
dit Documentation
Release 1.1.0

dit Contributors

Apr 13, 2018

Contents

1 General Information 3
1.1 Quickstart . 4

2 Notation 7
2.1 Basic Notation . 7
2.2 Advanced Notation . 7

3 Distributions 9
3.1 Numpy-based ScalarDistribution . 9
3.2 Numpy-based Distribution . 19

4 Operations 23
4.1 Marginal . 23
4.2 Conditional . 24
4.3 Join . 26
4.4 Meet . 27
4.5 Minimal Sufficient Statistic . 29

5 Finding Examples 31

6 Optimization 33
6.1 Helper Functions . 34
6.2 Creating Your Own Optimizer . 35

7 Information Measures 37
7.1 Basic Shannon measures . 37
7.2 Multivariate . 43
7.3 Other Measures . 72
7.4 Divergences . 82
7.5 Secret Key Agreement . 87

8 Information Profiles 91
8.1 Shannon Partition and Extropy Partition . 91
8.2 Complexity Profile . 93
8.3 Marginal Utility of Information . 96
8.4 Schneidman Profile . 99
8.5 Entropy Triangle and Entropy Triangle2 . 102

i

8.6 Dependency Decomposition . 109

9 Partial Information Decomposition 111
9.1 Background . 111
9.2 Framework . 112
9.3 Measures . 114
9.4 Partial Entropy Decomposition . 118

10 References 119

11 Changelog 121

12 Indices and tables 123

Bibliography 125

Python Module Index 129

ii

dit Documentation, Release 1.1.0

dit is a Python package for discrete information theory.

For a quick tour, see the Quickstart. Otherwise, work your way through the various sections. Note that all code
snippets in this documentation assume that the following lines of code have already been run:

In [1]: from __future__ import division # true division for Python 2.7

In [2]: import dit

In [3]: import numpy as np

Contents:

Contents 1

dit Documentation, Release 1.1.0

2 Contents

CHAPTER 1

General Information

Documentation: http://docs.dit.io

Downloads: https://pypi.org/project/dit/

Dependencies:

• Python 2.7, 3.3, 3.4, 3.5, or 3.6

• boltons

• contextlib2

• debtcollector

• networkx

• numpy

• prettytable

• scipy

• six

Optional Dependencies:

• colorama

• cython

• numdifftools

• pint

• scikit-learn

Install: The easiest way to install is:

pip install dit

3

http://docs.dit.io
https://pypi.org/project/dit/
https://boltons.readthedocs.io
https://contextlib2.readthedocs.io
https://docs.openstack.org/debtcollector/
https://networkx.github.io/
http://www.numpy.org/
https://code.google.com/archive/p/prettytable/
https://www.scipy.org/
http://pythonhosted.org/six/
https://pypi.python.org/pypi/colorama
http://cython.org/
https://pypi.python.org/pypi/Numdifftools
https://pint.readthedocs.io
http://scikit-learn.org/

dit Documentation, Release 1.1.0

Alternatively, you can clone this repository, move into the newly created dit directory, and then install the
package:

git clone https://github.com/dit/dit.git
cd dit
pip install .

Mailing list: None

Code and bug tracker: https://github.com/dit/dit

License: BSD 2-Clause, see LICENSE.txt for details.

1.1 Quickstart

The basic usage of dit corresponds to creating distributions, modifying them if need be, and then computing proper-
ties of those distributions. First, we import:

In [1]: import dit

Suppose we have a really thick coin, one so thick that there is a reasonable chance of it landing on its edge. Here is
how we might represent the coin in dit.

In [2]: d = dit.Distribution(['H', 'T', 'E'], [.4, .4, .2])

In [3]: print(d)
Class: Distribution
Alphabet: ('E', 'H', 'T') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 1
RV Names: None

x p(x)
E 1/5
H 2/5
T 2/5

Calculate the probability of 𝐻 and also of the combination: 𝐻 or 𝑇 .

In [4]: d['H']
Out[4]: 0.4

In [5]: d.event_probability(['H','T'])
Out[5]: 0.8

Calculate the Shannon entropy and extropy of the joint distribution.

In [6]: dit.shannon.entropy(d)
Out[6]: 1.5219280948873621

In [7]: dit.other.extropy(d)
Out[7]: 1.1419011889093373

Create a distribution representing the xor logic function. Here, we have two inputs, 𝑋 and 𝑌 , and then an output
𝑍 = xor(𝑋,𝑌).

4 Chapter 1. General Information

https://github.com/dit/dit

dit Documentation, Release 1.1.0

In [8]: import dit.example_dists

In [9]: d = dit.example_dists.Xor()

In [10]: d.set_rv_names(['X', 'Y', 'Z'])

In [11]: print(d)
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: ('X', 'Y', 'Z')

x p(x)
000 1/4
011 1/4
101 1/4
110 1/4

Calculate the Shannon mutual informations 𝐼[𝑋 : 𝑍], 𝐼[𝑌 : 𝑍], and 𝐼[𝑋,𝑌 : 𝑍].

In [12]: dit.shannon.mutual_information(d, ['X'], ['Z'])
Out[12]: 0.0

In [13]: dit.shannon.mutual_information(d, ['Y'], ['Z'])
Out[13]: 0.0

In [14]: dit.shannon.mutual_information(d, ['X', 'Y'], ['Z'])
Out[14]: 1.0

Calculate the marginal distribution 𝑃 (𝑋,𝑍). Then print its probabilities as fractions, showing the mask.

In [15]: d2 = d.marginal(['X', 'Z'])

In [16]: print(d2.to_string(show_mask=True, exact=True))
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 2 (mask: 3)
RV Names: ('X', 'Z')

x p(x)
0*0 1/4
0*1 1/4
1*0 1/4
1*1 1/4

Convert the distribution probabilities to log (base 3.5) probabilities, and access its probability mass function.

In [17]: d2.set_base(3.5)

In [18]: d2.pmf
Out[18]: array([-1.10658951, -1.10658951, -1.10658951, -1.10658951])

Draw 5 random samples from this distribution.

1.1. Quickstart 5

dit Documentation, Release 1.1.0

Enjoy!

6 Chapter 1. General Information

CHAPTER 2

Notation

dit is a scientific tool, and so, much of this documentation will contain mathematical expressions. Here we will
describe this notation.

2.1 Basic Notation

A random variable 𝑋 consists of outcomes 𝑥 from an alphabet 𝒳 . As such, we write the entropy of a distribution as
𝐻𝑋 =

∑︀
𝑥∈𝒳 𝑝(𝑥) log2 𝑝(𝑥), where 𝑝(𝑥) denote the probability of the outcome 𝑥 occuring.

Many distributions are joint distribution. In the absence of variable names, we index each random variable with a
subscript. For example, a distribution over three variables is written 𝑋0𝑋1𝑋2. As a shorthand, we also denote those
random variables as 𝑋0:3, meaning start with 𝑋0 and go through, but not including 𝑋3 — just like python slice
notation.

If a set of variables 𝑋0:𝑛 are independent, we will write ⊥⊥ 𝑋0:𝑛. If a set of variables 𝑋0:𝑛 are independent conditioned
on 𝑉 , we write ⊥⊥ 𝑋0:𝑛 | 𝑉 .

If we ever need to describe an infinitely long chain of variables we drop the index from the side that is infinite. So
𝑋:0 = . . . 𝑋−3𝑋−2𝑋−1 and 𝑋0: = 𝑋0𝑋1𝑋2 For an arbitrary set of indices 𝐴, the corresponding collection of
random variables is denoted 𝑋𝐴. For example, if 𝐴 = {0, 2, 4}, then 𝑋𝐴 = 𝑋0𝑋2𝑋4. The complement of 𝐴 (with
respect to some universal set) is denoted 𝐴.

Furthermore, we define 0 log2 0 = 0.

2.2 Advanced Notation

When there exists a function 𝑌 = 𝑓(𝑋) we write 𝑋 ⪰ 𝑌 meaning that 𝑋 is informationally richer than 𝑌 . Similarly,
if 𝑓(𝑌) = 𝑋 then we write 𝑋 ⪯ 𝑌 and say that 𝑋 is informationally poorer than 𝑌 . If 𝑋 ⪯ 𝑌 and 𝑋 ⪰ 𝑌 then
we write 𝑋 ∼= 𝑌 and say that 𝑋 is informationally equivalent to 𝑌 . Of all the variables that are poorer than both 𝑋
and 𝑌 , there is a richest one. This variable is known as the meet of 𝑋 and 𝑌 and is denoted 𝑋 f 𝑌 . By definition,
∀𝑍𝑠.𝑡.𝑍 ⪯ 𝑋 and 𝑍 ⪯ 𝑌,𝑍 ⪯ 𝑋 f 𝑌 . Similarly of all variables richer than both 𝑋 and 𝑌 , there is a poorest. This

7

dit Documentation, Release 1.1.0

variable is known as the join of 𝑋 and 𝑌 and is denoted 𝑋 g 𝑌 . The joint random variable (𝑋,𝑌) and the join are
informationally equivalent: (𝑋,𝑌) ∼= 𝑋 g 𝑌 .

Lastly, we use 𝑋 ↘ 𝑌 to denote the minimal sufficient statistic of 𝑋 about the random variable 𝑌 .

8 Chapter 2. Notation

CHAPTER 3

Distributions

Distributions in dit come in two different flavors: ScalarDistribution and Distribution.
ScalarDistribution is used for representing distributions over real numbers, and have many features related
to that. Distribution is used for representing joint distributions, and therefore has many features related to
marginalizing, conditioning, and otherwise exploring the relationships between random variables.

3.1 Numpy-based ScalarDistribution

ScalarDistributions are used to represent distributions over real numbers, for example a six-sided die or the number of
heads when flipping 100 coins.

3.1.1 Playing with ScalarDistributions

First we will enable two optional features: printing fractions by default, and using __str__() as __repr__().
Be careful using either of these options, they can incur significant performance hits on some distributions.

In [1]: dit.ditParams['print.exact'] = dit.ditParams['repr.print'] = True

We next construct a six-sided die:

In [2]: from dit.example_dists import uniform

In [3]: d6 = uniform(1, 7)

In [4]: d6
Out[4]:
AttributeErrorTraceback (most recent call last)
/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/IPython/core/formatters.pyc in __call__(self, obj)

336 method = get_real_method(obj, self.print_method)
337 if method is not None:

--> 338 return method()

9

dit Documentation, Release 1.1.0

339 return None
340 else:

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in _repr_html_(self)

344 An HTML representation.
345 """

--> 346 return self.to_html()
347
348 def __reversed__(self):

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in to_html(self, digits, exact, tol)

649 header = '<table border="1">{}</table>'.format(infos)
650

--> 651 rv_names = self.get_rv_names()
652 if rv_names is None:
653 rv_names = ["x[{}]".format(i) for i in range(self.outcome_

→˓length())]

AttributeError: 'ScalarDistribution' object has no attribute 'get_rv_names'

Class: ScalarDistribution
Alphabet: (1, 2, 3, 4, 5, 6)
Base: linear

x p(x)
1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

We can perform standard mathematical operations with scalars, such as adding, subtracting from or by, multiplying,
taking the modulo, or testing inequalities.

In [5]: d6 + 3
Out[5]:
AttributeErrorTraceback (most recent call last)
/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/IPython/core/formatters.pyc in __call__(self, obj)

336 method = get_real_method(obj, self.print_method)
337 if method is not None:

--> 338 return method()
339 return None
340 else:

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in _repr_html_(self)

344 An HTML representation.
345 """

--> 346 return self.to_html()
347
348 def __reversed__(self):

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in to_html(self, digits, exact, tol)

10 Chapter 3. Distributions

dit Documentation, Release 1.1.0

649 header = '<table border="1">{}</table>'.format(infos)
650

--> 651 rv_names = self.get_rv_names()
652 if rv_names is None:
653 rv_names = ["x[{}]".format(i) for i in range(self.outcome_

→˓length())]

AttributeError: 'ScalarDistribution' object has no attribute 'get_rv_names'

Class: ScalarDistribution
Alphabet: (4, 5, 6, 7, 8, 9)
Base: linear

x p(x)
4 1/6
5 1/6
6 1/6
7 1/6
8 1/6
9 1/6

In [6]: d6 - 1
Out[6]:
AttributeErrorTraceback (most recent call last)
/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/IPython/core/formatters.pyc in __call__(self, obj)

336 method = get_real_method(obj, self.print_method)
337 if method is not None:

--> 338 return method()
339 return None
340 else:

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in _repr_html_(self)

344 An HTML representation.
345 """

--> 346 return self.to_html()
347
348 def __reversed__(self):

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in to_html(self, digits, exact, tol)

649 header = '<table border="1">{}</table>'.format(infos)
650

--> 651 rv_names = self.get_rv_names()
652 if rv_names is None:
653 rv_names = ["x[{}]".format(i) for i in range(self.outcome_

→˓length())]

AttributeError: 'ScalarDistribution' object has no attribute 'get_rv_names'

Class: ScalarDistribution
Alphabet: (0, 1, 2, 3, 4, 5)
Base: linear

x p(x)
0 1/6
1 1/6

3.1. Numpy-based ScalarDistribution 11

dit Documentation, Release 1.1.0

2 1/6
3 1/6
4 1/6
5 1/6

In [7]: 10 - d6
Out[7]:
AttributeErrorTraceback (most recent call last)
/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/IPython/core/formatters.pyc in __call__(self, obj)

336 method = get_real_method(obj, self.print_method)
337 if method is not None:

--> 338 return method()
339 return None
340 else:

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in _repr_html_(self)

344 An HTML representation.
345 """

--> 346 return self.to_html()
347
348 def __reversed__(self):

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in to_html(self, digits, exact, tol)

649 header = '<table border="1">{}</table>'.format(infos)
650

--> 651 rv_names = self.get_rv_names()
652 if rv_names is None:
653 rv_names = ["x[{}]".format(i) for i in range(self.outcome_

→˓length())]

AttributeError: 'ScalarDistribution' object has no attribute 'get_rv_names'

Class: ScalarDistribution
Alphabet: (4, 5, 6, 7, 8, 9)
Base: linear

x p(x)
4 1/6
5 1/6
6 1/6
7 1/6
8 1/6
9 1/6

In [8]: 2 * d6
Out[8]:
AttributeErrorTraceback (most recent call last)
/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/IPython/core/formatters.pyc in __call__(self, obj)

336 method = get_real_method(obj, self.print_method)
337 if method is not None:

--> 338 return method()
339 return None
340 else:

12 Chapter 3. Distributions

dit Documentation, Release 1.1.0

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in _repr_html_(self)

344 An HTML representation.
345 """

--> 346 return self.to_html()
347
348 def __reversed__(self):

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in to_html(self, digits, exact, tol)

649 header = '<table border="1">{}</table>'.format(infos)
650

--> 651 rv_names = self.get_rv_names()
652 if rv_names is None:
653 rv_names = ["x[{}]".format(i) for i in range(self.outcome_

→˓length())]

AttributeError: 'ScalarDistribution' object has no attribute 'get_rv_names'

Class: ScalarDistribution
Alphabet: (2, 4, 6, 8, 10, 12)
Base: linear

x p(x)
2 1/6
4 1/6
6 1/6
8 1/6
10 1/6
12 1/6

In [9]: d6 % 2
Out[9]:
AttributeErrorTraceback (most recent call last)
/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/IPython/core/formatters.pyc in __call__(self, obj)

336 method = get_real_method(obj, self.print_method)
337 if method is not None:

--> 338 return method()
339 return None
340 else:

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in _repr_html_(self)

344 An HTML representation.
345 """

--> 346 return self.to_html()
347
348 def __reversed__(self):

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in to_html(self, digits, exact, tol)

649 header = '<table border="1">{}</table>'.format(infos)
650

--> 651 rv_names = self.get_rv_names()
652 if rv_names is None:
653 rv_names = ["x[{}]".format(i) for i in range(self.outcome_

→˓length())]

3.1. Numpy-based ScalarDistribution 13

dit Documentation, Release 1.1.0

AttributeError: 'ScalarDistribution' object has no attribute 'get_rv_names'

Class: ScalarDistribution
Alphabet: (0, 1)
Base: linear

x p(x)
0 1/2
1 1/2

In [10]: (d6 % 2).is_approx_equal(d6 <= 3)
Out[10]: True

Furthermore, we can perform such operations with two distributions:

In [11]: d6 + d6
Out[11]:
AttributeErrorTraceback (most recent call last)
/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/IPython/core/formatters.pyc in __call__(self, obj)

336 method = get_real_method(obj, self.print_method)
337 if method is not None:

--> 338 return method()
339 return None
340 else:

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in _repr_html_(self)

344 An HTML representation.
345 """

--> 346 return self.to_html()
347
348 def __reversed__(self):

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in to_html(self, digits, exact, tol)

649 header = '<table border="1">{}</table>'.format(infos)
650

--> 651 rv_names = self.get_rv_names()
652 if rv_names is None:
653 rv_names = ["x[{}]".format(i) for i in range(self.outcome_

→˓length())]

AttributeError: 'ScalarDistribution' object has no attribute 'get_rv_names'

Class: ScalarDistribution
Alphabet: (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
Base: linear

x p(x)
2 1/36
3 1/18
4 1/12
5 1/9
6 5/36
7 1/6
8 5/36

14 Chapter 3. Distributions

dit Documentation, Release 1.1.0

9 1/9
10 1/12
11 1/18
12 1/36

In [12]: (d6 + d6) % 4
Out[12]:
AttributeErrorTraceback (most recent call last)
/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/IPython/core/formatters.pyc in __call__(self, obj)

336 method = get_real_method(obj, self.print_method)
337 if method is not None:

--> 338 return method()
339 return None
340 else:

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in _repr_html_(self)

344 An HTML representation.
345 """

--> 346 return self.to_html()
347
348 def __reversed__(self):

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in to_html(self, digits, exact, tol)

649 header = '<table border="1">{}</table>'.format(infos)
650

--> 651 rv_names = self.get_rv_names()
652 if rv_names is None:
653 rv_names = ["x[{}]".format(i) for i in range(self.outcome_

→˓length())]

AttributeError: 'ScalarDistribution' object has no attribute 'get_rv_names'

Class: ScalarDistribution
Alphabet: (0, 1, 2, 3)
Base: linear

x p(x)
0 1/4
1 2/9
2 1/4
3 5/18

In [13]: d6 // d6
Out[13]:
AttributeErrorTraceback (most recent call last)
/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/IPython/core/formatters.pyc in __call__(self, obj)

336 method = get_real_method(obj, self.print_method)
337 if method is not None:

--> 338 return method()
339 return None
340 else:

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in _repr_html_(self)

3.1. Numpy-based ScalarDistribution 15

dit Documentation, Release 1.1.0

344 An HTML representation.
345 """

--> 346 return self.to_html()
347
348 def __reversed__(self):

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in to_html(self, digits, exact, tol)

649 header = '<table border="1">{}</table>'.format(infos)
650

--> 651 rv_names = self.get_rv_names()
652 if rv_names is None:
653 rv_names = ["x[{}]".format(i) for i in range(self.outcome_

→˓length())]

AttributeError: 'ScalarDistribution' object has no attribute 'get_rv_names'

Class: ScalarDistribution
Alphabet: (0, 1, 2, 3, 4, 5, 6)
Base: linear

x p(x)
0 5/12
1 1/3
2 1/9
3 1/18
4 1/36
5 1/36
6 1/36

In [14]: d6 % (d6 % 2 + 1)
Out[14]:
AttributeErrorTraceback (most recent call last)
/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/IPython/core/formatters.pyc in __call__(self, obj)

336 method = get_real_method(obj, self.print_method)
337 if method is not None:

--> 338 return method()
339 return None
340 else:

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in _repr_html_(self)

344 An HTML representation.
345 """

--> 346 return self.to_html()
347
348 def __reversed__(self):

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in to_html(self, digits, exact, tol)

649 header = '<table border="1">{}</table>'.format(infos)
650

--> 651 rv_names = self.get_rv_names()
652 if rv_names is None:
653 rv_names = ["x[{}]".format(i) for i in range(self.outcome_

→˓length())]

16 Chapter 3. Distributions

dit Documentation, Release 1.1.0

AttributeError: 'ScalarDistribution' object has no attribute 'get_rv_names'

Class: ScalarDistribution
Alphabet: (0, 1)
Base: linear

x p(x)
0 3/4
1 1/4

There are also statistical functions which can be applied to ScalarDistributions:

In [15]: from dit.algorithms.stats import *

In [16]: median(d6+d6)
Out[16]: 7.0

In [17]: from dit.example_dists import binomial

In [18]: d = binomial(10, 1/3)

In [19]: d
Out[19]:
AttributeErrorTraceback (most recent call last)
/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/IPython/core/formatters.pyc in __call__(self, obj)

336 method = get_real_method(obj, self.print_method)
337 if method is not None:

--> 338 return method()
339 return None
340 else:

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in _repr_html_(self)

344 An HTML representation.
345 """

--> 346 return self.to_html()
347
348 def __reversed__(self):

/home/docs/checkouts/readthedocs.org/user_builds/dit-dev/conda/stable/lib/python2.7/
→˓site-packages/dit/distribution.pyc in to_html(self, digits, exact, tol)

649 header = '<table border="1">{}</table>'.format(infos)
650

--> 651 rv_names = self.get_rv_names()
652 if rv_names is None:
653 rv_names = ["x[{}]".format(i) for i in range(self.outcome_

→˓length())]

AttributeError: 'ScalarDistribution' object has no attribute 'get_rv_names'

Class: ScalarDistribution
Alphabet: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
Base: linear

x p(x)
0 409/23585
1 4302/49615

3.1. Numpy-based ScalarDistribution 17

dit Documentation, Release 1.1.0

2 1280/6561
3 5120/19683
4 4480/19683
5 896/6561
6 1120/19683
7 320/19683
8 20/6561
9 9/26572
10 1/59046

In [20]: mean(d)
Out[20]: 3.3333333333333335

In [21]: median(d)
Out[21]: 3.0

In [22]: standard_deviation(d)
Out[22]: 1.4907119849998596

3.1.2 API

ScalarDistribution.__init__(outcomes, pmf=None, sample_space=None, base=None,
prng=None, sort=True, sparse=True, trim=True, validate=True)

Initialize the distribution.

Parameters

• outcomes (sequence, dict) – The outcomes of the distribution. If outcomes is a
dictionary, then the keys are used as outcomes, and the values of the dictionary are used
as pmf instead. Note: an outcome is any hashable object (except None) which is equality
comparable. If sort is True, then outcomes must also be orderable.

• pmf (sequence) – The outcome probabilities or log probabilities. If None, then outcomes
is treated as the probability mass function and the outcomes are consecutive integers begin-
ning from zero.

• sample_space (sequence) – A sequence representing the sample space, and corre-
sponding to the complete set of possible outcomes. The order of the sample space is impor-
tant. If None, then the outcomes are used to determine the sample space instead.

• base (float, None) – If pmf specifies log probabilities, then base should specify the
base of the logarithm. If ‘linear’, then pmf is assumed to represent linear probabilities. If
None, then the value for base is taken from ditParams[‘base’].

• prng (RandomState) – A pseudo-random number generator with a rand method which
can generate random numbers. For now, this is assumed to be something with an API com-
patible to NumPy’s RandomState class. This attribute is initialized to equal dit.math.prng.

• sort (bool) – If True, then the sample space is sorted before finalizing it. Usually, this is
desirable, as it normalizes the behavior of distributions which have the same sample space
(when considered as a set). Note that addition and multiplication of distributions is defined
only if the sample spaces (as tuples) are equal.

• sparse (bool) – Specifies the form of the pmf. If True, then outcomes and pmf will only
contain entries for non-null outcomes and probabilities, after initialization. The order of
these entries will always obey the order of sample_space, even if their number is not equal
to the size of the sample space. If False, then the pmf will be dense and every outcome in
the sample space will be represented.

18 Chapter 3. Distributions

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

dit Documentation, Release 1.1.0

• trim (bool) – Specifies if null-outcomes should be removed from pmf when
make_sparse() is called (assuming sparse is True) during initialization.

• validate (bool) – If True, then validate the distribution. If False, then assume the
distribution is valid, and perform no checks.

Raises

• InvalidDistribution – If the length of values and outcomes are unequal.

• See validate() for a list of other potential exceptions.

3.2 Numpy-based Distribution

The primary method of constructing a distribution is by supplying both the outcomes and the probability mass function:

In [1]: from dit import Distribution

In [2]: outcomes = ['000', '011', '101', '110']

In [3]: pmf = [1/4]*4

In [4]: xor = Distribution(outcomes, pmf)

In [5]: print(xor)
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 0.25
011 0.25
101 0.25
110 0.25

Another way to construct a distribution is by supplying a dictionary mapping outcomes to probabilities:

In [6]: outcomes_probs = {'000': 1/4, '011': 1/4, '101': 1/4, '110': 1/4}

In [7]: xor2 = Distribution(outcomes_probs)

In [8]: print(xor2)
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 0.25
011 0.25
101 0.25
110 0.25

3.2. Numpy-based Distribution 19

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

dit Documentation, Release 1.1.0

Yet a third method is via an ndarray:

In [9]: pmf = [[0.5, 0.25], [0.25, 0]]

In [10]: d = Distribution.from_ndarray(pmf)

In [11]: print(d)
Class: Distribution
Alphabet: (0, 1) for all rvs
Base: linear
Outcome Class: tuple
Outcome Length: 2
RV Names: None

x p(x)
(0, 0) 0.5
(0, 1) 0.25
(1, 0) 0.25

Distribution.__init__(outcomes, pmf=None, sample_space=None, base=None, prng=None,
sort=True, sparse=True, trim=True, validate=True)

Initialize the distribution.

Parameters

• outcomes (sequence, dict) – The outcomes of the distribution. If outcomes is a
dictionary, then the keys are used as outcomes, and the values of the dictionary are used as
pmf instead. The values will not be used if probabilities are passed in via pmf. Outcomes
must be hashable, orderable, sized, iterable containers. The length of an outcome must be
the same for all outcomes, and every outcome must be of the same type.

• pmf (sequence, None) – The outcome probabilities or log probabilities. pmf can be
None only if outcomes is a dict.

• sample_space (sequence, CartesianProduct) – A sequence representing the
sample space, and corresponding to the complete set of possible outcomes. The order of the
sample space is important. If None, then the outcomes are used to determine a Cartesian
product sample space instead.

• base (float, str, None) – If pmf specifies log probabilities, then base should spec-
ify the base of the logarithm. If ‘linear’, then pmf is assumed to represent linear probabili-
ties. If None, then the value for base is taken from ditParams[‘base’].

• prng (RandomState) – A pseudo-random number generator with a rand method which
can generate random numbers. For now, this is assumed to be something with an API com-
patibile to NumPy’s RandomState class. This attribute is initialized to equal dit.math.prng.

• sort (bool) – If True, then each random variable’s alphabets are sorted before they are
finalized. Usually, this is desirable, as it normalizes the behavior of distributions which have
the same sample spaces (when considered as a set). Note that addition and multiplication of
distributions is defined only if the sample spaces are compatible.

• sparse (bool) – Specifies the form of the pmf. If True, then outcomes and pmf will only
contain entries for non-null outcomes and probabilities, after initialization. The order of
these entries will always obey the order of sample_space, even if their number is not equal
to the size of the sample space. If False, then the pmf will be dense and every outcome in
the sample space will be represented.

• trim (bool) – Specifies if null-outcomes should be removed from pmf when
make_sparse() is called (assuming sparse is True) during initialization.

20 Chapter 3. Distributions

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

dit Documentation, Release 1.1.0

• validate (bool) – If True, then validate the distribution. If False, then assume the
distribution is valid, and perform no checks.

Raises

• InvalidDistribution – If the length of values and outcomes are unequal. If no out-
comes can be obtained from pmf and outcomes is None.

• See validate() for a list of other potential exceptions.

To verify that these two distributions are the same, we can use the is_approx_equal method:

In [12]: xor.is_approx_equal(xor2)
Out[12]: True

Distribution.is_approx_equal(other, rtol=None, atol=None)
Returns True is other is approximately equal to this distribution.

For two distributions to be equal, they must have the same sample space and must also agree on the probabilities
of each outcome.

Parameters

• other (distribution) – The distribution to compare against.

• rtol (float) – The relative tolerance to use when comparing probabilities.

• atol (float) – The absolute tolerance to use when comparing probabilities.

Notes

The distributions need not have the length, but they must have the same base.

3.2. Numpy-based Distribution 21

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

22 Chapter 3. Distributions

CHAPTER 4

Operations

There are several operations possible on joint random variables. Let’s consider the standard xor distribution:

In [1]: d = dit.Distribution(['000', '011', '101', '110'], [1/4]*4)

In [2]: d.set_rv_names('XYZ')

4.1 Marginal

dit supports two ways of selecting only a subset of random variables. marginal() returns a distribution containing
only the random variables specified, whereas marginalize() return a distribution containing all random variables
except the ones specified:

In [3]: print(d.marginal('XY'))
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 2
RV Names: ('X', 'Y')

x p(x)
00 1/4
01 1/4
10 1/4
11 1/4

In [4]: print(d.marginalize('XY'))
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 1

23

dit Documentation, Release 1.1.0

RV Names: ('Z',)

x p(x)
0 1/2
1 1/2

Distribution.marginal(rvs, rv_mode=None)
Returns a marginal distribution.

Parameters

• rvs (list) – The random variables to keep. All others are marginalized.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of self._rv_mode is consulted.

Returns d – A new joint distribution with the random variables in rvs kept and all others marginal-
ized.

Return type joint distribution

Distribution.marginalize(rvs, rv_mode=None)
Returns a new distribution after marginalizing random variables.

Parameters

• rvs (list) – The random variables to marginalize. All others are kept.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of self._rv_mode is consulted.

Returns d – A new joint distribution with the random variables in rvs marginalized and all others
kept.

Return type joint distribution

4.2 Conditional

We can also condition on a subset of random variables:

In [5]: marginal, cdists = d.condition_on('XY')

In [6]: print(marginal)
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 2
RV Names: ('X', 'Y')

x p(x)
00 1/4
01 1/4
10 1/4
11 1/4

24 Chapter 4. Operations

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

In [7]: print(cdists[0]) # XY = 00
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 1
RV Names: ('Z',)

x p(x)
0 1

In [8]: print(cdists[1]) # XY = 01
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 1
RV Names: ('Z',)

x p(x)
1 1

In [9]: print(cdists[2]) # XY = 10
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 1
RV Names: ('Z',)

x p(x)
1 1

In [10]: print(cdists[3]) # XY = 11
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 1
RV Names: ('Z',)

x p(x)
0 1

Distribution.condition_on(crvs, rvs=None, rv_mode=None, extract=False)
Returns distributions conditioned on random variables crvs.

Optionally, rvs specifies which random variables should remain.

NOTE: Eventually this will return a conditional distribution.

Parameters

• crvs (list) – The random variables to condition on.

• rvs (list, None) – The random variables for the resulting conditional distributions.
Any random variable not represented in the union of crvs and rvs will be marginalized.
If None, then every random variable not appearing in crvs is used.

4.2. Conditional 25

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

• rv_mode (str, None) – Specifies how to interpret crvs and rvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are inter-
preted as random variable indices. If equal to ‘names’, the the elements are interpreted as
random varible names. If None, then the value of self._rv_mode is consulted, which
defaults to ‘indices’.

• extract (bool) – If the length of either crvs or rvs is 1 and extract is True, then
instead of the new outcomes being 1-tuples, we extract the sole element to create scalar
distributions.

Returns

• cdist (dist) – The distribution of the conditioned random variables.

• dists (list of distributions) – The conditional distributions for each outcome in cdist.

Examples

First we build a distribution P(X,Y,Z) representing the XOR logic gate.

>>> pXYZ = dit.example_dists.Xor()
>>> pXYZ.set_rv_names('XYZ')

We can obtain the conditional distributions P(X,Z|Y) and the marginal of the conditioned variable P(Y) as
follows:

>>> pY, pXZgY = pXYZ.condition_on('Y')

If we specify rvs='Z', then only ‘Z’ is kept and thus, ‘X’ is marginalized out:

>>> pY, pZgY = pXYZ.condition_on('Y', rvs='Z')

We can condition on two random variables:

>>> pXY, pZgXY = pXYZ.condition_on('XY')

The equivalent call using indexes is:

>>> pXY, pZgXY = pXYZ.condition_on([0, 1], rv_mode='indexes')

4.3 Join

We can construct the join of two random variables:

𝑋 g 𝑌 = min{𝑉 |𝑉 ⪰ 𝑋 ∧ 𝑉 ⪰ 𝑌 }

Where min is understood to be minimizing with respect to the entropy.

In [11]: from dit.algorithms.lattice import join

In [12]: print(join(d, ['XY']))
Class: ScalarDistribution
Alphabet: (0, 1, 2, 3)
Base: linear

26 Chapter 4. Operations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dit Documentation, Release 1.1.0

x p(x)
0 1/4
1 1/4
2 1/4
3 1/4

join(dist, rvs, rv_mode=None, int_outcomes=True)
Returns the distribution of the join of random variables defined by rvs.

Parameters

• dist (Distribution) – The distribution which defines the base sigma-algebra.

• rvs (list) – A list of lists. Each list specifies a random variable to be joined with the
other lists. Each random variable can defined as a series of unique indexes. Multiple random
variables can use the same index. For example, [[0,1],[1,2]].

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

• int_outcomes (bool) – If True, then the outcomes of the join are relabeled as integers
instead of as the atoms of the induced sigma-algebra.

Returns d – The distribution of the join.

Return type ScalarDistribution

insert_join(dist, idx, rvs, rv_mode=None)
Returns a new distribution with the join inserted at index idx.

The join of the random variables in rvs is constructed and then inserted into at index idx.

Parameters

• dist (Distribution) – The distribution which defines the base sigma-algebra.

• idx (int) – The index at which to insert the join. To append the join, set idx to be equal to
-1 or dist.outcome_length().

• rvs (list) – A list of lists. Each list specifies a random variable to be met with the other
lists. Each random variable can defined as a series of unique indexes. Multiple random
variables can use the same index. For example, [[0,1],[1,2]].

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns d – The new distribution with the join at index idx.

Return type Distribution

4.4 Meet

We can construct the meet of two random variabls:

𝑋 f 𝑌 = max{𝑉 |𝑉 ⪯ 𝑋 ∧ 𝑉 ⪯ 𝑌 }

Where max is understood to be maximizing with respect to the entropy.

4.4. Meet 27

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

In [13]: from dit.algorithms.lattice import meet

In [14]: outcomes = ['00', '01', '10', '11', '22', '33']

In [15]: d2 = dit.Distribution(outcomes, [1/8]*4 + [1/4]*2, sample_space=outcomes)

In [16]: d2.set_rv_names('XY')

In [17]: print(meet(d2, ['X', 'Y']))
Class: ScalarDistribution
Alphabet: (0, 1, 2)
Base: linear

x p(x)
0 1/4
1 1/4
2 1/2

meet(dist, rvs, rv_mode=None, int_outcomes=True)
Returns the distribution of the meet of random variables defined by rvs.

Parameters

• dist (Distribution) – The distribution which defines the base sigma-algebra.

• rvs (list) – A list of lists. Each list specifies a random variable to be met with the other
lists. Each random variable can defined as a series of unique indexes. Multiple random
variables can use the same index. For example, [[0,1],[1,2]].

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

• int_outcomes (bool) – If True, then the outcomes of the meet are relabeled as integers
instead of as the atoms of the induced sigma-algebra.

Returns d – The distribution of the meet.

Return type ScalarDistribution

insert_meet(dist, idx, rvs, rv_mode=None)
Returns a new distribution with the meet inserted at index idx.

The meet of the random variables in rvs is constructed and then inserted into at index idx.

Parameters

• dist (Distribution) – The distribution which defines the base sigma-algebra.

• idx (int) – The index at which to insert the meet. To append the meet, set idx to be equal
to -1 or dist.outcome_length().

• rvs (list) – A list of lists. Each list specifies a random variable to be met with the other
lists. Each random variable can defined as a series of unique indexes. Multiple random
variables can use the same index. For example, [[0,1],[1,2]].

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

28 Chapter 4. Operations

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

Returns d – The new distribution with the meet at index idx.

Return type Distribution

4.5 Minimal Sufficient Statistic

This method constructs the minimal sufficient statistic of 𝑋 about 𝑌 : 𝑋 ↘ 𝑌 :

𝑋 ↘ 𝑌 = min{𝑉 |𝑉 ⪯ 𝑋 ∧ 𝐼[𝑋 : 𝑌] = 𝐼[𝑉 : 𝑌]}

In [18]: from dit.algorithms import insert_mss

In [19]: d2 = dit.Distribution(['00', '01', '10', '11', '22', '33'], [1/8]*4 + [1/
→˓4]*2)

In [20]: print(insert_mss(d2, -1, [0], [1]))
Class: Distribution
Alphabet: (('0', '1', '2', '3'), ('0', '1', '2', '3'), ('2', '0', '1'))
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
002 1/8
012 1/8
102 1/8
112 1/8
220 1/4
331 1/4

Again, min is understood to be over entropies.

mss(dist, rvs, about=None, rv_mode=None, int_outcomes=True)

Parameters

• dist (Distribution) – The distribution which defines the base sigma-algebra.

• rvs (list) – A list of random variables to be compressed into a minimal sufficient statistic.

• about (list) – A list of random variables for which the minimal sufficient static will
retain all information about.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

• int_outcomes (bool) – If True, then the outcomes of the minimal sufficient statistic are
relabeled as integers instead of as the atoms of the induced sigma-algebra.

Returns d – The distribution of the minimal sufficient statistic.

Return type ScalarDistribution

4.5. Minimal Sufficient Statistic 29

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

dit Documentation, Release 1.1.0

Examples

>>> d = Xor()
>>> print(mss(d, [0], [1, 2]))
Class: ScalarDistribution
Alphabet: (0, 1)
Base: linear
x p(x)
0 0.5
1 0.5

insert_mss(dist, idx, rvs, about=None, rv_mode=None)
Inserts the minimal sufficient statistic of rvs about about into dist at index idx.

Parameters

• dist (Distribution) – The distribution which defines the base sigma-algebra.

• idx (int) – The location in the distribution to insert the minimal sufficient statistic.

• rvs (list) – A list of random variables to be compressed into a minimal sufficient statistic.

• about (list) – A list of random variables for which the minimal sufficient static will
retain all information about.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns d – The distribution dist modified to contain the minimal sufficient statistic.

Return type Distribution

Examples

>>> d = Xor()
>>> print(insert_mss(d, -1, [0], [1, 2]))
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 4
RV Names: None
x p(x)
0000 0.25
0110 0.25
1011 0.25
1101 0.25

dit.util.testing.distributions()

30 Chapter 4. Operations

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

CHAPTER 5

Finding Examples

What if you’d like to find a distribution that has a particular property? For example, what if I’d like to find a distribution
with a coinformation less that −0.5? This is where Hypothesis comes in:

In [1]: from hypothesis import find

In [2]: from dit.utils.testing import distributions

In [3]: find(distributions(3, 2), lambda d: dit.multivariate.coinformation(d) < -0.5)
Out[3]:
Class: Distribution
Alphabet: (0, 1) for all rvs
Base: linear
Outcome Class: tuple
Outcome Length: 3
RV Names: None

x p(x)
(0, 0, 0) 1/5
(0, 1, 1) 1/5
(1, 0, 0) 1/5
(1, 0, 1) 1/5
(1, 1, 0) 1/5

What hypothesis has done is use the distributions() strategy to randomly test distributions. Once it finds a
distribution satisfying the criteria we specified (coinformation less than −0.5) it then simplifies the example as much
as possible. Here, we see that even though it could have found any distribution, it found the exclusive or distribution,
and simplified the probabilities to be uniform.

31

dit Documentation, Release 1.1.0

32 Chapter 5. Finding Examples

CHAPTER 6

Optimization

It is often useful to construct a distribution 𝑑′ which is consistent with some marginal aspects of 𝑑, but otherwise
optimizes some information measure. For example, perhaps we are interested in constructing a distribution which
matches pairwise marginals with another, but otherwise has maximum entropy:

In [1]: from dit.algorithms.scipy_optimizers import MaxEntOptimizer

ImportErrorTraceback (most recent call last)
<ipython-input-1-5fd9c8e847a4> in <module>()
----> 1 from dit.algorithms.scipy_optimizers import MaxEntOptimizer

ImportError: No module named scipy_optimizers

In [2]: xor = dit.example_dists.Xor()

In [3]: meo = MaxEntOptimizer(xor, [[0,1], [0,2], [1,2]])

NameErrorTraceback (most recent call last)
<ipython-input-3-f55de6eaf234> in <module>()
----> 1 meo = MaxEntOptimizer(xor, [[0,1], [0,2], [1,2]])

NameError: name 'MaxEntOptimizer' is not defined

In [4]: meo.optimize()

NameErrorTraceback (most recent call last)
<ipython-input-4-ffaf8eaa6f1b> in <module>()
----> 1 meo.optimize()

NameError: name 'meo' is not defined

In [5]: dp = meo.construct_dist()

NameErrorTraceback (most recent call last)
<ipython-input-5-6f4e9c4137b2> in <module>()
----> 1 dp = meo.construct_dist()

33

dit Documentation, Release 1.1.0

NameError: name 'meo' is not defined

In [6]: print(dp)

NameErrorTraceback (most recent call last)
<ipython-input-6-2b98a304971b> in <module>()
----> 1 print(dp)

NameError: name 'dp' is not defined

6.1 Helper Functions

There are three special functions to handle common optimization problems:

In [7]: from dit.algorithms import maxent_dist, marginal_maxent_dists, pid_broja

The first is maximum entropy distributions with specific fixed marginals. It encapsulates the steps run above:

In [8]: print(maxent_dist(xor, [[0,1], [0,2], [1,2]]))
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 1275142/10201135
001 2366322/18930577
010 1010758/8086065
011 2778308/22226463
100 1207968/9663745
101 1049422/8395375
110 964516/7716127
111 1118489/8947913

The second constructs several maximum entropy distributions, each with all subsets of variables of a particular size
fixed:

In [9]: k0, k1, k2, k3 = marginal_maxent_dists(xor)

where k0 is the maxent dist corresponding the same alphabets as xor; k1 fixes 𝑝(𝑥0), 𝑝(𝑥1), and 𝑝(𝑥2); k2 fixes
𝑝(𝑥0, 𝑥1), 𝑝(𝑥0, 𝑥2), and 𝑝(𝑥1, 𝑥2) (as in the maxent_dist example above), and finally k3 fixes 𝑝(𝑥0, 𝑥1, 𝑥2) (e.g.
is the distribution we started with).

6.1.1 Partial Information Decomposition

Finally, we have pid_broja(). This computes the 2 input, 1 output partial information decomposition as defined
[BRO+14]. We can compute the partial information decomposition where 𝑋0 and 𝑋1 are interpreted as inputs, and
𝑋2 as the output, with the following code:

34 Chapter 6. Optimization

dit Documentation, Release 1.1.0

In [10]: sources = [[0], [1]]

In [11]: target = [2]

In [12]: pid_broja(xor, sources, target)

TypeErrorTraceback (most recent call last)
<ipython-input-12-91b5087e14d1> in <module>()
----> 1 pid_broja(xor, sources, target)

TypeError: 'module' object is not callable

indicating that the redundancy (R) is zero, neither input provides unique informaiton (U0, U1), and there is 1 bit of
synergy (S).

6.2 Creating Your Own Optimizer

dit.algorithms.scipy_optimizers provides two optimization classes for optimizing some quantity while
matching arbitrary margins from a reference distribution. The first, dit.algorithms.scipy_optimizers.
BaseConvexOptimizer, is for use when the objective is convex, while the second, dit.algorithms.
scipy_optimizers.BaseNonConvexOptimizer is for use when the objective is non-convex. Simply sub-
class one of these two and impliment the objective method and it is good to go.

6.2. Creating Your Own Optimizer 35

dit Documentation, Release 1.1.0

36 Chapter 6. Optimization

CHAPTER 7

Information Measures

dit supports many information measures, ranging from as standard as the Shannon entropy to as exotic as Gács-
Körner common information (with even more esoteric measure coming soon!). We organize these quantities into the
following groups.

We first have the Shannon-like measures. These quantities are based on sums and differences of entropies, conditional
entropies, or mutual informations of random variables:

7.1 Basic Shannon measures

The information on this page is drawn from the fantastic text book Elements of Information Theory by Cover and
Thomas [CT06]. Other good choices are Information Theory, Inference and Learning Algorithms by MacKay
[Mac03] and Information Theory and Network Coding by Yeung [Yeu08].

7.1.1 Entropy

The entropy measures how much information is in a random variable 𝑋 .

𝐻𝑋 = −
∑︁
𝑥∈𝒳

𝑝(𝑥) log2 𝑝(𝑥)

What do we mean by “how much information”? Basically, we mean the average number of yes-no questions one
would have to ask to determine an outcome from the distribution. In the simplest case, consider a sure thing:

In [1]: d = dit.Distribution(['H'], [1])

In [2]: dit.shannon.entropy(d)
Out[2]: 0.0

So since we know that the outcome from our distribution will always be H, we have to ask zero questions to figure that
out. If however we have a fair coin:

37

dit Documentation, Release 1.1.0

In [3]: d = dit.Distribution(['H', 'T'], [1/2, 1/2])

In [4]: dit.shannon.entropy(d)
Out[4]: 1.0

The entropy tells us that we must ask one question to determine whether an H or T was the outcome of the coin flip.
Now what if there are three outcomes? Let’s consider the following situation:

In [5]: d = dit.Distribution(['A', 'B', 'C'], [1/2, 1/4, 1/4])

In [6]: dit.shannon.entropy(d)
Out[6]: 1.5

Here we find that the entropy is 1.5 bits. How do we ask one and a half questions on average? Well, if our first question
is “was it A?” and it is true, then we are done, and that occurs half the time. The other half of the time we need to ask
a follow up question: “was it B?”. So half the time we need to ask one question, and the other half of the time we need
to ask two questions. In other words, we need to ask 1.5 questions on average.

Joint Entropy

The entropy of multiple variables is computed in a similar manner:

𝐻𝑋0:𝑛 = −
∑︁

𝑥0:𝑛∈𝑋0:𝑛

𝑝(𝑥0:𝑛) log2 𝑝(𝑥0:𝑛)

Its intuition is also the same: the average number of binary questions required to identify a joint event from the
distribution.

API

entropy(dist, rvs=None, rv_mode=None)
Returns the entropy H[X] over the random variables in rvs.

If the distribution represents linear probabilities, then the entropy is calculated with units of ‘bits’ (base-2).
Otherwise, the entropy is calculated in whatever base that matches the distribution’s pmf.

Parameters

• dist (Distribution or float) – The distribution from which the entropy is calcu-
lated. If a float, then we calculate the binary entropy.

• rvs (list, None) – The indexes of the random variable used to calculate the entropy.
If None, then the entropy is calculated over all random variables. This should remain None
for ScalarDistributions.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns H – The entropy of the distribution.

Return type float

38 Chapter 7. Information Measures

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

7.1.2 Conditional Entropy

The conditional entropy is the amount of information in variable 𝑋 beyond that which is in variable 𝑌 :

𝐻𝑋|𝑌 = −
∑︁

𝑥∈𝑋,𝑦∈𝑌

𝑝(𝑥, 𝑦) log2 𝑝(𝑥|𝑦)

As a simple example, consider two identical variables:

In [7]: d = dit.Distribution(['HH', 'TT'], [1/2, 1/2])

In [8]: dit.shannon.conditional_entropy(d, [0], [1])
Out[8]: 0.0

We see that knowing the second variable tells us everything about the first, leaving zero entropy. On the other end of
the spectrum, two independent variables:

In [9]: d = dit.Distribution(['HH', 'HT', 'TH', 'TT'], [1/4]*4)

In [10]: dit.shannon.conditional_entropy(d, [0], [1])
Out[10]: 1.0

Here, the second variable tells us nothing about the first so we are left with the one bit of information a coin flip has.

API

conditional_entropy(dist, rvs_X, rvs_Y, rv_mode=None)
Returns the conditional entropy of H[X|Y].

If the distribution represents linear probabilities, then the entropy is calculated with units of ‘bits’ (base-2).

Parameters

• dist (Distribution) – The distribution from which the conditional entropy is calcu-
lated.

• rvs_X (list, None) – The indexes of the random variables defining X.

• rvs_Y (list, None) – The indexes of the random variables defining Y.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs_X and rvs_Y.
Valid options are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs_X and
rvs_Y are interpreted as random variable indices. If equal to ‘names’, the the elements are
interpreted as random variable names. If None, then the value of dist._rv_mode is consulted.

Returns H_XgY – The conditional entropy H[X|Y].

Return type float

7.1.3 Mutual Information

The mutual information is the amount of information shared by 𝑋 and 𝑌 :

𝐼𝑋 : 𝑌 = 𝐻𝑋,𝑌 −𝐻𝑋|𝑌 −𝐻𝑌 |𝑋
= 𝐻𝑋 + 𝐻𝑌 −𝐻𝑋,𝑌

=
∑︁

𝑥∈𝑋,𝑦∈𝑌

𝑝(𝑥, 𝑦) log2

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)

7.1. Basic Shannon measures 39

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

The mutual information is symmetric:

𝐼𝑋 : 𝑌 = 𝐼𝑌 : 𝑋

Meaning that the information that 𝑋 carries about 𝑌 is equal to the information that 𝑌 carries about 𝑋 . The entropy
of 𝑋 can be decomposed into the information it shares with 𝑌 and the information it doesn’t:

𝐻𝑋 = 𝐼𝑋 : 𝑌 + 𝐻𝑋|𝑌

See also:

The mutual information generalized to the multivariate case in three different ways:

Co-Information Generalized as the information which all variables contribute to.

Total Correlation Generalized as the sum of the information in the individual variables minus the information in the
whole.

Dual Total Correlation Generalized as the joint entropy minus the entropy of each variable conditioned on the others.

CAEKL Mutual Information Generalized as the smallest quantity that can be subtracted from the joint, and from
each part of a partition of all the variables, such that the joint entropy minus this quantity is equal to the sum of
each partition entropy minus this quantity.

API

mutual_information(dist, rvs_X, rvs_Y, rv_mode=None)
Returns the mutual information I[X:Y].

If the distribution represents linear probabilities, then the entropy is calculated with units of ‘bits’ (base-2).

Parameters

• dist (Distribution) – The distribution from which the mutual information is calcu-
lated.

• rvs_X (list, None) – The indexes of the random variables defining X.

• rvs_Y (list, None) – The indexes of the random variables defining Y.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns I – The mutual information I[X:Y].

Return type float

7.1.4 Visualization of Information

It has been shown that there is a correspondence between set-theoretic measures and information-theoretic measures.
The entropy is equivalent to set cardinality, mutual information to set intersection, and conditional entropy to set
difference. Because of this we can use Venn-like diagrams to represent the information in and shared between random
variables. These diagrams are called information diagrams or i-diagrams for short.

This first image pictographically shades the area of the i-diagram which contains the information corresponding to
𝐻𝑋0.

40 Chapter 7. Information Measures

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

Similarly, this one shades the information corresponding to 𝐻𝑋1.

This image shades the information corresponding to 𝐻𝑋0, 𝑋1. Notice that it is the union of the prior two, and not
their sum (e.g. that overlap region is not double-counted).

7.1. Basic Shannon measures 41

dit Documentation, Release 1.1.0

Next, the conditional entropy of 𝑋0 conditioned on 𝑋1, 𝐻𝑋0|𝑋1, is displayed. It consists of the area contained in the
𝑋0 circle but not contained in 𝑋1 circle.

In the same vein, here the conditional entropy 𝐻𝑋1|𝑋0 is shaded.

42 Chapter 7. Information Measures

dit Documentation, Release 1.1.0

Finally, the mutual information between 𝑋0 and 𝑋1, 𝐼𝑋0 : 𝑋1 is drawn. It is the region where the two circles overlap.

7.2 Multivariate

Multivariate measures of information generally attempt to capture some global property of a joint distribution. For
example, they might attempt to quantify how much information is shared among the random variables, or quantify
how “non-indpendent” in the joint distribution is.

7.2.1 Total Information

These quantities, currently just the Shannon entropy, measure the total amount of information contained in a set of
joint variables.

7.2. Multivariate 43

dit Documentation, Release 1.1.0

Entropy

The entropy measures the total amount of information contained in a set of random variables, 𝑋0:𝑛, potentially ex-
cluding the information contain in others, 𝑌0:𝑚.

𝐻𝑋0:𝑛|𝑌0:𝑚 = −
∑︁

𝑥0:𝑛∈𝒳0:𝑛
𝑦0:𝑚∈𝒴0:𝑚

𝑝(𝑥0:𝑛, 𝑦0:𝑚) log2 𝑝(𝑥0:𝑛|𝑦0:𝑚)

Let’s consider two coins that are interdependent: the first coin fips fairly, and if the first comes up heads, the other is
fair, but if the first comes up tails the other is certainly tails:

In [1]: d = dit.Distribution(['HH', 'HT', 'TT'], [1/4, 1/4, 1/2])

We would expect that entropy of the second coin conditioned on the first coin would be 0.5 bits, and sure enough that
is what we find:

In [2]: from dit.multivariate import entropy

In [3]: entropy(d, [1], [0])
Out[3]: 0.4999999999999999

And since the first coin is fair, we would expect it to have an entropy of 1 bit:

In [4]: entropy(d, [0])
Out[4]: 1.0

Taken together, we would then expect the joint entropy to be 1.5 bits:

In [5]: entropy(d)
Out[5]: 1.5

Visualization

Below we have a pictoral representation of the joint entropy for both 2 and 3 variable joint distributions.

44 Chapter 7. Information Measures

dit Documentation, Release 1.1.0

API

entropy(*args, **kwargs)
Calculates the conditional joint entropy.

Parameters

• dist (Distribution) – The distribution from which the entropy is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the entropy. If
None, then the entropy is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns H – The entropy.

Return type float

Raises ditException – Raised if rvs or crvs contain non-existant random variables.

Examples

Let’s construct a 3-variable distribution for the XOR logic gate and name the random variables X, Y, and Z.

7.2. Multivariate 45

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

>>> d = dit.example_dists.Xor()
>>> d.set_rv_names(['X', 'Y', 'Z'])

The joint entropy of H[X,Y,Z] is:

>>> dit.multivariate.entropy(d, 'XYZ')
2.0

We can do this using random variables indexes too.

>>> dit.multivariate.entropy(d, [0,1,2], rv_mode='indexes')
2.0

The joint entropy H[X,Z] is given by:

>>> dit.multivariate.entropy(d, 'XZ')
1.0

Conditional entropy can be calculated by passing in the conditional random variables. The conditional entropy
H[Y|X] is:

>>> dit.multivariate.entropy(d, 'Y', 'X')
1.0

7.2.2 Mutual Informations

These measures all reduce to the standard Shannon Mutual Information for bivariate distributions.

Co-Information

The co-information [Bel03] is one generalization of the Mutual Information to multiple variables. The co-information
quantifies the amount of infomration that all variables participate in. It is defined via an inclusion/exclusion sum:

𝐼𝑋0:𝑛 = −
∑︁

𝑦∈𝒫({0..𝑛})

(−1)|𝑦|𝐻𝑋𝑦

=
∑︁

𝑥0:𝑛∈𝑋0:𝑛

𝑝(𝑥0:𝑛) log2

∏︁
𝑦∈𝒫({0..𝑛})

𝑝(𝑦)(−1)|𝑦|

It is clear that the co-information measures the “center-most” atom of the diagram only, which is the only atom to
which every variable contributes. To exemplifying this, consider “giant bit” distributions:

In [1]: from dit import Distribution as D

In [2]: from dit.multivariate import coinformation as I

In [3]: [I(D(['0'*n, '1'*n], [1/2, 1/2])) for n in range(2, 6)]
Out[3]: [1.0, 1.0, 1.0, 1.0]

This verifies intuition that the entire one bit of the distribution’s entropy is condensed in a single atom. One notable
property of the co-information is that for 𝑛 ≥ 3 it can be negative. For example:

In [4]: from dit.example_dists import Xor

In [5]: d = Xor()

46 Chapter 7. Information Measures

dit Documentation, Release 1.1.0

In [6]: I(d)
Out[6]: -1.0

Based on these two examples one might get the impression that the co-information is positive for “redundant” dis-
tributions and negative for “synergistic” distributions. This however is not true — consider the four-variable parity
distribution:

In [7]: from dit.example_dists import n_mod_m

In [8]: d = n_mod_m(4, 2)

In [9]: I(d)
Out[9]: 1.0

Meaning that the co-information is positive for both the most redundant distribution, the giant bit, and the most
synergistic, the parity. Therefore the coinformation can not be used to measure redundancy or synergy.

Note: Correctly measuring redundancy and synergy is an ongoing problem. See [Griffith2013] and references therein
for the current status of the problem.

Visualization

The co-information can be visuallized on an i-diagram as below, where only the centermost atom is shaded:

7.2. Multivariate 47

dit Documentation, Release 1.1.0

API

coinformation(*args, **kwargs)
Calculates the coinformation.

Parameters

• dist (Distribution) – The distribution from which the coinformation is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the coinfor-
mation between. If None, then the coinformation is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are condition on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns I – The coinformation.

Return type float

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

Examples

Let’s construct a 3-variable distribution for the XOR logic gate and name the random variables X, Y, and Z.

>>> d = dit.example_dists.Xor()
>>> d.set_rv_names(['X', 'Y', 'Z'])

To calculate coinformations, recall that rvs specifies which groups of random variables are involved. For exam-
ple, the 3-way mutual information I[X:Y:Z] is calculated as:

>>> dit.multivariate.coinformation(d, ['X', 'Y', 'Z'])
-1.0

It is a quirk of strings that each element of a string is also an iterable. So an equivalent way to calculate the
3-way mutual information I[X:Y:Z] is:

>>> dit.multivariate.coinformation(d, 'XYZ')
-1.0

The reason this works is that list(‘XYZ’) == [‘X’, ‘Y’, ‘Z’]. If we want to use random variable indexes, we need
to have explicit groupings:

>>> dit.multivariate.coinformation(d, [[0], [1], [2]], rv_mode='indexes')
-1.0

To calculate the mutual information I[X, Y : Z], we use explicit groups:

>>> dit.multivariate.coinformation(d, ['XY', 'Z'])

Using indexes, this looks like:

48 Chapter 7. Information Measures

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

>>> dit.multivariate.coinformation(d, [[0, 1], [2]], rv_mode='indexes')

The mutual information I[X:Z] is given by:

>>> dit.multivariate.coinformation(d, 'XZ')
0.0

Equivalently,

>>> dit.multivariate.coinformation(d, ['X', 'Z'])
0.0

Using indexes, this becomes:

>>> dit.multivariate.coinformation(d, [[0], [2]])
0.0

Conditional mutual informations can be calculated by passing in the conditional random variables. The condi-
tional entropy I[X:Y|Z] is:

>>> dit.multivariate.coinformation(d, 'XY', 'Z')
1.0

Using indexes, this becomes:

>>> rvs = [[0], [1]]
>>> crvs = [[2]] # broken
>>> dit.multivariate.coinformation(d, rvs, crvs, rv_mode='indexes')
1.0

For the conditional random variables, groupings have no effect, so you can also obtain this as:

>>> rvs = [[0], [1]]
>>> crvs = [2]
>>> dit.multivariate.coinformation(d, rvs, crvs, rv_mode='indexes')
1.0

Finally, note that entropy can also be calculated. The entropy H[Z|XY] is obtained as:

>>> rvs = [[2]]
>>> crvs = [[0], [1]] # broken
>>> dit.multivariate.coinformation(d, rvs, crvs, rv_mode='indexes')
0.0

>>> crvs = [[0, 1]] # broken
>>> dit.multivariate.coinformation(d, rvs, crvs, rv_mode='indexes')
0.0

>>> crvs = [0, 1]
>>> dit.multivariate.coinformation(d, rvs, crvs, rv_mode='indexes')
0.0

>>> rvs = 'Z'
>>> crvs = 'XY'
>>> dit.multivariate.coinformation(d, rvs, crvs, rv_mode='indexes')
0.0

7.2. Multivariate 49

dit Documentation, Release 1.1.0

Note that [[0], [1]] says to condition on two groups. But conditioning is a flat operation and doesn’t respect the
groups, so it is equal to a single group of 2 random variables: [[0, 1]]. With random variable names ‘XY’ is
acceptable because list(‘XY’) = [‘X’, ‘Y’], which is species two singleton groups. By the previous argument,
this is will be treated the same as [‘XY’].

Total Correlation

The total correlation [Wat60], denoted 𝑇 , also known as the multi-information or integration, is one generalization of
the Mutual Information. It is defined as the amount of information each individual variable carries above and beyond
the joint entropy, e.g. the difference between the whole and the sum of its parts:

𝑇𝑋0:𝑛 =
∑︁

𝐻𝑋𝑖 −𝐻𝑋0:𝑛

=
∑︁

𝑥0:𝑛∈𝑋0:𝑛

𝑝(𝑥0:𝑛) log2

𝑝(𝑥0:𝑛)∏︀
𝑝(𝑥𝑖)

Two nice features of the total correlation are that it is non-negative and that it is zero if and only if the random variables
𝑋0:𝑛 are all independent. Some baseline behavior is good to note also. First its behavior when applied to “giant bit”
distributions:

In [1]: from dit import Distribution as D

In [2]: from dit.multivariate import total_correlation as T

In [3]: [T(D(['0'*n, '1'*n], [0.5, 0.5])) for n in range(2, 6)]
Out[3]: [1.0, 2.0, 3.0, 4.0]

So we see that for giant bit distributions, the total correlation is equal to one less than the number of variables. The
second type of distribution to consider is general parity distributions:

In [4]: from dit.example_dists import n_mod_m

In [5]: [T(n_mod_m(n, 2)) for n in range(3, 6)]
Out[5]: [1.0, 1.0, 1.0]

In [6]: [T(n_mod_m(3, m)) for m in range(2, 5)]
Out[6]: [1.0, 1.584962500721156, 2.0]

Here we see that the total correlation is equal to log2 𝑚 regardless of 𝑛.

The total correlation follows a nice decomposition rule. Given two sets of (not necessarily independent) random
variables, 𝐴 and 𝐵, the total correaltion of 𝐴 ∪𝐵 is:

𝑇𝐴 ∪𝐵 = 𝑇𝐴 + 𝑇𝐵 + 𝐼𝐴 : 𝐵

In [7]: from dit.multivariate import coinformation as I

In [8]: d = n_mod_m(4, 3)

In [9]: T(d) == T(d, [[0], [1]]) + T(d, [[2], [3]]) + I(d, [[0, 1], [2, 3]])
Out[9]: True

Visualization

The total correlation consists of all information that is shared among the variables, and weights each piece according
to how many variables it is shared among.

50 Chapter 7. Information Measures

dit Documentation, Release 1.1.0

API

total_correlation(*args, **kwargs)
Computes the total correlation, also known as either the multi-information or the integration.

Parameters

• dist (Distribution) – The distribution from which the total correlation is calculated.

• rvs (list, None) – A list of lists. Each inner list specifies the indexes of the random
variables used to calculate the total correlation. If None, then the total correlation is calcu-
lated over all random variables, which is equivalent to passing rvs=dist.rvs.

• crvs (list, None) – A single list of indexes specifying the random variables to condi-
tion on. If None, then no variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns T – The total correlation.

Return type float

Examples

>>> d = dit.example_dists.Xor()
>>> dit.multivariate.total_correlation(d)
1.0

7.2. Multivariate 51

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

>>> dit.multivariate.total_correlation(d, rvs=[[0], [1]])
0.0

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

Dual Total Correlation

The dual total correlation [Han75], or binding information [AP12], is yet another generalization of the Mutual Infor-
mation. It is the amount of information that is shared among the variables. It is defined as:

𝐵𝑋0:𝑛 = 𝐻𝑋0:𝑛 −
∑︁

𝐻𝑋𝑖|𝑋{0..𝑛}/𝑖

= −
∑︁

𝑥0:𝑛∈𝑋0:𝑛

𝑝(𝑥0:𝑛) log2

𝑝(𝑥0:𝑛)∏︀
𝑝(𝑥𝑖|𝑥{0:𝑛}/𝑖)

In a sense the binding information captures the same information that the Total Correlation does, in that both measures
are zero or non-zero together. However, the two measures take on very different quantitative values for different
distributions. By way of example, the type of distribution that maximizes the total correlation is a “giant bit”:

In [1]: from dit.multivariate import binding_information, total_correlation

In [2]: d = dit.Distribution(['000', '111'], [1/2, 1/2])

In [3]: total_correlation(d)
Out[3]: 2.0

In [4]: binding_information(d)
Out[4]: 1.0

For the same distribution, the dual total correlation takes on a relatively low value. On the other hand, the type of
distribution that maximizes the dual total correlation is a “parity” distribution:

In [5]: from dit.example_dists import n_mod_m

In [6]: d = n_mod_m(3, 2)

In [7]: total_correlation(d)
Out[7]: 1.0

In [8]: binding_information(d)
Out[8]: 2.0

Relationship to Other Measures

The dual total correlation obeys particular bounds related to both the Entropy and the Total Correlation:

0 ≤𝐵𝑋0:𝑛 ≤ 𝐻𝑋0:𝑛

𝑇𝑋0:𝑛

𝑛− 1
≤𝐵𝑋0:𝑛 ≤ (𝑛− 1)𝑇𝑋0:𝑛

52 Chapter 7. Information Measures

dit Documentation, Release 1.1.0

Visualization

The binding information, as seen below, consists equally of the information shared among the variables.

API

dual_total_correlation(*args, **kwargs)
Calculates the dual total correlation, also known as the binding information.

Parameters

• dist (Distribution) – The distribution from which the dual total correlation is calcu-
lated.

• rvs (list, None) – The indexes of the random variable used to calculate the binding
information. If None, then the dual total correlation is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are condition on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns B – The dual total correlation.

Return type float

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

7.2. Multivariate 53

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

CAEKL Mutual Information

The Chan-AlBashabsheh-Ebrahimi-Kaced-Liu mutual information [CABE+15] is one possible generalization of the
Mutual Information.

𝐽𝑋0:𝑛 is the smallest 𝛾 such that:

𝐻𝑋0:𝑛 − 𝛾 =
∑︁
𝐶∈𝒫

[𝐻𝑋𝐶 − 𝛾]

for some non-trivial partition 𝒫 of {0 : 𝑛}. For example, the CAEKL mutual information for the xor distribution is
1
2 , because the joint entropy is 2 bits, each of the three marginals is 1 bit, and 2 − 1

2 = 3(1 − 1
2).

In [1]: from dit.multivariate import caekl_mutual_information as J

In [2]: d = dit.example_dists.Xor()

In [3]: J(d)
Out[3]: 0.5

A more concrete way of defining the CAEKL mutual information is:

𝐽𝑋0:𝑛 = min
𝒫∈Π

I𝒫 [𝑋0:𝑛]

where I𝒫 is the total_correlation of the partition:

I𝒫 [𝑋0:𝑛] =
∑︁
𝐶∈𝒫

𝐻𝑋𝐶 −𝐻𝑋0:𝑛

and Π is the set of all non-trivial partitions of {0 : 𝑛}.

API

caekl_mutual_information(*args, **kwargs)
Calculates the Chan-AlBashabsheh-Ebrahimi-Kaced-Liu mutual information.

Parameters

• dist (Distribution) – The distribution from which the CAEKL mutual information is
calculated.

• rvs (list, None) – A list of lists. Each inner list specifies the indexes of the random
variables used to calculate the total correlation. If None, then the total correlation is calcu-
lated over all random variables, which is equivalent to passing rvs=dist.rvs.

• crvs (list, None) – A single list of indexes specifying the random variables to condi-
tion on. If None, then no variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns J – The CAEKL mutual information.

Return type float

54 Chapter 7. Information Measures

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

Examples

>>> d = dit.example_dists.Xor()
>>> dit.multivariate.caekl_mutual_information(d)
0.5
>>> dit.multivariate.caekl_mutual_information(d, rvs=[[0], [1]])
0.0

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

Interaction Information

The interaction information is equal in magnitude to the Co-Information, but has the opposite sign when taken over an
odd number of variables:

𝐼𝐼𝑋0:𝑛 = (−1)𝑛 · 𝐼𝑋0:𝑛

Interaction information was first studied in the 3-variable case which, for 𝑋0:3 = 𝑋0𝑋1𝑋2, takes the following form:

𝐼𝐼𝑋0 : 𝑋1 : 𝑋2 = 𝐼𝑋0 : 𝑋1|𝑋2 − 𝐼𝑋0 : 𝑋1

The extension to 𝑛 > 3 proceeds recursively. For example,

𝐼𝐼𝑋0 : 𝑋1 : 𝑋2 : 𝑋3 = 𝐼𝐼𝑋0 : 𝑋1 : 𝑋2|𝑋3 − 𝐼𝐼𝑋0 : 𝑋1 : 𝑋2

= 𝐼𝑋0 : 𝑋1|𝑋2, 𝑋3 − 𝐼𝑋0 : 𝑋1|𝑋3

− 𝐼𝑋0 : 𝑋1|𝑋2 + 𝐼𝑋0 : 𝑋1

See also:

For more information, see Co-Information.

API

interaction_information(*args, **kwargs)
Calculates the interaction information.

Parameters

• dist (Distribution) – The distribution from which the interaction information is cal-
culated.

• rvs (list, None) – The indexes of the random variable used to calculate the interaction
information between. If None, then the interaction information is calculated over all random
variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are condition on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

7.2. Multivariate 55

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

Returns II – The interaction information.

Return type float

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

DeWeese-like Measures

Mike DeWeese has introduced a family of multivariate information measures based on a multivariate extension of the
data processing inequality. The general idea is the following: local modification of a single variable can not increase
the amount of correlation or dependence it has with the other variables. Consider, however, the triadic distribution:

In [1]: from dit.example_dists import dyadic, triadic

In [2]: print(triadic)
Class: Distribution
Alphabet: ('0', '1', '2', '3') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 1/8
022 1/8
111 1/8
133 1/8
202 1/8
220 1/8
313 1/8
331 1/8

This particular distribution has zero coinformation:

In [3]: from dit.multivariate import coinformation

In [4]: coinformation(triadic)
Out[4]: 0.0

Yet the distribution is a product of a giant bit (coinformation 1.0) and the xor (coinformation −1.0), and so there exists
within it the capability of having a coinformation of 1.0 if the xor component were dropped. This is exactly what the
DeWeese construction captures:

𝐼𝐷𝑋0 : . . . : 𝑋𝑛 = max
𝑝(𝑥′

𝑖|𝑥𝑖)
𝐼𝑋 ′

0 : . . . : 𝑋 ′
𝑛

In [5]: from dit.multivariate import deweese_coinformation

In [6]: deweese_coinformation(triadic)
Out[6]: 1.0

DeWeese version of the total_correlation, dual_total_correlation, and caekl_mutual_information are also available,
and operate on an arbitrary number of variables with optional conditional variables.

56 Chapter 7. Information Measures

https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

API

deweese_coinformation(*args, **kwargs)
Compute the DeWeese coinformation.

Parameters

• dist (Distribution) – The distribution of interest.

• rvs (iter of iters, None) – The random variables of interest. If None, use all.

• crvs (iter, None) – The variables to condition on. If None, none.

• niter (int, None) – If specified, the number of optimization steps to perform.

• deterministic (bool) – Whether the functions to optimize over should be determinis-
tic or not. Defaults to False.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns val – The value of the DeWeese coinformation.

Return type float

deweese_total_correlation(*args, **kwargs)
Compute the DeWeese total correlation.

Parameters

• dist (Distribution) – The distribution of interest.

• rvs (iter of iters, None) – The random variables of interest. If None, use all.

• crvs (iter, None) – The variables to condition on. If None, none.

• niter (int, None) – If specified, the number of optimization steps to perform.

• deterministic (bool) – Whether the functions to optimize over should be determinis-
tic or not. Defaults to False.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns val – The value of the DeWeese total correlation.

Return type float

deweese_dual_total_correlation(*args, **kwargs)
Compute the DeWeese dual total correlation.

Parameters

• dist (Distribution) – The distribution of interest.

• rvs (iter of iters, None) – The random variables of interest. If None, use all.

• crvs (iter, None) – The variables to condition on. If None, none.

• niter (int, None) – If specified, the number of optimization steps to perform.

7.2. Multivariate 57

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

• deterministic (bool) – Whether the functions to optimize over should be determinis-
tic or not. Defaults to False.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns val – The value of the DeWeese dual total correlation.

Return type float

deweese_caekl_mutual_information(*args, **kwargs)
Compute the DeWeese caekl mutual information.

Parameters

• dist (Distribution) – The distribution of interest.

• rvs (iter of iters, None) – The random variables of interest. If None, use all.

• crvs (iter, None) – The variables to condition on. If None, none.

• niter (int, None) – If specified, the number of optimization steps to perform.

• deterministic (bool) – Whether the functions to optimize over should be determinis-
tic or not. Defaults to False.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns val – The value of the DeWeese caekl mutual information.

Return type float

It is perhaps illustrative to consider how each of these measures behaves on two canonical distributions: the giant bit
and parity.

giant bit parity
size I II T B J I II T B J
2 1 1 1 1 1 1 1 1 1 1
3 1 -1 2 1 1 -1 1 1 2 1

2

4 1 1 3 1 1 1 1 1 3 1
3

5 1 -1 4 1 1 -1 1 1 4 1
4

𝑛 1 (−1)𝑛 𝑛 1 1 (−1)𝑛 1 1 𝑛 1
𝑛−1

7.2.3 Common Informations

These measures all somehow measure shared information, but do not equal the mutual information in the bivaraite
case.

Gács-Körner Common Information

The Gács-Körner common information [GacsKorner73] take a very direct approach to the idea of common informa-
tion. It extracts a random variable that is contained within each of the random variables under consideration.

58 Chapter 7. Information Measures

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

The Common Information Game

Let’s play a game. We have an n-variable joint distribution, and one player for each variable. Each player is given the
probability mass function of the joint distribution then isolated from each other. Each round of the game the a joint
outcome is generated from the distribution and each player is told the symbol that their particular variable took. The
goal of the game is for the players to simultaneously write the same symbol on a piece of paper, and for the entropy
of the players’ symbols to be maximized. They must do this using only their knowledge of the joint random variable
and the particular outcome of their marginal variable. The matching symbols produced by the players are called the
common random variable and the entropy of that variable is the Gács-Körner common information, 𝐾.

Two Variables

Consider a joint distribution over 𝑋0 and 𝑋1. Given any particular outcome from that joint, we want a function
𝑓(𝑋0) and a function 𝑔(𝑋1) such that ∀𝑥0𝑥1 = 𝑋0𝑋1, 𝑓(𝑥0) = 𝑔(𝑥1) = 𝑣. Of all possible pairs of functions
𝑓(𝑋0) = 𝑔(𝑋1) = 𝑉 , there exists a “largest” one, and it is known as the common random variable. The entropy of
that common random variable is the Gács-Körner common information:

𝐾𝑋0 : 𝑋1 = max
𝑓(𝑋0)=𝑔(𝑋1)=𝑉

𝐻𝑉

= 𝐻𝑋0 f𝑋1

As a canonical example, consider the following:

In [1]: from dit import Distribution as D

In [2]: from dit.multivariate import gk_common_information as K

In [3]: outcomes = ['00', '01', '10', '11', '22', '33']

In [4]: pmf = [1/8, 1/8, 1/8, 1/8, 1/4, 1/4]

In [5]: d = D(outcomes, pmf, sample_space=outcomes)

In [6]: K(d)
Out[6]: 1.5

Note: It is important that we set the sample_space argument. If it is None then the Cartesian product of each alphabet,
and in such a case the meet will trivially be degenerate.

So, the Gács-Körner common information is 1.5 bits. But what is the common random variable?

In [7]: from dit.algorithms import insert_meet

In [8]: crv = insert_meet(d, -1, [[0],[1]])

In [9]: print(crv)
Class: Distribution
Alphabet: (('0', '1', '2', '3'), ('0', '1', '2', '3'), ('0', '1', '2'))
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)

7.2. Multivariate 59

dit Documentation, Release 1.1.0

002 1/8
012 1/8
102 1/8
112 1/8
220 1/4
331 1/4

Looking at the third index of the outcomes, we see that the common random variable maps 2 to 0 and 3 to 1, maintain-
ing the information from those values. When 𝑋0 or 𝑋1 are either 0 or 1, however, it maps them to 2. This is because
𝑓 and 𝑔 must act independently: if 𝑥0 is a 0 or a 1, there is no way to know if 𝑥1 is a 0 or a 1 and vice versa. Therefore
we aggregate 0s and 1s into 2.

Visualization

The Gács-Körner common information is the largest “circle” that entirely fits within the mutual information’s “foot-
ball”:

Properties & Uses

The Gács-Körner common information satisfies an important inequality:

0 ≤ 𝐾𝑋0 : 𝑋1 ≤ 𝐼𝑋0 : 𝑋1

One usage of the common information is as a measure of redundancy [GCJ+14]. Consider a function that takes two
inputs, 𝑋0 and 𝑋1, and produces a single output 𝑌 . The output can be influenced redundantly by both inputs, uniquely
from either one, or together they can synergistically influence the output. Determining how to compute the amount of
redundancy is an open problem, but one proposal is:

𝐼𝑋0 f𝑋1 : 𝑌

Which can be visualized as this:

60 Chapter 7. Information Measures

dit Documentation, Release 1.1.0

This quantity can be computed easily using dit:

In [10]: from dit.example_dists import RdnXor

In [11]: from dit.shannon import mutual_information as I

In [12]: d = RdnXor()

In [13]: d = dit.pruned_samplespace(d)

In [14]: d = insert_meet(d, -1, [[0],[1]])

In [15]: I(d, [3], [2])
Out[15]: 1.0

𝑛-Variables

With an arbitrary number of variables, the Gács-Körner common information [TNG11] is defined similarly:

𝐾𝑋0 : . . . : 𝑋𝑛 = max
𝑉=𝑓0(𝑋0)

...
𝑉=𝑓𝑛(𝑋𝑛)

𝐻𝑉

= 𝐻𝑋0 f . . .f𝑋𝑛

The common information is a monotonically decreasing function in the number of variables:

𝐾𝑋0 : . . . : 𝑋𝑛−1 ≥ 𝐾𝑋0 : . . . : 𝑋𝑛

The multivariate common information follows a similar inequality as the two variable version:

0 ≤ 𝐾𝑋0 : · · · : 𝑋𝑛 ≤ min
𝑖,𝑗∈{0..𝑛}

𝐼𝑋𝑖 : 𝑋𝑗

7.2. Multivariate 61

dit Documentation, Release 1.1.0

It is interesting to note that the Gács-Körner common information can be non-zero even when the coinformation is
negative:

In [16]: from dit.example_dists.miscellaneous import gk_pos_i_neg

In [17]: from dit.multivariate import coinformation as I

In [18]: K(gk_pos_i_neg)
Out[18]: 0.5435644431995964

In [19]: I(gk_pos_i_neg)
Out[19]: -0.33143555680040304

Visualization

Here, as above, the Gács-Körner common information among three variables is the largest “circle” this time fiting in
the vaguely triangular Co-Information region.

API

gk_common_information(*args, **kwargs)
Calculates the Gacs-Korner common information K[X1:X2. . .] over the random variables in rvs.

Parameters

• dist (Distribution) – The distribution from which the common information is calcu-
lated.

• rvs (list, None) – The indexes of the random variables for which the Gacs-Korner
common information is to be computed. If None, then the common information is calculated

62 Chapter 7. Information Measures

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

over all random variables.

• crvs (list, None) – The indexes of the random variables to condition the common
information by. If none, than there is no conditioning.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns K – The Gacs-Korner common information of the distribution.

Return type float

Raises ditException – Raised if rvs or crvs contain non-existant random variables.

Wyner Common Information

The Wyner common information [Wyn75][LXC10] measures the minimum amount of information necessary needed
to reconstruct a joint distribution from each marginal.

𝑋0:𝑛|𝑌0:𝑚 = min
⊥⊥𝑋0:𝑛|𝑌0:𝑚,𝑉

𝐼𝑋0:𝑛 : 𝑉 |𝑌0:𝑚

Binary Symmetric Erasure Channel

The Wyner common information of the binary symmetric erasure channel is known to be:

𝑋 : 𝑌 =

{︃
1 𝑝 < 1

2

𝐻𝑝 𝑝 ≥ 1
2

.

We can verify this:

In [1]: from dit.multivariate import wyner_common_information as C

In [2]: ps = np.linspace(1e-6, 1-1e-6, 51)

In [3]: sbec = lambda p: dit.Distribution(['00', '0e', '1e', '11'], [(1-p)/2, p/2, p/
→˓2, (1-p)/2])

In [4]: wci_true = [1 if p < 1/2 else dit.shannon.entropy(p) for p in ps]

In [5]: wci_opt = [C(sbec(p)) for p in ps]

In [6]: plt.plot(ps, wci_true, ls='-', alpha=0.5, c='b');

In [7]: plt.plot(ps, wci_opt, ls='--', lw=2, c='b');

In [8]: plt.xlabel(r'Probability of erasure p');

In [9]: plt.ylabel(r'Wyner common information $C[X:Y]$');

In [10]: plt.show()

7.2. Multivariate 63

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

API

wyner_common_information(*args, **kwargs)
Computes the wyner common information, min I[X:V] such that V renders all X_i independent.

Parameters

• dist (Distribution) – The distribution for which the wyner common information will
be computed.

• rvs (list, None) – A list of lists. Each inner list specifies the indexes of the random
variables used to calculate the wyner common information. If None, then it calculated over
all random variables, which is equivalent to passing rvs=dist.rvs.

• crvs (list, None) – A single list of indexes specifying the random variables to condi-
tion on. If None, then no variables are conditioned on.

• niter (int > 0) – Number of basin hoppings to perform during the optimization.

• maxiter (int > 0) – The number of iterations of the optimization subroutine to per-
form.

• polish (False, float) – Whether to polish the result or not. If a float, this will
perform a second optimization seeded with the result of the first, but with smaller tolerances
and probabilities below polish set to 0. If False, don’t polish.

• bound (int) – Bound the size of the Markov variable.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

64 Chapter 7. Information Measures

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

Returns ci – The wyner common information.

Return type float

Exact Common Information

The exact common information [KLEG14] is the entropy of the smallest variable 𝑉 which renders all variables of
interest independent:

𝑋0:𝑛|𝑌0:𝑚 = min
⊥⊥𝑋0:𝑛|𝑌0:𝑚,𝑉

𝐻𝑉 |𝑌0:𝑚

Subadditivity of Independent Variables

Kumar et. al. [KLEG14] have shown that the exact common information of a pair of independent pairs of variables
can be less than the sum of their individual exact common informations. Here we verify this claim:

In [1]: from dit.multivariate import exact_common_information as G

In [2]: d = dit.Distribution([(0,0), (0,1), (1,0)], [1/3]*3)

In [3]: d2 = d.__matmul__(d) # RTD doesn't use python 3

In [4]: print(d2)
Class: Distribution
Alphabet: (0, 1) for all rvs
Base: linear
Outcome Class: tuple
Outcome Length: 4
RV Names: None

x p(x)
(0, 0, 0, 0) 1/9
(0, 0, 0, 1) 1/9
(0, 0, 1, 0) 1/9
(0, 1, 0, 0) 1/9
(0, 1, 0, 1) 1/9
(0, 1, 1, 0) 1/9
(1, 0, 0, 0) 1/9
(1, 0, 0, 1) 1/9
(1, 0, 1, 0) 1/9

In [5]: 2*G(d)
Out[5]: 1.836582990174758

In [6]: G(d2, [[0, 2], [1, 3]])
Out[6]: 1.7524599362685533

API

exact_common_information(*args, **kwargs)
Computes the exact common information, min H[V] where V renders all rvs independent.

Parameters

7.2. Multivariate 65

https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

• dist (Distribution) – The distribution for which the exact common information will
be computed.

• rvs (list, None) – A list of lists. Each inner list specifies the indexes of the random
variables used to calculate the exact common information. If None, then it calculated over
all random variables, which is equivalent to passing rvs=dist.rvs.

• crvs (list, None) – A single list of indexes specifying the random variables to condi-
tion on. If None, then no variables are conditioned on.

• niter (int > 0) – Number of basin hoppings to perform during the optimization.

• maxiter (int > 0) – The number of iterations of the optimization subroutine to per-
form.

• polish (False, float) – Whether to polish the result or not. If a float, this will
perform a second optimization seeded with the result of the first, but with smaller tolerances
and probabilities below polish set to 0. If False, don’t polish.

• bound (int) – Bound the size of the Markov variable.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns ci – The exact common information.

Return type float

Functional Common Information

The functional common information captures the minimum amount of information neccessary to capture all of a
distribution’s share information using a function of that information. In other words:

𝐹𝑋0:𝑛 | 𝑌0:𝑚 = min
⊥⊥𝑋0:𝑛|𝑌0:𝑚,𝑊
𝑊=𝑓(𝑋0:𝑛,𝑌0:𝑚)

𝐻𝑊

Relationship To Other Measures of Common Information

Since this is an additional constraint on the Exact common information, it is generally larger than it, and since its
constraint is weaker than that of the MSS Common Information, it is generally less than it:

𝑋0:𝑛 ≤ 𝐹𝑋0:𝑛 ≤ 𝑀𝑋0:𝑛

API

functional_common_information(*args, **kwargs)
Compute the functional common information, F, of dist. It is the entropy of the smallest random variable W
such that all the variables in rvs are rendered independent conditioned on W, and W is a function of rvs.

Parameters

• dist (Distribution) – The distribution from which the functional common informa-
tion is computed.

66 Chapter 7. Information Measures

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

• rvs (list, None) – A list of lists. Each inner list specifies the indexes of the random
variables used to calculate the total correlation. If None, then the total correlation is calcu-
lated over all random variables, which is equivalent to passing rvs=dist.rvs.

• crvs (list, None) – A single list of indexes specifying the random variables to condi-
tion on. If None, then no variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns F – The functional common information.

Return type float

MSS Common Information

The Minimal Sufficient Statistic Common Information is the entropy of the join of the minimal sufficient statistic of
each variable about the others:

𝑀𝑋0:𝑛 = 𝐻g𝑖

(︁
𝑋𝑖 ↘ 𝑋{𝑖}

)︁
The distribution that the MSS common information is the entroy of is also known “information trim” of the original
distribution, and is accessable via dit.algorithms.minimal_sufficient_statistic.info_trim().

API

mss_common_information(*args, **kwargs)
Compute the minimal sufficient statistic common information, which is the entropy of the join of the minimal
sufficent statistic of each variable about the others.

Parameters

• dist (Distribution) – The distribution for which the joint minimal sufficient statistic
is computed.

• rvs (list, None) – The random variables to compute the joint minimal sufficient statis-
tic of. If None, all random variables are used.

• crvs (list, None) – The random variables to condition the joint minimal sufficient
statistic on. If None, then no random variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Ordering

The common information measures (together with the Dual Total Correlation and CAEKL Mutual Information) form
an ordering:

𝐾𝑋0:𝑛 ≤ 𝐽𝑋0:𝑛 ≤ 𝐵𝑋0:𝑛 ≤ 𝑋0:𝑛 ≤ 𝑋0:𝑛 ≤ 𝐹𝑋0:𝑛 ≤ 𝑀𝑋0:𝑛

7.2. Multivariate 67

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

7.2.4 Others

These measures quantify other aspects of a joint distribution.

Residual Entropy

The residual entropy, or erasure entropy, is a dual to the Dual Total Correlation. It is dual in the sense that together
they form the entropy of the distribution.

𝑅𝑋0:𝑛 =
∑︁

𝐻𝑋𝑖|𝑋{0..𝑛}/𝑖

= −
∑︁

𝑥0:𝑛∈𝑋0:𝑛

𝑝(𝑥0:𝑛) log2

∏︁
𝑝(𝑥𝑖|𝑥{0:𝑛}/𝑖)

The residual entropy was originally proposed in [VW08] to quantify the information lost by sporatic erasures in a
channel. The idea here is that only the information uncorrelated with other random variables is lost if that variable is
erased.

If a joint distribution consists of independent random variables, the residual entropy is equal to the Entropy:

In [1]: from dit.multivariate import entropy, residual_entropy

In [2]: d = dit.uniform_distribution(3, 2)

In [3]: entropy(d) == residual_entropy(d)
Out[3]: True

Another simple example is a distribution where one random variable is independent of the others:

In [4]: d = dit.uniform(['000', '001', '110', '111'])

In [5]: residual_entropy(d)
Out[5]: 1.0

If we ask for the residual entropy of only the latter two random variables, the middle one is now independent of the
others and so the residual entropy grows:

In [6]: residual_entropy(d, [[1], [2]])
Out[6]: 2.0

Visualization

The residual entropy consists of all the unshared information in the distribution. That is, it is the information in each
variable not overlapping with any other.

68 Chapter 7. Information Measures

dit Documentation, Release 1.1.0

API

residual_entropy(*args, **kwargs)
Compute the residual entropy.

Parameters

• dist (Distribution) – The distribution from which the residual entropy is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the residual
entropy. If None, then the total correlation is calculated over all random variables.

7.2. Multivariate 69

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are condition on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns R – The residual entropy.

Return type float

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

TSE Complexity

The Tononi-Sporns-Edelmans (TSE) complexity [TSE94] is a complexity measure for distributions. It is designed
so that it maximized by distributions where small subsets of random variables are loosely coupled but the overall
distribution is tightly coupled.

𝑇𝑆𝐸𝑋|𝑍 =

|𝑋|∑︁
𝑘=1

⎛⎜⎜⎝(︂𝑁𝑘
)︂−1 ∑︁

𝑦⊆𝑋
|𝑦|=𝑘

(𝐻𝑦|𝑍) − 𝑘

|𝑋|
𝐻𝑋|𝑍

⎞⎟⎟⎠
Two distributions which might be considered tightly coupled are the “giant bit” and the “parity” distributions:

In [1]: from dit.multivariate import tse_complexity

In [2]: from dit.example_dists import Xor

In [3]: d1 = Xor()

In [4]: tse_complexity(d1)
Out[4]: 1.0

In [5]: d2 = dit.Distribution(['000', '111'], [1/2, 1/2])

In [6]: tse_complexity(d2)
Out[6]: 1.0

The TSE Complexity assigns them both a value of 1.0 bits, which is the maximal value the TSE takes over trivariate,
binary alphabet distributions.

API

tse_complexity(*args, **kwargs)
Calculates the TSE complexity.

Parameters

• dist (Distribution) – The distribution from which the TSE complexity is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the TSE com-
plexity between. If None, then the TSE complexity is calculated over all random variables.

70 Chapter 7. Information Measures

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are condition on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns TSE – The TSE complexity.

Return type float

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existant random variables.

Necessary Conditional Entropy

The necessary conditional entropy [CPC10] quantifies the amount of information that a random variable 𝑋 necessarily
must carry above and beyond the mutual information 𝐼𝑋 : 𝑌 to actually contain that mutual information:

𝐻𝑋 † 𝑌 = 𝐻𝑋 ↘ 𝑌 |𝑌

API

necessary_conditional_entropy(*args, **kwargs)
Calculates the necessary conditional entropy 𝐻[𝑋 † 𝑌]. This is the entropy of the minimal sufficient statistic of
X about Y, given Y.

Parameters

• dist (Distribution) – The distribution from which the necessary conditional entropy
is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the necessary
conditional entropy. If None, then the entropy is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns H – The necessary conditional entropy.

Return type float

Raises ditException – Raised if rvs or crvs contain non-existant random variables.

Example

This next group of measures can not be represented on information diagrams, and can not really be directly compared

7.2. Multivariate 71

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

to the measures above:

7.3 Other Measures

Other measures of information. These are generally based around alternatives to the Shannon entropy proposed for a
variety of reasons.

7.3.1 Cumulative Residual Entropy

The cumulative residual entropy [RCVW04] is an alternative to the differential Shannon entropy. The differential
entropy has many issues, including that it can be negative even for simple distributions such as the uniform distribution;
and that if one takes discrete estimates that limit to the continuous distribution, the discrete entropy does not limit to
the differential (continuous) entropy. It also attempts to provide meaningful differences between numerically different
random variables, such as a die labeled [1, 2, 3, 4, 5, 6] and one lebeled [1, 2, 3, 4, 5, 100].

Note: The Cumulative Residual Entropy is unrelated to Residual Entropy.

ℰ𝑋 = −
∫︁ ∞

0

𝑝(|𝑋| > 𝑥) log2 𝑝(|𝑋| > 𝑥)𝑑𝑥

In [1]: from dit.other import cumulative_residual_entropy

In [2]: d1 = dit.ScalarDistribution([1, 2, 3, 4, 5, 6], [1/6]*6)

In [3]: d2 = dit.ScalarDistribution([1, 2, 3, 4, 5, 100], [1/6]*6)

In [4]: cumulative_residual_entropy(d1)
Out[4]: 2.068318255702844

In [5]: cumulative_residual_entropy(d2)
Out[5]: 22.672680046016705

Generalized Cumulative Residual Entropy

The genearlized form of the cumulative residual entropy integrates over the intire set of reals rather than just the
positive ones:

ℰ ′𝑋 = −
∫︁ ∞

−∞
𝑝(𝑋 > 𝑥) log2 𝑝(𝑋 > 𝑥)𝑑𝑥

In [6]: from dit.other import generalized_cumulative_residual_entropy

In [7]: generalized_cumulative_residual_entropy(d1)
Out[7]: 2.068318255702844

In [8]: d3 = dit.ScalarDistribution([-2, -1, 0, 1, 2], [1/5]*5)

In [9]: cumulative_residual_entropy(d3)
Out[9]: 0.9065649754771961

72 Chapter 7. Information Measures

dit Documentation, Release 1.1.0

In [10]: generalized_cumulative_residual_entropy(d3)
Out[10]: 1.6928786893420307

Conditional Cumulative Residual Entropy

The conditional cumulative residual entropy ℰ [𝑋|𝑌] is a distribution with the same probability mass function as 𝑌 ,
and the outcome associated with 𝑝(𝑦) is equal to the cumulative residual entropy over probabilities conditioned on
𝑌 = 𝑦. In this sense the conditional cumulative residual entropy is more akin to a distribution over 𝐻[𝑋|𝑌 = 𝑦] than
the single scalar quantity 𝐻[𝑋|𝑌].

ℰ𝑋|𝑌 = −
∫︁ ∞

0

𝑝(|𝑋| > 𝑥|𝑌) log2 𝑝(|𝑋| > 𝑥|𝑌)𝑑𝑥

Conditional Generalized Cumulative Residual Entropy

Conceptually the conditional generalized cumulative residual entropy is the same as the non-generalized form, but
integrated over the entire real line rather than just the positive:

ℰ ′𝑋|𝑌 = −
∫︁ ∞

−∞
𝑝(𝑋 > 𝑥|𝑌) log2 𝑝(𝑋 > 𝑥|𝑌)𝑑𝑥

API

cumulative_residual_entropy(dist, extract=False)
The cumulative residual entropy is an alternative to the Shannon differential entropy with several desirable
properties including non-negativity.

Parameters

• dist (Distribution) – The distribution to compute the cumulative residual entropy of
each index for.

• extract (bool) – If True and dist.outcome_length() is 1, return the single GCRE value
rather than a length-1 array.

Returns CREs – The cumulative residual entropy for each index.

Return type ndarray

Examples

>>> d1 = ScalarDistribution([1, 2, 3, 4, 5, 6], [1/6]*6)
>>> d2 = ScalarDistribution([1, 2, 3, 4, 5, 100], [1/6]*6)
>>> cumulative_residual_entropy(d1)
2.0683182557028439
>>> cumulative_residual_entropy(d2)
22.672680046016705

generalized_cumulative_residual_entropy(dist, extract=False)
The generalized cumulative residual entropy is a generalized from of the cumulative residual entropy. Rarther
than integrating from 0 to infinty over the absolute value of the CDF.

Parameters

7.3. Other Measures 73

https://docs.python.org/3/library/functions.html#bool

dit Documentation, Release 1.1.0

• dist (Distribution) – The distribution to compute the generalized cumulative residual
entropy of each index for.

• extract (bool) – If True and dist.outcome_length() is 1, return the single GCRE value
rather than a length-1 array.

Returns GCREs – The generalized cumulative residual entropy for each index.

Return type ndarray

Examples

>>> generalized_cumulative_residual_entropy(uniform(-2, 3))
1.6928786893420307
>>> generalized_cumulative_residual_entropy(uniform(0, 5))
1.6928786893420307

Conditional Forms

conditional_cumulative_residual_entropy(dist, rv, crvs=None, rv_mode=None)
Returns the conditional cumulative residual entropy.

Parameters

• dist (Distribution) – The distribution to compute the conditional cumulative residual
entropy of.

• rv (list, None) – The possibly joint random variable to compute the conditional cumu-
lative residual entropy of. If None, then all variables not in crvs are used.

• crvs (list, None) – The random variables to condition on. If None, nothing is condi-
tioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns CCRE – The conditional cumulative residual entropy.

Return type ScalarDistribution

Examples

>>> from itertools import product
>>> events = [(a, b) for a, b, in product(range(5), range(5)) if a <= b]
>>> probs = [1/(5-a)/5 for a, b in events]
>>> d = Distribution(events, probs)
>>> print(conditional_cumulative_residual_entropy(d, 1, [0]))
Class: ScalarDistribution
Alphabet: (-0.0, 0.5, 0.91829583405448956, 1.3112781244591329, 1.6928786893420307)
Base: linear

x p(x) -0.0 0.2 0.5 0.2 0.918295834054 0.2 1.31127812446 0.2 1.69287868934 0.2

74 Chapter 7. Information Measures

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

conditional_generalized_cumulative_residual_entropy(dist, rv, crvs=None,
rv_mode=None)

Returns the conditional cumulative residual entropy.

Parameters

• dist (Distribution) – The distribution to compute the conditional generalized cumu-
lative residual entropy of.

• rv (list, None) – The possibly joint random variable to compute the conditional gen-
eralized cumulative residual entropy of. If None, then all variables not in crvs are used.

• crvs (list, None) – The random variables to condition on. If None, nothing is condi-
tioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns CCRE – The conditional cumulative residual entropy.

Return type ScalarDistribution

Examples

>>> from itertools import product
>>> events = [(a-2, b-2) for a, b, in product(range(5), range(5)) if a <= b]
>>> probs = [1/(3-a)/5 for a, b in events]
>>> d = Distribution(events, probs)
>>> print(conditional_generalized_cumulative_residual_entropy(d, 1, [0]))
Class: ScalarDistribution
Alphabet: (-0.0, 0.5, 0.91829583405448956, 1.3112781244591329, 1.6928786893420307)
Base: linear

x p(x) -0.0 0.2 0.5 0.2 0.918295834054 0.2 1.31127812446 0.2 1.69287868934 0.2

7.3.2 Disequilibrium and the LMPR Complexity

Lamberti, Martin, Plastino, and Rosso have proposed a complexity measure [LMPR04] disigned around the idea of
being a measure of “distance from equilibrium”, or disequilibrium, multiplied by a measure of “randomness”. Here,
they measure “randomness” by the (normalized) Entropy:

𝐻𝑋/ log2 |𝑋|

and the disequilibrium as a (normalized) Jensen-Shannon Divergence:

𝐷𝐽𝑆𝑋||𝑃𝑒/𝑄0

where 𝑃𝑒 is a uniform distribution over the same outcome space as 𝑋 , and 𝑄0 is the maximum possible value of the
Jensen-Shannon divergence of a distribution with 𝑃𝑒.

The LMPR complexity does not necessarily behave as one might intuitively hope. For example, the LMPR complexity
of the xor and “double bit” with independent bit are identical:

7.3. Other Measures 75

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

dit Documentation, Release 1.1.0

In [1]: from dit.other.disequilibrium import *

In [2]: d1 = dit.Distribution(['000', '001', '110', '111'], [1/4]*4)

In [3]: d2 = dit.Distribution(['000', '011', '101', '110'], [1/4]*4)

In [4]: LMPR_complexity(d1)
Out[4]: 0.2894598616025801

In [5]: LMPR_complexity(d2)
Out[5]: 0.2894598616025801

This is because they are both equally “far from equilibrium” with four equiprobable events over the space of three
binary variables, and both have the same entropy of two bits.

This implies that the LMPR complexity is perhaps best applied to a ScalarDistribution, and is not suitable for
measuring the complexity of dependencies between variables.

API

disequilibrium(dist, rvs=None, rv_mode=None)
Compute the (normalized) disequilibrium as measured the Jensen-Shannon divergence from an equilibrium
distribution.

Parameters

• dist (Distribution) – Distribution to compute the disequilibrium of.

• rvs (list, None) – The indexes of the random variable used to calculate the diseqilib-
rium. If None, then the disequilibrium is calculated over all random variables. This should
remain None for ScalarDistributions.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns D – The disequilibrium.

Return type float

LMPR_complexity(dist, rvs=None, rv_mode=None)
Compute the LMPR complexity.

Parameters

• dist (Distribution) – Distribution to compute the LMPR complexity of.

• rvs (list, None) – The indexes of the random variable used to calculate the LMPR
complexity. If None, then the LMPR complexity is calculated over all random variables.
This should remain None for ScalarDistributions.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns C – The LMPR complexity.

Return type float

76 Chapter 7. Information Measures

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

7.3.3 Extropy

The extropy [LSAgro11] is a dual to the Entropy. It is defined by:

𝑋𝑋 = −
∑︁
𝑥∈𝑋

(1 − 𝑝(𝑥)) log2(1 − 𝑝(𝑥))

The entropy and the extropy satisify the following relationship:

𝐻𝑋 + 𝑋𝑋 =
∑︁
𝑥∈𝒳

𝐻𝑝(𝑥), 1 − 𝑝(𝑥) =
∑︁
𝑥∈𝒳

𝑋𝑝(𝑥), 1 − 𝑝(𝑥)

Unfortunately, the extropy does not yet have any intuitive interpretation.

In [1]: from dit.other import extropy

In [2]: from dit.example_dists import Xor

In [3]: extropy(Xor())
Out[3]: 1.2451124978365313

In [4]: extropy(Xor(), [0])
Out[4]: 1.0

API

extropy(dist, rvs=None, rv_mode=None)
Returns the extropy J[X] over the random variables in rvs.

If the distribution represents linear probabilities, then the extropy is calculated with units of ‘bits’ (base-2).

Parameters

• dist (Distribution or float) – The distribution from which the extropy is calcu-
lated. If a float, then we calculate the binary extropy.

• rvs (list, None) – The indexes of the random variable used to calculate the extropy. If
None, then the extropy is calculated over all random variables. This should remain None for
ScalarDistributions.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns J – The extropy of the distribution.

Return type float

7.3.4 Lautum Information

The lautum information [PVerdu08] is, in a sense, the mutual information in reverse (lautum is mutual backwards):

𝑋0:𝑛 = 𝐷𝐾𝐿𝑋0 ·𝑋1 · . . . ·𝑋𝑛||𝑋0:𝑛

7.3. Other Measures 77

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

API

lautum_information(dist, rvs=None, crvs=None, rv_mode=None)
Computes the lautum information.

Parameters

• dist (Distribution) – The distribution from which the lautum information is calcu-
lated.

• rvs (list, None) – A list of lists. Each inner list specifies the indexes of the random
variables used to calculate the lautum information. If None, then the lautum information is
calculated over all random variables, which is equivalent to passing rvs=dist.rvs.

• crvs (list, None) – A single list of indexes specifying the random variables to condi-
tion on. If None, then no variables are conditioned on.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns L – The lautum information.

Return type float

Examples

>>> outcomes = ['000', '001', '010', '011', '100', '101', '110', '111']
>>> pmf = [3/16, 1/16, 1/16, 3/16, 1/16, 3/16, 3/16, 1/16]
>>> d = dit.Distribution(outcomes, pmf)
>>> dit.other.lautum_information(d)
0.20751874963942196
>>> dit.other.lautum_information(d, rvs=[[0], [1]])
0.0

Raises ditException – Raised if dist is not a joint distribution or if rvs or crvs contain non-
existent random variables.

7.3.5 Perplexity

The perplexity is a trivial measure to make the Entropy more intuitive:

𝑃𝑋 = 2𝐻𝑋

The perplexity of a random variable is the size of a uniform distribution that would have the same entropy. For example,
a distribution with 2 bits of entropy has a perplexity of 4, and so could be said to be “as random” as a four-sided die.

The conditional perplexity is defined in the natural way:

𝑃𝑋|𝑌 = 2𝐻𝑋|𝑌

We can see that the xor distribution is “4-way” perplexed:

78 Chapter 7. Information Measures

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

In [1]: from dit.other import perplexity

In [2]: from dit.example_dists import Xor

In [3]: perplexity(Xor())
Out[3]: 4.0

API

perplexity(dist, rvs=None, crvs=None, rv_mode=None)

Parameters

• dist (Distribution) – The distribution from which the perplexity is calculated.

• rvs (list, None) – The indexes of the random variable used to calculate the perplexity.
If None, then the perpelxity is calculated over all random variables.

• crvs (list, None) – The indexes of the random variables to condition on. If None, then
no variables are condition on.

• rv_mode (str, None) – Specifies how to interpret the elements of rvs. Valid options
are: {‘indices’, ‘names’}. If equal to ‘indices’, then the elements of rvs are interpreted as
random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted.

Returns P – The perplexity.

Return type float

7.3.6 Rényi Entropy

The Rényi entropy is a spectrum of generalizations to the Shannon Entropy:

𝐻𝛼𝑋 =
1

1 − 𝛼
log2

(︃∑︁
𝑥∈𝒳

𝑝(𝑥)𝛼

)︃

In [1]: from dit.other import renyi_entropy

In [2]: from dit.example_dists import binomial

In [3]: d = binomial(15, 0.4)

In [4]: renyi_entropy(d, 3)
Out[4]: 2.6611840717104625

Special Cases

For several values of 𝛼, the Rényi entropy takes on particular values.

7.3. Other Measures 79

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

𝛼 = 0

When 𝛼 = 0 the Rényi entropy becomes what is known as the Hartley entropy:

𝐻0𝑋 = log2 |𝑋|

In [5]: renyi_entropy(d, 0)
Out[5]: 4.0

𝛼 = 1

When 𝛼 = 1 the Rényi entropy becomes the standard Shannon entropy:

𝐻1𝑋 = 𝐻𝑋

In [6]: renyi_entropy(d, 1)
Out[6]: 2.9688513169509623

𝛼 = 2

When 𝛼 = 2, the Rényi entropy becomes what is known as the collision entropy:

𝐻2𝑋 = − log2 𝑝(𝑋 = 𝑌)

where 𝑌 is an IID copy of X. This is basically the surprisal of “rolling doubles”

In [7]: renyi_entropy(d, 2)
Out[7]: 2.7607270851693615

𝛼 = ∞

Finally, when 𝛼 = ∞ the Rényi entropy picks out the probability of the most-probable event:

𝐻∞𝑋 = − log2 max
𝑥∈𝒳

𝑝(𝑥)

In [8]: renyi_entropy(d, np.inf)
Out[8]: 2.275104563096674

General Properies

In general, the Rényi entropy is a monotonically decreasing function in 𝛼:

𝐻𝛼𝑋 ≥ 𝐻𝛽𝑋, 𝛽 > 𝛼

Further, the following inequality holds in the other direction:

𝐻2𝑋 ≤ 2 ·𝐻∞𝑋

80 Chapter 7. Information Measures

dit Documentation, Release 1.1.0

API

renyi_entropy(dist, order, rvs=None, rv_mode=None)
Compute the Renyi entropy of order order.

Parameters

• dist (Distribution) – The distribution to take the Renyi entropy of.

• order (float >= 0) – The order of the Renyi entropy.

• rvs (list, None) – The indexes of the random variable used to calculate the Renyi
entropy of. If None, then the Renyi entropy is calculated over all random variables.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns H_a – The Renyi entropy.

Return type float

Raises

• ditException – Raised if rvs or crvs contain non-existant random variables.

• ValueError – Raised if order is not a non-negative float.

7.3.7 Tsallis Entropy

The Tsallis entropy is a generalization of the Shannon (or Boltzmann-Gibbs) entropy to the case where entropy is
nonextensive. It is given by:

𝑆𝑞𝑋 =
1

𝑞 − 1

(︃
1 −

∑︁
𝑥∈𝒳

𝑝(𝑥)𝑞

)︃

In [1]: from dit.other import tsallis_entropy

In [2]: from dit.example_dists import n_mod_m

In [3]: d = n_mod_m(4, 3)

In [4]: tsallis_entropy(d, 4)
Out[4]: 0.3333163982455249

Non-additivity

One interesting property of the Tsallis entropy is the relationship between the joint Tsallis entropy of two indpendent
systems, and the Tsallis entropy of those subsystems:

𝑆𝑞𝑋,𝑌 = 𝑆𝑞𝑋 + 𝑆𝑞𝑌 + (1 − 𝑞)𝑆𝑞𝑋𝑆𝑞𝑌

7.3. Other Measures 81

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

dit Documentation, Release 1.1.0

API

tsallis_entropy(dist, order, rvs=None, rv_mode=None)
Compute the Tsallis entropy of order order.

Parameters

• dist (Distribution) – The distribution to take the Tsallis entropy of.

• order (float >= 0) – The order of the Tsallis entropy.

• rvs (list, None) – The indexes of the random variable used to calculate the Tsallis
entropy of. If None, then the Tsallis entropy is calculated over all random variables.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns S_q – The Tsallis entropy.

Return type float

Raises

• ditException – Raised if rvs or crvs contain non-existant random variables.

• ValueError – Raised if order is not a non-negative float.

There are also measures of “distance” or divergence between two (and im some cases, more) distribution:

7.4 Divergences

Divergences are measures of comparison between distributions:

7.4.1 Cross Entropy

The cross entropy between two distributions 𝑝(𝑥) and 𝑞(𝑥) is given by:

𝑥𝐻𝑝||𝑞 = −
∑︁
𝑥∈𝒳

𝑝(𝑥) log2 𝑞(𝑥)

This quantifies the average cost of representing a distribution defined by the probabilities 𝑝(𝑥) using the probabilities
𝑞(𝑥). For example, the cross entropy of a distribution with itself is the entropy of that distribion because the entropy
quantifies the average cost of representing a distribution:

In [1]: from dit.divergences import cross_entropy

In [2]: p = dit.Distribution(['0', '1'], [1/2, 1/2])

In [3]: cross_entropy(p, p)
Out[3]: 1.0

If, however, we attempted to model a fair coin with a biased on, we could compute this mis-match with the cross
entropy:

82 Chapter 7. Information Measures

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

dit Documentation, Release 1.1.0

In [4]: q = dit.Distribution(['0', '1'], [3/4, 1/4])

In [5]: cross_entropy(p, q)
Out[5]: 1.207518749639422

Meaning, we will on average use about 1.2 bits to represent the flips of a fair coin. Turning things around, what if we
had a biased coin that we attempted to represent with a fair coin:

In [6]: cross_entropy(q, p)
Out[6]: 1.0

So although the entropy of 𝑞 is less than 1, we will use a full bit to represent its outcomes. Both of these results can
easily be seen by considering the following identity:

𝑥𝐻𝑝||𝑞 = 𝐻𝑝 + 𝐷𝐾𝐿𝑝||𝑞

So in representing 𝑝 using 𝑞, we of course must at least use 𝐻𝑝 bits – the minimum required to represent 𝑝 – plus the
Kullback-Leibler divergence of 𝑞 from 𝑝.

API

cross_entropy(*args, **kwargs)
The cross entropy between dist1 and dist2.

Parameters

• dist1 (Distribution) – The first distribution in the cross entropy.

• dist2 (Distribution) – The second distribution in the cross entropy.

• rvs (list, None) – The indexes of the random variable used to calculate the cross en-
tropy between. If None, then the cross entropy is calculated over all random variables.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns xh – The cross entropy between dist1 and dist2.

Return type float

Raises ditException – Raised if either dist1 or dist2 doesn’t have rvs or, if rvs is None, if dist2
has an outcome length different than dist1.

7.4.2 Kullback-Leibler Divergence

The Kullback-Leibler divergence, sometimes also called the relative entropy, of a distribution 𝑝 from a distribution 𝑞
is defined as:

𝐷𝐾𝐿𝑝||𝑞 =
∑︁
𝑥∈𝒳

𝑝(𝑥) log2

𝑝(𝑥)

𝑞(𝑥)

The Kullback-Leibler divergence quantifies the average number of extra bits required to represent a distribution 𝑝
when using an arbitrary distribution 𝑞. This can be seen through the following identity:

𝐷𝐾𝐿𝑝||𝑞 = 𝑥𝐻𝑝||𝑞 −𝐻𝑝

7.4. Divergences 83

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

Where the Cross Entropy quantifies the total cost of encoding 𝑝 using 𝑞, and the Entropy quantifies the true, minimum
cost of encoding 𝑝. For example, let’s consider the cost of representing a biased coin by a fair one:

In [1]: from dit.divergences import kullback_leibler_divergence

In [2]: p = dit.Distribution(['0', '1'], [3/4, 1/4])

In [3]: q = dit.Distribution(['0', '1'], [1/2, 1/2])

In [4]: kullback_leibler_divergence(p, q)
Out[4]: 0.18872187554086717

That is, it costs us 0.1887 bits of wasted overhead by using a mismatched distribution.

Not a Metric

Although the Kullback-Leibler divergence is often used to see how “different” two distributions are, it is not a metric.
Importantly, it is neither symmetric nor does it obey the triangle inequality. It does, however, have the following
property:

𝐷𝐾𝐿𝑝||𝑞 ≥ 0

with equality if and only if 𝑝 = 𝑞. This makes it a premetric.

API

kullback_leibler_divergence(dist1, dist2, rvs=None, crvs=None, rv_mode=None)
The Kullback-Liebler divergence between dist1 and dist2.

Parameters

• dist1 (Distribution) – The first distribution in the Kullback-Leibler divergence.

• dist2 (Distribution) – The second distribution in the Kullback-Leibler divergence.

• rvs (list, None) – The indexes of the random variable used to calculate the Kullback-
Leibler divergence between. If None, then the Kullback-Leibler divergence is calculated
over all random variables.

• rv_mode (str, None) – Specifies how to interpret rvs and crvs. Valid options are:
{‘indices’, ‘names’}. If equal to ‘indices’, then the elements of crvs and rvs are interpreted
as random variable indices. If equal to ‘names’, the the elements are interpreted as random
variable names. If None, then the value of dist._rv_mode is consulted, which defaults to
‘indices’.

Returns dkl – The Kullback-Leibler divergence between dist1 and dist2.

Return type float

Raises ditException – Raised if either dist1 or dist2 doesn’t have rvs or, if rvs is None, if dist2
has an outcome length different than dist1.

7.4.3 Jensen-Shannon Divergence

The Jensen-Shannon divergence is a principled divergence measure which is always finite for finite random variables.
It quantifies how “distinguishable” two or more distributions are from each other. In its basic form it is:

𝐷𝐽𝑆𝑋||𝑌 = 𝐻
𝑋 + 𝑌

2
− 𝐻𝑋 + 𝐻𝑌

2

84 Chapter 7. Information Measures

http://en.wikipedia.org/wiki/Metric_(mathematics)#Premetrics
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

That is, it is the entropy of the mixture minus the mixture of the entropy. This can be generalized to an arbitrary
number of random variables with arbitrary weights:

𝐷𝐽𝑆𝑋0:𝑛 = 𝐻
∑︁

𝑤𝑖𝑋𝑖 −
∑︁

(𝑤𝑖𝐻𝑋𝑖)

In [1]: from dit.divergences import jensen_shannon_divergence

In [2]: X = dit.ScalarDistribution(['red', 'blue'], [1/2, 1/2])

In [3]: Y = dit.ScalarDistribution(['blue', 'green'], [1/2, 1/2])

In [4]: jensen_shannon_divergence([X, Y])
Out[4]: 0.5

In [5]: jensen_shannon_divergence([X, Y], [3/4, 1/4])
Out[5]: 0.40563906222956647

In [6]: Z = dit.ScalarDistribution(['blue', 'yellow'], [1/2, 1/2])

In [7]: jensen_shannon_divergence([X, Y, Z])
Out[7]: 0.7924812503605778

In [8]: jensen_shannon_divergence([X, Y, Z], [1/2, 1/4, 1/4])
Out[8]: 0.75

Derivation

Where does this equation come from? Consider Jensen’s inequality:

Ψ (E(𝑥)) ≥ E (Ψ(𝑥))

where Ψ is a concave function. If we consider the divergence of the left and right side we find:

Ψ (E(𝑥)) − E (Ψ(𝑥)) ≥ 0

If we make that concave function Ψ the Shannon entropy 𝐻 , we get the Jensen-Shannon divergence. Jensen from
Jensen’s inequality, and Shannon from the use of the Shannon entropy.

Note: Some people look at the Jensen-Rényi divergence (where Ψ is the Rényi Entropy) and the Jensen-Tsallis
divergence (where Ψ is the Tsallis Entropy).

Metric

The square root of the Jensen-Shannon divergence, √

, is a true metric between distributions.

Relationship to the Other Measures

The Jensen-Shannon divergence can be derived from other, more well known information measures; notably the
Kullback-Leibler Divergence and the Mutual Information.

7.4. Divergences 85

dit Documentation, Release 1.1.0

Kullback-Leibler divergence

The Jensen-Shannon divergence is the average Kullback-Leibler divergence of 𝑋 and 𝑌 from their mixture distribu-
tion, 𝑀 :

𝐷𝐽𝑆 [𝑋||𝑌] =
1

2
(𝐷𝐾𝐿[𝑋||𝑀] + 𝐷𝐾𝐿[𝑌 ||𝑀])

𝑀 =
𝑋 + 𝑌

2

Mutual Information

𝐷𝐽𝑆 [𝑋||𝑌] = 𝐼[𝑍 : 𝑀]

where 𝑀 is the mixture distribution as before, and 𝑍 is an indicator variable over 𝑋 and 𝑌 . In essence, if 𝑋 and 𝑌
are each an urn containing colored balls, and I randomly selected one of the urns and draw a ball from it, then the
Jensen-Shannon divergence is the mutual information between which urn I drew the ball from, and the color of the
ball drawn.

API

jensen_shannon_divergence(*args, **kwargs)
The Jensen-Shannon Divergence: H(sum(w_i*P_i)) - sum(w_i*H(P_i)).

The square root of the Jensen-Shannon divergence is a distance metric.

Parameters

• dists ([Distribution]) – The distributions, P_i, to take the Jensen-Shannon Diver-
gence of.

• weights ([float], None) – The weights, w_i, to give the distributions. If None, the
weights are assumed to be uniform.

Returns jsd – The Jensen-Shannon Divergence

Return type float

Raises

• ditException – Raised if there dists and weights have unequal lengths.

• InvalidNormalization – Raised if the weights do not sum to unity.

• InvalidProbability – Raised if the weights are not valid probabilities.

While the cross entropy and the Kullback-Leibler divergence are not true metrics, the square root of the Jensen-
Shannon divergence is.

Several measures of shared information are related to the ability of two (or more) agents to agree upon a secret key in
the face of an eavesdropper:

86 Chapter 7. Information Measures

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

dit Documentation, Release 1.1.0

7.5 Secret Key Agreement

One of the only methods of encrypting a message from Alice to Bomb such that no third party (Eve) can possibly
decrypt it is a one-time pad. This technique requires that Alice and Bob have a secret sequence of bits, 𝑆, which Alice
then encrypts by computing the exclusive-or of it with the plaintext, 𝑃 , to produce the cyphertext, 𝐶: 𝐶 = 𝑆 ⊕ 𝑃 .
Bob can then decrypt by xoring again: 𝑃 = 𝑆 ⊕ 𝐶.

In order to pull this off, Alice and Bob need to construct 𝑆 out of some sort joint randomness, 𝑝(𝑥, 𝑦, 𝑧), and public
communication, 𝑉 , which is assumed to have perfect fidelity. The maximum rate at which 𝑆 can be constructed in the
secret key agreement rate.

7.5.1 Background

Given 𝑁 IID copies of a joint distribution governed by 𝑝(𝑥, 𝑦, 𝑧), let 𝑋𝑁 denote the random variables observed by
Alice, 𝑌 𝑁 denote the random variables observed by Bob, and 𝑍𝑁 denote the random variables observed by Even.
Furthermore, let 𝑆[𝑋 : 𝑌 ||𝑍] be the maximum rate 𝑅 such that, for 𝑁 > 0, 𝜖 > 0, some public communication 𝑉 ,
and functions 𝑓 and 𝑔:

𝑆𝑋 = 𝑓(𝑋𝑁 , 𝑉)

𝑆𝑌 = 𝑔(𝑌 𝑁 , 𝑉)

𝑝(𝑆𝑋 ̸= 𝑆𝑌 ̸= 𝑆) ≤ 𝜖

𝐼𝑆 : 𝑉 𝑍𝑁 ≤ 𝜖

1

𝑁
𝐻𝑆 ≥ 𝑅− 𝜖

Intuitively, this means there exists some procedure such that, for every 𝑁 observations, Alice and Bob can publicly
converse and then construct 𝑆 bits which agree almost surely, and are almost surely independent of everything Eve
has access to. 𝑆 is then known as a secret key.

7.5.2 Lower Bounds

Lower Intrinsic Mutual Information

The first lower bound on the secret key agreement rate is known in dit as the
lower_intrinsic_mutual_information(), and is given by:

𝐼𝑋 : 𝑌 ↑ 𝑍 = max{𝐼𝑋 : 𝑌 − 𝐼𝑋 : 𝑍, 𝐼𝑋 : 𝑌 − 𝐼𝑌 : 𝑍, 0}

Secrecy Capacity

Next is the secrecy capacity:

𝐼𝑋 : 𝑌 ↑↑ 𝑍 = max

⎧⎨⎩ max
𝑈−𝑋−𝑌 𝑍

𝐼𝑈 : 𝑌 − 𝐼𝑈 : 𝑍

max
𝑈−𝑌−𝑋𝑍

𝐼𝑈 : 𝑋 − 𝐼𝑈 : 𝑍

This gives the secret key agreement rate when communication is not allowed.

7.5. Secret Key Agreement 87

dit Documentation, Release 1.1.0

Necessary Intrinsic Mutual Information

A tighter bound is given by the necessary_intrinsic_mutual_information() [GGunluK17]:

𝐼𝑋 : 𝑌 ↑↑↑ 𝑍 = max

⎧⎨⎩ max
𝑉−𝑈−𝑋−𝑌 𝑍

𝐼𝑈 : 𝑌 |𝑉 − 𝐼𝑈 : 𝑍|𝑉

max
𝑉−𝑈−𝑌−𝑋𝑍

𝐼𝑈 : 𝑋|𝑉 − 𝐼𝑈 : 𝑍|𝑉

This quantity is actually equal to the secret key agreement rate when communication is limited to being unidirectional.

7.5.3 Upper Bounds

Upper Intrinsic Mutual Information

The secret key agreement rate is trivially upper bounded by:

min{𝐼𝑋 : 𝑌 , 𝐼𝑋 : 𝑌 |𝑍}

Intrinsic Mutual Information

The intrinsic_mutual_information() [MW97] is defined as:

𝐼𝑋 : 𝑌 ↓ 𝑍 = min
𝑝(𝑧|𝑧)

𝐼𝑋 : 𝑌 |𝑍

It is straightforward to see that 𝑝(𝑧|𝑧) being a constant achieves 𝐼𝑋 : 𝑌 , and 𝑝(𝑧|𝑧) being the identity achieves
𝐼𝑋 : 𝑌 |𝑍.

Reduced Intrinsic Mutual Information

This bound can be improved, producing the reduced_intrinsic_mutual_information() [RSW03]:

𝐼𝑋 : 𝑌 ↓↓ 𝑍 = min
𝑈

𝐼𝑋 : 𝑌 ↓ 𝑍𝑈 + 𝐻𝑈

This bound improves upon the Intrinsic Mutual Information when a small amount of information, 𝑈 , can result in a
larger decrease in the amount of information shared between 𝑋 and 𝑌 given 𝑍 and 𝑈 .

Minimal Intrinsic Mutual Information

The Reduced Intrinsic Mutual Information can be further reduced into the
minimal_intrinsic_total_correlation() [GA17]:

𝐼𝑋 : 𝑌 ↓↓↓ 𝑍 = min
𝑈

𝐼𝑋 : 𝑌 |𝑈 + 𝐼𝑋𝑌 : 𝑈 |𝑍

88 Chapter 7. Information Measures

dit Documentation, Release 1.1.0

7.5.4 All Together Now

Taken together, we see the following structure:

min{𝐼𝑋 : 𝑌 , 𝐼𝑋 : 𝑌 |𝑍} (7.1)
≥ 𝐼𝑋 : 𝑌 ↓ 𝑍(7.2)
≥ 𝐼𝑋 : 𝑌 ↓↓ 𝑍(7.3)
≥ 𝐼𝑋 : 𝑌 ↓↓↓ 𝑍(7.4)
≥ 𝑆[𝑋 : 𝑌 ||𝑍](7.5)
≥ 𝐼𝑋 : 𝑌 ↑↑↑ 𝑍(7.6)
≥ 𝐼𝑋 : 𝑌 ↑↑ 𝑍(7.7)

≥ 𝐼𝑋 : 𝑌 ↑ 𝑍(7.8)
≥ 0.0(7.9)

7.5.5 Generalizations

Most of the above bounds have straightforward multivariate generalizations. These are not neces-
sarily bounds on the multiparty secret key agreement rate. For example, one could compute the
minimal_intrinsic_dual_total_correlation():

𝐵𝑋0 : . . . : 𝑋𝑛 ↓↓↓ 𝑍 = min
𝑈

𝐵𝑋0 : . . . : 𝑋𝑛|𝑈 + 𝐼𝑋0, . . . , 𝑋𝑛 : 𝑈 |𝑍

7.5.6 Examples

Let us consider a few examples:

In [1]: from dit.multivariate.secret_key_agreement import *

In [2]: from dit.example_dists.intrinsic import intrinsic_1, intrinsic_2, intrinsic_3

First, we consider the distribution intrinsic_1:

In [3]: print(intrinsic_1)
Class: Distribution
Alphabet: ('0', '1', '2', '3') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 1/8
011 1/8
101 1/8
110 1/8
222 1/4
333 1/4

With upper bounds:

In [4]: upper_intrinsic_mutual_information(intrinsic_1, [[0], [1]], [2])
Out[4]: 0.5

7.5. Secret Key Agreement 89

dit Documentation, Release 1.1.0

We see that the trivial upper bound is 0.5, because without conditioning on 𝑍, 𝑋 and 𝑌 can agree when the observe
either a 2 or a 3, which results in 𝐼𝑋 : 𝑌 = 0.5. Given 𝑍, however, that information is no longer private. But, given
𝑍, a conditional dependence is induced between 𝑋 and 𝑌 : 𝑍 knows that if she is a 0 that 𝑋 and 𝑌 agree, and if she
is a 1 they disagree. This results 𝐼𝑋 : 𝑌 |𝑍 = 0.5. In either case, however, 𝑋 and 𝑌 can not agree upon a secret key:
in the first case the eavesdropper knows their correlation, while in the second they are actually independent.

The intrinsic_mutual_information(), however can detect this:

In [5]: intrinsic_mutual_information(intrinsic_1, [[0], [1]], [2])
Out[5]: -4.440892098500626e-16

Next, let’s consider the distribution intrinsic_2:

In [6]: print(intrinsic_2)
Class: Distribution
Alphabet: (('0', '1', '2', '3'), ('0', '1', '2', '3'), ('0', '1'))
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 1/8
011 1/8
101 1/8
110 1/8
220 1/4
331 1/4

In this case, 𝑍 no longer can distinguish between the case where 𝑋 and 𝑌 can agree on a secret bit, and when they
can not, because she can not determine when they are in the 01 regime or in the 23 regime:

In [7]: intrinsic_mutual_information(intrinsic_2, [[0], [1]], [2])
Out[7]: 1.5

This seems to imply that 𝑋 and 𝑌 can adopt a scheme such as: if they observe either a 0 or a 1, write down 0, and if
they observe either a 2 or a 3, write that down. This has a weakness, however: what if 𝑍 were able to distinguish the
two regimes? This costs her 1 bit, but reduces the secrecy of 𝑋 and 𝑌 to nil. Thus, the secret key agreement rate is
actually only 1 bit:

In [8]: minimal_intrinsic_mutual_information(intrinsic_2, [[0], [1]], [2], bounds=(3,
→˓))
Out[8]: 1.0

90 Chapter 7. Information Measures

CHAPTER 8

Information Profiles

There are several ways to decompose the information contained in a joint distribution. Here, we will demonstrate their
behavior using four examples drawn from [ASBY14]:

In [1]: from dit.profiles import *

In [2]: ex1 = dit.Distribution(['000', '001', '010', '011', '100', '101', '110', '111
→˓'], [1/8]*8)

In [3]: ex2 = dit.Distribution(['000', '111'], [1/2]*2)

In [4]: ex3 = dit.Distribution(['000', '001', '110', '111'], [1/4]*4)

In [5]: ex4 = dit.Distribution(['000', '011', '101', '110'], [1/4]*4)

8.1 Shannon Partition and Extropy Partition

The I-diagrams, or ShannonPartition, for these four examples can be computed thusly:

In [6]: ShannonPartition(ex1)
Out[6]:
+----------+--------+
| measure | bits |
+----------+--------+
H[0	1,2]	1.000
H[1	0,2]	1.000
H[2	0,1]	1.000
I[0:1	2]	0.000
I[0:2	1]	0.000
I[1:2	0]	0.000
I[0:1:2]	0.000	
+----------+--------+

91

dit Documentation, Release 1.1.0

In [7]: ShannonPartition(ex2)
Out[7]:
+----------+--------+
| measure | bits |
+----------+--------+
H[0	1,2]	0.000
H[1	0,2]	0.000
H[2	0,1]	0.000
I[0:1	2]	0.000
I[0:2	1]	0.000
I[1:2	0]	0.000
I[0:1:2]	1.000	
+----------+--------+

In [8]: ShannonPartition(ex3)
Out[8]:
+----------+--------+
| measure | bits |
+----------+--------+
H[0	1,2]	0.000
H[1	0,2]	0.000
H[2	0,1]	1.000
I[0:1	2]	1.000
I[0:2	1]	0.000
I[1:2	0]	0.000
I[0:1:2]	0.000	
+----------+--------+

In [9]: ShannonPartition(ex4)
Out[9]:
+----------+--------+
| measure | bits |
+----------+--------+
H[0	1,2]	0.000
H[1	0,2]	0.000
H[2	0,1]	0.000
I[0:1	2]	1.000
I[0:2	1]	1.000
I[1:2	0]	1.000
I[0:1:2]	-1.000	
+----------+--------+

And their X-diagrams, or ExtropyDiagram, can be computed like so:

In [10]: ExtropyPartition(ex1)
Out[10]:
+----------+--------+
| measure | exits |
+----------+--------+
X[0	1,2]	0.103
X[1	0,2]	0.103
X[2	0,1]	0.103
X[0:1	2]	0.142
X[0:2	1]	0.142
X[1:2	0]	0.142
X[0:1:2]	0.613	
+----------+--------+

92 Chapter 8. Information Profiles

dit Documentation, Release 1.1.0

In [11]: ExtropyPartition(ex2)
Out[11]:
+----------+--------+
| measure | exits |
+----------+--------+
X[0	1,2]	0.000
X[1	0,2]	0.000
X[2	0,1]	0.000
X[0:1	2]	0.000
X[0:2	1]	0.000
X[1:2	0]	0.000
X[0:1:2]	1.000	
+----------+--------+

In [12]: ExtropyPartition(ex3)
Out[12]:
+----------+--------+
| measure | exits |
+----------+--------+
X[0	1,2]	0.000
X[1	0,2]	0.000
X[2	0,1]	0.245
X[0:1	2]	0.245
X[0:2	1]	0.000
X[1:2	0]	0.000
X[0:1:2]	0.755	
+----------+--------+

In [13]: ExtropyPartition(ex4)
Out[13]:
+----------+--------+
| measure | exits |
+----------+--------+
X[0	1,2]	0.000
X[1	0,2]	0.000
X[2	0,1]	0.000
X[0:1	2]	0.245
X[0:2	1]	0.245
X[1:2	0]	0.245
X[0:1:2]	0.510	
+----------+--------+

8.2 Complexity Profile

The complexity profile, implimented by ComplexityProfile is simply the amount of information at scale ≥ 𝑘 of
each “layer” of the I-diagram [BY04].

Consider example 1, which contains three independent bits. Each of these bits are in the outermost “layer” of the
i-diagram, and so the information in the complexity profile is all at layer 1:

8.2. Complexity Profile 93

dit Documentation, Release 1.1.0

In [14]: ComplexityProfile(ex1).draw();

Whereas in example 2, all the information is in the center, and so each scale of the complexity profile picks up that
one bit:

In [15]: ComplexityProfile(ex2).draw();

94 Chapter 8. Information Profiles

dit Documentation, Release 1.1.0

Both bits in example 3 are at a scale of at least 1, but only the shared bit persists to scale 2:

In [16]: ComplexityProfile(ex3).draw();

Finally, example 4 (where each variable is the exclusive or of the other two):

8.2. Complexity Profile 95

dit Documentation, Release 1.1.0

In [17]: ComplexityProfile(ex4).draw();

8.3 Marginal Utility of Information

The marginal utility of information (MUI) [ASBY14], implimented by MUIProfile takes a different approach. It
asks, given an amount of information 𝐼𝑑 : {𝑋} = 𝑦, what is the maximum amount of information one can extract
using an auxilliary variable 𝑑 as measured by the sum of the pairwise mutual informations,

∑︀
𝐼𝑑 : 𝑋𝑖. The MUI is

then the rate of this maximum as a function of 𝑦.

For the first example, each bit is independent and so basically must be extracted independently. Thus, as one increases
𝑦 the maximum amount extracted grows equally:

In [18]: MUIProfile(ex1).draw();

96 Chapter 8. Information Profiles

dit Documentation, Release 1.1.0

In the second example, there is only one bit total to be extracted, but it is shared by each pairwise mutual information.
Therefore, for each increase in 𝑦 we get a threefold increase in the amount extracted:

In [19]: MUIProfile(ex2).draw();

For the third example, for the first one bit of 𝑦 we can pull from the shared bit, but after that one must pull from the

8.3. Marginal Utility of Information 97

dit Documentation, Release 1.1.0

independent bit, so we see a step in the MUI profile:

In [20]: MUIProfile(ex3).draw();

Lastly, the xor example:

In [21]: MUIProfile(ex4).draw();

98 Chapter 8. Information Profiles

dit Documentation, Release 1.1.0

8.4 Schneidman Profile

Also known as the connected information or network informations, the Schneidman profile (SchneidmanProfile)
exposes how much information is learned about the distribution when considering 𝑘-way dependencies
[Ama01][SSB+03]. In all the following examples, each individual marginal is already uniformly distributed, and
so the connected information at scale 1 is 0.

In the first example, all the random variables are independent already, so fixing marginals above 𝑘 = 1 does not result
in any change to the inferred distribution:

In [22]: SchneidmanProfile(ex1).draw();

8.4. Schneidman Profile 99

dit Documentation, Release 1.1.0

In the second example, by learning the pairwise marginals, we reduce the entropy of the distribution by two bits (from
three independent bits, to one giant bit):

In [23]: SchneidmanProfile(ex2).draw();

For the third example, learning pairwise marginals only reduces the entropy by one bit:

100 Chapter 8. Information Profiles

dit Documentation, Release 1.1.0

In [24]: SchneidmanProfile(ex3).draw();

And for the xor, all bits appear independent until fixing the three-way marginals at which point one bit about the
distribution is learned:

In [25]: SchneidmanProfile(ex4).draw();

8.4. Schneidman Profile 101

dit Documentation, Release 1.1.0

8.5 Entropy Triangle and Entropy Triangle2

The entropy triangle, EntropyTriangle, [VAPelaezM16] is a method of visualizing how the information in the
distribution is distributed among deviation from uniformity, independence, and dependence. The deviation from inde-
pendence is measured by considering the difference in entropy between a independent variables with uniform distri-
butions, and independent variables with the same marginal distributions as the distribution in question. Independence
is measured via the Residual Entropy, and dependence is measured by the sum of the Total Correlation and Dual Total
Correlation.

All four examples lay along the left axis because their distributions are uniform over the events that have non-zero
probability.

In the first example, the distribution is all independence because the three variables are, in fact, independent:

In [26]: EntropyTriangle(ex1).draw();

102 Chapter 8. Information Profiles

dit Documentation, Release 1.1.0

In the second example, the distribution is all dependence, because the three variables are perfectly entwined:

In [27]: EntropyTriangle(ex2).draw();

8.5. Entropy Triangle and Entropy Triangle2 103

dit Documentation, Release 1.1.0

Here, there is a mix of independence and dependence:

In [28]: EntropyTriangle(ex3).draw();

104 Chapter 8. Information Profiles

dit Documentation, Release 1.1.0

And finally, in the case of xor, the variables are completely dependent again:

In [29]: EntropyTriangle(ex4).draw();

8.5. Entropy Triangle and Entropy Triangle2 105

dit Documentation, Release 1.1.0

We can also plot all four on the same entropy triangle:

In [30]: EntropyTriangle([ex1, ex2, ex3, ex4]).draw();

106 Chapter 8. Information Profiles

dit Documentation, Release 1.1.0

In [31]: dists = [dit.random_distribution(3, 2, alpha=(0.5,)*8) for _ in range(250)]

In [32]: EntropyTriangle(dists).draw();

8.5. Entropy Triangle and Entropy Triangle2 107

dit Documentation, Release 1.1.0

We can plot these same distributions on a slightly different entropy triangle as well, EntropyTriangle2, one
comparing the Residual Entropy, Total Correlation, and Dual Total Correlation:

In [33]: EntropyTriangle2(dists).draw();

108 Chapter 8. Information Profiles

dit Documentation, Release 1.1.0

8.6 Dependency Decomposition

Using DependencyDecomposition, one can discover how an arbitrary information measure varies as marginals
of the distribution are fixed. In our first example, each variable is independent of the others, and so constraining
marginals makes no difference:

In [34]: DependencyDecomposition(ex1)
Out[34]:
+------------+--------+
| dependency | H |
+------------+--------+
012	3.000
01:02:12	3.000
01:02	3.000
01:12	3.000
02:12	3.000
01:2	3.000
02:1	3.000
12:0	3.000
0:1:2	3.000
+------------+--------+

In the second example, we see that fixing any one of the pairwise marginals reduces the entropy by one bit, and by
fixing a second we reduce the entropy down to one bit:

In [35]: DependencyDecomposition(ex2)
Out[35]:
+------------+--------+

8.6. Dependency Decomposition 109

dit Documentation, Release 1.1.0

| dependency | H |
+------------+--------+
012	1.000
01:02:12	1.000
01:02	1.000
01:12	1.000
02:12	1.000
01:2	2.000
02:1	2.000
12:0	2.000
0:1:2	3.000
+------------+--------+

In the third example, only constraining the 01 marginal reduces the entropy, and it reduces it by one bit:

In [36]: DependencyDecomposition(ex3)
Out[36]:
+------------+--------+
| dependency | H |
+------------+--------+
012	2.000
01:02:12	2.000
01:02	2.000
01:12	2.000
02:12	3.000
01:2	2.000
02:1	3.000
12:0	3.000
0:1:2	3.000
+------------+--------+

And finally in the case of the exclusive or, only constraining the 012 marginal reduces the entropy.

In [37]: DependencyDecomposition(ex4)
Out[37]:
+------------+--------+
| dependency | H |
+------------+--------+
012	2.000
01:02:12	3.000
01:02	3.000
01:12	3.000
02:12	3.000
01:2	3.000
02:1	3.000
12:0	3.000
0:1:2	3.000
+------------+--------+

110 Chapter 8. Information Profiles

CHAPTER 9

Partial Information Decomposition

The partial information decomposition (PID), put forth by Williams & Beer [WB10], is a framework for decomposing
the information shared between a set of variables we will refer to as inputs, 𝑋0, 𝑋1, . . ., and another random variable
we will refer to as the output, 𝑌 . This decomposition seeks to partition the information 𝐼𝑋0, 𝑋1, . . . : 𝑌 among the
antichains of the inputs.

9.1 Background

It is often desirable to determine how a set of inputs influence the behavior of an output. Consider the exclusive or
logic gates, for example:

In [1]: from dit.pid.distributions import bivariates, trivariates

In [2]: xor = bivariates['synergy']

In [3]: print(xor)
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 1/4
011 1/4
101 1/4
110 1/4

We can see from inspection that either input (the first two indexes) is independent of the output (the final index), yet
the two inputs together determine the output. One could call this “synergistic” information. Next, consider the giant
bit distribution:

111

dit Documentation, Release 1.1.0

In [4]: gb = bivariates['redundant']

In [5]: print(gb)
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 1/2
111 1/2

Here, we see that either input informs us of exactly what the output is. One could call this “redundant” information.
Furthermore, consider the coinformation of these distributions:

In [6]: from dit.multivariate import coinformation as I

In [7]: I(xor)
Out[7]: -1.0

In [8]: I(gb)
Out[8]: 1.0

This could lead one to intuit that negative values of the coinformation correspond to synergistic effects in a distribution,
while positive values correspond to redundant effects. This intuition, however, is at best misleading: the coinformation
of a 4-variable giant bit and 4-variable parity distribution are both positive:

In [9]: I(dit.example_dists.giant_bit(4, 2))
Out[9]: 1.0

In [10]: I(dit.example_dists.n_mod_m(4, 2))
Out[10]: 1.0

This, as well as other issues, lead Williams & Beer [WB10] to propose the partial information decomposition.

9.2 Framework

The goal of the partial information is to assign to each some non-negative portion of 𝐼{𝑋𝑖} : 𝑌 to each antichain over
the inputs. An antichain over the inputs is a set of sets, where each of those sets is not a subset of any of the others.
For example, {{𝑋0, 𝑋1} , {𝑋1, 𝑋2}} is an antichain, but {{𝑋0, 𝑋1} , {𝑋0𝑋1, 𝑋2}} is not.

The antichains for a lattice based on this partial order:

𝛼 ≤ 𝛽 ⇐⇒ ∀b ∈ 𝛽,∃a ∈ 𝛼,a ⊆ b

From here, we wish to find a redundancy measure, 𝐼∩∙ which would assign a fraction of 𝐼{𝑋𝑖} : 𝑌 to each antichain
intuitively quantifying what portion of the information in the output could be learned by observing any of the sets of
variables within the antichain. In order to be a viable measure of redundancy, there are several axioms a redundancy
measure must satisfy.

112 Chapter 9. Partial Information Decomposition

dit Documentation, Release 1.1.0

9.2.1 Bivariate Lattice

Let us consider the special case of two inputs. The lattice consists of four elements: {{𝑋0} , {𝑋1}}, {{𝑋0}}, {{𝑋1}},
and {{𝑋0, 𝑋1}}. We can interpret these elements as the redundancy provided by both inputs, the information uniquely
provided by 𝑋0, the information uniquely provided by 𝑋1, and the information synergistically provided only by both
inputs together. Together these for elements decompose the input-output mutual information:

𝐼𝑋0, 𝑋1 : 𝑌 = 𝐼∩{𝑋0} , {𝑋1} : 𝑌 + 𝐼∩{𝑋0} : 𝑌 + 𝐼∩{𝑋1} : 𝑌 + 𝐼∩{𝑋0, 𝑋1} : 𝑌

Furthermore, due to the self-redundancy axiom (described ahead), the single-input mutual informations decomposed
in the following way:

𝐼𝑋0 : 𝑌 = 𝐼∩{𝑋0} , {𝑋1} : 𝑌 + 𝐼∩{𝑋0} : 𝑌

𝐼𝑋1 : 𝑌 = 𝐼∩{𝑋0} , {𝑋1} : 𝑌 + 𝐼∩{𝑋1} : 𝑌

Colloquially, from input 𝑋0 one can learn what is redundantly provided by either input, plus what is uniquely provided
by 𝑋0, but not what is uniquely provided by 𝑋1 or what can only be learned synergistically from both inputs.

9.2.2 Axioms

The following three axioms were provided by Williams & Beer.

Symmetry

The redundancy 𝐼∩𝑋0:𝑛 : 𝑌 is invariant under reorderings of 𝑋𝑖.

Self-Redundancy

The redundancy of a single input is its mutual information with the output:

𝐼∩𝑋𝑖 : 𝑌 = 𝐼𝑋𝑖 : 𝑌

Monotonicity

The redundancy should only decrease with in inclusion of more inputs:

𝐼∩𝒜1, . . . ,𝒜𝑘−1,𝒜𝑘 : 𝑌 ≤ 𝐼∩𝒜1, . . . ,𝒜𝑘−1 : 𝑌

with equality if 𝒜𝑘−1 ⊆ 𝒜𝑘.

There have been other axioms proposed following from those of Williams & Beer.

Identity

The identity axiom [HSP13] states that if the output is identical to the inputs, then the redundancy is the mutual
information between the inputs:

𝐼∩𝑋0, 𝑋1 : (𝑋0, 𝑋1) = 𝐼𝑋0 : 𝑋1

9.2. Framework 113

dit Documentation, Release 1.1.0

Target (output) Monotonicity

This axiom states that redundancy can not increase when replacing the output by a function of itself.

𝐼∩𝑋0:𝑛 : 𝑌 ≥ 𝐼∩𝑋0:𝑛 : 𝑓(𝑌)

It first appeared in [BROJ13] and was expanded upon in [RBO+17].

9.3 Measures

We now turn our attention a variety of methods proposed to flesh out this partial information decomposition.

In [11]: from dit.pid import *

9.3.1 𝐼𝑚𝑖𝑛∙

𝐼𝑚𝑖𝑛∙[WB10] was Williams & Beer’s initial proposal for a redundancy measure. It is given by:

𝐼𝑚𝑖𝑛𝒜1,𝒜2, . . . : 𝑌 =
∑︁
𝑦∈𝑌

𝑝(𝑦) min
𝒜𝑖

𝐼𝒜𝑖 : 𝑌 = 𝑦

However, this measure has been criticized for acting in an unintuitive manner [GK14]:

In [12]: d = dit.Distribution(['000', '011', '102', '113'], [1/4]*4)

In [13]: PID_WB(d)
Out[13]:
+--------+--------+--------+
| I_min | I_r | pi |
+--------+--------+--------+
{0:1}	2.0000	1.0000
{0}	1.0000	0.0000
{1}	1.0000	0.0000
{0}{1}	1.0000	1.0000
+--------+--------+--------+

We have constructed a distribution whose inputs are independent random bits, and whose output is the concatenation
of those inputs. Intuitively, the output should then be informed by one bit of unique information from 𝑋0 and one bit
of unique information from 𝑋1. However, 𝐼𝑚𝑖𝑛∙ assesses that there is one bit of redundant information, and one bit
of synergistic information. This is because 𝐼𝑚𝑖𝑛∙ quantifies redundancy as the least amount of information one can
learn about an output given any single input. Here, however, the one bit we learn from 𝑋0 is, in a sense, orthogonal
from the one bit we learn from 𝑋1. This observation has lead to much of the follow-on work.

9.3.2 𝐼𝑀𝑀𝐼∙

One potential measure of redundancy is the minimum mutual information [BROJ13]:

𝐼𝑀𝑀𝐼𝑋0:𝑛 : 𝑌 = min
𝑖

𝐼𝑋𝑖 : 𝑌

This measure, though crude, is known to be correct for multivariate gaussian variables [OBR15].

114 Chapter 9. Partial Information Decomposition

dit Documentation, Release 1.1.0

9.3.3 𝐼↓∙

Drawing inspiration from information-theoretic cryptography, this PID quantifies unique information using the Intrin-
sic Mutual Information:

𝐼↓𝑋0:𝑛 : 𝑌 = 𝐼𝑋𝑖 : 𝑌 ↓ 𝑋{𝑖}

While this seems intuitively plausible, it turns out that this leads to an inconsistent decomposition [BROJ13]; namely,
in the bivariate case, if one were to compute redundancy using either unique information subtracted from that inputs
mutual information with the output the value should be the same. There are examples where this is not the case:

In [14]: d = bivariates['prob 2']

In [15]: PID_downarrow(d)
Out[15]:
+--------+--------+--------+
| [31mI_da[0m | I_r | pi |
+--------+--------+--------+
{0:1}	1.0000	0.1887
{0}	0.3113	0.1887
{1}	0.5000	0.5000
{0}{1}	0.1226	0.1226
+--------+--------+--------+

Interestingly, compared to other measures the intrinsic mutual information seems to overestimate unique information.
Since 𝐼𝑋0 : 𝑌 ↓ 𝑋1 ≤ min {𝐼𝑋0 : 𝑌 |𝑋1, 𝐼𝑋0 : 𝑌 } = min {𝑈0 + 𝑆,𝑈0 + 𝑅}, where 𝑅 is redundancy, 𝑈0 is unique
information from input 𝑋0, and 𝑆 is synergy, this implies that the optimization performed in computing the intrinsic
mutual information is unable to completely remove either redundancy, synergy, or both.

9.3.4 𝐼∧∙

Redundancy seems to intuitively be related to common information Common Informations. This intuition lead to the
development of 𝐼∧∙ [GCJ+14]:

𝐼∧𝑋0:𝑛 : 𝑌 = 𝐼f𝑋𝑖 : 𝑌

That is, redundancy is the information the Gács-Körner Common Information of the inputs shares with the output.
This measure is known to produce negative partial information values in some instances.

9.3.5 𝐼𝑝𝑟𝑜𝑗∙

Utilizing information geometry, Harder et al [HSP13] have developed a strictly bivariate measure of redundancy,
𝐼𝑝𝑟𝑜𝑗∙:

𝐼𝑝𝑟𝑜𝑗{𝑋0} {𝑋1} : 𝑌 = min{𝐼𝜋𝑌 [𝑋0 ↘ 𝑋1], 𝐼𝜋𝑌 [𝑋1 ↘ 𝑋0]}

where

𝐼𝜋𝑌 [𝑋0 ↘ 𝑋1] =
∑︁
𝑥0,𝑦

𝑝(𝑥0, 𝑦) log
𝑝(𝑥0↘𝑋1)(𝑦)

𝑝(𝑦)

𝑝(𝑥0↘𝑋1)(𝑌) = 𝜋𝐶𝑐𝑙(⟨𝑋1⟩𝑌)(𝑝(𝑌 |𝑥0)

𝜋𝐵(𝑝) = arg min
𝑟∈𝐵

𝐷𝐾𝐿𝑝||𝑟

𝐶𝑐𝑙(⟨𝑋1⟩𝑌) = 𝐶𝑐𝑙({𝑝(𝑌 |𝑥1) : 𝑥1 ∈ 𝑋1})

where 𝐶𝑐𝑙(∙) denotes closure. Intuitively, this measures seeks to quantify redundancy as the minimum of how much
𝑝(𝑌 |𝑋0) can be expressed when 𝑋0 is projected on to 𝑋1, and vice versa.

9.3. Measures 115

dit Documentation, Release 1.1.0

9.3.6 𝐼𝐵𝑅𝑂𝐽𝐴∙

In a very intuitive effort, Bertschinger et al (henceforth BROJA) [BRO+14][GK14] defined unique information as the
minimum conditional mutual informations obtainable while holding the input-output marginals fixed:

∆ = {𝑄 : ∀𝑖 : 𝑝(𝑥𝑖, 𝑦) = 𝑞(𝑥𝑖, 𝑦)}
𝐼𝐵𝑅𝑂𝐽𝐴𝑋0:𝑛 : 𝑌 = min

𝑄∈Δ
𝐼𝑋𝑖 : 𝑌 |𝑋{𝑖}

Note: In the bivariate case, Griffith independently suggested the same decomposition but from the viewpoint of
synergy [GK14].

The BROJA measure has recently been criticized for behaving in an unintuitive manner on some examples. Consider
the reduced or distribution:

In [16]: bivariates['reduced or']
Out[16]:
Class: Distribution
Alphabet: ('0', '1') for all rvs
Base: linear
Outcome Class: str
Outcome Length: 3
RV Names: None

x p(x)
000 1/2
011 1/4
101 1/4

In [17]: print(PID_BROJA(bivariates['reduced or']))
+---------+--------+--------+
| I_broja | I_r | pi |
+---------+--------+--------+
{0:1}	1.0000	0.6887
{0}	0.3113	0.0000
{1}	0.3113	0.0000
{0}{1}	0.3113	0.3113
+---------+--------+--------+

We see that in this instance BROJA assigns no partial information to either unique information. However, it is not
difficult to argue that in the case that either input is a 1, that input then has unique information regarding the output.

𝐼𝑝𝑟𝑜𝑗∙ and 𝐼𝐵𝑅𝑂𝐽𝐴∙ are Distinct

In the BROJA paper [BRO+14] the only example given where their decomposition differs from that of Harder et al. is
the dit.example_dists.summed_dice(). We can find a simpler example where they differ using hypothesis:

In [18]: from hypothesis import find

In [19]: from dit.utils.testing import distributions

In [20]: find(distributions(3, 2, True), lambda d: PID_Proj(d) != PID_BROJA(d))

TypeErrorTraceback (most recent call last)
<ipython-input-20-e7c30edab0eb> in <module>()

116 Chapter 9. Partial Information Decomposition

dit Documentation, Release 1.1.0

----> 1 find(distributions(3, 2, True), lambda d: PID_Proj(d) != PID_BROJA(d))

TypeError: distributions() takes at most 2 arguments (3 given)

9.3.7 𝐼𝑐𝑐𝑠∙

Taking a pointwise point of view, Ince has proposed a measure of redundancy based on the coinformation [Inc17a]:

𝐼𝑐𝑐𝑠𝑋0:𝑛 : 𝑌 =
∑︁

𝑝(𝑥0, . . . , 𝑥𝑛, 𝑦)𝐼𝑥0 : . . . : 𝑥𝑛 : 𝑦 if sign(𝐼𝑥𝑖 : 𝑦) = sign(𝐼𝑥0 : . . . : 𝑥𝑛 : 𝑦)

While this measure behaves intuitively in many examples, it also assigns negative values to some partial information
atoms in some instances.

This decomposition also displays an interesting phenomena, that of subadditive redundancy. The gband distribution
is an independent mix of a giant bit (redundancy of 1 bit) and the and distribution (redundancy of 0.1038 bits), and
yet gband has 0.8113 bits of redundancy:

In [21]: PID_CCS(bivariates['gband'])
Out[21]:
+--------+--------+--------+
| I_ccs | I_r | pi |
+--------+--------+--------+
{0:1}	1.8113	0.0000
{0}	1.3113	0.5000
{1}	1.3113	0.5000
{0}{1}	0.8113	0.8113
+--------+--------+--------+

9.3.8 𝐼𝑑𝑒𝑝∙

James et al [JEC17] have developed a method of quantifying unique information based on the Dependency Decom-
position. Unique information from variable 𝑋𝑖 is evaluated as the least change in sources-target mutual information
when adding the constraint 𝑋𝑖𝑌 .

In [22]: PID_dep(bivariates['not two'])
Out[22]:
+--------+--------+--------+
| I_dep | I_r | pi |
+--------+--------+--------+
{0:1}	0.5710	0.5364
{0}	0.0200	0.0146
{1}	0.0200	0.0146
{0}{1}	0.0054	0.0054
+--------+--------+--------+

9.3.9 ∙

Also taking a pointwise view, Finn & Lizier’s ∙ [FL17] instead splits the pointwise mutual information into two
components:

𝑖(𝑠, 𝑡) = ℎ(𝑠) − ℎ(𝑠|𝑡)

They then define two partial information lattices, one quantified locally by ℎ(𝑠) and the other by ℎ(𝑠|𝑡). By averaging
these local lattices and then recombining them, we arrive at a standard Williams & Beer redundancy lattice.

9.3. Measures 117

dit Documentation, Release 1.1.0

In [23]: PID_PM(bivariates['pnt. unq'])
Out[23]:
+--------+--------+--------+
| I_pm | I_r | pi |
+--------+--------+--------+
{0:1}	1.0000	0.0000
{0}	0.5000	0.5000
{1}	0.5000	0.5000
{0}{1}	0.0000	0.0000
+--------+--------+--------+

9.4 Partial Entropy Decomposition

Ince [Inc17b] proposed applying the PID framework to decompose multivariate entropy (without considering infor-
mation about a separate target variable). This partial entropy decomposition (PED), seeks to partition a mutlivariate
entropy 𝐻𝑋0, 𝑋1, . . . among the antichains of the variables. The PED perspective shows that bivariate mutual infor-
mation is equal to the difference between redundant entropy and synergistic entropy.

𝐼𝑋0 : 𝑋1 = 𝐻𝜕{𝑋0} , {𝑋1} −𝐻𝜕{𝑋0, 𝑋1}

9.4.1 𝐻𝑐𝑠∙

Taking a pointwise point of view, following 𝐼𝑐𝑐𝑠∙, Ince has proposed a measure of redundant entropy based on the
coinformation [Inc17b]:

𝐻𝑐𝑠𝑋0:𝑛 =
∑︁

𝑝(𝑥0, . . . , 𝑥𝑛)𝐼𝑥0 : . . . : 𝑥𝑛 if (𝐼𝑥0 : . . . : 𝑥𝑛 > 0)

While this measure behaves intuitively in many examples, it also assigns negative values to some partial entropy
atoms in some instances. However, Ince [Inc17b] argues that concepts such as mechanistic information redundnacy
(non-zero information redundancy between independent predictors, c.f. AND) necessitate negative partial entropy
terms.

Like 𝐼𝑐𝑐𝑠∙, 𝐻𝑐𝑠∙ is also subadditive.

In [24]: PED_CS(dit.Distribution(['00','01','10','11'],[0.25]*4))
Out[24]:
+--------+--------+--------+
| H_cs | H_r | H_d |
+--------+--------+--------+
{0:1}	2.0000	0.0000
{0}	1.0000	1.0000
{1}	1.0000	1.0000
{0}{1}	0.0000	0.0000
+--------+--------+--------+

118 Chapter 9. Partial Information Decomposition

CHAPTER 10

References

119

dit Documentation, Release 1.1.0

120 Chapter 10. References

CHAPTER 11

Changelog

• : Basic functionality.

• #26: Add the Jensen-Shannon Divergence, a measure of distribution distance.

• #5: Add the oft-used Total Correlation.

• #10: Add the Co-Information.

• #30: Add the Gács-Körner Common Information.

• #7: Add the Residual Entropy.

• #6: Add the Binding Information.

• #2: Add the Extropy.

• #33: Add the Perplexity.

• #45: Add the Interaction Information.

• #47: Add the TSE Complexity.

• #16: Add the Channel Capacity.

• #1: Add the Cumulative Residual Entropy.

• #14: Add the creation of Minimal Sufficient Statistics.

• #35: Add the cross entropy.

• #34: Add the Kullback-Leibler Divergence.

• #3: Add the Renyi entropy.

• #4: Add the Tsallis entropy.

• #87: Add Renyi, Tsallis, Hellinger, and alpha divergences.

• #13: Add the Joint Minimal Sufficient Statistic.

• #95: Add the complexity profile.

• #96: Add the marginal utility of information.

121

https://github.com/dit/dit/issues/26
https://github.com/dit/dit/issues/5
https://github.com/dit/dit/issues/10
https://github.com/dit/dit/issues/30
https://github.com/dit/dit/issues/7
https://github.com/dit/dit/issues/6
https://github.com/dit/dit/issues/2
https://github.com/dit/dit/issues/33
https://github.com/dit/dit/issues/45
https://github.com/dit/dit/issues/47
https://github.com/dit/dit/issues/16
https://github.com/dit/dit/issues/1
https://github.com/dit/dit/issues/14
https://github.com/dit/dit/issues/35
https://github.com/dit/dit/issues/34
https://github.com/dit/dit/issues/3
https://github.com/dit/dit/issues/4
https://github.com/dit/dit/issues/87
https://github.com/dit/dit/issues/13
https://github.com/dit/dit/issues/95
https://github.com/dit/dit/issues/96

dit Documentation, Release 1.1.0

• #63: Add scalar operations for ScalarDistributions.

• #108: Add the multivariate entropy triangle.

• #109: Add the CAEKL mutual information.

• #111: Add the functional common information.

• #9: Add the Wyner common information.

• #11: Add the exact common information.

• #15: Add the intrinsic mutual information.

• #32: Use six for python 2/3 compatibility.

• #40: Use an Enum for rv_mode.

• #75: Enable coveralls to display detailed coverage information.

• #77: Enable landscape.io to do static code analysis.

• #58: Alias Dual Total Correlation as Binding Information.

122 Chapter 11. Changelog

https://github.com/dit/dit/issues/63
https://github.com/dit/dit/issues/108
https://github.com/dit/dit/issues/109
https://github.com/dit/dit/issues/111
https://github.com/dit/dit/issues/9
https://github.com/dit/dit/issues/11
https://github.com/dit/dit/issues/15
https://github.com/dit/dit/issues/32
https://github.com/dit/dit/issues/40
https://github.com/dit/dit/issues/75
https://github.com/dit/dit/issues/77
https://github.com/dit/dit/issues/58

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

123

dit Documentation, Release 1.1.0

124 Chapter 12. Indices and tables

Bibliography

[AP12] S. A. Abdallah and M. D. Plumbley. A measure of statistical complexity based on predictive information with
application to finite spin systems. Physics Letters A, 376(4):275–281, 2012.

[ASBY14] B. Allen, B. C. Stacey, and Y. Bar-Yam. An information-theoretic formalism for multiscale structure in
complex systems. arXiv preprint arXiv:1409.4708, 2014.

[Ama01] Shun-ichi Amari. Information geometry on hierarchy of probability distributions. Information Theory, IEEE
Transactions on, 47(5):1701–1711, 2001.

[BG15] Pradeep Kr Banerjee and Virgil Griffith. Synergy, redundancy and common information. arXiv preprint
arXiv:1509.03706, 2015.

[BRMontufar17] Pradeep Kr. Banerjee, Johannes Rauh, and Guido Montúfar. Computing the unique information.
arXive preprint arXiv:1709.07487, 2017.

[BY04] Y. Bar-Yam. Multiscale complexity/entropy. Advances in Complex Systems, 7(01):47–63, 2004.

[BG16] Salman Beigi and Amin Gohari. Phi-entropic measures of correlation. arXiv preprint arXiv:1611.01335,
2016.

[Bel03] A. J. Bell. The co-information lattice. In S. Makino S. Amari, A. Cichocki and N. Murata, editors, Proc. Fifth
Intl. Workshop on Independent Component Analysis and Blind Signal Separation, volume ICA 2003, 921–926.
New York, 2003. Springer.

[BROJ13] Nils Bertschinger, Johannes Rauh, Eckehard Olbrich, and Jürgen Jost. Shared information—new insights
and problems in decomposing information in complex systems. In Proceedings of the European Conference on
Complex Systems 2012, 251–269. Springer, 2013.

[BRO+14] Nils Bertschinger, Johannes Rauh, Eckehard Olbrich, Jürgen Jost, and Nihat Ay. Quantifying unique in-
formation. Entropy, 16(4):2161–2183, 2014.

[Cal02] Cristian Calude. Information and Randomness: An Algorithmic Perspective. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2nd edition, 2002. ISBN 3540434666.

[CABE+15] Chung Chan, Ali Al-Bashabsheh, Javad B Ebrahimi, Tarik Kaced, and Tie Liu. Multivariate mutual
information inspired by secret-key agreement. Proceedings of the IEEE, 103(10):1883–1913, 2015.

[CP16] Daniel Chicharro and Stefano Panzeri. Redundancy and synergy in dual decompositions of mutual information
gain and information loss. arXiv preprint arXiv:1612.09522, 2016.

[CRW03] Matthias Christandl, Renato Renner, and Stefan Wolf. A property of the intrinsic mutual information. In
IEEE international symposium on information theory, 258–258. 2003.

125

dit Documentation, Release 1.1.0

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience, New York, sec-
ond edition, 2006. ISBN 0471241954.

[CPC10] Paul Warner Cuff, Haim H Permuter, and Thomas M Cover. Coordination capacity. IEEE Transactions on
Information Theory, 56(9):4181–4206, 2010.

[FL17] Conor Finn and Joseph Lizier. 2017.

[FWA16] Seth Frey, Paul L Williams, and Dominic K Albino. Information encryption in the expert management of
strategic uncertainty. arXiv preprint arXiv:1605.04233, 2016.

[GA17] Amin Gohari and Venkat Anantharam. Comments on “information-theoretic key agreement of multiple ter-
minals—part i”. IEEE Transactions on Information Theory, 63(8):5440–5442, 2017.

[GGunluK17] Amin Gohari, Onur Günlü, and Gerhard Kramer. On achieving a positive rate in the source model key
agreement problem. arXiv preprint arXiv:1709.05174, 2017.

[GCJ+14] Virgil Griffith, Edwin KP Chong, Ryan G James, Christopher J Ellison, and James P Crutchfield. Intersec-
tion information based on common randomness. Entropy, 16(4):1985–2000, 2014.

[GK14] Virgil Griffith and Christof Koch. Quantifying synergistic mutual information. In Guided Self-Organization:
Inception, pages 159–190. Springer, 2014.

[GacsKorner73] Peter Gács and János Körner. Common information is far less than mutual information. Problems of
Control and Information Theory, 2(2):149–162, 1973.

[Han75] T. S. Han. Linear dependence structure of the entropy space. Information and Control, 29:337–368, 1975.

[HSP13] Malte Harder, Christoph Salge, and Daniel Polani. Bivariate measure of redundant information. Physical
Review E, 87(1):012130, 2013.

[Inc17a] Robin A. A. Ince. Measuring multivariate redundant information with pointwise common change in surprisal.
Entropy, 19(7):318, 2017.

[Inc17b] Robin A. A. Ince. The Partial Entropy Decompostion: decomposing multivariate entropy and mutual infor-
mation via pointwise common surprisal. arXive preprint arXiv:1702.01591, 2017.

[JEC17] Ryan G. James, Jeffrey Emenheiser, and James P. Crutchfield. Unique information via dependency con-
straints. arXiv preprint arXiv:1709.06653, 2017.

[Kri09] Klaus Krippendorff. Ross ashby’s information theory: a bit of history, some solutions to problems, and what
we face today. International Journal of General Systems, 38(2):189–212, 2009.

[KLEG14] G. R. Kumar, C. T. Li, and A. El Gamal. Exact common information. In Information Theory (ISIT), 2014
IEEE International Symposium on, 161–165. IEEE, 2014.

[LSAgro11] Frank Lad, Giuseppe Sanfilippo, and Gianna Agrò. Extropy: a complementary dual of entropy. arXiv
preprint arXiv:1109.6440, 2011.

[LMPR04] P. W. Lamberti, M. T. Martin, A. Plastino, and O. A. Rosso. Intensive entropic non-triviality measure.
Physica A: Statistical Mechanics and its Applications, 334(1):119–131, 2004.

[LXC10] Wei Liu, Ge Xu, and Biao Chen. The common information of n dependent random variables. In Communi-
cation, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on, 836–843. IEEE, 2010.

[LFW13] Joseph T Lizier, Benjamin Flecker, and Paul L Williams. Towards a synergy-based approach to measuring
information modification. In Artificial Life (ALIFE), 2013 IEEE Symposium on, 43–51. IEEE, 2013.

[Mac03] David JC MacKay. Information theory, inference and learning algorithms. Cambridge university press,
2003.

[MW97] Ueli Maurer and Stefan Wolf. The intrinsic conditional mutual information and perfect secrecy. In IEEE
international symposium on information theory, 88–88. Citeseer, 1997.

[McG54] W. J. McGill. Multivariate information transmission. Psychometrika, 19(2):97–116, 1954.

126 Bibliography

dit Documentation, Release 1.1.0

[OBR15] Eckehard Olbrich, Nils Bertschinger, and Johannes Rauh. Information decomposition and synergy. Entropy,
17(5):3501–3517, 2015.

[PVerdu08] Daniel P Palomar and Sergio Verdú. Lautum information. IEEE transactions on information theory,
54(3):964–975, 2008.

[PPCP17] Giuseppe Pica, Eugenio Piasini, Daniel Chicharro, and Stefano Panzeri. Invariant components of synergy,
redundancy, and unique information among three variables. arXiv preprint arXiv:1706.08921, 2017.

[RCVW04] Murali Rao, Yunmei Chen, Baba C Vemuri, and Fei Wang. Cumulative residual entropy: a new measure
of information. Information Theory, IEEE Transactions on, 50(6):1220–1228, 2004.

[Rau17] Johannes Rauh. Secret sharing and shared information. arXiv preprint arXiv:1706.06998, 2017.

[RBO+17] Johannes Rauh, Pradeep Kr Banerjee, Eckehard Olbrich, Jürgen Jost, and Nils Bertschinger. On extractable
shared information. arXiv preprint arXiv:1701.07805, 2017.

[RBOJ14] Johannes Rauh, Nils Bertschinger, Eckehard Olbrich, and Jurgen Jost. Reconsidering unique information:
towards a multivariate information decomposition. In Information Theory (ISIT), 2014 IEEE International Sym-
posium on, 2232–2236. IEEE, 2014.

[RSW03] Renato Renner, Juraj Skripsky, and Stefan Wolf. A new measure for conditional mutual information and its
properties. In IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 259–259. 2003.

[RNE+16] Fernando Rosas, Vasilis Ntranos, Christopher J Ellison, Sofie Pollin, and Marian Verhelst. Understanding
interdependency through complex information sharing. Entropy, 18(2):38, 2016.

[SSB+03] E. Schneidman, S. Still, M. J. Berry, W. Bialek, and others. Network information and connected correla-
tions. Phys. Rev. Lett., 91(23):238701, 2003.

[TS80] H. Te Sun. Multiple mutual informations and multiple interactions in frequency data. Information and Control,
46:26–45, 1980.

[TSE94] Giulio Tononi, Olaf Sporns, and Gerald M Edelman. A measure for brain complexity: relating func-
tional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences,
91(11):5033–5037, 1994.

[TNG11] H. Tyagi, P. Narayan, and P. Gupta. When is a function securely computable? Information Theory, IEEE
Transactions on, 57(10):6337–6350, 2011.

[VAPelaezM16] Francisco José Valverde-Albacete and Carmen Peláez-Moreno. The multivariate entropy triangle and
applications. In Hybrid Artificial Intelligent Systems, pages 647–658. Springer, 2016.

[VW08] Sergio Verdu and Tsachy Weissman. The information lost in erasures. Information Theory, IEEE Transac-
tions on, 54(11):5030–5058, 2008.

[VerduW06] S. Verdú and T. Weissman. Erasure entropy. In Information Theory, 2006 IEEE International Symposium
on, 98–102. IEEE, 2006.

[Wat60] S. Watanabe. Information theoretical analysis of multivariate correlation. IBM Journal of research and de-
velopment, 4(1):66–82, 1960.

[WB10] Paul L Williams and Randall D Beer. Nonnegative decomposition of multivariate information. arXiv preprint
arXiv:1004.2515, 2010.

[WB11] Paul L Williams and Randall D Beer. Generalized measures of information transfer. arXiv preprint
arXiv:1102.1507, 2011.

[Wyn75] A. D. Wyner. The common information of two dependent random variables. Information Theory, IEEE
Transactions on, 21(2):163–179, 1975.

[Yeu08] Raymond W Yeung. Information theory and network coding. Springer, 2008.

Bibliography 127

dit Documentation, Release 1.1.0

128 Bibliography

Python Module Index

a
dit.algorithms.lattice, 26
dit.algorithms.minimal_sufficient_statistic,

29
dit.algorithms.scipy_optimizers, 31

d
dit, 1
dit.divergences, 82
dit.divergences.cross_entropy, 82
dit.divergences.jensen_shannon_divergence,

84
dit.divergences.kullback_leibler_divergence,

83

m
dit.multivariate, 43
dit.multivariate.caekl_mutual_information,

53
dit.multivariate.coinformation, 46
dit.multivariate.common_informations.exact_common_information,

65
dit.multivariate.common_informations.functional_common_information,

66
dit.multivariate.common_informations.gk_common_information,

58
dit.multivariate.common_informations.mss_common_information,

67
dit.multivariate.common_informations.wyner_common_information,

63
dit.multivariate.deweese, 56
dit.multivariate.dual_total_correlation,

52
dit.multivariate.entropy, 43
dit.multivariate.interaction_information,

55
dit.multivariate.necessary_conditional_entropy,

71
dit.multivariate.secret_key_agreement,

86

dit.multivariate.secret_key_agreement.intrinsic_mutual_informations,
88

dit.multivariate.secret_key_agreement.minimal_intrinsic_mutual_informations,
88

dit.multivariate.secret_key_agreement.reduced_intrinsic_mutual_informations,
88

dit.multivariate.secret_key_agreement.skar_lower_bounds,
87

dit.multivariate.secret_key_agreement.trivial_bounds,
88

dit.multivariate.total_correlation, 50
dit.multivariate.tse_complexity, 70

n
dit.npdist, 23
dit.npscalardist, 9

o
dit.other, 72
dit.other.cumulative_residual_entropy,

72
dit.other.disequilibrium, 75
dit.other.extropy, 76
dit.other.lautum_information, 77
dit.other.perplexity, 78
dit.other.renyi_entropy, 79
dit.other.tsallis_entropy, 81

p
dit.pid, 110
dit.pid.hcs, 118
dit.pid.ibroja, 115
dit.pid.iccs, 117
dit.pid.idep, 117
dit.pid.idownarrow, 114
dit.pid.imin, 114
dit.pid.immi, 114
dit.pid.ipm, 117
dit.pid.iproj, 115
dit.pid.iwedge, 115

129

dit Documentation, Release 1.1.0

dit.profiles, 90
dit.profiles.complexity_profile, 93
dit.profiles.entropy_triangle, 102
dit.profiles.information_partitions, 91
dit.profiles.marginal_utility_of_information,

96
dit.profiles.schneidman, 99

s
dit.shannon.shannon, 37

130 Python Module Index

Index

Symbols
__init__() (Distribution method), 20
__init__() (ScalarDistribution method), 18

C
caekl_mutual_information() (in module

dit.multivariate.caekl_mutual_information), 54
coinformation() (in module

dit.multivariate.coinformation), 48
condition_on() (Distribution method), 25
conditional_cumulative_residual_entropy() (in module

dit.other.cumulative_residual_entropy), 74
conditional_entropy() (in module dit.shannon.shannon),

39
conditional_generalized_cumulative_residual_entropy()

(in module dit.other.cumulative_residual_entropy),
74

cross_entropy() (in module
dit.divergences.cross_entropy), 83

cumulative_residual_entropy() (in module
dit.other.cumulative_residual_entropy), 73

D
deweese_caekl_mutual_information() (in module

dit.multivariate.deweese), 58
deweese_coinformation() (in module

dit.multivariate.deweese), 57
deweese_dual_total_correlation() (in module

dit.multivariate.deweese), 57
deweese_total_correlation() (in module

dit.multivariate.deweese), 57
disequilibrium() (in module dit.other.disequilibrium), 76
dit (module), 1
dit.algorithms.lattice (module), 26
dit.algorithms.minimal_sufficient_statistic (module), 29
dit.algorithms.scipy_optimizers (module), 31
dit.divergences (module), 82
dit.divergences.cross_entropy (module), 82
dit.divergences.jensen_shannon_divergence (module), 84

dit.divergences.kullback_leibler_divergence (module), 83
dit.multivariate (module), 43
dit.multivariate.caekl_mutual_information (module), 53
dit.multivariate.coinformation (module), 46
dit.multivariate.common_informations.exact_common_information

(module), 65
dit.multivariate.common_informations.functional_common_information

(module), 66
dit.multivariate.common_informations.gk_common_information

(module), 58
dit.multivariate.common_informations.mss_common_information

(module), 67
dit.multivariate.common_informations.wyner_common_information

(module), 63
dit.multivariate.deweese (module), 56
dit.multivariate.dual_total_correlation (module), 52
dit.multivariate.entropy (module), 43
dit.multivariate.interaction_information (module), 55
dit.multivariate.necessary_conditional_entropy (module),

71
dit.multivariate.secret_key_agreement (module), 86
dit.multivariate.secret_key_agreement.intrinsic_mutual_informations

(module), 88
dit.multivariate.secret_key_agreement.minimal_intrinsic_mutual_informations

(module), 88
dit.multivariate.secret_key_agreement.reduced_intrinsic_mutual_informations

(module), 88
dit.multivariate.secret_key_agreement.skar_lower_bounds

(module), 87
dit.multivariate.secret_key_agreement.trivial_bounds

(module), 87, 88
dit.multivariate.total_correlation (module), 50
dit.multivariate.tse_complexity (module), 70
dit.npdist (module), 19, 23
dit.npscalardist (module), 9
dit.other (module), 72
dit.other.cumulative_residual_entropy (module), 72
dit.other.disequilibrium (module), 75
dit.other.extropy (module), 76
dit.other.lautum_information (module), 77

131

dit Documentation, Release 1.1.0

dit.other.perplexity (module), 78
dit.other.renyi_entropy (module), 79
dit.other.tsallis_entropy (module), 81
dit.pid (module), 110
dit.pid.hcs (module), 118
dit.pid.ibroja (module), 115
dit.pid.iccs (module), 117
dit.pid.idep (module), 117
dit.pid.idownarrow (module), 114
dit.pid.imin (module), 114
dit.pid.immi (module), 114
dit.pid.ipm (module), 117
dit.pid.iproj (module), 115
dit.pid.iwedge (module), 115
dit.profiles (module), 90
dit.profiles.complexity_profile (module), 93
dit.profiles.entropy_triangle (module), 102
dit.profiles.information_partitions (module), 91
dit.profiles.marginal_utility_of_information (module), 96
dit.profiles.schneidman (module), 99
dit.shannon.shannon (module), 37
dit.util.testing.distributions() (built-in function), 30
dual_total_correlation() (in module

dit.multivariate.dual_total_correlation), 53

E
entropy() (in module dit.multivariate.entropy), 45
entropy() (in module dit.shannon.shannon), 38
exact_common_information() (in module

dit.multivariate.common_informations.exact_common_information),
65

extropy() (in module dit.other.extropy), 77

F
functional_common_information() (in module

dit.multivariate.common_informations.functional_common_information),
66

G
generalized_cumulative_residual_entropy() (in module

dit.other.cumulative_residual_entropy), 73
gk_common_information() (in module

dit.multivariate.common_informations.gk_common_information),
62

I
insert_join() (in module dit.algorithms.lattice), 27
insert_meet() (in module dit.algorithms.lattice), 28
insert_mss() (in module

dit.algorithms.minimal_sufficient_statistic), 30
interaction_information() (in module

dit.multivariate.interaction_information),
55

is_approx_equal() (Distribution method), 21

J
jensen_shannon_divergence() (in module

dit.divergences.jensen_shannon_divergence),
86

join() (in module dit.algorithms.lattice), 27

K
kullback_leibler_divergence() (in module

dit.divergences.kullback_leibler_divergence),
84

L
lautum_information() (in module

dit.other.lautum_information), 78
LMPR_complexity() (in module

dit.other.disequilibrium), 76

M
marginal() (Distribution method), 24
marginalize() (Distribution method), 24
meet() (in module dit.algorithms.lattice), 28
mss() (in module dit.algorithms.minimal_sufficient_statistic),

29
mss_common_information() (in module

dit.multivariate.common_informations.mss_common_information),
67

mutual_information() (in module dit.shannon.shannon),
40

N
necessary_conditional_entropy() (in module

dit.multivariate.necessary_conditional_entropy),
71

P
perplexity() (in module dit.other.perplexity), 79

R
renyi_entropy() (in module dit.other.renyi_entropy), 81
residual_entropy() (in module

dit.multivariate.dual_total_correlation), 69

T
total_correlation() (in module

dit.multivariate.total_correlation), 51
tsallis_entropy() (in module dit.other.tsallis_entropy), 82
tse_complexity() (in module

dit.multivariate.tse_complexity), 70

W
wyner_common_information() (in module

dit.multivariate.common_informations.wyner_common_information),
64

132 Index

	General Information
	Quickstart

	Notation
	Basic Notation
	Advanced Notation

	Distributions
	Numpy-based ScalarDistribution
	Numpy-based Distribution

	Operations
	Marginal
	Conditional
	Join
	Meet
	Minimal Sufficient Statistic

	Finding Examples
	Optimization
	Helper Functions
	Creating Your Own Optimizer

	Information Measures
	Basic Shannon measures
	Multivariate
	Other Measures
	Divergences
	Secret Key Agreement

	Information Profiles
	Shannon Partition and Extropy Partition
	Complexity Profile
	Marginal Utility of Information
	Schneidman Profile
	Entropy Triangle and Entropy Triangle2
	Dependency Decomposition

	Partial Information Decomposition
	Background
	Framework
	Measures
	Partial Entropy Decomposition

	References
	Changelog
	Indices and tables
	Bibliography
	Python Module Index

