
django-auditlog
Release 1.0a1

Sep 07, 2020

Contents

1 Contents 3
1.1 Installation . 3
1.2 Usage . 4
1.3 Internals . 7

2 Contribute to Auditlog 13

Python Module Index 15

Index 17

i

ii

django-auditlog, Release 1.0a1

django-auditlog (Auditlog) is a reusable app for Django that makes logging object changes a breeze. Auditlog tries to
use as much as Python and Django’s built in functionality to keep the list of dependencies as short as possible. Also,
Auditlog aims to be fast and simple to use.

Auditlog is created out of the need for a simple Django app that logs changes to models along with the user who made
the changes (later referred to as actor). Existing solutions seemed to offer a type of version control, which was found
excessive and expensive in terms of database storage and performance.

The core idea of Auditlog is similar to the log from Django’s admin. However, Auditlog is much more flexible than
the log from Django’s admin app (django.contrib.admin). Also, Auditlog saves a summary of the changes in
JSON format, so changes can be tracked easily.

Contents 1

django-auditlog, Release 1.0a1

2 Contents

CHAPTER 1

Contents

1.1 Installation

Installing Auditlog is simple and straightforward. First of all, you need a copy of Auditlog on your system. The easiest
way to do this is by using the Python Package Index (PyPI). Simply run the following command:

pip install django-auditlog

Instead of installing Auditlog via PyPI, you can also clone the Git repository or download the source code via GitHub.
The repository can be found at https://github.com/jjkester/django-auditlog/.

Requirements

• Python 3.5 or higher

• Django 2.2 or higher

Auditlog is currently tested with Python 3.5 - 3.8 and Django 2.2, 3.0 and 3.1. The latest test report can be found at
https://travis-ci.org/jjkester/django-auditlog.

1.1.1 Adding Auditlog to your Django application

To use Auditlog in your application, just add 'auditlog' to your project’s INSTALLED_APPS setting and run
manage.py migrate to create/upgrade the necessary database structure.

If you want Auditlog to automatically set the actor for log entries you also need to enable the middleware by adding
'auditlog.middleware.AuditlogMiddleware' to your MIDDLEWARE_CLASSES setting. Please check
Usage for more information.

3

https://github.com/jjkester/django-auditlog/
https://travis-ci.org/jjkester/django-auditlog

django-auditlog, Release 1.0a1

1.2 Usage

1.2.1 Manually logging changes

Auditlog log entries are simple LogEntry model instances. This makes creating a new log entry very easy. For even
more convenience, LogEntryManager provides a number of methods which take some work out of your hands.

See Internals for all details.

1.2.2 Automatically logging changes

Auditlog can automatically log changes to objects for you. This functionality is based on Django’s signals, but linking
your models to Auditlog is even easier than using signals.

Registering your model for logging can be done with a single line of code, as the following example illustrates:

from auditlog.registry import auditlog
from django.db import models

class MyModel(models.Model):
pass
Model definition goes here

auditlog.register(MyModel)

It is recommended to place the register code (auditlog.register(MyModel)) at the bottom of your models.
py file. This ensures that every time your model is imported it will also be registered to log changes. Auditlog makes
sure that each model is only registered once, otherwise duplicate log entries would occur.

Excluding fields

Fields that are excluded will not trigger saving a new log entry and will not show up in the recorded changes.

To exclude specific fields from the log you can pass include_fields resp. exclude_fields to the register
method. If exclude_fields is specified the fields with the given names will not be included in the generated log
entries. If include_fields is specified only the fields with the given names will be included in the generated
log entries. Explicitly excluding fields through exclude_fields takes precedence over specifying which fields to
include.

For example, to exclude the field last_updated, use:

auditlog.register(MyModel, exclude_fields=['last_updated'])

New in version 0.3.0: Excluding fields

Mapping fields

If you have field names on your models that aren’t intuitive or user friendly you can include a dictionary of field
mappings during the register() call.

class MyModel(modelsModel):
sku = models.CharField(max_length=20)
version = models.CharField(max_length=5)
product = models.CharField(max_length=50, verbose_name='Product Name')
history = AuditLogHistoryField()

auditlog.register(MyModel, mapping_fields={'sku': 'Product No.', 'version': 'Product
→˓Revision'})

4 Chapter 1. Contents

django-auditlog, Release 1.0a1

log = MyModel.objects.first().history.latest()
log.changes_display_dict
// retrieves changes with keys Product No. Product Revision, and Product Name
// If you don't map a field it will fall back on the verbose_name

New in version 0.5.0.

You do not need to map all the fields of the model, any fields not mapped will fall back on their verbose_name.
Django provides a default verbose_name which is a “munged camel case version” so product_name would
become Product Name by default.

1.2.3 Actors

When using automatic logging, the actor is empty by default. However, auditlog can set the actor from the current
request automatically. This does not need any custom code, adding a middleware class is enough. When an actor is
logged the remote address of that actor will be logged as well.

To enable the automatic logging of the actors, simply add the following to your MIDDLEWARE_CLASSES setting in
your project’s configuration file:

MIDDLEWARE_CLASSES = (
Request altering middleware, e.g., Django's default middleware classes
'auditlog.middleware.AuditlogMiddleware',
Other middleware

)

It is recommended to keep all middleware that alters the request loaded before Auditlog’s middleware.

Warning: Please keep in mind that every object change in a request that gets logged automatically will have the
current request’s user as actor. To only have some object changes to be logged with the current request’s user as
actor manual logging is required.

1.2.4 Object history

Auditlog ships with a custom field that enables you to easily get the log entries that are relevant to your object. This
functionality is built on Django’s content types framework (django.contrib.contenttypes). Using this field
in your models is equally easy as any other field:

from auditlog.models import AuditlogHistoryField
from auditlog.registry import auditlog
from django.db import models

class MyModel(models.Model):
history = AuditlogHistoryField()
Model definition goes here

auditlog.register(MyModel)

AuditlogHistoryField accepts an optional pk_indexable parameter, which is either True or False, this
defaults to True. If your model has a custom primary key that is not an integer value, pk_indexable needs to be
set to False. Keep in mind that this might slow down queries.

The AuditlogHistoryField provides easy access to LogEntry instances related to the model instance. Here
is an example of how to use it:

1.2. Usage 5

django-auditlog, Release 1.0a1

<div class="table-responsive">
<table class="table table-striped table-bordered">
<thead>

<tr>
<th>Field</th>
<th>From</th>
<th>To</th>

</tr>
</thead>
<tbody>
{% for key, value in mymodel.history.latest.changes_dict.iteritems %}

<tr>
<td>{{ key }}</td>
<td>{{ value.0|default:"None" }}</td>
<td>{{ value.1|default:"None" }}</td>

</tr>
{% empty %}

<p>No history for this item has been logged yet.</p>
{% endfor %}
</tbody>

</table>
</div>

If you want to display the changes in a more human readable format use the LogEntry’s
changes_display_dict instead. The changes_display_dict will make a few cosmetic changes to
the data.

• Mapping Fields property will be used to display field names, falling back on verbose_name if no mapping
field is present

• Fields with a value whose length is greater than 140 will be truncated with an ellipsis appended

• Date, Time, and DateTime fields will follow L10N formatting. If USE_L10N=False in your settings it will
fall back on the settings defaults defined for DATE_FORMAT, TIME_FORMAT, and DATETIME_FORMAT

• Fields with choices will be translated into their human readable form, this feature also supports choices
defined on django-multiselectfield and Postgres’s native ArrayField

Check out the internals for the full list of attributes you can use to get associated LogEntry instances.

1.2.5 Many-to-many relationships

New in version 0.3.0.

Warning: To-many relations are not officially supported. However, this section shows a workaround which can
be used for now. In the future, this workaround may be used in an official API or a completly different strategy
might be chosen. Do not rely on the workaround here to be stable across releases.

By default, many-to-many relationships are not tracked by Auditlog.

The history for a many-to-many relationship without an explicit ‘through’ model can be recorded by registering this
model as follows:

auditlog.register(MyModel.related.through)

6 Chapter 1. Contents

django-auditlog, Release 1.0a1

The log entries for all instances of the ‘through’ model that are related to a MyModel instance can be retrieved with
the LogEntryManager.get_for_objects()method. The resulting QuerySet can be combined with any other
queryset of LogEntry instances. This way it is possible to get a list of all changes on an object and its related objects:

obj = MyModel.objects.first()
rel_history = LogEntry.objects.get_for_objects(obj.related.all())
full_history = (obj.history.all() | rel_history.all()).order_by('-timestamp')

1.2.6 Management commands

New in version 0.4.0.

Auditlog provides the auditlogflush management command to clear all log entries from the database.

By default, the command asks for confirmation. It is possible to run the command with the -y or –yes flag to skip
confirmation and immediately delete all entries.

Warning: Using the auditlogflush command deletes all log entries permanently and irreversibly from the
database.

1.2.7 Django Admin integration

New in version 0.4.1.

When auditlog is added to your INSTALLED_APPS setting a customized admin class is active providing an
enhanced Django Admin interface for log entries.

1.3 Internals

You might be interested in the way things work on the inside of Auditlog. This section covers the internal APIs of
Auditlog which is very useful when you are looking for more advanced ways to use the application or if you like to
contribute to the project.

The documentation below is automatically generated from the source code.

1.3.1 Models and fields

class auditlog.models.LogEntry(*args, **kwargs)
Represents an entry in the audit log. The content type is saved along with the textual and numeric (if available)
primary key, as well as the textual representation of the object when it was saved. It holds the action performed
and the fields that were changed in the transaction.

If AuditlogMiddleware is used, the actor will be set automatically. Keep in mind that editing / re-saving LogEn-
try instances may set the actor to a wrong value - editing LogEntry instances is not recommended (and it should
not be necessary).

class Action
The actions that Auditlog distinguishes: creating, updating and deleting objects. Viewing objects is not
logged. The values of the actions are numeric, a higher integer value means a more intrusive action. This
may be useful in some cases when comparing actions because the __lt, __lte, __gt, __gte lookup
filters can be used in queries.

1.3. Internals 7

django-auditlog, Release 1.0a1

The valid actions are Action.CREATE, Action.UPDATE and Action.DELETE.

exception DoesNotExist

exception MultipleObjectsReturned

changes_dict

Returns The changes recorded in this log entry as a dictionary object.

changes_display_dict

Returns The changes recorded in this log entry intended for display to users as a dictionary
object.

changes_str
Return the changes recorded in this log entry as a string. The formatting of the string can be customized
by setting alternate values for colon, arrow and separator. If the formatting is still not satisfying, please
use LogEntry.changes_dict() and format the string yourself.

Parameters

• colon – The string to place between the field name and the values.

• arrow – The string to place between each old and new value.

• separator – The string to place between each field.

Returns A readable string of the changes in this log entry.

class auditlog.models.LogEntryManager
Custom manager for the LogEntry model.

get_for_model(model)
Get log entries for all objects of a specified type.

Parameters model (class) – The model to get log entries for.

Returns QuerySet of log entries for the given model.

Return type QuerySet

get_for_object(instance)
Get log entries for the specified model instance.

Parameters instance (Model) – The model instance to get log entries for.

Returns QuerySet of log entries for the given model instance.

Return type QuerySet

get_for_objects(queryset)
Get log entries for the objects in the specified queryset.

Parameters queryset (QuerySet) – The queryset to get the log entries for.

Returns The LogEntry objects for the objects in the given queryset.

Return type QuerySet

log_create(instance, **kwargs)
Helper method to create a new log entry. This method automatically populates some fields when no explicit
value is given.

Parameters

• instance (Model) – The model instance to log a change for.

8 Chapter 1. Contents

django-auditlog, Release 1.0a1

• kwargs – Field overrides for the LogEntry object.

Returns The new log entry or None if there were no changes.

Return type LogEntry

class auditlog.models.AuditlogHistoryField(pk_indexable=True, delete_related=True,
**kwargs)

A subclass of py:class:django.contrib.contenttypes.fields.GenericRelation that sets some default variables. This
makes it easier to access Auditlog’s log entries, for example in templates.

By default this field will assume that your primary keys are numeric, simply because this is the most common
case. However, if you have a non-integer primary key, you can simply pass pk_indexable=False to the
constructor, and Auditlog will fall back to using a non-indexed text based field for this model.

Using this field will not automatically register the model for automatic logging. This is done so you can be more
flexible with how you use this field.

Parameters

• pk_indexable (bool) – Whether the primary key for this model is not an int or long.

• delete_related (bool) – By default, including a generic relation into a model will
cause all related objects to be cascade-deleted when the parent object is deleted. Passing
False to this overrides this behavior, retaining the full auditlog history for the object. De-
faults to True, because that’s Django’s default behavior.

bulk_related_objects(objs, using=’default’)
Return all objects related to objs via this GenericRelation.

1.3.2 Middleware

class auditlog.middleware.AuditlogMiddleware(get_response=None)
Middleware to couple the request’s user to log items. This is accomplished by currying the signal receiver with
the user from the request (or None if the user is not authenticated).

process_exception(request, exception)
Disconnects the signal receiver to prevent it from staying active in case of an exception.

process_request(request)
Gets the current user from the request and prepares and connects a signal receiver with the user already
attached to it.

process_response(request, response)
Disconnects the signal receiver to prevent it from staying active.

static set_actor(user, sender, instance, signal_duid, **kwargs)
Signal receiver with an extra, required ‘user’ kwarg. This method becomes a real (valid) signal receiver
when it is curried with the actor.

1.3.3 Signal receivers

auditlog.receivers.log_create(sender, instance, created, **kwargs)
Signal receiver that creates a log entry when a model instance is first saved to the database.

Direct use is discouraged, connect your model through auditlog.registry.register() instead.

auditlog.receivers.log_delete(sender, instance, **kwargs)
Signal receiver that creates a log entry when a model instance is deleted from the database.

1.3. Internals 9

django-auditlog, Release 1.0a1

Direct use is discouraged, connect your model through auditlog.registry.register() instead.

auditlog.receivers.log_update(sender, instance, **kwargs)
Signal receiver that creates a log entry when a model instance is changed and saved to the database.

Direct use is discouraged, connect your model through auditlog.registry.register() instead.

1.3.4 Calculating changes

auditlog.diff.get_field_value(obj, field)
Gets the value of a given model instance field.

Parameters

• obj (Model) – The model instance.

• field (Any) – The field you want to find the value of.

Returns The value of the field as a string.

Return type str

auditlog.diff.get_fields_in_model(instance)
Returns the list of fields in the given model instance. Checks whether to use the official _meta API or use the
raw data. This method excludes many to many fields.

Parameters instance (Model) – The model instance to get the fields for

Returns The list of fields for the given model (instance)

Return type list

auditlog.diff.model_instance_diff(old, new)
Calculates the differences between two model instances. One of the instances may be None (i.e., a newly
created model or deleted model). This will cause all fields with a value to have changed (from None).

Parameters

• old (Model) – The old state of the model instance.

• new (Model) – The new state of the model instance.

Returns A dictionary with the names of the changed fields as keys and a two tuple of the old and
new field values as value.

Return type dict

auditlog.diff.track_field(field)
Returns whether the given field should be tracked by Auditlog.

Untracked fields are many-to-many relations and relations to the Auditlog LogEntry model.

Parameters field (Field) – The field to check.

Returns Whether the given field should be tracked.

Return type bool

10 Chapter 1. Contents

django-auditlog, Release 1.0a1

1.3.5 Registry

class auditlog.registry.AuditlogModelRegistry(create: bool = True, update: bool =
True, delete: bool = True, custom: Op-
tional[Dict[django.db.models.signals.ModelSignal,
Callable]] = None)

A registry that keeps track of the models that use Auditlog to track changes.

contains(model: django.db.models.base.ModelBase)→ bool
Check if a model is registered with auditlog.

Parameters model – The model to check.

Returns Whether the model has been registered.

Return type bool

register(model: django.db.models.base.ModelBase = None, include_fields: Optional[List[str]] =
None, exclude_fields: Optional[List[str]] = None, mapping_fields: Optional[Dict[str, str]]
= None)

Register a model with auditlog. Auditlog will then track mutations on this model’s instances.

Parameters

• model – The model to register.

• include_fields – The fields to include. Implicitly excludes all other fields.

• exclude_fields – The fields to exclude. Overrides the fields to include.

• mapping_fields – Mapping from field names to strings in diff.

unregister(model: django.db.models.base.ModelBase)→ None
Unregister a model with auditlog. This will not affect the database.

Parameters model – The model to unregister.

1.3. Internals 11

django-auditlog, Release 1.0a1

12 Chapter 1. Contents

CHAPTER 2

Contribute to Auditlog

Note: Due to multiple reasons the development of Auditlog is not a priority for me at this moment. Therefore progress
might be slow. This does not mean that this project is abandoned! Community involvement in the form of pull requests
is very much appreciated. Also, if you like to take Auditlog to the next level and be a permanent contributor, please
contact the author. Contact information can be found via GitHub.

If you discovered a bug or want to improve the code, please submit an issue and/or pull request via GitHub. Before
submitting a new issue, please make sure there is no issue submitted that involves the same problem.

GitHub repository: https://github.com/jjkester/django-auditlog
Issues: https://github.com/jjkester/django-auditlog/issues

13

https://github.com/jjkester/django-auditlog
https://github.com/jjkester/django-auditlog/issues

django-auditlog, Release 1.0a1

14 Chapter 2. Contribute to Auditlog

Python Module Index

a
auditlog.diff, 10
auditlog.middleware, 9
auditlog.models, 7
auditlog.receivers, 9
auditlog.registry, 11

15

django-auditlog, Release 1.0a1

16 Python Module Index

Index

A
auditlog.diff (module), 10
auditlog.middleware (module), 9
auditlog.models (module), 7
auditlog.receivers (module), 9
auditlog.registry (module), 11
AuditlogHistoryField (class in auditlog.models),

9
AuditlogMiddleware (class in audit-

log.middleware), 9
AuditlogModelRegistry (class in audit-

log.registry), 11

B
bulk_related_objects() (audit-

log.models.AuditlogHistoryField method),
9

C
changes_dict (auditlog.models.LogEntry attribute),

8
changes_display_dict (auditlog.models.LogEntry

attribute), 8
changes_str (auditlog.models.LogEntry attribute), 8
contains() (auditlog.registry.AuditlogModelRegistry

method), 11

G
get_field_value() (in module auditlog.diff), 10
get_fields_in_model() (in module auditlog.diff),

10
get_for_model() (audit-

log.models.LogEntryManager method), 8
get_for_object() (audit-

log.models.LogEntryManager method), 8
get_for_objects() (audit-

log.models.LogEntryManager method), 8

L
log_create() (auditlog.models.LogEntryManager

method), 8
log_create() (in module auditlog.receivers), 9
log_delete() (in module auditlog.receivers), 9
log_update() (in module auditlog.receivers), 10
LogEntry (class in auditlog.models), 7
LogEntry.Action (class in auditlog.models), 7
LogEntry.DoesNotExist, 8
LogEntry.MultipleObjectsReturned, 8
LogEntryManager (class in auditlog.models), 8

M
model_instance_diff() (in module auditlog.diff),

10

P
process_exception() (audit-

log.middleware.AuditlogMiddleware method),
9

process_request() (audit-
log.middleware.AuditlogMiddleware method),
9

process_response() (audit-
log.middleware.AuditlogMiddleware method),
9

R
register() (auditlog.registry.AuditlogModelRegistry

method), 11

S
set_actor() (audit-

log.middleware.AuditlogMiddleware static
method), 9

T
track_field() (in module auditlog.diff), 10

17

django-auditlog, Release 1.0a1

U
unregister() (audit-

log.registry.AuditlogModelRegistry method),
11

18 Index

	Contents
	Installation
	Usage
	Internals

	Contribute to Auditlog
	Python Module Index
	Index

