
django-axes documentation
Release 6.4.0

Jazzband

Mar 04, 2024

CONTENTS

1 Contents 1
1.1 Requirements . 1
1.2 Installation . 1
1.3 Usage . 6
1.4 Configuration . 9
1.5 Customization . 13
1.6 Integration . 17
1.7 Architecture . 23
1.8 API reference . 25
1.9 Contributions . 29
1.10 Development . 29
1.11 Changes . 30

2 Indices and tables 57

Python Module Index 59

Index 61

i

ii

CHAPTER

ONE

CONTENTS

1.1 Requirements

Axes requires a supported Django version and runs on Python versions 3.8 and above.

Refer to the project source code repository in GitHub and see the pyproject.toml file and Python
package definition to check if your Django and Python version are supported.

The GitHub Actions builds test Axes compatibility with the Django master branch for future
compatibility as well.

1.2 Installation

Axes is easy to install from the PyPI package:

$ pip install django-axes[ipware] # use django-ipware for resolving␣
→˓client IP addresses OR
$ pip install django-axes # implement and configure custom␣
→˓AXES_CLIENT_IP_CALLABLE

After installing the package, the project settings need to be configured.

1. Add axes to your INSTALLED_APPS:

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

Axes app can be in any position in the INSTALLED_APPS list.
'axes',

]

1

https://github.com/jazzband/django-axes/
https://github.com/jazzband/django-axes/blob/master/pyproject.toml
https://github.com/jazzband/django-axes/blob/master/setup.py
https://github.com/jazzband/django-axes/blob/master/setup.py
https://github.com/jazzband/django-axes/actions

django-axes documentation, Release 6.4.0

2. Add axes.backends.AxesStandaloneBackend to the top of
AUTHENTICATION_BACKENDS:

AUTHENTICATION_BACKENDS = [
AxesStandaloneBackend should be the first backend in the␣

→˓AUTHENTICATION_BACKENDS list.
'axes.backends.AxesStandaloneBackend',

Django ModelBackend is the default authentication backend.
'django.contrib.auth.backends.ModelBackend',

]

For backwards compatibility, AxesBackend can be used in place of
AxesStandaloneBackend. The only difference is that AxesBackend also provides the
permissions-checking functionality of Django’s ModelBackend behind the scenes. We rec-
ommend using AxesStandaloneBackend if you have any custom logic to override Django’s
standard permissions checks.

3. Add axes.middleware.AxesMiddleware to your list of MIDDLEWARE:

MIDDLEWARE = [
The following is the list of default middleware in new Django␣

→˓projects.
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',

AxesMiddleware should be the last middleware in the MIDDLEWARE␣
→˓list.
It only formats user lockout messages and renders Axes lockout␣

→˓responses
on failed user authentication attempts from login views.
If you do not want Axes to override the authentication response
you can skip installing the middleware and use your own views.
'axes.middleware.AxesMiddleware',

]

4. Run python manage.py check to check the configuration.

5. Run python manage.py migrate to sync the database.

Axes is now functional with the default settings and is saving user attempts into your database
and locking users out if they exceed the maximum attempts.

You should use the python manage.py check command to verify the correct configuration
in development, staging, and production environments. It is probably best to use this step as
part of your regular CI workflows to verify that your project is not misconfigured.

2 Chapter 1. Contents

django-axes documentation, Release 6.4.0

Axes uses checks to verify your Django settings configuration for security and functionality.
Many people have different configurations for their development and production environments,
and running the application with misconfigured settings can prevent security features from work-
ing.

1.2.1 Version 6 breaking changes and upgrading from django-axes
version 5

If you have not specialized django-axes configuration in any way you do not have to update
any of the configuration.

The instructions apply to users who have configured django-axes in their projects and have
used flags that are deprecated. The deprecated flags will be removed in the future but are com-
patible for at least version 6.0 of django-axes.

The following flags and configuration have changed:

django-ipware has become an optional dependency. To keep old behaviour, use pip
install django-axes[ipware] in your install script or use django-axes[ipware] in
your requirements file(s) instead of plain django-axes. The new django-axes pack-
age does not include django-ipware by default but does use django-ipware if it is
installed and no callables for IP address resolution are configured with the settings.
AXES_CLIENT_IP_CALLABLE configuration flag.

django-ipware related flags have changed names. The old flags have been deprecated and
will be removed in the future. To keep old behaviour, rename them in your settings file:

• settings.AXES_PROXY_ORDER is now settings.AXES_IPWARE_PROXY_ORDER,

• settings.AXES_PROXY_COUNT is now settings.AXES_IPWARE_PROXY_COUNT,

• settings.AXES_PROXY_TRUSTED_IPS is now settings.
AXES_IPWARE_PROXY_TRUSTED_IPS, and

• settings.AXES_META_PRECEDENCE_ORDER is now settings.
AXES_IPWARE_META_PRECEDENCE_ORDER.

settings.AXES_LOCKOUT_PARAMETERS configuration flag has been added which supersedes
the following configuration keys:

1. No configuration for failure tracking in the following items (default behaviour).

2. settings.AXES_ONLY_USER_FAILURES,

3. settings.AXES_LOCK_OUT_BY_COMBINATION_USER_AND_IP,

4. settings.AXES_LOCK_OUT_BY_USER_OR_IP, and

5. settings.AXES_USE_USER_AGENT.

To keep old behaviour with the new flag, configure the following:

1. If you did not use any flags, use settings.AXES_LOCKOUT_PARAMETERS =
["ip_address"],

1.2. Installation 3

django-axes documentation, Release 6.4.0

2. If you used settings.AXES_ONLY_USER_FAILURES, use settings.
AXES_LOCKOUT_PARAMETERS = ["username"],

3. If you used settings.AXES_LOCK_OUT_BY_USER_OR_IP, use settings.
AXES_LOCKOUT_PARAMETERS = ["username", "ip_address"], and

4. If you used settings.AXES_LOCK_OUT_BY_COMBINATION_USER_AND_IP, use
settings.AXES_LOCKOUT_PARAMETERS = [["username", "ip_address"]],

5. If you used settings.AXES_USE_USER_AGENT, add "user_agent" to your list(s) of
lockout parameters.

1. settings.AXES_USE_USER_AGENT would become settings.
AXES_LOCKOUT_PARAMETERS = [["ip_address", "user_agent"]]

2. settings.AXES_USE_USER_AGENT with settings.
AXES_ONLY_USER_FAILURES would become settings.
AXES_LOCKOUT_PARAMETERS = [["username", "user_agent"]]

3. settings.AXES_USE_USER_AGENT with settings.
AXES_LOCK_OUT_BY_USER_OR_IP would become settings.
AXES_LOCKOUT_PARAMETERS = [["ip_address", "user_agent"],
"username"]

4. settings.AXES_USE_USER_AGENT with settings.
AXES_LOCK_OUT_BY_COMBINATION_USER_AND_IP would become
settings.AXES_LOCKOUT_PARAMETERS = [["ip_address",
"user_agent", "username"]]

5. Other combinations of flags were previously not considered; the flags had prece-
dence over each other as described in the documentation but were less-than-
trivial to understand in their previous form. The new form is more explicit and
flexible, although it requires more in-depth configuration.

The new lockout parameters define a combined list of attributes to consider when tracking
failed authentication attempts. They can be any combination of username, ip_address
or user_agent in a list of strings or list of lists of strings. The attributes defined in the
lists are combined and saved into the database, cache, or other backend for failed logins.
The semantics of the evaluation are available in the documentation and axes.helpers.
get_client_parameters callable.

settings.AXES_HTTP_RESPONSE_CODE default has been changed from 403 (Forbid-
den) to 429 (Too Many Requests). To keep the old behavior, set settings.
AXES_HTTP_RESPONSE_CODE = 403 in your settings.

axes.handlers.base.AxesBaseHandler.is_admin_site has been deprecated due to
misleading naming in favour of better-named axes.handlers.base.AxesBaseHandler.
is_admin_request. The old implementation has been kept for backwards compatibility, but
will be removed in the future. The old implementation checked if a request is NOT made for an
admin site if settings.AXES_ONLY_ADMIN_SITE was set. The new implementation correctly
checks if a request is made for an admin site.

axes.handlers.cache.AxesCacheHandler has been updated to use atomic cache.incr
calls instead of old cache.set calls in authentication failure tracking to enable better parallel

4 Chapter 1. Contents

django-axes documentation, Release 6.4.0

backend support for atomic cache backends like Redis and Memcached.

1.2.2 Disabling Axes system checks

If you are implementing custom authentication, request middleware, or signal handlers the Axes
checks system might generate false positives in the Django checks framework.

You can silence the unnecessary warnings by using the following Django settings:

SILENCED_SYSTEM_CHECKS = ['axes.W003']

Axes has the following warnings codes built in:

• axes.W001 for invalid CACHES configuration.

• axes.W002 for invalid MIDDLEWARE configuration.

• axes.W003 for invalid AUTHENTICATION_BACKENDS configuration.

• axes.W004 for deprecated use of AXES_* setting flags.

Note: Only disable the Axes system checks and warnings if you know what you are doing. The
default checks are implemented to verify and improve your project’s security and should only
produce necessary warnings due to misconfigured settings.

1.2.3 Disabling Axes components in tests

If you get errors when running tests, try setting the AXES_ENABLED flag to False in your test
settings:

AXES_ENABLED = False

This disables the Axes middleware, authentication backend and signal receivers, which might
fix errors with incompatible test configurations.

1.2.4 Disabling atomic requests

Django offers atomic database transactions that are tied to HTTP requests and toggled on and
off with the ATOMIC_REQUESTS configuration.

When ATOMIC_REQUESTS is set to True Django will always either perform all database read
and write operations in one successful atomic transaction or in a case of failure roll them back,
leaving no trace of the failed request in the database.

However, sometimes Axes or another plugin can misbehave or not act correctly with other code,
preventing the login mechanisms from working due to e.g. exception being thrown in some part
of the code, preventing access attempts being logged to database with Axes or causing similar
problems.

1.2. Installation 5

django-axes documentation, Release 6.4.0

If new attempts or log objects are not being correctly written to the Axes tables, it is possible to
configure Django ATOMIC_REQUESTS setting to to False:

ATOMIC_REQUESTS = False

Please note that atomic requests are usually desirable when writing e.g. RESTful APIs, but
sometimes it can be problematic and warrant a disable.

Before disabling atomic requests or configuring them please read the relevant Django documen-
tation and make sure you know what you are configuring rather than just toggling the flag on
and off for testing.

Also note that the cache backend can provide correct functionality with Memcached or Redis
caches even with exceptions being thrown in the stack.

1.3 Usage

Once Axes is installed and configured, you can login and logout of your application via the
django.contrib.auth views. The attempts will be logged and visible in the Access Attempts
section in admin.

Axes monitors the views by using the Django login and logout signals and locks out user at-
tempts with a custom authentication backend that checks if requests are allowed to authenticate
per the configured rules.

By default, Axes will lock out repeated access attempts from the same IP address by monitoring
login failures and storing them into the default database.

1.3.1 Authenticating users

Axes needs a request attribute to be supplied to the stock Django authenticate method in
the django.contrib.auth module in order to function correctly.

If you wish to manually supply the argument to the calls to authenticate, you can use the
following snippet in your custom login views, tests, or other code:

def custom_login_view(request)
username = ...
password = ...

user = authenticate(
request=request, # this is the important custom argument
username=username,
password=password,

)

if user is not None:
login(request, user)

6 Chapter 1. Contents

django-axes documentation, Release 6.4.0

If your test setup has problems with the request argument, you can either supply the ar-
gument manually with a blank HttpRequest()` object, disable Axes in the test setup by ex-
cluding axes from INSTALLED_APPS, or leave out axes.backends.AxesBackend from your
AUTHENTICATION_BACKENDS.

If you are using a 3rd party library that does not supply the request attribute when calling
authenticate you can implement a customized backend that inherits from axes.backends.
AxesBackend or other backend and overrides the authenticate method.

1.3.2 Resetting attempts and lockouts

When Axes locks an IP address, it is not allowed to login again. You can allow IPs to attempt
again by resetting (deleting) the relevant AccessAttempt records in the admin UI, CLI, or your
own code.

You can also configure automatic cool down periods, IP whitelists, and custom code and handler
functions for resetting attempts. Please check out the configuration and customization documen-
tation for further information.

Note: Please note that the functionality describe here concerns the default database handler.
If you have changed the default handler to another class such as the cache handler you have to
implement custom reset commands.

Resetting attempts from the Django admin UI

Records can be easily deleted by using the Django admin application.

Go to the admin UI and check the Access Attempt view. Select the attempts you wish the
allow again and simply remove them. The blocked user will be allowed to log in again in accor-
dance to the rules.

Resetting attempts from command line

Axes offers a command line interface with axes_reset, axes_reset_ip,
axes_reset_username, and axes_reset_ip_username management commands with
the Django manage.py or django-admin command helpers:

• python manage.py axes_reset will reset all lockouts and access records.

• python manage.py axes_reset_ip [ip ...]will clear lockouts and records for the
given IP addresses.

• python manage.py axes_reset_username [username ...] will clear lockouts
and records for the given usernames.

• python manage.py axes_reset_ip_username [ip] [username] will clear lock-
outs and records for the given IP address and username.

1.3. Usage 7

django-axes documentation, Release 6.4.0

• python manage.py axes_reset_logs (age) will reset (i.e. delete) AccessLog
records that are older than the given age where the default is 30 days.

Resetting attempts programmatically by APIs

In your code, you can use the axes.utils.reset function.

• reset() will reset all lockouts and access records.

• reset(ip=ip) will clear lockouts and records for the given IP address.

• reset(username=username) will clear lockouts and records for the given username.

Note: Please note that if you give both username and ip arguments to reset that attempts
that have both the set IP and username are reset. The effective behaviour of reset is to and the
terms instead of or ing them.

1.3.3 Data privacy and GDPR

Most European countries have quite strict laws regarding data protection and privacy. It’s highly
recommended and good practice to treat your sensitive user data with care. The general rule here
is that you shouldn’t store what you don’t need.

When dealing with brute-force protection, the IP address and the username (often the email
address) are most crucial. Given that you can perfectly use django-axes without locking the
user out by IP but by username, it does make sense to avoid storing the IP address at all. You
can not lose what you don’t have.

You can adjust the AXES settings as follows:

Block by Username only (i.e.: Same user different IP is still␣
→˓blocked, but different user same IP is not)
AXES_LOCKOUT_PARAMETERS = ["username"]

Disable logging the IP-Address of failed login attempts by returning␣
→˓None for attempts to get the IP
Ignore assigning a lambda function to a variable for brevity
AXES_CLIENT_IP_CALLABLE = lambda x: None # noqa: E731

8 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.4 Configuration

Minimal Axes configuration is done with just settings.py updates.

More advanced configuration and integrations might require updates on source code level de-
pending on your project implementation.

1.4.1 Configuring project settings

The following settings.py options are available for customizing Axes behaviour.

Variable Default Explanation
AXES_ENABLED True Enable or disable Axes plugin functionality, for example in test runner setup
AXES_FAILURE_LIMIT 3 The integer number of login attempts allowed before a record is created for the failed logins. This can also be a callable or a dotted path to callable that returns an integer and all of the following are valid: AXES_FAILURE_LIMIT = 42, AXES_FAILURE_LIMIT = lambda *args: 42, and AXES_FAILURE_LIMIT = 'project.app.get_login_failure_limit'.
AXES_LOCK_OUT_AT_FAILURE True After the number of allowed login attempts are exceeded, should we lock out this IP (and optional user agent)?
AXES_COOLOFF_TIME None If set, defines a period of inactivity after which old failed login attempts will be cleared. Can be set to a Python timedelta object, an integer, a float, a callable, or a string path to a callable which takes no arguments. If an integer or float, will be interpreted as a number of hours: AXES_COOLOFF_TIME = 2 2 hours, AXES_COOLOFF_TIME = 2.0 2 hours, 120 minutes, AXES_COOLOFF_TIME = 1.7 1.7 hours, 102 minutes, 6120 seconds
AXES_ONLY_ADMIN_SITE False If True, lock is only enabled for admin site. Admin site is determined by checking request path against the path of "admin:index" view. If admin urls are not registered in current urlconf, all requests will not be locked.
AXES_ONLY_USER_FAILURES False DEPRECATED: USE AXES_LOCKOUT_PARAMETERS INSTEAD. If True, only lock based on username, and never lock based on IP if attempts exceed the limit. Otherwise utilize the existing IP and user locking logic.
AXES_ENABLE_ADMIN True If True, admin views for access attempts and logins are shown in Django admin interface.
AXES_LOCK_OUT_BY_COMBINATION_USER_AND_IP False DEPRECATED: USE AXES_LOCKOUT_PARAMETERS INSTEAD. If True, prevent login from IP under a particular username if the attempt limit has been exceeded, otherwise lock out based on IP.
AXES_LOCK_OUT_BY_USER_OR_IP False DEPRECATED: USE AXES_LOCKOUT_PARAMETERS INSTEAD. If True, prevent login from if the attempt limit has been exceeded for IP or username.
AXES_USE_USER_AGENT False DEPRECATED: USE AXES_LOCKOUT_PARAMETERS INSTEAD. If True, lock out and log based on the IP address and the user agent. This means requests from different user agents but from the same IP are treated differently. This settings has no effect if the AXES_ONLY_USER_FAILURES setting is active.
AXES_HANDLER ‘axes.handlers.database.AxesDatabaseHandler’ The path to the handler class to use. If set, overrides the default signal handler backend. Default: 'axes.handlers.database.AxesDatabaseHandler'
AXES_CACHE ‘default’ The name of the cache for Axes to use.
AXES_LOCKOUT_TEMPLATE None If set, specifies a template to render when a user is locked out. Template receives cooloff_timedelta, cooloff_time, username and failure_limit as context variables.
AXES_LOCKOUT_URL None If set, specifies a URL to redirect to on lockout. If both AXES_LOCKOUT_TEMPLATE and AXES_LOCKOUT_URL are set, the template will be used.
AXES_VERBOSE True If True, you’ll see slightly more logging for Axes.
AXES_USERNAME_FORM_FIELD ‘username’ The name of the form field that contains your users usernames.
AXES_USERNAME_CALLABLE None A callable or a string path to callable that takes two arguments for user lookups: def get_username(request: HttpRequest, credentials: dict) -> str: This can be any callable such as AXES_USERNAME_CALLABLE = lambda request, credentials: 'username' or a full Python module path to callable such as AXES_USERNAME_CALLABLE = 'example.get_username. The request is a HttpRequest like object and the credentials is a dictionary like object. credentials are the ones that were passed to Django authenticate() in the login flow. If no function is supplied, Axes fetches the username from the credentials or request.POST dictionaries based on AXES_USERNAME_FORM_FIELD.
AXES_WHITELIST_CALLABLE None A callable or a string path to callable that takes two arguments for whitelisting determination and returns True, if user should be whitelisted: def is_whitelisted(request: HttpRequest, credentials: dict) -> bool: This can be any callable similarly to AXES_USERNAME_CALLABLE.
AXES_LOCKOUT_CALLABLE None A callable or a string path to callable that takes two arguments returns a response. For example: def generate_lockout_response(request: HttpRequest, credentials: dict) -> HttpResponse: This can be any callable similarly to AXES_USERNAME_CALLABLE. If not callable is defined, then the default implementation in axes.helpers.get_lockout_response is used for determining the correct lockout response that is sent to the requesting client.
AXES_CLIENT_IP_CALLABLE None A callable or a string path to callable that takes two arguments returns a response. For example: def get_ip(request: HttpRequest) -> str: This can be any callable similarly to AXES_USERNAME_CALLABLE. If not callable is defined, then the default implementation in axes.helpers.get_client_ip_address is used.
AXES_PASSWORD_FORM_FIELD ‘password’ The name of the form or credentials field that contains your users password.
AXES_SENSITIVE_PARAMETERS [“username”, “ip_address”] Configures POST and GET parameter values (in addition to the value of AXES_PASSWORD_FORM_FIELD) to mask in login attempt logging. Defaults enable privacy-by-design.
AXES_NEVER_LOCKOUT_GET False If True, Axes will never lock out HTTP GET requests.
AXES_NEVER_LOCKOUT_WHITELIST False If True, users can always login from whitelisted IP addresses.
AXES_IP_BLACKLIST None An iterable of IPs to be blacklisted. Takes precedence over whitelists. For example: AXES_IP_BLACKLIST = ['0.0.0.0'].
AXES_IP_WHITELIST None An iterable of IPs to be whitelisted. For example: AXES_IP_WHITELIST = ['0.0.0.0'].
AXES_DISABLE_ACCESS_LOG False If True, disable writing login and logout access logs to database, so the admin interface will not have user login trail for successful user authentication.
AXES_ENABLE_ACCESS_FAILURE_LOG False If True, enable writing login failure logs to database, so you will have every user login trail for unsuccessful user authentication.
AXES_ACCESS_FAILURE_LOG_PER_USER_LIMIT 1000 Sets the number of failures to trail for each user. When the access failure log reach this number of records, an automatic removal is ran.
AXES_RESET_ON_SUCCESS False If True, a successful login will reset the number of failed logins.
AXES_ALLOWED_CORS_ORIGINS “*” Configures lockout response CORS headers for XHR requests.
AXES_HTTP_RESPONSE_CODE 429 Sets the http response code returned when AXES_FAILURE_LIMIT is reached. For example: AXES_HTTP_RESPONSE_CODE = 403
AXES_RESET_COOL_OFF_ON_FAILURE_DURING_LOCKOUT True If True, a failed login attempt during lockout will reset the cool off period.

continues on next page

1.4. Configuration 9

django-axes documentation, Release 6.4.0

Table 1 – continued from previous page
Variable Default Explanation
AXES_LOCKOUT_PARAMETERS [“ip_address”] A list of parameters that Axes uses to lock out users. It can also be callable, which takes an http request or AccesAttempt object and credentials and returns a list of parameters. Each parameter can be a string (a single parameter) or a list of strings (a combined parameter). For example, if you configure AXES_LOCKOUT_PARAMETERS = ["ip_address", ["username", "user_agent"]], axes will block clients by ip and/or username and user agent combination. See Customizing lockout parameters for more details.

The configuration option precedences for the access attempt monitoring are:

1. Default: only use IP address.

2. AXES_ONLY_USER_FAILURES: only user username (AXES_USE_USER_AGENT has no ef-
fect).

3. AXES_LOCK_OUT_BY_COMBINATION_USER_AND_IP: use username and IP address.

The AXES_USE_USER_AGENT setting can be used with username and IP address or just IP ad-
dress monitoring, but does nothing when the AXES_ONLY_USER_FAILURES setting is set.

1.4.2 Configuring reverse proxies

Axes makes use of django-ipware package to detect the IP address of the client and uses some
conservative configuration parameters by default for security.

If you are using reverse proxies, you will need to configure one or more of the following settings
to suit your set up to correctly resolve client IP addresses:

• AXES_IPWARE_PROXY_COUNT: The number of reverse proxies in front of Django as an
integer. Default: None

• AXES_IPWARE_META_PRECEDENCE_ORDER: The names of request.META attributes as
a tuple of strings to check to get the client IP address. Check the Django documentation
for header naming conventions. Default: IPWARE_META_PRECEDENCE_ORDER setting if
set, else ('REMOTE_ADDR',)

Note: For reverse proxies or e.g. Heroku, you might also want to fetch IP addresses from
a HTTP header such as X-Forwarded-For. To configure this, you can fetch IPs through the
HTTP_X_FORWARDED_FOR key from the request.META property which contains all the HTTP
headers in Django:

refer to the Django request and response objects documentation
AXES_IPWARE_META_PRECEDENCE_ORDER = [

'HTTP_X_FORWARDED_FOR',
'REMOTE_ADDR',

]

Please note that proxies have different behaviours with the HTTP headers. Make sure that your
proxy either strips the incoming value or otherwise makes sure of the validity of the header that
is used because any header values used in application configuration must be secure and
trusted. Otherwise the client can spoof IP addresses by just setting the header in their request
and circumvent the IP address monitoring. Normal proxy server behaviours include overriding
and appending the header value depending on the platform. Different platforms and gateway

10 Chapter 1. Contents

django-axes documentation, Release 6.4.0

services utilize different headers, please refer to your deployment target documentation for up-
to-date information on correct configuration.

1.4.3 Configuring handlers

Axes uses handlers for processing signals and events from Django authentication and login
attempts.

The following handlers are implemented by Axes and can be configured with the AXES_HANDLER
setting in project configuration:

• axes.handlers.database.AxesDatabaseHandler logs attempts to database and
creates AccessAttempt and AccessLog records that persist until removed from the
database manually or automatically after their cool offs expire (checked on each login
event).

• axes.handlers.cache.AxesCacheHandler only uses the cache for monitoring at-
tempts and does not persist data other than in the cache backend; this data can be purged
automatically depending on your cache configuration, so the cache handler is by design
less secure than the database backend but offers higher throughput and can perform bet-
ter with less bottlenecks. The cache backend should ideally be used with a central cache
system such as a Memcached cache and should not rely on individual server state such as
the local memory or file based cache does.

• axes.handlers.dummy.AxesDummyHandler does nothing with attempts and can be
used to disable Axes handlers if the user does not wish Axes to execute any logic on
login signals. Please note that this effectively disables any Axes security features, and is
meant to be used on e.g. local development setups and testing deployments where login
monitoring is not wanted.

To switch to cache based attempt tracking you can do the following:

AXES_HANDLER = 'axes.handlers.cache.AxesCacheHandler'

See the cache configuration section for suitable cache backends.

1.4.4 Configuring caches

If you are running Axes with the cache based handler on a deployment with a local Django
cache, the Axes lockout and reset functionality might not work predictably if the cache in use is
not the same for all the Django processes.

Axes needs to cache access attempts application-wide, and e.g. the in-memory cache only
caches access attempts per Django process, so for example resets made in the command line
might not remove lock-outs that are in a separate process’s in-memory cache such as the web
server serving your login or admin page.

To circumvent this problem, please use somethings else than django.core.cache.
backends.dummy.DummyCache, django.core.cache.backends.locmem.LocMemCache,

1.4. Configuration 11

django-axes documentation, Release 6.4.0

or django.core.cache.backends.filebased.FileBasedCache as your cache backend in
Django cache BACKEND setting.

If changing the 'default' cache is not an option, you can add a cache specifically for use with
Axes. This is a two step process. First you need to add an extra cache to CACHES with a name
of your choice:

CACHES = {
'axes': {

'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache
→˓',

'LOCATION': '127.0.0.1:11211',
}

}

The next step is to tell Axes to use this cache through adding AXES_CACHE to your settings.py
file:

AXES_CACHE = 'axes'

There are no known problems in e.g. MemcachedCache or Redis based caches.

1.4.5 Configuring authentication backends

Axes requires authentication backends to pass request objects with the authentication requests
for performing monitoring.

If you get AxesBackendRequestParameterRequired exceptions, make sure any libraries and
middleware you use pass the request object.

Please check the integration documentation for further information.

1.4.6 Configuring 3rd party apps

Refer to the integration documentation for Axes configuration with third party applications and
plugins such as

• Django REST Framework

• Django Allauth

• Django Simple Captcha

12 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.5 Customization

Axes has multiple options for customization including customizing the attempt tracking and
lockout handling logic and lockout response formatting.

There are public APIs and the whole Axes tracking system is pluggable. You can swap the
authentication backend, attempt tracker, failure handlers, database or cache backends and error
formatters as you see fit.

Check the API reference section for further inspiration on implementing custom authentication
backends, middleware, and handlers.

Axes uses the stock Django signals for login monitoring and can be customized and extended
by using them correctly.

Axes listens to the following signals from django.contrib.auth.signals to log access at-
tempts:

• user_logged_in

• user_logged_out

• user_login_failed

You can also use Axes with your own auth module, but you’ll need to ensure that it sends the
correct signals in order for Axes to log the access attempts.

1.5.1 Customizing authentication views

Here is a more detailed example of sending the necessary signals using and a custom auth back-
end at an endpoint that expects JSON requests. The custom authentication can be swapped out
with authenticate and login from django.contrib.auth, but beware that those methods
take care of sending the necessary signals for you, and there is no need to duplicate them as per
the example.

example/forms.py:

from django import forms

class LoginForm(forms.Form):
username = forms.CharField(max_length=128, required=True)
password = forms.CharField(max_length=128, required=True)

example/views.py:

from django.contrib.auth import signals
from django.http import JsonResponse, HttpResponse
from django.utils.decorators import method_decorator
from django.views import View
from django.views.decorators.csrf import csrf_exempt

(continues on next page)

1.5. Customization 13

django-axes documentation, Release 6.4.0

(continued from previous page)
from axes.decorators import axes_dispatch

from example.forms import LoginForm
from example.authentication import authenticate, login

@method_decorator(axes_dispatch, name='dispatch')
@method_decorator(csrf_exempt, name='dispatch')
class Login(View):

"""
Custom login view that takes JSON credentials
"""

http_method_names = ['post']

def post(self, request):
form = LoginForm(request.POST)

if not form.is_valid():
inform django-axes of failed login
signals.user_login_failed.send(

sender=User,
request=request,
credentials={

'username': form.cleaned_data.get('username'),
},

)
return HttpResponse(status=400)

user = authenticate(
request=request,
username=form.cleaned_data.get('username'),
password=form.cleaned_data.get('password'),

)

if user is not None:
login(request, user)

signals.user_logged_in.send(
sender=User,
request=request,
user=user,

)

return JsonResponse({
'message':'success'

(continues on next page)

14 Chapter 1. Contents

django-axes documentation, Release 6.4.0

(continued from previous page)
}, status=200)

inform django-axes of failed login
signals.user_login_failed.send(

sender=User,
request=request,
credentials={

'username': form.cleaned_data.get('username'),
},

)

return HttpResponse(status=403)

urls.py:

from django.urls import path
from example.views import Login

urlpatterns = [
path('login/', Login.as_view(), name='login'),

]

1.5.2 Customizing username lookups

In special cases, you may have the need to modify the username that is submitted before at-
tempting to authenticate. For example, adding namespacing or removing client-set prefixes. In
these cases, axes needs to know how to make these changes so that it can correctly identify the
user without any form cleaning or validation. This is where the AXES_USERNAME_CALLABLE
setting comes in. You can define how to make these modifications in a callable that takes a
request object and a credentials dictionary, and provide that callable to axes via this setting.

For example, a function like this could take a post body with something like
username='prefixed-username' and namespace=my_namespace and turn it into
my_namespace-username:

example/utils.py:

def get_username(request, credentials):
username = credentials.get('username')
namespace = credentials.get('namespace')
return namespace + '-' + username

settings.py:

AXES_USERNAME_CALLABLE = 'example.utils.get_username'

1.5. Customization 15

django-axes documentation, Release 6.4.0

Note: You still have to make these modifications yourself before calling authenticate. If you
want to re-use the same function for consistency, that’s fine, but Axes does not inject these
changes into the authentication flow for you.

1.5.3 Customizing lockout responses

Axes can be configured with AXES_LOCKOUT_CALLABLE to return a custom lockout response
when using the plugin with e.g. DRF (Django REST Framework) or other third party libraries
which require specialized formats such as JSON or XML response formats or customized re-
sponse status codes.

An example of usage could be e.g. a custom view for processing lockouts.

example/views.py:

from django.http import JsonResponse

def lockout(request, credentials, *args, **kwargs):
return JsonResponse({"status": "Locked out due to too many login␣

→˓failures"}, status=403)

settings.py:

AXES_LOCKOUT_CALLABLE = "example.views.lockout"

1.5.4 Customizing lockout parameters

Axes can be configured with AXES_LOCKOUT_PARAMETERS to lock out users not only by IP
address.

AXES_LOCKOUT_PARAMETERS can be a list of strings (which represents a separate lockout pa-
rameter) or nested lists of strings (which represents lockout parameters used in combination) or
a callable which accepts HttpRequest or AccessAttempt and credentials and returns a list of the
same form as described earlier.

Example AXES_LOCKOUT_PARAMETERS configuration:

settings.py:

AXES_LOCKOUT_PARAMETERS = ["ip_address", ["username", "user_agent"]]

This way, axes will lock out users using ip_address and/or combination of username and user
agent

Example of callable AXES_LOCKOUT_PARAMETERS:

example/utils.py:

16 Chapter 1. Contents

django-axes documentation, Release 6.4.0

from django.http import HttpRequest

def get_lockout_parameters(request_or_attempt, credentials):

if isinstance(request_or_attempt, HttpRequest):
is_localhost = request.META.get("REMOTE_ADDR") == "127.0.0.1"

else:
is_localhost = request_or_attempt.ip_address == "127.0.0.1"

if is_localhost:
return ["username"]

return ["ip_address", "username"]

settings.py:

AXES_LOCKOUT_PARAMETERS = "example.utils.get_lockout_parameters"

This way, if client ip_address is localhost, axes will lockout client only by username. In other
case, axes will lockout client by username and/or ip_address.

1.5.5 Customizing client ip address lookups

Axes can be configured with AXES_CLIENT_IP_CALLABLE to use custom client ip address
lookup logic.

example/utils.py:

def get_client_ip(request):
return request.META.get("REMOTE_ADDR")

settings.py:

AXES_CLIENT_IP_CALLABLE = "example.utils.get_client_ip"

1.6 Integration

Axes is intended to be pluggable and usable with custom authentication solutions. This docu-
ment describes the integration with some popular 3rd party packages such as Django Allauth,
Django REST Framework, and other tools.

In the following table Compatible means that a component should be fully compatible out-
of-the-box, Functional means that a component should be functional after configuration, and
Incompatible means that a component has been reported as non-functional with Axes.

1.6. Integration 17

django-axes documentation, Release 6.4.0

Project Version Compatible Functional Incompatible
Django REST Framework ✓
Django Allauth ✓
Django Simple Captcha ✓
Django OAuth Toolkit ✓
Django Reversion ✓
Django Auth LDAP ✓

Please note that project compatibility depends on multiple different factors such as Django ver-
sion, Axes version, and 3rd party package versions and their unique combinations per project.

Note: This documentation is mostly provided by Axes users. If you have your own compat-
ibility tweaks and customizations that enable you to use Axes with other tools or have better
implementations than the solutions provided here, please do feel free to open an issue or a pull
request in GitHub!

1.6.1 Integration with Django Allauth

Axes relies on having login information stored under AXES_USERNAME_FORM_FIELD key both
in request.POST and in credentials dict passed to user_login_failed signal.

This is not the case with Allauth. Allauth always uses the login key in post POST data but it
becomes username key in credentials dict in signal handler.

To overcome this you need to use custom login form that duplicates the value of username key
under a login key in that dict and set AXES_USERNAME_FORM_FIELD = 'login'.

You also need to decorate dispatch() and form_invalid() methods of the Allauth login
view.

settings.py:

AXES_USERNAME_FORM_FIELD = 'login'

example/forms.py:

from allauth.account.forms import LoginForm

class AxesLoginForm(LoginForm):
"""
Extended login form class that supplied the
user credentials for Axes compatibility.
"""

def user_credentials(self):
credentials = super().user_credentials()

(continues on next page)

18 Chapter 1. Contents

django-axes documentation, Release 6.4.0

(continued from previous page)
credentials['login'] = credentials.get('email') or credentials.

→˓get('username')
return credentials

example/urls.py:

from django.utils.decorators import method_decorator

from allauth.account.views import LoginView

from axes.decorators import axes_dispatch
from axes.decorators import axes_form_invalid

from example.forms import AxesLoginForm

LoginView.dispatch = method_decorator(axes_dispatch)(LoginView.
→˓dispatch)
LoginView.form_invalid = method_decorator(axes_form_invalid)(LoginView.
→˓form_invalid)

urlpatterns = [
Override allauth default login view with a patched view
path('accounts/login/', LoginView.as_view(form_

→˓class=AxesLoginForm), name='account_login'),
path('accounts/', include('allauth.urls')),

]

1.6.2 Integration with Django REST Framework

Warning: The following guide only covers authentication schemes that rely on Django’s
authenticate() function. Other schemes (e.g. TokenAuthentication) are currently
not supported.

Django Axes requires REST Framework to be connected via lockout signals for correct func-
tionality.

You can use the following snippet in your project signals such as example/signals.py:

from django.dispatch import receiver

from axes.signals import user_locked_out
from rest_framework.exceptions import PermissionDenied

(continues on next page)

1.6. Integration 19

django-axes documentation, Release 6.4.0

(continued from previous page)
@receiver(user_locked_out)
def raise_permission_denied(*args, **kwargs):

raise PermissionDenied("Too many failed login attempts")

And then configure your application to load it in examples/apps.py:

from django import apps

class AppConfig(apps.AppConfig):
name = "example"

def ready(self):
from example import signals # noqa

Please check the Django signals documentation for more information:

https://docs.djangoproject.com/en/3.2/topics/signals/

When a user login fails a signal is emitted and PermissionDenied raises a HTTP 403 reply which
interrupts the login process.

This functionality was handled in the middleware for a time, but that resulted in extra database
requests being made for each and every web request, and was migrated to signals.

1.6.3 Integration with Django Simple Captcha

Axes supports Captcha with the Django Simple Captcha package in the following manner.

settings.py:

AXES_LOCKOUT_URL = '/locked'

example/urls.py:

url(r'^locked/$', locked_out, name='locked_out'),

example/forms.py:

class AxesCaptchaForm(forms.Form):
captcha = CaptchaField()

example/views.py:

from axes.utils import reset_request
from django.http.response import HttpResponseRedirect
from django.shortcuts import render
from django.urls import reverse_lazy

(continues on next page)

20 Chapter 1. Contents

https://docs.djangoproject.com/en/3.2/topics/signals/

django-axes documentation, Release 6.4.0

(continued from previous page)

from .forms import AxesCaptchaForm

def locked_out(request):
if request.POST:

form = AxesCaptchaForm(request.POST)
if form.is_valid():

reset_request(request)
return HttpResponseRedirect(reverse_lazy('auth_login'))

else:
form = AxesCaptchaForm()

return render(request, 'accounts/captcha.html', {'form': form})

example/templates/example/captcha.html:

<form action="" method="post">
{% csrf_token %}

{{ form.captcha.errors }}
{{ form.captcha }}

<div class="form-actions">
<input type="submit" value="Submit" />

</div>
</form>

1.6.4 Integration with Django OAuth Toolkit

Django OAuth toolkit is not designed to work with Axes, but some users have reported that they
have configured validator classes to function correctly.

example/validators.py:

from django.contrib.auth import authenticate
from django.http import HttpRequest, QueryDict

from oauth2_provider.oauth2_validators import OAuth2Validator

from axes.helpers import get_client_ip_address, get_client_user_agent

class AxesOAuth2Validator(OAuth2Validator):
def validate_user(self, username, password, client, request, *args,

→˓ **kwargs):
(continues on next page)

1.6. Integration 21

django-axes documentation, Release 6.4.0

(continued from previous page)
"""
Check username and password correspond to a valid and active␣

→˓User

Set defaults for necessary request object attributes for Axes␣
→˓compatibility.

The ``request`` argument is not a Django ``HttpRequest`` object.
"""

_request = request
if request and not isinstance(request, HttpRequest):

request = HttpRequest()

request.uri = _request.uri
request.method = request.http_method = _request.http_method
request.META = request.headers = _request.headers
request._params = _request._params
request.decoded_body = _request.decoded_body

request.axes_ip_address = get_client_ip_address(request)
request.axes_user_agent = get_client_user_agent(request)

body = QueryDict(str(_request.body), mutable=True)
if request.method == 'GET':

request.GET = body
elif request.method == 'POST':

request.POST = body

user = authenticate(request=request, username=username,␣
→˓password=password)

if user is not None and user.is_active:
request = _request
request.user = user
return True

return False

settings.py:

OAUTH2_PROVIDER = {
'OAUTH2_VALIDATOR_CLASS': 'example.validators.AxesOAuth2Validator',
'SCOPES': {'read': 'Read scope', 'write': 'Write scope'},

}

22 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.6.5 Integration with Django Reversion

Django Reversion is not designed to work with Axes, but some users have reported that they
have configured a workaround with a monkeypatch function that functions correctly.

example/monkeypatch.py:

from django.urls import resolve

from reversion import views

def _request_creates_revision(request):
view_name = resolve(request.path_info).url_name
if view_name and view_name.endswith('login'):

return False

return request.method not in ["OPTIONS", "GET", "HEAD"]

views._request_creates_revision = _request_creates_revision

1.7 Architecture

Axes is based on the existing Django authentication backend architecture and framework for rec-
ognizing users and aims to be compatible with the stock design and implementation of Django
while offering extensibility and configurability for using the Axes authentication monitoring
and logging for users of the package as well as 3rd party package vendors such as Django REST
Framework, Django Allauth, Python Social Auth and so forth.

The development of custom 3rd party package support are active goals, but you should check the
up-to-date documentation and implementation of Axes for current compatibility before using
Axes with custom solutions and make sure that authentication monitoring is working correctly.

This document describes the Django authentication flow and how Axes augments it to achieve
authentication and login monitoring and lock users out on too many access attempts.

1.7.1 Django Axes authentication flow

Axes offers a few additions to the Django authentication flow that implement the login mon-
itoring and lockouts through a swappable handler API and configuration flags that users and
package vendors can use to customize Axes or their own projects as they best see fit.

The following diagram visualizes the Django login flow and highlights the following extra steps
that Axes adds to it with the 1. Authentication backend, 2. Signal receivers, and 3. Middle-
ware.

1.7. Architecture 23

django-axes documentation, Release 6.4.0

When a user tries to log in in Django, the login is usually performed by running a number
of authentication backends that check user login information by calling the authenticate
function, which either returns a Django compatible User object or a None.

If an authentication backend does not approve a user login, it can raise a PermissionDenied
exception, which immediately skips the rest of the authentication backends, triggers the
user_login_failed signal, and then returns a None to the calling function, indicating that
the login failed.

Axes implements authentication blocking with the custom AxesBackend authentication back-
end which checks every request coming through the Django authentication flow and verifies
they are not blocked, and allows the requests to go through if the check passes.

If the authentication attempt matches a lockout rule, e.g. it is from a blacklisted IP or exceeds the
maximum configured authentication attempts, it is blocked by raising the PermissionDenied
exception in the backend.

Axes monitors logins with the user_login_failed signal receiver and records authentication
failures from both the AxesBackend and other authentication backends and tracks the failed

24 Chapter 1. Contents

django-axes documentation, Release 6.4.0

attempts by tracking the attempt IP address, username, user agent, or all of them.

If the lockout rules match, then Axes marks the request as locked by setting a special attribute
into the request. The AxesMiddleware then processes the request, returning a lockout response
to the user, if the flag has been set.

Axes assumes that the login views either call the authenticate method to log in users or
otherwise take care of notifying Axes of authentication attempts and failures the same way
Django does via authentication signals.

The login flows can be customized and the Axes authentication backend, middleware, and signal
receivers can easily be swapped to alternative implementations.

1.8 API reference

Axes offers extensible APIs that you can customize to your liking. You can specialize the follow-
ing base classes or alternatively use third party modules as long as they implement the following
APIs.

class axes.handlers.base.AbstractAxesHandler

Contract that all handlers need to follow

abstract get_failures(request, credentials: dict | None = None)→ int
Checks the number of failures associated to the given request and credentials.

This is a virtual method that needs an implementation in the handler subclass if the
settings.AXES_LOCK_OUT_AT_FAILURE flag is set to True.

abstract user_logged_in(sender, request, user, **kwargs)
Handles the Django django.contrib.auth.signals.user_logged_in au-
thentication signal.

abstract user_logged_out(sender, request, user, **kwargs)
Handles the Django django.contrib.auth.signals.user_logged_out au-
thentication signal.

abstract user_login_failed(sender, credentials: dict, request=None, **kwargs)
Handles the Django django.contrib.auth.signals.user_login_failed au-
thentication signal.

class axes.handlers.base.AxesBaseHandler

Handler API definition for implementations that are used by the AxesProxyHandler.

If you wish to specialize your own handler class, override the necessary methods and
configure the class for use by setting settings.AXES_HANDLER = 'module.path.to.
YourClass'. Make sure that new the handler is compliant with AbstractAxesHandler and
make sure it extends from this mixin. Refer to AxesHandler for an example.

The default implementation that is actually used by Axes is axes.handlers.database.
AxesDatabaseHandler.

1.8. API reference 25

django-axes documentation, Release 6.4.0

Note: This is a virtual class and can not be used without specialization.

get_admin_url()→ str | None
Returns admin url if exists, otherwise returns None

is_admin_request(request)→ bool
Checks that request located under admin site

is_admin_site(request)→ bool
Checks if the request is NOT for admin site if settings.AXES_ONLY_ADMIN_SITE
is True.

is_allowed(request, credentials: dict | None = None)→ bool
Checks if the user is allowed to access or use given functionality such as a login
view or authentication.

This method is abstract and other backends can specialize it as needed, but the default
implementation checks if the user has attempted to authenticate into the site too
many times through the Django authentication backends and returns False if user
exceeds the configured Axes thresholds.

This checker can implement arbitrary checks such as IP whitelisting or blacklisting,
request frequency checking, failed attempt monitoring or similar functions.

Please refer to the axes.handlers.database.AxesDatabaseHandler for the
default implementation and inspiration on some common checks and access restric-
tions before writing your own implementation.

is_blacklisted(request, credentials: dict | None = None)→ bool
Checks if the request or given credentials are blacklisted from access.

is_locked(request, credentials: dict | None = None)→ bool
Checks if the request or given credentials are locked.

is_whitelisted(request, credentials: dict | None = None)→ bool
Checks if the request or given credentials are whitelisted for access.

remove_out_of_limit_failure_logs(*, username: str, limit: int | None = None)
→ int

Remove access failure logs that are over AXES_ACCESS_FAILURE_LOG_PER_USER_LIMIT
for user username.

This method makes more sense for the DB backend, but as it is used by the Prox-
yHandler (via inherent), it needs to be defined here, so we get compliant with all
proxy methods.

Please overwrite it on each specialized handler as needed.

reset_attempts(*, ip_address: str | None = None, username: str | None = None,
ip_or_username: bool = False)→ int

Resets access attempts that match the given IP address or username.

26 Chapter 1. Contents

django-axes documentation, Release 6.4.0

This method makes more sense for the DB backend, but as it is used by the Prox-
yHandler (via inherent), it needs to be defined here, so we get compliant with all
proxy methods.

Please overwrite it on each specialized handler as needed.

reset_failure_logs(*, age_days: int | None = None)→ int
Resets access failure logs that are older than given number of days.

This method makes more sense for the DB backend, but as it is used by the Prox-
yHandler (via inherent), it needs to be defined here, so we get compliant with all
proxy methods.

Please overwrite it on each specialized handler as needed.

reset_logs(*, age_days: int | None = None)→ int
Resets access logs that are older than given number of days.

This method makes more sense for the DB backend, but as it is used by the Prox-
yHandler (via inherent), it needs to be defined here, so we get compliant with all
proxy methods.

Please overwrite it on each specialized handler as needed.

class axes.handlers.base.AxesHandler

Signal bare handler implementation without any storage backend.

get_failures(request, credentials: dict | None = None)→ int
Checks the number of failures associated to the given request and credentials.

This is a virtual method that needs an implementation in the handler subclass if the
settings.AXES_LOCK_OUT_AT_FAILURE flag is set to True.

user_logged_in(sender, request, user, **kwargs)
Handles the Django django.contrib.auth.signals.user_logged_in au-
thentication signal.

user_logged_out(sender, request, user, **kwargs)
Handles the Django django.contrib.auth.signals.user_logged_out au-
thentication signal.

user_login_failed(sender, credentials: dict, request=None, **kwargs)
Handles the Django django.contrib.auth.signals.user_login_failed au-
thentication signal.

class axes.backends.AxesBackend

Bases: AxesStandaloneBackend , ModelBackend

Axes authentication backend that also inherits from ModelBackend, and thus also per-
forms other functions of ModelBackend such as permissions checks.

Use this class as the first item of AUTHENTICATION_BACKENDS to prevent locked out users
from being logged in by the Django authentication flow.

1.8. API reference 27

django-axes documentation, Release 6.4.0

Note: This backend does not log your user in. It monitors login at-
tempts. Authentication is handled by the following backends that are configured in
AUTHENTICATION_BACKENDS.

class axes.backends.AxesStandaloneBackend

Bases: object

Authentication backend class that forbids login attempts for locked out users.

Use this class as the first item of AUTHENTICATION_BACKENDS to prevent locked out users
from being logged in by the Django authentication flow.

Note: This backend does not log your user in. It monitors login attempts. It also does not
run any permissions checks at all. Authentication is handled by the following backends
that are configured in AUTHENTICATION_BACKENDS.

class axes.middleware.AxesMiddleware(get_response: Callable)
Middleware that calculates necessary HTTP request attributes for attempt monitoring and
maps lockout signals into readable HTTP 403 Forbidden responses.

If a project uses django rest framework then the middleware updates the request and
checks whether the limit has been exceeded. It’s needed only for integration with DRF
because it uses its own request object.

This middleware recognizes a logout monitoring flag in the request and and uses the
axes.helpers.get_lockout_response handler for returning customizable and con-
text aware lockout message to the end user if necessary.

To customize the lockout handling behaviour further, you can subclass this middleware
and change the __call__ method to your own liking.

Please see the following configuration flags before customizing this handler:

• AXES_LOCKOUT_TEMPLATE,

• AXES_LOCKOUT_URL,

• AXES_COOLOFF_MESSAGE, and

• AXES_PERMALOCK_MESSAGE.

This is a Jazzband project. By contributing you agree to abide by the Contributor Code of
Conduct and follow the guidelines.

28 Chapter 1. Contents

https://jazzband.co/
https://jazzband.co
https://jazzband.co/about/conduct
https://jazzband.co/about/conduct
https://jazzband.co/about/guidelines

django-axes documentation, Release 6.4.0

1.9 Contributions

All contributions are welcome!

It is best to separate proposed changes and PRs into small, distinct patches by type so that they
can be merged faster into upstream and released quicker.

One way to organize contributions would be to separate PRs for e.g.

• bugfixes,

• new features,

• code and design improvements,

• documentation improvements, or

• tooling and CI improvements.

Merging contributions requires passing the checks configured with the CI. This includes running
tests and linters successfully on the currently officially supported Python and Django versions.

1.10 Development

You can contribute to this project forking it from GitHub and sending pull requests.

First fork the repository and then clone it:

$ git clone git@github.com:<you>/django-axes.git

Initialize a virtual environment for development purposes:

$ mkdir -p ~/.virtualenvs
$ python3 -m venv ~/.virtualenvs/django-axes
$ source ~/.virtualenvs/django-axes/bin/activate

Then install the necessary requirements:

$ cd django-axes
$ pip install -r requirements.txt

Unit tests are located in the axes/tests folder and can be easily run with the pytest tool:

$ pytest

Prospector runs a number of source code style, safety, and complexity checks:

$ prospector

Mypy runs static typing checks to verify the source code type annotations and correctness:

1.9. Contributions 29

https://help.github.com/en/articles/fork-a-repo
https://github.com/jazzband/django-axes

django-axes documentation, Release 6.4.0

$ mypy .

Before committing, you can run all the above tests against all supported Python and Django
versions with tox:

$ tox

Tox runs the same test set that is run by GitHub Actions, and your code should be good to go if
it passes.

If you wish to limit the testing to specific environment(s), you can parametrize the tox run:

$ tox -e py39-django32

After you have pushed your changes, open a pull request on GitHub for getting your code up-
streamed.

1.11 Changes

1.11.1 6.4.0 (2024-03-04)

• Add support for Python 3.12 and Django 5.0, drop support for Django 4.1. [aleksihakli]

1.11.2 6.3.1 (2024-03-04)

• Drop setuptools and pkg_resources dependencies. [Viicos]

1.11.3 6.3.0 (2023-12-27)

• Add async support to middleware. [Taikono-Himazin]

1.11.4 6.2.0 (2023-12-08)

• Update documentation. [funkybob]

• Add new management command axes_reset_ip_username. [p-l-]

• Add French translations. [laulaz]

• Avoid running data migration on incorrect databases. [christianbundy]

30 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.11.5 6.1.1 (2023-08-01)

• Fix TransactionManagementError when using the database handler with a custom
database with for AccessAttempt or AccessFailureLog. [hirotasoshu]

1.11.6 6.1.0 (2023-07-30)

• Set AXES_SENSITIVE_PARAMETERS default value to ["username", "ip_address"]
in addition to the AXES_PASSWORD_FORM_FIELD configuration flag. This masks the user-
name and IP address fields by default in the logs when writing information about lo-
gin attempts to the application logs. Reverting to old configuration default of [] can be
done by setting AXES_SENSITIVE_PARAMETERS = [] in the Django project settings file.
[GitRon]

• Improve documentation on GDPR and privacy notes and configuration flags. [GitRon]

1.11.7 6.0.5 (2023-07-01)

• Add Indonesion translation. [kiraware]

1.11.8 6.0.4 (2023-06-22)

• Remove unused methods from AxesStandaloneBackend. [314eter]

1.11.9 6.0.3 (2023-06-18)

• Add username to admin fieldsets. [sevdog]

1.11.10 6.0.2 (2023-06-13)

• Add Django system checks for validating callable import path settings. [iafisher]

• Improve documentation. [hirotasoshu]

• Improve repository issue and PR templates. [hirotasoshu]

1.11. Changes 31

django-axes documentation, Release 6.4.0

1.11.11 6.0.1 (2023-05-17)

• Fine-tune CI pipelines and RTD build requirements. [aleksihakli]

1.11.12 6.0.0 (2023-05-17)

Version 6 is a breaking release. Please see the documentation for upgrade instructions.

• Deprecate Python 3.7 support. [aleksihakli]

• Deprecate is_admin_site API call with misleading naming. [hirotasoshu]

• Add AXES_LOCKOUT_PARAMETERS configuration flag that will supersede
AXES_ONLY_USER_FAILURES, AXES_LOCK_OUT_BY_COMBINATION_USER_AND_IP,
AXES_LOCK_OUT_BY_USER_OR_IP, and AXES_USE_USER_AGENT configurations. Add
deprecation warnings for old flags. See project documentation on RTD for update
instructions. [hirotasoshu]

• Improve translations. [hirotasoshu]

• Use Django cache.incr API for atomic cached failure counting [hirotasoshu, aleksi-
hakli]

• Make django-ipware an optional dependency. Install it with e.g. pip install
django-axes[ipware] package and extras specifier. [aleksihakli]

• Deprecate and rename old configuration flags. Old flags will be removed in or after
version 6.1. [aleksihakli]

– AXES_PROXY_ORDER is now AXES_IPWARE_PROXY_ORDER,

– AXES_PROXY_COUNT is now AXES_IPWARE_PROXY_COUNT,

– AXES_PROXY_TRUSTED_IPS is now AXES_IPWARE_PROXY_TRUSTED_IPS,
and

– AXES_META_PRECEDENCE_ORDER is now AXES_IPWARE_META_PRECEDENCE_ORDER.

• Set 429 as the default lockout response code. [hirotasoshu]

1.11.13 5.41.1 (2023-04-16)

• Fix sensitive parameter logging for database handler. [stereodamage]

32 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.11.14 5.41.0 (2023-04-02)

• Fix tests. [hirotasoshu]

• Add AXES_CLIENT_CALLABLE setting. [hirotasoshu]

• Update Python, Django, and package versions. [hramezani]

1.11.15 5.40.1 (2022-11-24)

• Fix bug in user agent request blocking. [PetrDlouhy]

1.11.16 5.40.0 (2022-11-19)

• Update packages and linters for new version support. [hramezani]

• Update documentation links. [Arhell]

• Use importlib instead of setuptools for Python 3.8+. [jedie]

• Python 3.11 support. [joshuadavidthomas]

• Documentation improvements. [nsht]

• Documentation improvements. [timgates42]

1.11.17 5.39.0 (2022-08-18)

• Utilize new backend class in tests to fix false negative system check warnings. [si-
monkern]

1.11.18 5.38.0 (2022-08-16)

• Adjust changelog so release notes are correctly visible on PyPy and released package.
[aleksihakli]

1.11.19 5.37.0 (2022-08-16)

• Add Django 4.1 support. PyPy 3.8 has a known issue with Django 4.1 and is exempted.
[hramezani]

1.11. Changes 33

django-axes documentation, Release 6.4.0

1.11.20 5.36.0 (2022-07-17)

• Add AxesStandaloneBackend without ModelBackend dependencies. [jcgiuffrida]

1.11.21 5.35.0 (2022-06-01)

• Add Arabic translations. [YDA93]

1.11.22 5.34.0 (2022-05-28)

• Improve German translations. [GitRon]

1.11.23 5.33.0 (2022-05-16)

• Migrate MD5 cache key digests to SHA256. [aleksihakli]

• Improve and streamline startup logging. [ShaheedHaque]

• Improve module typing. [hramezani]

• Add support for float or partial hours for AXES_COOLOFF_TIME. [hramezani]

1.11.24 5.32.0 (2022-04-08)

• Add support for persistent failure logging where failed login attempts are persisted in the
database until a specific threshold is reached. [p1-gdd]

• Add support for not resetting login times when users try to login during the lockout cooloff
period. [antoine-42]

1.11.25 5.31.0 (2022-01-08)

• Adjust version specifiers for newer Python and other package versions. Set package mini-
mum Python version to 3.7. Relax django-ipware version requirements to allow newer
versions. [aleksihakli]

1.11.26 5.30.0 (2022-01-08)

• Fix package build error in 5.29.0 to allow publishing. [aleksihakli]

34 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.11.27 5.29.0 (2022-01-08)

• Drop Python 3.6 support. [aleksihakli]

1.11.28 5.28.0 (2021-12-14)

• Drop Django < 3.2 support. [hramezani]

• Add Django 4.0 to test matrix. [hramezani]

1.11.29 5.27.0 (2021-11-04)

• Fix pkg_resources missing for package version resolution on runtime due to
setuptools not being a runtime dependency. [asherf]

• Add Python 3.10 and Django 3.2 support. [hramezani]

1.11.30 5.26.0 (2021-10-11)

• Fix AXES_USERNAME_CALLABLE not receiving credentials attribute in Axes middle-
ware lockout response when user is locked out. [rootart]

1.11.31 5.25.0 (2021-09-19)

• Fix duplicated AccessAttempts with updated database model unique_together con-
straints and data and schema migration. [PetrDlouhy]

1.11.32 5.24.0 (2021-09-09)

• Use atomic transaction for updating AccessAttempts in database handler. [okapies]

1.11.33 5.23.0 (2021-09-02)

• Pass request as argument to AXES_CLIENT_STR_CALLABLE. [sarahboyce]

1.11. Changes 35

django-axes documentation, Release 6.4.0

1.11.34 5.22.0 (2021-08-31)

• Improve failures_since_start handling by moving the counter incrementation from
non-atomic Python code call to atomic database function. [okapies]

• Add publicly available request.axes_failures_since_start attribute. [okapies]

1.11.35 5.21.0 (2021-08-19)

• Add configurable lockout HTTP status code responses with the new
AXES_HTTP_RESPONSE_CODE setting. [phil-bell]

1.11.36 5.20.0 (2021-06-29)

• Improve race condition handling in e.g. multi-process environments by using
get_or_create for access attempt fetching and updates. [uli-klank]

1.11.37 5.19.0 (2021-06-16)

• Add Polish locale. [Quadric]

1.11.38 5.18.0 (2021-06-09)

• Fix default_auto_field warning. [zkanda]

1.11.39 5.17.0 (2021-06-05)

• Fix default_app_config deprecation. Django 3.2 automatically detects AppConfig
and therefore this setting is no longer required. [nikolaik]

1.11.40 5.16.0 (2021-05-19)

• Add AXES_CLIENT_STR_CALLABLE setting. [smtydn]

36 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.11.41 5.15.0 (2021-05-03)

• Add option to cleanse sensitive GET and POST params in database handler with the
AXES_SENSITIVE_PARAMETERS setting. [mcoconnor]

1.11.42 5.14.0 (2021-04-06)

• Improve message formatting for lockout message and translations. [ashokdelphia]

• Remove support for Django 3.0. [hramezani]

• Add support for Django 3.2. [hramezani]

1.11.43 5.13.1 (2021-02-22)

• Default AXES_VERBOSE to AXES_ENABLED configuration setting, disabling verbose
startup logging when Axes itself is disabled. [christianbundy]

• Update documentation. [KStenK]

1.11.44 5.13.0 (2021-02-15)

• Add support for resetting attempts with cache backend. [nattyg93]

1.11.45 5.12.0 (2021-01-07)

• Clean up test structure and migrate tests outside the main package for a smaller wheel
distributions. [aleksihakli]

• Move configuration to pyproject.toml for cleaner layout. [aleksihakli]

• Clean up test settings override configuration. [hramezani]

1.11.46 5.11.1 (2021-01-06)

• Fix cache entry creations for None username. [cabarnes]

1.11. Changes 37

django-axes documentation, Release 6.4.0

1.11.47 5.11.0 (2021-01-05)

• Add lockout view CORS support with AXES_ALLOWED_CORS_ORIGINS configuration
flag. [vladox]

• Add missing @wraps decorator to axes.decorators.axes_dispatch. [aleksihakli]

1.11.48 5.10.1 (2021-01-04)

• Add DEFAULT_AUTO_FIELD to test settings. [hramezani]

• Fix documentation language. [danielquinn]

• Fix Python package version specifiers and remove redundant imports. [aleksihakli]

1.11.49 5.10.0 (2020-12-18)

• Deprecate stock DRF support from 5.8.0, require users to set it up per project. Check the
documentation for more information. [aleksihakli]

1.11.50 5.9.1 (2020-12-02)

• Move tests to GitHub Actions [jezdez]

• Fix running Axes code in middleware when AXES_ENABLED is False. [ashokdelphia]

1.11.51 5.9.0 (2020-11-05)

• Add Python 3.9 support. [hramezani]

• Prevent AccessAttempt creation with database handler when username is not set and
AXES_ONLY_USER_FAILURES setting is not set. [hramezani]

1.11.52 5.8.0 (2020-10-16)

• Improve Django REST Framework (DRF) integration. [Anatoly]

38 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.11.53 5.7.1 (2020-09-27)

• Adjust settings import and handling chain for cleaner module import and invocation order.
[aleksihakli]

• Adjust the use of AXES_ENABLED flag so that imports are always done the same way and
initial log is written regardless of the setting and it only affects code that is decorated or
wrapped with toggleable. [alekshakli]

1.11.54 5.7.0 (2020-09-26)

• Deprecate AXES_LOGGER Axes setting and move to __name__ based logging and fully
qualified Python module name log identifiers. [aleksihakli]

1.11.55 5.6.2 (2020-09-20)

• Fix regression in axes_reset_user management command. [aleksihakli]

1.11.56 5.6.1 (2020-09-17)

• Improve test dependency management and upgrade black code formatter. [smithdc1]

1.11.57 5.6.0 (2020-09-12)

• Add proper development subTest support via pytest-subtests package. [smithdc1]

• Deprecate django-appconf and use plain settings for Axes. [aleksihakli]

1.11.58 5.5.2 (2020-09-11)

• Update deprecating use of the request.is_ajax method. [smithdc1]

1.11.59 5.5.1 (2020-09-10)

• Update deprecated uses of Django modules and members. [smithdc1]

1.11. Changes 39

django-axes documentation, Release 6.4.0

1.11.60 5.5.0 (2020-08-21)

• Add support for locking requests based on username OR IP address with inclusive or
using the LOCK_OUT_BY_USER_OR_IP flag. [PetrDlouhy]

• Deprecate Signal providing_args for Django 3.1 support. [coredumperror]

1.11.61 5.4.3 (2020-08-06)

• Add Django 3.1 support. [hramezani]

1.11.62 5.4.2 (2020-07-28)

• Add ABC or abstract base class implementation for handlers. [jorlugaqui]

1.11.63 5.4.1 (2020-07-03)

• Fix code styling for linters. [aleksihakli]

1.11.64 5.4.0 (2020-07-03)

• Propagate username to lockout view in URL parameters. [PetrDlouhy]

• Update CAPTCHA examples. [PetrDlouhy]

• Upgrade django-ipware to version 3. [hramezani,mnislam01]

1.11.65 5.3.5 (2020-07-02)

• Restrict ipware version for version compatibility. [aleksihakli]

1.11.66 5.3.4 (2020-06-09)

• Deprecate Django 1.11 LTS support. [aleksihakli]

40 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.11.67 5.3.3 (2020-05-22)

• Fix AXES_ONLY_ADMIN_SITE functionality when no default admin site is defined in the
URL configuration. [igor-shevchenko]

1.11.68 5.3.2 (2020-05-15)

• Fix AppConf settings prefix for Fargate. [marksweb]

1.11.69 5.3.1 (2020-03-23)

• Fix null byte ValueError bug in ORM. [ddimmich]

1.11.70 5.3.0 (2020-03-10)

• Improve Django REST Framework compatibility. [I0x4dI]

1.11.71 5.2.2 (2020-01-08)

• Add missing proxy implementation for axes.handlers.proxy.AxesProxyHandler.
get_failures. [aleksihakli]

1.11.72 5.2.1 (2020-01-08)

• Add django-reversion compatibility notes. [mark-mishyn]

• Add pluggable lockout responses and the AXES_LOCKOUT_CALLABLE configuration flag.
[aleksihakli]

1.11.73 5.2.0 (2020-01-01)

• Add a test handler. [aidanlister]

1.11.74 5.1.0 (2019-12-29)

• Add pluggable user account whitelisting and the AXES_WHITELIST_CALLABLE configu-
ration flag. [aleksihakli]

1.11. Changes 41

django-axes documentation, Release 6.4.0

1.11.75 5.0.20 (2019-12-01)

• Fix django-allauth compatibility issue. [hramezani]

• Improve tests for login attempt monitoring. [hramezani]

• Add reverse proxy documentation. [ckcollab]

• Update OAuth documentation examples. [aleksihakli]

1.11.76 5.0.19 (2019-11-06)

• Optimize access attempt fetching in database handler. [hramezani]

• Optimize request data fetching in proxy handler. [hramezani]

1.11.77 5.0.18 (2019-10-17)

• Add cooloff_timedelta context variable to lockout responses. [jstockwin]

1.11.78 5.0.17 (2019-10-15)

• Safer string formatting for user input. [aleksihakli]

1.11.79 5.0.16 (2019-10-15)

• Fix string formatting bug in logging. [zerolab]

1.11.80 5.0.15 (2019-10-09)

• Add AXES_ENABLE_ADMIN flag. [flannelhead]

1.11.81 5.0.14 (2019-09-28)

• Docs, CI pipeline, and code formatting improvements [aleksihakli]

42 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.11.82 5.0.13 (2019-08-30)

• Python 3.8 and PyPy support. [aleksihakli]

• Migrate to setuptools_scm and automatic versioning. [aleksihakli]

1.11.83 5.0.12 (2019-08-05)

• Support callables for AXES_COOLOFF_TIME setting. [DariaPlotnikova]

1.11.84 5.0.11 (2019-07-25)

• Fix typo in rST formatting that prevented 5.0.10 release to PyPI. [aleksihakli]

1.11.85 5.0.10 (2019-07-25)

• Refactor type checks for axes.helpers.get_client_cache_key for framework com-
patibility, fixes #471. [aleksihakli]

1.11.86 5.0.9 (2019-07-11)

• Add better handling for attempt and log resets by moving them into handlers
which allows customization and more configurability. Unimplemented handlers raise
NotImplementedError by default. [aleksihakli]

• Add Python 3.8 dev version and PyPy to the Travis test matrix. [aleksihakli]

1.11.87 5.0.8 (2019-07-09)

• Add AXES_ONLY_ADMIN_SITE flag for only running Axes on admin site. [hramezani]

• Add axes_reset_logs command for removing old AccessLog records. [tlebrize]

• Allow AxesBackend subclasses to pass the axes.W003 system check. [adamchainz]

1.11.88 5.0.7 (2019-06-14)

• Fix lockout message showing when lockout is disabled with the
AXES_LOCK_OUT_AT_FAILURE setting. [mogzol]

• Add support for callable AXES_FAILURE_LIMIT setting. [bbayles]

1.11. Changes 43

django-axes documentation, Release 6.4.0

1.11.89 5.0.6 (2019-05-25)

• Deprecate AXES_DISABLE_SUCCESS_ACCESS_LOG flag in favour of
AXES_DISABLE_ACCESS_LOG which has mostly the same functionality. Update
documentation to better reflect the behaviour of the flag. [aleksihakli]

1.11.90 5.0.5 (2019-05-19)

• Change the lockout response calculation to request flagging instead of exception throwing
in the signal handler and middleware. Move request attribute calculation from middleware
to handler layer. Deprecate axes.request.AxesHttpRequest object type definition.
[aleksihakli]

• Deprecate the old version 4.x axes.backends.AxesModelBackend class. [aleksihakli]

• Improve documentation on attempt tracking, resets, Axes customization, project and com-
ponent compatibility and integrations, and other things. [aleksihakli]

1.11.91 5.0.4 (2019-05-09)

• Fix regression with OAuth2 authentication backends not having remote IP addresses set
and throwing an exception in cache key calculation. [aleksihakli]

1.11.92 5.0.3 (2019-05-08)

• Fix django.contrib.auth module login and logout functionality so that they work
with the handlers without the an AxesHttpRequest to improve cross compatibility with
other Django applications. [aleksihakli]

• Change IP address resolution to allow empty or missing addresses. [aleksihakli]

• Add error logging for missing request attributes in the handler layer so that users get better
indicators of misconfigured applications. [aleksihakli]

1.11.93 5.0.2 (2019-05-07)

• Add AXES_ENABLED setting for disabling Axes with e.g. tests that use Django test client
login, logout, and force_loginmethods, which do not supply the request argument
to views, preventing Axes from functioning correctly in certain test setups. [aleksihakli]

44 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.11.94 5.0.1 (2019-05-03)

• Add changelog to documentation. [aleksihakli]

1.11.95 5.0 (2019-05-01)

• Deprecate Python 2.7, 3.4 and 3.5 support. [aleksihakli]

• Remove automatic decoration and monkey-patching of Django views and forms. Deco-
rators are available for login function and method decoration as before. [aleksihakli]

• Use backend, middleware, and signal handlers for tracking login attempts and implement-
ing user lockouts. [aleksihakli, jorlugaqui, joshua-s]

• Add AxesDatabaseHandler, AxesCacheHandler, and AxesDummyHandler handler
backends for processing user login and logout events and failures. Handlers are config-
urable with the AXES_HANDLER setting. [aleksihakli, jorlugaqui, joshua-s]

• Improve management commands and separate commands for resetting all access attempts,
attempts by IP, and attempts by username. New command names are axes_reset,
axes_reset_ip and axes_reset_username. [aleksihakli]

• Add support for string import for AXES_USERNAME_CALLABLE that supports dotted paths
in addition to the old callable type such as a function or a class method. [aleksihakli]

• Deprecate one argument call signature for AXES_USERNAME_CALLABLE. From now on,
the callable needs to accept two arguments, the HttpRequest and credentials that are sup-
plied to the Django authenticate method in authentication backends. [aleksihakli]

• Move axes.attempts.is_already_locked function to axes.handlers.
AxesProxyHandler.is_locked. Various other previously undocumented methods
have been deprecated and moved inside the project. The new documented public APIs
can be considered as stable and can be safely utilized by other projects. [aleksihakli]

• Improve documentation layouting and contents. Add public API reference section. [alek-
sihakli]

1.11.96 4.5.4 (2019-01-15)

• Improve README and documentation [aleksihakli]

1.11. Changes 45

django-axes documentation, Release 6.4.0

1.11.97 4.5.3 (2019-01-14)

• Remove the unused AccessAttempt.trusted flag from models [aleksihakli]

• Improve README and Travis CI setups [aleksihakli]

1.11.98 4.5.2 (2019-01-12)

• Added Turkish translations [obayhan]

1.11.99 4.5.1 (2019-01-11)

• Removed duplicated check that was causing issues when using APIs. [camilonova]

• Added Russian translations [lubicz-sielski]

1.11.100 4.5.0 (2018-12-25)

• Improve support for custom authentication credentials using the
AXES_USERNAME_FORM_FIELD and AXES_USERNAME_CALLABLE settings. [mas-
tacheata]

• Updated behaviour for fetching username from request or credentials: If no
AXES_USERNAME_CALLABLE is configured, the optional credentials that are supplied
to the axes utility methods are now the default source for client username and the HTTP re-
quest POST is the fallback for fetching the user information. AXES_USERNAME_CALLABLE
implements an alternative signature with two arguments request, credentials in ad-
dition to the old request call argument signature in a backwards compatible fashion.
[aleksihakli]

• Add official support for the Django 2.1 version and Python 3.7. [aleksihakli]

• Improve the requirements, documentation, tests, and CI setup. [aleksihakli]

1.11.101 4.4.3 (2018-12-08)

• Fix MANIFEST.in missing German translations [aleksihakli]

• Add AXES_RESET_ON_SUCCESS configuration flag [arjenzijlstra]

46 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.11.102 4.4.2 (2018-10-30)

• fix missing migration and add check to prevent it happening again. [markddavidoff]

1.11.103 4.4.1 (2018-10-24)

• Add a German translation [adonig]

• Documentation wording changes [markddavidoff]

• Use get_client_username in log_user_login_failed instead of credentials [markddavidoff]

• pin prospector to 0.12.11, and pin astroid to 1.6.5 [hsiaoyi0504]

1.11.104 4.4.0 (2018-05-26)

• Added AXES_USERNAME_CALLABLE [jaadus]

1.11.105 4.3.1 (2018-04-21)

• Change custom authentication backend failures from error to warning log level [aleksi-
hakli]

• Set up strict code linting for CI pipeline that fails builds if linting does not pass [aleksi-
hakli]

• Clean up old code base and tests based on linter errors [aleksihakli]

1.11.106 4.3.0 (2018-04-21)

• Refactor and clean up code layout [aleksihakli]

• Add prospector linting and code checks to toolchain [aleksihakli]

• Clean up log message formatting and refactor type checks [EvaSDK]

• Fix faulty user locking with user agent when AXES_ONLY_USER_FAILURES is set
[EvaSDK]

1.11.107 4.2.1 (2018-04-18)

• Fix unicode string interpolation on Python 2.7 [aleksihakli]

1.11. Changes 47

django-axes documentation, Release 6.4.0

1.11.108 4.2.0 (2018-04-13)

• Add configuration flags for client IP resolving [aleksihakli]

• Add AxesModelBackend authentication backend [markdaviddoff]

1.11.109 4.1.0 (2018-02-18)

• Add AXES_CACHE setting for configuring axes specific caching. [JWvDronkelaar]

• Add checks and tests for faulty LocMemCache usage in application setup. [aleksihakli]

1.11.110 4.0.2 (2018-01-19)

• Improve Windows compatibility on Python < 3.4 by utilizing win_inet_pton
[hsiaoyi0504]

• Add documentation on django-allauth integration [grucha]

• Add documentation on known AccessAttempt caching configuration problems when us-
ing axes with the django.core.cache.backends.locmem.LocMemCache [aleksihakli]

• Refactor and improve existing AccessAttempt cache reset utility [aleksihakli]

1.11.111 4.0.1 (2017-12-19)

• Fixes issue when not using AXES_USERNAME_FORM_FIELD [camilonova]

1.11.112 4.0.0 (2017-12-18)

• BREAKING CHANGES. AXES_BEHIND_REVERSE_PROXY
AXES_REVERSE_PROXY_HEADER AXES_NUM_PROXIES were removed in or-
der to use django-ipware to get the user ip address [camilonova]

• Added support for custom username field [kakulukia]

• Customizing Axes doc updated [pckapps]

• Remove filtering by username [camilonova]

• Fixed logging failed attempts to authenticate using a custom authentication backend.
[D3X]

48 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.11.113 3.0.3 (2017-11-23)

• Test against Python 2.7. [mbaechtold]

• Test against Python 3.4. [pope1ni]

1.11.114 3.0.2 (2017-11-21)

• Added form_invalid decorator. Fixes #265 [camilonova]

1.11.115 3.0.1 (2017-11-17)

• Fix DeprecationWarning for logger warning [richardowen]

• Fixes global lockout possibility [joeribekker]

• Changed the way output is handled in the management commands [ataylor32]

1.11.116 3.0.0 (2017-11-17)

• BREAKING CHANGES. Support for Django >= 1.11 and signals, see issue #215. Drop
support for Python < 3.6 [camilonova]

1.11.117 2.3.3 (2017-07-20)

• Many tweaks and handles successful AJAX logins. [Jack Sullivan]

• Add tests for proxy number parametrization [aleksihakli]

• Add AXES_NUM_PROXIES setting [aleksihakli]

• Log failed access attempts regardless of settings [jimr]

• Updated configuration docs to include AXES_IP_WHITELIST [Minkey27]

• Add test for get_cache_key function [jorlugaqui]

• Delete cache key in reset command line [jorlugaqui]

• Add signals for setting/deleting cache keys [jorlugaqui]

1.11. Changes 49

django-axes documentation, Release 6.4.0

1.11.118 2.3.2 (2016-11-24)

• Only look for lockable users on a POST [schinckel]

• Fix and add tests for IPv4 and IPv6 parsing [aleksihakli]

1.11.119 2.3.1 (2016-11-12)

• Added settings for disabling success accesslogs [Minkey27]

• Fixed illegal IP address string passed to inet_pton [samkuehn]

1.11.120 2.3.0 (2016-11-04)

• Fixed axes_reset management command to skip “ip” prefix to command arguments.
[EvaMarques]

• Added axes_reset_user management command to reset lockouts and failed login
records for given users. [vladimirnani]

• Fixed Travis-PyPI release configuration. [jezdez]

• Make IP position argument optional. [aredalen]

• Added possibility to disable access log [svenhertle]

• Fix for IIS used as reverse proxy adding port number [Dmitri-Sintsov]

• Made the signal race condition safe. [Minkey27]

• Added AXES_ONLY_USER_FAILURES to support only looking at the user ID.
[lip77us]

1.11.121 2.2.0 (2016-07-20)

• Improve the logic when using a reverse proxy to avoid possible attacks. [camilonova]

1.11.122 2.1.0 (2016-07-14)

• Add default_app_config so you can just use axes in INSTALLED_APPS [vdboor]

50 Chapter 1. Contents

django-axes documentation, Release 6.4.0

1.11.123 2.0.0 (2016-06-24)

• Removed middleware to use app_config [camilonova]

• Lots of cleaning [camilonova]

• Improved test suite and versions [camilonova]

1.11.124 1.7.0 (2016-06-10)

• Use render shortcut for rendering LOCKOUT_TEMPLATE [Radoslaw Luter]

• Added app_label for RemovedInDjango19Warning [yograterol]

• Add iso8601 translator. [mullakhmetov]

• Edit json response. Context now contains ISO 8601 formatted cooloff time [mullakhme-
tov]

• Add json response and iso8601 tests. [mullakhmetov]

• Fixes issue 162: UnicodeDecodeError on pip install [joeribekker]

• Added AXES_NEVER_LOCKOUT_WHITELIST option to prevent certain IPs from be-
ing locked out. [joeribekker]

1.11.125 1.6.1 (2016-05-13)

• Fixes whitelist check when BEHIND_REVERSE_PROXY [Patrick Hagemeister]

• Made migrations py3 compatible [mvdwaeter]

• Fixing #126, possibly breaking compatibility with Django<=1.7 [int-ua]

• Add note for upgrading users about new migration files [kelseyq]

• Fixes #148 [camilonova]

• Decorate auth_views.login only once [teeberg]

• Set IP public/private classifier to be compliant with RFC 1918. [SilasX]

• Issue #155. Lockout response status code changed to 403. [Arthur Mullahmetov]

• BUGFIX: Missing migration [smeinel]

1.11. Changes 51

django-axes documentation, Release 6.4.0

1.11.126 1.6.0 (2016-01-07)

• Stopped using render_to_response so that other template engines work [tarkatronic]

• Improved performance & DoS prevention on query2str [tarkatronic]

• Immediately return from is_already_locked if the user is not lockable [jdunck]

• Iterate over ip addresses only once [annp89]

• added initial migration files to support django 1.7 &up. Upgrading users should run mi-
grate –fake-initial after update [ibaguio]

• Add db indexes to CommonAccess model [Schweigi]

1.11.127 1.5.0 (2015-09-11)

• Fix #_get_user_attempts to include username when filtering AccessAttempts if
AXES_LOCK_OUT_BY_COMBINATION_USER_AND_IP is True [afioca]

1.11.128 1.4.0 (2015-08-09)

• Send the user_locked_out signal. Fixes #94. [toabi]

1.11.129 1.3.9 (2015-02-11)

• Python 3 fix (#104)

1.11.130 1.3.8 (2014-10-07)

• Rename GitHub organization from django-security to django-pci to emphasize focus on
providing assistance with building PCI compliant websites with Django. [aclark4life]

1.11.131 1.3.7 (2014-10-05)

• Explain common issues where Axes fails silently [cericoda]

• Allow for user-defined username field for lookup in POST data [SteveByerly]

• Log out only if user was logged in [zoten]

• Support for floats in cooloff time (i.e: 0.1 == 6 minutes) [marianov]

• Limit amount of POST data logged (#73). Limiting the length of value is not enough, as
there could be arbitrary number of them, or very long key names. [peterkuma]

• Improve get_ip to try for real ip address [7wonders]

52 Chapter 1. Contents

django-axes documentation, Release 6.4.0

• Change IPAddressField to GenericIPAddressField. When using a PostgreSQL database
and the client does not pass an IP address you get an inet error. This is a known problem
with PostgreSQL and the IPAddressField. https://code.djangoproject.com/ticket/5622. It
can be fixed by using a GenericIPAddressField instead. [polvoblanco]

• Get first X-Forwarded-For IP [tutumcloud]

• White listing IP addresses behind reverse proxy. Allowing some IP addresses to have
direct access to the app even if they are behind a reverse proxy. Those IP addresses must
still be on a white list. [ericbulloch]

• Reduce logging of reverse proxy IP lookup and use configured logger. Fixes #76. Instead
of logging the notice that django.axes looks for a HTTP header set by a reverse proxy on
each attempt, just log it one-time on first module import. Also use the configured logger
(by default axes.watch_login) for the message to be more consistent in logging. [eht16]

• Limit the length of the values logged into the database. Refs #73 [camilonova]

• Refactored tests to be more stable and faster [camilonova]

• Clean client references [camilonova]

• Fixed admin login url [camilonova]

• Added django 1.7 for testing [camilonova]

• Travis file cleanup [camilonova]

• Remove hardcoded url path [camilonova]

• Fixing tests for django 1.7 [Andrew-Crosio]

• Fix for django 1.7 exception not existing [Andrew-Crosio]

• Removed python 2.6 from testing [camilonova]

• Use django built-in six version [camilonova]

• Added six as requirement [camilonova]

• Added python 2.6 for travis testing [camilonova]

• Replaced u string literal prefixes with six.u() calls [amrhassan]

• Fixes object type issue, response is not an string [camilonova]

• Python 3 compatibility fix for db_reset [nicois]

• Added example project and helper scripts [barseghyanartur]

• Admin command to list login attemps [marianov]

• Replaced six imports with django.utils.six ones [amrhassan]

• Replaced u string literal prefixes with six.u() calls to make it compatible with Python 3.2
[amrhassan]

• Replaced assertIn`s and `assertNotIn`s with `assertContains and assertNotContains
[fcurella]

1.11. Changes 53

https://code.djangoproject.com/ticket/5622

django-axes documentation, Release 6.4.0

• Added py3k to travis [fcurella]

• Update test cases to be python3 compatible [nicois]

• Python 3 compatibility fix for db_reset [nicois]

• Removed trash from example urls [barseghyanartur]

• Added django installer [barseghyanartur]

• Added example project and helper scripts [barseghyanartur]

1.11.132 1.3.6 (2013-11-23)

• Added AttributeError in case get_profile doesn’t exist [camilonova]

• Improved axes_reset command [camilonova]

1.11.133 1.3.5 (2013-11-01)

• Fix an issue with __version__ loading the wrong version [graingert]

1.11.134 1.3.4 (2013-11-01)

• Update README.rst for PyPI [marty, camilonova, graingert]

• Add cooloff period [visualspace]

1.11.135 1.3.3 (2013-07-05)

• Added ‘username’ field to the Admin table [bkvirendra]

• Removed fallback logging creation since logging cames by default on django 1.4 or later,
if you don’t have it is because you explicitly wanted. Fixes #45 [camilonova]

1.11.136 1.3.2 (2013-03-28)

• Fix an issue when a user logout [camilonova]

• Match pypi version [camilonova]

• Better User model import method [camilonova]

• Use only one place to get the version number [camilonova]

• Fixed an issue when a user on django 1.4 logout [camilonova]

• Handle exception if there is not user profile model set [camilonova]

• Made some cleanup and remove a pokemon exception handling [camilonova]

54 Chapter 1. Contents

django-axes documentation, Release 6.4.0

• Improved tests so it really looks for the rabbit in the hole [camilonova]

• Match pypi version [camilonova]

1.11.137 1.3.1 (2013-03-19)

• Add support for Django 1.5 [camilonova]

1.11.138 1.3.0 (2013-02-27)

• Bug fix: get_version() format string [csghormley]

1.11.139 1.2.9 (2013-02-20)

• Add to and improve test cases [camilonova]

1.11.140 1.2.8 (2013-01-23)

• Increased http accept header length [jslatts]

1.11.141 1.2.7 (2013-01-17)

• Reverse proxy support [rmagee]

• Clean up README [martey]

1.11.142 1.2.6 (2012-12-04)

• Remove unused import [aclark4life]

1.11.143 1.2.5 (2012-11-28)

• Fix setup.py [aclark4life]

• Added ability to flag user accounts as unlockable. [kencochrane]

• Added ipaddress as a param to the user_locked_out signal. [kencochrane]

• Added a signal receiver for user_logged_out. [kencochrane]

• Added a signal for when a user gets locked out. [kencochrane]

• Added AccessLog model to log all access attempts. [kencochrane]

1.11. Changes 55

django-axes documentation, Release 6.4.0

56 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• search

57

django-axes documentation, Release 6.4.0

58 Chapter 2. Indices and tables

PYTHON MODULE INDEX

a
axes.backends, 27
axes.handlers.base, 25
axes.middleware, 28

59

django-axes documentation, Release 6.4.0

60 Python Module Index

INDEX

A
AbstractAxesHandler (class in

axes.handlers.base), 25
axes.backends

module, 27
axes.handlers.base

module, 25
axes.middleware

module, 28
AxesBackend (class in axes.backends), 27
AxesBaseHandler (class in

axes.handlers.base), 25
AxesHandler (class in axes.handlers.base),

27
AxesMiddleware (class in axes.middleware),

28
AxesStandaloneBackend (class in

axes.backends), 28

G
get_admin_url()

(axes.handlers.base.AxesBaseHandler
method), 26

get_failures()
(axes.handlers.base.AbstractAxesHandler
method), 25

get_failures()
(axes.handlers.base.AxesHandler
method), 27

I
is_admin_request()

(axes.handlers.base.AxesBaseHandler
method), 26

is_admin_site()
(axes.handlers.base.AxesBaseHandler
method), 26

is_allowed()

(axes.handlers.base.AxesBaseHandler
method), 26

is_blacklisted()
(axes.handlers.base.AxesBaseHandler
method), 26

is_locked()
(axes.handlers.base.AxesBaseHandler
method), 26

is_whitelisted()
(axes.handlers.base.AxesBaseHandler
method), 26

M
module

axes.backends, 27
axes.handlers.base, 25
axes.middleware, 28

R
remove_out_of_limit_failure_logs()

(axes.handlers.base.AxesBaseHandler
method), 26

reset_attempts()
(axes.handlers.base.AxesBaseHandler
method), 26

reset_failure_logs()
(axes.handlers.base.AxesBaseHandler
method), 27

reset_logs()
(axes.handlers.base.AxesBaseHandler
method), 27

U
user_logged_in()

(axes.handlers.base.AbstractAxesHandler
method), 25

user_logged_in()
(axes.handlers.base.AxesHandler
method), 27

61

django-axes documentation, Release 6.4.0

user_logged_out()
(axes.handlers.base.AbstractAxesHandler
method), 25

user_logged_out()
(axes.handlers.base.AxesHandler
method), 27

user_login_failed()
(axes.handlers.base.AbstractAxesHandler
method), 25

user_login_failed()
(axes.handlers.base.AxesHandler
method), 27

62 Index

	Contents
	Requirements
	Installation
	Version 6 breaking changes and upgrading from django-axes version 5
	Disabling Axes system checks
	Disabling Axes components in tests
	Disabling atomic requests

	Usage
	Authenticating users
	Resetting attempts and lockouts
	Resetting attempts from the Django admin UI
	Resetting attempts from command line
	Resetting attempts programmatically by APIs

	Data privacy and GDPR

	Configuration
	Configuring project settings
	Configuring reverse proxies
	Configuring handlers
	Configuring caches
	Configuring authentication backends
	Configuring 3rd party apps

	Customization
	Customizing authentication views
	Customizing username lookups
	Customizing lockout responses
	Customizing lockout parameters
	Customizing client ip address lookups

	Integration
	Integration with Django Allauth
	Integration with Django REST Framework
	Integration with Django Simple Captcha
	Integration with Django OAuth Toolkit
	Integration with Django Reversion

	Architecture
	Django Axes authentication flow

	API reference
	Contributions
	Development
	Changes
	6.4.0 (2024-03-04)
	6.3.1 (2024-03-04)
	6.3.0 (2023-12-27)
	6.2.0 (2023-12-08)
	6.1.1 (2023-08-01)
	6.1.0 (2023-07-30)
	6.0.5 (2023-07-01)
	6.0.4 (2023-06-22)
	6.0.3 (2023-06-18)
	6.0.2 (2023-06-13)
	6.0.1 (2023-05-17)
	6.0.0 (2023-05-17)
	5.41.1 (2023-04-16)
	5.41.0 (2023-04-02)
	5.40.1 (2022-11-24)
	5.40.0 (2022-11-19)
	5.39.0 (2022-08-18)
	5.38.0 (2022-08-16)
	5.37.0 (2022-08-16)
	5.36.0 (2022-07-17)
	5.35.0 (2022-06-01)
	5.34.0 (2022-05-28)
	5.33.0 (2022-05-16)
	5.32.0 (2022-04-08)
	5.31.0 (2022-01-08)
	5.30.0 (2022-01-08)
	5.29.0 (2022-01-08)
	5.28.0 (2021-12-14)
	5.27.0 (2021-11-04)
	5.26.0 (2021-10-11)
	5.25.0 (2021-09-19)
	5.24.0 (2021-09-09)
	5.23.0 (2021-09-02)
	5.22.0 (2021-08-31)
	5.21.0 (2021-08-19)
	5.20.0 (2021-06-29)
	5.19.0 (2021-06-16)
	5.18.0 (2021-06-09)
	5.17.0 (2021-06-05)
	5.16.0 (2021-05-19)
	5.15.0 (2021-05-03)
	5.14.0 (2021-04-06)
	5.13.1 (2021-02-22)
	5.13.0 (2021-02-15)
	5.12.0 (2021-01-07)
	5.11.1 (2021-01-06)
	5.11.0 (2021-01-05)
	5.10.1 (2021-01-04)
	5.10.0 (2020-12-18)
	5.9.1 (2020-12-02)
	5.9.0 (2020-11-05)
	5.8.0 (2020-10-16)
	5.7.1 (2020-09-27)
	5.7.0 (2020-09-26)
	5.6.2 (2020-09-20)
	5.6.1 (2020-09-17)
	5.6.0 (2020-09-12)
	5.5.2 (2020-09-11)
	5.5.1 (2020-09-10)
	5.5.0 (2020-08-21)
	5.4.3 (2020-08-06)
	5.4.2 (2020-07-28)
	5.4.1 (2020-07-03)
	5.4.0 (2020-07-03)
	5.3.5 (2020-07-02)
	5.3.4 (2020-06-09)
	5.3.3 (2020-05-22)
	5.3.2 (2020-05-15)
	5.3.1 (2020-03-23)
	5.3.0 (2020-03-10)
	5.2.2 (2020-01-08)
	5.2.1 (2020-01-08)
	5.2.0 (2020-01-01)
	5.1.0 (2019-12-29)
	5.0.20 (2019-12-01)
	5.0.19 (2019-11-06)
	5.0.18 (2019-10-17)
	5.0.17 (2019-10-15)
	5.0.16 (2019-10-15)
	5.0.15 (2019-10-09)
	5.0.14 (2019-09-28)
	5.0.13 (2019-08-30)
	5.0.12 (2019-08-05)
	5.0.11 (2019-07-25)
	5.0.10 (2019-07-25)
	5.0.9 (2019-07-11)
	5.0.8 (2019-07-09)
	5.0.7 (2019-06-14)
	5.0.6 (2019-05-25)
	5.0.5 (2019-05-19)
	5.0.4 (2019-05-09)
	5.0.3 (2019-05-08)
	5.0.2 (2019-05-07)
	5.0.1 (2019-05-03)
	5.0 (2019-05-01)
	4.5.4 (2019-01-15)
	4.5.3 (2019-01-14)
	4.5.2 (2019-01-12)
	4.5.1 (2019-01-11)
	4.5.0 (2018-12-25)
	4.4.3 (2018-12-08)
	4.4.2 (2018-10-30)
	4.4.1 (2018-10-24)
	4.4.0 (2018-05-26)
	4.3.1 (2018-04-21)
	4.3.0 (2018-04-21)
	4.2.1 (2018-04-18)
	4.2.0 (2018-04-13)
	4.1.0 (2018-02-18)
	4.0.2 (2018-01-19)
	4.0.1 (2017-12-19)
	4.0.0 (2017-12-18)
	3.0.3 (2017-11-23)
	3.0.2 (2017-11-21)
	3.0.1 (2017-11-17)
	3.0.0 (2017-11-17)
	2.3.3 (2017-07-20)
	2.3.2 (2016-11-24)
	2.3.1 (2016-11-12)
	2.3.0 (2016-11-04)
	2.2.0 (2016-07-20)
	2.1.0 (2016-07-14)
	2.0.0 (2016-06-24)
	1.7.0 (2016-06-10)
	1.6.1 (2016-05-13)
	1.6.0 (2016-01-07)
	1.5.0 (2015-09-11)
	1.4.0 (2015-08-09)
	1.3.9 (2015-02-11)
	1.3.8 (2014-10-07)
	1.3.7 (2014-10-05)
	1.3.6 (2013-11-23)
	1.3.5 (2013-11-01)
	1.3.4 (2013-11-01)
	1.3.3 (2013-07-05)
	1.3.2 (2013-03-28)
	1.3.1 (2013-03-19)
	1.3.0 (2013-02-27)
	1.2.9 (2013-02-20)
	1.2.8 (2013-01-23)
	1.2.7 (2013-01-17)
	1.2.6 (2012-12-04)
	1.2.5 (2012-11-28)

	Indices and tables
	Python Module Index
	Index

