

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.
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Conjugate Prior and Posterior

Conjugate prior plays an important role in Bayesian analysis. In Bayesian theory, the distribution :math:p(\theta) is said to be conjugate w.r.t. a conditional distribution (often referred to as the likelihood model) :math:p(x | \theta), if the posterior distribution :math:p(\theta | x) is in the same family as :math:p(\theta). (Interested readers may refer to this wikipedia article <http://en.wikipedia.org/wiki/Conjugate_prior>_ for more details.)


Generic Interface

In Bayesian analysis, canonical parameterization (i.e. the parameterization using canonical parameters) is often the most efficient. With a conjugate prior, the canonical parameters of the posterior are simply the sum of the canonical parameters of the prior and the sufficient statistics obtained from the data (w.r.t. the likelihood model).

Motivated by this, we design the interface as described below to support Bayesian inference based on conjugate models:


	posterior_canon (pri, G, x[, w])


	posterior_canon (pri, ss)

Returns the posterior distribution (in canonical form) w.r.t. the prior pri and the likelihood model G.


	pri:  the prior distribution.


	G:  the likelihood model. In simple cases, G can be just a distribution type.


	x:  the data.


	w:  the sample weights (length(w) should be equal to the number of samples). When w is omitted, the data are unweighted (i.e. all samples have unit weights).


	ss:  pre-computed sufficient statistics.




Note: In general, the returned type need not be the same as typeof(pri). However, when pri is already using the canonical parameters (this is the case for many exponential family distributions), the returned instance is in the same
type as pri.






	posterior (pri, G, x[, w])


	posterior (pri, ss)

Returns the posterior distribution in the same type of pri, based on given data or sufficient statistics.



	posterior_rand (pri, G, x[, w])


	posterior_rand (pri, ss)

Returns a random sample from the posterior distribution based on given data or sufficient statistics.



	posterior_rand! (r, pri, G, x[, w])


	posterior_rand! (r, pri, ss)

Draws random samples from the posterior distribution based on given data or sufficient statistics. The number of samples to draw depends on the size of r.



	posterior_randmodel (pri, G, x[, w])

Returns a distribution constructed using a parameter drawn from the posterior based on given data or sufficient statistics.



	posterior_mode (pri, G, x[, w])


	posterior_mode (pri, ss)

Returns the mode of the posterior distribution based on given data or sufficient statistics.



	fit_map (pri, G, x[, w])

Performs Maximum-a-Posteriori (MAP) estimation based on given data or sufficient statistics.



	complete (pri, G, param)

Returns a completed distribution based on the likelihood model G and a given parameter param.





Notes: There exists an important difference between posterior_rand and posterior_randmodel. The former returns a parameter (which might be a number, a vector, or other appropriate form of the parameters), while the latter returns a distribution instance. In general, the latter will invoke the complete function to create a distribution from a given parameter. The same differences apply to posterior_mode and fit_map.




Examples

We support the conjugate pairs (the list will grow over time as development goes on). We use the posterior function as the example to show how we may work with these pairs (other functions above are also applicable).

# Beta - Bernoulli
posterior(Beta(1.0, 2.0), Bernoulli, x)  # each value in x should be either 0 or 1

# Beta - Binomial
# Here, 10 is the number of trials in each experiment
# x is an array of #successes (each for one experiment)
posterior(Beta(1.0, 2.0), Binomial, (10, x))  

# Dirichlet - Categorical
posterior(Dirichlet(fill(2.0,k)), Categorical, x)  # each value in x is an integer in 1:k

# Dirichlet - Multinomial
# x is a matrix of size (k, n)
# each column of x is the histogram of outcomes in one experiments
posterior(Dirichlet(fill(2.0, k)), Multinomial, x)    

# Gamma - Exponential
# Here, the Gamma prior is over the rate parameter of the Exponential distribution
posterior(Gamma(3.0), Exponential, x)





The cases for Normal are more involved, as they have two parameters: the mean and the variance. Sometimes, one of these parameters are known.

# Normal (over mu) - Normal (sigma is known)
pri = Normal(0., 10.)
sig = 2.0
posterior((pri, sig), Normal, x)   # returns a Normal distribution

# InverseGamma (over sigma) - Normal (mu is known)
mu = 1.5
pri = InverseGamma(2.0, 1.0)
posterior((mu, pri), Normal, x)   # returns an InverseGamma distribution

# Gamma (over sigma) - Normal (mu is known)
mu = 1.5
pri = Gamma(2.0, 1.0)
posterior((mu, pri), Normal, x)   # returns a Gamma distribution





The following examples are for multivariate normal distributions.

# MvNormal (over mu) -- MvNormal (covariance is known)
pri = MvNormal(C0)
posterior((pri, C), MvNormal, x)

# One can also use other types of multivariate normal distributions here
pri = IsoNormal(3, 10.0)
C = DiagNormal([1.0, 2.0, 3.0])
posterior((pri, C), DiagNormal, x)

# InverseWishart (over covariance) -- MvNormal
pri = InverseWishart(df, S)
mu = zeros(3)
posterior((mu, pri), MvNormal, x)

# Wishart (over covariance) -- MvNormal
# Note: Wishart is usually less efficient than InverseWishart as a prior
pri = Wishart(df, S)
mu = zeros(3)
posterior((mu, pri), MvNormal, x)








Implement New Conjugate Pairs

This framework is designed to be extensible.

To implement new conjugate pairs, one need to implement all methods listed in the generic interface above. Generally, one only have to implement posterior_canon(pri, ss) and the methods to compute sufficient statistics. We provide a series of fallback functions to do the rest of the job (see src/conjugates/fallbacks.jl in the source for details). The fallback methods are defined in such a way that they are reasonably efficient for most cases.

However, there do exist cases where the fallbacks are not efficient enough, then one might override some of these fallbacks by providing more efficient specialized methods.







          

      

      

    

  

    
      
          
            
  
Create New Samplers and Distributions

Whereas this package already provides a large collection of common distributions out of box, there are still occasions where you want to create new distributions (e.g your application requires a special kind of distributions, or you want to contribute to this package).

Generally, you don’t have to implement every API method listed in the documentation. This package provides a series of generic functions that turn a small number of internal methods into user-end API methods. What you need to do is to implement this small set of internal methods for your distributions.

By default, Discrete sampleables have support of type Int while Continuous sampleables have support of type Float64. If this assumption does not hold for your new distribution or sampler, or its ValueSupport is neither Discrete nor Continuous, you should implement the eltype method in addition to the other methods listed below.

Note: the methods need to be implemented are different for distributions of different variate forms.


Create a Sampler

Unlike a full fledged distributions, a sampler, in general, only provides limited functionalities, mainly to support sampling.


Univariate Sampler

To implement a univariate sampler, one can define a sub type (say Spl) of Sampleable{Univariate,S} (where S can be Discrete or Continuous), and provide a rand method, as

function rand(s::Spl)
    # ... generate a single sample from s
end





The package already implements a vectorized version of rand! and rand that repeatedly calls the he scalar version to generate multiple samples.




Multivariate Sampler

To implement a multivariate sampler, one can define a sub type of Sampleable{Multivariate,S}, and provide both length and _rand! methods, as

Base.length(s::Spl) = ... # return the length of each sample

function _rand!(s::Spl, x::AbstractVector{T}) where T<:Real
    # ... generate a single vector sample to x
end





This function can assume that the dimension of x is correct, and doesn’t need to perform dimension checking.

The package implements both rand and rand! as follows (which you don’t need to implement in general):

function _rand!(s::Sampleable{Multivariate}, A::DenseMatrix)
    for i = 1:size(A,2)
        _rand!(s, view(A,:,i))
    end
    return A
end

function rand!(s::Sampleable{Multivariate}, A::AbstractVector)
    length(A) == length(s) ||
        throw(DimensionMismatch("Output size inconsistent with sample length."))
    _rand!(s, A)
end

function rand!(s::Sampleable{Multivariate}, A::DenseMatrix)
    size(A,1) == length(s) ||
        throw(DimensionMismatch("Output size inconsistent with sample length."))
    _rand!(s, A)
end

rand(s::Sampleable{Multivariate,S}) where {S<:ValueSupport} =
    _rand!(s, Vector{eltype(S)}(length(s)))

rand(s::Sampleable{Multivariate,S}, n::Int) where {S<:ValueSupport} =
    _rand!(s, Matrix{eltype(S)}(length(s), n))





If there is a more efficient method to generate multiple vector samples in batch, one should provide the following method

function _rand!(s::Spl, A::DenseMatrix{T}) where T<:Real
    # ... generate multiple vector samples in batch
end





Remember that each column of A is a sample.




Matrix-variate Sampler

To implement a multivariate sampler, one can define a sub type of Sampleable{Multivariate,S}, and provide both size and _rand! method, as

Base.size(s::Spl) = ... # the size of each matrix sample

function _rand!(s::Spl, x::DenseMatrix{T}) where T<:Real
    # ... generate a single matrix sample to x
end





Note that you can assume x has correct dimensions in _rand! and don’t have to perform dimension checking, the generic rand and rand! will do dimension checking and array allocation for you.






Create a Distribution

Most distributions should implement a sampler method to improve batch sampling efficiency.

sampler(d::Distribution)






Univariate Distribution

A univariate distribution type should be defined as a subtype of DiscreteUnivarateDistribution or ContinuousUnivariateDistribution.

Following methods need to be implemented for each univariate distribution type:


	rand(d::UnivariateDistribution)


	sampler(d::Distribution)


	pdf(d::UnivariateDistribution, x::Real)


	logpdf(d::UnivariateDistribution, x::Real)


	cdf(d::UnivariateDistribution, x::Real)


	quantile(d::UnivariateDistribution, q::Real)


	minimum(d::UnivariateDistribution)


	maximum(d::UnivariateDistribution)


	insupport(d::UnivariateDistribution, x::Real)




It is also recommended that one also implements the following statistics functions:


	mean(d::UnivariateDistribution)


	var(d::UnivariateDistribution)


	modes(d::UnivariateDistribution)


	mode(d::UnivariateDistribution)


	skewness(d::UnivariateDistribution)


	kurtosis(d::Distribution, ::Bool)


	entropy(d::UnivariateDistribution, ::Real)


	mgf(d::UnivariateDistribution, ::Any)


	cf(d::UnivariateDistribution, ::Any)




You may refer to the source file src/univariates.jl to see details about how generic fallback functions for univariates are implemented.






Create a Multivariate Distribution

A multivariate distribution type should be defined as a subtype of DiscreteMultivarateDistribution or ContinuousMultivariateDistribution.

Following methods need to be implemented for each multivariate distribution type:


	length(d::MultivariateDistribution)


	sampler(d::Distribution)


	Distributions._rand!(d::MultivariateDistribution, x::AbstractArray)


	Distributions._logpdf(d::MultivariateDistribution, x::AbstractArray)




Note that if there exists faster methods for batch evaluation, one should override _logpdf! and _pdf!.

Furthermore, the generic loglikelihood function delegates to _loglikelihood, which repeatedly calls _logpdf. If there is a better way to compute log-likelihood, one should override _loglikelihood.

It is also recommended that one also implements the following statistics functions:


	mean(d::MultivariateDistribution)


	var(d::MultivariateDistribution)


	entropy(d::MultivariateDistribution)


	cov(d::MultivariateDistribution)







Create a Matrix-variate Distribution

A multivariate distribution type should be defined as a subtype of DiscreteMatrixDistribution or ContinuousMatrixDistribution.

Following methods need to be implemented for each matrix-variate distribution type:


	size(d::MatrixDistribution)


	rand(d::MatrixDistribution)


	sampler(d::MatrixDistribution)


	Distributions._logpdf(d::MatrixDistribution, x::AbstractArray)










          

      

      

    

  

    
      
          
            
  
Distribution Fitting

This package provides methods to fit a distribution to a given set of samples. Generally, one may write

d = fit(D, x)





This statement fits a distribution of type D to a given dataset x, where x should be an array comprised of all samples. The fit function will choose a reasonable way to fit the distribution, which, in most cases, is [maximum likelihood estimation] (http://en.wikipedia.org/wiki/Maximum_likelihood).


Maximum Likelihood Estimation

The function fit_mle is for maximum likelihood estimation.


Synopsis

fit_mle(D, x)
fit_mle(D, x, w)








Applicable distributions

The fit_mle method has been implemented for the following distributions:

Univariate:


	Bernoulli


	Beta


	Binomial


	Categorical


	DiscreteUniform


	Exponential


	Normal


	Gamma


	Geometric


	Laplace


	Pareto


	Poisson


	Uniform




Multivariate:


	Multinomial


	MvNormal


	Dirichlet




For most of these distributions, the usage is as described above. For a few special distributions that require additional information for estimation, we have to use modified interface:

fit_mle(Binomial, n, x)        # n is the number of trials in each experiment
fit_mle(Binomial, n, x, w)

fit_mle(Categorical, k, x)     # k is the space size (i.e. the number of distinct values)
fit_mle(Categorical, k, x, w)

fit_mle(Categorical, x)        # equivalent to fit_mle(Categorical, max(x), x)
fit_mle(Categorical, x, w)










Sufficient Statistics

For many distributions, estimation can be based on (sum of) sufficient statistics computed from a dataset. To simplify implementation, for such distributions, we implement suffstats method instead of fit_mle directly:

ss = suffstats(D, x)        # ss captures the sufficient statistics of x
ss = suffstats(D, x, w)     # ss captures the sufficient statistics of a weighted dataset

d = fit_mle(D, ss)          # maximum likelihood estimation based on sufficient stats





When fit_mle on D is invoked, a fallback fit_mle method will first call suffstats to compute the sufficient statistics, and then a fit_mle method on sufficient statistics to get the result. For some distributions, this way is not the most efficient, and we specialize the fit_mle method to implement more efficient estimation algorithms.




Maximum-a-Posteriori Estimation

Maximum-a-Posteriori (MAP) estimation is also supported by this package, which is implemented as part of the conjugate exponential family framework (see :ref:Conjugate Prior and Posterior <ref-conj>).







          

      

      

    

  

    
      
          
            
  
Distributions Package

The Distributions package provides a large collection of probabilistic distributions and related functions. Particularly, Distributions implements:


	Moments (e.g mean, variance, skewness, and kurtosis), entropy, and other properties


	Probability density/mass functions (pdf) and their logarithm (logpdf)


	Moment generating functions and characteristic functions


	Maximum likelihood estimation


	Posterior w.r.t. conjugate prior, and Maximum-A-Posteriori (MAP) estimation








          

      

      

    

  

    
      
          
            
  
[Matrix-variate Distributions](@id matrix-variates)

Matrix-variate distributions are the distributions whose variate forms are Matrixvariate (i.e each sample is a matrix). Abstract types for matrix-variate distributions:


Common Interface

Both distributions implement the same set of methods:

size(::MatrixDistribution)
length(::MatrixDistribution)
mean(::MatrixDistribution)
pdf{T<:Real}(d::MatrixDistribution, x::AbstractMatrix{T})
logpdf{T<:Real}(d::MatrixDistribution, x::AbstractMatrix{T})
rand(::MatrixDistribution, ::Int)








Distributions

Wishart
InverseWishart








Internal Methods (for creating your own matrix-variate distributions)

Distributions._logpdf(d::MatrixDistribution, x::AbstractArray)











          

      

      

    

  

    
      
          
            
  
Mixture Models

A mixture model [http://en.wikipedia.org/wiki/Mixture_model] is a probabilistic distribution that combines a set of component to represent the overall distribution. Generally, the probability density/mass function is given by a convex combination of the pdf/pmf of individual components, as

f_{mix}(x; \Theta, \pi) = \sum_{k=1}^K \pi_k f(x; \theta_k)





A mixture model is characterized by a set of component parameters \Theta=\{\theta_1, \ldots, \theta_K\} and a prior distribution \pi over these components.


Type Hierarchy

This package introduces a type MixtureModel, defined as follows, to represent a mixture model:

abstract type AbstractMixtureModel{VF<:VariateForm,VS<:ValueSupport} <: Distribution{VF, VS} end

struct MixtureModel{VF<:VariateForm,VS<:ValueSupport,Component<:Distribution} <: AbstractMixtureModel{VF,VS}
    components::Vector{Component}
    prior::Categorical
end

const UnivariateMixture    = AbstractMixtureModel{Univariate}
const MultivariateMixture  = AbstractMixtureModel{Multivariate}





Remarks:


	We introduce AbstractMixtureModel as a base type, which allows one to define a mixture model with different internal implementation, while still being able to leverage the common methods defined for AbstractMixtureModel.


	The MixtureModel is a parametric type, with three type parameters:


	VF: the variate form, which can be Univariate, Multivariate, or Matrixvariate.


	VS: the value support, which can be Continuous or Discrete.


	Component: the type of component distributions, e.g. Normal.






	We define two aliases: UnivariateMixture and MultivariateMixture.




With such a type system, the type for a mixture of univariate normal distributions can be written as

MixtureModel{Univariate,Continuous,Normal}








Constructors

MixtureModel(::Vector{Distribution})
MixtureModel(::Type{Distribution}, ::AbstractArray)





Examples

# constructs a mixture of three normal distributions,
# with prior probabilities [0.2, 0.5, 0.3]
MixtureModel(Normal[
   Normal(-2.0, 1.2),
   Normal(0.0, 1.0),
   Normal(3.0, 2.5)], [0.2, 0.5, 0.3])

# if the components share the same prior, the prior vector can be omitted
MixtureModel(Normal[
   Normal(-2.0, 1.2),
   Normal(0.0, 1.0),
   Normal(3.0, 2.5)])

# Since all components have the same type, we can use a simplified syntax
MixtureModel(Normal, [(-2.0, 1.2), (0.0, 1.0), (3.0, 2.5)], [0.2, 0.5, 0.3])

# Again, one can omit the prior vector when all components share the same prior
MixtureModel(Normal, [(-2.0, 1.2), (0.0, 1.0), (3.0, 2.5)])

# The following example shows how one can make a Gaussian mixture
# where all components share the same unit variance
MixtureModel(map(u -> Normal(u, 1.0), [-2.0, 0.0, 3.0]))








Common Interface

All subtypes of AbstractMixtureModel (obviously including MixtureModel) provide the following two methods:

components(::AbstractMixtureModel)
probs(::AbstractMixtureModel)
Distributions.component_type(::AbstractMixtureModel)





In addition, for all subtypes of UnivariateMixture and MultivariateMixture, the following generic methods are provided:

mean(::AbstractMixtureModel)
var(::UnivariateMixture)
length(::MultivariateMixture)
pdf(::AbstractMixtureModel, ::Any)
logpdf(::AbstractMixtureModel, ::Any)
rand(::AbstractMixtureModel)
rand!(::AbstractMixtureModel, ::AbstractArray)








Estimation

There are a number of methods for estimating of mixture models from data, and this problem remains an open research topic.
This package does not provide facilities for estimating mixture models. One can resort to other packages, e.g. GaussianMixtures.jl [https://github.com/davidavdav/GaussianMixtures.jl], for this purpose.







          

      

      

    

  

    
      
          
            
  
[Multivariate Distributions](@id multivariates)

Multivariate distributions are the distributions whose variate forms are Multivariate (i.e each sample is a vector). Abstract types for multivariate distributions:

const MultivariateDistribution{S<:ValueSupport} = Distribution{Multivariate,S}

const DiscreteMultivariateDistribution   = Distribution{Multivariate, Discrete}
const ContinuousMultivariateDistribution = Distribution{Multivariate, Continuous}






Common Interface

The methods listed as below are implemented for each multivariate distribution, which provides a consistent interface to work with multivariate distributions.


Computation of statistics

length(::MultivariateDistribution)
size(::MultivariateDistribution)
mean(::MultivariateDistribution)
var(::MultivariateDistribution)
cov(::MultivariateDistribution)
cor(::MultivariateDistribution)
entropy(::MultivariateDistribution)








Probability evaluation

insupport(::MultivariateDistribution, ::AbstractArray)
pdf(::MultivariateDistribution, ::AbstractArray)
logpdf(::MultivariateDistribution, ::AbstractArray)
loglikelihood(::MultivariateDistribution, ::AbstractMatrix)





Note: For multivariate distributions, the pdf value is usually very small or large, and therefore direct evaluating the pdf may cause numerical problems. It is generally advisable to perform probability computation in log-scale.




Sampling

rand(::MultivariateDistribution)
rand!(::MultivariateDistribution, ::AbstractArray)





Note: In addition to these common methods, each multivariate distribution has its own special methods, as introduced below.






Distributions

Multinomial
Distributions.AbstractMvNormal
MvNormal
MvNormalCanon
MvLogNormal
Dirichlet
Product








Addition Methods


AbstractMvNormal

In addition to the methods listed in the common interface above, we also provide the following methods for all multivariate distributions under the base type AbstractMvNormal:

invcov(::Distributions.AbstractMvNormal)
logdetcov(::Distributions.AbstractMvNormal)
sqmahal(::Distributions.AbstractMvNormal, ::AbstractArray)
rand(::AbstractRNG, ::Distributions.AbstractMvNormal)








MvLogNormal

In addition to the methods listed in the common interface above, we also provide the following methods:

location(::MvLogNormal)
scale(::MvLogNormal)
median(::MvLogNormal)
mode(::MvLogNormal)





It can be necessary to calculate the parameters of the lognormal (location vector and scale matrix) from a given covariance and mean, median or mode. To that end, the following functions are provided.

location{D<:Distributions.AbstractMvLogNormal}(::Type{D},s::Symbol,m::AbstractVector,S::AbstractMatrix)
location!{D<:Distributions.AbstractMvLogNormal}(::Type{D},s::Symbol,m::AbstractVector,S::AbstractMatrix,μ::AbstractVector)
scale{D<:Distributions.AbstractMvLogNormal}(::Type{D},s::Symbol,m::AbstractVector,S::AbstractMatrix)
scale!{D<:Distributions.AbstractMvLogNormal}(::Type{D},s::Symbol,m::AbstractVector,S::AbstractMatrix,Σ::AbstractMatrix)
params{D<:Distributions.AbstractMvLogNormal}(::Type{D},m::AbstractVector,S::AbstractMatrix)










Internal Methods (for creating you own multivariate distribution)

Distributions._rand!(d::MultivariateDistribution, x::AbstractArray)
Distributions._logpdf(d::MultivariateDistribution, x::AbstractArray)











          

      

      

    

  

    
      
          
            
  
Getting Started


Installation

The Distributions package is available through the Julia package system by running Pkg.add("Distributions").
Throughout, we assume that you have installed the package.




Starting With a Normal Distribution

We start by drawing 100 observations from a standard-normal random variable.

The first step is to set up the environment:

julia> using Compat, Random, Distributions

julia> Random.seed!(123) # Setting the seed





Then, we create a standard-normal distribution d and obtain samples using rand:

julia> d = Normal()
Normal(μ=0.0, σ=1.0)

julia> x = rand(d, 100)
100-element Array{Float64,1}:
  0.376264
 -0.405272
 ...





You can easily obtain the pdf, cdf, percentile, and many other functions for a distribution. For instance, the median (50th percentile) and the 95th percentile for the standard-normal distribution are given by:

julia> quantile.(Normal(), [0.5, 0.95])
2-element Array{Float64,1}:
 0.0
 1.64485





The normal distribution is parameterized by its mean and standard deviation. To draw random samples from a normal distribution with mean 1 and standard deviation 2, you write:

julia> rand(Normal(1, 2), 100)








Using Other Distributions

The package contains a large number of additional distributions of three main types:


	Univariate


	Multivariate


	Matrixvariate




Each type splits further into Discrete and Continuous.

For instance, you can define the following distributions (among many others):

julia> Binomial(p) # Discrete univariate
julia> Cauchy(u, b)  # Continuous univariate
julia> Multinomial(n, p) # Discrete multivariate
julia> Wishart(nu, S) # Continuous matrix-variate





In addition, you can create truncated distributions from univariate distributions:

julia> Truncated(Normal(mu, sigma), l, u)





To find out which parameters are appropriate for a given distribution D, you can use fieldnames(D):

julia> fieldnames(Cauchy)
2-element Array{Symbol,1}:
 :μ
 :β





This tells you that a Cauchy distribution is initialized with location μ and scale β.




Estimate the Parameters

It is often useful to approximate an empirical distribution with a theoretical distribution. As an example, we can use the array x we created above and ask which normal distribution best describes it:

julia> fit(Normal, x)
Normal(μ=0.036692077201688635, σ=1.1228280164716382)





Since x is a random draw from Normal, it’s easy to check that the fitted values are sensible. Indeed, the estimates [0.04, 1.12] are close to the true values of [0.0, 1.0] that we used to generate x.







          

      

      

    

  

    
      
          
            
  
Truncated Distributions

The package provides the Truncated type to represented truncated distributions, which is defined as below:

struct Truncated{D<:UnivariateDistribution,S<:ValueSupport} <: Distribution{Univariate,S}
    untruncated::D      # the original distribution (untruncated)
    lower::Float64      # lower bound
    upper::Float64      # upper bound
    lcdf::Float64       # cdf of lower bound
    ucdf::Float64       # cdf of upper bound

    tp::Float64         # the probability of the truncated part, i.e. ucdf - lcdf
    logtp::Float64      # log(tp), i.e. log(ucdf - lcdf)
end





A truncated distribution can be constructed using the constructor Truncated as follows:

Truncated





Many functions, including those for the evaluation of pdf and sampling, are defined for all truncated univariate distributions:


	maximum(::UnivariateDistribution)


	minimum(::UnivariateDistribution)


	insupport(::UnivariateDistribution, x::Any)


	pdf(::UnivariateDistribution, ::Real)


	logpdf(::UnivariateDistribution, ::Real)


	cdf(::UnivariateDistribution, ::Real)


	logcdf(::UnivariateDistribution, ::Real)


	ccdf(::UnivariateDistribution, ::Real)


	logccdf(::UnivariateDistribution, ::Real)


	quantile(::UnivariateDistribution, ::Real)


	cquantile(::UnivariateDistribution, ::Real)


	invlogcdf(::UnivariateDistribution, ::Real)


	invlogccdf(::UnivariateDistribution, ::Real)


	rand(::UnivariateDistribution)


	rand!(::UnivariateDistribution, ::AbstractArray)


	median(::UnivariateDistribution)




Functions to compute statistics, such as mean, mode, var, std, and entropy, are not available for generic truncated distributions. Generally, there are no easy ways to compute such quantities due to the complications incurred by truncation.
However, these methods are supported for truncated normal distributions.

TruncatedNormal









          

      

      

    

  

    
      
          
            
  
Type Hierarchy

All samplers and distributions provided in this package are organized into a type hierarchy described as follows.


Sampleable

The root of this type hierarchy is Sampleable. The abstract type Sampleable subsumes any types of objects from which one can draw samples, which particularly includes samplers and distributions. Formally, Sampleable is defined as

abstract type Sampleable{F<:VariateForm,S<:ValueSupport} end





It has two type parameters that define the kind of samples that can be drawn therefrom.


VariateForm

F <: VariateForm specifies the form of the variate, which can be one of the following:

Type | A single sample | Multiple samples
— | — |—
Univariate | a scalar number | A numeric array of arbitrary shape, each element being a sample
Multivariate | a numeric vector | A matrix, each column being a sample
Matrixvariate | a numeric matrix | An array of matrices, each element being a sample matrix




ValueSupport

S <: ValueSupport specifies the support of sample elements, which can be either of the following:

Type | Element type | Descriptions
— | — | —
Discrete | Int | Samples take discrete values
Continuous | Float64 | Samples take continuous real values

Multiple samples are often organized into an array, depending on the variate form.

The basic functionalities that a sampleable object provides is to retrieve information about the samples it generates and to draw samples. Particularly, the following functions are provided for sampleable objects:

length(::Sampleable)
size(::Sampleable)
nsamples(::Type{Sampleable}, x::Any)
eltype(::Sampleable)
rand(::Sampleable)
rand!(::Sampleable, ::AbstractArray)










Distributions

We use Distribution, a subtype of Sampleable as defined below, to capture probabilistic distributions. In addition to being sampleable, a distribution typically comes with an explicit way to combine its domain, probability density functions, among many other quantities.

abstract type Distribution{F<:VariateForm,S<:ValueSupport} <: Sampleable{F,S} end





To simplify the use in practice, we introduce a series of type alias as follows:

const UnivariateDistribution{S<:ValueSupport}   = Distribution{Univariate,S}
const MultivariateDistribution{S<:ValueSupport} = Distribution{Multivariate,S}
const MatrixDistribution{S<:ValueSupport}       = Distribution{Matrixvariate,S}
const NonMatrixDistribution = Union{UnivariateDistribution, MultivariateDistribution}

const DiscreteDistribution{F<:VariateForm}   = Distribution{F,Discrete}
const ContinuousDistribution{F<:VariateForm} = Distribution{F,Continuous}

const DiscreteUnivariateDistribution     = Distribution{Univariate,    Discrete}
const ContinuousUnivariateDistribution   = Distribution{Univariate,    Continuous}
const DiscreteMultivariateDistribution   = Distribution{Multivariate,  Discrete}
const ContinuousMultivariateDistribution = Distribution{Multivariate,  Continuous}
const DiscreteMatrixDistribution         = Distribution{Matrixvariate, Discrete}
const ContinuousMatrixDistribution       = Distribution{Matrixvariate, Continuous}





All methods applicable to Sampleable also applies to Distribution. The API for distributions of different variate forms are different (refer to [univariates](@ref univariates), [multivariates](@ref multivariates), and [matrix](@ref matrix-variates) for details).







          

      

      

    

  

    
      
          
            
  
[Univariate Distributions](@id univariates)

Univariate distributions are the distributions whose variate forms are Univariate (i.e each sample is a scalar). Abstract types for univariate distributions:

const UnivariateDistribution{S<:ValueSupport} = Distribution{Univariate,S}

const DiscreteUnivariateDistribution   = Distribution{Univariate, Discrete}
const ContinuousUnivariateDistribution = Distribution{Univariate, Continuous}






Common Interface

A series of methods are implemented for each univariate distribution, which provide
useful functionalities such as moment computation, pdf evaluation, and sampling
(i.e. random number generation).


Parameter Retrieval

Note: params are defined for all univariate distributions, while other parameter
retrieval methods are only defined for those distributions for which these parameters make sense.
See below for details.

params(::UnivariateDistribution)
scale(::UnivariateDistribution)
location(::UnivariateDistribution)
shape(::UnivariateDistribution)
rate(::UnivariateDistribution)
ncategories(::UnivariateDistribution)
ntrials(::UnivariateDistribution)
dof(::UnivariateDistribution)





For distributions for which success and failure have a meaning,
the following methods are defined:

succprob(::DiscreteUnivariateDistribution)
failprob(::DiscreteUnivariateDistribution)








Computation of statistics

maximum(::UnivariateDistribution)
minimum(::UnivariateDistribution)
extrema(::UnivariateDistribution)
mean(::UnivariateDistribution)
var(::UnivariateDistribution)
std(::UnivariateDistribution)
median(::UnivariateDistribution)
modes(::UnivariateDistribution)
mode(::UnivariateDistribution)
skewness(::UnivariateDistribution)
kurtosis(::UnivariateDistribution)
isplatykurtic(::UnivariateDistribution)
isleptokurtic(::UnivariateDistribution)
ismesokurtic(::UnivariateDistribution)
entropy(::UnivariateDistribution)
entropy(::UnivariateDistribution, ::Bool)
mgf(::UnivariateDistribution, ::Any)
cf(::UnivariateDistribution, ::Any)








Probability Evaluation

insupport(::UnivariateDistribution, x::Any)
pdf(::UnivariateDistribution, ::Real)
logpdf(::UnivariateDistribution, ::Real)
loglikelihood(::UnivariateDistribution, ::AbstractArray)
cdf(::UnivariateDistribution, ::Real)
logcdf(::UnivariateDistribution, ::Real)
ccdf(::UnivariateDistribution, ::Real)
logccdf(::UnivariateDistribution, ::Real)
quantile(::UnivariateDistribution, ::Real)
cquantile(::UnivariateDistribution, ::Real)
invlogcdf(::UnivariateDistribution, ::Real)
invlogccdf(::UnivariateDistribution, ::Real)








Sampling (Random number generation)

rand(::UnivariateDistribution)
rand!(::UnivariateDistribution, ::AbstractArray)










Continuous Distributions

Arcsine
Beta
BetaPrime
Biweight
Cauchy
Chi
Chisq
Cosine
Epanechnikov
Erlang
Exponential
FDist
Frechet
Gamma
GeneralizedExtremeValue
GeneralizedPareto
Gumbel
InverseGamma
InverseGaussian
Kolmogorov
KSDist
KSOneSided
Laplace
Levy
Logistic
LogNormal
NoncentralBeta
NoncentralChisq
NoncentralF
NoncentralT
Normal
NormalCanon
NormalInverseGaussian
Pareto
Rayleigh
Semicircle
SymTriangularDist
TDist
TriangularDist
Triweight
Uniform
VonMises
Weibull








Discrete Distributions

Bernoulli
succprob
failprob
BetaBinomial
Binomial
Categorical
DiscreteUniform
DiscreteNonParametric
Geometric
Hypergeometric
NegativeBinomial
Poisson
PoissonBinomial
Skellam






Vectorized evaluation

Vectorized computation and inplace vectorized computation have been deprecated.
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