
Documentation for django-analytical
Release 3.1.0

Joost Cassee

Mar 15, 2022

Contents

1 Overview 3

2 Contents 5
2.1 Tutorial . 5
2.2 Installation and configuration . 7
2.3 Features and customization . 10
2.4 Services . 11
2.5 Settings . 60
2.6 History and credits . 61
2.7 License . 66

Index 69

i

ii

Documentation for django-analytical, Release 3.1.0

The django-analytical application integrates analytics services into a Django project.

Package https://pypi.python.org/pypi/django-analytical/

Source https://github.com/jazzband/django-analytical

Contents 1

https://www.djangoproject.com/
https://pypi.python.org/pypi/django-analytical/
https://github.com/jazzband/django-analytical

Documentation for django-analytical, Release 3.1.0

2 Contents

CHAPTER 1

Overview

Using an analytics service with a Django project means adding Javascript tracking code to the project templates. Of
course, every service has its own specific installation instructions. Furthermore, you need to include your unique
identifiers, which then end up in the templates. Not very nice.

This application hides the details of the different analytics services behind a generic interface, and keeps personal
information and configuration out of the templates. Its goal is to make the basic set-up very simple, while allowing
advanced users to customize tracking. Each service is set up as recommended by the services themselves, using an
asynchronous version of the Javascript code if possible.

To get a feel of how django-analytical works, check out the Tutorial.

3

Documentation for django-analytical, Release 3.1.0

4 Chapter 1. Overview

CHAPTER 2

Contents

2.1 Tutorial

This tutorial will show you how to install and configure django-analytical for basic tracking, and then briefly touch on
two common customization issues: visitor identification and custom data tracking.

Suppose your Django website provides information about the IPv4 to IPv6 transition. Visitors can discuss their
problems and help each other make the necessary changes to their network infrastructure. You want to use two
different analytics services:

• Clicky for detailed traffic analysis

• Crazy Egg to see where visitors click on your pages

At the end of this tutorial, the project will track visitors on both Clicky and Crazy Egg, identify authenticated users
and add extra tracking data to segment mouse clicks on Crazy Egg based on whether visitors are using IPv4 or IPv6.

2.1.1 Setting up basic tracking

To get started with django-analytical, the package must first be installed. You can download and install the latest stable
package from the Python Package Index automatically by using easy_install:

$ easy_install django-analytical

For more ways to install django-analytical, see Installing the Python package.

After you install django-analytical, you need to add it to the list of installed applications in the settings.py file of
your project:

INSTALLED_APPS = [
...
'analytical',
...

]

5

Documentation for django-analytical, Release 3.1.0

Then you have to add the general-purpose django-analytical template tags to your base template:

{% load analytical %}
<!DOCTYPE ... >
<html>

<head>
{% analytical_head_top %}

...

{% analytical_head_bottom %}
</head>
<body>

{% analytical_body_top %}

...

{% analytical_body_bottom %}
</body>

</html>

Finally, you need to configure the Clicky Site ID and the Crazy Egg account number. Add the following to your project
settings.py file (replacing the x’s with your own codes):

CLICKY_SITE_ID = 'xxxxxxxx'
CRAZY_EGG_ACCOUNT_NUMBER = 'xxxxxxxx'

The analytics services are now installed. If you run Django with these changes, both Clicky and Crazy Egg will be
tracking your visitors.

2.1.2 Identifying authenticated users

Suppose that when your visitors post questions on IPv6 or tell others about their experience with the transition, they
first log in through the standard Django authentication system. Clicky can identify and track individual visitors and
you want to use this feature.

If django-analytical template tags detect that the current user is authenticated, they will automatically include code to
send the username to services that support this feature. This only works if the template context has the current user in
the user or request.user context variable. If you use a RequestContext to render templates (which is rec-
ommended anyway) and have the django.contrib.auth.context_processors.auth context processor
in the TEMPLATE_CONTEXT_PROCESSORS setting (which is default), then this identification works without having
to make any changes.

For more detailed information on automatic identification, and how to disable or override it, see Identifying authenti-
cated users.

2.1.3 Adding custom tracking data

Suppose that you think that visitors who already have IPv6 use the website in a different way from those still on IPv4.
You want to test this hypothesis by segmenting the Crazy Egg heatmaps based on the IP protocol version.

In order to filter on protocol version in Crazy Egg, you need to include the visitor IP protocol version in the Crazy Egg
tracking code. The easiest way to do this is by using a context processor:

6 Chapter 2. Contents

Documentation for django-analytical, Release 3.1.0

def track_ip_proto(request):
addr = request.META.get('HTTP_X_FORWARDED_FOR', '')
if not addr:

addr = request.META.get('REMOTE_ADDR', '')
if ':' in addr:

proto = 'ipv6'
else:

proto = 'ipv4' # assume IPv4 if no information
return {'crazy_egg_var1': proto}

Use a RequestContext when rendering templates and add the 'track_ip_proto' to
TEMPLATE_CONTEXT_PROCESSORS. In Crazy Egg, you can now select User Var1 in the overlay or con-
fetti views to see whether visitors using IPv4 behave differently from those using IPv6.

This concludes the tutorial. For information about setting up, configuring and customizing the different analytics
services, see Features and customization and Services.

2.2 Installation and configuration

Integration of your analytics service is very simple. There are four steps: installing the package, adding it to the list of
installed Django applications, adding the template tags to your base template, and configuring the services you use in
the project settings.

1. Installing the Python package

2. Installing the Django application

3. Adding the template tags to the base template

4. Enabling the services

2.2.1 Installing the Python package

To install django-analytical the analytical package must be added to the Python path. You can install it directly
from PyPI using easy_install:

$ easy_install django-analytical

You can also install directly from source. Download either the latest stable version from PyPI or any release from
GitHub, or use Git to get the development code:

$ git clone https://github.com/jazzband/django-analytical.git

Then install the package by running the setup script:

$ cd django-analytical
$ python setup.py install

2.2.2 Installing the Django application

After you installed django-analytical, add the analytical Django application to the list of installed applications in
the settings.py file of your project:

2.2. Installation and configuration 7

http://pypi.python.org/pypi/django-analytical/
http://github.com/jazzband/django-analytical

Documentation for django-analytical, Release 3.1.0

INSTALLED_APPS = [
...
'analytical',
...

]

2.2.3 Adding the template tags to the base template

Because every analytics service uses own specific Javascript code that should be added to the top or bottom of either
the head or body of the HTML page, django-analytical provides four general-purpose template tags that will render
the code needed for the services you are using. Your base template should look like this:

{% load analytical %}
<!DOCTYPE ... >
<html>

<head>
{% analytical_head_top %}

...

{% analytical_head_bottom %}
</head>
<body>

{% analytical_body_top %}

...

{% analytical_body_bottom %}
</body>

</html>

Instead of using the generic tags, you can also just use tags specific for the analytics service(s) you are using. See
Services for documentation on using individual services.

2.2.4 Enabling the services

Without configuration, the template tags all render the empty string. Services are configured in the project
settings.py file. The settings required to enable each service are listed here:

• Chartbeat:

CHARTBEAT_USER_ID = '12345'

• Clickmap:

CLICKMAP_TRACKER_CODE = '12345678....912'

• Clicky:

CLICKY_SITE_ID = '12345678'

• Crazy Egg:

CRAZY_EGG_ACCOUNT_NUMBER = '12345678'

8 Chapter 2. Contents

Documentation for django-analytical, Release 3.1.0

• Facebook Pixel:

FACEBOOK_PIXEL_ID = '1234567890'

• Gaug.es:

GAUGES_SITE_ID = '0123456789abcdef0123456789abcdef'

• Google Analytics (legacy):

GOOGLE_ANALYTICS_PROPERTY_ID = 'UA-1234567-8'

• Google Analytics (gtag.js):

GOOGLE_ANALYTICS_GTAG_PROPERTY_ID = 'UA-1234567-8'

• Google Analytics (analytics.js):

GOOGLE_ANALYTICS_JS_PROPERTY_ID = 'UA-12345678-9'

• HubSpot:

HUBSPOT_PORTAL_ID = '1234'
HUBSPOT_DOMAIN = 'somedomain.web101.hubspot.com'

• Intercom:

INTERCOM_APP_ID = '0123456789abcdef0123456789abcdef01234567'

• KISSinsights:

KISS_INSIGHTS_ACCOUNT_NUMBER = '12345'
KISS_INSIGHTS_SITE_CODE = 'abc'

• KISSmetrics:

KISS_METRICS_API_KEY = '0123456789abcdef0123456789abcdef01234567'

• Lucky Orange:

LUCKYORANGE_SITE_ID = '123456'

• Matomo (formerly Piwik):

MATOMO_DOMAIN_PATH = 'your.matomo.server/optional/path'
MATOMO_SITE_ID = '123'

• Mixpanel:

MIXPANEL_API_TOKEN = '0123456789abcdef0123456789abcdef'

• Olark:

OLARK_SITE_ID = '1234-567-89-0123'

• Optimizely:

2.2. Installation and configuration 9

Documentation for django-analytical, Release 3.1.0

OPTIMIZELY_ACCOUNT_NUMBER = '1234567'

• Performable:

PERFORMABLE_API_KEY = '123abc'

• Piwik (deprecated, see Matomo):

PIWIK_DOMAIN_PATH = 'your.piwik.server/optional/path'
PIWIK_SITE_ID = '123'

• Rating@Mail.ru:

RATING_MAILRU_COUNTER_ID = '1234567'

• SnapEngage:

SNAPENGAGE_WIDGET_ID = 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX'

• Woopra:

WOOPRA_DOMAIN = 'abcde.com'

• Yandex.Metrica:

YANDEX_METRICA_COUNTER_ID = '12345678'

The django-analytical application is now set-up to track visitors. For information about identifying users, further
configuration and customization, see Features and customization.

2.3 Features and customization

The django-analytical application sets up basic tracking without any further configuration. This page describes extra
features and ways in which behavior can be customized.

2.3.1 Internal IP addresses

Visits by the website developers or internal users are usually not interesting. The django-analytical will comment out
the service initialization code if the client IP address is detected as one from the ANALYTICAL_INTERNAL_IPS
setting. The default value for this setting is INTERNAL_IPS.

Example:

ANALYTICAL_INTERNAL_IPS = ['192.168.1.45', '192.168.1.57']

Note: The template tags can only access the visitor IP address if the HTTP request is present in the
template context as the request variable. For this reason, the ANALYTICAL_INTERNAL_IPS setting
only works if you add this variable to the context yourself when you render the template, or you use the
RequestContext and add 'django.core.context_processors.request' to the list of context pro-
cessors in the TEMPLATE_CONTEXT_PROCESSORS setting.

10 Chapter 2. Contents

Documentation for django-analytical, Release 3.1.0

2.3.2 Identifying authenticated users

Some analytics services can track individual users. If the visitor is logged in through the standard Django authenti-
cation system and the current user is accessible in the template context, the username can be passed to the analytics
services that support identifying users. This feature is configured by the ANALYTICAL_AUTO_IDENTIFY setting
and is enabled by default. To disable:

ANALYTICAL_AUTO_IDENTIFY = False

Note: The template tags can only access the visitor username if the Django user is present in the template
context either as the user variable, or as an attribute on the HTTP request in the request variable. Use a
RequestContext to render your templates and add 'django.contrib.auth.context_processors.
auth' or 'django.core.context_processors.request' to the list of context processors in the
TEMPLATE_CONTEXT_PROCESSORS setting. (The first of these is added by default.) Alternatively, add one of
the variables to the context yourself when you render the template.

2.4 Services

This section describes what features are supported by the different analytics services. To start using a service, you can
either use the generic installation instructions (see Installation and configuration), or add service-specific tags to your
templates.

If you would like to have another analytics service supported by django-analytical, please create an issue on the project
issue tracker. See also Helping out.

Currently supported services:

2.4.1 Chartbeat – traffic analysis

Chartbeat provides real-time analytics to websites and blogs. It shows visitors, load times, and referring sites on a
minute-by-minute basis. The service also provides alerts the second your website crashes or slows to a crawl.

Installation

To start using the Chartbeat integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and configu-
ration for details.

Next you need to add the Chartbeat template tags to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The Chartbeat tracking code is inserted into templates using template tags. At the top of the template, load the
chartbeat template tag library. Then insert the chartbeat_top tag at the top of the head section, and the
chartbeat_bottom tag at the bottom of the body section:

{% load chartbeat %}
<html>
<head>
{% chartbeat_top %}

...

(continues on next page)

2.4. Services 11

http://github.com/jazzband/django-analytical/issues
http://www.chartbeat.com/

Documentation for django-analytical, Release 3.1.0

(continued from previous page)

{% chartbeat_bottom %}
</body>
</html>

Because these tags are used to measure page loading time, it is important to place them as close as possible to the start
and end of the document.

Configuration

Before you can use the Chartbeat integration, you must first set your User ID.

Setting the User ID

Your Chartbeat account has a unique User ID. You can find your User ID by visiting the Chartbeat Add New Site page.
The second code snippet contains a line that looks like this:

var _sf_async_config={uid:XXXXX,domain:"YYYYYYYYYY"};

Here, XXXXX is your User ID. Set CHARTBEAT_USER_ID in the project settings.py file:

CHARTBEAT_USER_ID = 'XXXXX'

If you do not set a User ID, the tracking code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the CHARTBEAT_INTERNAL_IPS setting, the tracking code is commented
out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS by default).
See Identifying authenticated users for important information about detecting the visitor IP address.

Setting the domain

The Javascript tracking code can send the website domain to Chartbeat. If you use multiple subdomains this
enables you to treat them as one website in Chartbeat. If your project uses the sites framework, the domain
name of the current Site will be passed to Chartbeat automatically. You can modify this behavior using the
CHARTBEAT_AUTO_DOMAIN setting:

CHARTBEAT_AUTO_DOMAIN = False

Alternatively, you set the domain through the chartbeat_domain context variable when you render the template:

context = RequestContext({'chartbeat_domain': 'example.com'})
return some_template.render(context)

It is annoying to do this for every view, so you may want to set it in a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def chartbeat(request):
return {'chartbeat_domain': 'example.com'}

12 Chapter 2. Contents

http://chartbeat.com/code/

Documentation for django-analytical, Release 3.1.0

The context domain overrides the domain from the current site. If no domain is set, either explicitly or implicitly
through the sites framework, then no domain is sent, and Chartbeat will detect the domain name from the URL. If your
website uses just one domain, this will work just fine.

Thanks go to Chartbeat for their support with the development of this application.

2.4.2 Clickmap – visual click tracking

Clickmap is a real-time heatmap tool to track mouse clicks and scroll paths of your website visitors. Gain intelligence
about what’s hot and what’s not, and optimize your conversion with Clickmap.

Installation

To start using the Clickmap integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and configu-
ration for details.

Next you need to add the Clickmap template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The Clickmap Javascript code is inserted into templates using a template tag. Load the clickmap template tag
library and insert the clickmap tag. Because every page that you want to track must have the tag, it is useful to add
it to your base template. Insert the tag at the bottom of the HTML body:

{% load clickmap %}
...
{% clickmap %}
</body>
</html>

Configuration

Before you can use the Clickmap integration, you must first set your Clickmap Tracker ID. If you don’t have a
Clickmap account yet, sign up to get your Tracker ID.

Setting the Tracker ID

Clickmap gives you a unique Tracker ID, and the clickmap tag will include it in the rendered Javascript code.
You can find your Tracker ID clicking the link named “Tracker” in the dashboard of your Clickmap account. Set
CLICKMAP_TRACKER_ID in the project settings.py file:

CLICKMAP_TRACKER_ID = 'XXXXXXXX'

If you do not set an Tracker ID, the tracking code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the ANALYTICAL_INTERNAL_IPS setting (which is INTERNAL_IPS
by default,) the tracking code is commented out. See Identifying authenticated users for important information about
detecting the visitor IP address.

2.4. Services 13

http://www.getclickmap.com/
http://www.getclickmap.com/

Documentation for django-analytical, Release 3.1.0

2.4.3 Clicky – traffic analysis

Clicky is an online web analytics tool. It is similar to Google Analytics in that it provides statistics on who is visiting
your website and what they are doing. Clicky provides its data in real time and is designed to be very easy to use.

Installation

To start using the Clicky integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and con-
figuration for details.

Next you need to add the Clicky template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The Clicky tracking code is inserted into templates using a template tag. Load the clicky template tag library and
insert the clicky tag. Because every page that you want to track must have the tag, it is useful to add it to your base
template. Insert the tag at the bottom of the HTML body:

{% load clicky %}
...
{% clicky %}
</body>
</html>

Configuration

Before you can use the Clicky integration, you must first set your website Site ID. You can also customize the data
that Clicky tracks.

Setting the Site ID

Every website you track with Clicky gets its own Site ID, and the clicky tag will include it in the rendered
Javascript code. You can find the Site ID in the Info tab of the website Preferences page, in your Clicky account.
Set CLICKY_SITE_ID in the project settings.py file:

CLICKY_SITE_ID = 'XXXXXXXX'

If you do not set a Site ID, the tracking code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the CLICKY_INTERNAL_IPS setting, the tracking code is commented out.
It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS by default). See
Identifying authenticated users for important information about detecting the visitor IP address.

Custom data

As described in the Clicky customized tracking documentation page, the data that is tracked by Clicky can be cus-
tomized by setting the clicky_custom Javascript variable before loading the tracking code. Using template context

14 Chapter 2. Contents

http://getclicky.com/
http://getclicky.com/help/customization

Documentation for django-analytical, Release 3.1.0

variables, you can let the clicky tag pass custom data to Clicky automatically. You can set the context variables in
your view when you render a template containing the tracking code:

context = RequestContext({'clicky_title': 'A better page title'})
return some_template.render(context)

It is annoying to do this for every view, so you may want to set custom properties in a context processor that you add
to the TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def clicky_global_properties(request):
return {'clicky_timeout': 10}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

Here is a table with the most important variables. All variables listed on the customized tracking documentation page
can be set by replacing clicky_custom. with clicky_.

Context vari-
able

Clicky prop-
erty

Description

clicky_sessionsession Session data. A dictionary containing username and/or group keys.
clicky_goal goal A succeeded goal. A dictionary containing id and optionally revenue keys.
clicky_split split Split testing page version. A dictionary containing name, version and op-

tionally goal keys.
clicky_href href The URL as tracked by Clicky. Default is the page URL.
clicky_title title The page title as tracked by Clicky. Default is the HTML title.

Identifying authenticated users

If you have not set the session property explicitly, the username of an authenticated user is passed to Clicky automati-
cally. See Identifying authenticated users.

Thanks go to Clicky for their support with the development of this application.

2.4.4 Crazy Egg – visual click tracking

Crazy Egg is an easy to use hosted web application that visualizes website clicks using heatmaps. It allows you to
discover the areas of web pages that are most important to your visitors.

Installation

To start using the Crazy Egg integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and configu-
ration for details.

Next you need to add the Crazy Egg template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The Crazy Egg tracking code is inserted into templates using a template tag. Load the crazy_egg template tag
library and insert the crazy_egg tag. Because every page that you want to track must have the tag, it is useful to
add it to your base template. Insert the tag at the bottom of the HTML body:

2.4. Services 15

http://getclicky.com/help/customization
http://getclicky.com/help/customization#session
http://getclicky.com/help/customization#goal
http://getclicky.com/help/customization#split
http://getclicky.com/help/customization#href
http://getclicky.com/help/customization#title
http://getclicky.com/help/customization#session
http://www.crazyegg.com/

Documentation for django-analytical, Release 3.1.0

{% load crazy_egg %}
...
{% crazy_egg %}
</body>
</html>

Configuration

Before you can use the Crazy Egg integration, you must first set your account number. You can also segment the click
analysis through user variables.

Setting the account number

Crazy Egg gives you a unique account number, and the crazy egg tag will include it in the rendered Javascript
code. You can find your account number by clicking the link named “What’s my code?” in the dashboard of your
Crazy Egg account. Set CRAZY_EGG_ACCOUNT_NUMBER in the project settings.py file:

CRAZY_EGG_ACCOUNT_NUMBER = 'XXXXXXXX'

If you do not set an account number, the tracking code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the CRAZY_EGG_INTERNAL_IPS setting, the tracking code is commented
out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS by default).
See Identifying authenticated users for important information about detecting the visitor IP address.

User variables

Crazy Egg can segment clicks based on user variables. If you want to set a user variable, use the context variables
crazy_egg_var1 through crazy_egg_var5 when you render your template:

context = RequestContext({'crazy_egg_var1': 'red',
'crazy_egg_var2': 'male'})

return some_template.render(context)

If you use the same user variables in different views and its value can be computed from the HTTP request, you can also
set them in a context processor that you add to the TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def track_admin_role(request):
if request.user.is_staff():

role = 'staff'
else:

role = 'visitor'
return {'crazy_egg_var3': role}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

16 Chapter 2. Contents

https://www.crazyegg.com/help/Setting_Up_A_Page_to_Track/How_do_I_set_the_values_of_User_Var_1_User_Var_2_etc_in_the_confetti_and_overlay_views/

Documentation for django-analytical, Release 3.1.0

The work on Crazy Egg was made possible by Bateau Knowledge. Thanks go to Crazy Egg for their support with the
development of this application.

2.4.5 Facebook Pixel – advertising analytics

Facebook Pixel is Facebook’s tool for conversion tracking, optimisation and remarketing.

Installation

To start using the Facebook Pixel integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the Facebook Pixel template tag to your templates. This step is only needed if you are not using
the generic analytical.* tags. If you are, skip to Configuration.

The Facebook Pixel code is inserted into templates using template tags. Because every page that you want to track
must have the tag, it is useful to add it to your base template. At the top of the template, load the facebook_pixel
template tag library. Then insert the facebook_pixel_head tag at the bottom of the head section, and optionally
insert the facebook_pixel_body tag at the bottom of the body section:

{% load facebook_pixel %}
<html>
<head>
...
{% facebook_pixel_head %}
</head>
<body>
...
{% facebook_pixel_body %}
</body>
</html>

Note: The facebook_pixel_body tag code will only be used for browsers with JavaScript disabled. It can be
omitted if you don’t need to support them.

Configuration

Before you can use the Facebook Pixel integration, you must first set your Pixel ID.

Setting the Pixel ID

Each Facebook Adverts account you have can have a Pixel ID, and the facebook_pixel tags will include it
in the rendered page. You can find the Pixel ID on the “Pixels” section of your Facebook Adverts account. Set
FACEBOOK_PIXEL_ID in the project settings.py file:

FACEBOOK_PIXEL_ID = 'XXXXXXXXXX'

If you do not set a Pixel ID, the code will not be rendered.

2.4. Services 17

http://www.bateauknowledge.nl/
https://developers.facebook.com/docs/facebook-pixel/

Documentation for django-analytical, Release 3.1.0

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the FACEBOOK_PIXEL_INTERNAL_IPS setting, the tracking code is
commented out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS
by default). See Identifying authenticated users for important information about detecting the visitor IP address.

2.4.6 Gaug.es – Real-time tracking

Gaug.es is an easy way to implement real-time tracking for multiple websites.

Installation

To start using the Gaug.es integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and configu-
ration for details.

Next you need to add the Gaug.es template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The Gaug.es Javascript code is inserted into templates using a template tag. Load the gauges template tag library
and insert the gauges tag. Because every page that you want to track must have the tag, it is useful to add it to your
base template. Insert the tag at the top of the HTML head:

{% load gauges %}
<html>
<head>
{% gauges %}
...

Configuration

Before you can use the Gaug.es integration, you must first set your site id.

Setting the site id

Gaug.es gives you a unique site id, and the gauges tag will include it in the rendered Javascript code. You can find
your site id by clicking the Tracking Code link when logged into the on the gaug.es website. A page will display
containing HTML code looking like this:

<script type="text/javascript">
var _gauges = _gauges || [];
(function() {
var t = document.createElement('script');
t.type = 'text/javascript';
t.async = true;
t.id = 'gauges-tracker';
t.setAttribute('data-site-id', 'XXXXXXXXXXXXXXXXXXXXXXX');
t.src = '//secure.gaug.es/track.js';
var s = document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(t, s);

(continues on next page)

18 Chapter 2. Contents

http://www.gaug.es/

Documentation for django-analytical, Release 3.1.0

(continued from previous page)

})();
</script>

The code XXXXXXXXXXXXXXXXXXXXXXX is your site id. Set GAUGES_SITE_ID in the project settings.py
file:

GAUGES_SITE_ID = 'XXXXXXXXXXXXXXXXXXXXXXX'

If you do not set an site id, the Javascript code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the ANALYTICAL_INTERNAL_IPS setting (which is INTERNAL_IPS
by default,) the tracking code is commented out. See Identifying authenticated users for important information about
detecting the visitor IP address.

2.4.7 Google Analytics (legacy) – traffic analysis

Google Analytics is the well-known web analytics service from Google. The product is aimed more at marketers than
webmasters or technologists, supporting integration with AdWords and other e-commence features.

Installation

To start using the Google Analytics (legacy) integration, you must have installed the django-analytical package and
have added the analytical application to INSTALLED_APPS in your project settings.py file. See Installa-
tion and configuration for details.

Next you need to add the Google Analytics template tag to your templates. This step is only needed if you are not
using the generic analytical.* tags. If you are, skip to Configuration.

The Google Analytics tracking code is inserted into templates using a template tag. Load the google_analytics
template tag library and insert the google_analytics tag. Because every page that you want to track must have
the tag, it is useful to add it to your base template. Insert the tag at the bottom of the HTML head:

{% load google_analytics %}
<html>
<head>
...
{% google_analytics %}
</head>
...

Configuration

Before you can use the Google Analytics integration, you must first set your website property ID. If you track multiple
domains with the same code, you also need to set-up the domain. Finally, you can add custom segments for Google
Analytics to track.

2.4. Services 19

http://www.google.com/analytics/

Documentation for django-analytical, Release 3.1.0

Setting the property ID

Every website you track with Google Analytics gets its own property ID, and the google_analytics tag will
include it in the rendered Javascript code. You can find the web property ID on the overview page of your account.
Set GOOGLE_ANALYTICS_PROPERTY_ID in the project settings.py file:

GOOGLE_ANALYTICS_PROPERTY_ID = 'UA-XXXXXX-X'

If you do not set a property ID, the tracking code will not be rendered.

Tracking multiple domains

The default code is suitable for tracking a single domain. If you track multiple domains, set
the GOOGLE_ANALYTICS_TRACKING_STYLE setting to one of the analytical.templatetags.
google_analytics.TRACK_* constants:

Constant Value Description
TRACK_SINGLE_DOMAIN 1 Track one domain.
TRACK_MULTIPLE_SUBDOMAINS2 Track multiple subdomains of the same top domain (e.g. fr.example.com

and nl.example.com).
TRACK_MULTIPLE_DOMAINS3 Track multiple top domains (e.g. example.fr and example.nl).

As noted, the default tracking style is TRACK_SINGLE_DOMAIN.

When you track multiple (sub)domains, django-analytical needs to know what domain name to pass to Google
Analytics. If you use the contrib sites app, the domain is automatically picked up from the current Site
instance. Otherwise, you may either pass the domain to the template tag through the context variable
google_analytics_domain (fallback: analytical_domain) or set it in the project settings.py file
using GOOGLE_ANALYTICS_DOMAIN (fallback: ANALYTICAL_DOMAIN).

Display Advertising

Display Advertising allows you to view Demographics and Interests reports, add Remarketing Lists and support Dou-
bleClick Campain Manager integration.

You can enable Display Advertising features by setting the GOOGLE_ANALYTICS_DISPLAY_ADVERTISING con-
figuration setting:

GOOGLE_ANALYTICS_DISPLAY_ADVERTISING = True

By default, display advertising features are disabled.

Tracking site speed

You can view page load times in the Site Speed report by setting the GOOGLE_ANALYTICS_SITE_SPEED config-
uration setting:

GOOGLE_ANALYTICS_SITE_SPEED = True

By default, page load times are not tracked.

20 Chapter 2. Contents

https://support.google.com/analytics/answer/3450482
https://support.google.com/analytics/answer/1205784

Documentation for django-analytical, Release 3.1.0

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the GOOGLE_ANALYTICS_INTERNAL_IPS setting, the tracking code is
commented out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS
by default). See Identifying authenticated users for important information about detecting the visitor IP address.

Custom variables

As described in the Google Analytics custom variables documentation page, you can define custom segments. Using
template context variables google_analytics_var1 through google_analytics_var5, you can let the
google_analytics tag pass custom variables to Google Analytics automatically. You can set the context variables
in your view when your render a template containing the tracking code:

context = RequestContext({'google_analytics_var1': ('gender', 'female'),
'google_analytics_var2': ('visit', '1', SCOPE_SESSION)})

return some_template.render(context)

The value of the context variable is a tuple (name, value, [scope]). The scope parameter is one of the analytical.
templatetags.google_analytics.SCOPE_* constants:

Constant Value Description
SCOPE_VISITOR 1 Distinguishes categories of visitors across multiple sessions.
SCOPE_SESSION 2 Distinguishes different visitor experiences across sessions.
SCOPE_PAGE 3 Defines page-level activity.

The default scope is SCOPE_PAGE.

You may want to set custom variables in a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def google_analytics_segment_language(request):
try:

return {'google_analytics_var3': request.LANGUAGE_CODE}
except AttributeError:

return {}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

Anonymize IPs

You can enable the IP anonymization feature by setting the GOOGLE_ANALYTICS_ANONYMIZE_IP configuration
setting:

GOOGLE_ANALYTICS_ANONYMIZE_IP = True

This may be mandatory for deployments in countries that have a firm policies concerning data privacy (e.g. Germany).

By default, IPs are not anonymized.

2.4. Services 21

http://code.google.com/apis/analytics/docs/tracking/gaTrackingCustomVariables.html
https://support.google.com/analytics/bin/answer.py?hl=en&answer=2763052

Documentation for django-analytical, Release 3.1.0

Sample Rate

You can configure the Sample Rate feature by setting the GOOGLE_ANALYTICS_SAMPLE_RATE configuration
setting:

GOOGLE_ANALYTICS_SAMPLE_RATE = 10

The value is a percentage and can be between 0 and 100 and can be a string or decimal value of with up to two decimal
places.

Site Speed Sample Rate

You can configure the Site Speed Sample Rate feature by setting the
GOOGLE_ANALYTICS_SITE_SPEED_SAMPLE_RATE configuration setting:

GOOGLE_ANALYTICS_SITE_SPEED_SAMPLE_RATE = 10

The value is a percentage and can be between 0 and 100 and can be a string or decimal value of with up to two decimal
places.

Session Cookie Timeout

You can configure the Session Cookie Timeout feature by setting the
GOOGLE_ANALYTICS_SESSION_COOKIE_TIMEOUT configuration setting:

GOOGLE_ANALYTICS_SESSION_COOKIE_TIMEOUT = 3600000

The value is the session cookie timeout in milliseconds or 0 to delete the cookie when the browser is closed.

Visitor Cookie Timeout

You can configure the Visitor Cookie Timeout feature by setting the GOOGLE_ANALYTICS_VISITOR_COOKIE_TIMEOUT
configuration setting:

GOOGLE_ANALYTICS_VISITOR_COOKIE_TIMEOUT = 3600000

The value is the visitor cookie timeout in milliseconds or 0 to delete the cookie when the browser is closed.

2.4.8 Google Analytics (gtag.js) – traffic analysis

Google Analytics is the well-known web analytics service from Google. The product is aimed more at marketers than
webmasters or technologists, supporting integration with AdWords and other e-commence features. The global site
tag (gtag.js) is a JavaScript tagging framework and API that allows you to send event data to Google Analytics, Google
Ads, and Google Marketing Platform.

Installation

To start using the Google Analytics integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

22 Chapter 2. Contents

https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_setsamplerate
https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_setsitespeedsamplerate
https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_setsessioncookietimeout
https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_setvisitorcookietimeout
http://www.google.com/analytics/
https://developers.google.com/analytics/devguides/collection/gtagjs/

Documentation for django-analytical, Release 3.1.0

Next you need to add the Google Analytics template tag to your templates. This step is only needed if you are not
using the generic analytical.* tags. If you are, skip to Configuration.

The Google Analytics tracking code is inserted into templates using a template tag. Load the
google_analytics_gtag template tag library and insert the google_analytics_gtag tag. Because ev-
ery page that you want to track must have the tag, it is useful to add it to your base template. Insert the tag at the
bottom of the HTML head:

{% load google_analytics_gtag %}
<html>
<head>
{% google_analytics_gtag %}
...
</head>
...

Configuration

Before you can use the Google Analytics integration, you must first set your website property ID. If you track multiple
domains with the same code, you also need to set-up the domain. Finally, you can add custom segments for Google
Analytics to track.

Setting the property ID

Every website you track with Google Analytics gets its own property ID, and the google_analytics_gtag tag
will include it in the rendered Javascript code. You can find the web property ID on the overview page of your account.
Set GOOGLE_ANALYTICS_GTAG_PROPERTY_ID in the project settings.py file:

GOOGLE_ANALYTICS_GTAG_PROPERTY_ID = 'UA-XXXXXX-X'

If you do not set a property ID, the tracking code will not be rendered.

Please note that the accepted Property IDs should be one of the following formats:

• ‘UA-XXXXXX-Y’

• ‘AW-XXXXXXXXXX’

• ‘G-XXXXXXXX’

• ‘DC-XXXXXXXX’

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the GOOGLE_ANALYTICS_INTERNAL_IPS setting, the tracking code is
commented out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS
by default). See Identifying authenticated users for important information about detecting the visitor IP address.

Identifying authenticated users

The username of an authenticated user is passed to Google Analytics automatically as the user_id. See Identifying
authenticated users.

2.4. Services 23

Documentation for django-analytical, Release 3.1.0

2.4.9 Google Analytics (analytics.js) – traffic analysis

Google Analytics is the well-known web analytics service from Google. The product is aimed more at marketers than
webmasters or technologists, supporting integration with AdWords and other e-commence features. The analytics.js
library (also known as “the Google Analytics tag”) is a JavaScript library for measuring how users interact with your
website.

Installation

To start using the Google Analytics integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the Google Analytics template tag to your templates. This step is only needed if you are not
using the generic analytical.* tags. If you are, skip to Configuration.

The Google Analytics tracking code is inserted into templates using a template tag. Load the
google_analytics_js template tag library and insert the google_analytics_js tag. Because every page
that you want to track must have the tag, it is useful to add it to your base template. Insert the tag at the bottom of the
HTML head:

{% load google_analytics_js %}
<html>
<head>
...
{% google_analytics_js %}
</head>
...

Configuration

Before you can use the Google Analytics integration, you must first set your website property ID. If you track multiple
domains with the same code, you also need to set-up the domain. Finally, you can add custom segments for Google
Analytics to track.

Setting the property ID

Every website you track with Google Analytics gets its own property ID, and the google_analytics_js tag will
include it in the rendered Javascript code. You can find the web property ID on the overview page of your account.
Set GOOGLE_ANALYTICS_JS_PROPERTY_ID in the project settings.py file:

GOOGLE_ANALYTICS_JS_PROPERTY_ID = 'UA-XXXXXXXX-X'

If you do not set a property ID, the tracking code will not be rendered.

Tracking multiple domains

The default code is suitable for tracking a single domain. If you track multiple domains, set
the GOOGLE_ANALYTICS_TRACKING_STYLE setting to one of the analytical.templatetags.
google_analytics_js.TRACK_* constants:

24 Chapter 2. Contents

http://www.google.com/analytics/
https://developers.google.com/analytics/devguides/collection/analyticsjs/

Documentation for django-analytical, Release 3.1.0

Constant Value Description
TRACK_SINGLE_DOMAIN 1 Track one domain.
TRACK_MULTIPLE_SUBDOMAINS2 Track multiple subdomains of the same top domain (e.g. fr.example.com

and nl.example.com).
TRACK_MULTIPLE_DOMAINS3 Track multiple top domains (e.g. example.fr and example.nl).

As noted, the default tracking style is TRACK_SINGLE_DOMAIN.

When you track multiple (sub)domains, django-analytical needs to know what domain name to pass to Google
Analytics. If you use the contrib sites app, the domain is automatically picked up from the current Site
instance. Otherwise, you may either pass the domain to the template tag through the context variable
google_analytics_domain (fallback: analytical_domain) or set it in the project settings.py file
using GOOGLE_ANALYTICS_DOMAIN (fallback: ANALYTICAL_DOMAIN).

Display Advertising

Display Advertising allows you to view Demographics and Interests reports, add Remarketing Lists and support Dou-
bleClick Campain Manager integration.

You can enable Display Advertising features by setting the GOOGLE_ANALYTICS_DISPLAY_ADVERTISING con-
figuration setting:

GOOGLE_ANALYTICS_DISPLAY_ADVERTISING = True

By default, display advertising features are disabled.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the GOOGLE_ANALYTICS_INTERNAL_IPS setting, the tracking code is
commented out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS
by default). See Identifying authenticated users for important information about detecting the visitor IP address.

Custom variables

As described in the Google Analytics custom variables documentation page, you can define custom segments. Using
template context variables google_analytics_var1 through google_analytics_var5, you can let the
google_analytics_js tag pass custom variables to Google Analytics automatically. You can set the context
variables in your view when your render a template containing the tracking code:

context = RequestContext({'google_analytics_var1': ('gender', 'female'),
'google_analytics_var2': ('visit', 1)})

return some_template.render(context)

The value of the context variable is a tuple (name, value).

You may want to set custom variables in a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def google_analytics_segment_language(request):
try:

return {'google_analytics_var3': request.LANGUAGE_CODE}

(continues on next page)

2.4. Services 25

https://support.google.com/analytics/answer/3450482
https://developers.google.com/analytics/devguides/collection/upgrade/reference/gajs-analyticsjs#custom-vars

Documentation for django-analytical, Release 3.1.0

(continued from previous page)

except AttributeError:
return {}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

Anonymize IPs

You can enable the IP anonymization feature by setting the GOOGLE_ANALYTICS_ANONYMIZE_IP configuration
setting:

GOOGLE_ANALYTICS_ANONYMIZE_IP = True

This may be mandatory for deployments in countries that have a firm policies concerning data privacy (e.g. Germany).

By default, IPs are not anonymized.

Sample Rate

You can configure the Sample Rate feature by setting the GOOGLE_ANALYTICS_SAMPLE_RATE configuration
setting:

GOOGLE_ANALYTICS_SAMPLE_RATE = 10

The value is a percentage and can be between 0 and 100 and can be a string or integer value.

Site Speed Sample Rate

You can configure the Site Speed Sample Rate feature by setting the
GOOGLE_ANALYTICS_SITE_SPEED_SAMPLE_RATE configuration setting:

GOOGLE_ANALYTICS_SITE_SPEED_SAMPLE_RATE = 10

The value is a percentage and can be between 0 and 100 and can be a string or integer value.

Cookie Expiration

You can configure the Cookie Expiration feature by setting the GOOGLE_ANALYTICS_COOKIE_EXPIRATION
configuration setting:

GOOGLE_ANALYTICS_COOKIE_EXPIRATION = 3600000

The value is the cookie expiration in seconds or 0 to delete the cookie when the browser is closed.

2.4.10 GoSquared – traffic monitoring

GoSquared provides both real-time traffic monitoring and and trends. It tells you what is currently happening at your
website, what is popular, locate and identify visitors and track twitter.

26 Chapter 2. Contents

https://support.google.com/analytics/bin/answer.py?hl=en&answer=2763052
https://developers.google.com/analytics/devguides/collection/analyticsjs/field-reference#sampleRate
https://developers.google.com/analytics/devguides/collection/analyticsjs/field-reference#siteSpeedSampleRate
https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_setsessioncookietimeout
http://www.gosquared.com/

Documentation for django-analytical, Release 3.1.0

Installation

To start using the GoSquared integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the GoSquared template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The GoSquared tracking code is inserted into templates using a template tag. Load the gosquared template tag
library and insert the gosquared tag. Because every page that you want to track must have the tag, it is useful to
add it to your base template. Insert the tag at the bottom of the HTML body:

{% load gosquared %}
...
{% gosquared %}
</body>
</html>

Configuration

When you set up a website to be tracked by GoSquared, it assigns the site a token. You can find the token on the
Tracking Code tab of your website settings page. Set GOSQUARED_SITE_TOKEN in the project settings.py
file:

GOSQUARED_SITE_TOKEN = 'XXX-XXXXXX-X'

If you do not set a site token, the tracking code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the GOSQUARED_INTERNAL_IPS setting, the tracking code is commented
out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS by default).
See Identifying authenticated users for important information about detecting the visitor IP address.

Identifying authenticated users

If your websites identifies visitors, you can pass this information on to GoSquared to display on the LiveStats dash-
board. By default, the name of an authenticated user is passed to GoSquared automatically. See Identifying authenti-
cated users.

You can also send the visitor identity yourself by adding either the gosquared_identity or the
analytical_identity variable to the template context. If both variables are set, the former takes precedence.
For example:

context = RequestContext({'gosquared_identity': identity})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

2.4. Services 27

Documentation for django-analytical, Release 3.1.0

def identify(request):
try:

return {'gosquared_identity': request.user.username}
except AttributeError:

return {}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

Thanks go to GoSquared for their support with the development of this application.

2.4.11 Heap – analytics and events tracking

Heap automatically captures all user interactions on your site, from the moment of installation forward.

Installation

To start using the Heap integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and con-
figuration for details.

Configuration

Before you can use the Heap integration, you must first get your Heap Tracker ID. If you don’t have a Heap account
yet, sign up to get your Tracker ID.

Setting the Tracker ID

Heap gives you a unique ID. You can find this ID on the Projects page of your Heap account. Set HEAP_TRACKER_ID
in the project settings.py file:

HEAP_TRACKER_ID = 'XXXXXXXX'

If you do not set an Tracker ID, the tracking code will not be rendered.

The tracking code will be added just before the closing head tag.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the ANALYTICAL_INTERNAL_IPS setting (which is INTERNAL_IPS
by default,) the tracking code is commented out. See Identifying authenticated users for important information about
detecting the visitor IP address.

2.4.12 Hotjar – analytics and user feedback

Hotjar is a website analytics and user feedback tool.

28 Chapter 2. Contents

https://heap.io/
https://heap.io/
https://www.hotjar.com/

Documentation for django-analytical, Release 3.1.0

Installation

To start using the Hotjar integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and con-
figuration for details.

Next you need to add the Hotjar template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The Hotjar code is inserted into templates using template tags. Because every page that you want to track must have
the tag, it is useful to add it to your base template. At the top of the template, load the hotjar template tag library.
Then insert the hotjar tag at the bottom of the head section:

{% load hotjar %}
<html>
<head>
...
{% hotjar %}
</head>
...
</html>

Configuration

Before you can use the Hotjar integration, you must first set your Site ID.

Setting the Hotjar Site ID

You can find the Hotjar Site ID in the “Sites & Organizations” section of your Hotjar account. Set HOTJAR_SITE_ID
in the project settings.py file:

HOTJAR_SITE_ID = 'XXXXXXXXX'

If you do not set a Hotjar Site ID, the code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the HOTJAR_INTERNAL_IPS setting, the tracking code is commented out.
It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS by default). See
Identifying authenticated users for important information about detecting the visitor IP address.

2.4.13 HubSpot – inbound marketing

HubSpot helps you get found by customers. It provides tools for content creation, conversion and marketing analysis.
HubSpot uses tracking on your website to measure effect of your marketing efforts.

Installation

To start using the HubSpot integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and configu-
ration for details.

2.4. Services 29

http://www.hubspot.com/

Documentation for django-analytical, Release 3.1.0

Next you need to add the HubSpot template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The HubSpot tracking code is inserted into templates using a template tag. Load the hubspot template tag library
and insert the hubspot tag. Because every page that you want to track must have the tag, it is useful to add it to your
base template. Insert the tag at the bottom of the HTML body:

{% load hubspot %}
...
{% hubspot %}
</body>
</html>

Configuration

Before you can use the HubSpot integration, you must first set your portal ID, also known as your Hub ID.

Setting the portal ID

Your HubSpot account has its own portal ID, the hubspot tag will include them in the rendered JavaScript
code. You can find the portal ID by accessing your dashboard. Alternatively, read this Quick Answer page. Set
HUBSPOT_PORTAL_ID in the project settings.py file:

HUBSPOT_PORTAL_ID = 'XXXX'

If you do not set the portal ID, the tracking code will not be rendered.

Deprecated since version 0.18.0: HUBSPOT_DOMAIN is no longer required.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the HUBSPOT_INTERNAL_IPS setting, the tracking code is commented
out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS by default).
See Identifying authenticated users for important information about detecting the visitor IP address.

2.4.14 Intercom.io – Real-time tracking

Intercom.io is an easy way to implement real-chat and individual support for a website

Installation

To start using the Intercom.io integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the Intercom.io template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The Intercom.io Javascript code is inserted into templates using a template tag. Load the intercom template tag
library and insert the intercom tag. Because every page that you want to track must have the tag, it is useful to add
it to your base template. Insert the tag at the bottom of the HTML body:

30 Chapter 2. Contents

http://help.hubspot.com/articles/KCS_Article/Where-can-I-find-my-HUB-ID
http://www.intercom.io/

Documentation for django-analytical, Release 3.1.0

{% load intercom %}
<html>
<head></head>
<body>
<!-- Your page -->
{% intercom %}
</body>
</html>
...

Configuration

Before you can use the Intercom.io integration, you must first set your app id.

Setting the app id

Intercom.io gives you a unique app id, and the intercom tag will include it in the rendered Javascript code. You
can find your app id by clicking the Tracking Code link when logged into the on the intercom.io website. A page will
display containing HTML code looking like this:

<script id="IntercomSettingsScriptTag">
window.intercomSettings = { name: "Jill Doe", email: "jill@example.com", created_

→˓at: 1234567890, app_id: "XXXXXXXXXXXXXXXXXXXXXXX" };
</script>
<script>(function(){var w=window;var ic=w.Intercom;if(typeof ic==="function"){ic(
→˓'reattach_activator');ic('update',intercomSettings);}else{var d=document;var
→˓i=function(){i.c(arguments)};i.q=[];i.c=function(args){i.q.push(args)};w.Intercom=i;
→˓function l(){var s=d.createElement('script');s.type='text/javascript';s.async=true;
→˓s.src='https://static.intercomcdn.com/intercom.v1.js';var x=d.getElementsByTagName(
→˓'script')[0];x.parentNode.insertBefore(s,x);}if(w.attachEvent){w.attachEvent('onload
→˓',l);}else{w.addEventListener('load',l,false);}}})()</script>

The code XXXXXXXXXXXXXXXXXXXXXXX is your app id. Set INTERCOM_APP_ID in the project settings.py
file:

INTERCOM_APP_ID = 'XXXXXXXXXXXXXXXXXXXXXXX'

If you do not set an app id, the Javascript code will not be rendered.

Custom data

As described in the Intercom documentation on custom visitor data, the data that is tracked by Intercom can be cus-
tomized. Using template context variables, you can let the intercom tag pass custom data to Intercom automatically.
You can set the context variables in your view when your render a template containing the tracking code:

context = RequestContext({'intercom_cart_value': cart.total_price})
return some_template.render(context)

For some data, it is annoying to do this for every view, so you may want to set variables in a context processor that
you add to the TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

2.4. Services 31

https://www.intercom.com/help/configure-intercom-for-your-product-or-site/customize-intercom-to-be-about-your-users/send-custom-user-attributes-to-intercom

Documentation for django-analytical, Release 3.1.0

from django.utils.hashcompat import md5_constructor as md5

GRAVATAR_URL = 'http://www.gravatar.com/avatar/'

def intercom_custom_data(request):
try:

email = request.user.email
except AttributeError:

return {}
email_hash = md5(email).hexdigest()
avatar_url = "%s%s" % (GRAVATAR_URL, email_hash)
return {'intercom_avatar': avatar_url}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

Standard variables that will be displayed in the Intercom live visitor data are listed in the table below, but you can
define any intercom_* variable you like and have that detail passed from within the visitor live stream data when
viewing Intercom.

Context variable Description
intercom_name The visitor’s full name.
intercom_email The visitor’s email address.
intercom_user_id The visitor’s user id.
created_at The date the visitor created an account

Identifying authenticated users

If you have not set the intercom_name, intercom_email, or intercom_user_id variables explicitly, the
username and email address of an authenticated user are passed to Intercom automatically. See Identifying authenti-
cated users.

Verifying identified users

Intercom supports HMAC authentication of users identified by user ID or email, in order to prevent impersonation.
For more information, see Enable identity verification on your web product in the Intercom documentation.

To enable this, configure your Intercom account’s HMAC secret key:

INTERCOM_HMAC_SECRET_KEY = 'XXXXXXXXXXXXXXXXXXXXXXX'

(You can find this secret key under the “Identity verification” section of your Intercom account settings page.)

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the ANALYTICAL_INTERNAL_IPS setting (which is INTERNAL_IPS
by default,) the tracking code is commented out. See Identifying authenticated users for important information about
detecting the visitor IP address.

32 Chapter 2. Contents

https://www.intercom.com/help/configure-intercom-for-your-product-or-site/staying-secure/enable-identity-verification-on-your-web-product

Documentation for django-analytical, Release 3.1.0

2.4.15 KISSinsights – feedback surveys

KISSinsights provides unobtrusive surveys that pop up from the bottom right-hand corner of your website. Asking
specific questions gets you the targeted, actionable feedback you need to make your site better.

Installation

To start using the KISSinsights integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the KISSinsights template tag to your templates. This step is only needed if you are not using
the generic analytical.* tags. If you are, skip to Configuration.

The KISSinsights survey code is inserted into templates using a template tag. Load the kiss_insights template
tag library and insert the kiss_insights tag. Because every page that you want to track must have the tag, it is
useful to add it to your base template. Insert the tag at the top of the HTML body:

{% load kiss_insights %}
...
</head>
<body>
{% kiss_insights %}
...

Configuration

Before you can use the KISSinsights integration, you must first set your account number and site code.

Setting the account number and site code

In order to install the survey code, you need to set your KISSinsights account number and website code. The
kiss_insights tag will include it in the rendered Javascript code. You can find the account number and web-
site code by visiting the code installation page of the website you want to place the surveys on. You will see some
HTML code with a Javascript tag with a src attribute containing //s3.amazonaws.com/ki.js/XXXXX/YYY.
js. Here XXXXX is the account number and YYY the website code. Set KISS_INSIGHTS_ACCOUNT_NUMBER and
KISS_INSIGHTS_WEBSITE_CODE in the project settings.py file:

KISSINSIGHTS_ACCOUNT_NUMBER = 'XXXXX'
KISSINSIGHTS_SITE_CODE = 'XXX'

If you do not set the account number and website code, the survey code will not be rendered.

Identifying authenticated users

If your websites identifies visitors, you can pass this information on to KISSinsights so that you can tie survey sub-
missions to customers. By default, the username of an authenticated user is passed to KISSinsights automatically. See
Identifying authenticated users.

You can also send the visitor identity yourself by adding either the kiss_insights_identity or the
analytical_identity variable to the template context. If both variables are set, the former takes precedence.
For example:

2.4. Services 33

http://www.kissinsights.com/

Documentation for django-analytical, Release 3.1.0

context = RequestContext({'kiss_insights_identity': identity})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def identify(request):
try:

return {'kiss_insights_identity': request.user.email}
except AttributeError:

return {}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

Showing a specific survey

KISSinsights can also be told to show a specific survey. You can let the kiss_insights tag include the code to
select a survey by passing the survey ID to the template in the kiss_insights_show_survey context variable:

context = RequestContext({'kiss_insights_show_survey': 1234})
return some_template.render(context)

For information about how to find the survey ID, see the explanation on “How can I show a survey after a custom
trigger condition?” on the KISSinsights help page.

2.4.16 KISSmetrics – funnel analysis

KISSmetrics is an easy to implement analytics solution that provides a powerful visual representation of your customer
lifecycle. Discover how many visitors go from your landing page to pricing to sign up, and how many drop out at each
stage.

Installation

To start using the KISSmetrics integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the KISSmetrics template tag to your templates. This step is only needed if you are not using
the generic analytical.* tags. If you are, skip to Configuration.

The KISSmetrics Javascript code is inserted into templates using a template tag. Load the kiss_metrics template
tag library and insert the kiss_metrics tag. Because every page that you want to track must have the tag, it is
useful to add it to your base template. Insert the tag at the top of the HTML head:

{% load kiss_metrics %}
<html>
<head>
{% kiss_metrics %}
...

34 Chapter 2. Contents

http://www.kissinsights.com/help#customer-trigger
http://www.kissinsights.com/help#customer-trigger
http://www.kissmetrics.com/

Documentation for django-analytical, Release 3.1.0

Configuration

Before you can use the KISSmetrics integration, you must first set your API key.

Setting the API key

Every website you track events for with KISSmetrics gets its own API key, and the kiss_metrics tag will include
it in the rendered Javascript code. You can find the website API key by visiting the website Product center on your
KISSmetrics dashboard. Set KISS_METRICS_API_KEY in the project settings.py file:

KISS_METRICS_API_KEY = 'XX'

If you do not set an API key, the tracking code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags
detect that the client comes from any address in the KISS_METRICS_INTERNAL_IPS setting, the tracking code is
commented out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS
by default). See Identifying authenticated users for important information about detecting the visitor IP address.

Identifying users

If your websites identifies visitors, you can pass this information on to KISSmetrics so that you can tie events to
users. By default, the username of an authenticated user is passed to KISSmetrics automatically. See Identifying
authenticated users.

You can also send the visitor identity yourself by adding either the kiss_metrics_identity or the
analytical_identity variable to the template context. If both variables are set, the former takes precedence.
For example:

context = RequestContext({'kiss_metrics_identity': identity})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def identify(request):
try:

return {'kiss_metrics_identity': request.user.email}
except AttributeError:

return {}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

Alias

Alias is used to associate one identity with another. This most likely will occur if a user is not signed in yet, you assign
them an anonymous identity and record activity for them and they later sign in and you get a named identity.

For example:

2.4. Services 35

Documentation for django-analytical, Release 3.1.0

context = RequestContext({
'kiss_metrics_alias': {'my_registered@email' : 'my_user_id'},

})
return some_template.render(context)

The output script tag will then include the corresponding properties as documented in the KISSmetrics alias API docs.

Recording events

You may tell KISSmetrics about an event by setting a variable in the context.

For example:

context = RequestContext({
'kiss_metrics_event': ['Signed Up', {'Plan' : 'Pro', 'Amount' : 9.99}],

})
return some_template.render(context)

The output script tag will then include the corresponding Javascript event as documented in the KISSmetrics record
API docs.

Recording properties

You may also set KISSmetrics properties without a corresponding event.

For example:

context = RequestContext({
'kiss_metrics_properties': {'gender': 'Male'},

})
return some_template.render(context)

The output script tag will then include the corresponding properties as documented in the KISSmetrics set API docs.

2.4.17 Lucky Orange – All-in-one conversion optimization

Lucky Orange is a website analytics and user feedback tool.

Installation

To start using the Lucky Orange integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the Lucky Orange template tag to your templates. This step is only needed if you are not using
the generic analytical.* tags. If you are, skip to Configuration.

The Lucky Orange tracking code is inserted into templates using template tags. Because every page that you want to
track must have the tag, it is useful to add it to your base template. At the top of the template, load the luckyorange
template tag library. Then insert the luckyorange tag at the bottom of the head section:

36 Chapter 2. Contents

http://support.kissmetrics.com/apis/common-methods#alias
http://support.kissmetrics.com/apis/common-methods#set
http://support.kissmetrics.com/apis/common-methods#set
http://support.kissmetrics.com/apis/common-methods#record
https://www.luckyorange.com/

Documentation for django-analytical, Release 3.1.0

{% load luckyorange %}
<html>
<head>
...
{% luckyorange %}
</head>
...
</html>

Configuration

Before you can use the Lucky Orange integration, you must first set your Site ID.

Setting the Lucky Orange Site ID

You can find the Lucky Orange Site ID in the “Settings” of your Lucky Orange account, reachable via the gear icon
on the top right corner. Set LUCKYORANGE_SITE_ID in the project settings.py file:

LUCKYORANGE_SITE_ID = 'XXXXXX'

If you do not set a Lucky Orange Site ID, the code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags
detect that the client comes from any address in the LUCKYORANGE_INTERNAL_IPS setting, the tracking code is
commented out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS
by default). See Identifying authenticated users for important information about detecting the visitor IP address.

2.4.18 Matomo (formerly Piwik) – open source web analytics

Matomo is an open analytics platform currently used by individuals, companies and governments all over the world.

Installation

To start using the Matomo integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and configu-
ration for details.

Next you need to add the Matomo template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The Matomo tracking code is inserted into templates using a template tag. Load the matomo template tag library and
insert the matomo tag. Because every page that you want to track must have the tag, it is useful to add it to your base
template. Insert the tag at the bottom of the HTML body as recommended by the Matomo best practice for Integration
Plugins:

{% load matomo %}
...
{% matomo %}

(continues on next page)

2.4. Services 37

http://matomo.org/
http://matomo.org/integrate/how-to/
http://matomo.org/integrate/how-to/

Documentation for django-analytical, Release 3.1.0

(continued from previous page)

</body>
</html>

Configuration

Before you can use the Matomo integration, you must first define domain name and optional URI path to your Matomo
server, as well as the Matomo ID of the website you’re tracking with your Matomo server, in your project settings.

Setting the domain

Your Django project needs to know where your Matomo server is located. Typically, you’ll have Matomo installed on
a subdomain of its own (e.g. matomo.example.com), otherwise it runs in a subdirectory of a website of yours (e.g.
www.example.com/matomo). Set MATOMO_DOMAIN_PATH in the project settings.py file accordingly:

MATOMO_DOMAIN_PATH = 'matomo.example.com'

If you do not set a domain the tracking code will not be rendered.

Setting the site ID

Your Matomo server can track several websites. Each website has its site ID (this is the idSite parameter in the
query string of your browser’s address bar when you visit the Matomo Dashboard). Set MATOMO_SITE_ID in the
project settings.py file to the value corresponding to the website you’re tracking:

MATOMO_SITE_ID = '4'

If you do not set the site ID the tracking code will not be rendered.

User variables

Matomo supports sending custom variables along with default statistics. If you want to set a custom variable, use
the context variable matomo_vars when you render your template. It should be an iterable of custom variables
represented by tuples like: (index, name, value[, scope]), where scope may be 'page' (default) or
'visit'. index should be an integer and the other parameters should be strings.

context = Context({
'matomo_vars': [(1, 'foo', 'Sir Lancelot of Camelot'),

(2, 'bar', 'To seek the Holy Grail', 'page'),
(3, 'spam', 'Blue', 'visit')]

})
return some_template.render(context)

Matomo default settings allow up to 5 custom variables for both scope. Variable mapping between index and name
must stay constant, or the latest name override the previous one.

If you use the same user variables in different views and its value can be computed from the HTTP request, you can also
set them in a context processor that you add to the TEMPLATE_CONTEXT_PROCESSORS list in settings.py.

38 Chapter 2. Contents

http://developer.matomo.org/guides/tracking-javascript-guide#custom-variables

Documentation for django-analytical, Release 3.1.0

User tracking

If you use the standard Django authentication system, you can allow Matomo to track individual users by setting the
ANALYTICAL_AUTO_IDENTIFY setting to True. This is enabled by default. Matomo will identify users based on
their username.

If you disable this settings, or want to customize what user id to use, you can set the context variable
analytical_identity (for global configuration) or matomo_identity (for Matomo specific configuration).
Setting one to None will disable the user tracking feature:

Matomo will identify this user as 'BDFL' if ANALYTICAL_AUTO_IDENTIFY is True or
→˓unset
request.user = User(username='BDFL', first_name='Guido', last_name='van Rossum')

Matomo will identify this user as 'Guido van Rossum'
request.user = User(username='BDFL', first_name='Guido', last_name='van Rossum')
context = Context({

'matomo_identity': request.user.get_full_name()
})

Matomo will not identify this user (but will still collect statistics)
request.user = User(username='BDFL', first_name='Guido', last_name='van Rossum')
context = Context({

'matomo_identity': None
})

Disabling cookies

If you want to disable cookies, set MATOMO_DISABLE_COOKIES to True. This is disabled by default.

Internal IP addresses

Usually, you do not want to track clicks from your development or internal IP addresses. By default, if the tags
detect that the client comes from any address in the ANALYTICAL_INTERNAL_IPS (which takes the value of
INTERNAL_IPS by default) the tracking code is commented out. See Identifying authenticated users for important
information about detecting the visitor IP address.

2.4.19 Mixpanel – event tracking

Mixpanel tracks events and actions to see what features users are using the most and how they are trending. You could
use it for real-time analysis of visitor retention or funnels.

Installation

To start using the Mixpanel integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and configu-
ration for details.

Next you need to add the Mixpanel template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

2.4. Services 39

http://developer.matomo.org/guides/tracking-javascript-guide#user-id
https://matomo.org/faq/general/faq_157/
http://www.mixpanel.com/

Documentation for django-analytical, Release 3.1.0

The Mixpanel Javascript code is inserted into templates using a template tag. Load the mixpanel template tag library
and insert the mixpanel tag. Because every page that you want to track must have the tag, it is useful to add it to
your base template. Insert the tag at the bottom of the HTML head:

{% load mixpanel %}
...
{% mixpanel %}
</head>
<body>
...

Configuration

Before you can use the Mixpanel integration, you must first set your token.

Setting the token

Every website you track events for with Mixpanel gets its own token, and the mixpanel tag will include it in the
rendered Javascript code. You can find the project token on the Mixpanel projects page. Set MIXPANEL_API_TOKEN
in the project settings.py file:

MIXPANEL_API_TOKEN = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'

If you do not set a token, the tracking code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the MIXPANEL_INTERNAL_IPS setting, the tracking code is commented
out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS by default).
See Identifying authenticated users for important information about detecting the visitor IP address.

Identifying users

If your websites identifies visitors, you can pass this information on to Mixpanel so that you can tie events to users.
By default, the username of an authenticated user is passed to Mixpanel automatically. See Identifying authenticated
users.

You can also send the visitor identity yourself by adding either the mixpanel_identity or the
analytical_identity variable to the template context. If both variables are set, the former takes precedence.
For example:

context = RequestContext({'mixpanel_identity': identity})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def identify(request):
try:

return {'mixpanel_identity': request.user.email}

(continues on next page)

40 Chapter 2. Contents

Documentation for django-analytical, Release 3.1.0

(continued from previous page)

except AttributeError:
return {}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

Mixpanel can also receive properties for your identified user, using mixpanel.people.set. If want to send extra prop-
erties, just set a dictionary instead of a string in the mixpanel_identity context variable. The key id or
username will be used as the user unique id, and any other key-value pair will be passed as people properties.
For example:

def identify(request):
try:

return {
'mixpanel_identity': {

'id': request.user.id,
'last_login': str(request.user.last_login),
'date_joined': str(request.user.date_joined),

}
}

except AttributeError:
return {}

Tracking events

The django-analytical app integrates the Mixpanel Javascript API in templates. To tracking events in views or other
parts of Django, you can use Wes Winham’s mixpanel-celery package.

If you want to track an event in Javascript, use the asynchronous notation, as described in the section titled “Asyn-
chronous Tracking with Javascript” in the Mixpanel documentation. For example:

mixpanel.track("play-game", {"level": "12", "weapon": "sword", "character": "knight"}
→˓);

2.4.20 Olark – visitor chat

Olark is a lightweight tool to chat with visitors to your website using your existing instant messaging client. Chat with
your website visitors while they browse, using your mobile device or instant messenger. Olark is fully customizable,
supports multiple operators and keeps chat transcripts.

Installation

To start using the Olark integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and con-
figuration for details.

Next you need to add the Olark template tag to your templates. This step is only needed if you are not using the generic
analytical.* tags. If you are, skip to Configuration.

The Olark Javascript code is inserted into templates using a template tag. Load the olark template tag library and
insert the olark tag. Because every page that you want to track must have the tag, it is useful to add it to your base
template. Insert the tag at the bottom of the HTML body:

2.4. Services 41

https://mixpanel.com/help/reference/javascript-full-api-reference#mixpanel.people.set
http://github.com/winhamwr/mixpanel-celery
http://mixpanel.com/api/docs/guides/integration/js#async
http://mixpanel.com/api/docs/guides/integration/js#async
http://www.olark.com/

Documentation for django-analytical, Release 3.1.0

{% load olark %}
...
{% olark %}
</body>
</html>

Configuration

Before you can use the Olark integration, you must first set your site ID. You can customize the visitor nickname and
add information to their status in the operator buddy list, and customize the text used in the chat window.

Setting the site ID

In order to install the chat code, you need to set your Olark site ID. The olark tag will include it in the rendered
Javascript code. You can find the site ID on installation page of you Olark account. Set OLARK_SITE_ID in the
project settings.py file:

OLARK_SITE_ID = 'XXXX-XXX-XX-XXXX'

If you do not set the site ID, the chat window will not be rendered.

Setting the visitor nickname

If your website identifies visitors, you can use that to set their nickname in the operator buddy list. By default, the
name and username of an authenticated user are automatically used to set the nickname. See Identifying authenticated
users.

You can also set the visitor nickname yourself by adding either the olark_nickname (alias: olark_identity)
or the analytical_identity variable to the template context. If both variables are set, the former takes prece-
dence. For example:

context = RequestContext({'olark_nickname': nick})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def set_olark_nickname(request):
try:

return {'olark_nickname': request.user.email}
except AttributeError:

return {}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

See also api.chat.updateVisitorNickname in the Olark Javascript API documentation.

Adding status information

If you want to send more information about the visitor to the operators, you can add text snippets to the status field in
the buddy list. Set the olark_status context variable to a string or a list of strings and the olark tag will pass

42 Chapter 2. Contents

https://www.olark.com/install
http://www.olark.com/documentation/javascript/api.chat.updateVisitorNickname

Documentation for django-analytical, Release 3.1.0

them to Olark as status messages:

context = RequestContext({'olark_status': [
'has %d items in cart' % cart.item_count,
'value of items is $%0.2f' % cart.total_value,

]})
return some_template.render(context)

See also api.chat.updateVisitorStatus in the Olark Javascript API documentation.

Customizing the chat window messages

Olark lets you customize the appearance of the Chat window by changing location, colors and messages text. While
you can configure these on the Olark website, sometimes one set of messages is not enough. For example, if you want
to localize your website, you want to address every visitor in their own language. Olark allows you to set the messages
on a per-page basis, and the olark tag supports this feature by way of the following context variables:

Context variable Example message
olark_welcome_title Click to Chat
olark_chatting_title Live Help: Now Chatting
olark_unavailable_title Live Help: Offline
olark_busy_title Live Help: Busy
olark_away_message Our live support feature is currently offline, Please try again later.
olark_loading_title Loading Olark. . .
olark_welcome_message Welcome to my website. You can use this chat window to chat with

me.
olark_busy_message All of our representatives are with other customers at this time. We

will be with you shortly.
olark_chat_input_text Type here and hit to chat
olark_name_input_text and type your Name
olark_email_input_text and type your Email
olark_offline_note_message We are offline, send us a message
olark_send_button_text Send
olark_offline_note_thankyou_textThank you for your message. We will get back to you as soon as we

can.
olark_offline_note_error_text You must complete all fields and specify a valid email address
olark_offline_note_sending_textSending. . .
olark_operator_is_typing_text is typing. . .
olark_operator_has_stopped_typing_texthas stopped typing
olark_introduction_error_text Please leave a name and email address so we can contact you in case

we get disconnected
olark_introduction_messages Welcome, just fill out some brief information and click ‘Start chat’ to

talk to us
olark_introduction_submit_button_textStart chat

As an example, you could set the texts site-wide base on the current language using a context processor that you add
to the TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

OLARK_TEXTS = {
'en': {

'welcome title': "Click for Live Help",
'chatting_title': "Live Help: Now chatting",

(continues on next page)

2.4. Services 43

http://www.olark.com/documentation/javascript/api.chat.updateVisitorStatus

Documentation for django-analytical, Release 3.1.0

(continued from previous page)

...
},
'nl': {

'welcome title': "Klik voor online hulp",
'chatting_title': "Online hulp: in gesprek",
...

},
...

}

def set_olark_texts(request):
lang = request.LANGUAGE_CODE.split('-', 1)[0]
texts = OLARK_TEXTS.get(lang)
if texts is None:

texts = OLARK_TEXTS.get('en')
return dict(('olark_%s' % k, v) for k, v in texts.items())

See also the Olark blog post on supporting multiple languages.

Thanks go to Olark for their support with the development of this application.

2.4.21 Optimizely – A/B testing

Optimizely is an easy way to implement A/B testing. Try different decisions, images, layouts, and copy without
touching your website code and see exactly how your experiments are affecting pageviews, retention and sales.

Installation

To start using the Optimizely integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the Optimizely template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The Optimizely Javascript code is inserted into templates using a template tag. Load the optimizely template tag
library and insert the optimizely tag. Because every page that you want to track must have the tag, it is useful to
add it to your base template. Insert the tag at the top of the HTML head:

{% load optimizely %}
<html>
<head>
{% optimizely %}
...

Configuration

Before you can use the Optimizely integration, you must first set your account number.

44 Chapter 2. Contents

http://www.olark.com/blog/2010/olark-in-your-favorite-language/
http://www.optimizely.com/

Documentation for django-analytical, Release 3.1.0

Setting the account number

Optimizely gives you a unique account number, and the optimizely tag will include it in the rendered Javascript
code. You can find your account number by clicking the Implementation link in the top right-hand corner of the
Optimizely website. A pop-up window will appear containing HTML code looking like this:

<script src="//cdn.optimizely.com/js/XXXXXXX.js"></script>

The number XXXXXXX is your account number. Set OPTIMIZELY_ACCOUNT_NUMBER in the project settings.
py file:

OPTIMIZELY_ACCOUNT_NUMBER = 'XXXXXXX'

If you do not set an account number, the Javascript code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags
detect that the client comes from any address in the OPTIMIZELY_INTERNAL_IPS setting, the tracking code is
commented out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS
by default). See Identifying authenticated users for important information about detecting the visitor IP address.

2.4.22 Performable – web analytics and landing pages

Performable provides a platform for inbound marketing, landing pages and web analytics. Its analytics module tracks
individual customer interaction, funnel and e-commerce analysis. Landing pages can be created and designed on-line,
and integrated with you existing website.

Installation

To start using the Performable integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the Performable template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The Performable Javascript code is inserted into templates using a template tag. Load the performable template
tag library and insert the performable tag. Because every page that you want to track must have the tag, it is useful
to add it to your base template. Insert the tag at the bottom of the HTML body:

{% load performable %}
...
{% performable %}
</body>
</html>

Configuration

Before you can use the Performable integration, you must first set your API key.

2.4. Services 45

http://www.performable.com/

Documentation for django-analytical, Release 3.1.0

Setting the API key

You Performable account has its own API key, which performable tag will include it in the rendered Javascript
code. You can find your API key on the Account Settings page (click ‘Account Settings’ in the top right-hand corner
of your Performable dashboard). Set PERFORMABLE_API_KEY in the project settings.py file:

PERFORMABLE_API_KEY = 'XXXXXX'

If you do not set an API key, the Javascript code will not be rendered.

Identifying authenticated users

If your websites identifies visitors, you can pass this information on to Performable so that you can track individual
users. By default, the username of an authenticated user is passed to Performable automatically. See Identifying
authenticated users.

You can also send the visitor identity yourself by adding either the performable_identity or the
analytical_identity variable to the template context. If both variables are set, the former takes precedence.
For example:

context = RequestContext({'performable_identity': identity})
return some_template.render(context)

If you can derive the identity from the HTTP request, you can also use a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def identify(request):
try:

return {'performable_identity': request.user.email}
except AttributeError:

return {}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags
detect that the client comes from any address in the PERFORMABLE_INTERNAL_IPS setting, the tracking code is
commented out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS
by default). See Identifying authenticated users for important information about detecting the visitor IP address.

Embedding a landing page

You can embed a Performable landing page in your Django website. The performable_embed template tag adds
the Javascript code to embed the page. It takes two arguments: the hostname and the page ID:

{% performable_embed HOSTNAME PAGE_ID %}

To find the hostname and page ID, select Manage → Manage Landing Pages on your Performable dashboard. Select
the landing page you want to embed. Look at the URL in your browser address bar; it will look like this:

46 Chapter 2. Contents

Documentation for django-analytical, Release 3.1.0

http://my.performable.com/s/HOSTNAME/page/PAGE_ID/

(If you are placing the hostname and page id values in the template, do not forget to enclose them in quotes or they
will be considered context variable names.)

Thanks go to Performable for their support with the development of this application.

2.4.23 Piwik (deprecated) – open source web analytics

Piwik is an open analytics platform currently used by individuals, companies and governments all over the world.
With Piwik, your data will always be yours, because you run your own analytics server.

Deprecated

Note that Piwik is now known as Matomo. New projects should use the Matomo integration. The Piwik integration in
django-analytical is deprecated and eventually will be removed.

Installation

To start using the Piwik integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and con-
figuration for details.

Next you need to add the Piwik template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The Piwik tracking code is inserted into templates using a template tag. Load the piwik template tag library and
insert the piwik tag. Because every page that you want to track must have the tag, it is useful to add it to your base
template. Insert the tag at the bottom of the HTML body as recommended by the Piwik best practice for Integration
Plugins:

{% load piwik %}
...
{% piwik %}
</body>
</html>

Configuration

Before you can use the Piwik integration, you must first define domain name and optional URI path to your Piwik
server, as well as the Piwik ID of the website you’re tracking with your Piwik server, in your project settings.

Setting the domain

Your Django project needs to know where your Piwik server is located. Typically, you’ll have Piwik installed on a
subdomain of its own (e.g. piwik.example.com), otherwise it runs in a subdirectory of a website of yours (e.g.
www.example.com/piwik). Set PIWIK_DOMAIN_PATH in the project settings.py file accordingly:

PIWIK_DOMAIN_PATH = 'piwik.example.com'

If you do not set a domain the tracking code will not be rendered.

2.4. Services 47

http://www.piwik.org/
http://piwik.org/integrate/how-to/
http://piwik.org/integrate/how-to/

Documentation for django-analytical, Release 3.1.0

Setting the site ID

Your Piwik server can track several websites. Each website has its site ID (this is the idSite parameter in the query
string of your browser’s address bar when you visit the Piwik Dashboard). Set PIWIK_SITE_ID in the project
settings.py file to the value corresponding to the website you’re tracking:

PIWIK_SITE_ID = '4'

If you do not set the site ID the tracking code will not be rendered.

User variables

Piwik supports sending custom variables along with default statistics. If you want to set a custom variable, use
the context variable piwik_vars when you render your template. It should be an iterable of custom variables
represented by tuples like: (index, name, value[, scope]), where scope may be 'page' (default) or
'visit'. index should be an integer and the other parameters should be strings.

context = Context({
'piwik_vars': [(1, 'foo', 'Sir Lancelot of Camelot'),

(2, 'bar', 'To seek the Holy Grail', 'page'),
(3, 'spam', 'Blue', 'visit')]

})
return some_template.render(context)

Piwik default settings allow up to 5 custom variables for both scope. Variable mapping between index and name must
stay constant, or the latest name override the previous one.

If you use the same user variables in different views and its value can be computed from the HTTP request, you can also
set them in a context processor that you add to the TEMPLATE_CONTEXT_PROCESSORS list in settings.py.

User tracking

If you use the standard Django authentication system, you can allow Piwik to track individual users by setting the
ANALYTICAL_AUTO_IDENTIFY setting to True. This is enabled by default. Piwik will identify users based on
their username.

If you disable this settings, or want to customize what user id to use, you can set the context variable
analytical_identity (for global configuration) or piwik_identity (for Piwik specific configuration). Set-
ting one to None will disable the user tracking feature:

Piwik will identify this user as 'BDFL' if ANALYTICAL_AUTO_IDENTIFY is True or unset
request.user = User(username='BDFL', first_name='Guido', last_name='van Rossum')

Piwik will identify this user as 'Guido van Rossum'
request.user = User(username='BDFL', first_name='Guido', last_name='van Rossum')
context = Context({

'piwik_identity': request.user.get_full_name()
})

Piwik will not identify this user (but will still collect statistics)
request.user = User(username='BDFL', first_name='Guido', last_name='van Rossum')
context = Context({

'piwik_identity': None
})

48 Chapter 2. Contents

http://developer.piwik.org/guides/tracking-javascript-guide#custom-variables
http://developer.piwik.org/guides/tracking-javascript-guide#user-id

Documentation for django-analytical, Release 3.1.0

Disabling cookies

If you want to disable cookies, set PIWIKI_DISABLE_COOKIES to True. This is disabled by default.

Internal IP addresses

Usually, you do not want to track clicks from your development or internal IP addresses. By default, if the tags
detect that the client comes from any address in the ANALYTICAL_INTERNAL_IPS (which takes the value of
INTERNAL_IPS by default) the tracking code is commented out. See Identifying authenticated users for important
information about detecting the visitor IP address.

Thanks go to Piwik for providing an excellent web analytics platform entirely for free! Consider donating to ensure
that they continue their development efforts in the spirit of open source and freedom for our personal data.

2.4.24 Rating@Mail.ru – traffic analysis

Rating@Mail.ru is an analytics tool like as google analytics.

Installation

To start using the Rating@Mail.ru integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the Rating@Mail.ru template tag to your templates. This step is only needed if you are not using
the generic analytical.* tags. If you are, skip to Configuration.

The Rating@Mail.ru counter code is inserted into templates using a template tag. Load the rating_mailru tem-
plate tag library and insert the rating_mailru tag. Because every page that you want to track must have the tag, it
is useful to add it to your base template. Insert the tag at the bottom of the HTML head:

{% load rating_mailru %}
<html>
<head>
...
{% rating_mailru %}
</head>
...

Configuration

Before you can use the Rating@Mail.ru integration, you must first set your website counter ID.

Setting the counter ID

Every website you track with Rating@Mail.ru gets its own counter ID, and the rating_mailru tag will include
it in the rendered Javascript code. You can find the web counter ID on the overview page of your account. Set
RATING_MAILRU_COUNTER_ID in the project settings.py file:

2.4. Services 49

https://matomo.org/faq/general/faq_157/
http://piwik.org/donate/
http://top.mail.ru/

Documentation for django-analytical, Release 3.1.0

RATING_MAILRU_COUNTER_ID = '1234567'

If you do not set a counter ID, the counter code will not be rendered.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the RATING_MAILRU_INTERNAL_IPS setting, the tracking code is
commented out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS
by default). See Identifying authenticated users for important information about detecting the visitor IP address.

2.4.25 SnapEngage – live chat

SnapEngage is a live chat widget for your site which integrates with your existing chat client. It integrates with many
online applications and even allows you to make a remote screenshot of the webpage. SnapEngage can be customized
to fit your website look and feel, offers reports and statistics and is available in many languages.

Installation

To start using the SnapEngage integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the SnapEngage template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The SnapEngage Javascript code is inserted into templates using a template tag. Load the SnapEngage template tag
library and insert the SnapEngage tag. Because every page that you want to track must have the tag, it is useful to
add it to your base template. Insert the tag at the bottom of the HTML body:

{% load snapengage %}
...
{% snapengage %}
</body>
</html>

Configuration

Before you can use the SnapEngage integration, you must first set the widget ID. You can customize the visitor
nickname and add information to their status in the operator buddy list, and customize the text used in the chat
window.

Setting the widget ID

In order to install the chat code, you need to set the ID of the SnapEngage widget. You can find the site ID on the Your
Widget ID page of your SnapEngage account. Set SNAPENGAGE_WIDGET_ID in the project settings.py file:

SNAPENGAGE_WIDGET_ID = 'XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX'

If you do not set the widget ID, the chat window will not be rendered.

50 Chapter 2. Contents

http://www.snapengage.com/
https://secure.snapengage.com/getwidgetid
https://secure.snapengage.com/getwidgetid

Documentation for django-analytical, Release 3.1.0

Customizing the widget

The SnapEngage widget can be customized in various ways using either context variables or settings. More informa-
tion about controlling the widget can be found on the customization FAQ section of the SnapEngage website.

Setting Context variable Description
SNAPENGAGE_DOMAIN snapengage_domain Manually set the domain name to follow users across sub-

domains.
SNAPENGAGE_SECURE_CONNECTIONsnapengage_secure_connectionForce the use of SSL for the chat connection, even on unen-

crypted pages. (Default: False)
SNAPENGAGE_BUTTON_EFFECTsnapengage_button_effectAn effect applied when the mouse hovers over the button.

(Example: "-4px")
SNAPENGAGE_BUTTON_STYLEsnapengage_button_styleWhat the chat button should look like. Use any of the

BUTTON_STYLE_* constants, or a URL to a custom but-
ton image.

SNAPENGAGE_BUTTON_LOCATIONsnapengage_button_locationThe location of the chat button. Use any of the
BUTTON_LOCATION_* constants.

SNAPENGAGE_BUTTON_LOCATION_OFFSETsnapengage_button_location_offsetThe offset of the button from the top or left side of the page.
(Default: "55%")

SNAPENGAGE_FORM_POSITIONsnapengage_form_positionConfigure the location of the chat window. Use any of the
FORM_POSITION_* constants.

SNAPENGAGE_FORM_TOP_POSITIONsnapengage_form_top_positionThe chat window offset in pixels from the top of the page.
SNAPENGAGE_READONLY_EMAILsnapengage_readonly_emailWhether a preset e-mail address can be changed by the vis-

itor. (Default: False)
SNAPENGAGE_SHOW_OFFLINEsnapengage_show_offlineWhether to show the chat button when all operators are of-

fline. (Default: True)
SNAPENGAGE_SCREENSHOTSsnapengage_screenshotsWhether to allow the user to take a screenshot. (Default:

True)
SNAPENGAGE_OFFLINE_SCREENSHOTSsnapengage_offline_screenshotsWhether to allow the user to take a screenshot when all op-

erators are offline. (Default: True)
SNAPENGAGE_SOUNDS snapengage_sounds Whether to play chat sound notifications. (Default: True)

There are also two customizations that can only be used with context variables.

Context variable Description
snapengage_proactive_chatSet to False to disable proactive chat, for example for users who are already

converted.
snapengage_email Set the e-mail address of the website visitor. (See Setting the visitor e-mail

address)

Setting the visitor e-mail address

If your website identifies visitors, you can use that to pass their e-mail address to the support agent. By default, the
e-mail address of an authenticated user is automatically used. See Identifying authenticated users.

You can also set the visitor e-mail address yourself by adding either the snapengage_email (alias:
snapengage_identity) or the analytical_identity variable to the template context. If both variables
are set, the former takes precedence. For example:

context = RequestContext({'snapengage_email': email})
return some_template.render(context)

2.4. Services 51

http://www.snapengage.com/faq#customization

Documentation for django-analytical, Release 3.1.0

If you can derive the e-mail address from the HTTP request, you can also use a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

from django.core.exceptions import ObjectDoesNotExist

def set_snapengage_email(request):
try:

profile = request.user.get_profile()
return {'snapengage_email': profile.business_email}

except (AttributeError, ObjectDoesNotExist):
return {}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

If the user should not be able to edit the pre-set e-mail address, you can set either the
snapengage_readonly_email context variable or the SNAPENGAGE_READONLY_EMAIL setting to
True.

Thanks go to SnapEngage for their support with the development of this application.

2.4.26 Spring Metrics – conversion tracking

Spring Metrics is a convesions analysis tool. It shows you the top converting sources, search keywords and landing
pages. The real-time dashboard shows you how customers interact with your website and how to increase conversion.

Installation

To start using the Spring Metrics integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the Spring Metrics template tag to your templates. This step is only needed if you are not using
the generic analytical.* tags. If you are, skip to Configuration.

The Spring Metrics tracking code is inserted into templates using a template tag. Load the spring_metrics
template tag library and insert the spring_metrics tag. Because every page that you want to track must have the
tag, it is useful to add it to your base template. Insert the tag at the bottom of the HTML head:

{% load spring_metrics %}
<html>
<head>
...
{% spring_metrics %}
</head>
...

Configuration

Before you can use the Spring Metrics integration, you must first set your website Tracking ID and tag a page for
conversion. You can also customize the data that Spring Metrics tracks.

52 Chapter 2. Contents

http://www.springmetrics.com/

Documentation for django-analytical, Release 3.1.0

Setting the Tracking ID

Every website you track with Spring Metrics gets its own Tracking ID, and the spring_metrics tag will include
it in the rendered Javascript code. You can find the Tracking ID in the Site Settings of your Spring Metrics account.
Set SPRING_METRICS_TRACKING_ID in the project settings.py file:

SPRING_METRICS_TRACKING_ID = 'XXXXXXXXXX'

If you do not set a Tracking ID, the tracking code will not be rendered.

Tagging conversion

In order to make use of Spring Metrics, you must tell it when visitors become customers. This is called conversion.
Usually, it marked by the client requesting a specific page, such as the “thank you” page of a webshop checkout. You
tag these pages in the Site Settings of your Spring Metrics account.

Alternatively, you can mark conversion pages using the spring_metrics_convert template context variable:

context = RequestContext({'spring_metrics_convert': 'mailinglist signup'})
return some_template.render(context)

Tracking revenue

Spring Metrics allows you to track the value of conversions. Using the spring_metrics_revenue template
context variable, you can let the spring_metrics tag pass earned revenue to Spring Metrics. You can set the
context variable in your view when you render a template containing the tracking code:

context = RequestContext({
'spring_metrics_convert': 'sale',
'spring_metrics_revenue': '30.53',

})
return some_template.render(context)

(You would not need to use the spring_metrics_convert variable if you already tagged the page in Spring
Metrics.)

Custom data

Spring Metrics can also track other data. Interesting examples could be transaction IDs or the e-mail addresses from
logged in users. By setting any spring_metrics_X template context variable, Spring Metrics will track a variable
named X. For example:

context = RequestContext({
'spring_metrics_revenue': '30.53',
'spring_metrics_order_id': '15445',

})
return some_template.render(context)

Some variables should be passed on every page and can be computed from the request object. In such cases you will
want to set custom variables in a context processor that you add to the TEMPLATE_CONTEXT_PROCESSORS list in
settings.py:

2.4. Services 53

https://app.springmetrics.com/manage
https://app.springmetrics.com/manage

Documentation for django-analytical, Release 3.1.0

def spring_metrics_global_variables(request):
try:

profile = request.user.get_profile()
return {'spring_metrics_city': profile.address.city}

except (AttributeError, ObjectDoesNotExist):
return {}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

Identifying authenticated users

If you have not set the spring_metrics_email property explicitly, the e-mail address of an authenticated user is
passed to Spring Metrics automatically. See Identifying authenticated users.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the SPRING_METRICS_INTERNAL_IPS setting, the tracking code is
commented out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS
by default). See Identifying authenticated users for important information about detecting the visitor IP address.

Thanks go to Spring Metrics for their support with the development of this application.

2.4.27 UserVoice – user feedback and helpdesk

UserVoice makes it simple for your customers to give, discuss, and vote for feedback. An unobtrusive feedback tab
allows visitors to easily submit and discuss ideas without having to sign up for a new account. The best ideas are
delivered to you based on customer votes.

Installation

To start using the UserVoice integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and configu-
ration for details.

Next you need to add the UserVoice template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The UserVoice Javascript code is inserted into templates using a template tag. Load the uservoice template tag
library and insert the uservoice tag. Because every page that you want to have the feedback tab to appear on must
have the tag, it is useful to add it to your base template. Insert the tag at the bottom of the HTML body:

{% load uservoice %}
...
{% uservoice %}
</body>
</html>

54 Chapter 2. Contents

http://www.uservoice.com/

Documentation for django-analytical, Release 3.1.0

Configuration

Before you can use the UserVoice integration, you must first set the widget key.

Setting the widget key

In order to use the feedback widget, you need to configure which widget you want to show. You can find the widget
keys in the Channels tab on your UserVoice Settings page. Under the Javascript Widget heading, find the Javascript
embed code of the widget. The widget key is the alphanumerical string contained in the URL of the script imported
by the embed code:

<script type="text/javascript">

UserVoice=window.UserVoice||[];(function(){
var uv=document.createElement('script');uv.type='text/javascript';
uv.async=true;uv.src='//widget.uservoice.com/XXXXXXXXXXXXXXXXXXXX.js';
var s=document.getElementsByTagName('script')[0];
s.parentNode.insertBefore(uv,s)})();

</script>

(The widget key is shown as XXXXXXXXXXXXXXXXXXXX.)

The default widget

Often you will use the same widget throughout your website. The default widget key is configured by setting
USERVOICE_WIDGET_KEY in the project settings.py file:

USERVOICE_WIDGET_KEY = 'XXXXXXXXXXXXXXXXXXXX'

If the setting is present but empty, no widget is shown by default. This is useful if you want to set a widget using a
template context variable, as the setting must be present for the generic analytical.* tags to work.

Widget options

You can set USERVOICE_WIDGET_OPTIONS to customize your widget with UserVoice’s options.

Tip: See the JS SDK Overview and the reference for the details of available options.

For example, to override the default icon style with a tab and on the left, you could define:

USERVOICE_WIDGET_OPTIONS = {"trigger_position": "left",
"trigger_style": "tab"}

Per-view widget

The widget configuration can be overriden in a view using uservoice_widget_options template context vari-
able. For example:

context = RequestContext({'uservoice_widget_options': 'mode': 'satisfaction'})
return some_template.render(context)

2.4. Services 55

https://developer.uservoice.com/docs/widgets/overview/
https://developer.uservoice.com/docs/widgets/options/

Documentation for django-analytical, Release 3.1.0

It’s also possible to set a different widget key for a particular view with uservoice_widget_key:

context = RequestContext({'uservoice_widget_key': 'XXXXXXXXXXXXXXXXXXXX'})
return some_template.render(context)

These variable passed in the context overrides the default widget configuration.

Using a custom link

Instead of showing the default feedback icon or tab, you can make the UserVoice widget launch when a visitor clicks
a link or when some other event occurs. As the documentation describe, simply add the data-uv-trigger HTML
attribute to the element. For example:

Contact us

In order to hidden the default trigger, you should disable it putting uservoice_add_trigger to False:

context = RequestContext({'uservoice_add_trigger': False})
return your_template_with_custom_uservoice_link.render(context)

If you want to disable the automatic trigger globally, set in settings.py:

USERVOICE_ADD_TRIGGER = False

Setting the widget key in a context processor

You can also set the widget keys in a context processor that you add to the TEMPLATE_CONTEXT_PROCESSORS
list in settings.py. For example, to show a specific widget to logged in users:

def uservoice_widget_key(request):
try:

if request.user.is_authenticated():
return {'uservoice_widget_key': 'XXXXXXXXXXXXXXXXXXXX'}

except AttributeError:
pass

return {}

The widget key passed in the context variable overrides both the default and the per-view widget key.

Identifying users

If your websites identifies visitors, you can pass this information on to Uservoice. By default, the name and email of
an authenticated user is passed to Uservoice automatically. See Identifying authenticated users.

You can also send the visitor identity yourself by adding either the uservoice_identity or the
analytical_identity variable to the template context. (If both are set, the former takes precedence.) This
should be a dictionary with the desired user traits as its keys. Check the documentation on identifying users to see
valid traits. For example:

context = RequestContext({'uservoice_identity': {'email': user_email,
'name': username }})

return some_template.render(context)

56 Chapter 2. Contents

https://developer.uservoice.com/docs/widgets/methods/#custom-trigger
https://developer.uservoice.com/docs/widgets/identify/

Documentation for django-analytical, Release 3.1.0

If you can derive the identity from the HTTP request, you can also use a context processor that you add to the
TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

def identify(request):
try:

return {'uservoice_identity': {
email: request.user.username,
name: request.user.get_full_name(),
id: request.user.id,
type: 'vip',
account: {
name: 'Acme, Co.',
monthly_rate: 9.99,
ltv: 1495.00,
plan: 'Enhanced'

}
}
}

except AttributeError:
return {}

Thanks go to UserVoice for their support with the development of this application.

2.4.28 Woopra – website analytics

Woopra generates live detailed statistics about the visitors to your website. You can watch your visitors navigate live
and interact with them via chat. The service features notifications, campaigns, funnels and more.

Installation

To start using the Woopra integration, you must have installed the django-analytical package and have added the
analytical application to INSTALLED_APPS in your project settings.py file. See Installation and configu-
ration for details.

Next you need to add the Woopra template tag to your templates. This step is only needed if you are not using the
generic analytical.* tags. If you are, skip to Configuration.

The Woopra tracking code is inserted into templates using a template tag. Load the woopra template tag library and
insert the woopra tag. Because every page that you want to track must have the tag, it is useful to add it to your base
template. Insert the tag at the bottom of the HTML head:

{% load woopra %}
<html>
<head>
...
{% woopra %}
</head>
...

Because Javascript code is asynchronous, putting the tag in the head section increases the chances that a page view is
going to be tracked before the visitor leaves the page. See for details the Asynchronous JavaScript Developer’s Guide
on the Woopra website.

2.4. Services 57

http://www.woopra.com/
http://www.woopra.com/docs/async/

Documentation for django-analytical, Release 3.1.0

Configuration

Before you can use the Woopra integration, you must first set the website domain. You can also customize the data
that Woopra tracks and identify authenticated users.

Setting the domain

A Woopra account is tied to a website domain. Set WOOPRA_DOMAIN in the project settings.py file:

WOOPRA_DOMAIN = 'XXXXXXXX.XXX'

If you do not set a domain, the tracking code will not be rendered.

(In theory, the django-analytical application could get the website domain from the current Site or the request
object, but this setting also works as a sign that the Woopra integration should be enabled for the analytical.*
template tags.)

Visitor timeout

The default Woopra visitor timeout – the time after which Woopra ignores inactive visitors on a website – is set at 4
minutes. This means that if a user opens your Web page and then leaves it open in another browser window, Woopra
will report that the visitor has gone away after 4 minutes of inactivity on that page (no page scrolling, clicking or other
action).

If you would like to increase or decrease the idle timeout setting you can set WOOPRA_IDLE_TIMEOUT to a time in
milliseconds. For example, to set the default timout to 10 minutes:

WOOPRA_IDLE_TIMEOUT = 10 * 60 * 1000

Keep in mind that increasing this number will not only show you more visitors on your site at a time, but will also
skew your average time on a page reporting. So it’s important to keep the number reasonable in order to accurately
make predictions.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the WOOPRA_INTERNAL_IPS setting, the tracking code is commented out.
It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS by default). See
Identifying authenticated users for important information about detecting the visitor IP address.

Custom data

As described in the Woopra documentation on custom visitor data, the data that is tracked by Woopra can be cus-
tomized. Using template context variables, you can let the woopra tag pass custom data to Woopra automatically.
You can set the context variables in your view when your render a template containing the tracking code:

context = RequestContext({'woopra_cart_value': cart.total_price})
return some_template.render(context)

For some data, it is annoying to do this for every view, so you may want to set variables in a context processor that
you add to the TEMPLATE_CONTEXT_PROCESSORS list in settings.py:

58 Chapter 2. Contents

http://www.woopra.com/docs/tracking/custom-visitor-data/

Documentation for django-analytical, Release 3.1.0

from django.utils.hashcompat import md5_constructor as md5

GRAVATAR_URL = 'http://www.gravatar.com/avatar/'

def woopra_custom_data(request):
try:

email = request.user.email
except AttributeError:

return {}
email_hash = md5(email).hexdigest()
avatar_url = "%s%s" % (GRAVATAR_URL, email_hash)
return {'woopra_avatar': avatar_url}

Just remember that if you set the same context variable in the RequestContext constructor and in a context
processor, the latter clobbers the former.

Standard variables that will be displayed in the Woopra live visitor data are listed in the table below, but you can define
any woopra_* variable you like and have that detail passed from within the visitor live stream data when viewing
Woopra.

Context variable Description
woopra_name The visitor’s full name.
woopra_email The visitor’s email address.
woopra_avatar A URL link to a visitor avatar.

Identifying authenticated users

If you have not set the woopra_name or woopra_email variables explicitly, the username and email address of
an authenticated user are passed to Woopra automatically. See Identifying authenticated users.

Thanks go to Woopra for their support with the development of this application.

2.4.29 Yandex.Metrica – traffic analysis

Yandex.Metrica is an analytics tool like as google analytics.

Installation

To start using the Yandex.Metrica integration, you must have installed the django-analytical package and have added
the analytical application to INSTALLED_APPS in your project settings.py file. See Installation and
configuration for details.

Next you need to add the Yandex.Metrica template tag to your templates. This step is only needed if you are not using
the generic analytical.* tags. If you are, skip to Configuration.

The Yandex.Metrica counter code is inserted into templates using a template tag. Load the yandex_metrica
template tag library and insert the yandex_metrica tag. Because every page that you want to track must have the
tag, it is useful to add it to your base template. Insert the tag at the bottom of the HTML head:

2.4. Services 59

http://metrica.yandex.com/

Documentation for django-analytical, Release 3.1.0

{% load yandex_metrica %}
<html>
<head>
...
{% yandex_metrica %}
</head>
...

Configuration

Before you can use the Yandex.Metrica integration, you must first set your website counter ID.

Setting the counter ID

Every website you track with Yandex.Metrica gets its own counter ID, and the yandex_metrica tag will include
it in the rendered Javascript code. You can find the web counter ID on the overview page of your account. Set
YANDEX_METRICA_COUNTER_ID in the project settings.py file:

YANDEX_METRICA_COUNTER_ID = '12345678'

If you do not set a counter ID, the counter code will not be rendered.

You can set additional options to tune your counter:

Constant Default Value Description
YANDEX_METRICA_WEBVISOR False Webvisor, scroll map, form analysis.
YANDEX_METRICA_TRACKHASH False Hash tracking in the browser address bar.
YANDEX_METRICA_NOINDEX False Stop automatic page indexing.
YANDEX_METRICA_ECOMMERCE False Dispatch ecommerce data to Metrica.

Internal IP addresses

Usually you do not want to track clicks from your development or internal IP addresses. By default, if the tags detect
that the client comes from any address in the YANDEX_METRICA_INTERNAL_IPS setting, the tracking code is
commented out. It takes the value of ANALYTICAL_INTERNAL_IPS by default (which in turn is INTERNAL_IPS
by default). See Identifying authenticated users for important information about detecting the visitor IP address.

2.5 Settings

Here’s a full list of all available settings, in alphabetical order, and their default values.

ANALYTICAL_AUTO_IDENTIFY
Default: True

Automatically identify logged in users by their username. See Identifying authenticated users.

ANALYTICAL_INTERNAL_IPS
Default: INTERNAL_IPS

A list or tuple of internal IP addresses. Tracking code will be commented out for visitors from any of these
addresses. You can configure this setting for each service individually by substituting ANALYTICAL for the

60 Chapter 2. Contents

Documentation for django-analytical, Release 3.1.0

upper-case service name. For example, set GOOGLE_ANALYTICS_INTERNAL_IPS to configure for Google
Analytics.

See Internal IP addresses.

2.6 History and credits

2.6.1 Changelog

The project follows the Semantic Versioning specification for its version numbers. Patch-level increments indicate
bug fixes, minor version increments indicate new functionality and major version increments indicate backwards
incompatible changes.

Version 1.0.0 is the last to support Django < 1.7. Users of older Django versions should stick to 1.0.0, and are encour-
aged to upgrade their setups. Starting with 2.0.0, dropping support for obsolete Django versions is not considered to
be a backward-incompatible change.

Version 3.1.0

• Rename default branch from master to main (Peter Bittner, Jannis Leidel)

• Modernize packaging setup, add pyproject.toml (Peter Bittner)

• Integrate isort, reorganize imports (David Smith)

• Refactor test suite from Python unit tests to Pytest (David Smith)

• Add Heap integration (Garrett Coakley)

• Drop Django 3.1, cover Django 4.0 and Python 3.10 in test suite (David Smith)

Version 3.0.0

• Add support for Lucky Orange (Peter Bittner)

• Add missing instructions in Installation chapter of the docs (Peter Bittner)

• Migrate test setup to Pytest (David Smith, Peter Bittner, Pi Delport)

• Support Django 3.1 and Python 3.9, drop Django 1.11 and Python 2.7/3.5 (David Smith)

• Migrate from Travis CI to GitHub Actions (Jannis Leidel)

• Update accepted patterns (regex) for Google Analytics GTag (Taha Rushain)

• Scope Piwik warning to use of Piwik (Hugo Barrera)

• Add user_id to Google Analytics GTag (Sean Wallace)

Version 2.6.0

• Support Django 3.0 and Python 3.8, drop Django 2.1

• Add support for Google Analytics Tag Manager (Marc Bourqui)

• Add Matomo, the renamed version of Piwik (Scott Karlin)

• Move Joost’s project over to the Jazzband

2.6. History and credits 61

http://semver.org/

Documentation for django-analytical, Release 3.1.0

Version 2.5.0

• Add support for Google analytics.js (Marc Bourqui)

• Add support for Intercom HMAC identity verification (Pi Delport)

• Add support for Hotjar (Pi Delport)

• Make sure _trackPageview happens before other settings in Google Analytics (Diederik van der Boor)

Version 2.4.0

• Support Django 2.0 (Matthäus G. Chajdas)

Version 2.3.0

• Add Facebook Pixel support (Pi Delport)

• Add Python 3.6 and Django 1.10 & 1.11 tests (Pi Delport)

• Drop Python 3.2 support

Version 2.2.2

• Allow port in Piwik domain path. (Alex Ramsay)

Version 2.2.1

• Fix a bug with the extra Google Analytics variables also pushing the _gat. flag onto the configuration array.

Version 2.2.0

• Update Woopra JavaScript snippet (Aleck Landgraf)

Version 2.1.0

• Support Rating@mail.ru (Nikolay Korotkiy)

• Support Yandex.Metrica (Nikolay Korotkiy)

• Add support for extra Google Analytics variables (Steve Schwarz)

• Remove support for Reinvigorate (service shut down)

Version 2.0.0

• Support Django 1.9, drop support for Django < 1.7 (Hugo Osvaldo Barrera)

• Support custom user models with an alternative username field (Brad Pitcher)

Version 1.0.0

• Add Piwik user variables support (Alexandre Pocquet)

62 Chapter 2. Contents

Documentation for django-analytical, Release 3.1.0

Version 0.22.0

• Mark package as Python 3 compatible (Martín Gaitán)

• Fix Clickmap tracker id regular expression

• Test with Django 1.8

Version 0.21.0

• Added compatibility with Python 3 (Eric Amador)

Version 0.20.0

• Support Django 1.7 (Craig Bruce)

• Update Mixpanel identity code (Martín Gaitán)

• Identify authenticated users in Uservoice (Martín Gaitán)

• Add full name and email to Olark (Scott Adams)

Version 0.19.0

• Add Piwik integration (Peter Bittner)

Version 0.18.0

• Update HubSpot code (Craig Bruce)

Version 0.17.1

• Fix typo in Intercom.io support (Steven Skoczen)

Version 0.17.0

• Update UserVoice support (Martín Gaitán)

• Add support for Intercom.io (Steven Skoczen)

Version 0.16.0

• Add support for GA Display Advertising features (Max Arnold)

Version 0.15.0

• Add IP anonymization setting to GA tracking pixel (Tinnet Coronam)

• Include Django 1.5 in tox.ini (Tinnet Coronam)

• Add Clickmap integration (Philippe O. Wagner)

2.6. History and credits 63

Documentation for django-analytical, Release 3.1.0

Version 0.14.0

• Update mixpanel integration to latest code (Simon Ye)

Version 0.13.0

• Add support for the KISSmetrics alias feature (Sandra Mau)

• Update testing code for Django 1.4 (Pi Delport)

Version 0.12.0

• Add support for the UserVoice service.

Version 0.11.3

• Added support for Gaug.es (Steven Skoczen)

Version 0.11.2

• Fix Spring Metrics custom variables.

• Update Spring Metrics documentation.

Version 0.11.1

• Fix Woopra for anonymous users (Steven Skoczen).

Version 0.11.0

• Added support for the Spring Metrics service.

• Allow sending events and properties to KISSmetrics (Paul Oswald).

• Add support for the Site Speed report in Google Analytics (Uros Trebec).

Version 0.10.0

• Added multiple domains support for Google Analytics.

• Fixed bug in deleted settings testing code (Eric Davis).

Version 0.9.2

• Added support for the SnapEngage service.

• Updated Mixpanel code (Julien Grenier).

Version 0.9.1

• Fixed compatibility with Python 2.5 (Iván Raskovsky).

64 Chapter 2. Contents

Documentation for django-analytical, Release 3.1.0

Version 0.9.0

• Updated Clicky tracking code to support multiple site ids.

• Fixed Chartbeat auto-domain bug when the Sites framework is not used (Eric Davis).

• Improved testing code (Eric Davis).

Version 0.8.1

• Fixed MANIFEST bug that caused GoSquared support to be missing from the source distribution.

Version 0.8.0

• Added support for the GoSquared service.

• Updated Clicky tracking code to use relative URLs.

Version 0.7.0

• Added support for the Woopra service.

• Added chat window text customization to Olark.

• Renamed MIXPANEL_TOKEN setting to MIXPANEL_API_TOKEN for compatibility with Wes Winham’s
mixpanel-celery package.

• Fixed the <script> tag for Crazy Egg.

Version 0.6.0

• Added support for the Reinvigorate service.

• Added support for the Olark service.

Version 0.5.0

• Split off Geckoboard support into django-geckoboard.

Version 0.4.0

• Added support for the Geckoboard service.

Version 0.3.0

• Added support for the Performable service.

Version 0.2.0

• Added support for the HubSpot service.

• Added template tags for individual services.

2.6. History and credits 65

https://github.com/winhamwr/mixpanel-celery
http://pypi.python.org/pypi/django-geckoboard

Documentation for django-analytical, Release 3.1.0

Version 0.1.0

• First project release.

2.6.2 Credits

The django-analytical package was originally written by Joost Cassee and is now maintained by the Jazzband commu-
nity, with contributions from Eric Davis, Paul Oswald, Uros Trebec, Steven Skoczen, Pi Delport, Sandra Mau, Simon
Ye, Tinnet Coronam, Philippe O. Wagner, Max Arnold , Martín Gaitán, Craig Bruce, Peter Bittner, Scott Adams, Eric
Amador, Alexandre Pocquet, Brad Pitcher, Hugo Osvaldo Barrera, Nikolay Korotkiy, Steve Schwarz, Aleck Landgraf,
Marc Bourqui, Diederik van der Boor, Matthäus G. Chajdas, Scott Karlin and others.

Included Javascript code snippets for integration of the analytics services were written by the respective service
providers.

The application was inspired by and uses ideas from Analytical, Joshua Krall’s all-purpose analytics front-end for
Rails.

The work on Crazy Egg was made possible by Bateau Knowledge. The work on Intercom was made possible by
GreenKahuna.

2.6.3 Helping out

If you want to help out with the development of django-analytical, by posting detailed bug reports, proposing new
features or other analytics services to support, or suggesting documentation improvements, use the issue tracker. If
you want to get your hands dirty, great! Clone the repository, make changes and place a pull request. Creating an issue
to discuss your plans is useful.

This is a Jazzband project. By contributing you agree to abide by the Contributor Code of Conduct and follow the
guidelines.

2.7 License

The django-analytical package is distributed under the MIT License. The complete license term are included below.
The copyright of the integration code snippets of individual services rest solely with the respective service providers.

2.7.1 License terms

Copyright (C) 2011-2019 Joost Cassee and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

66 Chapter 2. Contents

https://github.com/jcassee
https://jazzband.co/
https://jazzband.co/
https://github.com/edavis
https://github.com/poswald
https://github.com/failedguidedog
https://github.com/skoczen
https://github.com/pjdelport
https://github.com/xthepoet
https://github.com/yesimon
https://github.com/yesimon
https://github.com/tinnet
mailto:admin@arteria.ch
https://github.com/max-arnold
https://github.com/mgaitan
https://github.com/craigbruce
https://github.com/bittner
https://github.com/7wonders
https://github.com/amadornimbis
https://github.com/amadornimbis
https://github.com/apocquet
https://github.com/brad
https://github.com/hobarrera
https://github.com/sikmir
https://github.com/saschwarz
https://github.com/alecklandgraf
https://github.com/mbourqui
https://github.com/vdboor
https://github.com/Anteru
https://github.com/sckarlin
https://github.com/jkrall/analytical
http://www.bateauknowledge.nl/
http://www.greenkahuna.com/
https://github.com/jazzband/django-analytical/issues
https://github.com/jazzband/django-analytical/pulls
https://jazzband.co
https://jazzband.co/about/conduct
https://jazzband.co/about/guidelines
http://en.wikipedia.org/wiki/MIT_License

Documentation for django-analytical, Release 3.1.0

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2.7. License 67

Documentation for django-analytical, Release 3.1.0

68 Chapter 2. Contents

Index

A
ANALYTICAL_AUTO_IDENTIFY (built-in variable),

60
ANALYTICAL_INTERNAL_IPS (built-in variable), 60

69

	Overview
	Contents
	Tutorial
	Installation and configuration
	Features and customization
	Services
	Settings
	History and credits
	License

	Index

