

 Navigation

 	
 index

 	
 next |

 	Django Admin Sortable 1.7.0 documentation

Welcome to Django Admin Sortable’s documentation!

Django Admin Sortable is a super-easy way to add drag-and-drop ordering to almost any model you manage through Django admin. Inlines for a sortable model may also be made sortable, enabling individual items or groups of items to be sortable.

Supported Django Versions

Django 1.4.x

Use django-admin-sortable 1.4.9 or below.

Note

v1.5.2 introduced backwards incompatible changes for Django 1.4.x

Django >= 1.5.x

Use the latest version of django-admin-sortable.

Warning

v1.6.6 introduced a backwards-incompatible change for sorting_filters. Please update your sorting_filters attribute(s) to the new, tuple-based format.

What’s New in 1.7.0?

	Python 2.6 backwards compatibility. Thanks @EnTeQuAk [https://github.com/EnTeQuAk]

Contents:

	Quickstart

	Configuring Django Admin Sortable
	Static Media

	Using Django Admin Sortable
	Models
	Adding Sortable to an existing model

	Django Admin
	Overriding queryset()

	Overriding queryset() for an inline model

	Sorting subsets of objects

	Extending custom templates

	Django-CMS Integration

	Known Issue(s)

	Testing

	Rationale
	Why another drag-and-drop ordering plugin?

	Status

	Future Plans

	License

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Admin Sortable 1.7.0 documentation

Quickstart

To get started using django-admin-sortable simply install it using pip:

$ pip install django-admin-sortable

Add adminsortable to your project’s INSTALLED_APPS setting.

Ensure django.core.context_processors.static is in your TEMPLATE_CONTEXT_PROCESSORS setting.

Define your model, inheriting from adminsortable.Sortable:

models.py
from adminsortable.models import Sortable

class MySortableClass(Sortable):
 class Meta(Sortable.Meta):
 pass

 title = models.CharField(max_length=50)

 def __unicode__(self):
 return self.title

Wire up your sortable model to Django admin:

admin.py
from adminsortable.admin import SortableAdmin
from .models import MySortableClass

class MySortableAdminClass(SortableAdmin):
 """Any admin options you need go here"""

admin.site.register(MySortableClass, MySortableAdminClass)

Your model’s ChangeList view should now have an extra tool link when there are 2 or more objects present that will take you to a view where you can drag-and-drop the objects into your desired order.

 Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Admin Sortable 1.7.0 documentation

Configuring Django Admin Sortable

Configuring django-admin-sortable is quite simple:

	Add adminsortable to your INSTALLED_APPS.

	Ensure django.core.context_processors.static is in your TEMPLATE_CONTEXT_PROCESSORS.

Static Media

django-admin-sortable includes a few CSS and JavaScript files. The preferred method of getting these files into your project is to use the staticfiles app [https://docs.djangoproject.com/en/1.6/ref/contrib/staticfiles/].

Alternatively, you can copy or symlink the adminsortable folder inside the static directory to the location you serve static files from.

 Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Admin Sortable 1.7.0 documentation

Using Django Admin Sortable

Models

To add sorting to a model, your model needs to inherit from Sortable and have an inner Meta class that inherits from Sortable.Meta:

models.py
from adminsortable.models import Sortable

class MySortableClass(Sortable):
 class Meta(Sortable.Meta):
 pass

 title = models.CharField(max_length=50)

 def __unicode__(self):
 return self.title

It is also possible to order objects relative to another object that is a ForeignKey.

Note

A small caveat here is that Category must also either inherit from Sortable or include an order property which is a PositiveSmallInteger field. This is due to the way Django admin instantiates classes.

models.py
from adminsortable.fields import SortableForeignKey

class Category(Sortable):
 class Meta(Sortable.Meta):
 pass

 title = models.CharField(max_length=50)
 ...

class Project(Sortable):
 class Meta(Sortable.Meta):
 pass

 category = SortableForeignKey(Category)
 title = models.CharField(max_length=50)

 def __unicode__(self):
 return self.title

Sortable has one field: order and adds a default ordering value set to order, ascending.

Adding Sortable to an existing model

If you’re adding Sorting to an existing model, it is recommended that you use django-south [http://south.areacode.com/] to create a schema migration to add the “order” field to your model. You will also need to create a data migration in order to add the appropriate values for the order column.

Example assuming a model named “Category”:

def forwards(self, orm):
 for index, category in enumerate(orm.Category.objects.all()):
 category.order = index + 1
 category.save()

See this link [http://south.readthedocs.org/en/latest/tutorial/part3.html] for more information on Data Migrations.

Django Admin

To enable sorting in the admin, you need to inherit from SortableAdmin:

from django.contrib import admin
from myapp.models import MySortableClass
from adminsortable.admin import SortableAdmin

class MySortableAdminClass(SortableAdmin):
 """Any admin options you need go here"""

admin.site.register(MySortableClass, MySortableAdminClass)

To enable sorting on TabularInline models, you need to inherit from SortableTabularInline:

from adminsortable.admin import SortableTabularInline

class MySortableTabularInline(SortableTabularInline):
 """Your inline options go here"""

To enable sorting on StackedInline models, you need to inherit from SortableStackedInline:

from adminsortable.admin import SortableStackedInline

class MySortableStackedInline(SortableStackedInline):
 """Your inline options go here"""

There are also generic equivalents that you can inherit from:

from adminsortable.admin import (SortableGenericTabularInline,
 SortableGenericStackedInline)
 """Your generic inline options go here"""

Overriding queryset()

django-admin-sortable supports custom queryset overrides on admin models and inline models in Django admin!

If you’re providing an override of a SortableAdmin or Sortable inline model, you don’t need to do anything extra. django-admin-sortable will automatically honor your queryset.

Have a look at the WidgetAdmin class in the sample project for an example of an admin class with a custom queryset() override.

Overriding queryset() for an inline model

This is a special case, which requires a few lines of extra code to properly determine the sortability of your model. Example:

add this import to your admin.py
from adminsortable.utils import get_is_sortable

class ComponentInline(SortableStackedInline):
 model = Component

 def queryset(self, request):
 qs = super(ComponentInline, self).queryset(request).filter(
 title__icontains='foo')

 # You'll need to add these lines to determine if your model
 # is sortable once we hit the change_form() for the parent model.

 if get_is_sortable(qs):
 self.model.is_sortable = True
 else:
 self.model.is_sortable = False
 return qs

If you override the queryset of an inline, the number of objects present may change, and adminsortable won’t be able to automatically determine if the inline model is sortable from here, which is why we have to set the is_sortable property of the model in this method.

Sorting subsets of objects

It is also possible to sort a subset of objects in your model by adding a sorting_filters tuple. This works exactly the same as .filter() on a QuerySet, and is applied after get_queryset() on the admin class, allowing you to override the queryset as you would normally in admin but apply additional filters for sorting. The text “Change Order of” will appear before each filter in the Change List template, and the filter groups are displayed from left to right in the order listed. If no sorting_filters are specified, the text “Change Order” will be displayed for the link.

An example of sorting subsets would be a “Board of Directors”. In this use case, you have a list of “People” objects. Some of these people are on the Board of Directors and some not, and you need to sort them independently:

class Person(Sortable):
 class Meta(Sortable.Meta):
 verbose_name_plural = 'People'

 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 is_board_member = models.BooleanField('Board Member', default=False)

 sorting_filters = (
 ('Board Members', {'is_board_member': True}),
 ('Non-Board Members', {'is_board_member': False}),
)

 def __unicode__(self):
 return '{} {}'.format(self.first_name, self.last_name)

Warning

django-admin-sortable 1.6.6 introduces a backwards-incompatible change for sorting_filters. Previously this attribute was defined as a dictionary, so you’ll need to change your values over to the new tuple-based format.

Extending custom templates

By default, adminsortable’s change form and change list views inherit from Django admin’s standard templates. Sometimes you need to have a custom change form or change list, but also need adminsortable’s CSS and JavaScript for inline models that are sortable for example.

SortableAdmin has two attributes you can override for this use case:

change_form_template_extends
change_list_template_extends

These attributes have default values of:

change_form_template_extends = 'admin/change_form.html'
change_list_template_extends = 'admin/change_list.html'

If you need to extend the inline change form templates, you’ll need to select the right one, depending on your version of Django. For Django 1.5.x or below, you’ll need to extend one of the following:

templates/adminsortable/edit_inline/stacked-1.5.x.html
templates/adminsortable/edit_inline/tabular-inline-1.5.x.html

For Django >= 1.6.x, extend:

templates/adminsortable/edit_inline/stacked.html
templates/adminsortable/edit_inline/tabular.html

Note

A Special Note About Stacked Inlines...
The height of a stacked inline model can dynamically increase, which can make them difficult to sort. If you anticipate the height of a stacked inline is going to be very tall, I would suggest using TabularStackedInline instead.

 Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Admin Sortable 1.7.0 documentation

Django-CMS Integration

Django-CMS plugins use their own change form, and thus won’t automatically include the necessary JavaScript for django-admin-sortable to work. Fortunately, this is easy to resolve, as the CMSPlugin class allows a change form template to be specified:

example plugin
from cms.plugin_base import CMSPluginBase

class CMSCarouselPlugin(CMSPluginBase):
 admin_preview = False
 change_form_template = 'cms/sortable-stacked-inline-change-form.html'
 inlines = [SlideInline]
 model = Carousel
 name = _('Carousel')
 render_template = 'carousels/carousel.html'

 def render(self, context, instance, placeholder):
 context.update({
 'carousel': instance,
 'placeholder': placeholder
 })
 return context

plugin_pool.register_plugin(CMSCarouselPlugin)

The contents of sortable-stacked-inline-change-form.html at a minimum need to extend the extrahead block with:

{% extends "admin/cms/page/plugin_change_form.html" %}
{% load static from staticfiles %}

{% block extrahead %}
 {{ block.super }}
 <script type="text/javascript" src="{% static 'adminsortable/js/jquery-ui-django-admin.min.js' %}"></script>
 <script type="text/javascript" src="{% static 'adminsortable/js/jquery.django-csrf.js' %}"></script>
 <script type="text/javascript" src="{% static 'adminsortable/js/admin.sortable.stacked.inlines.js' %}"></script>

 <link rel="stylesheet" type="text/css" href="{% static 'adminsortable/css/admin.sortable.inline.css' %}" />
{% endblock extrahead %}

Sorting within Django-CMS is really only feasible for inline models of a plugin as Django-CMS already includes sorting for plugin instances. For tabular inlines, just substitute:

<script type="text/javascript" src="{% static 'adminsortable/js/admin.sortable.stacked.inlines.js' %}"></script>

with:

<script type="text/javascript" src="{% static 'adminsortable/js/admin.sortable.tabular.inlines.js' %}"></script>

 Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Admin Sortable 1.7.0 documentation

Known Issue(s)

Because of the way inline models are added to their parent model in the change form, it is not currently possible to have sortable inline models whose parent does not inhert from Sortable.

 Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Admin Sortable 1.7.0 documentation

Testing

Have a look at the included /sample_project directory to see a working project. The login credentials for admin are: admin/admin

When a model is sortable, a tool-area link will be added that says “Change Order”. Click this link, and you will be taken to the custom view where you can drag-and-drop the records into order.

Inlines may be drag-and-dropped into any order directly from the change form.

Unit and functional tests may be found in the app/tests.py file and run via:

$ python manage.py test app

 Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Admin Sortable 1.7.0 documentation

Rationale

Why another drag-and-drop ordering plugin?

Other projects have added drag-and-drop ordering to the ChangeList view, however this introduces a couple of problems...

	The ChangeList view supports pagination, which makes drag-and-drop ordering across pages impossible.

	The ChangeList view by default, does not order records based on a foreign key, nor distinguish between rows that are associated with a foreign key. This makes ordering the records grouped by a foreign key impossible.

	The ChangeList supports in-line editing, and adding drag-and-drop ordering on top of that just seemed a little much in my opinion.

 Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Admin Sortable 1.7.0 documentation

Status

django-admin-sortable is stable and currently used in production.

 Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Django Admin Sortable 1.7.0 documentation

Future Plans

	Support for foreign keys that are self referential

	Move unit tests out of sample project (I could really use some help with this one)

	Travis CI integration

 Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Django Admin Sortable 1.7.0 documentation

License

django-admin-sortable is released under the Apache Public License v2.

 Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Django Admin Sortable 1.7.0 documentation

Index

 Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

search.html

 Navigation

 		
 index

 		Django Admin Sortable 1.7.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Brandon Taylor.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

