

 Navigation

 	
 index

 	
 next |

 	Comodojo dispatcher 3.0.0 documentation

Comodojo dispatcher docs

[image: _images/dispatcher_logo.png]
Comodojo dispatcher is a service-oriented REST microframework designed to be simple to use, extensible and fast.

Before version 3 project name was “SimpleDataRestDispatcher” and it was mainly oriented to JSON and XML pure-data REST services. Since version 3.0, dispatcher has become a totally different project, designed to publish and manage (almost) any kind of data.

Dispatcher is structured on top of following main concepts:

	A dispatcher instance is a sort of multi-service container; services are grouped in bundles, managed by composer and installed from the project package. Installing or removing a bundle should never stop or interfere with other bundles or the dispatcher itself.

	Services are the central point of framework’s logic: they are independent, callable php classes that may return data (in any form) or errors (exception); a service must extend the ComodojoDispatcherService class.

	Routes are paths (urls) that may be associated to a service, redirect to another location or generate errors (exception); in practice, routes are only paths that forward a request to a service without any knowledge of the service’s logic.

	Services and routes are completely separated. It means that a single service may be reached via multiple routes and it’s life does not depend on any of them.

	In dispatcher, (almost) everything about requests, routes and results can be modified using events’ subsystem; plugins are made to hook those events and interact with the framework. They can also be packed in bundles and managed using composer.

Contents:

	Installation
	Requirements

	Installing via composer

	Configuration
	Directory structure

	Configuration files

	General properties

	Logging

	Folders

	Cache

	How dispatcher works

	Writing services

	Routing requests
	mod_rewrite

	Attributes and Parameters

	Defining routes

	Predefined routes

	Autorouting

	Conditional routing

	Router-side attributes inject

	The event system
	How dispatcher emits events

	The complete event list

	Plugins

 Copyright 2015, Marco Giovinazzi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Comodojo dispatcher 3.0.0 documentation

Installation

Comodojo dispatcher could be installed via composer [https://getcomposer.org/], using dedicated dispatcher.project [https://github.com/comodojo/dispatcher.project] package.

Requirements

To work properly, dispatcher requires an apache webserver with PHP >=5.3.0, installed as apache module or cgi/fastcgi.

It may work on different webservers like nginx (ensure to convert the .htaccess logic if you plan to use rewrite mode), but this is actually untested.

Installing via composer

First install composer [https://getcomposer.org/], then create a new dispatcher.project [https://github.com/comodojo/dispatcher.project] using this command:

php composer.phar create-project comodojo/dispatcher.project dispatcher

This will install a new instance of dispatcher and required dependencies in “dispatcher” folder.

If you need also default content and tests, install the package:

php composer.phar require comodojo/dispatcher.servicebundle.default

Downloading as archive

Stable releases are published on dispatcher.comodojo.org [https://dispatcher.comodojo.org].

To install, download latest package and type (in the package folder):

php composer.phar install

 Copyright 2015, Marco Giovinazzi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Comodojo dispatcher 3.0.0 documentation

Configuration

This section covers the framework’s configuration if installed via dispatcher.project [https://github.com/comodojo/dispatcher.project] package.

If you are using dispatcher.framework [https://github.com/comodojo/dispatcher.framework] as a library, you should define constants, directives and folders manually.

Directory structure

The project package will create the following directory structure (excluding files):

dispatcher/
 - DispatcherInstaller/ => contains the DispatcherInstaller class, fired when composer install/update/remove packages
 - cache/ => cache files will be written here; ensure apache user can write here
 - configs/ => configuration files' folder
 - logs/ => where monolog (if enabled) will write logs
 - plugins/ => this folder is dedicated to plugins manually installed or created by user
 - services/ => this folder is dedicated to services manually installed or created by user
 - templates/ => this folder is dedicated to templates manually installed or created by user
 - vendor/ => composer standard vendor folder
 - index.php
 - [...]

Note

It’s important to understand that plugin/service/template packages will be installed in vendor folder, respecting the composer installation standard. This because mixing user files and package files could be a not optimal solution to handle updates or customization. The framework can address services and plugins using a relative/absolute path convention, to keep installer aware of where packages are located.

Configuration files

Dispatcher comes out of the box with a default configuration that can be edited to change global behaviour of framework.

Configuration files are contained in configs folder:

	dispatcher-config.php: contains constants defined to change some aspect of framework (like paths, logging, ...)

	plugins-config.php: (should) contain plugins init scripts; initially empty

	routing-config.php: (should) contain declaration of routes; initially empty

These files are loaded at boot time.

General properties

DISPATCHER_REAL_PATH

Dispatcher real path.

define("DISPATCHER_REAL_PATH",realpath(dirname(__FILE__))."/../");

DISPATCHER_BASEURL

Dispatcher baseurl. If not defined, dispatcher will try to resolve absolute base url itself (default).

define("DISPATCHER_BASEURL","");

DISPATCHER_ENABLED

If false, dispatcher will not route any request and will reply with an 503 Service Temporarily Unavailable status code.

define ('DISPATCHER_ENABLED', true);

DISPATCHER_USE_REWRITE

If true, dispatcher will use rewrite module to acquire service path and attibutes.

If you prefer to turn this feature off, remember to remove/rename .htaccess file in installation’s folder and/or disable the apache rewrite module.

define ('DISPATCHER_USE_REWRITE', true);

DISPATCHER_AUTO_ROUTE

Enable/disable the autoroute function; if true, dispatcher will try to route requests to not declared services using filenames.

define('DISPATCHER_AUTO_ROUTE', false);

DISPATCHER_DEFAULT_ENCODING

Sets the system-wide default encoding.

define('DISPATCHER_DEFAULT_ENCODING', 'UTF-8');

DISPATCHER_SUPPORTED_METHODS

HTTP supported methods.

This represent the pool of framework-supported HTTP methods, but each service can implement one or more methods independently. This value may change the Allow Response Header in case of 405 response.

Change this value only if:
- you need to support other http methods (like PUSH)
- you want to disable globally a subset of HTTP methods (i.e. if you want to disable PUT requests globally, you can omit it from this definition; method will be ignored even though service implements it - or implements the ANY wildcard).

Note

a service that not implements one of this methods, in case of unsupported method request, will reply with a 501-not-implemented response; this behaviour is managed automatically.

Warning

this constant should be in plain, uppercased, comma separated, not spaced text.

Warning

DO NOT USE a “ANY” method here or it will override the embedded wildcard ANY.

define('DISPATCHER_SUPPORTED_METHODS', 'GET,PUT,POST,DELETE');

Logging

DISPATCHER_LOG_ENABLED

enable/disable logger (monolog).

define('DISPATCHER_LOG_ENABLED', false);

DISPATCHER_LOG_NAME

Log channel name.

define('DISPATCHER_LOG_NAME', 'dispatcher');

DISPATCHER_LOG_TARGET

Log target (file or null for error_log).

define('DISPATCHER_LOG_TARGET', null)

DISPATCHER_LOG_LEVEL

Debug level, as in psr-3 [http://www.php-fig.org/psr/psr-3/] standard.

define('DISPATCHER_LOG_LEVEL', 'ERROR')

Folders

DISPATCHER_CACHE_FOLDER

Cache folder.

define('DISPATCHER_CACHE_FOLDER', DISPATCHER_REAL_PATH."cache/");

DISPATCHER_SERVICES_FOLDER

Services folder.

define('DISPATCHER_SERVICES_FOLDER', DISPATCHER_REAL_PATH."services/");

DISPATCHER_PLUGINS_FOLDER

Plugins folder.

define('DISPATCHER_PLUGINS_FOLDER', DISPATCHER_REAL_PATH."plugins/");

DISPATCHER_TEMPLATES_FOLDER

Templates folder.

define('DISPATCHER_TEMPLATES_FOLDER', DISPATCHER_REAL_PATH."templates/");

DISPATCHER_LOG_FOLDER

Logs folder.

define('DISPATCHER_LOG_FOLDER', DISPATCHER_REAL_PATH."logs/");

Cache

DISPATCHER_CACHE_ENABLED

Enable/disable cache support.

define('DISPATCHER_CACHE_ENABLED', true);

DISPATCHER_CACHE_DEFAULT_TTL

Default cache time to live, in seconds.

define('DISPATCHER_CACHE_DEFAULT_TTL', 600);

DISPATCHER_CACHE_FAIL_SILENTLY

If true, cache will fail silently in case of error without throwing exception.

define('DISPATCHER_CACHE_FAIL_SILENTLY', true);

 Copyright 2015, Marco Giovinazzi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Comodojo dispatcher 3.0.0 documentation

How dispatcher works

(page yet to be written)

 Copyright 2015, Marco Giovinazzi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Comodojo dispatcher 3.0.0 documentation

Writing services

(page yet to be written)

 Copyright 2015, Marco Giovinazzi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Comodojo dispatcher 3.0.0 documentation

Routing requests

Dispatcher includes a minimal embedded URL router that maps urls to services, using an approach slightly different from the one used in other common framework.

Instead of map methods (or functions) to full uris (plus HTTP verbs), dispatcher retrieves routes using only the first path in the URI. In practice, this variable select the route the request will follow.

This kind of next-hop approach leaves all logic to the service itself (for example, the ability to serve POST requests instead of GET), decoupling routing and service processing.

Note

To understand how to handle HTTP methods jump to the service section.

mod_rewrite

Dispatcher uses the apache mod_rewrite extension to acquire requests and route those to relative services.

It is also possible to disable this feature and force dispatcher to reply only to requests directed to index.php, settting the
DISPATCHER_USE_REWRITE constant to false.

In this case, parameters should be passed as a standard http query-string *key=value” pairs.

Attributes and Parameters

TBW

Defining routes

To define a new route, the setRoute() method should be invoked before the dispatch().

Syntax of method is:

setRoute([route], [type], [target], [parameters], [relative])

So, an example route could be:

$dispatcher->setRoute("helloworld", "ROUTE", "HelloWorld.php", array(), true);

Predefined routes

The router supports 2 special routes:

	Landing route “” (empty string)

	Default route “default”

Only the default route is initially defined and lands to a 404 “Service not found” error.

Autorouting

If enabled setting constant DISPATCHER_AUTO_ROUTE, dispatcher will try to map requests to service files using file names.

Only files in the DISPATCHER_SERVICES_FOLDER are taken into account.

Conditional routing

Thanks to the event subsystem, dispatcher can force or totally override the routing logic.

This snippet (from dispatcher.plugin.test [https://github.com/comodojo/dispatcher.plugin.test]) simply change the target service if a special request header is provided.:

public static function conditional_routing_header($ObjectRoute) {

 $headers = self::getRequestHeaders();

 if (array_key_exists("C-Conditional-Route", $headers)) {

 $ObjectRoute
 ->setClass("test_route_second")
 ->setTarget("vendor/comodojo/dispatcher.servicebundle.test/services/test_route_second.php");

 }

 return $ObjectRoute;

}

Router-side attributes inject

TBW

 Copyright 2015, Marco Giovinazzi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Comodojo dispatcher 3.0.0 documentation

The event system

Dispatcher has an integrated event’s system that can be used to extend its features by plugins.

When a client calls dispatcher, request, route and response are modeled as objects and provided to the callback function hooked to relative event.

Dispatcher starts to emit events as soon as a request is received.

Let’s consider an example:

global $dispatcher;

function custom_404($ObjectError) {

 $error_page = file_get_contents(DISPATCHER_REAL_PATH."vendor/comodojo/dispatcher.plugin.test/resources/html/404.html");

 $ObjectError->setContent($error_page);

 return $ObjectError;

}

$dispatcher->addHook("dispatcher.error.404", "custom_404");

In this example, a plugin will set a custom content in default 404 error page by:

	catching event “dispatcher.error.404”;

	replacing error content using “setContent()” method;

	returning to framework the modified object.

How dispatcher emits events

By default, dispatcher uses this schema to emit events:

[framework].[event].[notification*|*marker]

In practice:

	[framework] will always be populated by the string dispatcher;

	[event] represents the event macroclass; possible values are request, routingtable, serviceroute, result, route, redirect or error.

	[notification|marker] is a detailed view of what is happening; it can assume different values, like HTTP return codes (like 404 in the previous example for a “not found” response.

There are also two special category of events:

	start event (dispatcher), that will fire at framework startup;

	markers, fired to express a particular condition (like # that denote the end of specific event’s macroclass).

Each type of event expects the callback to return a particular kind of object. If something different is provided, callback’s result will be discarded.

Note

If a single event is hooked to multiple callbacks, it will behave as a chain: the first result (if any) will be the input of the second callback and so on.

Sone examples are:

	dispatcher.serviceroute - a level 2 event that expose the route retrieved for the current request

	dispatcher.error.404 - a level 3 event for a not found response

	dispatcher.result.# - a level 3 event that fires after every other callback

The complete event list

	dispatcher receive a request

	dispatcher - marks the frameworks has entered the running cycle and exposes the whole ComodojoDispatcherDispatcher instance without expecting any return value

	Request is modeled as an instance of ComodojoDispatcherObjectRequestObjectRequest

	dispatcher.request - provides and expects an instance of ComodojoDispatcherObjectRequestObjectRequest

	dispatcher.request.[METHOD] - provides and expects an instance of ComodojoDispatcherObjectRequestObjectRequest

	dispatcher.request.[SERVICE] - provides and expects an instance of ComodojoDispatcherObjectRequestObjectRequest

	dispatcher.request.# - provides a ComodojoDispatcherObjectRequestObjectRequest, will fire after every other callback discarding returned data

	An instance of ComodojoDispatcherObjectRoutingTableObjectRoutingTable is created

	dispatcher.routingtable - provides and expects an instance of ComodojoDispatcherObjectRoutingTableObjectRoutingTable

	A route was retrieved from routingtable

	dispatcher.serviceroute - provides and expects an instance of ComodojoDispatcherObjectRouteObjectRoute

	dispatcher.serviceroute.[TYPE] - provides and expects an instance of ComodojoDispatcherObjectRouteObjectRoute

	dispatcher.serviceroute.[SERVICE] - provides and expects an instance of ComodojoDispatcherObjectRouteObjectRoute

	dispatcher.serviceroute.# - provides a ComodojoDispatcherObjectRouteObjectRoute, will fire after every other callback and discarding returned data

	Once a route is retrieved, dispatcher will run a service, redirect to another location or return an error; in any case, a result object that implements the ComodojoDispatcherObjectResultObjectResultInterface is inited, provided to the callback and expected as result.

	dispatcher.result

	In case of success

	dispatcher.route

	dispatcher.route.[STATUSCODE]

	In case of redirect

	dispatcher.redirect

	dispatcher.redirect.[STATUSCODE]

	In case of error

	dispatcher.error

	dispatcher.error.[STATUSCODE]

	dispatcher.result.# will fire after every other callback and expects an instance of ComodojoDispatcherObjectResultObjectResultInterface

	result is returned to client

 Copyright 2015, Marco Giovinazzi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Comodojo dispatcher 3.0.0 documentation

Plugins

(page yet to be written)

 Copyright 2015, Marco Giovinazzi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Comodojo dispatcher 3.0.0 documentation

Index

 Copyright 2015, Marco Giovinazzi.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

_images/dispatcher_logo.png

_static/file.png

_static/plus.png

