do not send signals (the default is True)
Foo.objects.bulk_create(foo_objects, send_signals=False)

For more information see the signals user guide or the signals API reference.

1.4. Concurrent writes

You can accelerate the loading of data by splitting work into batches and writing each batch concurrently.

A BulkModel queryset exposes three parameters to give you full control over this process:

	batch_size: The size of each chunk to write into the database; this parameter can be used with or without concurrency

	concurrent: If true, a write will happen concurrently. The default is False

	max_concurrent_workers: The total number of concurrent workers involved in the event loop.

Example

foos = ...

concurrently write foos into the database
Foo.objects.bulk_create(foos, concurrent=True, batch_size=1000, max_concurrent_workers=10)

a regular (homogeneous) update can be written concurrently
foos.update(concurrent=True, batch_size=1000, max_concurrent_workers=10)

and so can a heterogeneous update
foos.update_fields(concurrent=True, batch_size=1000, max_concurrent_workers=10)

For more information see the concurrent writes user guide or the queryset API reference.

2. Bulk Updates

Django ships with an update() method to update data to the database.

This method is limited to updating data homogeneously– that is, all the values
for the column(s) being updated is set to the same value throughout the queryset.

Django-bulkmodel adds to the functionality by providing a update_fields() method,
which updates data heterogeneously– that is, the values for the column(s) being
updated can have different values for each model instance in the queryset.

Suppose you have the following model:

from bulkmodel.models import BulkModel

class Foo(BulkModel):
 name = models.CharField(max_length=50, blank=False)
 value = models.IntegerField(null=False)

Using update you can change the value to be the same

foos = ... # a queryset

foos.update(value = 5)

Using update_fields you can update records to have different
values for each item.

for foo in foos:
 # different value for each model instance in the queryset
 foo.value += randint(100, 200)

update all fields that changed
foos.update_fields()

or update just the value field
foos.update_fields('value')

Importantly, this will issue a single query against the database.

See Queryset Reference for more details.

3. Concurrent writes

Django comes with a batch_size parameter on the bulk_create queryset method.

Django-bulkmodel expands on the concept of batching in two ways:

	Batching is enabled on all write methods, including update() and update_fields()

	You can optionally write data concurrently and specify a number of workers that makes sense for your database server and data size

Note that performance of concurrent writes won’t increase linearly. In fact, if your database is constrained
with CPU resources, it’s not likely to impact performance at all and could actually slow down your write.

This is an advanced feature that should be used with care. However you can improve write performance dramatically
when used correctly.

3.1. Parameters

All database write methods have the following options to control concurrent writes:

	concurrent: Set to true to enable concurrent writes. False by default

	batch_size: Number of records to include in a single write (applies whether writing synchronous or asynchronous)

	max_concurrent_workers: Maximum number of concurrent writers to use to apply the database operation

See Queryset API Reference for more details.

4. Connection Management

By default Django manages the connection within a request / response cycle.

Django-bulkmodel enables offline connection management, so that you won’t lose your connection outside of this cycle.

To check or refresh your connection (if necessary), call ensure_connected() on your queryset.

Django-bulkmodel internally calls this method as appropriate.

4.1. Example

foos = ... # some queryset
foos.ensure_connected().filter(name = 'alice')

See Queryset API Reference for more details.

5. Copy TO / FROM support

For database engines (i.e., Postgres) that support copying data into and out of a buffer
Django-bulkmodel exposes this functionality into the queryset.

There are now two methods you can call:

	copy_from_objects: writes data from the provided list of objects to the database.

	copy_to_instances: reads data out of a buffer and populates a list of objects

5.1. Examples

Suppose you have the following model:

from bulkmodel.models import BulkModel

class Foo(BulkModel):
 name = models.CharField(max_length=50, blank=False)
 value = models.IntegerField(null=False)

Populate it with some data and use copy_from_objects to write the data into the database:

ls = []
for i in range(1000):
 ls.append(Foo(
 name = random_str(),
 value = randint(0, 1000),
))

returning the queryset is optional
foos = Foo.objects.copy_from_objects(ls, return_queryset=True)

Likewise you can fetch data out the database by populating a list of objects from a buffer:

objs = Foo.objects.copy_to_instances()

6. Signals

Django ships with [https://docs.djangoproject.com/en/2.0/topics/signals/] the following signals for database operations:

	Saving a single instance: pre_save and post_save

	Deleting data: pre_delete and post_delete

	Changing a many to many relationship: m2m_changed

Missing from this list is the ability to attach signals before and after updating data and bulk-creating data.

6.1. Bulk-create signals

The following signals are fired when data is created in bulk:

	pre_bulk_create is fired just before data is created

	post_bulk_create is fired just after data is created

For copying data into the database from a buffer (i.e., using copy_from_instances):

	pre_copy_from_instances is fired just before data is copied

	post_copy_from_instances is fired just after data is copied

6.2. Update signals

There are three sets of signals attached to the three ways you can update data.

For homogeneous updates (i.e., use the classic update()):

	pre_update is fired just before data is updated

	post_update is fired just after data is updated

For heterogeneous updates (i.e., using update_fields()):

	pre_update_fields is fired just before data is updated

	post_update_fields is fired just after data is updated

See Siganls Reference for more details.

QuerySet API Reference

QuerySet

Model Manager

Signals API Reference

API reference for additional signals included in Django-bulkmodel

Bulk create signals

pre_bulk_create

Fired before bulk_create writes data to the database

Parameters:

	instances: a list of model instances about to be written to the database

post_bulk_create

Fired after bulk_create has written data to the database

Parameters:

	instances: a list of model instances that have been written to the database

	queryset: a queryset of records saved in the bulk create; only applies if return_queryset=True is passed to bulk_create()

Fired after a bulk-create is issued

Update signals

pre_update

Fired just before update() performs a homogeneous update

Parameters:

	instances: a list of instances about to be updated

post_update

Fired just after update() performs a homogeneous update

Parameters:

	instances: a list of instances that have been updated

pre_update_fields

Fired just before update_fields() performs a hetergenous update

Parameters:

	instances: a list of instances about to be updated

	field_names: a list of fieldnames being updated; if empty, all fields are being updated

	field_defaults: defaults for each field, provided as a dictionary

	batch_size: the batch size used for the update

post_update_fields

Fired just after update_fields() performs a heterogeneous update

Parameters:

	instances: a list of instances about to be updated

	queryset: a queryset of records updated, if return_queryset=True is passed to update_fields

	field_names: a list of fieldnames being updated; if empty, all fields are being updated

	field_defaults: defaults for each field, provided as a dictionary

	batch_size: the batch size used for the update

	n: number of instances updated

Copy to / from signals

pre_copy_from_instances

Fired just before copy_from_instances writes data to the database

Parameters:

	instances: a list of instances about to be updated

post_copy_from_instances

Fired just after copy_from_instances writes data to the database

Parameters:

	instances: a list of instances that have been updated

Helpers

Concurrency Executor

Index

Frequency Asked Questions

Here are some frequently asked questions. If you have additional ones please send an email
to Alan at alanilling@protonmail.com

How does django-bulkmodel change my models?

It adds a field called bm_create_uuid an indexed UUID field, which is populated whenever data is created.

This way, it knows how to group created sets of data and return a queryset after bulk creating data.

What database engines are supported?

Everything Django supports!

Django-bulkmodel doesn’t write any custom SQL to do what it needs to do. It only engages with Django’s
high-level ORM, which already abstracts out the differences between database engines.

The exception of course is anything that’s only supported in one particular database. For example if you’re
using a database that doesn’t support copying data to and from buffers you won’t be able to use the copy_from_objects
or copy_to_instances methods.

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Django Bulkmodel

 		
 Installation and Getting Started

 		
 Full Installation

 		
 Partial Installation

 		
 Optional Settings

 		
 Overview of All Features

 		
 Bulk Create

 		
 Returning queryset

 		
 Writing data by copying from a buffer

 		
 Missing signals

 		
 Concurrent writes

 		
 Bulk Updates

 		
 Concurrent writes

 		
 Parameters

 		
 Connection Management

 		
 Example

 		
 Copy TO / FROM support

 		
 Examples

 		
 Signals

 		
 Bulk-create signals

 		
 Update signals

 		
 QuerySet API Reference

 		
 QuerySet

 		
 Model Manager

 		
 Signals API Reference

 		
 Bulk create signals

 		
 pre_bulk_create

 		
 post_bulk_create

 		
 Update signals

 		
 pre_update

 		
 post_update

 		
 pre_update_fields

 		
 post_update_fields

 		
 Copy to / from signals

 		
 pre_copy_from_instances

 		
 post_copy_from_instances

 		
 Helpers

 		
 Concurrency Executor

_static/comment-bright.png

_static/ajax-loader.gif

