

Welcome to dj-webhooks’s documentation!

Contents:

	dj-webhooks
	Requirements

	Quickstart

	Storing Redis delivery logs

	In a queue using django-rq

	Features

	Planned Features

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.2.2 (2014-05-22)

	0.2.1 (2014-05-17)

	0.2.0 (2014-05-15)

	0.1.0 (2014-05-12)

dj-webhooks

[image: _images/dj-webhooks.svg]
 [https://pypi.python.org/pypi/dj-webhooks][image: _images/dj-webhooks.png]
 [https://badge.fury.io/py/dj-webhooks][image: Wheel Status]
 [https://pypi.python.org/pypi/dj-webhooks/][image: _images/dj-webhooks1.png]
 [https://travis-ci.org/pydanny/dj-webhooks]Django + Webhooks Made Easy

The full documentation is at https://dj-webhooks.readthedocs.org.

Requirements

	Python 2.7.x or 3.3.2 or higher

	django>=1.5.5

	django-jsonfield>=0.9.12

	django-model-utils>=2.0.2

	django-rq>=0.6.1

	webhooks>=0.3.1

Quickstart

Install dj-webhooks:

pip install dj-webhooks

Configure some webhook events:

settings.py
WEBHOOK_EVENTS = (
 "purchase.paid",
 "purchase.refunded",
 "purchase.fulfilled"
)

Add some webhook targets:

from django.contrib.auth import get_user_model
User = get_user_model()
user = User.objects.get(username="pydanny")

from webhooks.models import Webhook
WebhookTarget.objects.create(
 owner=user,
 event="purchase.paid",
 target_url="https://mystorefront.com/webhooks/",
 identifier="User or system defined string",
 header_content_type=Webhook.CONTENT_TYPE_JSON,
)

Then use it in a project:

from django.contrib.auth import get_user_model
User = get_user_model()
user = User.objects.get(username="pydanny")

from djwebhooks.decorators import hook

from myproject.models import Purchase

Event argument helps identify the webhook target
@hook(event="purchase.paid")
def send_purchase_confirmation(purchase, owner, identifier):
 return {
 "order_num": purchase.order_num,
 "date": purchase.confirm_date,
 "line_items": [x.sku for x in purchase.lineitem_set.filter(inventory__gt=0)]
 }

for purchase in Purchase.objects.filter(status="paid"):
 send_purchase_confirmation(
 purchase=purchase,
 owner=user,
 identifier="User or system defined string"
)

Storing Redis delivery logs

Note: The only difference between this and the previous example is the use of the redislog_hook.

from django.contrib.auth import get_user_model
User = get_user_model()
user = User.objects.get(username="pydanny")

from djwebhooks.decorators import redislog_hook

from myproject.models import Purchase

Event argument helps identify the webhook target
@redislog_hook(event="purchase.paid")
def send_purchase_confirmation(purchase, owner, identifier):
 return {
 "order_num": purchase.order_num,
 "date": purchase.confirm_date,
 "line_items": [x.sku for x in purchase.lineitem_set.filter(inventory__gt=0)]
 }

for purchase in Purchase.objects.filter(status="paid"):
 send_purchase_confirmation(
 purchase=purchase,
 owner=user,
 identifier="User or system defined string"
)

In a queue using django-rq

Warning: In practice I’ve found it’s much more realistic to use the ORM or Redislib webhooks and define seperate asynchronous jobs then to rely on the djwebhooks.redisq_hook decorator. Therefore, this functionality is deprecated.

Features

	Synchronous webhooks

	Delivery tracking via Django ORM.

	Options for asynchronous webhooks.

Planned Features

	Delivery tracking via Redis and other write-fast datastores.

Installation

At the command line:

$ easy_install dj-webhooks

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv dj-webhooks
$ pip install dj-webhooks

Usage

To use dj-webhooks in a project:

import dj-webhooks

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/pydanny/dj-webhooks/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

dj-webhooks could always use more documentation, whether as part of the
official dj-webhooks docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/pydanny/dj-webhooks/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up dj-webhooks for local development.

	Fork the dj-webhooks repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/dj-webhooks.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv dj-webhooks
$ cd dj-webhooks/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 djwebhooks tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/pydanny/dj-webhooks/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_djwebhooks

Credits

Development Lead

	Daniel Greenfeld <pydanny@gmail.com>

Contributors

None yet. Why not be the first?

History

0.2.2 (2014-05-22)

	Added redislog_hook. This synchronous hook saves the hook results to redis lists.

	Added identifier field to WebhookTarget

	Added identifier argument to orm and redisq senders.

	Added South migrations for Django=<1.6.

	Declared coding in all Python modules.

	Added verbose names to models

0.2.1 (2014-05-17)

	Removed conf.py file as it just added abstraction.

	Created exlicitly importable hooks. Makes settings management easier.

	Removed utils.py since we no longer do fancy dynamic imports (see previous bullet).

	Coverage now at 100%

0.2.0 (2014-05-15)

	Refactored the senders to be very extendable.

	Added an ORM based sender.

	Added a redis based sender that uses django-rq.

	Added a redis-hook decorator.

	Added admin views.

	Ramped up test coverage to 89%.

	setup.py now includes all dependencies.

0.1.0 (2014-05-12)

	First release on PyPI.

Index

 _static/ajax-loader.gif

_images/dj-webhooks1.png
“build passing

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/dj-webhooks.png
pypi package 021

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to dj-webhooks’s documentation!

 		
 dj-webhooks

 		
 Requirements

 		
 Quickstart

 		
 Storing Redis delivery logs

 		
 In a queue using django-rq

 		
 Features

 		
 Planned Features

 		
 Installation

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.2.2 (2014-05-22)

 		
 0.2.1 (2014-05-17)

 		
 0.2.0 (2014-05-15)

 		
 0.1.0 (2014-05-12)

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

