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dit is a Python package for discrete information theory.
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CHAPTER

ONE

INTRODUCTION

Information theory is a powerful extension to probability and statistics, quantifying dependencies among arbitrary
random variables in a way tha tis consistent and comparable across systems and scales. Information theory was orig-
inally developed to quantify how quickly and reliably information could be transmitted across an arbitrary channel.
The demands of modern, data-driven science have been coopting and extending these quantities and methods into un-
known, multivariate settings where the interpretation and best practices are not known. For example, there are at least
four reasonable multivariate generalizations of the mutual information, none of which inherit all the interpretations of
the standard bivariate case. Which is best to use is context-dependent. dit implements a vast range of multivariate
information measures in an effort to allow information practitioners to study how these various measures behave and
interact in a variety of contexts. We hope that having all these measures and techniques implemented in one place
will allow the development of robust techniques for the automated quantification of dependencies within a system and
concrete interpretation of what those dependencies mean.

For a quick tour, see the Quickstart. Otherwise, work your way through the various sections. Note that all code
snippets in this documentation assume that the following lines of code have already been run:

In [1]: In [1]: from __future__ import division # true division for Python 2.7

Contents:

1.1 General Information

Documentation: http://docs.dit.io

Downloads: https://pypi.org/project/dit/

https://anaconda.org/conda-forge/dit

Dependencies:

• Python 2.7, 3.3, 3.4, 3.5, or 3.6

• boltons

• contextlib2

• debtcollector

• networkx

• numpy

• prettytable

• scipy

• six

3

http://docs.dit.io
https://pypi.org/project/dit/
https://anaconda.org/conda-forge/dit
https://boltons.readthedocs.io
https://contextlib2.readthedocs.io
https://docs.openstack.org/debtcollector/
https://networkx.github.io/
http://www.numpy.org/
https://code.google.com/archive/p/prettytable/
https://www.scipy.org/
http://pythonhosted.org/six/
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1.1.1 Optional Dependencies

• colorama: colored column heads in PID indicating failure modes

• cython: faster sampling from distributions

• hypothesis: random sampling of distributions

• matplotlib, python-ternary: plotting of various information-theoretic expansions

• numdifftools: numerical evaluation of gradients and hessians during optimization

• pint: add units to informational values

• scikit-learn: faster nearest-neighbor lookups during entropy/mutual information estimation from samples

Mailing list: None

Code and bug tracker: https://github.com/dit/dit

License: BSD 3-Clause, see LICENSE.txt for details.

Quickstart

The basic usage of dit corresponds to creating distributions, modifying them if need be, and then computing proper-
ties of those distributions. First, we import:

In [1]: In [1]: import dit

Suppose we have a really thick coin, one so thick that there is a reasonable chance of it landing on its edge. Here is
how we might represent the coin in dit.

In [2]: In [2]: d = dit.Distribution(['H', 'T', 'E'], [.4, .4, .2])

In [3]: In [3]: print(d)
Class: Distribution
Alphabet: ('E', 'H', 'T') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 1
RV Names: None

x p(x)
E 1/5
H 2/5
T 2/5

In [4]: Class: Distribution

In [5]: Alphabet: ('E', H', 'T') for all rvs
...: Base: linear
...: Outcome Class: str
...: Outcome Length: 1
...: RV Names: None
...:
File "<ipython-input-5-765b249d398d>", line 1
Alphabet: ('E', H', 'T') for all rvs

^
SyntaxError: invalid syntax

4 Chapter 1. Introduction
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Calculate the probability of 𝐻 and also of the combination: 𝐻 or 𝑇 .

In [6]: In [4]: d['H']
Out[6]: 0.4

In [7]: Out[4]: 0.4

In [8]: In [50]: d.event_probability(['H','T'])
Out[8]: 0.8

In [9]: Out[50]: 0.8

Calculate the Shannon entropy and extropy of the joint distribution.

In [10]: In [10]: dit.shannon.entropy(d)
Out[10]: 1.5219280948873621

In [11]: Out[10]: 1.5219280948873621

In [12]: In [11]: dit.other.extropy(d)
Out[12]: 1.1419011889093373

In [13]: Out[11]: 1.1419011889093373

Create a distribution representing the xor logic function. Here, we have two inputs, 𝑋 and 𝑌 , and then an output
𝑍 = xor(𝑋,𝑌 ).

In [14]: In [6]: import dit.example_dists

Calculate the Shannon mutual informations 𝐼[𝑋 : 𝑍], 𝐼[𝑌 : 𝑍], and 𝐼[𝑋,𝑌 : 𝑍].

In [15]: In [12]: dit.shannon.mutual_information(d, ['X'], ['Z'])
---------------------------------------------------------------------------
ditException Traceback (most recent call last)
<ipython-input-15-1c8c59aabbb1> in <module>
----> 1 dit.shannon.mutual_information(d, ['X'], ['Z'])

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/shannon/shannon.py in mutual_information(dist, rvs_X, rvs_Y, rv_mode)

157
158 """

--> 159 H_X = entropy(dist, rvs_X, rv_mode=rv_mode)
160 H_Y = entropy(dist, rvs_Y, rv_mode=rv_mode)
161 # Make sure to union the indexes. This handles the case when X and Y

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/shannon/shannon.py in entropy(dist, rvs, rv_mode)

72 rv_mode = RV_MODES.INDICES
73

---> 74 d = dist.marginal(rvs, rv_mode=rv_mode) # pylint: disable=no-member
75 else:
76 d = dist

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/npdist.py in marginal(self, rvs, rv_mode)

1288 # We parse the rv_mode now, so that we can reassign their names
1289 # after coalesce has finished.

-> 1290 rvs, indexes = parse_rvs(self, rvs, rv_mode, unique=True, sort=True)

(continues on next page)

1.1. General Information 5



dit Documentation, Release 1.2.3

(continued from previous page)

1291
1292 ## Eventually, add in a method specialized for dense distributions.

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/helpers.py in parse_rvs(dist, rvs, rv_mode, unique, sort)

334 msg = '`rvs` contains invalid random variables, {0}, {1} {2}.'
335 msg = msg.format(indexes, good_indexes, rv_mode)

--> 336 raise ditException(msg)
337
338 # Sort the random variable names (or indexes) by their index.

ditException: `rvs` contains invalid random variables, ['X'], set() 0.

In [16]: Out[12]: 0.0

In [17]: In [13]: dit.shannon.mutual_information(d, ['Y'], ['Z'])
---------------------------------------------------------------------------
ditException Traceback (most recent call last)
<ipython-input-17-90efbc2156b7> in <module>
----> 1 dit.shannon.mutual_information(d, ['Y'], ['Z'])

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/shannon/shannon.py in mutual_information(dist, rvs_X, rvs_Y, rv_mode)

157
158 """

--> 159 H_X = entropy(dist, rvs_X, rv_mode=rv_mode)
160 H_Y = entropy(dist, rvs_Y, rv_mode=rv_mode)
161 # Make sure to union the indexes. This handles the case when X and Y

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/shannon/shannon.py in entropy(dist, rvs, rv_mode)

72 rv_mode = RV_MODES.INDICES
73

---> 74 d = dist.marginal(rvs, rv_mode=rv_mode) # pylint: disable=no-member
75 else:
76 d = dist

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/npdist.py in marginal(self, rvs, rv_mode)

1288 # We parse the rv_mode now, so that we can reassign their names
1289 # after coalesce has finished.

-> 1290 rvs, indexes = parse_rvs(self, rvs, rv_mode, unique=True, sort=True)
1291
1292 ## Eventually, add in a method specialized for dense distributions.

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/helpers.py in parse_rvs(dist, rvs, rv_mode, unique, sort)

334 msg = '`rvs` contains invalid random variables, {0}, {1} {2}.'
335 msg = msg.format(indexes, good_indexes, rv_mode)

--> 336 raise ditException(msg)
337
338 # Sort the random variable names (or indexes) by their index.

ditException: `rvs` contains invalid random variables, ['Y'], set() 0.

In [18]: Out[13]: 0.0

(continues on next page)
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(continued from previous page)

In [19]: In [14]: dit.shannon.mutual_information(d, ['X', 'Y'], ['Z'])
---------------------------------------------------------------------------
ditException Traceback (most recent call last)
<ipython-input-19-1af669dd1aec> in <module>
----> 1 dit.shannon.mutual_information(d, ['X', 'Y'], ['Z'])

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/shannon/shannon.py in mutual_information(dist, rvs_X, rvs_Y, rv_mode)

157
158 """

--> 159 H_X = entropy(dist, rvs_X, rv_mode=rv_mode)
160 H_Y = entropy(dist, rvs_Y, rv_mode=rv_mode)
161 # Make sure to union the indexes. This handles the case when X and Y

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/shannon/shannon.py in entropy(dist, rvs, rv_mode)

72 rv_mode = RV_MODES.INDICES
73

---> 74 d = dist.marginal(rvs, rv_mode=rv_mode) # pylint: disable=no-member
75 else:
76 d = dist

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/npdist.py in marginal(self, rvs, rv_mode)

1288 # We parse the rv_mode now, so that we can reassign their names
1289 # after coalesce has finished.

-> 1290 rvs, indexes = parse_rvs(self, rvs, rv_mode, unique=True, sort=True)
1291
1292 ## Eventually, add in a method specialized for dense distributions.

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/helpers.py in parse_rvs(dist, rvs, rv_mode, unique, sort)

334 msg = '`rvs` contains invalid random variables, {0}, {1} {2}.'
335 msg = msg.format(indexes, good_indexes, rv_mode)

--> 336 raise ditException(msg)
337
338 # Sort the random variable names (or indexes) by their index.

ditException: `rvs` contains invalid random variables, ['X', 'Y'], set() 0.

In [20]: Out[14]: 1.0

Calculate the marginal distribution 𝑃 (𝑋,𝑍). Then print its probabilities as fractions, showing the mask.

In [21]: In [15]: d2 = d.marginal(['X', 'Z'])
---------------------------------------------------------------------------
ditException Traceback (most recent call last)
<ipython-input-21-b067ba4a93be> in <module>
----> 1 d2 = d.marginal(['X', 'Z'])

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/npdist.py in marginal(self, rvs, rv_mode)

1288 # We parse the rv_mode now, so that we can reassign their names
1289 # after coalesce has finished.

-> 1290 rvs, indexes = parse_rvs(self, rvs, rv_mode, unique=True, sort=True)
1291
1292 ## Eventually, add in a method specialized for dense distributions.

(continues on next page)
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(continued from previous page)

~/checkouts/readthedocs.org/user_builds/dit/conda/latest/lib/python3.7/site-packages/
→˓dit/helpers.py in parse_rvs(dist, rvs, rv_mode, unique, sort)

334 msg = '`rvs` contains invalid random variables, {0}, {1} {2}.'
335 msg = msg.format(indexes, good_indexes, rv_mode)

--> 336 raise ditException(msg)
337
338 # Sort the random variable names (or indexes) by their index.

ditException: `rvs` contains invalid random variables, ['X', 'Z'], set() 0.

In [22]: In [16]: print(d2.to_string(show_mask=True, exact=True))

→˓--------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-22-40352d6ba310> in <module>
----> 1 print(d2.to_string(show_mask=True, exact=True))

NameError: name 'd2' is not defined

In [23]: Class: Distribution

In [24]: Alphabet: ('0', '1') for all rvs
....: Base: linear
....: Outcome Class: str
....: Outcome Length: 2 (mask: 3)
....: RV Names: ('X', 'Z')
....:
File "<ipython-input-24-6b5343e0ae87>", line 1
Alphabet: ('0', '1') for all rvs

^
SyntaxError: invalid syntax

Convert the distribution probabilities to log (base 3.5) probabilities, and access its probability mass function.

In [25]: In [17]: d2.set_base(3.5)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-25-a4c25fbf4cdd> in <module>
----> 1 d2.set_base(3.5)

NameError: name 'd2' is not defined

In [26]: In [18]: d2.pmf
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-
→˓--------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-26-1667a2505e35> in <module>
----> 1 d2.pmf

NameError: name 'd2' is not defined

In [27]: array([-1.10658951, -1.10658951, -1.10658951, -1.10658951])
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-
→˓--------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-27-bbf92d577a74> in <module>

(continues on next page)
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(continued from previous page)

----> 1 array([-1.10658951, -1.10658951, -1.10658951, -1.10658951])

NameError: name 'array' is not defined

Draw 5 random samples from this distribution.

In [28]: In [19]: d2.rand(5)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-28-6015593867b3> in <module>
----> 1 d2.rand(5)

NameError: name 'd2' is not defined

In [29]: Out[19]: ['01', '10', '00', '01', '00']

Enjoy!

1.2 Notation

dit is a scientific tool, and so, much of this documentation will contain mathematical expressions. Here we will
describe this notation.

1.2.1 Basic Notation

A random variable 𝑋 consists of outcomes 𝑥 from an alphabet 𝒳 . As such, we write the entropy of a distribution as
𝐻𝑋 =

∑︀
𝑥∈𝒳 𝑝(𝑥) log2 𝑝(𝑥), where 𝑝(𝑥) denote the probability of the outcome 𝑥 occuring.

Many distributions are joint distribution. In the absence of variable names, we index each random variable with a
subscript. For example, a distribution over three variables is written 𝑋0𝑋1𝑋2. As a shorthand, we also denote those
random variables as 𝑋0:3, meaning start with 𝑋0 and go through, but not including 𝑋3 — just like python slice
notation.

If a set of variables 𝑋0:𝑛 are independent, we will write⊥⊥ 𝑋0:𝑛. If a set of variables 𝑋0:𝑛 are independent conditioned
on 𝑉 , we write⊥⊥ 𝑋0:𝑛 | 𝑉 .

If we ever need to describe an infinitely long chain of variables we drop the index from the side that is infinite. So
𝑋:0 = . . . 𝑋−3𝑋−2𝑋−1 and 𝑋0: = 𝑋0𝑋1𝑋2 . . .. For an arbitrary set of indices 𝐴, the corresponding collection of
random variables is denoted 𝑋𝐴. For example, if 𝐴 = {0, 2, 4}, then 𝑋𝐴 = 𝑋0𝑋2𝑋4. The complement of 𝐴 (with
respect to some universal set) is denoted 𝐴.

Furthermore, we define 0 log2 0 = 0.

1.2.2 Advanced Notation

When there exists a function 𝑌 = 𝑓(𝑋) we write 𝑋 ⪰ 𝑌 meaning that 𝑋 is informationally richer than 𝑌 . Similarly,
if 𝑓(𝑌 ) = 𝑋 then we write 𝑋 ⪯ 𝑌 and say that 𝑋 is informationally poorer than 𝑌 . If 𝑋 ⪯ 𝑌 and 𝑋 ⪰ 𝑌 then
we write 𝑋 ∼= 𝑌 and say that 𝑋 is informationally equivalent to 𝑌 . Of all the variables that are poorer than both 𝑋
and 𝑌 , there is a richest one. This variable is known as the meet of 𝑋 and 𝑌 and is denoted 𝑋 f 𝑌 . By definition,
∀𝑍𝑠.𝑡.𝑍 ⪯ 𝑋 and 𝑍 ⪯ 𝑌,𝑍 ⪯ 𝑋 f 𝑌 . Similarly of all variables richer than both 𝑋 and 𝑌 , there is a poorest. This
variable is known as the join of 𝑋 and 𝑌 and is denoted 𝑋 g 𝑌 . The joint random variable (𝑋,𝑌 ) and the join are
informationally equivalent: (𝑋,𝑌 ) ∼= 𝑋 g 𝑌 .

1.2. Notation 9
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Lastly, we use 𝑋 ↘ 𝑌 to denote the minimal sufficient statistic of 𝑋 about the random variable 𝑌 .

1.3 Distributions

Distributions in dit come in two different flavors: ScalarDistribution and Distribution.
ScalarDistribution is used for representing distributions over real numbers, and have many features related
to that. Distribution is used for representing joint distributions, and therefore has many features related to
marginalizing, conditioning, and otherwise exploring the relationships between random variables.

1.3.1 Numpy-based ScalarDistribution

ScalarDistributions are used to represent distributions over real numbers, for example a six-sided die or the number of
heads when flipping 100 coins.

Playing with ScalarDistributions

First we will enable two optional features: printing fractions by default, and using __str__() as __repr__().
Be careful using either of these options, they can incur significant performance hits on some distributions.

In [1]: In [1]: dit.ditParams['print.exact'] = dit.ditParams['repr.print'] = True

We next construct a six-sided die:

In [2]: In [2]: from dit.example_dists import uniform

We can perform standard mathematical operations with scalars, such as adding, subtracting from or by, multiplying,
taking the modulo, or testing inequalities.

In [3]: In [5]: d6 + 3
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-3-e5c29798e750> in <module>
----> 1 d6 + 3

NameError: name 'd6' is not defined

In [4]: Class: ScalarDistribution
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-
→˓--------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-4-caea23159169> in <module>
----> 1 Class: ScalarDistribution

NameError: name 'ScalarDistribution' is not defined

In [5]: Alphabet: (4, 5, 6, 7, 8, 9)

In [6]: Base: linear
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-6-871a8e26d081> in <module>
----> 1 Base: linear

(continues on next page)
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(continued from previous page)

NameError: name 'linear' is not defined

In [7]: x p(x)
...: 4 1/6
...: 5 1/6
...: 6 1/6
...: 7 1/6
...: 8 1/6
...: 9 1/6
...:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-7-a0614afb9279>", line 1

x p(x)
^

SyntaxError: invalid syntax

Furthermore, we can perform such operations with two distributions:

In [8]: In [11]: d6 + d6
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-8-fb98c4da9ae9> in <module>
----> 1 d6 + d6

NameError: name 'd6' is not defined

In [9]: Class: ScalarDistribution
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-
→˓--------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-9-caea23159169> in <module>
----> 1 Class: ScalarDistribution

NameError: name 'ScalarDistribution' is not defined

In [10]: Alphabet: (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

In [11]: Base: linear
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-11-871a8e26d081> in <module>
----> 1 Base: linear

NameError: name 'linear' is not defined

In [12]: x p(x)
....: 2 1/36
....: 3 1/18
....: 4 1/12
....: 5 1/9
....: 6 5/36
....: 7 1/6
....: 8 5/36
....: 9 1/9
....: 10 1/12
....: 11 1/18
....: 12 1/36

(continues on next page)

1.3. Distributions 11
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(continued from previous page)

....:
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-12-8e87dddfff4b>", line 1

x p(x)
^

SyntaxError: invalid syntax

There are also statistical functions which can be applied to ScalarDistributions:

In [13]: In [15]: from dit.algorithms.stats import *

API

ScalarDistribution.__init__(outcomes, pmf=None, sample_space=None, base=None,
prng=None, sort=True, sparse=True, trim=True, validate=True)

Initialize the distribution.

Parameters

• outcomes (sequence, dict) – The outcomes of the distribution. If outcomes is a
dictionary, then the keys are used as outcomes, and the values of the dictionary are used
as pmf instead. Note: an outcome is any hashable object (except None) which is equality
comparable. If sort is True, then outcomes must also be orderable.

• pmf (sequence) – The outcome probabilities or log probabilities. If None, then outcomes
is treated as the probability mass function and the outcomes are consecutive integers begin-
ning from zero.

• sample_space (sequence) – A sequence representing the sample space, and corre-
sponding to the complete set of possible outcomes. The order of the sample space is impor-
tant. If None, then the outcomes are used to determine the sample space instead.

• base (float, None) – If pmf specifies log probabilities, then base should specify the
base of the logarithm. If ‘linear’, then pmf is assumed to represent linear probabilities. If
None, then the value for base is taken from ditParams[‘base’].

• prng (RandomState) – A pseudo-random number generator with a rand method which
can generate random numbers. For now, this is assumed to be something with an API com-
patible to NumPy’s RandomState class. This attribute is initialized to equal dit.math.prng.

• sort (bool) – If True, then the sample space is sorted before finalizing it. Usually, this is
desirable, as it normalizes the behavior of distributions which have the same sample space
(when considered as a set). Note that addition and multiplication of distributions is defined
only if the sample spaces (as tuples) are equal.

• sparse (bool) – Specifies the form of the pmf. If True, then outcomes and pmf will only
contain entries for non-null outcomes and probabilities, after initialization. The order of
these entries will always obey the order of sample_space, even if their number is not equal
to the size of the sample space. If False, then the pmf will be dense and every outcome in
the sample space will be represented.

• trim (bool) – Specifies if null-outcomes should be removed from pmf when
make_sparse() is called (assuming sparse is True) during initialization.

• validate (bool) – If True, then validate the distribution. If False, then assume the
distribution is valid, and perform no checks.

Raises InvalidDistribution – If the length of values and outcomes are unequal.
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:raises See validate() for a list of other potential exceptions.:

1.3.2 Numpy-based Distribution

The primary method of constructing a distribution is by supplying both the outcomes and the probability mass function:

In [1]: In [1]: from dit import Distribution

Another way to construct a distribution is by supplying a dictionary mapping outcomes to probabilities:

In [2]: In [6]: outcomes_probs = {'000': 1/4, '011': 1/4, '101': 1/4, '110': 1/4}

In [3]: In [7]: xor2 = Distribution(outcomes_probs)

In [4]: In [8]: print(xor2)
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 0.25
011 0.25
101 0.25
110 0.25

In [5]: Class: Distribution

In [6]: Alphabet: ('0', '1') for all rvs
...: Base: linear
...: Outcome Class: str
...: Outcome Length: 3
...: RV Names: None
...:
File "<ipython-input-6-35057d4d19b8>", line 1
Alphabet: ('0', '1') for all rvs

^
SyntaxError: invalid syntax

Yet a third method is via an ndarray:

In [7]: In [9]: pmf = [[0.5, 0.25], [0.25, 0]]

In [8]: In [10]: d = Distribution.from_ndarray(pmf)

In [9]: In [11]: print(d)
Class: Distribution
Alphabet: (0, 1) for all rvs
Base: linear
Outcome Class: tuple
Outcome Length: 2
RV Names: None

x p(x)
(0, 0) 0.5

(continues on next page)
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(continued from previous page)

(0, 1) 0.25
(1, 0) 0.25

In [10]: Class: Distribution

In [11]: Alphabet: (0, 1) for all rvs
....: Base: linear
....: Outcome Class: tuple
....: Outcome Length: 2
....: RV Names: None
....:
File "<ipython-input-11-c4a6f28ce62a>", line 1
Alphabet: (0, 1) for all rvs

^
SyntaxError: invalid syntax

Distribution.__init__(outcomes, pmf=None, sample_space=None, base=None, prng=None,
sort=True, sparse=True, trim=True, validate=True)

Initialize the distribution.

Parameters

• outcomes (sequence, dict) – The outcomes of the distribution. If outcomes is a
dictionary, then the keys are used as outcomes, and the values of the dictionary are used as
pmf instead. The values will not be used if probabilities are passed in via pmf. Outcomes
must be hashable, orderable, sized, iterable containers. The length of an outcome must be
the same for all outcomes, and every outcome must be of the same type.

• pmf (sequence, None) – The outcome probabilities or log probabilities. pmf can be
None only if outcomes is a dict.

• sample_space (sequence, CartesianProduct) – A sequence representing the
sample space, and corresponding to the complete set of possible outcomes. The order of the
sample space is important. If None, then the outcomes are used to determine a Cartesian
product sample space instead.

• base (float, str, None) – If pmf specifies log probabilities, then base should spec-
ify the base of the logarithm. If ‘linear’, then pmf is assumed to represent linear probabili-
ties. If None, then the value for base is taken from ditParams[‘base’].

• prng (RandomState) – A pseudo-random number generator with a rand method which
can generate random numbers. For now, this is assumed to be something with an API com-
patibile to NumPy’s RandomState class. This attribute is initialized to equal dit.math.prng.

• sort (bool) – If True, then each random variable’s alphabets are sorted before they are
finalized. Usually, this is desirable, as it normalizes the behavior of distributions which have
the same sample spaces (when considered as a set). Note that addition and multiplication of
distributions is defined only if the sample spaces are compatible.

• sparse (bool) – Specifies the form of the pmf. If True, then outcomes and pmf will only
contain entries for non-null outcomes and probabilities, after initialization. The order of
these entries will always obey the order of sample_space, even if their number is not equal
to the size of the sample space. If False, then the pmf will be dense and every outcome in
the sample space will be represented.

• trim (bool) – Specifies if null-outcomes should be removed from pmf when
make_sparse() is called (assuming sparse is True) during initialization.

14 Chapter 1. Introduction

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


dit Documentation, Release 1.2.3

• validate (bool) – If True, then validate the distribution. If False, then assume the
distribution is valid, and perform no checks.

Raises InvalidDistribution – If the length of values and outcomes are unequal. If no out-
comes can be obtained from pmf and outcomes is None.

:raises See validate() for a list of other potential exceptions.:

To verify that these two distributions are the same, we can use the is_approx_equal method:

In [12]: In [12]: xor.is_approx_equal(xor2)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-12-497bf6d1f448> in <module>
----> 1 xor.is_approx_equal(xor2)

NameError: name 'xor' is not defined

In [13]: Out[12]: True

Distribution.is_approx_equal(other, rtol=None, atol=None)
Returns True is other is approximately equal to this distribution.

For two distributions to be equal, they must have the same sample space and must also agree on the probabilities
of each outcome.

Parameters

• other (distribution) – The distribution to compare against.

• rtol (float) – The relative tolerance to use when comparing probabilities.

• atol (float) – The absolute tolerance to use when comparing probabilities.

Notes

The distributions need not have the length, but they must have the same base.

1.4 Operations

There are several operations possible on joint random variables. Let’s consider the standard xor distribution:

In [1]: d = dit.Distribution(['000', '011', '101', '110'], [1/4]*4)

In [2]: d.set_rv_names('XYZ')

1.4.1 Marginal

dit supports two ways of selecting only a subset of random variables. marginal() returns a distribution containing
only the random variables specified, whereas marginalize() return a distribution containing all random variables
except the ones specified:

In [3]: In [3]: print(d.marginal('XY'))
Class: Distribution
Alphabet: ('0', '1') for all rvs

(continues on next page)
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(continued from previous page)

Base: linear
Outcome Class: str
Outcome Length: 2
RV Names: ('X', 'Y')

x p(x)
00 1/4
01 1/4
10 1/4
11 1/4

In [4]: Class: Distribution

In [5]: Alphabet: ('0', '1') for all rvs
...: Base: linear
...: Outcome Class: str
...: Outcome Length: 2
...: RV Names: ('X', 'Y')
...:
File "<ipython-input-5-1a7c698d2608>", line 1
Alphabet: ('0', '1') for all rvs

^
SyntaxError: invalid syntax

Distribution.marginal(rvs, rv_mode=None)
Returns a marginal distribution.

Parameters

• rvs (list) – The random variables to keep. All others are marginalized.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of self._rv_mode is consulted.

Returns d – A new joint distribution with the random variables in rvs kept and all others marginal-
ized.

Return type joint distribution

Distribution.marginalize(rvs, rv_mode=None)
Returns a new distribution after marginalizing random variables.

Parameters

• rvs (list) – The random variables to marginalize. All others are kept.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of self._rv_mode is consulted.

Returns d – A new joint distribution with the random variables in rvs marginalized and all others
kept.

Return type joint distribution
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1.4.2 Conditional

We can also condition on a subset of random variables:

In [6]: In [5]: marginal, cdists = d.condition_on('XY')

Distribution.condition_on(crvs, rvs=None, rv_mode=None, extract=False)
Returns distributions conditioned on random variables crvs.

Optionally, rvs specifies which random variables should remain.

NOTE: Eventually this will return a conditional distribution.

Parameters

• crvs (list) – The random variables to condition on.

• rvs (list, None) – The random variables for the resulting conditional distributions.
Any random variable not represented in the union of crvs and rvs will be marginalized.
If None, then every random variable not appearing in crvs is used.

• rv_mode (str, None) – Specifies how to interpret crvs and rvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are inter-
preted as random variable indices. If equal to ‘names’, the the elements are interpreted as
random varible names. If None, then the value of self._rv_mode is consulted, which
defaults to ‘indices’.

• extract (bool) – If the length of either crvs or rvs is 1 and extract is True, then
instead of the new outcomes being 1-tuples, we extract the sole element to create scalar
distributions.

Returns

• cdist (dist) – The distribution of the conditioned random variables.

• dists (list of distributions) – The conditional distributions for each outcome in cdist.

Examples

First we build a distribution P(X,Y,Z) representing the XOR logic gate.

>>> pXYZ = dit.example_dists.Xor()
>>> pXYZ.set_rv_names('XYZ')

We can obtain the conditional distributions P(X,Z|Y) and the marginal of the conditioned variable P(Y) as
follows:

>>> pY, pXZgY = pXYZ.condition_on('Y')

If we specify rvs='Z', then only ‘Z’ is kept and thus, ‘X’ is marginalized out:

>>> pY, pZgY = pXYZ.condition_on('Y', rvs='Z')

We can condition on two random variables:

>>> pXY, pZgXY = pXYZ.condition_on('XY')

The equivalent call using indexes is:
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>>> pXY, pZgXY = pXYZ.condition_on([0, 1], rv_mode='indexes')

1.4.3 Join

We can construct the join of two random variables:

𝑋 g 𝑌 = min{𝑉 |𝑉 ⪰ 𝑋 ∧ 𝑉 ⪰ 𝑌 }

Where min is understood to be minimizing with respect to the entropy.

In [7]: In [11]: from dit.algorithms.lattice import join

join(dist, rvs, rv_mode=None, int_outcomes=True)
Returns the distribution of the join of random variables defined by rvs.

Parameters

• dist (Distribution) – The distribution which defines the base sigma-algebra.

• rvs (list) – A list of lists. Each list specifies a random variable to be joined with the
other lists. Each random variable can defined as a series of unique indexes. Multiple random
variables can use the same index. For example, [[0,1],[1,2]].

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

• int_outcomes (bool) – If True, then the outcomes of the join are relabeled as integers
instead of as the atoms of the induced sigma-algebra.

Returns d – The distribution of the join.

Return type ScalarDistribution

insert_join(dist, idx, rvs, rv_mode=None)
Returns a new distribution with the join inserted at index idx.

The join of the random variables in rvs is constructed and then inserted into at index idx.

Parameters

• dist (Distribution) – The distribution which defines the base sigma-algebra.

• idx (int) – The index at which to insert the join. To append the join, set idx to be equal to
-1 or dist.outcome_length().

• rvs (list) – A list of lists. Each list specifies a random variable to be met with the other
lists. Each random variable can defined as a series of unique indexes. Multiple random
variables can use the same index. For example, [[0,1],[1,2]].

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns d – The new distribution with the join at index idx.

Return type Distribution

18 Chapter 1. Introduction

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None


dit Documentation, Release 1.2.3

1.4.4 Meet

We can construct the meet of two random variabls:

𝑋 f 𝑌 = max{𝑉 |𝑉 ⪯ 𝑋 ∧ 𝑉 ⪯ 𝑌 }

Where max is understood to be maximizing with respect to the entropy.

In [8]: In [13]: from dit.algorithms.lattice import meet

meet(dist, rvs, rv_mode=None, int_outcomes=True)
Returns the distribution of the meet of random variables defined by rvs.

Parameters

• dist (Distribution) – The distribution which defines the base sigma-algebra.

• rvs (list) – A list of lists. Each list specifies a random variable to be met with the other
lists. Each random variable can defined as a series of unique indexes. Multiple random
variables can use the same index. For example, [[0,1],[1,2]].

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

• int_outcomes (bool) – If True, then the outcomes of the meet are relabeled as integers
instead of as the atoms of the induced sigma-algebra.

Returns d – The distribution of the meet.

Return type ScalarDistribution

insert_meet(dist, idx, rvs, rv_mode=None)
Returns a new distribution with the meet inserted at index idx.

The meet of the random variables in rvs is constructed and then inserted into at index idx.

Parameters

• dist (Distribution) – The distribution which defines the base sigma-algebra.

• idx (int) – The index at which to insert the meet. To append the meet, set idx to be equal
to -1 or dist.outcome_length().

• rvs (list) – A list of lists. Each list specifies a random variable to be met with the other
lists. Each random variable can defined as a series of unique indexes. Multiple random
variables can use the same index. For example, [[0,1],[1,2]].

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns d – The new distribution with the meet at index idx.

Return type Distribution

1.4.5 Minimal Sufficient Statistic

This method constructs the minimal sufficient statistic of 𝑋 about 𝑌 : 𝑋 ↘ 𝑌 :

𝑋 ↘ 𝑌 = min{𝑉 |𝑉 ⪯ 𝑋 ∧ 𝐼[𝑋 : 𝑌 ] = 𝐼[𝑉 : 𝑌 ]}
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In [9]: In [18]: from dit.algorithms import insert_mss

Again, min is understood to be over entropies.

mss(dist, rvs, about=None, rv_mode=None, int_outcomes=True)

Parameters

• dist (Distribution) – The distribution which defines the base sigma-algebra.

• rvs (list) – A list of random variables to be compressed into a minimal sufficient statistic.

• about (list) – A list of random variables for which the minimal sufficient static will
retain all information about.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

• int_outcomes (bool) – If True, then the outcomes of the minimal sufficient statistic are
relabeled as integers instead of as the atoms of the induced sigma-algebra.

Returns d – The distribution of the minimal sufficient statistic.

Return type ScalarDistribution

Examples

>>> d = Xor()
>>> print(mss(d, [0], [1, 2]))
Class: ScalarDistribution
Alphabet: (0, 1)
Base: linear
x p(x)
0 0.5
1 0.5

insert_mss(dist, idx, rvs, about=None, rv_mode=None)
Inserts the minimal sufficient statistic of rvs about about into dist at index idx.

Parameters

• dist (Distribution) – The distribution which defines the base sigma-algebra.

• idx (int) – The location in the distribution to insert the minimal sufficient statistic.

• rvs (list) – A list of random variables to be compressed into a minimal sufficient statistic.

• about (list) – A list of random variables for which the minimal sufficient static will
retain all information about.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns d – The distribution dist modified to contain the minimal sufficient statistic.

Return type Distribution
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Examples

>>> d = Xor()
>>> print(insert_mss(d, -1, [0], [1, 2]))
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 4
RV Names: None
x p(x)
0000 0.25
0110 0.25
1011 0.25
1101 0.25

dit.util.testing.distributions()

1.5 Finding Examples

What if you’d like to find a distribution that has a particular property? For example, what if I’d like to find a distribution
with a coinformation less that −0.5? This is where Hypothesis comes in:

In [1]: In [1]: from hypothesis import find

What hypothesis has done is use the distributions() strategy to randomly test distributions. Once it finds a
distribution satisfying the criteria we specified (coinformation less than −0.5) it then simplifies the example as much
as possible. Here, we see that even though it could have found any distribution, it found the exclusive or distribution,
and simplified the probabilities to be uniform.

1.6 Optimization

It is often useful to construct a distribution 𝑑′ which is consistent with some marginal aspects of 𝑑, but otherwise
optimizes some information measure. For example, perhaps we are interested in constructing a distribution which
matches pairwise marginals with another, but otherwise has maximum entropy:

In [1]: In [1]: from dit.algorithms.distribution_optimizers import MaxEntOptimizer

1.6.1 Helper Functions

There are three special functions to handle common optimization problems:

In [2]: In [7]: from dit.algorithms import maxent_dist, marginal_maxent_dists

The first is maximum entropy distributions with specific fixed marginals. It encapsulates the steps run above:

In [3]: In [8]: print(maxent_dist(xor, [[0,1], [0,2], [1,2]]))
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-3-b385aa28608c> in <module>
----> 1 print(maxent_dist(xor, [[0,1], [0,2], [1,2]]))

(continues on next page)
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(continued from previous page)

NameError: name 'xor' is not defined

In [4]: Class: Distribution

In [5]: Alphabet: ('0', '1') for all rvs
...: Base: linear
...: Outcome Class: str
...: Outcome Length: 3
...: RV Names: None
...:
File "<ipython-input-5-35057d4d19b8>", line 1
Alphabet: ('0', '1') for all rvs

^
SyntaxError: invalid syntax

The second constructs several maximum entropy distributions, each with all subsets of variables of a particular size
fixed:

In [6]: In [9]: k0, k1, k2, k3 = marginal_maxent_dists(xor)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-6-71e6864e6530> in <module>
----> 1 k0, k1, k2, k3 = marginal_maxent_dists(xor)

NameError: name 'xor' is not defined

where k0 is the maxent dist corresponding the same alphabets as xor; k1 fixes 𝑝(𝑥0), 𝑝(𝑥1), and 𝑝(𝑥2); k2 fixes
𝑝(𝑥0, 𝑥1), 𝑝(𝑥0, 𝑥2), and 𝑝(𝑥1, 𝑥2) (as in the maxent_dist example above), and finally k3 fixes 𝑝(𝑥0, 𝑥1, 𝑥2) (e.g.
is the distribution we started with).

1.7 Information Measures

dit supports many information measures, ranging from as standard as the Shannon entropy to as exotic as Gács-
Körner common information (with even more esoteric measure coming soon!). We organize these quantities into the
following groups.

We first have the Shannon-like measures. These quantities are based on sums and differences of entropies, conditional
entropies, or mutual informations of random variables:

1.7.1 Basic Shannon measures

The information on this page is drawn from the fantastic text book Elements of Information Theory by Cover and
Thomas [CT06]. Other good choices are Information Theory, Inference and Learning Algorithms by MacKay
[Mac03] and Information Theory and Network Coding by Yeung [Yeu08].

Entropy

The entropy measures how much information is in a random variable 𝑋 .

𝐻𝑋 = −
∑︁
𝑥∈𝒳

𝑝(𝑥) log2 𝑝(𝑥)
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What do we mean by “how much information”? Basically, we mean the average number of yes-no questions one
would have to ask to determine an outcome from the distribution. In the simplest case, consider a sure thing:

In [1]: In [1]: d = dit.Distribution(['H'], [1])

In [2]: In [2]: dit.shannon.entropy(d)
Out[2]: 0.0

In [3]: Out[2]: 0.0

So since we know that the outcome from our distribution will always be H, we have to ask zero questions to figure that
out. If however we have a fair coin:

In [4]: In [3]: d = dit.Distribution(['H', 'T'], [1/2, 1/2])

In [5]: In [4]: dit.shannon.entropy(d)
Out[5]: 1.0

In [6]: Out[4]: 1.0

The entropy tells us that we must ask one question to determine whether an H or T was the outcome of the coin flip.
Now what if there are three outcomes? Let’s consider the following situation:

In [7]: In [5]: d = dit.Distribution(['A', 'B', 'C'], [1/2, 1/4, 1/4])

In [8]: In [6]: dit.shannon.entropy(d)
Out[8]: 1.5

In [9]: Out[6]: 1.5

Here we find that the entropy is 1.5 bits. How do we ask one and a half questions on average? Well, if our first question
is “was it A?” and it is true, then we are done, and that occurs half the time. The other half of the time we need to ask
a follow up question: “was it B?”. So half the time we need to ask one question, and the other half of the time we need
to ask two questions. In other words, we need to ask 1.5 questions on average.

Joint Entropy

The entropy of multiple variables is computed in a similar manner:

𝐻𝑋0:𝑛 = −
∑︁

𝑥0:𝑛∈𝑋0:𝑛

𝑝(𝑥0:𝑛) log2 𝑝(𝑥0:𝑛)

Its intuition is also the same: the average number of binary questions required to identify a joint event from the
distribution.

API

entropy(dist, rvs=None, rv_mode=None)
Returns the entropy H[X] over the random variables in rvs.

If the distribution represents linear probabilities, then the entropy is calculated with units of ‘bits’ (base-2).
Otherwise, the entropy is calculated in whatever base that matches the distribution’s pmf.

Parameters

• dist (Distribution or float) – The distribution from which the entropy is calcu-
lated. If a float, then we calculate the binary entropy.
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• rvs (list, None) – The indexes of the random variable used to calculate the entropy.
If None, then the entropy is calculated over all random variables. This should remain None
for ScalarDistributions.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns H – The entropy of the distribution.

Return type float

Conditional Entropy

The conditional entropy is the amount of information in variable 𝑋 beyond that which is in variable 𝑌 :

𝐻𝑋|𝑌 = −
∑︁

𝑥∈𝑋,𝑦∈𝑌

𝑝(𝑥, 𝑦) log2 𝑝(𝑥|𝑦)

As a simple example, consider two identical variables:

In [10]: In [7]: d = dit.Distribution(['HH', 'TT'], [1/2, 1/2])

In [11]: In [8]: dit.shannon.conditional_entropy(d, [0], [1])
Out[11]: 0.0

In [12]: Out[8]: 0.0

We see that knowing the second variable tells us everything about the first, leaving zero entropy. On the other end of
the spectrum, two independent variables:

In [13]: In [9]: d = dit.Distribution(['HH', 'HT', 'TH', 'TT'], [1/4]*4)

In [14]: In [10]: dit.shannon.conditional_entropy(d, [0], [1])
Out[14]: 1.0

In [15]: Out[10]: 1.0

Here, the second variable tells us nothing about the first so we are left with the one bit of information a coin flip has.

API

conditional_entropy(dist, rvs_X, rvs_Y, rv_mode=None)
Returns the conditional entropy of H[X|Y].

If the distribution represents linear probabilities, then the entropy is calculated with units of ‘bits’ (base-2).

Parameters

• dist (Distribution) – The distribution from which the conditional entropy is calcu-
lated.

• rvs_X (list, None) – The indexes of the random variables defining X.

• rvs_Y (list, None) – The indexes of the random variables defining Y.

24 Chapter 1. Introduction

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None


dit Documentation, Release 1.2.3

• rv_mode (str, None) – Specifies how to interpret the elements of rvs_X and rvs_Y.
Valid options are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs_X and
rvs_Y are interpreted as random variable indices. If equal to ‘names’, the the elements are
interpreted as random variable names. If None, then the value of dist._rv_mode is consulted.

Returns H_XgY – The conditional entropy H[X|Y].

Return type float

Mutual Information

The mutual information is the amount of information shared by 𝑋 and 𝑌 :

𝐼𝑋 : 𝑌 = 𝐻𝑋,𝑌 −𝐻𝑋|𝑌 −𝐻𝑌 |𝑋
= 𝐻𝑋 + 𝐻𝑌 −𝐻𝑋,𝑌

=
∑︁

𝑥∈𝑋,𝑦∈𝑌

𝑝(𝑥, 𝑦) log2

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)

The mutual information is symmetric:

𝐼𝑋 : 𝑌 = 𝐼𝑌 : 𝑋

Meaning that the information that 𝑋 carries about 𝑌 is equal to the information that 𝑌 carries about 𝑋 . The entropy
of 𝑋 can be decomposed into the information it shares with 𝑌 and the information it doesn’t:

𝐻𝑋 = 𝐼𝑋 : 𝑌 + 𝐻𝑋|𝑌

See also:

The mutual information generalized to the multivariate case in three different ways:

Co-Information Generalized as the information which all variables contribute to.

Total Correlation Generalized as the sum of the information in the individual variables minus the information in the
whole.

Dual Total Correlation Generalized as the joint entropy minus the entropy of each variable conditioned on the others.

CAEKL Mutual Information Generalized as the smallest quantity that can be subtracted from the joint, and from
each part of a partition of all the variables, such that the joint entropy minus this quantity is equal to the sum of
each partition entropy minus this quantity.

API

mutual_information(dist, rvs_X, rvs_Y, rv_mode=None)
Returns the mutual information I[X:Y].

If the distribution represents linear probabilities, then the entropy is calculated with units of ‘bits’ (base-2).

Parameters

• dist (Distribution) – The distribution from which the mutual information is calcu-
lated.

• rvs_X (list, None) – The indexes of the random variables defining X.

• rvs_Y (list, None) – The indexes of the random variables defining Y.
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• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns I – The mutual information I[X:Y].

Return type float

Visualization of Information

It has been shown that there is a correspondence between set-theoretic measures and information-theoretic measures.
The entropy is equivalent to set cardinality, mutual information to set intersection, and conditional entropy to set
difference. Because of this we can use Venn-like diagrams to represent the information in and shared between random
variables. These diagrams are called information diagrams or i-diagrams for short.

This first image pictographically shades the area of the i-diagram which contains the information corresponding to
𝐻𝑋0.

Similarly, this one shades the information corresponding to 𝐻𝑋1.
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This image shades the information corresponding to 𝐻𝑋0, 𝑋1. Notice that it is the union of the prior two, and not
their sum (e.g. that overlap region is not double-counted).

Next, the conditional entropy of 𝑋0 conditioned on 𝑋1, 𝐻𝑋0|𝑋1, is displayed. It consists of the area contained in the
𝑋0 circle but not contained in 𝑋1 circle.
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In the same vein, here the conditional entropy 𝐻𝑋1|𝑋0 is shaded.

Finally, the mutual information between 𝑋0 and 𝑋1, 𝐼𝑋0 : 𝑋1 is drawn. It is the region where the two circles overlap.
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1.7.2 Multivariate

Multivariate measures of information generally attempt to capture some global property of a joint distribution. For
example, they might attempt to quantify how much information is shared among the random variables, or quantify
how “non-indpendent” in the joint distribution is.

Total Information

These quantities, currently just the Shannon entropy, measure the total amount of information contained in a set of
joint variables.

Entropy

The entropy measures the total amount of information contained in a set of random variables, 𝑋0:𝑛, potentially ex-
cluding the information contain in others, 𝑌0:𝑚.

𝐻𝑋0:𝑛|𝑌0:𝑚 = −
∑︁

𝑥0:𝑛∈𝒳0:𝑛
𝑦0:𝑚∈𝒴0:𝑚

𝑝(𝑥0:𝑛, 𝑦0:𝑚) log2 𝑝(𝑥0:𝑛|𝑦0:𝑚)

Let’s consider two coins that are interdependent: the first coin fips fairly, and if the first comes up heads, the other is
fair, but if the first comes up tails the other is certainly tails:

In [1]: In [1]: d = dit.Distribution(['HH', 'HT', 'TT'], [1/4, 1/4, 1/2])

We would expect that entropy of the second coin conditioned on the first coin would be 0.5 bits, and sure enough that
is what we find:

In [2]: In [2]: from dit.multivariate import entropy

And since the first coin is fair, we would expect it to have an entropy of 1 bit:
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In [3]: In [3]: entropy(d, [0])
Out[3]: 1.0

In [4]: Out[3]: 1.0

Taken together, we would then expect the joint entropy to be 1.5 bits:

In [5]: In [4]: entropy(d)
Out[5]: 1.5

In [6]: Out[4]: 1.5

Visualization

Below we have a pictoral representation of the joint entropy for both 2 and 3 variable joint distributions.
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API

entropy(dist, rvs=None, crvs=None, rv_mode=None)
Calculates the conditional joint entropy.

Parameters

• dist (Distribution) – The distribution from which the entropy is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the entropy. If
None, then the entropy is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns H – The entropy.

Return type float

Raises ditException – Raised if rvs or crvs contain non-existant random variables.

Examples

Let’s construct a 3-variable distribution for the XOR logic gate and name the random variables X, Y, and Z.
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>>> d = dit.example_dists.Xor()
>>> d.set_rv_names(['X', 'Y', 'Z'])

The joint entropy of H[X,Y,Z] is:

>>> dit.multivariate.entropy(d, 'XYZ')
2.0

We can do this using random variables indexes too.

>>> dit.multivariate.entropy(d, [0,1,2], rv_mode='indexes')
2.0

The joint entropy H[X,Z] is given by:

>>> dit.multivariate.entropy(d, 'XZ')
1.0

Conditional entropy can be calculated by passing in the conditional random variables. The conditional entropy
H[Y|X] is:

>>> dit.multivariate.entropy(d, 'Y', 'X')
1.0

Mutual Informations

These measures all reduce to the standard Shannon Mutual Information for bivariate distributions.

Co-Information

The co-information [Bel03] is one generalization of the Mutual Information to multiple variables. The co-information
quantifies the amount of infomration that all variables participate in. It is defined via an inclusion/exclusion sum:

𝐼𝑋0:𝑛 = −
∑︁

𝑦∈𝒫({0..𝑛})

(−1)|𝑦|𝐻𝑋𝑦

=
∑︁

𝑥0:𝑛∈𝑋0:𝑛

𝑝(𝑥0:𝑛) log2

∏︁
𝑦∈𝒫({0..𝑛})

𝑝(𝑦)(−1)|𝑦|

It is clear that the co-information measures the “center-most” atom of the diagram only, which is the only atom to
which every variable contributes. To exemplifying this, consider “giant bit” distributions:

In [1]: In [1]: from dit import Distribution as D

This verifies intuition that the entire one bit of the distribution’s entropy is condensed in a single atom. One notable
property of the co-information is that for 𝑛 ≥ 3 it can be negative. For example:

In [2]: In [4]: from dit.example_dists import Xor

Based on these two examples one might get the impression that the co-information is positive for “redundant” dis-
tributions and negative for “synergistic” distributions. This however is not true — consider the four-variable parity
distribution:
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In [3]: In [7]: from dit.example_dists import n_mod_m

Meaning that the co-information is positive for both the most redundant distribution, the giant bit, and the most
synergistic, the parity. Therefore the coinformation can not be used to measure redundancy or synergy.

Note: Correctly measuring redundancy and synergy is an ongoing problem. See [Griffith2013] and references therein
for the current status of the problem.

Visualization

The co-information can be visuallized on an i-diagram as below, where only the centermost atom is shaded:

API

coinformation(dist, rvs=None, crvs=None, rv_mode=None)
Calculates the coinformation.

Parameters

• dist (Distribution) – The distribution from which the coinformation is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the coinfor-
mation between. If None, then the coinformation is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are condition on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
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as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns I – The coinformation.

Return type float

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

Examples

Let’s construct a 3-variable distribution for the XOR logic gate and name the random variables X, Y, and Z.

>>> d = dit.example_dists.Xor()
>>> d.set_rv_names(['X', 'Y', 'Z'])

To calculate coinformations, recall that rvs specifies which groups of random variables are involved. For exam-
ple, the 3-way mutual information I[X:Y:Z] is calculated as:

>>> dit.multivariate.coinformation(d, ['X', 'Y', 'Z'])
-1.0

It is a quirk of strings that each element of a string is also an iterable. So an equivalent way to calculate the
3-way mutual information I[X:Y:Z] is:

>>> dit.multivariate.coinformation(d, 'XYZ')
-1.0

The reason this works is that list(‘XYZ’) == [‘X’, ‘Y’, ‘Z’]. If we want to use random variable indexes, we need
to have explicit groupings:

>>> dit.multivariate.coinformation(d, [[0], [1], [2]], rv_mode='indexes')
-1.0

To calculate the mutual information I[X, Y : Z], we use explicit groups:

>>> dit.multivariate.coinformation(d, ['XY', 'Z'])

Using indexes, this looks like:

>>> dit.multivariate.coinformation(d, [[0, 1], [2]], rv_mode='indexes')

The mutual information I[X:Z] is given by:

>>> dit.multivariate.coinformation(d, 'XZ')
0.0

Equivalently,

>>> dit.multivariate.coinformation(d, ['X', 'Z'])
0.0

Using indexes, this becomes:

>>> dit.multivariate.coinformation(d, [[0], [2]])
0.0
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Conditional mutual informations can be calculated by passing in the conditional random variables. The condi-
tional entropy I[X:Y|Z] is:

>>> dit.multivariate.coinformation(d, 'XY', 'Z')
1.0

Using indexes, this becomes:

>>> rvs = [[0], [1]]
>>> crvs = [[2]] # broken
>>> dit.multivariate.coinformation(d, rvs, crvs, rv_mode='indexes')
1.0

For the conditional random variables, groupings have no effect, so you can also obtain this as:

>>> rvs = [[0], [1]]
>>> crvs = [2]
>>> dit.multivariate.coinformation(d, rvs, crvs, rv_mode='indexes')
1.0

Finally, note that entropy can also be calculated. The entropy H[Z|XY] is obtained as:

>>> rvs = [[2]]
>>> crvs = [[0], [1]] # broken
>>> dit.multivariate.coinformation(d, rvs, crvs, rv_mode='indexes')
0.0

>>> crvs = [[0, 1]] # broken
>>> dit.multivariate.coinformation(d, rvs, crvs, rv_mode='indexes')
0.0

>>> crvs = [0, 1]
>>> dit.multivariate.coinformation(d, rvs, crvs, rv_mode='indexes')
0.0

>>> rvs = 'Z'
>>> crvs = 'XY'
>>> dit.multivariate.coinformation(d, rvs, crvs, rv_mode='indexes')
0.0

Note that [[0], [1]] says to condition on two groups. But conditioning is a flat operation and doesn’t respect the
groups, so it is equal to a single group of 2 random variables: [[0, 1]]. With random variable names ‘XY’ is
acceptable because list(‘XY’) = [‘X’, ‘Y’], which is species two singleton groups. By the previous argument,
this is will be treated the same as [‘XY’].

Total Correlation

The total correlation [Wat60], denoted 𝑇 , also known as the multi-information or integration, is one generalization of
the Mutual Information. It is defined as the amount of information each individual variable carries above and beyond
the joint entropy, e.g. the difference between the whole and the sum of its parts:

𝑇𝑋0:𝑛 =
∑︁

𝐻𝑋𝑖 −𝐻𝑋0:𝑛

=
∑︁

𝑥0:𝑛∈𝑋0:𝑛

𝑝(𝑥0:𝑛) log2

𝑝(𝑥0:𝑛)∏︀
𝑝(𝑥𝑖)
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Two nice features of the total correlation are that it is non-negative and that it is zero if and only if the random variables
𝑋0:𝑛 are all independent. Some baseline behavior is good to note also. First its behavior when applied to “giant bit”
distributions:

In [1]: In [1]: from dit import Distribution as D

So we see that for giant bit distributions, the total correlation is equal to one less than the number of variables. The
second type of distribution to consider is general parity distributions:

In [2]: In [4]: from dit.example_dists import n_mod_m

Here we see that the total correlation is equal to log2 𝑚 regardless of 𝑛.

The total correlation follows a nice decomposition rule. Given two sets of (not necessarily independent) random
variables, 𝐴 and 𝐵, the total correaltion of 𝐴 ∪𝐵 is:

𝑇𝐴 ∪𝐵 = 𝑇𝐴 + 𝑇𝐵 + 𝐼𝐴 : 𝐵

In [3]: In [18]: from dit.multivariate import coinformation as I

Visualization

The total correlation consists of all information that is shared among the variables, and weights each piece according
to how many variables it is shared among.

API

total_correlation(dist, rvs=None, crvs=None, rv_mode=None)
Computes the total correlation, also known as either the multi-information or the integration.
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Parameters

• dist (Distribution) – The distribution from which the total correlation is calculated.

• rvs (list, None) – A list of lists. Each inner list specifies the indexes of the random
variables used to calculate the total correlation. If None, then the total correlation is calcu-
lated over all random variables, which is equivalent to passing rvs=dist.rvs.

• crvs (list, None) – A single list of indexes specifying the random variables to condi-
tion on. If None, then no variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns T – The total correlation.

Return type float

Examples

>>> d = dit.example_dists.Xor()
>>> dit.multivariate.total_correlation(d)
1.0
>>> dit.multivariate.total_correlation(d, rvs=[[0], [1]])
0.0

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

Dual Total Correlation

The dual total correlation [Han75], or binding information [AP12], is yet another generalization of the Mutual Infor-
mation. It is the amount of information that is shared among the variables. It is defined as:

𝐵𝑋0:𝑛 = 𝐻𝑋0:𝑛 −
∑︁

𝐻𝑋𝑖|𝑋{0..𝑛}/𝑖

= −
∑︁

𝑥0:𝑛∈𝑋0:𝑛

𝑝(𝑥0:𝑛) log2

𝑝(𝑥0:𝑛)∏︀
𝑝(𝑥𝑖|𝑥{0:𝑛}/𝑖)

In a sense the binding information captures the same information that the Total Correlation does, in that both measures
are zero or non-zero together. However, the two measures take on very different quantitative values for different
distributions. By way of example, the type of distribution that maximizes the total correlation is a “giant bit”:

In [1]: In [1]: from dit.multivariate import binding_information, total_correlation

For the same distribution, the dual total correlation takes on a relatively low value. On the other hand, the type of
distribution that maximizes the dual total correlation is a “parity” distribution:

In [2]: In [5]: from dit.example_dists import n_mod_m
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Relationship to Other Measures

The dual total correlation obeys particular bounds related to both the Entropy and the Total Correlation:

0 ≤𝐵𝑋0:𝑛 ≤ 𝐻𝑋0:𝑛

𝑇𝑋0:𝑛

𝑛− 1
≤𝐵𝑋0:𝑛 ≤ (𝑛− 1)𝑇𝑋0:𝑛

Visualization

The binding information, as seen below, consists equally of the information shared among the variables.

API

dual_total_correlation(dist, rvs=None, crvs=None, rv_mode=None)
Calculates the dual total correlation, also known as the binding information.

Parameters

• dist (Distribution) – The distribution from which the dual total correlation is calcu-
lated.

• rvs (list, None) – The indexes of the random variable used to calculate the dual total
correlation. If None, then the dual total correlation is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are condition on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
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as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns B – The dual total correlation.

Return type float

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

Cohesion

The cohesion is a parameterized multivariate mutual information which spans from the Total Correlation to the Dual
Total Correlation:

𝐶𝑘[𝑋0 : 𝑋1 : . . . : 𝑋𝑛] =
∑︁

𝐴⊂[𝑛]|𝐴|=𝑘

𝐻𝑋𝐴 −
(︂
𝑛− 1

𝑘 − 1

)︂
𝐻𝑋0, 𝑋1, . . . , 𝑋𝑛

CAEKL Mutual Information

The Chan-AlBashabsheh-Ebrahimi-Kaced-Liu mutual information [CABE+15] is one possible generalization of the
Mutual Information.

𝐽𝑋0:𝑛 is the smallest 𝛾 such that:

𝐻𝑋0:𝑛 − 𝛾 =
∑︁
𝐶∈𝒫

[𝐻𝑋𝐶 − 𝛾]

for some non-trivial partition 𝒫 of {0 : 𝑛}. For example, the CAEKL mutual information for the xor distribution is
1
2 , because the joint entropy is 2 bits, each of the three marginals is 1 bit, and 2− 1

2 = 3(1− 1
2 ).

In [1]: In [1]: from dit.multivariate import caekl_mutual_information as J

A more concrete way of defining the CAEKL mutual information is:

𝐽𝑋0:𝑛 = min
𝒫∈Π

I𝒫 [𝑋0:𝑛]

where I𝒫 is the total_correlation of the partition:

I𝒫 [𝑋0:𝑛] =
∑︁
𝐶∈𝒫

𝐻𝑋𝐶 −𝐻𝑋0:𝑛

and Π is the set of all non-trivial partitions of {0 : 𝑛}.

API

caekl_mutual_information(dist, rvs=None, crvs=None, rv_mode=None)
Calculates the Chan-AlBashabsheh-Ebrahimi-Kaced-Liu mutual information.

Parameters

• dist (Distribution) – The distribution from which the CAEKL mutual information is
calculated.
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• rvs (list, None) – A list of lists. Each inner list specifies the indexes of the random
variables used to calculate the total correlation. If None, then the total correlation is calcu-
lated over all random variables, which is equivalent to passing rvs=dist.rvs.

• crvs (list, None) – A single list of indexes specifying the random variables to condi-
tion on. If None, then no variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns J – The CAEKL mutual information.

Return type float

Examples

>>> d = dit.example_dists.Xor()
>>> dit.multivariate.caekl_mutual_information(d)
0.5
>>> dit.multivariate.caekl_mutual_information(d, rvs=[[0], [1]])
0.0

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

Interaction Information

The interaction information is equal in magnitude to the Co-Information, but has the opposite sign when taken over an
odd number of variables:

𝐼𝐼𝑋0:𝑛 = (−1)𝑛 · 𝐼𝑋0:𝑛

Interaction information was first studied in the 3-variable case which, for 𝑋0:3 = 𝑋0𝑋1𝑋2, takes the following form:

𝐼𝐼𝑋0 : 𝑋1 : 𝑋2 = 𝐼𝑋0 : 𝑋1|𝑋2 − 𝐼𝑋0 : 𝑋1

The extension to 𝑛 > 3 proceeds recursively. For example,

𝐼𝐼𝑋0 : 𝑋1 : 𝑋2 : 𝑋3 = 𝐼𝐼𝑋0 : 𝑋1 : 𝑋2|𝑋3 − 𝐼𝐼𝑋0 : 𝑋1 : 𝑋2

= 𝐼𝑋0 : 𝑋1|𝑋2, 𝑋3 − 𝐼𝑋0 : 𝑋1|𝑋3

− 𝐼𝑋0 : 𝑋1|𝑋2 + 𝐼𝑋0 : 𝑋1

See also:

For more information, see Co-Information.

API

interaction_information(dist, rvs=None, crvs=None, rv_mode=None)
Calculates the interaction information.
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Parameters

• dist (Distribution) – The distribution from which the interaction information is cal-
culated.

• rvs (list, None) – The indexes of the random variable used to calculate the interaction
information between. If None, then the interaction information is calculated over all random
variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are condition on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns II – The interaction information.

Return type float

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

DeWeese-like Measures

Mike DeWeese has introduced a family of multivariate information measures based on a multivariate extension of the
data processing inequality. The general idea is the following: local modification of a single variable can not increase
the amount of correlation or dependence it has with the other variables. Consider, however, the triadic distribution:

In [1]: In [1]: from dit.example_dists import dyadic, triadic

This particular distribution has zero coinformation:

In [2]: In [3]: from dit.multivariate import coinformation

Yet the distribution is a product of a giant bit (coinformation 1.0) and the xor (coinformation−1.0), and so there exists
within it the capability of having a coinformation of 1.0 if the xor component were dropped. This is exactly what the
DeWeese construction captures:

𝐼𝐷𝑋0 : . . . : 𝑋𝑛 = max
𝑝(𝑥′

𝑖|𝑥𝑖)
𝐼𝑋 ′

0 : . . . : 𝑋 ′
𝑛

In [3]: In [5]: from dit.multivariate import deweese_coinformation

DeWeese version of the total_correlation, dual_total_correlation, and caekl_mutual_information are also available,
and operate on an arbitrary number of variables with optional conditional variables.

API

deweese_coinformation(dist, rvs=None, crvs=None, niter=None, deterministic=False,
rv_mode=None)

Compute the DeWeese coinformation.

Parameters

• dist (Distribution) – The distribution of interest.

1.7. Information Measures 41

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float


dit Documentation, Release 1.2.3

• rvs (iter of iters, None) – The random variables of interest. If None, use all.

• crvs (iter, None) – The variables to condition on. If None, none.

• niter (int, None) – If specified, the number of optimization steps to perform.

• deterministic (bool) – Whether the functions to optimize over should be determinis-
tic or not. Defaults to False.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns val – The value of the DeWeese coinformation.

Return type float

deweese_total_correlation(dist, rvs=None, crvs=None, niter=None, deterministic=False,
rv_mode=None)

Compute the DeWeese total correlation.

Parameters

• dist (Distribution) – The distribution of interest.

• rvs (iter of iters, None) – The random variables of interest. If None, use all.

• crvs (iter, None) – The variables to condition on. If None, none.

• niter (int, None) – If specified, the number of optimization steps to perform.

• deterministic (bool) – Whether the functions to optimize over should be determinis-
tic or not. Defaults to False.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns val – The value of the DeWeese total correlation.

Return type float

deweese_dual_total_correlation(dist, rvs=None, crvs=None, niter=None, deterministic=False,
rv_mode=None)

Compute the DeWeese dual total correlation.

Parameters

• dist (Distribution) – The distribution of interest.

• rvs (iter of iters, None) – The random variables of interest. If None, use all.

• crvs (iter, None) – The variables to condition on. If None, none.

• niter (int, None) – If specified, the number of optimization steps to perform.

• deterministic (bool) – Whether the functions to optimize over should be determinis-
tic or not. Defaults to False.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
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variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns val – The value of the DeWeese dual total correlation.

Return type float

deweese_caekl_mutual_information(dist, rvs=None, crvs=None, niter=None, determinis-
tic=False, rv_mode=None)

Compute the DeWeese caekl mutual information.

Parameters

• dist (Distribution) – The distribution of interest.

• rvs (iter of iters, None) – The random variables of interest. If None, use all.

• crvs (iter, None) – The variables to condition on. If None, none.

• niter (int, None) – If specified, the number of optimization steps to perform.

• deterministic (bool) – Whether the functions to optimize over should be determinis-
tic or not. Defaults to False.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns val – The value of the DeWeese caekl mutual information.

Return type float

It is perhaps illustrative to consider how each of these measures behaves on two canonical distributions: the giant bit
and parity.

giant bit parity
size I II T B J I II T B J
2 1 1 1 1 1 1 1 1 1 1
3 1 -1 2 1 1 -1 1 1 2 1

2

4 1 1 3 1 1 1 1 1 3 1
3

5 1 -1 4 1 1 -1 1 1 4 1
4

𝑛 1 (−1)𝑛 𝑛 1 1 (−1)𝑛 1 1 𝑛 1
𝑛−1

Common Informations

These measures all somehow measure shared information, but do not equal the mutual information in the bivaraite
case.

Gács-Körner Common Information

The Gács-Körner common information [GacsKorner73] take a very direct approach to the idea of common informa-
tion. It extracts a random variable that is contained within each of the random variables under consideration.
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The Common Information Game

Let’s play a game. We have an n-variable joint distribution, and one player for each variable. Each player is given the
probability mass function of the joint distribution then isolated from each other. Each round of the game the a joint
outcome is generated from the distribution and each player is told the symbol that their particular variable took. The
goal of the game is for the players to simultaneously write the same symbol on a piece of paper, and for the entropy
of the players’ symbols to be maximized. They must do this using only their knowledge of the joint random variable
and the particular outcome of their marginal variable. The matching symbols produced by the players are called the
common random variable and the entropy of that variable is the Gács-Körner common information, 𝐾.

Two Variables

Consider a joint distribution over 𝑋0 and 𝑋1. Given any particular outcome from that joint, we want a function
𝑓(𝑋0) and a function 𝑔(𝑋1) such that ∀𝑥0𝑥1 = 𝑋0𝑋1, 𝑓(𝑥0) = 𝑔(𝑥1) = 𝑣. Of all possible pairs of functions
𝑓(𝑋0) = 𝑔(𝑋1) = 𝑉 , there exists a “largest” one, and it is known as the common random variable. The entropy of
that common random variable is the Gács-Körner common information:

𝐾𝑋0 : 𝑋1 = max
𝑓(𝑋0)=𝑔(𝑋1)=𝑉

𝐻𝑉

= 𝐻𝑋0 f𝑋1

As a canonical example, consider the following:

In [1]: In [1]: from dit import Distribution as D

Note: It is important that we set the sample_space argument. If it is None then the Cartesian product of each alphabet,
and in such a case the meet will trivially be degenerate.

So, the Gács-Körner common information is 1.5 bits. But what is the common random variable?

In [2]: In [7]: from dit.algorithms import insert_meet

Looking at the third index of the outcomes, we see that the common random variable maps 2 to 0 and 3 to 1, maintain-
ing the information from those values. When 𝑋0 or 𝑋1 are either 0 or 1, however, it maps them to 2. This is because
𝑓 and 𝑔 must act independently: if 𝑥0 is a 0 or a 1, there is no way to know if 𝑥1 is a 0 or a 1 and vice versa. Therefore
we aggregate 0s and 1s into 2.

Visualization

The Gács-Körner common information is the largest “circle” that entirely fits within the mutual information’s “foot-
ball”:
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Properties & Uses

The Gács-Körner common information satisfies an important inequality:

0 ≤ 𝐾𝑋0 : 𝑋1 ≤ 𝐼𝑋0 : 𝑋1

One usage of the common information is as a measure of redundancy [GCJ+14]. Consider a function that takes two
inputs, 𝑋0 and 𝑋1, and produces a single output 𝑌 . The output can be influenced redundantly by both inputs, uniquely
from either one, or together they can synergistically influence the output. Determining how to compute the amount of
redundancy is an open problem, but one proposal is:

𝐼𝑋0 f𝑋1 : 𝑌

Which can be visualized as this:
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This quantity can be computed easily using dit:

In [3]: In [10]: from dit.example_dists import RdnXor

𝑛-Variables

With an arbitrary number of variables, the Gács-Körner common information [TNG11] is defined similarly:

𝐾𝑋0 : . . . : 𝑋𝑛 = max
𝑉=𝑓0(𝑋0)

...
𝑉=𝑓𝑛(𝑋𝑛)

𝐻𝑉

= 𝐻𝑋0 f . . .f𝑋𝑛

The common information is a monotonically decreasing function in the number of variables:

𝐾𝑋0 : . . . : 𝑋𝑛−1 ≥ 𝐾𝑋0 : . . . : 𝑋𝑛

The multivariate common information follows a similar inequality as the two variable version:

0 ≤ 𝐾𝑋0 : · · · : 𝑋𝑛 ≤ min
𝑖,𝑗∈{0..𝑛}

𝐼𝑋𝑖 : 𝑋𝑗

It is interesting to note that the Gács-Körner common information can be non-zero even when the coinformation is
negative:

In [4]: In [16]: from dit.example_dists.miscellaneous import gk_pos_i_neg

Visualization

Here, as above, the Gács-Körner common information among three variables is the largest “circle” this time fiting in
the vaguely triangular Co-Information region.
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API

gk_common_information(dist, rvs=None, crvs=None, rv_mode=None)
Calculates the Gacs-Korner common information K[X1:X2. . . ] over the random variables in rvs.

Parameters

• dist (Distribution) – The distribution from which the common information is calcu-
lated.

• rvs (list, None) – The indexes of the random variables for which the Gacs-Korner
common information is to be computed. If None, then the common information is calculated
over all random variables.

• crvs (list, None) – The indexes of the random variables to condition the common
information by. If none, than there is no conditioning.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns K – The Gacs-Korner common information of the distribution.

Return type float

Raises ditException – Raised if rvs or crvs contain non-existant random variables.
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Wyner Common Information

The Wyner common information [Wyn75][LXC10] measures the minimum amount of information necessary needed
to reconstruct a joint distribution from each marginal.

𝑋0:𝑛|𝑌0:𝑚 = min
⊥⊥𝑋0:𝑛|𝑌0:𝑚,𝑉

𝐼𝑋0:𝑛 : 𝑉 |𝑌0:𝑚

Binary Symmetric Erasure Channel

The Wyner common information of the binary symmetric erasure channel is known to be:

𝑋 : 𝑌 =

{︃
1 𝑝 < 1

2

𝐻𝑝 𝑝 ≥ 1
2

.

We can verify this:

In [1]: In [1]: from dit.multivariate import wyner_common_information as C

API

wyner_common_information(dist, rvs=None, crvs=None, niter=None, maxiter=1000, polish=1e-06,
bound=None, rv_mode=None)

Computes the wyner common information, min I[X:V] such that V renders all X_i independent.

Parameters

• dist (Distribution) – The distribution for which the wyner common information will
be computed.
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• rvs (list, None) – A list of lists. Each inner list specifies the indexes of the random
variables used to calculate the wyner common information. If None, then it calculated over
all random variables, which is equivalent to passing rvs=dist.rvs.

• crvs (list, None) – A single list of indexes specifying the random variables to condi-
tion on. If None, then no variables are conditioned on.

• niter (int > 0) – Number of basin hoppings to perform during the optimization.

• maxiter (int > 0) – The number of iterations of the optimization subroutine to per-
form.

• polish (False, float) – Whether to polish the result or not. If a float, this will
perform a second optimization seeded with the result of the first, but with smaller tolerances
and probabilities below polish set to 0. If False, don’t polish.

• bound (int) – Bound the size of the Markov variable.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns ci – The wyner common information.

Return type float

Exact Common Information

The exact common information [KLEG14] is the entropy of the smallest variable 𝑉 which renders all variables of
interest independent:

𝑋0:𝑛|𝑌0:𝑚 = min
⊥⊥𝑋0:𝑛|𝑌0:𝑚,𝑉

𝐻𝑉 |𝑌0:𝑚

Subadditivity of Independent Variables

Kumar et. al. [KLEG14] have shown that the exact common information of a pair of independent pairs of variables
can be less than the sum of their individual exact common informations. Here we verify this claim:

In [1]: In [1]: from dit.multivariate import exact_common_information as G

API

exact_common_information(dist, rvs=None, crvs=None, niter=None, maxiter=1000, polish=1e-06,
bound=None, rv_mode=None)

Computes the exact common information, min H[V] where V renders all rvs independent.

Parameters

• dist (Distribution) – The distribution for which the exact common information will
be computed.

• rvs (list, None) – A list of lists. Each inner list specifies the indexes of the random
variables used to calculate the exact common information. If None, then it calculated over
all random variables, which is equivalent to passing rvs=dist.rvs.
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• crvs (list, None) – A single list of indexes specifying the random variables to condi-
tion on. If None, then no variables are conditioned on.

• niter (int > 0) – Number of basin hoppings to perform during the optimization.

• maxiter (int > 0) – The number of iterations of the optimization subroutine to per-
form.

• polish (False, float) – Whether to polish the result or not. If a float, this will
perform a second optimization seeded with the result of the first, but with smaller tolerances
and probabilities below polish set to 0. If False, don’t polish.

• bound (int) – Bound the size of the Markov variable.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns ci – The exact common information.

Return type float

Functional Common Information

The functional common information captures the minimum amount of information neccessary to capture all of a
distribution’s share information using a function of that information. In other words:

𝐹𝑋0:𝑛 | 𝑌0:𝑚 = min
⊥⊥𝑋0:𝑛|𝑌0:𝑚,𝑊
𝑊=𝑓(𝑋0:𝑛,𝑌0:𝑚)

𝐻𝑊

Relationship To Other Measures of Common Information

Since this is an additional constraint on the Exact common information, it is generally larger than it, and since its
constraint is weaker than that of the MSS Common Information, it is generally less than it:

𝑋0:𝑛 ≤ 𝐹𝑋0:𝑛 ≤𝑀𝑋0:𝑛

API

functional_common_information(dist, rvs=None, crvs=None, rv_mode=None)
Compute the functional common information, F, of dist. It is the entropy of the smallest random variable W
such that all the variables in rvs are rendered independent conditioned on W, and W is a function of rvs.

Parameters

• dist (Distribution) – The distribution from which the functional common informa-
tion is computed.

• rvs (list, None) – A list of lists. Each inner list specifies the indexes of the random
variables used to calculate the total correlation. If None, then the total correlation is calcu-
lated over all random variables, which is equivalent to passing rvs=dist.rvs.

• crvs (list, None) – A single list of indexes specifying the random variables to condi-
tion on. If None, then no variables are conditioned on.
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• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns F – The functional common information.

Return type float

MSS Common Information

The Minimal Sufficient Statistic Common Information is the entropy of the join of the minimal sufficient statistic of
each variable about the others:

𝑀𝑋0:𝑛 = 𝐻g𝑖

(︁
𝑋𝑖 ↘ 𝑋{𝑖}

)︁
The distribution that the MSS common information is the entroy of is also known “information trim” of the original
distribution, and is accessable via dit.algorithms.minimal_sufficient_statistic.info_trim().

API

mss_common_information(dist, rvs=None, crvs=None, rv_mode=None)
Compute the minimal sufficient statistic common information, which is the entropy of the join of the minimal
sufficent statistic of each variable about the others.

Parameters

• dist (Distribution) – The distribution for which the joint minimal sufficient statistic
is computed.

• rvs (list, None) – The random variables to compute the joint minimal sufficient statis-
tic of. If None, all random variables are used.

• crvs (list, None) – The random variables to condition the joint minimal sufficient
statistic on. If None, then no random variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Ordering

The common information measures (together with the Dual Total Correlation and CAEKL Mutual Information) form
an ordering:

𝐾𝑋0:𝑛 ≤ 𝐽𝑋0:𝑛 ≤ 𝐵𝑋0:𝑛 ≤ 𝑋0:𝑛 ≤ 𝑋0:𝑛 ≤ 𝐹𝑋0:𝑛 ≤𝑀𝑋0:𝑛

Others

These measures quantify other aspects of a joint distribution.
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Residual Entropy

The residual entropy, or erasure entropy, is a dual to the Dual Total Correlation. It is dual in the sense that together
they form the entropy of the distribution.

𝑅𝑋0:𝑛 =
∑︁

𝐻𝑋𝑖|𝑋{0..𝑛}/𝑖

= −
∑︁

𝑥0:𝑛∈𝑋0:𝑛

𝑝(𝑥0:𝑛) log2

∏︁
𝑝(𝑥𝑖|𝑥{0:𝑛}/𝑖)

The residual entropy was originally proposed in [VW08] to quantify the information lost by sporatic erasures in a
channel. The idea here is that only the information uncorrelated with other random variables is lost if that variable is
erased.

If a joint distribution consists of independent random variables, the residual entropy is equal to the Entropy:

In [1]: In [1]: from dit.multivariate import entropy, residual_entropy

Another simple example is a distribution where one random variable is independent of the others:

In [2]: In [1]: d = dit.uniform(['000', '001', '110', '111'])

In [3]: In [2]: residual_entropy(d)
Out[3]: 1.0

In [4]: Out[2]: 1.0

If we ask for the residual entropy of only the latter two random variables, the middle one is now independent of the
others and so the residual entropy grows:

In [5]: In [4]: residual_entropy(d, [[1], [2]])
Out[5]: 2.0

In [6]: Out[4]: 2.0

Visualization

The residual entropy consists of all the unshared information in the distribution. That is, it is the information in each
variable not overlapping with any other.
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API

residual_entropy(dist, rvs=None, crvs=None, rv_mode=None)
Compute the residual entropy.

Parameters

• dist (Distribution) – The distribution from which the residual entropy is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the residual
entropy. If None, then the total correlation is calculated over all random variables.
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• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are condition on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns R – The residual entropy.

Return type float

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

TSE Complexity

The Tononi-Sporns-Edelmans (TSE) complexity [TSE94] is a complexity measure for distributions. It is designed
so that it maximized by distributions where small subsets of random variables are loosely coupled but the overall
distribution is tightly coupled.

𝑇𝑆𝐸𝑋|𝑍 =

|𝑋|∑︁
𝑘=1

⎛⎜⎜⎝(︂𝑁𝑘
)︂−1 ∑︁

𝑦⊆𝑋
|𝑦|=𝑘

(𝐻𝑦|𝑍)− 𝑘

|𝑋|
𝐻𝑋|𝑍

⎞⎟⎟⎠
Two distributions which might be considered tightly coupled are the “giant bit” and the “parity” distributions:

In [1]: In [54]: from dit.multivariate import tse_complexity

The TSE Complexity assigns them both a value of 1.0 bits, which is the maximal value the TSE takes over trivariate,
binary alphabet distributions.

API

tse_complexity(dist, rvs=None, crvs=None, rv_mode=None)
Calculates the TSE complexity.

Parameters

• dist (Distribution) – The distribution from which the TSE complexity is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the TSE com-
plexity between. If None, then the TSE complexity is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are condition on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns TSE – The TSE complexity.

Return type float
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Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

Necessary Conditional Entropy

The necessary conditional entropy [CPC10] quantifies the amount of information that a random variable 𝑋 necessarily
must carry above and beyond the mutual information 𝐼𝑋 : 𝑌 to actually contain that mutual information:

𝐻𝑋 † 𝑌 = 𝐻𝑋 ↘ 𝑌 |𝑌

API

necessary_conditional_entropy(dist, rvs=None, crvs=None, rv_mode=None)
Calculates the necessary conditional entropy 𝐻[𝑋 † 𝑌 ]. This is the entropy of the minimal sufficient statistic of
X about Y, given Y.

Parameters

• dist (Distribution) – The distribution from which the necessary conditional entropy
is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the necessary
conditional entropy. If None, then the entropy is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns H – The necessary conditional entropy.

Return type float

Raises ditException – Raised if rvs or crvs contain non-existant random variables.

Example

This next group of measures can not be represented on information diagrams, and can not really be directly compared
to the measures above:

1.7.3 Other Measures

Other measures of information. These are generally based around alternatives to the Shannon entropy proposed for a
variety of reasons.

Cumulative Residual Entropy

The cumulative residual entropy [RCVW04] is an alternative to the differential Shannon entropy. The differential
entropy has many issues, including that it can be negative even for simple distributions such as the uniform distribution;
and that if one takes discrete estimates that limit to the continuous distribution, the discrete entropy does not limit to
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the differential (continuous) entropy. It also attempts to provide meaningful differences between numerically different
random variables, such as a die labeled [1, 2, 3, 4, 5, 6] and one lebeled [1, 2, 3, 4, 5, 100].

Note: The Cumulative Residual Entropy is unrelated to Residual Entropy.

ℰ𝑋 = −
∫︁ ∞

0

𝑝(|𝑋| > 𝑥) log2 𝑝(|𝑋| > 𝑥)𝑑𝑥

In [1]: In [1]: from dit.other import cumulative_residual_entropy

Generalized Cumulative Residual Entropy

The genearlized form of the cumulative residual entropy integrates over the intire set of reals rather than just the
positive ones:

ℰ ′𝑋 = −
∫︁ ∞

−∞
𝑝(𝑋 > 𝑥) log2 𝑝(𝑋 > 𝑥)𝑑𝑥

In [2]: In [6]: from dit.other import generalized_cumulative_residual_entropy

Conditional Cumulative Residual Entropy

The conditional cumulative residual entropy ℰ [𝑋|𝑌 ] is a distribution with the same probability mass function as 𝑌 ,
and the outcome associated with 𝑝(𝑦) is equal to the cumulative residual entropy over probabilities conditioned on
𝑌 = 𝑦. In this sense the conditional cumulative residual entropy is more akin to a distribution over 𝐻[𝑋|𝑌 = 𝑦] than
the single scalar quantity 𝐻[𝑋|𝑌 ].

ℰ𝑋|𝑌 = −
∫︁ ∞

0

𝑝(|𝑋| > 𝑥|𝑌 ) log2 𝑝(|𝑋| > 𝑥|𝑌 )𝑑𝑥

Conditional Generalized Cumulative Residual Entropy

Conceptually the conditional generalized cumulative residual entropy is the same as the non-generalized form, but
integrated over the entire real line rather than just the positive:

ℰ ′𝑋|𝑌 = −
∫︁ ∞

−∞
𝑝(𝑋 > 𝑥|𝑌 ) log2 𝑝(𝑋 > 𝑥|𝑌 )𝑑𝑥

API

cumulative_residual_entropy(dist, extract=False)
The cumulative residual entropy is an alternative to the Shannon differential entropy with several desirable
properties including non-negativity.

Parameters

• dist (Distribution) – The distribution to compute the cumulative residual entropy of
each index for.
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• extract (bool) – If True and dist.outcome_length() is 1, return the single GCRE value
rather than a length-1 array.

Returns CREs – The cumulative residual entropy for each index.

Return type ndarray

Examples

>>> d1 = ScalarDistribution([1, 2, 3, 4, 5, 6], [1/6]*6)
>>> d2 = ScalarDistribution([1, 2, 3, 4, 5, 100], [1/6]*6)
>>> cumulative_residual_entropy(d1)
2.0683182557028439
>>> cumulative_residual_entropy(d2)
22.672680046016705

generalized_cumulative_residual_entropy(dist, extract=False)
The generalized cumulative residual entropy is a generalized from of the cumulative residual entropy. Rather
than integrating from 0 to infinity over the absolute value of the CDF.

Parameters

• dist (Distribution) – The distribution to compute the generalized cumulative residual
entropy of each index for.

• extract (bool) – If True and dist.outcome_length() is 1, return the single GCRE value
rather than a length-1 array.

Returns GCREs – The generalized cumulative residual entropy for each index.

Return type ndarray

Examples

>>> generalized_cumulative_residual_entropy(uniform(-2, 3))
1.6928786893420307
>>> generalized_cumulative_residual_entropy(uniform(0, 5))
1.6928786893420307

Conditional Forms

conditional_cumulative_residual_entropy(dist, rv, crvs=None, rv_mode=None)
Returns the conditional cumulative residual entropy.

Parameters

• dist (Distribution) – The distribution to compute the conditional cumulative residual
entropy of.

• rv (list, None) – The possibly joint random variable to compute the conditional cumu-
lative residual entropy of. If None, then all variables not in crvs are used.

• crvs (list, None) – The random variables to condition on. If None, nothing is condi-
tioned on.
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• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns CCRE – The conditional cumulative residual entropy.

Return type ScalarDistribution

Examples

>>> from itertools import product
>>> events = [ (a, b) for a, b, in product(range(5), range(5)) if a <= b ]
>>> probs = [ 1/(5-a)/5 for a, b in events ]
>>> d = Distribution(events, probs)
>>> print(conditional_cumulative_residual_entropy(d, 1, [0]))
Class: ScalarDistribution
Alphabet: (-0.0, 0.5, 0.91829583405448956, 1.3112781244591329, 1.6928786893420307)
Base: linear

x p(x) -0.0 0.2 0.5 0.2 0.918295834054 0.2 1.31127812446 0.2 1.69287868934 0.2

conditional_generalized_cumulative_residual_entropy(dist, rv, crvs=None,
rv_mode=None)

Returns the conditional cumulative residual entropy.

Parameters

• dist (Distribution) – The distribution to compute the conditional generalized cumu-
lative residual entropy of.

• rv (list, None) – The possibly joint random variable to compute the conditional gen-
eralized cumulative residual entropy of. If None, then all variables not in crvs are used.

• crvs (list, None) – The random variables to condition on. If None, nothing is condi-
tioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns CCRE – The conditional cumulative residual entropy.

Return type ScalarDistribution

Examples

>>> from itertools import product
>>> events = [ (a-2, b-2) for a, b, in product(range(5), range(5)) if a <= b ]
>>> probs = [ 1/(3-a)/5 for a, b in events ]
>>> d = Distribution(events, probs)
>>> print(conditional_generalized_cumulative_residual_entropy(d, 1, [0]))
Class: ScalarDistribution
Alphabet: (-0.0, 0.5, 0.91829583405448956, 1.3112781244591329, 1.6928786893420307)
Base: linear
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x p(x) -0.0 0.2 0.5 0.2 0.918295834054 0.2 1.31127812446 0.2 1.69287868934 0.2

Disequilibrium and the LMPR Complexity

Lamberti, Martin, Plastino, and Rosso have proposed a complexity measure [LMPR04] disigned around the idea of
being a measure of “distance from equilibrium”, or disequilibrium, multiplied by a measure of “randomness”. Here,
they measure “randomness” by the (normalized) Entropy:

𝐻𝑋/ log2 |𝑋|

and the disequilibrium as a (normalized) Jensen-Shannon Divergence:

𝐷𝐽𝑆𝑋||𝑃𝑒/𝑄0

where 𝑃𝑒 is a uniform distribution over the same outcome space as 𝑋 , and 𝑄0 is the maximum possible value of the
Jensen-Shannon divergence of a distribution with 𝑃𝑒.

The LMPR complexity does not necessarily behave as one might intuitively hope. For example, the LMPR complexity
of the xor and “double bit” with independent bit are identical:

In [1]: In [1]: from dit.other.disequilibrium import *

This is because they are both equally “far from equilibrium” with four equiprobable events over the space of three
binary variables, and both have the same entropy of two bits.

This implies that the LMPR complexity is perhaps best applied to a ScalarDistribution, and is not suitable for
measuring the complexity of dependencies between variables.

API

disequilibrium(dist, rvs=None, rv_mode=None)
Compute the (normalized) disequilibrium as measured the Jensen-Shannon divergence from an equilibrium
distribution.

Parameters

• dist (Distribution) – Distribution to compute the disequilibrium of.

• rvs (list, None) – The indexes of the random variable used to calculate the diseqilib-
rium. If None, then the disequilibrium is calculated over all random variables. This should
remain None for ScalarDistributions.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns D – The disequilibrium.

Return type float

LMPR_complexity(dist, rvs=None, rv_mode=None)
Compute the LMPR complexity.

Parameters

• dist (Distribution) – Distribution to compute the LMPR complexity of.
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• rvs (list, None) – The indexes of the random variable used to calculate the LMPR
complexity. If None, then the LMPR complexity is calculated over all random variables.
This should remain None for ScalarDistributions.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns C – The LMPR complexity.

Return type float

Extropy

The extropy [LSAgro11] is a dual to the Entropy. It is defined by:

𝑋𝑋 = −
∑︁
𝑥∈𝑋

(1− 𝑝(𝑥)) log2(1− 𝑝(𝑥))

The entropy and the extropy satisify the following relationship:

𝐻𝑋 + 𝑋𝑋 =
∑︁
𝑥∈𝒳

𝐻𝑝(𝑥), 1− 𝑝(𝑥) =
∑︁
𝑥∈𝒳

𝑋𝑝(𝑥), 1− 𝑝(𝑥)

Unfortunately, the extropy does not yet have any intuitive interpretation.

In [1]: In [1]: from dit.other import extropy

API

extropy(dist, rvs=None, rv_mode=None)
Returns the extropy J[X] over the random variables in rvs.

If the distribution represents linear probabilities, then the extropy is calculated with units of ‘bits’ (base-2).

Parameters

• dist (Distribution or float) – The distribution from which the extropy is calcu-
lated. If a float, then we calculate the binary extropy.

• rvs (list, None) – The indexes of the random variable used to calculate the extropy. If
None, then the extropy is calculated over all random variables. This should remain None for
ScalarDistributions.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns J – The extropy of the distribution.

Return type float

Lautum Information

The lautum information [PVerdu08] is, in a sense, the mutual information in reverse (lautum is mutual backwards):

𝑋0:𝑛 = 𝐷𝐾𝐿𝑋0 ·𝑋1 · . . . ·𝑋𝑛||𝑋0:𝑛
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API

lautum_information(dist, rvs=None, crvs=None, rv_mode=None)
Computes the lautum information.

Parameters

• dist (Distribution) – The distribution from which the lautum information is calcu-
lated.

• rvs (list, None) – A list of lists. Each inner list specifies the indexes of the random
variables used to calculate the lautum information. If None, then the lautum information is
calculated over all random variables, which is equivalent to passing rvs=dist.rvs.

• crvs (list, None) – A single list of indexes specifying the random variables to condi-
tion on. If None, then no variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns L – The lautum information.

Return type float

Examples

>>> outcomes = ['000', '001', '010', '011', '100', '101', '110', '111']
>>> pmf = [3/16, 1/16, 1/16, 3/16, 1/16, 3/16, 3/16, 1/16]
>>> d = dit.Distribution(outcomes, pmf)
>>> dit.other.lautum_information(d)
0.20751874963942196
>>> dit.other.lautum_information(d, rvs=[[0], [1]])
0.0

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existent random variables.

Perplexity

The perplexity is a trivial measure to make the Entropy more intuitive:

𝑃𝑋 = 2𝐻𝑋

The perplexity of a random variable is the size of a uniform distribution that would have the same entropy. For example,
a distribution with 2 bits of entropy has a perplexity of 4, and so could be said to be “as random” as a four-sided die.

The conditional perplexity is defined in the natural way:

𝑃𝑋|𝑌 = 2𝐻𝑋|𝑌

We can see that the xor distribution is “4-way” perplexed:
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In [1]: In [1]: from dit.other import perplexity

API

perplexity(dist, rvs=None, crvs=None, rv_mode=None)

Parameters

• dist (Distribution) – The distribution from which the perplexity is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the perplexity.
If None, then the perpelxity is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are condition on.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns P – The perplexity.

Return type float

Rényi Entropy

The Rényi entropy is a spectrum of generalizations to the Shannon Entropy:

𝐻𝛼𝑋 =
1

1− 𝛼
log2

(︃∑︁
𝑥∈𝒳

𝑝(𝑥)𝛼

)︃

In [1]: In [1]: from dit.other import renyi_entropy

Special Cases

For several values of 𝛼, the Rényi entropy takes on particular values.

𝛼 = 0

When 𝛼 = 0 the Rényi entropy becomes what is known as the Hartley entropy:

𝐻0𝑋 = log2 |𝑋|

In [2]: In [5]: renyi_entropy(d, 0)
Out[2]: 2.0

In [3]: Out[5]: 4.0
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𝛼 = 1

When 𝛼 = 1 the Rényi entropy becomes the standard Shannon entropy:

𝐻1𝑋 = 𝐻𝑋

In [4]: In [6]: renyi_entropy(d, 1)
Out[4]: 2.0

In [5]: Out[6]: 2.9688513169509623

𝛼 = 2

When 𝛼 = 2, the Rényi entropy becomes what is known as the collision entropy:

𝐻2𝑋 = − log2 𝑝(𝑋 = 𝑌 )

where 𝑌 is an IID copy of X. This is basically the surprisal of “rolling doubles”

In [6]: In [7]: renyi_entropy(d, 2)
Out[6]: 2.0

In [7]: Out[7]: 2.7607270851693615

𝛼 =∞

Finally, when 𝛼 =∞ the Rényi entropy picks out the probability of the most-probable event:

𝐻∞𝑋 = − log2 max
𝑥∈𝒳

𝑝(𝑥)

In [8]: In [8]: renyi_entropy(d, np.inf)
Out[8]: 2.0

In [9]: Out[8]: 2.275104563096674

General Properies

In general, the Rényi entropy is a monotonically decreasing function in 𝛼:

𝐻𝛼𝑋 ≥ 𝐻𝛽𝑋, 𝛽 > 𝛼

Further, the following inequality holds in the other direction:

𝐻2𝑋 ≤ 2 ·𝐻∞𝑋
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API

renyi_entropy(dist, order, rvs=None, rv_mode=None)
Compute the Renyi entropy of order order.

Parameters

• dist (Distribution) – The distribution to take the Renyi entropy of.

• order (float >= 0) – The order of the Renyi entropy.

• rvs (list, None) – The indexes of the random variable used to calculate the Renyi
entropy of. If None, then the Renyi entropy is calculated over all random variables.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns H_a – The Renyi entropy.

Return type float

Raises

• ditException – Raised if rvs or crvs contain non-existant random variables.

• ValueError – Raised if order is not a non-negative float.

Tsallis Entropy

The Tsallis entropy is a generalization of the Shannon (or Boltzmann-Gibbs) entropy to the case where entropy is
nonextensive. It is given by:

𝑆𝑞𝑋 =
1

𝑞 − 1

(︃
1−

∑︁
𝑥∈𝒳

𝑝(𝑥)𝑞

)︃

In [1]: In [1]: from dit.other import tsallis_entropy

Non-additivity

One interesting property of the Tsallis entropy is the relationship between the joint Tsallis entropy of two indpendent
systems, and the Tsallis entropy of those subsystems:

𝑆𝑞𝑋,𝑌 = 𝑆𝑞𝑋 + 𝑆𝑞𝑌 + (1− 𝑞)𝑆𝑞𝑋𝑆𝑞𝑌

API

tsallis_entropy(dist, order, rvs=None, rv_mode=None)
Compute the Tsallis entropy of order order.

Parameters

• dist (Distribution) – The distribution to take the Tsallis entropy of.
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• order (float >= 0) – The order of the Tsallis entropy.

• rvs (list, None) – The indexes of the random variable used to calculate the Tsallis
entropy of. If None, then the Tsallis entropy is calculated over all random variables.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns S_q – The Tsallis entropy.

Return type float

Raises

• ditException – Raised if rvs or crvs contain non-existant random variables.

• ValueError – Raised if order is not a non-negative float.

There are also measures of “distance” or divergence between two (and im some cases, more) distribution:

1.7.4 Divergences

Divergences are measures of comparison between distributions:

Cross Entropy

The cross entropy between two distributions 𝑝(𝑥) and 𝑞(𝑥) is given by:

𝑥𝐻𝑝||𝑞 = −
∑︁
𝑥∈𝒳

𝑝(𝑥) log2 𝑞(𝑥)

This quantifies the average cost of representing a distribution defined by the probabilities 𝑝(𝑥) using the probabilities
𝑞(𝑥). For example, the cross entropy of a distribution with itself is the entropy of that distribion because the entropy
quantifies the average cost of representing a distribution:

In [1]: In [1]: from dit.divergences import cross_entropy

If, however, we attempted to model a fair coin with a biased on, we could compute this mis-match with the cross
entropy:

In [2]: In [4]: q = dit.Distribution(['0', '1'], [3/4, 1/4])

In [3]: In [5]: cross_entropy(p, q)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-3-135b3ec6acbf> in <module>
----> 1 cross_entropy(p, q)

NameError: name 'p' is not defined

In [4]: Out[5]: 1.207518749639422

Meaning, we will on average use about 1.2 bits to represent the flips of a fair coin. Turning things around, what if we
had a biased coin that we attempted to represent with a fair coin:
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In [5]: In [6]: cross_entropy(q, p)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-5-ecb6c3af528a> in <module>
----> 1 cross_entropy(q, p)

NameError: name 'p' is not defined

In [6]: Out[6]: 1.0

So although the entropy of 𝑞 is less than 1, we will use a full bit to represent its outcomes. Both of these results can
easily be seen by considering the following identity:

𝑥𝐻𝑝||𝑞 = 𝐻𝑝 + 𝐷𝐾𝐿𝑝||𝑞

So in representing 𝑝 using 𝑞, we of course must at least use 𝐻𝑝 bits – the minimum required to represent 𝑝 – plus the
Kullback-Leibler divergence of 𝑞 from 𝑝.

API

cross_entropy(dist1, dist2, rvs=None, crvs=None, rv_mode=None)
The cross entropy between dist1 and dist2.

Parameters

• dist1 (Distribution) – The first distribution in the cross entropy.

• dist2 (Distribution) – The second distribution in the cross entropy.

• rvs (list, None) – The indexes of the random variable used to calculate the cross en-
tropy between. If None, then the cross entropy is calculated over all random variables.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns xh – The cross entropy between dist1 and dist2.

Return type float

Raises ditException – Raised if either dist1 or dist2 doesn’t have rvs or, if rvs is None, if dist2
has an outcome length different than dist1.

Kullback-Leibler Divergence

The Kullback-Leibler divergence, sometimes also called the relative entropy, of a distribution 𝑝 from a distribution 𝑞
is defined as:

𝐷𝐾𝐿𝑝||𝑞 =
∑︁
𝑥∈𝒳

𝑝(𝑥) log2

𝑝(𝑥)

𝑞(𝑥)

The Kullback-Leibler divergence quantifies the average number of extra bits required to represent a distribution 𝑝
when using an arbitrary distribution 𝑞. This can be seen through the following identity:

𝐷𝐾𝐿𝑝||𝑞 = 𝑥𝐻𝑝||𝑞 −𝐻𝑝
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Where the Cross Entropy quantifies the total cost of encoding 𝑝 using 𝑞, and the Entropy quantifies the true, minimum
cost of encoding 𝑝. For example, let’s consider the cost of representing a biased coin by a fair one:

In [1]: In [1]: from dit.divergences import kullback_leibler_divergence

That is, it costs us 0.1887 bits of wasted overhead by using a mismatched distribution.

Not a Metric

Although the Kullback-Leibler divergence is often used to see how “different” two distributions are, it is not a metric.
Importantly, it is neither symmetric nor does it obey the triangle inequality. It does, however, have the following
property:

𝐷𝐾𝐿𝑝||𝑞 ≥ 0

with equality if and only if 𝑝 = 𝑞. This makes it a premetric.

API

kullback_leibler_divergence(dist1, dist2, rvs=None, crvs=None, rv_mode=None)
The Kullback-Liebler divergence between dist1 and dist2.

Parameters

• dist1 (Distribution) – The first distribution in the Kullback-Leibler divergence.

• dist2 (Distribution) – The second distribution in the Kullback-Leibler divergence.

• rvs (list, None) – The indexes of the random variable used to calculate the Kullback-
Leibler divergence between. If None, then the Kullback-Leibler divergence is calculated
over all random variables.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns dkl – The Kullback-Leibler divergence between dist1 and dist2.

Return type float

Raises ditException – Raised if either dist1 or dist2 doesn’t have rvs or, if rvs is None, if dist2
has an outcome length different than dist1.

Jensen-Shannon Divergence

The Jensen-Shannon divergence is a principled divergence measure which is always finite for finite random variables.
It quantifies how “distinguishable” two or more distributions are from each other. In its basic form it is:

𝐷𝐽𝑆𝑋||𝑌 = 𝐻
𝑋 + 𝑌

2
− 𝐻𝑋 + 𝐻𝑌

2

That is, it is the entropy of the mixture minus the mixture of the entropy. This can be generalized to an arbitrary
number of random variables with arbitrary weights:

𝐷𝐽𝑆𝑋0:𝑛 = 𝐻
∑︁

𝑤𝑖𝑋𝑖 −
∑︁

(𝑤𝑖𝐻𝑋𝑖)
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In [1]: In [1]: from dit.divergences import jensen_shannon_divergence

Derivation

Where does this equation come from? Consider Jensen’s inequality:

Ψ (E(𝑥)) ≥ E (Ψ(𝑥))

where Ψ is a concave function. If we consider the divergence of the left and right side we find:

Ψ (E(𝑥))− E (Ψ(𝑥)) ≥ 0

If we make that concave function Ψ the Shannon entropy 𝐻 , we get the Jensen-Shannon divergence. Jensen from
Jensen’s inequality, and Shannon from the use of the Shannon entropy.

Note: Some people look at the Jensen-Rényi divergence (where Ψ is the Rényi Entropy) and the Jensen-Tsallis
divergence (where Ψ is the Tsallis Entropy).

Metric

The square root of the Jensen-Shannon divergence,
√
𝐷𝐽𝑆 , is a true metric between distributions.

Relationship to the Other Measures

The Jensen-Shannon divergence can be derived from other, more well known information measures; notably the
Kullback-Leibler Divergence and the Mutual Information.

Kullback-Leibler divergence

The Jensen-Shannon divergence is the average Kullback-Leibler divergence of 𝑋 and 𝑌 from their mixture distribu-
tion, 𝑀 :

𝐷𝐽𝑆𝑋||𝑌 =
1

2
(𝐷𝐾𝐿𝑋||𝑀 + 𝐷𝐾𝐿𝑌 ||𝑀)

𝑀 =
𝑋 + 𝑌

2

Mutual Information

𝐷𝐽𝑆𝑋||𝑌 = 𝐼𝑍 : 𝑀

where 𝑀 is the mixture distribution as before, and 𝑍 is an indicator variable over 𝑋 and 𝑌 . In essence, if 𝑋 and 𝑌
are each an urn containing colored balls, and I randomly selected one of the urns and draw a ball from it, then the
Jensen-Shannon divergence is the mutual information between which urn I drew the ball from, and the color of the
ball drawn.
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API

jensen_shannon_divergence(dists, weights=None)
The Jensen-Shannon Divergence: H(sum(w_i*P_i)) - sum(w_i*H(P_i)).

The square root of the Jensen-Shannon divergence is a distance metric.

Parameters

• dists ([Distribution]) – The distributions, P_i, to take the Jensen-Shannon Diver-
gence of.

• weights ([float], None) – The weights, w_i, to give the distributions. If None, the
weights are assumed to be uniform.

Returns jsd – The Jensen-Shannon Divergence

Return type float

Raises

• ditException – Raised if there dists and weights have unequal lengths.

• InvalidNormalization – Raised if the weights do not sum to unity.

• InvalidProbability – Raised if the weights are not valid probabilities.

Earth Mover’s Distance

The Earth mover’s distance is a distance measure between probability distributions. If we consider each probability
mass function as a histogram of dirt, it is equal to the amount of work needed to optimally move the dirt of one
histogram into the shape of the other.

For categorical data, the “distance” between unequal symbols is unitary. In this case, 1/6 of the probability in symbol
‘0’ needs to be moved to ‘1’, and 1/6 needs to be moved to ‘2’, for a total of 1/3:

In [1]: In [1]: from dit.divergences import earth_movers_distance

In [2]: In [1]: from dit.divergences import earth_movers_distance

API

earth_movers_distance(dist1, dist2, distances=None)
Compute the Earth Mover’s Distance (EMD) between dist1 and dist2. The EMD is the least amount of “proba-
bility mass flow” that must occur to transform dist1 to dist2.

Parameters

• dist1 (Distribution) – The first distribution.

• dist2 (Distribution) – The second distribution.

• distances (np.ndarray, None) – A matrix of distances between outcomes of the
distributions. If None, a distance matrix is constructed; if the distributions are categorical
each non-equal event is considered at unit distance, and if numerical abs(x, y) is used as the
distance.

Returns emd – The Earth Mover’s Distance.

Return type float
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Copy Mutual Information

The copy mutual information [KCM19] is a measure capturing the portion of the Mutual Information between 𝑋 and
𝑌 which is due to 𝑋 = 𝑌 :

𝐼𝑐𝑜𝑝𝑦[𝑋 → 𝑌 ] =
∑︁
𝑥∈𝒳

𝑝(𝑋 = 𝑥)

{︃
𝑑𝐾𝐿 (𝑝(𝑌 = 𝑥|𝑋 = 𝑥)||𝑝(𝑌 = 𝑥)) if𝑝(𝑌 = 𝑥|𝑋 = 𝑥) > 𝑝(𝑌 = 𝑥)

0 otherwise

Consider the binary symmetric channel. With probabilities ≤ 1
2 , the input (𝑋) is largely copied to the output (𝑌 );

while when the probabilities ≥ 1
2 , the output is largely opposite the input. We therefore expect the mutual information

to be “copy-like” for 0 ≤ 𝑝 ≤ 1
2 , while the mutual information should be not “copy-like” for 1

2 ≤ 𝑝 ≤ 1:

In [1]: In [1]: from dit.divergences import copy_mutual_information as Icopy

API

copy_mutual_information(dist, X, Y, rv_mode=None)
Computes the copy mutual information. Roughly, it is the portion of the mutual information which results from
X = Y.

Parameters

• dist (Distribution) – The distribution of interest.

• X (iterable) – The indicies to consider as X.

• Y (iterable) – The indicies to consider as Y.

• rv_mode (str, None) – Specifies how to interpret crvs and rvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are inter-
preted as random variable indices. If equal to ‘names’, the the elements are interpreted as
random varible names. If None, then the value of self._rv_mode is consulted, which
defaults to ‘indices’.

Returns Icopy – The copy mutual information of x.

Return type float

While the cross entropy and the Kullback-Leibler divergence are not true metrics (they are not symmetric), the square
root of the Jensen-Shannon divergence is.

Several measures of shared information are related to the ability of two (or more) agents to agree upon a secret key in
the face of an eavesdropper:

1.7.5 Secret Key Agreement

One of the only methods of encrypting a message from Alice to Bomb such that no third party (Eve) can possibly
decrypt it is a one-time pad. This technique requires that Alice and Bob have a secret sequence of bits, 𝑆, which Alice
then encrypts by computing the exclusive-or of it with the plaintext, 𝑃 , to produce the cyphertext, 𝐶: 𝐶 = 𝑆 ⊕ 𝑃 .
Bob can then decrypt by xoring again: 𝑃 = 𝑆 ⊕ 𝐶.

In order to pull this off, Alice and Bob need to construct 𝑆 out of some sort joint randomness, 𝑝(𝑥, 𝑦, 𝑧), and public
communication, 𝑉 , which is assumed to have perfect fidelity. The maximum rate at which 𝑆 can be constructed in the
secret key agreement rate.
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Background

Given 𝑁 IID copies of a joint distribution governed by 𝑝(𝑥, 𝑦, 𝑧), let 𝑋𝑁 denote the random variables observed by
Alice, 𝑌 𝑁 denote the random variables observed by Bob, and 𝑍𝑁 denote the random variables observed by Even. A
secret key agreement scheme consists of functions 𝑓 and 𝑔, as well as a protocol for public communication (producing
𝑉 ), and is considered 𝑅-achievable if:

𝑆𝑋 = 𝑓(𝑋𝑁 , 𝑉 )

𝑆𝑌 = 𝑔(𝑌 𝑁 , 𝑉 )

𝑝(𝑆𝑋 = 𝑆𝑌 = 𝑆) ≥ 1− 𝜖

𝐼𝑆 : 𝑉 𝑍𝑁 ≤ 𝜖

1

𝑁
𝐻𝑆 ≥ 𝑅− 𝜖

The maximum rate 𝑅 such that there exists a 𝑅-achievable scheme is known as the secret key agreement rate. In-
tuitively, this means there exists some procedure such that, for every 𝑁 observations, Alice and Bob can publicly
converse and then construct 𝑆 bits which agree almost surely, and are almost surely independent of everything Eve
has access to. 𝑆 is then known as a secret key.

There are three general classes of secret key agreement rates, depending on which parties are permitted to communi-
cate. We discuss them below.

No Communication

In the case that neither Alice nor Bob are permitted communication, the no-communication secret key agreement rate
is given by:

S[𝑋 : 𝑌 ||𝑍] = 𝐼𝑋 f 𝑌 |𝑍

where 𝑋 f 𝑌 is the Gács-Körner Common Information variable.

Secrecy Capacity

Consider the situation that no party is allowed to communication, but rather than passively observing 𝑝(𝑋,𝑌, 𝑍) Alice
has full access to driving the channel 𝑝(𝑌, 𝑍|𝑋). In this case we arrive at a maximum secret-key agreement rate known
as the secrecy capacity, which is given by:

SC[𝑋 → 𝑌 ||𝑍] = max
𝑈−𝑋−𝑌 𝑍

𝐼𝑈 : 𝑌 − 𝐼𝑈 : 𝑍

One-Way Communication

If only Alice is allowed to publicly broadcast information, the secret key agreement rate is given by:

S[𝑋 → 𝑌 ||𝑍] = max
𝑉−𝑈−𝑋−𝑌 𝑍

𝐼𝑈 : 𝑌 |𝑉 − 𝐼𝑈 : 𝑍|𝑉

Two-Way Communication

When both Alice and Bob are permitted communication, the secret key agreement rate, S[𝑋 ↔ 𝑌 ||𝑍], is much more
difficult to compute, and in fact only upper and lower bounds on this rate are known.
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Lower Bounds

The first few lower bounds on two-way secret key agreement rate are simply symmetrized forms of the more restricted
secret key agreement rates.

Lower Intrinsic Mutual Information

The first lower bound on the secret key agreement rate is known in dit as the
lower_intrinsic_mutual_information(), and is given by:

𝐼𝑋 : 𝑌 ↑ 𝑍 = max

⎧⎪⎨⎪⎩
𝐼𝑋 : 𝑌 − 𝐼𝑋 : 𝑍

𝐼𝑋 : 𝑌 − 𝐼𝑌 : 𝑍

0

Secrecy Capacity

Next is the secrecy capacity:

𝐼𝑋 : 𝑌 ↑↑ 𝑍 = max

⎧⎨⎩ max
𝑈−𝑋−𝑌 𝑍

𝐼𝑈 : 𝑌 − 𝐼𝑈 : 𝑍

max
𝑈−𝑌−𝑋𝑍

𝐼𝑈 : 𝑋 − 𝐼𝑈 : 𝑍

This gives the secret key agreement rate when communication is not allowed.

Necessary Intrinsic Mutual Information

A tighter bound is given by the necessary_intrinsic_mutual_information() [GGunluK17], which is
the maximum of the two one-way secret key agreement rates:

𝐼𝑋 : 𝑌 ↑↑↑ 𝑍 = max

⎧⎨⎩ max
𝑉−𝑈−𝑋−𝑌 𝑍

𝐼𝑈 : 𝑌 |𝑉 − 𝐼𝑈 : 𝑍|𝑉

max
𝑉−𝑈−𝑌−𝑋𝑍

𝐼𝑈 : 𝑋|𝑉 − 𝐼𝑈 : 𝑍|𝑉

Interactive Intrinsic Mutual Information

𝐼𝑋 : 𝑌 ↑↑↑↑ 𝑍 = max
∑︁
𝑖even

𝐼𝑈𝑖 : 𝑌 |𝑈0...𝑖 − 𝐼𝑈𝑖 : 𝑍|𝑈0...𝑖+∑︁
𝑖odd

𝐼𝑈𝑖 : 𝑋|𝑈0...𝑖 − 𝐼𝑈𝑖 : 𝑍|𝑈0...𝑖

Upper Bounds
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Upper Intrinsic Mutual Information

The secret key agreement rate is trivially upper bounded by:

min{𝐼𝑋 : 𝑌 , 𝐼𝑋 : 𝑌 |𝑍}

Intrinsic Mutual Information *****************&******

The intrinsic_mutual_information() [MW97] is defined as:

𝐼𝑋 : 𝑌 ↓ 𝑍 = min
𝑝(𝑧|𝑧)

𝐼𝑋 : 𝑌 |𝑍

It is straightforward to see that 𝑝(𝑧|𝑧) being a constant achieves 𝐼𝑋 : 𝑌 , and 𝑝(𝑧|𝑧) being the identity achieves
𝐼𝑋 : 𝑌 |𝑍.

Reduced Intrinsic Mutual Information

This bound can be improved, producing the reduced_intrinsic_mutual_information() [RSW03]:

𝐼𝑋 : 𝑌 ↓↓ 𝑍 = min
𝑈

𝐼𝑋 : 𝑌 ↓ 𝑍𝑈 + 𝐻𝑈

This bound improves upon the Intrinsic Mutual Information when a small amount of information, 𝑈 , can result in a
larger decrease in the amount of information shared between 𝑋 and 𝑌 given 𝑍 and 𝑈 .

Minimal Intrinsic Mutual Information

The Reduced Intrinsic Mutual Information can be further reduced into the
minimal_intrinsic_total_correlation() [GA17]:

𝐼𝑋 : 𝑌 ↓↓↓ 𝑍 = min
𝑈

𝐼𝑋 : 𝑌 |𝑈 + 𝐼𝑋𝑌 : 𝑈 |𝑍

Two-Part Intrinsic Mutual Information

𝐼𝑋 : 𝑌 ↓↓↓↓ 𝑍 = 𝑖𝑛𝑓𝐽𝑚𝑖𝑛𝑉−𝑈−𝑋𝑌−𝑍𝐽𝐼𝑋 : 𝑌 |𝐽 + 𝐼𝑈 : 𝐽 |𝑉 − 𝐼𝑈 : 𝑍|𝑉
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All Together Now

Taken together, we see the following structure:

min{𝐼𝑋 : 𝑌 , 𝐼𝑋 : 𝑌 |𝑍} (1.1)
≥ 𝐼𝑋 : 𝑌 ↓ 𝑍(1.2)
≥ 𝐼𝑋 : 𝑌 ↓↓ 𝑍(1.3)
≥ 𝐼𝑋 : 𝑌 ↓↓↓ 𝑍(1.4)
≥ 𝐼𝑋 : 𝑌 ↓↓↓↓ 𝑍(1.5)
≥ 𝑆[𝑋 ↔ 𝑌 ||𝑍](1.6)
≥ 𝐼𝑋 : 𝑌 ↑↑↑↑ 𝑍(1.7)
≥ 𝐼𝑋 : 𝑌 ↑↑↑ 𝑍(1.8)
≥ 𝐼𝑋 : 𝑌 ↑↑ 𝑍(1.9)
≥ 𝐼𝑋 : 𝑌 ↑ 𝑍(1.10)
≥ 𝑆[𝑋 : 𝑌 ||𝑍](1.11)
≥ 0.0(1.12)

Generalizations

Most of the above bounds have straightforward multivariate generalizations. These are not neces-
sarily bounds on the multiparty secret key agreement rate. For example, one could compute the
minimal_intrinsic_dual_total_correlation():

𝐵𝑋0 : . . . : 𝑋𝑛 ↓↓↓ 𝑍 = min
𝑈

𝐵𝑋0 : . . . : 𝑋𝑛|𝑈 + 𝐼𝑋0, . . . , 𝑋𝑛 : 𝑈 |𝑍

Examples

Let us consider a few examples:

In [1]: In [1]: from dit.multivariate.secret_key_agreement import *

First, we consider the distribution intrinsic_1:

In [2]: In [3]: print(intrinsic_1)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-2-b266ad93d4d5> in <module>
----> 1 print(intrinsic_1)

NameError: name 'intrinsic_1' is not defined

In [3]: Class: Distribution

In [4]: Alphabet: ('0', '1', '2', '3') for all rvs
...: Base: linear
...: Outcome Class: str
...: Outcome Length: 3
...: RV Names: None
...:
File "<ipython-input-4-f997bcd614eb>", line 1

(continues on next page)
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(continued from previous page)

Alphabet: ('0', '1', '2', '3') for all rvs
^

SyntaxError: invalid syntax

With upper bounds:

In [5]: In [4]: upper_intrinsic_mutual_information(intrinsic_1, [[0], [1]], [2])
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-5-adf4d13a797d> in <module>
----> 1 upper_intrinsic_mutual_information(intrinsic_1, [[0], [1]], [2])

NameError: name 'intrinsic_1' is not defined

In [6]: Out[4]: 0.5

We see that the trivial upper bound is 0.5, because without conditioning on 𝑍, 𝑋 and 𝑌 can agree when the observe
either a 2 or a 3, which results in 𝐼𝑋 : 𝑌 = 0.5. Given 𝑍, however, that information is no longer private. But, given
𝑍, a conditional dependence is induced between 𝑋 and 𝑌 : 𝑍 knows that if she is a 0 that 𝑋 and 𝑌 agree, and if she
is a 1 they disagree. This results 𝐼𝑋 : 𝑌 |𝑍 = 0.5. In either case, however, 𝑋 and 𝑌 can not agree upon a secret key:
in the first case the eavesdropper knows their correlation, while in the second they are actually independent.

The intrinsic_mutual_information(), however can detect this:

In [7]: In [5]: intrinsic_mutual_information(intrinsic_1, [[0], [1]], [2])
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-7-cf75a74ddcab> in <module>
----> 1 intrinsic_mutual_information(intrinsic_1, [[0], [1]], [2])

NameError: name 'intrinsic_1' is not defined

In [8]: Out[5]: 0.0

Next, let’s consider the distribution intrinsic_2:

In [9]: In [7]: print(intrinsic_2)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-9-094f23e395aa> in <module>
----> 1 print(intrinsic_2)

NameError: name 'intrinsic_2' is not defined

In [10]: Class: Distribution

In [11]: Alphabet: (('0', '1', '2', '3'), ('0', '1', '2', '3'), ('0', '1'))

In [12]: Base: linear
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-12-822bc640d06e> in <module>
----> 1 Base: linear

NameError: name 'linear' is not defined

In [13]: Outcome Class: str
(continues on next page)
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....: Outcome Length: 3

....: RV Names: None

....:
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-13-ab3546a5787a>", line 1

Outcome Class: str
^

SyntaxError: invalid syntax

In this case, 𝑍 no longer can distinguish between the case where 𝑋 and 𝑌 can agree on a secret bit, and when they
can not, because she can not determine when they are in the 01 regime or in the 23 regime:

In [14]: In [8]: intrinsic_mutual_information(intrinsic_2, [[0], [1]], [2])
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-14-066b11243fe9> in <module>
----> 1 intrinsic_mutual_information(intrinsic_2, [[0], [1]], [2])

NameError: name 'intrinsic_2' is not defined

In [15]: Out[8]: 1.5

This seems to imply that 𝑋 and 𝑌 can adopt a scheme such as: if they observe either a 0 or a 1, write down 0, and if
they observe either a 2 or a 3, write that down. This has a weakness, however: what if 𝑍 were able to distinguish the
two regimes? This costs her 1 bit, but reduces the secrecy of 𝑋 and 𝑌 to nil. Thus, the secret key agreement rate is
actually only 1 bit:

In [16]: In [9]: minimal_intrinsic_mutual_information(intrinsic_2, [[0], [1]], [2],
→˓bounds=(3,))
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-16-523cc5b9b003> in <module>
----> 1 minimal_intrinsic_mutual_information(intrinsic_2, [[0], [1]], [2], bounds=(3,
→˓))

NameError: name 'intrinsic_2' is not defined

In [17]: Out[9]: 1.0

1.8 Information Profiles

There are several ways to decompose the information contained in a joint distribution. Here, we will demonstrate their
behavior using four examples drawn from [ASBY14]:

In [1]: In [1]: from dit.profiles import *

1.8.1 Shannon Partition and Extropy Partition

The I-diagrams, or ShannonPartition, for these four examples can be computed thusly:

In [2]: In [6]: ShannonPartition(ex1)
---------------------------------------------------------------------------

(continues on next page)
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NameError Traceback (most recent call last)
<ipython-input-2-b4c036d85de7> in <module>
----> 1 ShannonPartition(ex1)

NameError: name 'ex1' is not defined

In [3]: +----------+--------+
...: | measure | bits |
...: +----------+--------+
...: | H[0|1,2] | 0.103 |
...: | H[1|0,2] | 0.103 |
...: | H[2|0,1] | 0.103 |
...: | I[0:1|2] | 0.142 |
...: | I[0:2|1] | 0.142 |
...: | I[1:2|0] | 0.142 |
...: | I[0:1:2] | 0.613 |
...: +----------+--------+
...:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-3-5f055b23b841>", line 1

+----------+--------+
^

SyntaxError: invalid syntax

And their X-diagrams, or ExtropyDiagram, can be computed like so:

In [4]: In [10]: ExtropyPartition(ex1)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-4-f0202470d633> in <module>
----> 1 ExtropyPartition(ex1)

NameError: name 'ex1' is not defined

In [5]: +----------+--------+
...: | measure | exits |
...: +----------+--------+
...: | X[0|1,2] | 1.000 |
...: | X[1|0,2] | 1.000 |
...: | X[2|0,1] | 1.000 |
...: | X[0:1|2] | 0.000 |
...: | X[0:2|1] | 0.000 |
...: | X[1:2|0] | 0.000 |
...: | X[0:1:2] | 0.000 |
...: +----------+--------+
...:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-5-4b7641c39128>", line 1

+----------+--------+
^

SyntaxError: invalid syntax

1.8.2 Complexity Profile

The complexity profile, implimented by ComplexityProfile is simply the amount of information at scale≥ 𝑘 of
each “layer” of the I-diagram [BY04].
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Consider example 1, which contains three independent bits. Each of these bits are in the outermost “layer” of the
i-diagram, and so the information in the complexity profile is all at layer 1:

In [6]: In [14]: ComplexityProfile(ex1).draw();

Whereas in example 2, all the information is in the center, and so each scale of the complexity profile picks up that
one bit:

In [7]: In [15]: ComplexityProfile(ex2).draw();
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Both bits in example 3 are at a scale of at least 1, but only the shared bit persists to scale 2:

In [8]: In [16]: ComplexityProfile(ex3).draw();

Finally, example 4 (where each variable is the exclusive or of the other two):
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In [9]: In [17]: ComplexityProfile(ex4).draw();

1.8.3 Marginal Utility of Information

The marginal utility of information (MUI) [ASBY14], implimented by MUIProfile takes a different approach. It
asks, given an amount of information 𝐼𝑑 : {𝑋} = 𝑦, what is the maximum amount of information one can extract
using an auxilliary variable 𝑑 as measured by the sum of the pairwise mutual informations,

∑︀
𝐼𝑑 : 𝑋𝑖. The MUI is

then the rate of this maximum as a function of 𝑦.

For the first example, each bit is independent and so basically must be extracted independently. Thus, as one increases
𝑦 the maximum amount extracted grows equally:

In [10]: In [18]: MUIProfile(ex1).draw();
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In the second example, there is only one bit total to be extracted, but it is shared by each pairwise mutual information.
Therefore, for each increase in 𝑦 we get a threefold increase in the amount extracted:

In [11]: In [19]: MUIProfile(ex2).draw();

For the third example, for the first one bit of 𝑦 we can pull from the shared bit, but after that one must pull from the
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independent bit, so we see a step in the MUI profile:

In [12]: In [20]: MUIProfile(ex3).draw();

Lastly, the xor example:

In [13]: In [21]: MUIProfile(ex4).draw();
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1.8.4 Schneidman Profile

Also known as the connected information or network informations, the Schneidman profile (SchneidmanProfile)
exposes how much information is learned about the distribution when considering 𝑘-way dependencies
[Ama01][SSB+03]. In all the following examples, each individual marginal is already uniformly distributed, and
so the connected information at scale 1 is 0.

In the first example, all the random variables are independent already, so fixing marginals above 𝑘 = 1 does not result
in any change to the inferred distribution:

In [14]: In [22]: SchneidmanProfile(ex1).draw();
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In the second example, by learning the pairwise marginals, we reduce the entropy of the distribution by two bits (from
three independent bits, to one giant bit):

In [15]: In [23]: SchneidmanProfile(ex2).draw();

For the third example, learning pairwise marginals only reduces the entropy by one bit:
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In [16]: In [24]: SchneidmanProfile(ex3).draw();

And for the xor, all bits appear independent until fixing the three-way marginals at which point one bit about the
distribution is learned:

In [17]: In [25]: SchneidmanProfile(ex4).draw();
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1.8.5 Entropy Triangle and Entropy Triangle2

The entropy triangle, EntropyTriangle, [VAPelaezM16] is a method of visualizing how the information in the
distribution is distributed among deviation from uniformity, independence, and dependence. The deviation from inde-
pendence is measured by considering the difference in entropy between a independent variables with uniform distri-
butions, and independent variables with the same marginal distributions as the distribution in question. Independence
is measured via the Residual Entropy, and dependence is measured by the sum of the Total Correlation and Dual Total
Correlation.

All four examples lay along the left axis because their distributions are uniform over the events that have non-zero
probability.

In the first example, the distribution is all independence because the three variables are, in fact, independent:

In [18]: In [26]: EntropyTriangle(ex1).draw();
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In the second example, the distribution is all dependence, because the three variables are perfectly entwined:

In [19]: In [27]: EntropyTriangle(ex2).draw();

Here, there is a mix of independence and dependence:
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In [20]: In [28]: EntropyTriangle(ex3).draw();

And finally, in the case of xor, the variables are completely dependent again:

In [21]: In [29]: EntropyTriangle(ex4).draw();

88 Chapter 1. Introduction



dit Documentation, Release 1.2.3

We can also plot all four on the same entropy triangle:

In [22]: In [30]: EntropyTriangle([ex1, ex2, ex3, ex4]).draw();

In [23]: In [31]: dists = [ dit.random_distribution(3, 2, alpha=(0.5,)*8) for _ in
→˓range(250) ]

In [24]: In [32]: EntropyTriangle(dists).draw();
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We can plot these same distributions on a slightly different entropy triangle as well, EntropyTriangle2, one
comparing the Residual Entropy, Total Correlation, and Dual Total Correlation:

In [25]: In [33]: EntropyTriangle2(dists).draw();
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1.8.6 Dependency Decomposition

Using DependencyDecomposition, one can discover how an arbitrary information measure varies as marginals
of the distribution are fixed. In our first example, each variable is independent of the others, and so constraining
marginals makes no difference:

In [26]: In [34]: DependencyDecomposition(ex1)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-26-f0f8c8cc3d81> in <module>
----> 1 DependencyDecomposition(ex1)

NameError: name 'ex1' is not defined

In [27]: +------------+--------+
....: | dependency | bits |
....: +------------+--------+
....: | 012 | 3.000 |
....: | 01:02:12 | 3.000 |
....: | 02:12 | 3.000 |
....: | 01:12 | 3.000 |
....: | 01:02 | 3.000 |
....: | 12:0 | 3.000 |
....: | 02:1 | 3.000 |
....: | 01:2 | 3.000 |
....: | 0:1:2 | 3.000 |
....: +------------+--------+
....:

(continues on next page)
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\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-27-02e91033148e>", line 1

+------------+--------+
^

SyntaxError: invalid syntax

In the second example, we see that fixing any one of the pairwise marginals reduces the entropy by one bit, and by
fixing a second we reduce the entropy down to one bit:

In [28]: In [35]: DependencyDecomposition(ex2)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-28-7e18004b4306> in <module>
----> 1 DependencyDecomposition(ex2)

NameError: name 'ex2' is not defined

In [29]: +------------+--------+
....: | dependency | bits |
....: +------------+--------+
....: | 012 | 1.000 |
....: | 01:02:12 | 1.000 |
....: | 02:12 | 1.000 |
....: | 01:12 | 1.000 |
....: | 01:02 | 1.000 |
....: | 12:0 | 2.000 |
....: | 02:1 | 2.000 |
....: | 01:2 | 2.000 |
....: | 0:1:2 | 3.000 |
....: +------------+--------+
....:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-29-de6313d097ce>", line 1

+------------+--------+
^

SyntaxError: invalid syntax

In the third example, only constraining the 01 marginal reduces the entropy, and it reduces it by one bit:

In [30]: In [36]: DependencyDecomposition(ex3)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-30-1474ecdd7127> in <module>
----> 1 DependencyDecomposition(ex3)

NameError: name 'ex3' is not defined

In [31]: +------------+--------+
....: | dependency | bits |
....: +------------+--------+
....: | 012 | 2.000 |
....: | 01:02:12 | 2.000 |
....: | 02:12 | 3.000 |
....: | 01:12 | 2.000 |
....: | 01:02 | 2.000 |
....: | 12:0 | 3.000 |

(continues on next page)
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(continued from previous page)

....: | 02:1 | 3.000 |

....: | 01:2 | 2.000 |

....: | 0:1:2 | 3.000 |

....: +------------+--------+

....:
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-31-24c53e10fff9>", line 1

+------------+--------+
^

SyntaxError: invalid syntax

And finally in the case of the exclusive or, only constraining the 012 marginal reduces the entropy.

In [32]: In [37]: DependencyDecomposition(ex4)
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-32-ebf106f1c578> in <module>
----> 1 DependencyDecomposition(ex4)

NameError: name 'ex4' is not defined

In [33]: +------------+--------+
....: | dependency | bits |
....: +------------+--------+
....: | 012 | 2.000 |
....: | 01:02:12 | 3.000 |
....: | 02:12 | 3.000 |
....: | 01:12 | 3.000 |
....: | 01:02 | 3.000 |
....: | 12:0 | 3.000 |
....: | 02:1 | 3.000 |
....: | 01:2 | 3.000 |
....: | 0:1:2 | 3.000 |
....: +------------+--------+
....:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-33-bc771300cd61>", line 1

+------------+--------+
^

SyntaxError: invalid syntax

1.9 Rate Distortion Theory

Note: We use 𝑝 to denote fixed probability distributions, and 𝑞 to denote probability distributions that are optimized.

Rate-distortion theory [CT06] is a framework for studying optimal lossy compression. Given a distribution 𝑝(𝑥), we
wish to find 𝑞(�̂�|𝑥) which compresses 𝑋 as much as possible while limiting the amount of user-defined distortion,
𝑑(𝑥, �̂�). The minimum rate (effectively, code book size) at which 𝑋 can be compressed while maintaining a fixed
distortion is known as the rate-distortion curve:

𝑅(𝐷) = min
𝑞(�̂�|𝑥),⟨𝑑(𝑥,�̂�)⟩=𝐷

𝐼𝑋 : �̂�
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By introducing a Lagrange multiplier, we can transform this constrained optimization into an unconstrained one:

ℒ = 𝐼𝑋 : �̂� + 𝛽⟨𝑑(𝑥, �̂�)⟩

where minimizing at each 𝛽 produces a point on the curve.

1.9.1 Example

It is known that under the Hamming distortion (𝑑(𝑥, �̂�) = [𝑥 ̸= �̂�]) the rate-distortion function for a biased coin has
the following solution: 𝑅(𝐷) = 𝐻𝑝−𝐻𝐷:

In [1]: In [1]: from dit.rate_distortion import RDCurve

1.10 Information Bottleneck

The information bottleneck [TPB00] is a form of rate-distortion where the distortion measure is given by:

𝑑(𝑥, �̂�) = 𝐷 [ 𝑝(𝑌 |𝑥) || 𝑞(𝑌 |�̂�) ]

where 𝐷 is an arbitrary divergence measure, and �̂� −𝑋 − 𝑌 form a Markov chain. Traditionally, 𝐷 is the Kullback-
Leibler Divergence, in which case the average distortion takes a particular form:

⟨𝑑(𝑥, �̂�)⟩ =
∑︁
𝑥,�̂�

𝑞(𝑥, �̂�)𝐷𝐾𝐿𝑝(𝑌 |𝑥)||𝑞(𝑌 |�̂�)

=
∑︁
𝑥,�̂�

𝑞(𝑥, �̂�)
∑︁
𝑦

𝑝(𝑦|𝑥) log2

𝑝(𝑦|𝑥)

𝑞(𝑦|�̂�)

=
∑︁
𝑥,�̂�,𝑦

𝑞(𝑥, �̂�, 𝑦) log2

𝑝(𝑦|𝑥)𝑝(𝑥)𝑝(𝑦)𝑞(�̂�)

𝑞(𝑦|�̂�)𝑝(𝑥)𝑝(𝑦)𝑞(�̂�)

=
∑︁
𝑥,�̂�,𝑦

𝑞(𝑥, �̂�, 𝑦) log2

𝑝(𝑦|𝑥)𝑝(𝑥)

𝑝(𝑥)𝑝(𝑦)

𝑝(𝑦)𝑞(�̂�)

𝑞(𝑦|�̂�)𝑞(�̂�)

= 𝐼𝑋 : 𝑌 − 𝐼�̂� : 𝑌

Since 𝐼𝑋 : 𝑌 is constant over 𝑞(�̂�|𝑥), it can be removed from the optimization. Furthermore,

𝐼𝑋 : 𝑌 − 𝐼�̂� : 𝑌 = (𝐼𝑋 : 𝑌 |�̂� + 𝐼𝑋 : 𝑌 : �̂�)− (𝐼𝑌 : �̂�|𝑋 + 𝐼𝑋 : 𝑌 : �̂�)

= 𝐼𝑋 : 𝑌 |�̂� − 𝐼𝑌 : �̂�|𝑋
= 𝐼𝑋 : 𝑌 |�̂�

where the final equality is due to the Markov chain. Due to all this, Information Bottleneck utilizes a “relevance” term,
𝐼�̂� : 𝑌 , which replaces the average distortion in the Lagrangian:

ℒ = 𝐼𝑋 : �̂� − 𝛽𝐼�̂� : 𝑌 .

Though 𝐼𝑋 : 𝑌 |�̂� is the most simplified form of the average distortion, it is faster to compute 𝐼�̂� : 𝑌 during opti-
mization.

1.10.1 Example

Consider this distribution:
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In [2]: In [4]: d = dit.Distribution(['00', '02', '12', '21', '22'], [1/5]*5)

There are effectively three features that the fist index, 𝑋 , has regarding the second index, 𝑌 . We can find them using
the standard information bottleneck:

In [3]: In [5]: from dit.rate_distortion import IBCurve

We can also find them utilizing the total variation:

In [4]: In [7]: from dit.divergences.pmf import variational_distance
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Note: The spiky behavior at low 𝛽 values is due to numerical imprecision.

1.11 APIs

class RDCurve(dist, rv=None, crvs=None, beta_min=0, beta_max=10, beta_num=101, alpha=1.0,
distortion=Distortion(name=’Hamming’, matrix=<function hamming_distortion>,
optimizer=<class ’dit.rate_distortion.rate_distortion.RateDistortionHamming’>),
method=None)

Compute a rate-distortion curve.
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class IBCurve(dist, rvs=None, crvs=None, rv_mode=None, beta_min=0.0, beta_max=15.0,
beta_num=101, alpha=1.0, method=’sp’, divergence=None)

Compute an information bottleneck curve.

1.12 Partial Information Decomposition

The partial information decomposition (PID), put forth by Williams & Beer [WB10], is a framework for decomposing
the information shared between a set of variables we will refer to as inputs, 𝑋0, 𝑋1, . . ., and another random variable
we will refer to as the output, 𝑌 . This decomposition seeks to partition the information 𝐼𝑋0, 𝑋1, . . . : 𝑌 among the
antichains of the inputs.

1.12.1 Background

It is often desirable to determine how a set of inputs influence the behavior of an output. Consider the exclusive or
logic gates, for example:

In [1]: In [1]: from dit.pid.distributions import bivariates, trivariates

We can see from inspection that either input (the first two indexes) is independent of the output (the final index), yet
the two inputs together determine the output. One could call this “synergistic” information. Next, consider the giant
bit distribution:

In [2]: In [4]: gb = bivariates['redundant']

In [3]: In [5]: print(gb)
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 1/2
111 1/2

In [4]: Class: Distribution

In [5]: Alphabet: ('0', '1') for all rvs
...: Base: linear
...: Outcome Class: str
...: Outcome Length: 3
...: RV Names: None
...:
File "<ipython-input-5-35057d4d19b8>", line 1
Alphabet: ('0', '1') for all rvs

^
SyntaxError: invalid syntax

Here, we see that either input informs us of exactly what the output is. One could call this “redundant” information.
Furthermore, consider the coinformation of these distributions:

In [6]: In [6]: from dit.multivariate import coinformation as I
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This could lead one to intuit that negative values of the coinformation correspond to synergistic effects in a distribution,
while positive values correspond to redundant effects. This intuition, however, is at best misleading: the coinformation
of a 4-variable giant bit and 4-variable parity distribution are both positive:

In [7]: In [9]: I(dit.example_dists.giant_bit(4, 2))
Out[7]: 1.0

In [8]: Out[9]: 1.0

In [9]: In [10]: I(dit.example_dists.n_mod_m(4, 2))
Out[9]: 1.0

In [10]: Out[10]: 1.0

This, as well as other issues, lead Williams & Beer [WB10] to propose the partial information decomposition.

1.12.2 Framework

The goal of the partial information is to assign to each some non-negative portion of 𝐼{𝑋𝑖} : 𝑌 to each antichain over
the inputs. An antichain over the inputs is a set of sets, where each of those sets is not a subset of any of the others.
For example, {{𝑋0, 𝑋1} , {𝑋1, 𝑋2}} is an antichain, but {{𝑋0, 𝑋1} , {𝑋0𝑋1, 𝑋2}} is not.

The antichains for a lattice based on this partial order:

𝛼 ≤ 𝛽 ⇐⇒ ∀b ∈ 𝛽,∃a ∈ 𝛼,a ⊆ b

From here, we wish to find a redundancy measure, 𝐼∩∙ which would assign a fraction of 𝐼{𝑋𝑖} : 𝑌 to each antichain
intuitively quantifying what portion of the information in the output could be learned by observing any of the sets of
variables within the antichain. In order to be a viable measure of redundancy, there are several axioms a redundancy
measure must satisfy.

Bivariate Lattice

Let us consider the special case of two inputs. The lattice consists of four elements: {{𝑋0} , {𝑋1}}, {{𝑋0}}, {{𝑋1}},
and {{𝑋0, 𝑋1}}. We can interpret these elements as the redundancy provided by both inputs, the information uniquely
provided by 𝑋0, the information uniquely provided by 𝑋1, and the information synergistically provided only by both
inputs together. Together these for elements decompose the input-output mutual information:

𝐼𝑋0, 𝑋1 : 𝑌 = 𝐼𝜕{𝑋0} , {𝑋1} : 𝑌 + 𝐼𝜕{𝑋0} : 𝑌 + 𝐼𝜕{𝑋1} : 𝑌 + 𝐼𝜕{𝑋0, 𝑋1} : 𝑌

Furthermore, due to the self-redundancy axiom (described ahead), the single-input mutual informations decomposed
in the following way:

𝐼𝑋0 : 𝑌 = 𝐼𝜕{𝑋0} , {𝑋1} : 𝑌 + 𝐼𝜕{𝑋0} : 𝑌

𝐼𝑋1 : 𝑌 = 𝐼𝜕{𝑋0} , {𝑋1} : 𝑌 + 𝐼𝜕{𝑋1} : 𝑌

Colloquially, from input 𝑋0 one can learn what is redundantly provided by either input, plus what is uniquely provided
by 𝑋0, but not what is uniquely provided by 𝑋1 or what can only be learned synergistically from both inputs.

Axioms

The following three axioms were provided by Williams & Beer.
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Symmetry

The redundancy 𝐼∩𝑋0:𝑛 : 𝑌 is invariant under reorderings of 𝑋𝑖.

Self-Redundancy

The redundancy of a single input is its mutual information with the output:

𝐼∩𝑋𝑖 : 𝑌 = 𝐼𝑋𝑖 : 𝑌

Monotonicity

The redundancy should only decrease with in inclusion of more inputs:

𝐼∩𝒜1, . . . ,𝒜𝑘−1,𝒜𝑘 : 𝑌 ≤ 𝐼∩𝒜1, . . . ,𝒜𝑘−1 : 𝑌

with equality if 𝒜𝑘−1 ⊆ 𝒜𝑘.

There have been other axioms proposed following from those of Williams & Beer.

Identity

The identity axiom [HSP13] states that if the output is identical to the inputs, then the redundancy is the mutual
information between the inputs:

𝐼∩𝑋0, 𝑋1 : (𝑋0, 𝑋1) = 𝐼𝑋0 : 𝑋1

Target (output) Monotonicity

This axiom states that redundancy can not increase when replacing the output by a function of itself.

𝐼∩𝑋0:𝑛 : 𝑌 ≥ 𝐼∩𝑋0:𝑛 : 𝑓(𝑌 )

It first appeared in [BROJ13] and was expanded upon in [RBO+17].

1.12.3 Measures

We now turn our attention a variety of methods proposed to flesh out this partial information decomposition.

In [11]: In [11]: from dit.pid import *

𝐼𝑚𝑖𝑛∙

𝐼𝑚𝑖𝑛∙[WB10] was Williams & Beer’s initial proposal for a redundancy measure. It is given by:

𝐼𝑚𝑖𝑛𝒜1,𝒜2, . . . : 𝑌 =
∑︁
𝑦∈𝑌

𝑝(𝑦) min
𝒜𝑖

𝐼𝒜𝑖 : 𝑌 = 𝑦

However, this measure has been criticized for acting in an unintuitive manner [GK14]:
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In [12]: In [12]: d = dit.Distribution(['000', '011', '102', '113'], [1/4]*4)

In [13]: In [13]: PID_WB(d)
Out[13]:
+--------+--------+--------+
| I_min | I_r | pi |
+--------+--------+--------+
| {0:1} | 2.0000 | 1.0000 |
| {0} | 1.0000 | 0.0000 |
| {1} | 1.0000 | 0.0000 |
| {0}{1} | 1.0000 | 1.0000 |
+--------+--------+--------+

In [14]:
....: I_min I_r pi
....:
....: {0:1} 2.0000 1.0000
....: {0} 1.0000 0.0000
....: {1} 1.0000 0.0000
....: {0}{1} 1.0000 1.0000
....:
....:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-14-8a7d3ad228d0>", line 1

^
SyntaxError: invalid character in identifier

We have constructed a distribution whose inputs are independent random bits, and whose output is the concatenation
of those inputs. Intuitively, the output should then be informed by one bit of unique information from 𝑋0 and one bit
of unique information from 𝑋1. However, 𝐼𝑚𝑖𝑛∙ assesses that there is one bit of redundant information, and one bit
of synergistic information. This is because 𝐼𝑚𝑖𝑛∙ quantifies redundancy as the least amount of information one can
learn about an output given any single input. Here, however, the one bit we learn from 𝑋0 is, in a sense, orthogonal
from the one bit we learn from 𝑋1. This observation has lead to much of the follow-on work.

𝐼𝑀𝑀𝐼∙

One potential measure of redundancy is the minimum mutual information [BROJ13]:

𝐼𝑀𝑀𝐼𝑋0:𝑛 : 𝑌 = min
𝑖

𝐼𝑋𝑖 : 𝑌

This measure, though crude, is known to be correct for multivariate gaussian variables [OBR15].

𝐼∧∙

Redundancy seems to intuitively be related to common information Common Informations. This intuition lead to the
development of 𝐼∧∙ [GCJ+14]:

𝐼∧𝑋0:𝑛 : 𝑌 = 𝐼f𝑋𝑖 : 𝑌

That is, redundancy is the information the Gács-Körner Common Information of the inputs shares with the output.

Warning: This measure can result in a negative PID.
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𝐼𝑝𝑟𝑜𝑗∙

Utilizing information geometry, Harder et al [HSP13] have developed a strictly bivariate measure of redundancy,
𝐼𝑝𝑟𝑜𝑗∙:

𝐼𝑝𝑟𝑜𝑗{𝑋0} {𝑋1} : 𝑌 = min{𝐼𝜋𝑌 [𝑋0 ↘ 𝑋1], 𝐼𝜋𝑌 [𝑋1 ↘ 𝑋0]}

where

𝐼𝜋𝑌 [𝑋0 ↘ 𝑋1] =
∑︁
𝑥0,𝑦

𝑝(𝑥0, 𝑦) log
𝑝(𝑥0↘𝑋1)(𝑦)

𝑝(𝑦)

𝑝(𝑥0↘𝑋1)(𝑌 ) = 𝜋𝐶𝑐𝑙(⟨𝑋1⟩𝑌 )(𝑝(𝑌 |𝑥0)

𝜋𝐵(𝑝) = arg min
𝑟∈𝐵

𝐷𝐾𝐿𝑝||𝑟

𝐶𝑐𝑙(⟨𝑋1⟩𝑌 ) = 𝐶𝑐𝑙({𝑝(𝑌 |𝑥1) : 𝑥1 ∈ 𝑋1})

where 𝐶𝑐𝑙(∙) denotes closure. Intuitively, this measures seeks to quantify redundancy as the minimum of how much
𝑝(𝑌 |𝑋0) can be expressed when 𝑋0 is projected on to 𝑋1, and vice versa.

𝐼𝐵𝑅𝑂𝐽𝐴∙

In a very intuitive effort, Bertschinger et al (henceforth BROJA) [BRO+14][GK14] defined unique information as the
minimum conditional mutual informations obtainable while holding the input-output marginals fixed:

∆ = {𝑄 : ∀𝑖 : 𝑝(𝑥𝑖, 𝑦) = 𝑞(𝑥𝑖, 𝑦)}
𝐼𝐵𝑅𝑂𝐽𝐴𝑋0:𝑛 : 𝑌 = min

𝑄∈Δ
𝐼𝑋𝑖 : 𝑌 |𝑋{𝑖}

Note: In the bivariate case, Griffith independently suggested the same decomposition but from the viewpoint of
synergy [GK14].

The BROJA measure has recently been criticized for behaving in an unintuitive manner on some examples. Consider
the reduced or distribution:

In [15]: In [16]: bivariates['reduced or']
Out[15]:
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 1/2
011 1/4
101 1/4

In [16]: Out[16]:
....: Class: Distribution
....: Alphabet: ('0', '1') for all rvs
....: Base: linear
....: Outcome Class: str
....: Outcome Length: 3

(continues on next page)

1.12. Partial Information Decomposition 101



dit Documentation, Release 1.2.3

(continued from previous page)

....: RV Names: None

....:
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-16-79219cbf7045>", line 1

Out[16]:
^

SyntaxError: invalid syntax

We see that in this instance BROJA assigns no partial information to either unique information. However, it is not
difficult to argue that in the case that either input is a 1, that input then has unique information regarding the output.

In the BROJA paper [BRO+14] the only example given where their decomposition differs from that of Harder et al. is
the dit.example_dists.summed_dice(). We can find a simpler example where they differ using hypothesis:

In [17]: In [17]: from hypothesis import find

𝐼𝑐𝑐𝑠∙

Taking a pointwise point of view, Ince has proposed a measure of redundancy based on the coinformation [Inc17a]:

𝐼𝑐𝑐𝑠𝑋0:𝑛 : 𝑌 =
∑︁

𝑝(𝑥0, . . . , 𝑥𝑛, 𝑦)𝐼𝑥0 : . . . : 𝑥𝑛 : 𝑦 if sign(𝐼𝑥𝑖 : 𝑦) = sign(𝐼𝑥0 : . . . : 𝑥𝑛 : 𝑦)

While this measure behaves intuitively in many examples, it also assigns negative values to some partial information
atoms in some instances.

This decomposition also displays an interesting phenomena, that of subadditive redundancy. The gband distribution
is an independent mix of a giant bit (redundancy of 1 bit) and the and distribution (redundancy of 0.1038 bits), and
yet gband has 0.8113 bits of redundancy:

In [18]: In [20]: PID_CCS(bivariates['gband'])
Out[18]:
+--------+--------+--------+
| I_ccs | I_r | pi |
+--------+--------+--------+
| {0:1} | 1.8113 | 0.0000 |
| {0} | 1.3113 | 0.5000 |
| {1} | 1.3113 | 0.5000 |
| {0}{1} | 0.8113 | 0.8113 |
+--------+--------+--------+

In [19]: Out[20]:
....:
....: I_ccs I_r pi
....:
....: {0:1} 1.8113 0.0000
....: {0} 1.3113 0.5000
....: {1} 1.3113 0.5000
....: {0}{1} 0.8113 0.8113
....:
....:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-19-34edadd4045f>", line 1

Out[20]:
^

SyntaxError: invalid syntax
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Warning: This measure can result in a negative PID.

𝐼𝑑𝑒𝑝∙

James et al [JEC17] have developed a method of quantifying unique information based on the Dependency Decom-
position. Unique information from variable 𝑋𝑖 is evaluated as the least change in sources-target mutual information
when adding the constraint 𝑋𝑖𝑌 .

In [20]: In [21]: PID_dep(bivariates['not two'])
Out[20]:
+--------+--------+--------+
| I_dep | I_r | pi |
+--------+--------+--------+
| {0:1} | 0.5710 | 0.5364 |
| {0} | 0.0200 | 0.0146 |
| {1} | 0.0200 | 0.0146 |
| {0}{1} | 0.0054 | 0.0054 |
+--------+--------+--------+

In [21]: Out[21]:
....:
....: I_dep I_r pi
....:
....: {0:1} 0.5710 0.5364
....: {0} 0.0200 0.0146
....: {1} 0.0200 0.0146
....: {0}{1} 0.0054 0.0054
....:
....:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-21-f2b8143ceead>", line 1

Out[21]:
^

SyntaxError: invalid syntax

∙

Also taking a pointwise view, Finn & Lizier’s ∙ [finn2017] instead splits the pointwise mutual information into two
components:

𝑖(𝑠, 𝑡) = ℎ(𝑠)− ℎ(𝑠|𝑡)

They then define two partial information lattices, one quantified locally by ℎ(𝑠) and the other by ℎ(𝑠|𝑡). By averaging
these local lattices and then recombining them, we arrive at a standard Williams & Beer redundancy lattice.

In [22]: In [22]: PID_PM(bivariates['pnt. unq'])
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-22-870c9adeb292> in <module>
----> 1 PID_PM(bivariates['pnt. unq'])

KeyError: 'pnt. unq'

(continues on next page)
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In [23]: Out[22]:
....:
....: I_pm I_r pi
....:
....: {0:1} 1.0000 0.0000
....: {0} 0.5000 0.5000
....: {1} 0.5000 0.5000
....: {0}{1} 0.0000 0.0000
....:
....:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-23-e2407bb260d8>", line 1

Out[22]:
^

SyntaxError: invalid syntax

Warning: This measure can result in a negative PID.

𝐼𝑅𝐴𝑉 ∙

Taking a functional perspective as in 𝐼∧, 𝐼𝑅𝐴𝑉 defines bivariate redundancy as the maximum coinformation between
the two sources 𝑋0, 𝑋

′
1, 𝑎𝑡𝑎𝑟𝑔𝑒𝑡 : 𝑚𝑎𝑡ℎ :, and a deterministic function of the inputs 𝑓(𝑋0, 𝑋1).

𝐼𝑅𝐴𝑉 𝑋0:2 : 𝑌 = max
𝑓

(𝐼𝑋0 :𝑋1 :𝑌 :𝑓(𝑋0, 𝑋1)

This measure is designed to exploit the conflation of synergy and redundancy in the three variable coinformation:
𝐼𝑋0 :𝑋1 :𝑌 = 𝑅− 𝑆.

In [24]: In [23]: PID_RAV(bivariates['pnt. unq'])
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-24-423f0d9acce6> in <module>
----> 1 PID_RAV(bivariates['pnt. unq'])

KeyError: 'pnt. unq'

In [25]: Out[23]:
....:
....: I_pm I_r pi
....:
....: {0:1} 1.0000 0.0000
....: {0} 0.5000 0.5000
....: {1} 0.5000 0.5000
....: {0}{1} 0.0000 0.0000
....:
....:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-25-6501608668d7>", line 1

Out[23]:
^

SyntaxError: invalid syntax
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𝐼𝑅𝑅∙

In order to combine 𝐼𝑀𝑀𝐼∙ with the coinformation, Goodwell and Kumar [GK17] have introduced their rescaled
redundancy:

𝐼𝑅𝑅𝑋0 : 𝑋1 = 𝑅min + 𝐼𝑆(𝐼𝑀𝑀𝐼𝑋0:2 : 𝑌 −𝑅min

𝑅min = max{0, 𝐼𝑋0 : 𝑋1 : 𝑌 }

𝐼𝑆 =
𝐼𝑋0 : 𝑋1

min{𝐻𝑋0, 𝐻𝑋1}

In [26]: In [24]: PID_RR(bivariates['pnt. unq'])
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
<ipython-input-26-ae8ee1a87167> in <module>
----> 1 PID_RR(bivariates['pnt. unq'])

KeyError: 'pnt. unq'

In [27]: Out[24]:
....:
....: I_rr I_r pi
....:
....: {0:1} 1.0000 0.3333
....: {0} 0.5000 0.1667
....: {1} 0.5000 0.1667
....: {0}{1} 0.3333 0.3333
....:
....:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-27-348151318710>", line 1

Out[24]:
^

SyntaxError: invalid syntax

𝐼𝑅𝐴∙

Drawing from the reconstructability analysis work of Zwick [Zwi04], we can define 𝐼𝑟𝑎∙ as a restricted form of 𝐼𝑑𝑒𝑝∙.

Warning: This measure can result in a negative PID.

Secret Key Agreement Rates

One can associate Secret Key Agreement rates with unique informations by considering the rate at which one source
and the target can agree upon a secret key while the other source eavesdrops. This results in four possibilities: - neither
source nor target communicate - only the source communicates - only the target communicates - both the source and
the target communicate

𝐼𝜕𝑋𝑖 → 𝑌 ∖𝑋𝑗 = S[𝑋𝑖 : 𝑌 ||𝑋𝑗 ]
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Warning: This measure can result in an inconsistent PID.

Camel

𝐼𝜕𝑋𝑖 → 𝑌 ∖𝑋𝑗 = S[𝑋𝑖 → 𝑌 ||𝑋𝑗 ]

Elephant

𝐼𝜕𝑋𝑖 → 𝑌 ∖𝑋𝑗 = S[𝑋𝑖 ← 𝑌 ||𝑋𝑗 ]

Warning: This measure can result in an inconsistent PID.

Two-Way Communication

𝐼𝜕𝑋𝑖 → 𝑌 ∖𝑋𝑗 = S[𝑋𝑖 ↔ 𝑌 ||𝑋𝑗 ]

Warning: This measure can result in an inconsistent PID.

1.12.4 Partial Entropy Decomposition

Ince [Inc17b] proposed applying the PID framework to decompose multivariate entropy (without considering infor-
mation about a separate target variable). This partial entropy decomposition (PED), seeks to partition a mutlivariate
entropy 𝐻𝑋0, 𝑋1, . . . among the antichains of the variables. The PED perspective shows that bivariate mutual infor-
mation is equal to the difference between redundant entropy and synergistic entropy.

𝐼𝑋0 : 𝑋1 = 𝐻𝜕{𝑋0} , {𝑋1} −𝐻𝜕{𝑋0, 𝑋1}

𝐻𝑐𝑠∙

Taking a pointwise point of view, following 𝐼𝑐𝑐𝑠∙, Ince has proposed a measure of redundant entropy based on the
coinformation [Inc17b]:

𝐻𝑐𝑠𝑋0:𝑛 =
∑︁

𝑝(𝑥0, . . . , 𝑥𝑛)𝐼𝑥0 : . . . : 𝑥𝑛 if (𝐼𝑥0 : . . . : 𝑥𝑛 > 0)

While this measure behaves intuitively in many examples, it also assigns negative values to some partial entropy atoms
in some instances. However, Ince [Inc17b] argues that concepts such as mechanistic information redundnacy (non-zero
information redundancy between independent predictors, c.f. AND) necessitate negative partial entropy terms.

Like 𝐼𝑐𝑐𝑠∙, 𝐻𝑐𝑠∙ is also subadditive.
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In [28]: In [25]: PED_CS(dit.Distribution(['00','01','10','11'],[0.25]*4))
Out[28]:
+--------+--------+--------+
| H_cs | H_r | H_d |
+--------+--------+--------+
| {0:1} | 2.0000 | 0.0000 |
| {0} | 1.0000 | 1.0000 |
| {1} | 1.0000 | 1.0000 |
| {0}{1} | 0.0000 | 0.0000 |
+--------+--------+--------+

In [29]: Out[25]:
....:
....: H_cs H_r H_d
....:
....: {0:1} 2.0000 0.0000
....: {0} 1.0000 1.0000
....: {1} 1.0000 1.0000
....: {0}{1} 0.0000 0.0000
....:
....:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-29-79e04db5bd23>", line 1

Out[25]:
^

SyntaxError: invalid syntax

1.13 (Stumbling Blocks) On the Road to Understanding Multivariate
Information Theory

A theory is more than just a set of measures. It also attributes meaning to those measures, and ties that meaning to
some sort of objective reality. At this point, most understanding of multivariate information theory is flawed. In part,
this is due to several counter-intuitive situations which can arise in the study of joint distributions.

In this document, we will discuss many of these examples which generally impact the ability to construct universal
understanding of multivariate mutual information theory. It remains to be seen whether this is because multivariate
information theory is simply richer and more nuanced than our intuitions would like, or if it is simply inadequate for
the jobs it has been tasked with.

1.13.1 Necessity of Common Informations

Our first pitfall is that the mutual information between two random variables can not be embodied. That is, generically
there does not exist a variable 𝑍 such that:

𝐼𝑋 : 𝑌 |𝑍 = 0

and
𝐻𝑍 − 𝐼𝑋 : 𝑌 = 0

That is, there is no 𝑍 which captures the entirety of 𝐼𝑋 : 𝑌 and nothing more.

When embodying the information shared by 𝑋 and 𝑌 is desired, one must make a choice. Choosing the variable
capturing as much of 𝐼𝑋 : 𝑌 and nothing more results in the Gács-Körner Common Information. Choosing the
variable capturing all of 𝐼𝑋 : 𝑌 with as little else as possible results in the Exact Common Information. If one
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chooses to incorporate only information from 𝑋 we arrive as 𝑍 = 𝑋 ↘ 𝑌 . Other choices are described in Common
Informations.

In [1]: In [1]: d = Distribution(['00', '01', '10'], [1/3]*3)

In [2]: In [2]: I(d, [[0], [1]])
Out[2]: 0.25162916738782304

In [3]: Out[2]: 0.25162916738782304

In [4]: In [3]: K(d, [[0], [1]])
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-4-34269f5e1e58> in <module>
----> 1 K(d, [[0], [1]])

NameError: name 'K' is not defined

In [5]: Out[3]: 0.0

In [6]: In [4]: G(d, [[0], [1]])
Out[6]: 0.9182906388465276

In [7]: Out[4]: 0.9182909718428677

In this case, we see a wide gap. The largest random variable capturing nothing outside of 𝐼𝑋 : 𝑌 is null, indicated by
the Gács-Körner common information being zero, while the smallest variable capturing all of 𝐼𝑋 : 𝑌 is much larger,
capturing two-thirds of a bit more than the actual shared information.

1.13.2 Conditional Dependence

Consider the duality between set theory and information theory. One simple inequality in set theory is:

|𝑋 − 𝑌 | ≤ |𝑋|

and indeed the corresponding information theoretic inequality holds:

𝐻𝑋|𝑌 ≤ 𝐻𝑋

Since the intersection of two sets is itself a set, the following inequality also holds:

|(𝑋 ∩ 𝑌 )− 𝑍| ≤ |𝑋 ∩ 𝑌 |

We might then assume that its corresponding information-theoretic inequality would hold:

𝐼𝑋 : 𝑌 |𝑍 ≤ 𝐼𝑋 : 𝑌

This, however, has a couple major difficulties. Firstly, the mutual information between two variables does not itself
correspond to a random variable, as we saw in Necessity of Common Informations and so the analogy does not hold.
Secondly, the inequality does not hold. The most simple counterexample is the xor distribution:

In [8]: In [5]: d = Distribution(['000', '011', '101', '110'], [1/4]*4)

In [9]: In [6]: I(d, [[0], [1]])
Out[9]: 0.0

(continues on next page)
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(continued from previous page)

In [10]: Out[6]: 0.0

In [11]: In [7]: I(d, [[0], [1]], [2])
Out[11]: 1.0

In [12]: Out[7]: 1.0

1.13.3 Zero Probabilities

The following implication holds, so long as 𝑝(𝑤, 𝑥, 𝑦, 𝑧) > 0:

𝑊 ⊥ 𝑍|(𝑋,𝑌 )
𝑊 ⊥ 𝑌 |(𝑋,𝑍)

}︂
=⇒ 𝑊 ⊥ (𝑌,𝑍)|𝑋

This demonstrates that structural properties, such as conditional independence, is sensitive to the distinction between
“small” probability and zero probability.

This becomes an issue when, for example, Bayesian methods are used to infer the probability distribution. These
methods will generally never set a probability to zero and so will always exhibit this conditional independence even if
the underlying reality does not due to null probabilities. In this way, Bayesian methods can systematically mislead a
practitioner regarding the structural independencies in a system.

1.13.4 Shannon-like Information Measures Are Insensitive to Structural Differences

Consider two distributions of three variables, each taking on four values. One built by flipping three coins and assign-
ing each to a different pair of variables, the variable’s state is then the concatenation of the two coins it has access
to. The second built by again flipping three coins, but this time all variables share one of the coin flips, and then the
other two coins and their xor are each assigned to a variable. The first is constructed using solely pairwise (dyadic)
interactions, while the second using three-way (triadic) interactions.

In spite of the fact that these two distributions are qualitatively quite distinct, their informational signatures are all
identical:

In [13]: In [8]: from dit.example_dists import dyadic, triadic

This result implies that any measure built form Shannon-like information measures necessarily can not distinguish
between distributions with different scales of interaction.

1.13.5 Local Modifications Can Create Redundancy

It is commonly believed that a non-zero coinformation value is a signature of some sort of triadic interactions. Positive
values indicate “redundancy”, for example a giant bit:

In [14]: In [12]: d = Distribution(['000', '111'], [1/2]*2)

In [15]: In [13]: I(d)
Out[15]: 1.0

In [16]: Out[13]: 1.0

Negative values indicate “synergy”, for example the xor:
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In [17]: In [14]: d = Distribution(['000', '011', '101', '110'], [1/4]*4)

In [18]: In [15]: I(d)
Out[18]: -1.0

In [19]: Out[15]: -1.0

As seen in Shannon-like Information Measures Are Insensitive to Structural Differences, zero coinformation does not
indicate a lack of triadic interactions.

If we begin with a distribution lacking triadic interactions by construction, the dyadic distribution from Shannon-
like Information Measures Are Insensitive to Structural Differences. If we then allow each variable to be modified
independent of the others while maximizing the coinformation, we arrive at the DeWeese-like Measures:

In [20]: In [16]: from dit.multivariate import deweese_coinformation

This implies that cyclic pairwise interactions can be utilized to construct triadic interactions.

1.13.6 Negative Coinformation Does Not Imply Threeway Interactions

Finally, does a negative coinformation imply triadic interactions? Consider a distribution consisting of two random bits
and their logical and. This distribution has a negative coinformation, implying conditional dependence and some sort
of triadic interaction. However, if we consider the family of distributions which match and on its pairwise marginals,
this family consists of exactly one distribution: the and distribution!

In [21]: In [18]: d = Distribution(['000', '010', '100', '111'], [1/4]*4)

In [22]: In [19]: I(d)
Out[22]: -0.18872187554086706

In [23]: Out[19]: -0.18872187554086706

In [24]: In [20]: maxent_dist(d, [[0, 1], [0, 2], [1, 2]])
Out[24]:
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 1/4
010 1/4
100 1/4
111 1/4

In [25]: Out[20]:
....: Class: Distribution
....: Alphabet: ('0', '1') for all rvs
....: Base: linear
....: Outcome Class: str
....: Outcome Length: 3
....: RV Names: None
....:

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
→˓ File "<ipython-input-25-28fc745b977d>", line 1 (continues on next page)
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Out[20]:
^

SyntaxError: invalid syntax

And so this negative coinformation arises from cyclic, but strictly pairwise interactions. We do note that a negative
coinformation is not possible without at least the cyclic pairwise constraints. But this raises an important observation:
negative coinformations can be constructed solely with pairwise interactions, and so conditional dependence is not a
phenomena which requires triadic interactions.

1.13.7 Closing

At this point one might suspect that information theory is in shambles, and not up for the task of accurately detecting
and quantifying dependencies. However, I believe the limitation lies not with information theory but rather with our
impression of what it should be.

1.14 References

1.15 Indices and tables

• genindex

• modindex

• search
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