

The Dispa-SET model

The Dispa-SET model is an open-source unit commitment and optimal dispatch model focused on the balancing and flexibility problems in European grids. Its pre and post-processing tools are written in Python and the main solver can be called via GAMS.

Dispa-SET is mainly developed within the Joint Research Centre of the EU Commission, in close collaboration with the University of Liège and the KU Leuven (Belgium).

Downloading Dispa-SET

The public version of Dispa-SET can be downloaded in the Releases section or from its github repository (using the Clone or Download button on the right side of the screen):
https://github.com/energy-modelling-toolkit/Dispa-SET

How to cite

Depending on the version that was used, one of the following JRC technical reports can be selected to cite Dispa-SET:

	Kavvadias, K., Hidalgo Gonzalez, I., Zucker, A. and Quoilin, S., Integrated modelling of future EU power and heat systems: The Dispa-SET v2.2 open-source model, JRC Technical Report, EU Commission, 2018

	Quoilin, S., Hidalgo Gonzalez, I. and Zucker, A., Modelling Future EU Power Systems Under High Shares of Renewables: The Dispa-SET 2.1 open-source model, JRC Technical Report, EU Commission, 2017

	Hidalgo González, I., Quoilin, S. and Zucker, A., Dispa-SET 2.0: unit commitment and power dispatch model, Tech. rep., Publications Office of the European Union, 2014.

Documentation

A pdf documentation of the model is available in the 2017 JRC technical report: Modelling Future EU Power Systems Under High Shares of Renewables [https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/modelling-future-eu-power-systems-under-high-shares-renewables-dispa-set-21-open-source].

[image: _images/report2.jpg]
In addition, the lastest model documentation can be obtained by running sphinx in the Docs folder of the project or by consulting the online documentation. This documentation corresponds to the latest available public version of Dispa-SET:
http://www.dispaset.eu/latest/index.html

Main contributors:

	Sylvain Quoilin [http://www.squoilin.eu] (KU Leuven, Belgium))

	Konstantinos Kavvadias (Joint Research Centre, EU Commission)

	Matija Pavičević (KU Leuven, Belgium)

Contents

	Overview

	Releases

	Getting Started

	Input Data

	Model Description

	Model Formulations

	Implementation and interface

	Mid-term hydrothermal coordination

	Case Studies

	dispaset package

Indices and tables

	Index

	Module Index

	Search Page

Overview

	Organization

	Joint Research Centre [https://ec.europa.eu/jrc/en],
European Commission [https://ec.europa.eu/]

	Version

	2.4 (2.4)

	Date

	Jan 26, 2022

The Dispa-SET model is mainly developed within the “Joint Research Centre” of the European Commission and focuses on the balancing and flexibility problems in European grids 1.

It is written in GAMS and uses csv files for input data handling. The optimisation is defined as a Linear Programming (LP) or Mixed-Integer Linear Programming (MILP) problem, depending on the desired level of accuracy and complexity. Continuous variables include the individual unit dispatched power, the shedded load and the curtailed power generation. The binary variables are the commitment status of each unit. The main model features can be summarized as follows:

Features

	Minimum and maximum power for each unit

	Power plant constraints: minimum power, ramping limits, Minimum up/down times, start-up, no-load costs

	Outages (forced and planned) for each units

	Reserves (spinning & non-spinning) up and down

	Load Shedding

	Curtailment

	Pumped-hydro storage

	Non-dispatchable units (e.g. wind turbines, run-of-river, etc.)

	Multi-nodes with capacity constraints on the lines (congestion)

	Constraints on the targets for renewables and/or CO2 emissions

	CHP power plants and thermal storage

	Power-to-heat (heat pump, electrical heater) and thermal storage

	DSM-ready demand

	Integrated mid-term scheduling and short-term optimal dispatch

	Different model formulations and levels of clustering complexity generated from the same dataset.

The demand is assumed to be inelastic to the price signal. The MILP objective function is therefore the total generation cost over the optimization period.

Libraries used and requirements

	Python 3.7 [https://www.anaconda.com/distribution/]

	pandas [http://pandas.pydata.org] for input and result data handling

	matplotlib [http://matplotlib.org] for plotting

	GAMS_api [https://github.com/kavvkon/gams-api] for the communication with GAMS

the above are auto installed in a conda environment if you follow the instructions of the Quick start.

Dispa-SET in the scientific literature

In the past years, Dispa-SET has been used in various scientific works covering different geographical areas and with different focus points. The works for which scientific articles have been published are summarized hereunder:

	Hydropower for flexibility services in the European power system 2.

	Generating stylized flexibility constraints for the JRC-EU-TIMES model 3 4.

	Impact of Electric Vehicle deployment in The Netherlands 5.

	Open-source model of the Balkans area, with some simulations involving high shares of renewables 6 7.

	Specific country studies for RES integration (Belgium, Greece) 3 9

	Comparison between model formulations and levels of clustering 10 11 20

	Benders decomposition for capacity expansion 14

	The water-energy nexus in Greece and in Africa 8 9 15

	Soft-linking between JRC-EU-TIMES and Dispa-SET at the EU level 17

	Quantifying the flexibility provided by coupling the heating and power sectors 12 13 18 19 16

	Power systems adequacy and flexibility assessments in developing countrie (Africa, Bolivia) 15 21

Ongoing developments

The Dispa-SET project is relatively recent, and a number of improvements will be brought to the project in a close future:

	Grid constraints (DC power-flow)

	Stochastic scenarios

	Modelling of investment and capacity expansion

	Modeling of the ancillary markets

Licence

Dispa-SET is a free software licensed under the “European Union Public Licence” EUPL v1.2. It
can be redistributed and/or modified under the terms of this license.

Main Developers

	Sylvain Quoilin [http://squoilin.eu] (University of Liège, KU Leuven)

	Konstantinos Kavvadias [http://kavvadias.eu] (European Commission, Joint Research Centre)

	Matija Pavičević (KU Leuven, Belgium)

References

	1

	Quoilin, S., Hidalgo Gonzalez, I., & Zucker, A. (2017). Modelling Future EU Power Systems Under High Shares of Renewables: The Dispa-SET 2.1 open-source models. Publications Office of the European Union.

	2

	Sánchez Pérez, A. (2017), Modelling Hydropower in detail to assess its contribution to flexibility services in the European power system. Master Thesis, University of Utrecht, Netherlands.

	3(1,2)

	Quoilin, S., Nijs, W., Gonzalez, I. H., Zucker, A. and Thiel, C. (2015), Evaluation of simplified flexibility evaluation tools using a unit commitment model, In 12th International Conference on the European Energy Market (EEM), pp. 1 5.

	4

	Quoilin, S., Nijs, W. and Zucker, A. (2017), Evaluating flexibility and adequacy in future EU power systems: model coupling and long-term forecasting, In Proceedings of the 2017 ECOS Conference, San Diego.

	5

	Beltramo, A., Julea, A., Refa, N., Drossinos, Y., Thiel, C. and Quoilin, S. (2017),`Using electric vehicles as flexible resource in power systems: A case study in the Netherlands, In 14th International Conference on the European Energy Market (EEM).

	6

	Pavičević, M., Tomić, I., Quoilin, S., Zucker, A. and Pukšec, T. and Krajačić, G. (2017), Applying the Dispa-SET model on the Western Balkans power systems, In Proceedings of the 2017 SDEWES Conference

	7

	Tomić, I., Pavičević, M., Quoilin, S., Zucker, A., Krajačić, G., Pukšec, T. and Duić, N. (2017), Applying the Dispa-SET model on the seven countries from the South East Europe, In 8th Energy Planning and Modeling of Energy Systems-Meeting, Belgrade

	8

	Ricardo Fernandez Blanco Carramolino, Konstantinos Kavvadias, Ignacio Hidalgo Gonzalez (2017). Water-related modelling in electric power systems: WATERFLEX Exploratory Research Project.

	9(1,2)

	Ricardo Fernandez Blanco Carramolino, Konstantinos Kavvadias, I Hidalgo Gonzalez (2017). Quantifying the water-power linkage on hydrothermal power systems: A Greek case study. Applied Energy.

	10

	Pavičević, M., Quoilin, S. and Pukšec, T., (2018). Comparison of Different Power Plant Clustering Approaches for Modeling Future Power Systems, Proceedings of the 3rd SEE SDEWES Conference, Novi Sad.

	11

	Pavičević, M., Kavvadias, K. and Quoilin, S. (2018). Impact of model formulation on power system simulations - Example with the Dispa-SET Balkans model, EMP-E conference 2018: Modelling Clean Energy Pathways, Brussels.

	12

	Juan Pablo Jiménez Navarro, Konstantinos Kavvadias, Sylvain Quoilin, Zucker Andreas (2018). The joint effect of centralised cogeneration plants and thermal storage on the efficiency and cost of the power system. Energy.

	13

	Kavvadias, K., Jimenez Navarro, J.-P., Zucker, A., & Quoilin, S. (2018). Case study on the impact of cogeneration and thermal storage on the flexibility of the power system (KJ-NA-29082-EN-N). Netherlands: Publication Office of the European Commission.

	14

	Matthias Zech, Acceleration strategies of the Generation Expansion Planning problem using Benders Decomposition, Master Thesis, Dresden University of Technology, 2018

	15(1,2)

	Matteo De Felice, Iratxe Gonzalez-Aparicio, Thomas Huld, Sebastian Busch, Ignacio Hidalgo-Gonzalez . Analysis of the water-power nexus in the West African power pool. JRC Technical Report, 2019.

	16

	Matija Pavičević, Juan-Pablo Jimenez, Konstantinos Kavvadias, Sylvain Quoilin (2019). Modeling the flexibility offered by coupling the heating sector and the power sector: an assessment at the EU level. 5th International Conference On Smart Energy Systems.

	17

	Matija Pavičević, Wouter Nijs, Konstantinos Kavvadias, Sylvain Quoilin (2019). Modelling flexible power demand and supply in the EU power system: soft-linking between JRC-EU-TIMES and the open-source Dispa-SET model. Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems.

	18

	Konstantinos Kavvadias, Georg Thomassen, Matija Pavičević, Sylvain Quoilin (2019). Electrifying the heating sector in Europe: The impact on the power sector. Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems.

	19

	Konstantinos Kavvadias, Juan Pablo Jimenez Navarro, Georg Thomassen (2019). Decarbonising the EU heating sector: Integration of the power and heating sector.

	20

	Pavičević, M., Kavvadias, K., Pukšec, T., & Quoilin, S. (2019, June). Comparison of different model formulations for modelling future power systems with high shares of renewables – The Dispa-SET Balkans model. Applied Energy.

	21

	Rojas Candia, R., Balderrama Subieta, S. L., Adhemar Araoz Ramos, J., Vicente Senosiain, M., Peña Balderrama, G., Jaldín Florero, H., & Quoilin, S. (2019). Techno-economic assessment of high variable renewable energy penetration in the Bolivian interconnected electric system. International Journal of Sustainable Energy Planning and Management, 22.

Releases

Major stable releases:

	Dispa-SET v2.4

	Dispa-SET v2.3 [https://github.com/energy-modelling-toolkit/Dispa-SET/archive/v2.3.zip]

	Dispa-SET v2.2 [https://github.com/energy-modelling-toolkit/Dispa-SET/archive/v2.2.zip]

	Dispa-SET v2.1 [https://github.com/energy-modelling-toolkit/Dispa-SET/archive/v2.1.zip]

	Dispa-SET v2.0 [https://github.com/energy-modelling-toolkit/Dispa-SET/archive/v2.0.zip]

Changelog

Version 2.x

	
	Variable time step

	
	The pre-processing and the GAMS file have been update to handle different time steps (not only one hour)

	This is currently restricted to three time steps: 15min, 1h, 24h

	The input data whose time step is lower than the desired one is averaged

Version 2.4

	
	Mid-term scheduling

	
	The yearly storage level profiles can now be calculated internally (i.e. without providing exogenous profiles).

	A first, simplified version of dispa-set is run over a whole year to generate these profiles during the pre-processing phase

	This option is activated in the config file and is transparent for the user.

	
	Flexible Demand:

	
	To model demand-side management, it is now possible to define a share of the demand curve as “flexible”

	In this flexible demand, the load can be shifted from one hour to the other

	The maximum flexibility is characterized by the equivalent number of storage hours for the shifted load, which is defined as parameter in the configuration file.

	
	Power-to-heat units

	
	P2HT units (heat pumps, electrical heater) have now been added

	They are coupled to a heat demand and possibly to a thermal storage capacity

	COP can be defined as temperature-dependent. An additional input with temperature times for each zone has been defined.

	Transmission prices have been added to the pre-processing and can now be fully parametrized

	Fuel Prices can now be country-specific

	Input data in the csv files can now be defined with time stamps from any year or with a numerical index

	
	Post-processing:

	
	Improved dispatch plot with shifted, shed loads and electricity consumption from P2HT units

	Storage levels are now differentiated by technology

	
	Miscellaneous:

	
	Multiple bug fixes, code improvement and usability improvement.

	All config files and the example scripts have been checked and cleaned

	New formulation of the clustering function with significant simulation time improvements

	The Pyomo version of Dispa-SET has now been removed since it was no longer up-to-date

	The end-of horizon reservoir level is no longer a firm constraint. A water value can be defined to impose a price on the unmet level requirements.

	Excel configuration files are now subject to versioning, which ensures backward compatibility with older configuration files.

	Countries are now renamed into “zones” in all API functions.

	The option to cache csv file data when loading has been removed

	Implemented a more robust versioning system

Version 2.3

	
	Input Data:

	
	A complete EU dataset has been included to the repository for the year 2016.

	More information: Dispa-SET for the EU28.

	
	Reformulation of the reserve constraints:

	
	Secondary reserves are now covered by spinning units only.

	Tertirary reserves can also be covered by quick start units.

	In total, three different reserve markets are now considered: Secondary up; Secondary down; and Tertiary up

	
	Implementation of a new formulation (integer clustering) for power plant related constraints. This formulation divides the simulation time by a factor higher than 10 and allows extending the geographical scope of Dispa-SET. There are now four standard model formulations, which can be run with the same input data:

	
	Standard formulation: low capacity or highly flexible units are merged

	No clustring: all units are considered individually

	LP clustering: all units are aggregated by technology and binary constraints are removed

	Integer clustering: a representative unit is considered for each technology and multiplied N times.

	
	Improved pre-processing:

	
	Improved log message during input data checks

	New config files to test the different clustering methods

	Added functions to perform parametric studies

	Example scripts for Monte Carlo analyses using lating hypercube samplings

	
	Improved post-processing:

	
	Netting interconnections in dispatch plots

	New colour palette and polished dispatch plot

	New fuels included

	Improved representation of curtailment

	
	External dependencies:

	
	Removed pre-compiled libraries for unix systems

	Use of the low-level GAMS API (https://github.com/kavvkon/gams-api)

	
	Python 3.7:

	
	Dispa-SET now runs exclusively on Python 3.7.

	The compatibility with previous Python versions (2.7, 3.6) is not guaranteed anymore.

	
	Miscellaneous:

	
	Unit tests on travis (https://travis-ci.org/energy-modelling-toolkit/Dispa-SET)

	Bug fixes

Version 2.2

	Inclusion of CHP, power2heat and thermal storage (these new features can be tested by running the config file for Cyprus: ‘ConfigFiles/ConfigCY.xlsx’)

	Bug fixes

	Improved user interface

Version 2.1

	Major refactoring of the folder structure

	New data included in the database

	Inclusion of the LP formulation (in addition to the MILP)

Version 2.0

First public version of the Dispa-SET model.

Getting Started

This short tutorial describes the main steps to get a practical example of Dispa-SET running.

Prerequisites

Install Python 3.7, with full scientific stack. The Anaconda [https://www.anaconda.com/distribution/] distribution is recommended since it comprises all the required packages. If Anaconda is not used, the following libraries and their dependencies should be installed manually:

	future >= 0.15

	click >= 3.3

	numpy>=1.10

	scipy>=0.15

	matplotlib>=1.5.1

	pandas>= 0.19

	xlrd >= 0.9

	pickle

	pyyaml >= 5.1

	pytest

Using Dispa-SET:

Dispa-SET is primarily designed to run with GAMS and therefore requires GAMS to be installed with a valid user licence. Currently, only the 64-bit version of GAMS is supported in Dispa-SET!

The GAMS api for python has been pre-compiled in the “Externals” folder and is usable for Windows 64 bit systems. If the pre-compiled binaries are not available or could not be loaded, they must be installed manually using following command in the Anaconda prompt:

pip install gdxcc gamsxcc optcc

Alternatively, the gams python api can also be compiled from the source provided in the GAMS installation folder (e.g. “C:\GAMS\win64\24.3\apifiles\Python\api”):

python setup.py install

NB: For Windows users, the manual api compilation might require the installation of a C++ compiler for Python. This corresponds to the typical error message: “Unable to find vcvarsall.bat”. This can be solved by installing the freely available “Microsoft Visual C++ Compiler for Python”. In some cases the path to the compiler must be added to the PATH windows environment variable (e.g. C:Program FilesCommon FilesMicrosoftVisual C++ for Python9.0)

The api requires the path to the gams installation folder. The “get_gams_path()” function of dispa-set performs a system search to automatically detect this path. It case it is not successful, the user is prompted for the proper installation path.

Step-by-step example of a Dispa-SET run

This section describes the pre-processing and the solving phases of a Dispa-SET run. Three equivalent methods are described in the next sections:

	Using the command line interface

	Using the Dispa-SET API

	Using GAMS

1. Using the command line interface

Dispa-SET can be run from the command line. To that aim, open a terminal window and change de directory to the Dispa-SET root folder.

[image: _images/cli.png]

1.0. Install Dispa-SET and the required dependencies

Use the following commands in a terminal (Anaconda prompt in Windows):

conda env create # Automatically creates environment based on environment.yml
conda activate dispaset
pip install -e . # Install editable local version

The above commands create a dedicated environment so that your anconda configuration remains clean from the required dependencies installed. If preferred, the Gams libraries can also be installed without creating a dedicated environment. In that case, replace the above commands with these ones:

pip install gamsxcc gdxcc optcc
python setup.py install

To check that everything runs fine, you can build and run a test case by typing:

dispaset -c ConfigFiles/ConfigTest.xlsx build simulate

1.1. Check the configuration file

Dispa-SET runs are defined in dedicated excel configuration files stored in the “ConfigFiles” folder. The configuration file “ConfigTest.xlsx” is provided for testing purposes. It generates a 10-days optimisation using data relative a fictitious power system composed of two zones Z1 and Z2.

1.2. Pre-processing

From the command line, specify the configuration file to be used as an argument and the actions to be performed. Within the “Dispa-SET” folder, run:

dispaset -c ./ConfigFiles/ConfigTest.xlsx build

1.3. Check the simulation environment

The simulation environment folder is defined in the configuration file. In the test example it is set to “Simulations/simulation_test”. The simulation inputs are written in three different formats: excel (34 excel files), Python (Inputs.p) and GAMS (Inputs.gdx).

1.4. Run the optimisation

The simulation can be started directly from the main DispaSet python file after the pre-processing phase. From the “Dispa-SET” folder, run:

dispaset -c ./ConfigFiles/ConfigTest.xlsx simulate

This runs the optimisation, and stores the results in the same folder. Note that this can only work is the simulation has been pre-processed before (step 1.2). It is possible to combine the pre-processing and simulation step in one command:

dispaset -c ./ConfigFiles/ConfigTest.xlsx build simulate

2. Using the Dispa-SET API.

The steps to run a model can be also performed directly in python, by importing the Dispa-SET library. An example file (“build_and_run.py”) is available in the “scripts/” folder.

To run the commands below, the Gams libraries are required. Install them using the following command in an Anaconda prompt:

pip install gamsxcc gdxcc optcc

After checking the configuration file “ConfigTest.xlsx” (in the “ConfigFiles” folder). Run the following python commands:

2.1 Import Dispa-SET:

import dispaset as ds

2.2 Load the configuration file:

config = ds.load_config_excel('ConfigFiles/ConfigTest.xlsx')

2.3 Build the simulation environment (Folder that contains the input data and the simulation files required for the solver):

SimData = ds.build_simulation(config)

2.4 Solve using GAMS:

r = ds.solve_GAMS(config['SimulationDirectory'], config['GAMS_folder'])

A more detailed description of the Dispa-SET functions in available in the API section.

3. Using GAMS

It is sometimes useful to run the dispa-SET directly in GAMS (e.g. for debugging purposes). In that case, the pre-processing must be run first (steps 1.2 or 2.1, 2.2 and 2.3) and the gams file generated in the simulation folder can be used to run the optimization.

Using the GAMS graphical user interface:

From the simulation folder (defined in the config file), the Dispa-SET model can be run following the instruction below:

	Open the UCM.gpr project file in GAMS

	From GAMS, open the UCM_h.gmx model file

	Run the model in GAMS.

The result file is written in the gdx format and stored in the Simulation folder, together with all input files.

Using the GAMS command line:

GAMS can also be run from the command line (this is the only option for the Linux version).

	Make sure that the gams binary is in the system PATH

	From the simulation environment folder, run:

gams UCM_h.gms

Postprocessing and result display

Various functions and tools are provided within the PostProcessing.py file to load, analyse and plot the siimulation results. The use of these functions is illustrated into the the “Read_results_notebook.ipynb” Notebook or in the “read_results.py” script, which can be run by changing the path to the simulation folder. The type of results provided by the post-processing is illustrated hereunder.

The power dispatch can be plotted for each simulated zone. In this plot, the units are aggregated by fuel type. The power consumed by storage units and the exportations are indicated as negative values.

[image: _images/results_dispatch.png]
It is also interesting to display the results at the unit level to gain deeper insights regarding the dispatch. In that case, a plot is generated, showing the commitment status of all units in a zone at each timestep. Both the dispatch plot and the commitment plot can be called using the CountryPlots function.

[image: _images/results_rug.png]
Some aggregated statistics on the simulations results can also be obtained, including the number of hours of congestion in each interconnection line, the yearly energy balances for each zone, the amount of lost load, etc.

[image: _images/result_analysis.png]
The yearly energy balance per fuel or per technology is also useful to compare the energy mix in each zone. This can be plotted using the EnergyBarPlot function, with the following results:

[image: _images/results_balance.png]

Input Data

In this section, “Input Data” refers to the data stored in the Dispa-SET database. The format of this data is pre-defined and imposed, in such a way that it can be read by the pre-processing tool.

Two important preliminary comments should be formulated:

	All the time series should be registered with their timestamps (e.g. ‘2013-02-20 02:00:00’) or with a numerical index. Dispa-SET will issue an error if the day is located before the month. It is also advised to remove all time zone information from the time stamps. If the index is an integer, Dispa-SET will only recognize it if contains 8760 elements (one full year) or if it has exactly the same length as the simulation horizon.

	Although the optimisation model is designed to run with any technology or fuel name, the pre-processing and the post-processing tools of Dispa-SET use some hard-coded values. The Dispa-SET database should also comply with this convention (described in the next sections). Any non-recognized technology or fuel will be discarded in the pre-processing.

General simulation parameters

A number of simulation options and parameters need to be defined in the configuration file. In order to obtain default values and a complete description of the options, it is commended to open the ConfigTest.xlsx configuration file, which is always kept up-to-date.

The options to be filled are summarized hereunder.

Dispa-SET Simulation Options

	General Options

	Description

	SimulationDirectory

	Folder with all simulation files and input data

	WriteGDX

	Write the inputs in a GDX file (required for gams)

	WritePickle

	Write the inputs to a pickle file

	GAMS_folder

	Path the GAMS installation folder

	cplex_path

	Path to the cplex folder

	Horizon Settings

	

	StartDate

	Start date of the simulation

	StopDate

	End data of the simulation

	HorizonLength

	Simulation horizon length in days

	Look ahead

	Overlap period in days

	DataTimeStep

	Time step of the date in the csv files

	SimulationTimeStep

	Time step for the simulation

	Simulation Options

	

	SimulationType

	Stanard/LP/LP clustered/Integer clustering

	ReserveCalculation

	Generic (only available option for now)

	AllowCurtailment

	True/False

	Mid-term scheduling

	

	HydroScheduling

	Off/Zonal/Regional

	HydroSchedulingHorizon

	“Annual”/”Stop-date driven”

	InitialFinalReservoirLevel

	True/False (if False, use StorageProfile)

	ReservoirLevelInitial

	Initial res. level if the above option is true

	ReservoirLevelFinal

	Fainl reservoir level if the above option is true

Technologies

The Dispa-SET input distinguishes between the technologies defined in the table below. The VRES column indicates the variable renewable technologies (set “tr” in the optimisation) and the Storage column indicates the technologies which can accumulate energy.

Dispa-SET technologies

	Technology

	Description

	VRES

	Storage

	COMC

	Combined cycle

	N

	N

	GTUR

	Gas turbine

	N

	N

	HDAM

	Conventional hydro dam

	N

	Y

	HROR

	Hydro run-of-river

	Y

	N

	HPHS

	Pumped hydro storage

	N

	Y

	ICEN

	Internal combustion engine

	N

	N

	PHOT

	Solar photovoltaic

	Y

	N

	STUR

	Steam turbine

	N

	N

	WTOF

	Offshore wind turbine

	Y

	N

	WTON

	Onshore wind turbine

	Y

	N

	CAES

	Compressed air energy storage

	N

	Y

	BATS

	Stationary batteries

	N

	Y

	BEVS

	Battery-powered electric vehicles

	N

	Y

	THMS

	Thermal storage

	N

	Y

	P2GS

	Power-to-gas storage

	N

	Y

	P2HT

	Power-to-heat

	N

	Y

Fuels

Dispa-SET only considers a limited number of different fuel types. They are summarised in the following table, together with some examples.

Dispa-SET fuels

	Fuel

	Examples

	BIO

	Bagasse, Biodiesel, Gas From Biomass, Gasification, Biomass, Briquettes, Cattle Residues, Rice Hulls Or Padi Husk, Straw, Wood Gas (From Wood Gasification), Wood Waste Liquids Excl Blk Liq (Incl Red Liquor, Sludge, Wood,Spent Sulfite Liquor And Oth Liquids, Wood And Wood Waste

	GAS

	Blast Furnace Gas, Boiler Natural Gas, Butane, Coal Bed Methane, Coke Oven Gas, Flare Gas, Gas (Generic), Methane, Mine Gas, Natural Gas, Propane, Refinery Gas, Sour Gas, Synthetic Natural Gas, Top Gas, Voc Gas & Vapor, Waste Gas, Wellhead Gas

	GEO

	Geothermal steam

	HRD

	Anthracite, Other Anthracite, Bituminous Coal, Coker By-Product, Coal Gas (From Coal Gasification), Coke, Coal (Generic), Coal-Oil Mixture, Other Coal, Coal And Pet Coke Mi, Coal Tar Oil, Anthracite Coal Waste, Coal-Water Mixture, Gob, Hard Coal / Anthracite, Imported Coal, Other Solids, Soft Coal, Anthracite Silt, Steam Coal, Subbituminous, Pelletized Synthetic Fuel From Coal, Bituminous Coal Waste)

	HYD

	Hydrogen

	LIG

	Lignite black, Lignite brown, lignite

	NUC

	U, Pu

	OIL

	Crude Oil, Distillate Oil, Diesel Fuel, No. 1 Fuel Oil, No. 2 Fuel Oil, No. 3 Fuel Oil, No. 4 Fuel Oil, No. 5 Fuel Oil, No. 6 Fuel Oil, Furnace Fuel, Gas Oil, Gasoline, Heavy Oil Mixture, Jet Fuel, Kerosene, Light Fuel Oil, Liquefied Propane Gas, Methanol, Naphtha, ,Gas From Fuel Oil Gasification, Fuel Oil, Other Liquid, Orimulsion, Petroleum Coke, Petroleum Coke Synthetic Gas, Black Liquor, Residual Oils, Re-Refined Motor Oil, Oil Shale, Tar, Topped Crude Oil, Waste Oil

	PEA

	Peat Moss

	SUN

	Solar energy

	WAT

	Hydro energy

	WIN

	Wind energy

	WST

	Digester Gas (Sewage Sludge Gas), Gas From Refuse Gasification, Hazardous Waste, Industrial Waste, Landfill Gas, Poultry Litter, Manure, Medical Waste, Refused Derived Fuel, Refuse, Waste Paper And Waste Plastic, Refinery Waste, Tires, Agricultural Waste, Waste Coal, Waste Water Sludge, Waste

Different fuels may be used to power a given technology, e.g. steam turbines may be fired with almost any fuel type. In Dispa-SET, each unit must be defined with the pair of values (technology,fuel). The next tables is derived from a commercial power plant database and indicates the number of occurences of each combination. It appears clearly that, even through some combinations are irrelevant, both characteristics are needed to define a power plant type.

	f/t

	COMC

	GTUR

	HDAM

	HPHS

	HROR

	ICEN

	PHOT

	STUR

	WTOF

	WTON

	Total

	BIO

	
	2

	
	
	
	10

	
	79

	
	
	91

	GAS

	485

	188

	
	
	
	28

	
	97

	
	
	798

	GEO

	
	
	
	
	
	
	
	10

	
	
	10

	HRD

	4

	
	
	
	
	
	
	389

	
	
	393

	HYD

	
	1

	
	
	
	
	
	1

	
	
	2

	LIG

	
	
	
	
	
	
	
	249

	
	
	249

	NUC

	
	
	
	
	
	
	
	138

	
	
	138

	OIL

	7

	94

	
	
	
	27

	
	146

	
	
	274

	PEA

	
	
	
	
	
	
	
	17

	
	
	17

	SUN

	
	
	
	
	
	
	20

	7

	
	
	27

	UNK

	
	2

	
	
	
	1

	
	1

	
	
	4

	WAT

	
	
	33

	23

	21

	
	
	1

	
	
	78

	WIN

	
	
	
	
	
	
	
	
	9

	27

	36

	WST

	
	3

	
	
	
	7

	
	46

	
	
	56

	Total

	496

	290

	33

	23

	21

	73

	20

	1181

	9

	27

	2173

Unit-specific or technology-specific inputs

Some parameters, such as the availability factor, the outage factor or the inflows may be defined at the unit level or at the technology level. For that reason, the pre-processing tool first lookups the unit name in the database to assign it a value, and then lookups the technology or the fuel if no unit-specific information has been found.

Demand

Electricity demand is given per zone and the first row of each column with the time series should be the zone name.

Heat demand timeseries is needed where CHP or P2HT plants are used. In the current formulation, each CHP/P2HT unit is covering a heat load. In other words, one power plant is connected to a single district heating network. Therefore, in the heat demand input file, the first column has to be a time index and the following columns the heat demand in MW. The first row should contain the exact name of the power plant that will cover this demand.

It si possible to assume that a share of the demand is flexible (see model formulation for more information). In that case, this flexible share is provided as times series for each zone (see for example the tests/dummy_data/ShareFlexible.csv file), referencend in the “FlexibleDemand” field of the config file. It is also necessary to specify the number of hours of equivalent demand shifting capacity. This is achieved through the “DemandFlexibility” field of the config file and is expressed in hours (i.e. the number of hours during which the maximum flexible demand can be stored for shifting). An example of such configuration is proivded in the ConfigTest

Countries

Although the nodes names can be freely user-defined in the database, for the Dispa-SET EU model, the ISO 3166-1 standard has been adopted to describe each country at the NUTS1 level (except for Greece and the United Kingdom, for which the abbreviations EL and UK are used according to EU Interinstitutional style guide [http://publications.europa.eu/code/pdf/370000en.htm]). The list of countries is defined as:

	Code

	Country

	AT

	Austria

	BE

	Belgium

	BG

	Bulgaria

	CH

	Switzerland

	CY

	Cyprus

	CZ

	Czech Republic

	DE

	Germany

	DK

	Denmark

	EE

	Estonia

	EL

	Greece

	ES

	Spain

	FI

	Finland

	FR

	France

	HR

	Croatia

	HU

	Hungary

	IE

	Ireland

	IT

	Italy

	LT

	Lituania

	LU

	Luxembourg

	LV

	Latvia

	MT

	Malta

	NL

	Netherlands

	NO

	Norway

	PL

	Poland

	PT

	Portugal

	RO

	Romania

	SE

	Sweden

	SI

	Slovenia

	SK

	Slovakia

	UK

	United Kingdom

Power plant data

The power plant database may contain as many fields as desired, e.g. to ensure that the input data can be traced back, or to provide the id of this plant in another database. However, some fields are required by Dispa-SET and must therefore be defined in the database.

Common fields

The following fields must be defined for all units:

Common fields for all units

	Description

	Field name

	Units

	Unit name

	Unit

	

	Power Capacity (for one unit)

	PowerCapacity

	MW

	Number of units

	Nunits

	

	Technology

	Technology

	

	Primary fuel

	Fuel

	

	Zone

	Zone

	

	Efficiency

	Efficiency

	%

	Efficiency at minimum load

	MinEfficiency

	%

	CO2 intensity

	CO2Intensity

	TCO2/MWh

	Minimum load

	PartLoadMin

	%

	Ramp up rate

	RampUpRate

	%/min

	Ramp down rate

	RampDownRate

	%/min)

	Start-up time

	StartUPTime

	h

	Minimum up time

	MinUpTime

	h

	Minimum down time

	MinDownTime

	h

	No load cost

	NoLoadCost

	EUR/h

	Start-up cost

	StartUpCost

	EUR

	Ramping cost

	RampingCost

	EUR/MW

NB: the fields indicated with % as unit must be entered in a non-dimensional way (i.e. 90% should be written 0.9).

Storage units

Some parameters must only be defined for the units equipped with storage. They can be left blank for all other units.

Specific fields for storage units

	Description

	Field name

	Units

	Storage capacity

	STOCapacity

	MWh

	Self-discharge rate

	STOSelfDischarge

	%/h

	Maximum charging power

	STOMaxChargingPower

	MW

	Charging efficiency

	STOChargingEfficiency

	%

In the case of a storage unit, the discharge efficiency should be assigned to the common field “Efficiency”. Similarly, the common field “PowerCapacity” is the nominal power in discharge mode.

CHP units

Some parameters must only be defined for the units equipped with CHP. They can be left blank for all other units.

Specific fields for CHP units

	Description

	Field name

	Units

	CHP Type

	CHPType

	extraction/back-pressure/p2h

	Power-to-heat ratio

	CHPPowerToHeat

	
	

	Power Loss factor

	CHPPowerLossFactor

	
	

	Maximum heat production

	CHPMaxHeat

	MW(th)

	Capacity of heat Storage

	STOCapacity

	MWh(th)

	% of storage heat losses per timestep

	STOSelfDischarge

	%

In the current version of DispaSet three type of combined heat and power units are supported:

	Extraction/condensing units

	Backpressure units

	Power to heat

For each of the above configurations the following fields must be filled:

Mandatory fields per type of CHP unit (X: mandatory, o:optional)

	Description

	Extraction

	Backpressure

	Power to heat

	CHPType

	X

	X

	X

	CHPPowerToHeat

	X

	X

	

	CHPPowerLossFactor

	X

	
	X

	CHPMaxHeat

	o

	o

	X

	STOCapacity

	o

	o

	o

	STOSelfDischarge

	o

	o

	o

There are numerous data checking routines to ensure that all data provided is consistent.

Warning

For extraction/condensing CHP plants, the power plant capacity (PowerCapacity) must correspont to the nameplate capacity in the maximum heat and power mode. Internal Dispaset calculations will use the equivalent stand-alone plants capacity based on the parameters provided.

P2HT units

Some parameters must only be defined for the power-to-heat units (heat pumps, electrical heaters). They can be left blank for all other units.

Specific fields for P2HT units

	Description

	Field name

	Units

	Nominal coefficient of performance

	COP

	
	

	Nominal temperature

	Tnominal

	°C

	First coefficient

	coef_COP_a

	
	

	Second coefficient

	coef_COP_b

	
	

	Capacity of heat Storage

	STOCapacity

	MWh(th)

	% of storage heat losses per timestep

	STOSelfDischarge

	%

NB:

	Electrical heaters can be simulated by setting the nominal COP to 1 and the temperature coefficients to 0

	The two coefficients a and b aim at correcting the COP for the ambient temperatures. They are calculated as follows:

\[\mathit{COP} = \mathit{COP}_{nom} + \mathit{coef}_{a} \cdot (T - T_{nom}) + \mathit{coef}_{b} \cdot (T - T_{nom})^2\]

where T is the atmospheric temperature which needs to be provided as a times sereis for each zone in a csv file. The first row of the csv file is the zone name and a proper time index is required. The csv file path must be provided in the “Temperatures” field of the configuration file (see ConfigTest.xlsx for an example)

Warning

For power-to-heat units, the power plant capacity (PowerCapacity) must correspont to the nameplate nominal ELECTRICAL consumption, thus given by the thermal capacity divided by the nominal COP.

Renewable generation

Variable renewable generation is defined as power generation from renewable source that cannot be stored: its is either fed to the grid or curtailed. The technologies falling under this definition are the ones described in the subset “tr” in the model definition.

The time-dependent genration of for these technologies must be provided as an exogenous time series in the form of an “availability factor”. The latter is defined as the proportion of the nominal power capacity that can be generated at each hour.

In the database, the time series are provided as column vectors with the technology name as header. After the pre-processing, an availability factor is attributed to each unit according to their technology. Non-renewable technologies are assigned an availability factor of 1.

Storage and hydro data

Storage units are an extension of the regular units, including additional constraints and parameters. In the power plant table, four additional parameters are required: storage capacity (in MWh), self-discharge (in %/h), discharge power (in MW) and discharge efficiency (in %).

Some other parameters must be introduced in the form of time series in the “HydroData” section of the Dispa-SET database. There are described hereunder.

It should be noted that the nomenclature adopted for the modeling of storage units refers to the characteristics of hydro units with water reservoirs. However, these parameters (e.g. inflows, level) can easily be transposed to the case of alternative storage units such as batteries or CAES.

Inflows

The Inflows are defined as the contribution of exogenous sources to the level (or state of charge) or the reservoir. They are expressed in MWh of potential energy. If the inflows are provided as m³/h, they must be converted.

The input to dispaset is defined as “ScaledInflows”. It is the normalized values of the inflow with respect to the nominal power of the storage unit (in discharge mode). As an example, if the inflow value at a certain time is 100MWh/h and if the turbining capacity of the hydro plant is 200 MW, the scaled inflow value must be defined as 0.5.

Scaled inflows should be provided in the form of time series with the unit name or the technology as columns header.

Storage level

Because emptying the storage has a zero marginal cost, a non-constrained optimization tends to leave the storage completely empty at the end of the optimisation horizon. For that reason, a minimum storage level is imposed at the last hour of each horizon. In Dispa-SET, a typical optimisation horizon is a few days. The model is therefore not capable of optimising the storage level e.g. for seasonal variations. The minimum storage level at the last hour is therefore an exogenous input. It can be selected from a historical level or obtained from a long-term hydro scheduling optimization.

The level input in the Dispa-SET database is normalized with respect to the storage capacity: its minimum value is zero and its maximum is one.

Variable capacity storage

In special cases, it might be necessary to simulate a storage unit whose capacity varies in time. A typical example is the simulation of the storage capacity provided by electric vehicles: depending on the time of the day, the connected battery capacity varies.

This special case can be simulated using the “AvailabilityFactor” input. In the case of a storage unit, reduces the avaiable capacity by a factor varying from 0 to 1.

Power plant outages

In the current version, Dispa-SET does not distinguish planned outages from unplanned outages. They are characterized for each unit by the “OutageFactor” parameter. This parameter varies from 0 (no outage) to 1 (full outage). The available unit power is thus given by its nominal capacity multiplied by (1-OutageFactor).

The outages are provided in the dedicated section of the Database for each unit. They consist of a time series with the unit name as columns header.

Interconnections

Two case should be distinguished when considering interconnections:

	Interconnections occuring between the simulated zones

	Interconnections occuring between the simulated zones and the Rest of the World (RoW)

These two cases are addresses by two different datasets described here under.

Net transfer capacities

Dispa-SET indogenously models the internal exchanges between countries (or zones) using a commercial net transfer caapcity (NTC). It does not consider (yet) DC power flows or more complex grid simulations.

Since the NTC values might vary in time, they must be supplied as time series, whose header include the origin country, the string ‘ -> ‘ and the destination country. As an example, the NTC from belgium to france must be provided with the header ‘BE -> FR’.

Because NTCs are not necessarily symetrical, they must be provided in both directions (i.e. ‘BE -> FR’ and ‘FR -> BE’. Non-provided NTCs are considered to be zero (i.e. no interconnection).

Historical physical flows

In Dispa-SET, the flows between internal zones and the rest of the world cannot be modeled endogenously. They must be provided as exogenous inputs. These inputs are referred to as “Historical physical flows”, although they can also be user-defined.

In the input table of historical flows, the headers are similar to those of the NTCs (ie. ‘XX -> YY’). All flows occuring an internal zone of the simulation and outside zones are considered as external flows and summed up. As an example, the historical flows ‘FR -> XX’, ‘FR -> YY’ and ‘FR -> ZZ’ will be aggregated in to a single interconnection flow ‘FR -> RoW’ if XX, YY and ZZ are not simulated zones.

These aggregated historical flows are then imposed to the solver as exogenous inputs.

In Dispa-SET, the flows are defined as positive variables. For each zone, there will thus be a maximum of two vectors defining its exchanges with the rest of the world (e.g. ‘FR -> RoW’ and ‘RoW -> FR’).

As for the NTCs, undefined historical flows are considered to be zero, i.e. not provided any historical flows is equivalent to consider the system as islanded.

Fuel Prices

Fuel prices vary both geographically and in time. They must therefore be provided as a time series for each simulated zone. One table is provided per fuel type, with as column header the zone to which it applies. If no header is provided, the fuel price is applied to all the simulated zones.

Model Description

The model is expressed as a MILP or LP problem. Continuous variables include the individual unit dispatched power, the shedded load and the curtailed power generation. The binary variables are the commitment status of each unit. The main model features can be summarized as follows:

Variables

Sets

	Name

	Description

	f

	Fuel types

	h

	Hours

	i

	Time step in the current optimization horizon

	l

	Transmission lines between nodes

	mk

	{DA: Day-Ahead, 2U: Reserve up, 2D: Reserve Down}

	n

	Zones within each country (currently one zone, or node, per country)

	p

	Pollutants

	t

	Power generation technologies

	tr

	Renewable power generation technologies

	u

	Units

	s(u)

	Storage units (including hydro reservoirs)

	chp(u)

	CHP units

Parameters

	Name

	Units

	Description

	AvailabilityFactor(u,i)

	%

	Percentage of nominal capacity available

	CHPPowerLossFactor(u)

	%

	Power loss when generating heat

	CHPPowerToHeat(u)

	%

	Nominal power-to-heat factor

	CHPMaxHeat(chp)

	MW

	Maximum heat capacity of chp plant

	CHPType

	n.a.

	CHP Type

	CommittedInitial(u)

	n.a.

	Initial commitment status

	CostFixed(u)

	EUR/h

	Fixed costs

	CostLoadShedding(n,h)

	EUR/MWh

	Shedding costs

	CostRampDown(u)

	EUR/MW

	Ramp-down costs

	CostRampUp(u)

	EUR/MW

	Ramp-up costs

	CostShutDown(u)

	EUR/u

	Shut-down costs for one unit

	CostStartUp(u)

	EUR/u

	Start-up costs for one unit

	CostVariableH(u,i)

	EUR/MWh

	Variable costs

	CostHeatSlack(chp,h)

	EUR/MWh

	Cost of supplying heat via other means

	Curtailment(n)

	n.a.

	Curtailment {binary: 1 allowed}

	Demand(mk,n,i)

	MW

	Hourly demand in each zone

	Efficiency(u)

	%

	Power plant efficiency

	EmissionMaximum(n,p)

	EUR/tP

	Emission limit per zone for pollutant p

	EmissionRate(u,p)

	tP/MW

	Emission rate of pollutant p from unit u

	Fuel(u,f)

	n.a.

	Fuel type used by unit u {binary: 1 u uses f}

	HeatDemand(chp,h)

	MWh/u

	Heat demand profile for chp units

	K_QuickStart(n)

	n.a.

	Part of the reserve that can be provided by offline quickstart units

	LineNode(l,n)

	n.a.

	Line-zone incidence matrix {-1,+1}

	LoadShedding(n,h)

	MW

	Load that may be shed per zone in 1 hour

	Location(u,n)

	n.a.

	Location {binary: 1 u located in n}

	Nunits(u)

	n.a.

	Number of units inside the cluster

	OutageFactor(u,h)

	%

	Outage factor (100 % = full outage) per hour

	PartLoadMin(u)

	%

	Percentage of minimum nominal capacity

	PowerCapacity(u)

	MW/u

	Installed capacity

	PowerInitial(u)

	MW/u

	Power output before initial period

	PowerMinStable(u)

	MW/u

	Minimum power for stable generation

	PowerMustRun(u)

	MW

	Minimum power output

	PriceTransmission(l,h)

	EUR/MWh

	Price of transmission between zones

	QuickStartPower(u,h)

	MW/h/u

	Available max capacity for tertiary reserve

	RampDownMaximum(u)

	MW/h/u

	Ramp down limit

	RampShutDownMaximum(u)

	MW/h/u

	Shut-down ramp limit

	RampStartUpMaximum(u)

	MW/h/u

	Start-up ramp limit

	RampUpMaximum(u)

	MW/h/u

	Ramp up limit

	Reserve(t)

	n.a.

	Reserve provider {binary}

	StorageCapacity(s)

	MWh/u

	Storage capacity (reservoirs)

	StorageChargingCapacity(s)

	MW/u

	Maximum charging capacity

	StorageChargingEfficiency(s)

	%

	Charging efficiency

	StorageDischargeEfficiency(s)

	%

	Discharge efficiency

	StorageInflow(s,h)

	MWh/u

	Storage inflows

	StorageInitial(s)

	MWh

	Storage level before initial period

	StorageMinimum(s)

	MWh/u

	Minimum storage level

	StorageOutflow(s,h)

	MWh/u

	Storage outflows (spills)

	StorageProfile(u,h)

	MWh

	Storage long-term level profile

	Technology(u,t)

	n.a.

	Technology type {binary: 1: u belongs to t}

	TimeDownMinimum(u)

	h

	Minimum down time

	TimeUpMinimum(u)

	h

	Minimum up time

	VOLL()

	EUR/MWh

	Value of lost load

NB: When the parameter is expressed per unit (“/u”), its value must be provided for one single unit (even in the case of a clustered formulation).

Optimization Variables

	Name

	Units

	Description

	Committed(u,h)

	n.a.

	Unit committed at hour h {1,0}

	CostStartUpH(u,h)

	EUR

	Cost of starting up

	CostShutDownH(u,h)

	EUR

	Cost of shutting down

	CostRampUpH(u,h)

	EUR

	Ramping cost

	CostRampDownH(u,h)

	EUR

	Ramping cost

	CurtailedPower(n,h)

	MW

	Curtailed power at node n

	Flow(l,h)

	MW

	Flow through lines

	Heat(chp,h)

	MW

	Heat output by chp plant

	HeatSlack(chp,h)

	MW

	Heat satisfied by other sources

	Power(u,h)

	MW

	Power output

	PowerMaximum(u,h)

	MW

	Power output

	PowerMinimum(u,h)

	MW

	Power output

	Reserve_2U(u,h)

	MW

	Spinning reserve up

	Reserve_2D(u,h)

	MW

	Spinning reserve down

	Reserve_3U(u,h)

	MW

	Non spinning quick start reserve up

	ShedLoad(n,h)

	MW

	Shed load

	StorageInput(s,h)

	MWh

	Charging input for storage units

	StorageLevel(s,h)

	MWh

	Storage level of charge

	Spillage(s,h)

	MWh

	Spillage from water reservoirs

	SystemCost(h)

	EUR

	Total system cost

	LL_MaxPower(n,h)

	MW

	Deficit in terms of maximum power

	LL_RampUp(u,h)

	MW

	Deficit in terms of ramping up for each plant

	LL_RampDown(u,h)

	MW

	Deficit in terms of ramping down

	LL_MinPower(n,h)

	MW

	Power exceeding the demand

	LL_2U(n,h)

	MW

	Deficit in reserve up

	LL_3U(n,h)

	MW

	Deficit in reserve up - non spinning

	LL_2D(n,h)

	MW

	Deficit in reserve down

Integer Variables

	Name

	Units

	Description

	Committed(u,h)

	n.a.

	Number of unit committed at hour h {1 0} or integer

	StartUp(u,h)

	n.a.

	Number of unit startups at hour h {1 0} or integer

	ShutDown(u,h)

	n.a.

	Number of unit shutdowns at hour h {1 0} or integer

Optimisation model

The aim of this model is to represent with a high level of detail the short-term operation of large-scale power systems solving the so-called unit commitment problem. To that aim we consider that the system is managed by a central operator with full information on the technical and economic data of the generation units, the demands in each node, and the transmission network.

The unit commitment problem considered in this report is a simplified instance of the problem faced by the operator in charge of clearing the competitive bids of the participants into a wholesale day-ahead power market. In the present formulation the demand side is an aggregated input for each node, while the transmission network is modelled as a transport problem between the nodes (that is, the problem is network-constrained but the model does not include the calculation of the optimal power flows).

The unit commitment problem consists of two parts: i) scheduling the start-up, operation, and shut down of the available generation units, and ii) allocating (for each period of the simulation horizon of the model) the total power demand among the available generation units in such a way that the overall power system costs is minimized. The first part of the problem, the unit scheduling during several periods of time, requires the use of binary variables in order to represent the start-up and shut down decisions, as well as the consideration of constraints linking the commitment status of the units in different periods. The second part of the problem is the so-called economic dispatch problem, which determines the continuous output of each and every generation unit in the system. Therefore, given all the features of the problem mentioned above, it can be naturally formulated as a mixed-integer linear program (MILP).

Since our goal is to model a large European interconnected power system, we have implemented a so-called tight and compact formulation, in order to simultaneously reduce the region where the solver searches for the solution and increase the speed at which the solver carries out that search. Tightness refers to the distance between the relaxed and integer solutions of the MILP and therefore defines the search space to be explored by the solver, while compactness is related to the amount of data to be processed by the solver and thus determines the speed at which the solver searches for the optimum. Usually tightness is increased by adding new constraints, but that also increases the size of the problem (decreases compactness), so both goals contradict each other and a trade-off must be found.

Objective function

The goal of the unit commitment problem is to minimize the total power system costs (expressed in EUR in equation), which are defined as the sum of different cost items, namely: start-up and shut-down, fixed, variable, ramping, transmission-related and load shedding (voluntary and involuntary) costs.

\[\begin{split}\begin{split}
& min \sum _{u,n,i} \\
& \Big[CostStartUp_{u,i} + CostShutDown_{u,i} + CostFixed_{u} \cdot Committed_{u,i} \\
& + CostVariable_{u,i} \cdot Power_{u,i} + CostRampUp_{u,i} + CostRampDown_{u,i} \\
& + PriceTransimission_{i,l} \cdot Flow_{i,l} + \left(CostLoadShedding_{i,n} \cdot ShedLoad_{i,n} \right) \\
& + \sum _{chp} CostHeatSlack_{chp,i} \cdot HeatSlack_{chp,i}) \\
& + \sum _{chp} CostVariable_{chp,i} \cdot CHPPowerLossFactor_{chp} \cdot Heat_{chp,i}) \\
& + VOLL_{Power} \cdot \left(\mathit{LL}_{MaxPower,i,n} + \mathit{LL}_{MinPower,i,n} \right) \\
& + VOLL_{Reserve} \cdot \left(LL_{2U,i,n} + LL_{2D,i,n}+ LL_{3U,i,n} \right) \\
& + VOLL_{Ramp} \cdot \left(LL_{RampUp,u,i} + LL_{RampDown,u,i} \right) \Big]
\end{split}\end{split}\]

The costs can be broken down as:

	Fixed costs: depending on whether the unit is on or off.

	Variable costs: stemming from the power output of the units.

	Start-up costs: due to the start-up of a unit.

	Shut-down costs: due to the shut-down of a unit.

	Ramp-up: emerging from the ramping up of a unit.

	Ramp-down: emerging from the ramping down of a unit.

	Load shed: due to necessary load shedding.

	Transmission: depending of the flow transmitted through the lines.

	Loss of load: power exceeding the demand or not matching it, ramping and reserve.

The variable production costs (in EUR/MWh), are determined by fuel and emission prices corrected by the efficiency (which is considered to be constant for all levels of output in this version of the model) and the emission rate of the unit (equation):

\[\begin{align}\begin{aligned}\mathit{CostVariable}_{u,h}=\\\mathit{Markup}_{u,h} + \sum _{n,f}\left(\frac{\mathit{Fuel}_{u,f} \cdot \mathit{FuelPrice}_{n,f,h} \cdot \mathit{Location}_{u,n}}{\mathit{Efficiency}_u}\right)\\ + \sum _p\left(\mathit{EmissionRate}_{u,p} \cdot \mathit{PermitPrice}_p\right)\end{aligned}\end{align} \]

The variable cost includes an additional mark-up parameter that can be used for calibration and validation purposes.

From version 2.3, Dispa-SET uses a 3 integers formulations of the up/down status of all units. According to this formulation, the number of start-ups and shut-downs is at each time step is computed by:

\[\mathit{Committed}_{u,i}-\mathit{Committed}_{u,i-1} = \mathit{StartUp}_{u,i} - \mathit{ShutDown}_{u,i}\]

The start-up and shut-down costs are positive variables, calculated from the number of startups/shutdowns at each time step:

\[\begin{align}\begin{aligned}\mathit{CostStartUp}_{u,i} = \mathit{CostStartUp}_u \cdot \mathit{StartUp}_{u,i}\\\mathit{CostShutDown}_{u,i} = \mathit{CostShutDown}_u \cdot \mathit{ShutDown}_{u,i}\end{aligned}\end{align} \]

Ramping costs are defined as positive variables (i.e. negative costs are not allowed) and are computed with the following equations:

\[\begin{align}\begin{aligned}\mathit{CostRampUp}_{u,i} \geq \mathit{CostRampUp}_u \cdot \left(\mathit{Power}_{u,i}-\mathit{Power}_{u,i-1}\right)\\\mathit{CostRampDown}_{u,i} \geq \mathit{CostRampDown}_u \cdot (\mathit{Power}_{u,i-1}-\mathit{Power}_{u,i})\end{aligned}\end{align} \]

It should be noted that in case of start-up and shut-down, the ramping costs are added to the objective function. Using start-up, shut-down and ramping costs at the same time should therefore be performed with care.

In the current formulation, all other costs (fixed and variable costs, transmission costs, load shedding costs) are considered as exogenous parameters.

As regards load shedding, the model considers the possibility of voluntary load shedding resulting from contractual arrangements between generators and consumers. Additionally, in order to facilitate tracking and debugging of errors, the model also considers some variables representing the capacity the system is not able to provide when the minimum/maximum power, reserve, or ramping constraints are reached. These lost loads are a very expensive last resort of the system used when there is no other choice available. The different lost loads are assigned very high values (with respect to any other costs). This allows running the simulation without infeasibilities, thus helping to detect the origin of the loss of load. In a normal run of the model, without errors, all these variables are expected to be equal to zero.

Day-ahead energy balance

The main constraint to be met is the supply-demand balance, for each period and each zone, in the day-ahead market (equation). According to this restriction, the sum of all the power produced by all the units present in the node (including the power generated by the storage units), the power injected from neighbouring nodes, and the curtailed power from intermittent sources is equal to the load in that node, plus the power consumed for energy storage, minus the load interrupted and the load shed.

\[\begin{align}\begin{aligned}\sum _u\left(\mathit{Power}_{u,i} \cdot \mathit{Location}_{u,n}\right)\\ + \sum _l\left(\mathit{Flow}_{l,i} \cdot \mathit{LineNode}_{l,n}\right)\\=\mathit{Demand}_{\mathit{DA},n,h} + \sum _r\left(\mathit{StorageInput}_{s,h} \cdot \mathit{Location}_{s,n}\right)\\ -\mathit{ShedLoad}_{n,i}\\ - \mathit{LL_{MaxPower}}_{n,i} + \mathit{LL_{MinPower}}_{n,i}\end{aligned}\end{align} \]

Reserve constraints

Besides the production/demand balance, the reserve requirements (upwards and downwards) in each node must be met as well. In Dispa-SET, three types of reserve requirements are taken into account:

	Upward secondary reserve (2U): reserve that can only be covered by spinning units

	Downward secondary reserve (2D): reserve that can only be covered by spinning units

	Upward tertiary reserve (3U): reserve that can be covered either by spinning units or by quick-start offline units

The secondary reserve capability of committed units is limited by the capacity margin between current and maximum power output:

\[\begin{align}\begin{aligned}\mathit{Reserve_{2U}}_{u,i}\\\leq \mathit{PowerCapacity}_u \cdot \mathit{AvailabilityFactor}_{u,i}\\\cdot (1-\mathit{OutageFactor}_{u,i}) \cdot \mathit{Committed}_{u,i}\\- \mathit{Power}_{u,i}\end{aligned}\end{align} \]

The same applies to the downwards secondary reserve capability, with an additional term to take into account the downard reserve capability of pumping storage units:

\[\begin{align}\begin{aligned}\mathit{Reserve_{2D}}_{u,i}\\ \leq \mathit{Power}_{u,i} - \mathit{PowerMustRun}_{u,i} \cdot \mathit{Committed}_{u,i}\\+ (\mathit{StorageChargingCapacity}_u \cdot \mathit{Nunits}_u - \mathit{StorageInput}_{u,i})\end{aligned}\end{align} \]

The quick start (non-spining) reserve capability is given by:

\[\begin{align}\begin{aligned}\mathit{Reserve_{3U}}_{u,i}\\\leq (\mathit{Nunits}_u - \mathit{Committed}_{u,i}) \cdot \mathit{QuickStartPower}_{u,i}\end{aligned}\end{align} \]

The secondary reserve demand should be fulfilled at all times by all the plants allowed to participate in the reserve market:

\[\begin{align}\begin{aligned}\mathit{Demand}_{2U,n,h}\\ \leq \sum _{u,t}\left(\mathit{Reserve_{2U}}_{u,i} \cdot \mathit{Technology}_{u,t} \cdot \mathit{Reserve}_t \cdot \mathit{Locatio}n_{u,n}\right)\\+ \mathit{LL_{2U}}_{n,i}\end{aligned}\end{align} \]

The same equation applies to downward reserve requirements (2D).

The tertiary reserve can also be provided by non-spinning units. The inequality is thus transformed into:

\[\begin{align}\begin{aligned}\mathit{Demand}_{3U,n,h}\\ \leq \sum _{u,t}[(\mathit{Reserve_{2U}}_{u,i} + \mathit{Reserve_{3U}}_{u,i})\\ \cdot \mathit{Technology}_{u,t} \cdot \mathit{Reserve}_t \cdot \mathit{Locatio}n_{u,n}]\\+ \mathit{LL_{3U}}_{n,i}\end{aligned}\end{align} \]

The reserve requirements are defined by the users. In case no input is provided a default formula is used to evaluate the needs for secondary reserves as a function of the maximum expected load for each day. The default formula is described by:

\[\mathit{Demand}_{2U,n,i}=\sqrt{10 \cdot \underset h{\mathit{max}}\left(\mathit{Demand}_{\mathit{DA},n,h}\right) + 150^2}-150\]

Downward reserves are defined as 50% of the upward margin:

\[\mathit{Demand}_{2D,n,h}=0.5 \cdot \mathit{Demand}_{2U,n,h}\]

Power output bounds

The minimum power output is determined by the must-run or stable generation level of the unit if it is committed:

\[\begin{align}\begin{aligned}\mathit{Power}\mathit{MustRun}_{u,i} \cdot \mathit{Committed}_{u,i}\\ \leq \mathit{Power}_{u,i}\end{aligned}\end{align} \]

In the particular case of CHP unit (extration type or power-to-heat type), the minimum power is defined for for a heat demand equal to zero. If the unit produces heat, the minimum power must be reduced according to the power loss factor and the previous equation is replaced by:

\[\begin{align}\begin{aligned}\mathit{Power}\mathit{MustRun}_{chp,i} \cdot \mathit{Committed}_{chp,i}\\- \mathit{StorageInput}_{chp,i} \cdot \mathit{CHPPowerLossFactor}_u\\ \leq \mathit{Power}_{chp,i}\end{aligned}\end{align} \]

The power output is limited by the available capacity, if the unit is committed:

\[\begin{align}\begin{aligned}\mathit{Power}_{u,i}\\ \leq \mathit{PowerCapacity}_u \cdot \mathit{AvailabilityFactor}_{u,i}\\ \cdot (1-\mathit{OutageFactor}_{u,i}) \cdot \mathit{Committed}_{u,i}\end{aligned}\end{align} \]

The availability factor is used for renewable technologies to set the maximum time-dependent generation level. It is set to one for the traditional power plants. The outage factor accounts for the share of unavailable power due to planned or unplanned outages.

Ramping Constraints

Each unit is characterized by a maximum ramp up and ramp down capability. This is translated into the following inequality for the case of ramping up:

\[\begin{align}\begin{aligned}\mathit{Power}_{u,i} - \mathit{Power}_{u,i-1} \leq\\(\mathit{Committed}_{u,i} - \mathit{StartUp}_{u,i}) \cdot \mathit{RampUpMaximum}_{u}\\+ \mathit{StartUp}_{u,i} \cdot \mathit{RampStartUpMaximum}_{u}\\- \mathit{ShutDown}_{u,i} \cdot \mathit{PowerMustRun}_{u,i}\\+ \mathit{LL_{RampUp}}_{u,i}\end{aligned}\end{align} \]

and for the case of ramping down:

\[\begin{align}\begin{aligned}\mathit{Power}_{u,i-1} - \mathit{Power}_{u,i} \leq\\(\mathit{Committed}_{u,i} - \mathit{ShutDown}_{u,i}) \cdot \mathit{RampDownMaximum}_{u}\\+ \mathit{ShutDown}_{u,i} \cdot \mathit{RampShutDownMaximum}_{u}\\- \mathit{StartUp}_{u,i} \cdot \mathit{PowerMustRun}_{u,i}\\+ \mathit{LL_{RampDown}}_{u,i}\end{aligned}\end{align} \]

Note that this formulation is valid for both the clustered formulation and the binary formulation. In the latter case (there is only one unit u), if the unit remains committed, the inequality simplifies into:

\[\begin{align}\begin{aligned}\mathit{Power}_{u,i} - \mathit{Power}_{u,i-1} \leq\\\mathit{RampUpMaximum}_{u} + \mathit{LL_{RampUp}}_{u,i}\end{aligned}\end{align} \]

If the unit has just been committed, the inequality becomes:

\[\begin{align}\begin{aligned}\mathit{Power}_{u,i} - \mathit{Power}_{u,i-1} \leq\\\mathit{RampStartUpMaximum}_{u} + \mathit{LL_{RampUp}}_{u,i}\end{aligned}\end{align} \]

And if the unit has just been stopped:

\[\begin{align}\begin{aligned}\mathit{Power}_{u,i} - \mathit{Power}_{u,i-1} \leq\\- \mathit{PowerMustRun}_{u,i} + \mathit{LL_{RampUp}}_{u,i}\end{aligned}\end{align} \]

Minimum up and down times

The operation of the generation units is also limited as well by the amount of time the unit has been running or stopped. In order to avoid excessive ageing of the generators, or because of their physical characteristics, once a unit is started up, it cannot be shut down immediately. Reciprocally, if the unit is shut down it may not be started immediately.

To model this in MILP, the number of startups/shutdowns in the last N hours must be limited, N being the minimum up or down time. For the minimum up time, the number of startups during this period cannot be higher than the number of currently committed units:

\[\sum _{ii=i-\mathit{TimeUpMinimum}_u}^{i} \mathit{StartUp}_{u,ii} \leq \mathit{Committed}_{u,i}\]

i.e. the currently committed units are not allowed to have performed multiple on/off cycles during the last TimeUpMinimum periods. In case of a binary formulation (Nunits=1), if the unit is ON at time i, only one startup is allowed in the last TimeUpMinimum periods. If the unit is OFF at time i, no startup is allowed.

A similar inequality can be written for the ninimum down time:

\[\sum _{ii=i-\mathit{TimeDownMinimum}_u}^{i} \mathit{ShutDown}_{u,ii} \leq \mathit{Nunits}_u - \mathit{Committed}_{u,i}\]

Storage-related constraints

Generation units with energy storage capabilities (mostly large hydro reservoirs and pumped hydro storage units) must meet additional restrictions related to the amount of energy stored. Storage units are considered to be subject to the same constraints as non-storage power plants. In addition to those constraints, storage-specific restrictions are added for the set of storage units (i.e. a subset of all units). These restrictions include the storage capacity, inflow, outflow, charging, charging capacity, charge/discharge efficiencies, etc. Discharging is considered as the standard operation mode and is therefore linked to the Power variable, common to all units.

The first constraint imposes that the energy stored by a given unit is bounded by a minimum value:

\[\mathit{StorageMinimum}_s \leq \mathit{StorageLevel}_{s,i} \cdot \mathit{Nunits}_s\]

In the case of a storage unit, the availability factor applies to the charging/discharging power, but also to the storage capacity. The storage level is thus limited by:

\[\mathit{StorageLevel}_{s,i} \leq \mathit{StorageCapacity}_s \cdot \mathit{AvailabilityFactor}_{s,i} \cdot \mathit{Nunits}_s\]

The energy added to the storage unit is limited by the charging capacity. Charging is allowed only if the unit is not producing (discharging) at the same time (i.e. if Committed, corresponding to the {textquotedbl}normal{textquotedbl} mode, is equal to 0).

\[\begin{align}\begin{aligned}\mathit{StorageInput}_{s,i} \leq\\\mathit{StorageChargingCapacity}_s \cdot (\mathit{Nunits}_s-\mathit{Committed}_{s,i})\end{aligned}\end{align} \]

Discharge is limited by the level of charge of the storage unit:

\[\begin{align}\begin{aligned}\frac{\mathit{Power}_{i,s}}{\mathit{StorageDischargeEfficienc}y_s} + \mathit{StorageOutflow}_{s,i} \cdot \mathit{Nunits}_s\\+ \mathit{Spillage}_{s,i} -\mathit{StorageInflow}_{s,i} \cdot \mathit{Nunits}_s\\\leq \mathit{StorageLevel}_{s,i}\end{aligned}\end{align} \]

It is worthwhile to note that StorageInflow and StorageOuflow must be multiplied by the number of units because they are defined for a single storage plant. On the contrary StorageLevel, Spillage and Power are defined for all units s.

Charge is limited by the level of charge of the storage unit:

\[\begin{align}\begin{aligned}\mathit{StorageInput}_{s,i} \cdot \mathit{StorageChargingEfficiency}_s\\- \mathit{StorageOutflow}_{s,i} \cdot \mathit{Nunits}_s - \mathit{Spillage}_{s,i}\\+ \mathit{StorageInflow}_{s,i} \cdot \mathit{Nunits}_s\\\leq \mathit{StorageCapacity}_s \cdot \mathit{AvailabilityFactor}_{s,i}\\- \mathit{StorageLevel}_{s,i}\end{aligned}\end{align} \]

Besides, the energy stored in a given period is given by the energy stored in the previous period, net of charges and discharges:

\[\begin{align}\begin{aligned}\mathit{StorageLevel}_{s,i-1} + \mathit{StorageInflow}_{s,i} \cdot \mathit{Nunits}_s\\+ \mathit{StorageInput}_{s,i} \cdot \mathit{StorageChargingEfficiency}_s\\= \mathit{StorageLevel}_{s,i} + \mathit{StorageOutflow}_{s,i} \cdot \mathit{Nunits}_s\\+ \frac{\mathit{Power}_{s,i}}{\mathit{StorageDischargeEfficienc}y_s}\end{aligned}\end{align} \]

Some storage units are equiped with large reservoirs, whose capacity at full load might be longer than the optimisation horizon. Therefore, a minimum level constraint is required for the last hour of the optimisation, which otherwise wouls systematically tend to empty the reservoir as much a possible. An exogenous minimum profile is thus provided and the following constraint is applied:

\[\begin{align}\begin{aligned}\mathit{StorageLevel}_{s,N} \geq min(\mathit{StorageProfile}_{s,N}\\\cdot \mathit{AvailabilityFactor}_{s,N} \cdot \mathit{StorageCapacity}_{s} \cdot \mathit{Nunits}_s ,\\\mathit{StorageLevel}_{s,0} + (\sum\limits_{i=1}^N InFlows_{s,i} - \sum\limits_{i=1}^N OutFlows_{s,i}) \cdot \mathit{Nunits}_s)\end{aligned}\end{align} \]

where N is the last period of the optimization horizon and StorageProfile is a non-dimensional minimum storage level provided as an exogenous input. The minimum is taken to avoid unfeasibilities in case the provided inflows are not sufficient to comply with the imposed storage level at the end of the horizon.

Heat production constraints (CHP plants only)

In DispaSET Power plants can be indicated as CHP satisfying one heat demand. Heat Demand can be covered either by a CHP plant or by alternative heat supply options (Heat Slack).

[image: _images/CHP_flows.png]
The following two heat balance constraints are used for any CHP plant type.

\[Heat(chp,i) + HeatSlack(chp,i)
= HeatDemand(chp,i)\]

\[StorageInput_{chp,i} \leq CHPMaxHeat_{chp} \cdot \mathit{Nunits}_{chp}\]

The constraints between heat and power production differ for each plant design and explained within the following subsections.

Steam plants with Backpressure turbine

This options includes steam-turbine based power plants with a backpressure turbine. The feasible operating region is between AB. The slope of the line is the heat to power ratio.

[image: _images/backpressure.png]

\[Power_{chp,i}
=
StorageInput_{chp,i} \cdot CHPPowerToHeat_{chp}\]

Steam plants with Extraction/condensing turbine

This options includes steam-turbine based power plants with an extraction/condensing turbine. The feasible operating region is within ABCDE.
The vertical dotted line BC corresponds to the minimum condensation line (as defined by CHPMaxHeat). The slope of the DC line is the heat to power ratio and the slope of the AB line is the inverse of the power penalty ratio.

[image: _images/extraction.png]

\[Power_{chp,i}
\geq
StorageInput_{chp,i} \cdot CHPPowerToHeat_{chp}\]

\[\begin{align}\begin{aligned}Power_{chp,i}
\leq
PowerCapacity_{chp} -\\StorageInput_{chp,i} \cdot CHPPowerLossFactor_{chp}\end{aligned}\end{align} \]

\[Power_{chp,i}
\geq
PowerMustRun_{chp,i} - StorageInput_{chp,i} * CHPPowerLossFactor_{chp}\]

Power plant coupled with any power to heat option

This option includes power plants coupled with resistance heater or heat pumps. The feasible operating region is between ABCD. The slope of the AB and CD line is the inverse of the COP or efficiency.
The vertical dotted line corresponds to the heat pump (or resistance heater) thermal capacity (as defined by CHPMaxHeat)

[image: _images/p2h.png]

\[Power_{chp,i}
\leq
PowerCapacity_{chp} - StorageInput_{chp,i} \cdot CHPPowerLossFactor_{chp}\]

\[Power_{chp,i}
\geq
PowerMustRun_{chp,i} - StorageInput_{chp,i} * CHPPowerLossFactor_{chp}\]

Heat Storage

Heat storage is modeled in a similar way as electric storage as follows:

Heat Storage balance:

\[\begin{align}\begin{aligned}+StorageLevel_{chp,i-1}
+StorageInput_{chp,i}
=\\StorageLevel_{chp,i}
+Heat_{chp,i} + StorageSelfDischarge_{chp} \cdot StorageLevel_{chp,i}/24\end{aligned}\end{align} \]

Storage level must be above a minimum and below storage capacity:

\[StorageMinimum_{chp}
\leq
StorageLevel_{chp,i}
\leq
StorageCapacity_{chp} \cdot \mathit{Nunits}_{chp}\]

Emission limits

The operating schedule also needs to take into account any cap on the emissions (not only CO2) from the generation units existing in each node:

\[\begin{align}\begin{aligned}\sum _u\left(\mathit{Power}_{u,i} \cdot \mathit{EmisionRate}_{u,p} \cdot \mathit{Location}_{u,n}\right)\\\leq \mathit{EmisionMaximum}_{n,p}\end{aligned}\end{align} \]

It is important to note that the emission cap is applied to each optimisation horizon: if a rolling horizon of one day is adopted for the simulation, the cap will be applied to all days instead of the whole year.

Network-related constraints

The flow of power between nodes is limited by the capacities of the transmission lines:

\[\begin{align}\begin{aligned}\mathit{FlowMinimum}_{l,i} \leq \mathit{Flow}_{l,i}\\\mathit{Flow}_{l,i} \leq \mathit{FlowMaximum}_{l,i}\end{aligned}\end{align} \]

In this model a simple Net Transfer Capacity (NTC) between countries approach is followed. No DC power flow or Locational Marginal Pricing (LMP) model is implemented.

Curtailment

If curtailment of intermittent generation sources is allowed in one node, the amount of curtailed power is bounded by the output of the renewable (tr) units present in that node:

\[\begin{align}\begin{aligned}\mathit{CurtailedPower}_{n,i}\\\leq \sum _{u,\mathit{tr}}\left(\mathit{Power}_{u,i} \cdot \mathit{Technology}_{u,\mathit{tr}} \cdot \mathit{Location}_{u,n}\right) \cdot \mathit{Curtailment}_n\end{aligned}\end{align} \]

Load shedding

If load shedding is allowed in a node, the amount of shed load is limited by the shedding capacity contracted on that particular node (e.g. through interruptible industrial contracts)

\[\mathit{ShedLoad}_{n,i} \leq \mathit{LoadShedding}_n\]

Rolling Horizon

The mathematical problem described in the previous sections could in principle be solved for a whole year split into time steps of one hour, but with all likelihood the problem would become extremely demanding in computational terms when attempting to solve the model with a realistically sized dataset. Therefore, the problem is split into smaller optimization problems that are run recursively throughout the year.

The following figure shows an example of such approach, in which the optimization horizon is one day, with a look-ahead (or overlap) period of one day. The initial values of the optimization for day j are the final values of the optimization of the previous day. The look-ahead period is modelled to avoid issues related to the end of the optimization period such as emptying the hydro reservoirs, or starting low-cost but non-flexible power plants. In this case, the optimization is performed over 48 hours, but only the first 24 hours are conserved.

[image: _images/rolling_horizon.png]
Although the previous example corresponds to an optimization horizon and an overlap of one day, these two values can be adjusted by the user in the Dispa-SET configuration file. As a rule of thumb, the optimization horizon plus the overlap period should as least twice the maximum duration of the time-dependent constraints (e.g. the minimum up and down times). In terms of computational efficiency, small power systems can be simulated with longer optimization horizons, while larger systems should reduce this horizon, the minimum being one day.

References

	1

	Quoilin, S., Hidalgo Gonzalez, I., & Zucker, A. (2017). Modelling Future EU Power Systems Under High Shares of Renewables: The Dispa-SET 2.1 open-source model. Publications Office of the European Union.

	2

	Quoilin, S., Nijs, W., Hidalgo, I., & Thiel, C. (2015). Evaluation of simplified flexibility evaluation tools using a unit commitment model. IEEE Digital Library.

	3

	Quoilin, S., Gonzalez Vazquez, I., Zucker, A., & Thiel, C. (2014). Available technical flexibility for balancing variable renewable energy sources: case study in Belgium. Proceedings of the 9th Conference on Sustainable Development of Energy, Water and Environment Systems.

Model Formulations

Because of the constraints linked to computational efficiency and to data availability, it is not necessarily desirable to accurately model each individual unit in the power system. For that reason, Dispa-SET can operate under different modelling hypotheses and levels of complexity. In terms of formulation of the optimization problem, these include for example:

	A linear programming formulation, in which all units are clustered by technology

	An integer formulation in which a typical unit is considered for each technology and multiplied N times. The formulation allows taking into account constraints such as minimum up/down times, minimum load, etc.

	A binary formulation in which each power plant in the system is considered individually

The section describes the various clustering options and modeling formulations available in Dispa-SET. It is worthwhile to note that each clustering method and/or modelling formulation can be applied to the same reference dataset. This allows comparing the various methods in terms of computational efficiency, but also in terms of accuracy.

Four main formulations are currently available:

No clustering

In this case, the pre-processing tool does not modify the power plant input data. The user is allowed to cluster some power plants himself by defining the Nunits input variable in the power plants input csv file. Let us consider the following (incomplete) inputs as an example:

	Unit

	PowerCapacity

	Nunits

	Zone

	Technology

	Fuel

	Maasvlakte

	500

	1

	Z2

	STUR

	HRD

	Diemen

	430

	1

	Z2

	COMC

	GAS

	CCGTs

	400

	6

	Z2

	COMC

	GAS

	Borssele

	408

	1

	Z2

	STUR

	HRD

	OCGT1

	25

	1

	Z2

	GTUR

	GAS

	TIHANGE 3

	1000

	1

	Z1

	STUR

	NUC

	DROGENBOS TGV

	465

	1

	Z1

	COMC

	GAS

	SISTERON

	214

	2

	Z1

	HDAM

	WAT

	SIERREUX

	20

	1

	Z1

	GTUR

	GAS

	ANGLEUR

	30

	1

	Z1

	GTUR

	GAS

	WindOn_Z1

	200

	1

	Z1

	WTON

	WIN

In this example, there are a number of different unit types and two zones. Some power plants have Nunits=1, which implies that they will be considered individually in the optimization. Other power plants (CCGTS and SISTERON) are multiplied 6 and 2 times, respectively. This implies that the total capacity of CCGTs and SISTERON units is 2400 MW and 228 MW, respectively. Note that all unit characteristics in the input data (not appearing in the above table) should be defined for a single unit!

These two units are assigned an integer variable instead of a binary variable in the optimization. The solver successively starts 1, 2, 3, 4, etc. units with the exact same characteristics. In this approach, start-up costs, minimum up and down times, minimum part-load are considered, but with a significantly improved computational efficiency. The loss in accuracy resides in the hypothesis of identical characteritics for all units in a clustered group. This is however acceptable if not data is available at the individual power plant level, or if the complexity of the modeled system does not justify such a high disaggregation level.

Standard formulation

For computational efficiency reasons, it is useful to merge some of the original units into larger units. This reduces the number of continuous and binary variables and can, in some conditions, be performed without significant loss of simulation accuracy.

In the standard formulation (formerly call MILP formulation), the units that are either very small or very flexible are merged into larger units. Some of these units (e.g. the turbojets) indeed present a low capacity or a high flexibility: their output power does not exceed a few MW and/or they can reach full power in less than 15 minutes (i.e. less than the simulation time step). For these units, a unit commitment model with a time step of 1 hour is unnecessary and computationally inefficient. They are therefore merged into one single, highly flexible unit with averaged characteristics.

The condition for the merging of two units is a combination of subconditions regarding their type, maximum power, flexiblity and technical similarities. They are summarized in the figure below (NB: the thresholds are for indicative purpose only, they can be user-defined).

[image: _images/clustering.png]
When two units are merged, the minimum and maximum capacities of new aggregated units (indicated by the star) are given by:

\[P_{min}^* = min(P_{j,min})\]

\[P_{max}^* = \sum_j (P_{j,min})\]

The last equation is also applied for the storage capacity or for the storage charging power.

The unit marginal (or variable cost) is given by:

\[Cost_{Variable}^* = \frac{\sum_j (P_{j,max} \cdot Cost_{Variable,j})}{P_{max}^*}\]

The start-up/shut-down costs are transformed into ramping costs (example with ramp-up):

\[Cost_{RampUp}^* = \frac{\sum_j (P_{j,max} \cdot Cost_{RampUp,j})}{P_{max}^*} + \frac{\sum_j (Cost_{StartUp,j})}{P_{max}^*}\]

Other characteristics, such as the plant efficiency, the minimum up/down times or the CO2 emissions are computed as a weighted averaged:

\[Efficiency^* = \frac{\sum_j (P_{j,max} \cdot Efficiency_{j})}{P_{max}^*}\]

It should be noted that only very similar units are merged (i.e. their quantitative characteristics should be similar), which avoids errors due to excessive aggregation.

In the example provided in the above table the following would occur:

	SIERREUR and ANGLEUR would be merged because they are small and highly flexible.

	OCGT1 cannot be merged with SIERREUX and ANGLEUR since they don’t belong to the same zone.

	Maasvlakte and Borssele are not merged, although they have the same technology, fuel and zone. This is because their size is significant and they flexibility is low.

	Diemen and CCGTS are merged only if their flexibility is high (i.e. they can start/stop or ramp to full load in less then one hour).

Integer clustering

In this formulation, all units of a similar technology, fuel and zone are clustered: a typical unit is defined by averaging the characteristics of all units belonging to the cluster. The total number of units is conserved, allowing a proper representation of constraints such as start-up costs, minimum up/down times or minimum stable load values. In the example provided above, the integer clustering would results into the following unit list:

	Unit

	PowerCapacity

	Nunits

	Zone

	Technology

	Fuel

	Z2_STUR_HRD

	454

	2

	Z2

	STUR

	HRD

	Z2_COMC_GAS

	404

	7

	Z2

	COMC

	GAS

	OCGT1

	25

	1

	Z2

	GTUR

	GAS

	TIHANGE 3

	1000

	1

	Z1

	STUR

	NUC

	DROGENBOS TGV

	465

	1

	Z1

	COMC

	GAS

	SISTERON

	214

	2

	Z1

	HDAM

	WAT

	Z1_GTUR_GAZ

	25

	2

	Z1

	GTUR

	GAS

	WindOn_Z1

	200

	1

	Z1

	WTON

	WIN

where the total capacity and number of units for each technology/fuel is conserved. More details regarding the formulation and the implementation of the integer clustering are available in 1

LP clustering

Dispa-SET provides the possibility to generate the optimisation model as an LP problem (i.e. withtout the binary variables). In that case, the following constraints are removed since they can only be expressed in an MILP formulation:

	Minimum up and down times

	Start-up costs

	Minimum stable load

Since the start-up of individual units is not considered anymore, it is not useful to disaggrate them in the optimisation. All units of a similar technology, fuel and zone are merged into a single unit using the equations proposed in the previous sections.
This formulation is used in the Mid-term hydrothermal coordination .

	1

	Incorporating Operational Flexibility Into Electric Generation Planning: Impacts and Methods for System Design and Policy Analysis, Palmintier, B.S. (2012). Ph.D. Thesis, Engineering Systems Division, MIT

Implementation and interface

The typical step-by-step procedure to parametrize and run a DispaSET simulation is the following:

	Fill the Dispa-SET database with properly formatted data (time series, power plant data, etc.)

	Configure the simulation parameters (rolling horizon, data slicing) in the configuration file.

	Generate the simulation environment which comprises the inputs of the optimisation

	Open the GAMS simulation files (project: UCM.gpr and model: UCM_h.gms) and run the model.

	Read and display the simulation results.

This section provides a detailed description of these steps and the corresponding data entities.

Resolution Flow Chart

The whole resolution process for a dispa-SET run is defined from the processing and formatting of the raw data to the generation of aggregated result plots and statistics. A flow chart of the consecutive data entities and processing steps is provided hereunder.

[image: _images/Flow-chart.png]
Each box in the flow chart corresponds to one data entity. The links between these data entities correspond to script written in Python or in GAMS. The different steps perform various tasks, which can be summarized by:

	
	Data collection:

	
	Read csv sheets, assemble data

	Convert to the right format (timestep, units, etc).

	Define proper time index (duplicates not allowed)

	Write formatted input data to the Dispa-SET database

	
	Pre-processing:

	
	Read the config file

	Slice the data to the required time range

	Deal with missing data

	Check data for consistency (min up/down times, startup times, etc.)

	Calculate variable cost for each unit

	Cluster units

	Define scenario according to user inputs (curtailment, participation to reserve, amount of VRE, amount of storage, …)

	Define initial state (basic merit-order dispatch)

	Write the simulation environment to a user-defined folder

	
	Simulation environment and interoperability:

	
	
	Self-consistent folder with all required files to run the simulation:

	
	GDX file

	Input files in pickle format

	Gams model files

	
	Simulation:

	
	The GAMS simulation file is run from the simulation environment folder

	All results and inputs are saved within the simulation environment

	
	Post-processing:

	
	Reads the simulation results saved in the simulation environment

	Aggregates the power generation and storage curves

	Computates of yearly statistics

	Generates plots

Dispa-SET database

The public version of Dispa-SET is released with a Database relative to the EU power system. The Dispa-SET input data is stored as csv file in directory structure. A link to the required data is then provided by the user in the configuration file.

[image: _images/database.png]
The above figure shows a partially unfolded view of the database structure. In that example, data is provided for the day-ahead net transfer capacities for all lines in the EU, for the year 2015 and with a 1h time resolution. Time series are also provided for the day-ahead load forecast for Belgium in 2015 with 1h time resolution.

Configuration File

The excel config file is read at the beginning of the pre-processing phase. It provides general inputs for the simulation as well as links to the relevant data files in the database.

[image: _images/config.gif]

Simulation environment

This section describes the different simulation files, templates and scripts required to run the DispaSET model. For each simulation, these files are included into a single directory corresponding to a self-sufficient simulation environment.

A more comprehensive description of the files included in the simulation environment directory is provided hereunder.

UCM_h.gms and UCM.gpr

UCM_h.gms is the main GAMS model described in Chapter 1. A copy of this file is included in each simulation environment, allowing keeping track of the exact version of the model used for the simulation. The model must be run in GAMS and requires a proper input file (Inputs.gdx).

	Requires:

	Inputs.gdx

	Input file for the simulation.

	Generates:

	Results.gdx

	Simulation results in gdx format

	.

	Results.xlsx

	Simulation results in xlsx format.

UCM.gpr is the GAMS project file which should be opened before UCM_h.gms.

Inputs.gdx

All the inputs of the model must be stored in the Inputs.gdx file since it is the only file read by the main GAMS model. This file is generated from the DispaSET template.

	Requires:

	InputDispa-SET – xxx.xlsx

	DispaSET template files

	Generates:

	
	

Post-processing

Post-processing is implemented in the form of a series of functions to read the simulation inputs and results, to plot them, and to derive statistics.

The following values are computed:

	The total energy generated by each fuel, in each country.

	The total energy curtailed

	the total load shedding

	The overall country balance of the interconnection flows

	The total hours of congestion in each interconnection line

	The total amount of lost load, indicating (if not null) that the unit commitment problem was unfeasible at some hours

	The number of start-ups of power plants for each fuel

The following plots can be genrated:

	A dispatch plot (by fuel type) for each country

	A commitment status (ON/OFF) plot for all the unit in a given country

	The level (or state of charge) of all the storage units in a given country

	The overall power generation by fuel type for all countries (bar plot)

An example usage of these funciones is provided in the “Read_Results.ipynb” notebook.

Mid-term hydrothermal coordination

As discussed in previous sections the simulations depends on exogenous
storage level profiles. These profiles have to be cogerent with the rest
of the input parameters in order to ensure both the feasibility of the problem and
accurate results.

In many cases, collecting accurate and reliable historical storage
levels and profiles in form of hourly timeseries might be a difficult or
close to impossible task. In future scenarios storage levels are usually
forecasted based on the historical data. The lack of such data also
impacts the accurate modelling of such scenarios. In systems with high
shares of hydro dams (HDAM) and pumped hydro storage (HPHS) units, such
as Norway and Albania, this might have a huge impact on the overall
results of the simulation.

In order to avoid this, Dispa-SET’s Midterm
Hydro-Thermal Scheduling (MTS) module represents a simplified version of
the original MILP unit commitment and power dispatch model. This version
is a simplified version of the linear programming formulation which
allows perfect foresight and allocation of water resources for the whole
optimization period and not only for the tactical horizon of each
optimization step. This module enables quick calculation (later also
referring as allocation) of reservoir levels which are then used as
guidance curves (minimum level constraints) in one of the four main
Dispa-SET formulations. The main options are:

	No-MTS, in which historical curves are used,

	Zonal-MTS, in which MTS is run for each Zone individually,

	Regional-MTS, in which MTS is run for two or more Zones from the
selected region simultaneously.

MTS options

This section describes the above options available in the Dispa-SET. It
is worthwhile to note that each MTS method and/or modelling formulation
can be applied to the same input dataset. This allows comparing the
various methods in terms of computational efficiency, but also in terms
of accuracy. Graphical summary of MTS options is available in Figure:

[image: mts_flow]

Note

The MTS optimization (process) is being executed in the preprocessing
phase. Here the simplified LP optimization estimates the reservoir
levels for the entire year. These newly computed reservoir levels are
then imposed as minimum level constraint used in the last time interval
of the rolling horizon. As preprocessing includes LP optimization, it
might take a while to complete and will be highly dependent on the
number of selected zones (the more zones are selected the longer it will
take to build the model). Depending on the operating system, command
prompt may pop-up and interrupt other processes several times.

NO-MTS (Historical Curves)

HISTORICAL is the standard formulation of the Dispa-SET model. All
reservoir levels are imposed as external timeseries in form of scaled
reservoir levels (in range from 0 - 1). These reservoir levels are used
as minimum level constraint in the last time interval of the rolling
horizon.

ZONAL-MTS

ZONAL formulation can be used in two ways:
1) If not specified otherwise (default option), MTS will be run for each
of the selected zones individually. For a system of four zones
configured as shown in figure 1, each of the zones A, B, C & D MTS will
be run once. In this formulation NTC capacities are not considered.
Instead, default cross border flows from the database are used. .
2) Zones where MTS should be run can also be specified in the list of
zones. In this case, MTS module will only be run in the specified zones.
In our example with four zones, zones A, B & D are selected for the MTS,
while zone C keeps the default values from the database.

REGIONAL-MTS

REGIONAL formulation can be used in the same way as zonal
formulation.

1) If not specified otherwise, MTS will be run once, for the whole
region at once. For the system of four zones configured as shown in
figure 1, zones A, B, C & D will be regarded as a region. In this
formulation MTS will compute reservoir levels based on additional
criteria such as available net transfer capacities (NTC) instead of
historical cross border flows (CBF).

2) Region where MTS should be run can also be specified in the list of
zones contained within one region. In this case MTS module will be run
only in the selected region. In our example zones A, B & D. Zone C keeps
the default values from the database. This formulation generates even
more accurate results compared to the zonal formulation but might
increase the memory usage and computation time significantly.

How to call MTS

MTS module is called automatically if the relevant parameters indicate the use of it.
During the build phase Dispa-SET will read the MTS parameters from the Config file (either .xlsx or
.yml), execute the MTS module and build SimData with newly computed
reservoir levels. Additional options also allow selection of specific
zones and ploting the difference between the historical and newly
computed reservoir levels (this is only useful for debugging purposes).
The latter is triggered if the build_simulation functions is called with
the flag mts_plot=True.

Selection of MTS options inside the Config file:

	Config.xlsx

	Config.yml

	Hydro scheduling

	HydroScheduling:

	
	Off

	Regional

	Zonal

	
	‘Off’

	‘Regional’

	‘Zonal’

	Hydro scheduling horizon

	HydroSchedulingHorizon:

	
	Annual

	Stop-date driven

	
	‘Annual’

	‘Stop-date driven’

	Initial/Final reservoir level

	InitialFinalReservoirLevel:

	
	TRUE

	FALSE

	
	1.0

	0.0

	
	Initial level & <- Final level

	ReservoirLevelInitial: &
ReservoirLevelFinal:

	
	‘’

	0 - 1

	
	‘’

	0 - 1

Examples

Computing reservoir levels by using the MTS module increases the
accuracy of HDAM and HPHS units and avoids infeasible ramping up/down
rates proposed by the historical levels. A good example of one such case
is when the difference between initial and final reservoir levels is
higher than the sum of all the inflows during that time horizon.

Lets assume that ReservoirLevelInital = 1 MWh , ReservoirLevelFinal = 30
MWh, Pmax = 1 MW, InFlows = 1 MW per hour which totals 24 MWh for
horizon length of one day. In this case the reservoir cannot reach the
storage target as it is constrained by the generation capacity.

This would produce infeasible solution which would then have a price of
water slackof 100€/MWh imposed on the difference between historical and
calculated reservoir levels in the last time interval of the rolling
horizon (an imaginary well that fills the reservoir). In our example
this would then amount to 30MWh – 1MWh – 24MWh = 5 MW *100 €/MWh =
500€.

This might still be the case even if MTS is turned on. Thus, Hydro
scheduling horizon option inside the Config files provides additional
flexibility for running the MTS:

	Stop-date driven runs the MTS only between the selected start and
stop dates, while

	Annual runs the MTS between 01.01. and 31.12. of the selected
year.

Initial/Final reservoir levels can be imposed as TRUE/FALSE
statement. When TRUE Initial and Final reservoir levels can be imposed
externally and should always be in range between 0 and 1 (0 completely
empty reservoir and 1 for 100% full reservoir). This option will
override initial and final reservoir levels for all hydro units in all
selected zones. This might be useful when analysing countries/zones with
data scarcity. When FALSE historical values for Initial and Final
reservoir levels will be considered.

Case Studies

In the past years, Dispa-SET has been used in various scientific works covering different geographical areas and with different focus points. It is originally designed to simulate EU countries (one node per country) but has also been applied to other regions such as Western Africa, Bolivia or the Balkans. The model includes the constraints linked to each generation unit (min/max power, ramping rates, efficiencies, storage capacities, etc.), to the interconnections and to the power and thermal demands. It uses high-resolution time series for the demands, renewable generation and outages in each simulated country.

The case studies for which scientific analysis has been carried out are summarized hereunder:

	Dispa-SET for the EU28

	Dispa-SET for the Balkans region

	Dispa-SET for the Belarus

External links

	EU28 [https://github.com/balkans-energy-modelling/DispaSET-for-the-Balkans] DispaSET applied to the EU28 member states

	Balkans [https://github.com/balkans-energy-modelling/DispaSET-for-the-Balkans] Western Balkans and neighbouring countries

	Belarus Planning the future: Integrating renewable energy sources in the Belarusian power system

	Belgium Coupling a power system model to a building model to evaluate the flexibility potential of DSM at country level

	Bolivia Techno-economic assessment of hing renewable energy source penetration in the Bolivian interconnected electric system

	Central Europe Evaluating flexibility and adequacy in future EU power systems: model coupling and long-term forecasting

	Netherlands Evaluating the impact of EV charging demand on the Dutch energy system

Dispa-SET for the EU28

Description

Dispa-SET is provided with a ready-to-use dataset of the EU28 (+Norway +Switzerland) power system. A detailed description of the model and of the selected input data is available in 1 and 2.

The power plants in the model are represented as a cluster of units powered by the same fuel type and technology. They can be modelled together with a large number of RES units with separate hourly distribution curves.

Features

The model is expressed as an optimization problem. Continuous variables include the individual unit dispatched power, the shedded load and the curtailed power generation. The binary variables are the commitment status of each unit. The main model features can be summarized as follows:

	Minimum and maximum power for each unit

	Power plant ramping limits

	Reserves up and down

	Minimum up/down times

	Load Shedding

	Curtailment

	Pumped-hydro storage

	Non-dispatchable units (e.g. wind turbines, run-of-river, etc.)

	Start-up, ramping and no-load costs

	Multi-nodes with capacity constraints on the lines (congestion)

	Constraints on the targets for renewables and/or CO2 emissions

	Yearly schedules for the outages (forced and planned) of each units

	CHP power plants and thermal storage

	Integer clustering: a representative unit is considered for each technology and multiplied N times.

The demand is assumed to be inelastic to the price signal. The MILP objective function is therefore the total generation cost over the optimization period.

Run the EU model

A specific config file is provided with the standard Dispa-SET installation (starting from v2.3). After installing Dispa-SET and checking that everything is fine, you can run the EU model in different ways:

From the command line (if Dispa-SET was properly installed):

dispaset -c ConfigFiles/ConfigEU.xlsx build simulate

Using the Dispa-SET Api and the provided example script:

scriptsbuild_and_run_EU_model.py

Documentation

The general documentation of the Dispa-SET model and the stable releases are available on the main Dispa-SET website: http://www.dispaset.eu

Licence

Dispa-SET is a free software licensed under the “European Union Public Licence” EUPL v1.2. It can be redistributed and/or modified under the terms of this license.

Important results

Main developpers

	Sylvain Quoilin (University of Liège, KU Leuven)

	Konstantinos Kavvadias (European Commission, Institute for Energy and Transport)

	Matija Pavičević (KU Leuven)

References

More details regarding the model and its implementation are available in the following publications

	1

	Kavvadias, K., Hidalgo Gonzalez, I., Zucker, A., & Quoilin, S. (2018). Integrated modelling of future EU power and heat systems - The Dispa-SET v2.2 open-source model (EUR 29085 EN). Luxembourg: European Commission.

	2

	Matija Pavičević, Wouter Nijs, Konstantinos Kavvadias, Sylvain Quoilin, Modelling flexible power demand and supply in the EU power system: soft-linking between JRC-EU-TIMES and the open-source Dispa-SET model, ECOS 2019

Dispa-SET for the Balkans region

Description

This is input data of the Dispa-SET model, applied to the Balkans Region

Countries included in different scenarios are show in the table 1 2 3 4 :

	Countries

	2010

	2015

	2020

	2030

	Albania

	[O]

	[O]

	[O]

	[O]

	Bosnia and
Herzegovina

	[O]

	[O]

	[O]

	[O]

	Croatia

	[X]

	[O]

	[O]

	[O]

	Kosovo

	[O]

	[O]

	[O]

	[O]

	Macedonia

	[O]

	[O]

	[O]

	[O]

	Montenegro

	[O]

	[O]

	[O]

	[O]

	Serbia

	[O]

	[O]

	[O]

	[O]

	Slovenia

	[X]

	[O]

	[O]

	[O]

The model has the ability to describe every single unit, or a cluster of units powered by the same fuel type and technology, with a high level of detail can be modelled together with a large number of RES units with separate hourly distribution curves.

Features

The model is expressed as an optimization problem. Continuous variables include the individual unit dispatched power, the shedded load and the curtailed power generation. The binary variables are the commitment status of each unit. The main model features can be summarized as follows:

	Minimum and maximum power for each unit

	Power plant ramping limits

	Reserves up and down

	Minimum up/down times

	Load Shedding

	Curtailment

	Pumped-hydro storage

	Non-dispatchable units (e.g. wind turbines, run-of-river, etc.)

	Start-up, ramping and no-load costs

	Multi-nodes with capacity constraints on the lines (congestion)

	Constraints on the targets for renewables and/or CO2 emissions

	Yearly schedules for the outages (forced and planned) of each units

	CHP power plants and thermal storage

The demand is assumed to be inelastic to the price signal. The MILP objective function is therefore the total generation cost over the optimization period.

Quick start

If you want to download the latest version from github for use or development purposes, make sure that you have git and the [anaconda distribution](https://www.continuum.io/downloads) installed and type the following:

git clone https://github.com/energy-modelling-toolkit/Dispa-SET.git
cd Dispa-SET
conda env create # Automatically creates environment based on environment.yml
source activate dispaset # in Windows: activate dispaset
pip install -e . # Install editable local version

The above commands create a dedicated environment so that your anconda configuration remains clean from the required dependencies installed.

To check that everything runs fine, you can build and run a test case by typing:

dispaset -c ConfigFiles/ConfigTest.xlsx build simulate

Make sure that the path is changed to local Dispa-SET folder in folowing scripts (the procedure is provided in the scripts):

build_and_run.py
read_results.py

Documentation

The general documentation of the Dispa-SET model and the stable releases are available on the main Dispa-SET website: http://www.dispaset.eu

Licence

Dispa-SET is a free software licensed under the “European Union Public Licence” EUPL v1.2. It can be redistributed and/or modified under the terms of this license.

Important results

[image: _images/Balkans_capacity.png]
[image: _images/Balkans_generation.png]

Main developpers

	Matija Pavičević (KU Leuven) - gathered and analysed the data, performed the computations, analysed and verified the results

	Sylvain Quoilin (University of Liège, KU Leuven) - designed the model and the computational framework, verified the results

	Andreas Zucker (Joint Research Centre, European Commission) - supervised the whole process

References

More details regarding the model and its implementation are available in the following publications

	1

	Pavičević, M., Kavvadias, K. & Quoilin, S. (2018). Impact of model formulation on power system simulations - Example with the Dispa-SET Balkans model, EMP-E conference 2018: Modelling Clean Energy Pathways, Brussels.

	2

	Pavičević, M., Quoilin, S. & Pukšec, T., (2018). Comparison of Different Power Plant Clustering Approaches for Modeling Future Power Systems, Proceedings of the 3rd SEE SDEWES Conference, Novi Sad.

	3

	Tomić, I., Pavičević, M., Quoilin, S., Zucker, A., Pukšec, T., Krajačić. G. & Duić, N., (2017). Applying the Dispa-SET model on the seven countries from the South East Europe. 8th Energy Planning and Modeling of Energy Systems-Meeting, Belgrade. https://bib.irb.hr/prikazi-rad?rad=901595

	4

	Pavičević, M., Tomić, I., Quoilin, S., Zucker, A., Pukšec, T., Krajačić. G. & Duić, N., (2017). Applying the Dispa-SET model on the Western Balkans power systems. Proceedings of the 2017 12th SDEWES Conference, Dubrovnik. http://hdl.handle.net/2268/215095

Other contributors

	Ivan Tomić (University of Zagreb) - gathered and analysed the initial data

	Tomislav Pukšec (University of Zagreb) - analysed the inital results

	Goran Krajačić (University of Zagreb) - supervised inital project

	Neven Duić (University of Zagreb) - supervised inital project

Dispa-SET for the Belarus

Description

Planning the future: Integrating renewable energy sources in the Belarusian power system

Background

The Belarusian energy sector is mainly running on fossil fuels. Approximately two third of the country’s energy production is covered by natural gas, which is mainly imported from Russia. Therefore, increasing the share of renewables in the energy balance has become one of the priority areas of the economic policy of the Belarusian government. In this regard, the objective of this work is the development of smart power and heating systems that can handle increased shares of renewable energy in the Belarusian system. This research focuses on several aspects such as balancing issues, flexibility requirements and congestion management in Belarusian grid.

Methods and Features

The Belarusian energy system has been modeled in Dispa-SET, an open-source unit commitment and optimal dispatch model focused on the balancing and flexibility problems in European grids. A reference and several future scenarios with high share of renewable energy sources were created. This case study analysis provides insights on the ability to integrate as much renewables as possible into the system and to check its impact on the price of runing the system.

The model is expressed as an optimization problem. Continuous variables include the individual unit dispatched power, the shedded load and the curtailed power generation. The binary variables are the commitment status of each unit. The main model features can be summarized as follows:

	Minimum and maximum power for each unit

	Power plant ramping limits

	Reserves up and down

	Minimum up/down times

	Load Shedding

	Curtailment

	Pumped-hydro storage

	Non-dispatchable units (e.g. wind turbines, run-of-river, etc.)

	Start-up, ramping and no-load costs

	Multi-nodes with capacity constraints on the lines (congestion)

	Constraints on the targets for renewables and/or CO2 emissions

	Yearly schedules for the outages (forced and planned) of each units

	CHP power plants and thermal storage

The demand is assumed to be inelastic to the price signal. The MILP objective function is therefore the total generation cost over the optimization period.

Quick start

If you want to download the latest version from github for use or development purposes, make sure that you have git and the [anaconda distribution](https://www.continuum.io/downloads) installed and type the following:

git clone https://github.com/energy-modelling-toolkit/Dispa-SET.git
cd Dispa-SET
conda env create # Automatically creates environment based on environment.yml
source activate dispaset # in Windows: activate dispaset
pip install -e . # Install editable local version

The above commands create a dedicated environment so that your anconda configuration remains clean from the required dependencies installed.

To check that everything runs fine, you can build and run a test case by typing:

dispaset -c ConfigFiles/ConfigTest.xlsx build simulate

Make sure that the path is changed to local Dispa-SET folder in folowing scripts (the procedure is provided in the scripts):

build_and_run.py
read_results.py

Documentation

The general documentation of the Dispa-SET model and the stable releases are available on the main Dispa-SET website: http://www.dispaset.eu

Licence

Dispa-SET is a free software licensed under the “European Union Public Licence” EUPL v1.2. It can be redistributed and/or modified under the terms of this license.

Results

In this model the potential for integration of renewables in the power system of Belarus was examined. The results of this study indicate that the current grid infrastructure can utilize up to 30% of the energy generated by renewables without causing any balancing and stability issues while applying heat pumps, thermal storage and bio-waste-based technologies.

Conclusions

The analysis performed in this work has demonstrated that the utilization of renewables could greatly reduce the use of fossil fuels and hence reduce the annual CO2 emissions by about 5 million tons in the Belarusian energy sector. This way the high dependence on external energy markets should decrease. The designed scenarios should help to realize a Belarusian Energy and Environmental Policy where the share of renewables should reach 30%.

Highlights

Main developpers

	Matija Pavičević (KU Leuven) - gathered and analysed the data, performed the computations, analysed and verified the results

	Darya Muslina (Belarusian National Technical University) - gathered and analysed the data

	Yuliya Stanetskaya (Belarusian National Technical University) - gathered and analysed the data

References

More details regarding the model and its implementation are available in the following publications

dispaset package

Subpackages

	dispaset.preprocessing package
	Submodules

	dispaset.preprocessing.data_check module

	dispaset.preprocessing.data_handler module

	dispaset.preprocessing.preprocessing module

	dispaset.preprocessing.utils module

	Module contents

	dispaset.postprocessing package
	Submodules

	dispaset.postprocessing.postprocessing module

	Module contents

	dispaset.misc package
	Submodules

	dispaset.misc.colorstreamhandler module

	dispaset.misc.gdx_handler module

	dispaset.misc.str_handler module

	Module contents

Submodules

dispaset.solve module

This worksheet contains the two main functions to solve the DispaSET optimization problem using GAMS.

Solve with GAMS and the high level API

The high level interface is recommended for Linux users because it solves
the “whitespace in the simulation folder” issue.

	Installation:

	To install the high-level API in Python 2.x:

cd gams24.4_linux_x64_64_sfx/apifiles/Python/api
python gamssetup.py install

To install the high-level API in Python 3.x:

cd gams24.6_linux_x64_64_sfx/apifiles/Python/api_34
python setup.py install

Solve with GAMS and the low level APIs

Use lower level apis to run GAMS. BAsed on GAMS xpexample2.py

The advantage of the low level API is that it can easily be installed from pip:

pip install gdxcc
pip install gamsxcc
pip install optcc

	
dispaset.solve.is_sim_folder_ok(sim_folder)[source]

	Function that checks if the provided path is a valid Dispa-SET simulation folder.
The following files are required:

	Inputs.gdx

	UCM_h.gms

	Parameters

	sim_folder – path (absolute or relative) to the simulation folder

	
dispaset.solve.solve_GAMS(sim_folder, gams_folder=None, gams_file='UCM_h.gms', result_file='Results.gdx', output_lst=False)[source]

	Function used to run the optimization using the GAMS engine.

	Parameters

	
	sim_folder – path to a valid Dispa-SET simulation folder

	gams_folder – path to the gams folder. If not provided, the script will try to find it automatically

	work_dir – path to the working directory (does not need to be provided)

	output_lst – Set to True to conserve a copy of the GAMS lst file in the simulation folder

Module contents

dispaset.preprocessing package

Submodules

dispaset.preprocessing.data_check module

This files gathers different functions used in the DispaSET to check the input
data

__author__ = ‘Sylvain Quoilin (sylvain.quoilin@ec.europa.eu)’

	
dispaset.preprocessing.data_check.check_AvailabilityFactors(plants, AF)[source]

	Function that checks the validity of the provided availability factors and warns
if a default value of 100% is used.

	
dispaset.preprocessing.data_check.check_FlexibleDemand(flex)[source]

	Function that checks the validity of the provided flexibility demand time series

	
dispaset.preprocessing.data_check.check_MinMaxFlows(df_min, df_max)[source]

	Function that checks that there is no incompatibility between the minimum and maximum flows

	
dispaset.preprocessing.data_check.check_chp(config, plants)[source]

	Function that checks the CHP plant characteristics

	
dispaset.preprocessing.data_check.check_clustering(plants, plants_merged)[source]

	Function that checks that the installed capacities are still equal after the clustering process

	Parameters

	
	plants – Non-clustered list of units

	plants_merged – clustered list of units

	
dispaset.preprocessing.data_check.check_df(df, StartDate=None, StopDate=None, name='')[source]

	Function that check the time series provided as inputs

	
dispaset.preprocessing.data_check.check_heat_demand(plants, data)[source]

	Function that checks the validity of the heat demand profiles

	Parameters

	plants – List of CHP plants

	
dispaset.preprocessing.data_check.check_p2h(config, plants)[source]

	Function that checks the p2h unit characteristics

	
dispaset.preprocessing.data_check.check_simulation_environment(SimulationPath, store_type='pickle', firstline=7)[source]

	Function to test the validity of disapset inputs
:param SimulationPath: Path to the simulation folder
:param store_type: choose between: “list”, “excel”, “pickle”
:param firstline: Number of the first line in the data (only if type==’excel’)

	
dispaset.preprocessing.data_check.check_sto(config, plants, raw_data=True)[source]

	Function that checks the storage plant characteristics

	
dispaset.preprocessing.data_check.check_temperatures(plants, Temperatures)[source]

	Function that checks the presence and validity of the temperatures profiles for
units with temperature-dependent characteristics

	Parameters

	plants – List of all units

	
dispaset.preprocessing.data_check.check_units(config, plants)[source]

	Function that checks the power plant characteristics

	
dispaset.preprocessing.data_check.isStorage(tech)[source]

	Function that returns true the technology is a storage technology

	
dispaset.preprocessing.data_check.isVRE(tech)[source]

	Function that returns true the technology is a variable renewable energy technology

dispaset.preprocessing.data_handler module

	
dispaset.preprocessing.data_handler.NodeBasedTable(varname, config, default=None)[source]

	This function loads the tabular data stored in csv files relative to each
zone of the simulation.

	Parameters

	
	varname – Variable name (as defined in config)

	idx – Pandas datetime index to be used for the output

	zones – List with the zone codes to be considered

	fallback – List with the order of data source.

	default – Default value to be applied if no data is found

	Returns

	Dataframe with the time series for each unit

	
dispaset.preprocessing.data_handler.UnitBasedTable(plants, varname, config, fallbacks=['Unit'], default=None, RestrictWarning=None)[source]

	This function loads the tabular data stored in csv files and assigns the
proper values to each unit of the plants dataframe. If the unit-specific
value is not found in the data, the script can fallback on more generic
data (e.g. fuel-based, technology-based, zone-based) or to the default value.
The order in which the data should be loaded is specified in the fallback
list. For example, [‘Unit’,’Technology’] means that the script will first
try to find a perfect match for the unit name in the data table. If not found,
a column with the unit technology as header is search. If not found, the
default value is assigned.

	Parameters

	
	plants – Dataframe with the units for which data is required

	varname – Variable name (as defined in config)

	idx – Pandas datetime index to be used for the output

	zones – List with the zone codes to be considered

	fallback – List with the order of data source.

	default – Default value to be applied if no data is found

	RestrictWarning – Only display the warnings if the unit belongs to the list of technologies provided in this parameter

	Returns

	Dataframe with the time series for each unit

	
dispaset.preprocessing.data_handler.define_parameter(sets_in, sets, value=0)[source]

	Function to define a DispaSET parameter and fill it with a constant value

	Parameters

	
	sets_in – List with the labels of the sets corresponding to the parameter

	sets – dictionary containing the definition of all the sets (must comprise those referenced in sets_in)

	value – Default value to attribute to the parameter

	
dispaset.preprocessing.data_handler.export_yaml_config(ExcelFile, YAMLFile)[source]

	Function that loads the DispaSET excel config file and dumps it as a yaml file.

	Parameters

	
	ExcelFile – Path to the Excel config file

	YAMLFile – Path to the YAML config file to be written

	
dispaset.preprocessing.data_handler.load_config(ConfigFile, AbsPath=True)[source]

	Wrapper function around load_config_excel and load_config_yaml

	
dispaset.preprocessing.data_handler.load_config_excel(ConfigFile, AbsPath=True)[source]

	Function that loads the DispaSET excel config file and returns a dictionary
with the values

	Parameters

	
	ConfigFile – String with (relative) path to the DispaSET excel configuration file

	AbsPath – If true, relative paths are automatically changed into absolute paths (recommended)

	
dispaset.preprocessing.data_handler.load_config_yaml(filename, AbsPath=True)[source]

	Loads YAML file to dictionary

	
dispaset.preprocessing.data_handler.load_time_series(config, path, header='infer')[source]

	Function that loads time series data, checks the compatibility of the indexes
and guesses when no exact match between the required index and the data is
present

	
dispaset.preprocessing.data_handler.merge_series(plants, data, mapping, method='WeightedAverage', tablename='')[source]

	Function that merges the times series corresponding to the merged units (e.g. outages, inflows, etc.)

	Parameters

	
	plants – Pandas dataframe with the information relative to the original units

	data – Pandas dataframe with the time series and the original unit names as column header

	mapping – Mapping between the merged units and the original units. Output of the clustering function

	method – Select the merging method (‘WeightedAverage’/’Sum’)

	tablename – Name of the table being processed (e.g. ‘Outages’), used in the warnings

	Return merged

	Pandas dataframe with the merged time series when necessary

	
dispaset.preprocessing.data_handler.read_truefalse(sheet, rowstart, colstart, rowstop, colstop, colapart=1)[source]

	Function that reads a two column format with a list of strings in the first
columns and a list of true false in the second column
The list of strings associated with a True value is returned

dispaset.preprocessing.preprocessing module

This is the main file of the DispaSET pre-processing tool. It comprises a single function that generated the DispaSET simulation environment.

@author: S. Quoilin

	
dispaset.preprocessing.preprocessing.build_simulation(config, mts_plot=None)[source]

	Dispa-SET function that builds different simulation environments based on the hydro scheduling option in the config file
Hydro scheduling options:

	Off - Hydro scheduling turned off, normal call of BuildSimulation function

	Zonal - Zonal variation of hydro scheduling, if zones are not individually specified in a list (e.a. zones = [‘AT’,’DE’]) hydro scheduling is imposed on all active zones from the Config file

	Regional - Regional variation of hydro scheduling, if zones from a specific region are not individually specified in a list (e.a. zones = [‘AT’,’DE’]), hydro scheduling is imposed on all active zones from the Config file simultaneously

	Config

	Read config file

	Zones_mts

	List of zones where new reservoir levels should be calculated eg. [‘AT’,’BE’,…’UK’]

	Mts_plot

	If ms_plot = True indicative plot with temporary computed reservoir levels is displayed

	
dispaset.preprocessing.preprocessing.get_temp_sim_results(config, gams_dir=None)[source]

	This function reads the simulation environment folder once it has been solved and loads
the input variables together with the results.

	Parameters

	
	path – Relative path to the simulation environment folder (current path by default)

	cache – If true, caches the simulation results in a pickle file for faster loading the next time

	temp_path – Temporary path to store the cache file

	Returns inputs,results

	Two dictionaries with all the outputs

	
dispaset.preprocessing.preprocessing.mid_term_scheduling(config, zones, profiles=None)[source]

	This function reads the DispaSET config file, searches for active zones,
loads data for each zone individually and solves model using UCM_h_simple.gms

	Config

	Read config file

dispaset.preprocessing.utils module

	
dispaset.preprocessing.utils.EfficiencyTimeSeries(config, plants, Temperatures)[source]

	Function that calculates an efficiency time series for each unit
In case of generation unit, the efficiency is constant in time (for now)
In case of of p2h units, the efficicncy is defined as the COP, which can be
temperature-dependent or not. If it is temperature-dependent, the formula is:
\(COP = COP_{nom} + coef_a (T-T_{nom}) + coef_b (T-T_{nom})^2\)

	Parameters

	
	plants – Pandas dataframe with the original list of units

	Temperatures – Dataframe with the temperature for all relevant units

	Returns

	Dataframe with a time series of the efficiency for each unit

	
dispaset.preprocessing.utils.adjust_capacity(inputs, tech_fuel, scaling=1, value=None, singleunit=False, write_gdx=False, dest_path='')[source]

	Function used to modify the installed capacities in the Dispa-SET generated input data
The function update the Inputs.p file in the simulation directory at each call

	Parameters

	
	inputs – Input data dictionary OR path to the simulation directory containing Inputs.p

	tech_fuel – tuple with the technology and fuel type for which the capacity should be modified

	scaling – Scaling factor to be applied to the installed capacity

	value – Absolute value of the desired capacity (! Applied only if scaling != 1 !)

	singleunit – Set to true if the technology should remain lumped in a single unit

	write_gdx – boolean defining if Inputs.gdx should be also overwritten with the new data

	dest_path – Simulation environment path to write the new input data. If unspecified, no data is written!

	Returns

	New SimData dictionary

	
dispaset.preprocessing.utils.adjust_storage(inputs, tech_fuel, scaling=1, value=None, write_gdx=False, dest_path='')[source]

	Function used to modify the storage capacities in the Dispa-SET generated input data
The function update the Inputs.p file in the simulation directory at each call

	Parameters

	
	inputs – Input data dictionary OR path to the simulation directory containing Inputs.p

	tech_fuel – tuple with the technology and fuel type for which the capacity should be modified

	scaling – Scaling factor to be applied to the installed capacity

	value – Absolute value of the desired capacity (! Applied only if scaling != 1 !)

	write_gdx – boolean defining if Inputs.gdx should be also overwritten with the new data

	dest_path – Simulation environment path to write the new input data. If unspecified, no data is written!

	Returns

	New SimData dictionary

	
dispaset.preprocessing.utils.clustering(plants, method='Standard', Nslices=20, PartLoadMax=0.1, Pmax=30)[source]

	Merge excessively disaggregated power Units.

	Parameters

	
	plants – Pandas dataframe with each power plant and their characteristics (following the DispaSET format)

	method – Select clustering method (‘Standard’/’LP’/None)

	Nslices – Number of slices used to fingerprint each power plant characteristics. slices in the power plant data to categorize them (fewer slices involves that the plants will be aggregated more easily)

	PartLoadMax – Maximum part-load capability for the unit to be clustered

	Pmax – Maximum power for the unit to be clustered

	Returns

	A list with the merged plants and the mapping between the original and merged units

	
dispaset.preprocessing.utils.incidence_matrix(sets, set_used, parameters, param_used)[source]

	This function generates the incidence matrix of the lines within the nodes
A particular case is considered for the node “Rest Of the World”, which is no explicitely defined in DispaSET

	
dispaset.preprocessing.utils.interconnections(Simulation_list, NTC_inter, Historical_flows)[source]

	Function that checks for the possible interconnections of the zones included
in the simulation. If the interconnections occurs between two of the zones
defined by the user to perform the simulation with, it extracts the NTC between
those two zones. If the interconnection occurs between one of the zones
selected by the user and one country outside the simulation, it extracts the
physical flows; it does so for each pair (country inside-country outside) and
sums them together creating the interconnection of this country with the RoW.

	Parameters

	
	Simulation_list – List of simulated zones

	NTC – Day-ahead net transfer capacities (pd dataframe)

	Historical_flows – Historical flows (pd dataframe)

	
dispaset.preprocessing.utils.select_units(units, config)[source]

	Function returning a new list of units by removing the ones that have unknown
technology, zero capacity, or unknown zone

	Parameters

	
	units – Pandas dataframe with the original list of units

	config – Dispa-SET config dictionnary

	Returns

	New list of units

Module contents

dispaset.postprocessing package

Submodules

dispaset.postprocessing.postprocessing module

Set of functions useful to analyse to DispaSET output data.

@author: Sylvain Quoilin, JRC

	
dispaset.postprocessing.postprocessing.CostExPost(inputs, results)[source]

	Ex post computation of the operational costs with plotting. This allows breaking down
the cost into its different components and check that it matches with the objective
function from the optimization.

	The cost objective function is the following:

	SystemCost(i)
=E=
sum(u,CostFixed(u)*Committed(u,i))
+sum(u,CostStartUpH(u,i) + CostShutDownH(u,i))
+sum(u,CostRampUpH(u,i) + CostRampDownH(u,i))
+sum(u,CostVariable(u,i) * Power(u,i))
+sum(l,PriceTransmission(l,i)*Flow(l,i))
+sum(n,CostLoadShedding(n,i)*ShedLoad(n,i))
+sum(chp, CostHeatSlack(chp,i) * HeatSlack(chp,i))
+sum(chp, CostVariable(chp,i) * CHPPowerLossFactor(chp) * Heat(chp,i))
+Config(“ValueOfLostLoad”,”val”)*(sum(n,LL_MaxPower(n,i)+LL_MinPower(n,i)))
+0.8*Config(“ValueOfLostLoad”,”val”)*(sum(n,LL_2U(n,i)+LL_2D(n,i)+LL_3U(n,i)))
+0.7*Config(“ValueOfLostLoad”,”val”)*sum(u,LL_RampUp(u,i)+LL_RampDown(u,i))
+Config(“CostOfSpillage”,”val”)*sum(s,spillage(s,i));

	Returns

	tuple with the cost components and their cumulative sums in two dataframes.

	
dispaset.postprocessing.postprocessing.aggregate_by_fuel(PowerOutput, Inputs, SpecifyFuels=None)[source]

	This function sorts the power generation curves of the different units by technology

	Parameters

	
	PowerOutput – Dataframe of power generationwith units as columns and time as index

	Inputs – Dispaset inputs version 2.1.1

	SpecifyFuels – If not all fuels should be considered, list containing the relevant ones

	Returns PowerByFuel

	Dataframe with power generation by fuel

	
dispaset.postprocessing.postprocessing.filter_by_storage(PowerOutput, Inputs, StorageSubset=None)[source]

	This function filters the power generation curves of the different storage units by storage type

	Parameters

	
	PowerOutput – Dataframe of power generationwith units as columns and time as index

	Inputs – Dispaset inputs version 2.1.1

	SpecifySubset – If not all EES storages should be considered, list containing the relevant ones

	Returns PowerByFuel

	Dataframe with power generation by fuel

	
dispaset.postprocessing.postprocessing.filter_by_tech(PowerOutput, inputs, t)[source]

	This function filters the dispaset power output dataframe by technology

	Parameters

	
	PowerOutput – Dataframe of power generation with units as columns and time as index

	inputs – Dispaset inputs version 2.1.1

	t – Selected tech (e.g. ‘HDAM’)

	Returns Power

	

	
dispaset.postprocessing.postprocessing.filter_by_zone(PowerOutput, inputs, z)[source]

	This function filters the dispaset Output Power dataframe by zone

	Parameters

	
	PowerOutput – Dataframe of power generationwith units as columns and time as index

	Inputs – Dispaset inputs version 2.1.1

	z – Selected zone (e.g. ‘BE’)

	Returns Power

	Dataframe with power generation by zone

	
dispaset.postprocessing.postprocessing.get_imports(flows, z)[source]

	Function that computes the balance of the imports/exports of a given zone

	Parameters

	
	flows – Pandas dataframe with the timeseries of the exchanges

	z – Zone to consider

	Returns NetImports

	Scalar with the net balance over the whole time period

	
dispaset.postprocessing.postprocessing.get_indicators_powerplant(inputs, results)[source]

	Function that analyses the dispa-set results at the power plant level
Computes the number of startups, the capacity factor, etc

	Parameters

	
	inputs – DispaSET inputs

	results – DispaSET results

	Returns out

	Dataframe with the main power plants characteristics and the computed indicators

	
dispaset.postprocessing.postprocessing.get_load_data(inputs, z)[source]

	Get the load curve, the residual load curve, and the net residual load curve of a specific zone

	Parameters

	
	inputs – DispaSET inputs (output of the get_sim_results function)

	z – Zone to consider (e.g. ‘BE’)

	Return out

	Dataframe with the following columns:
Load: Load curve of the specified zone
ResidualLoad: Load minus the production of variable renewable sources
NetResidualLoad: Residual netted from the interconnections with neightbouring zones

	
dispaset.postprocessing.postprocessing.get_plot_data(inputs, results, z)[source]

	Function that reads the results dataframe of a DispaSET simulation and extract the dispatch data spedific to one zone

	Parameters

	
	results – Pandas dataframe with the results (output of the GdxToDataframe function)

	z – Zone to be considered (e.g. ‘BE’)

	Returns plotdata

	Dataframe with the dispatch data storage and outflows are negative

	
dispaset.postprocessing.postprocessing.get_result_analysis(inputs, results)[source]

	Reads the DispaSET results and provides useful general information to stdout

	Parameters

	
	inputs – DispaSET inputs

	results – DispaSET results

	
dispaset.postprocessing.postprocessing.get_units_operation_cost(inputs, results)[source]

	Function that computes the operation cost for each power unit at each instant of time from the DispaSET results
Operation cost includes: CostFixed + CostStartUp + CostShutDown + CostRampUp + CostRampDown + CostVariable

	Parameters

	
	inputs – DispaSET inputs

	results – DispaSET results

	Returns out

	Dataframe with the the power units in columns and the operation cost at each instant in rows

Main Author: @AbdullahAlawad

Module contents

dispaset.misc package

Submodules

dispaset.misc.colorstreamhandler module

	
dispaset.misc.colorstreamhandler.ColorStreamHandler

	alias of _AnsiColorStreamHandler

dispaset.misc.gdx_handler module

Collection of functions to write Dispa-SET input data to a gdx file and/or to a simulation directory
with one excel file per parameter.

	Example:

	read gdx file:

data = GdxToList(gams_dir,'Results.gdx',varname='all',verbose=True)

write it to a dictionary of dataframes:

dataframes = GdxToDataframe(data,fixindex=True,verbose=True)

@author: Sylvain Quoilin (sylvain.quoilin@ec.europa.eu)

	
dispaset.misc.gdx_handler.gdx_to_dataframe(data, fixindex=False, verbose=False)[source]

	This function structures the raw data extracted from a gdx file (using the function GdxToList)
and outputs it as a dictionary of pandas dataframes (or series)

	Parameters

	
	data – Dictionary with all the collected values (within lists), from GdxToList function

	fixindex – This flag allows converting string index into integers and sort the data

	Returns

	dictionary of dataframes

	
dispaset.misc.gdx_handler.gdx_to_list(gams_dir, filename, varname='all', verbose=False)[source]

	original
This function loads the gdx with the results of the simulation
All results are stored in an unordered list

	Parameters

	
	gams_dir – Gams working directory

	filename – Path to the gdx file to be read

	varname – In case online one variable is needed, specify it name (otherwise specify ‘all’)

	Returns

	Dictionary with all the collected values (within lists)

	
dispaset.misc.gdx_handler.get_gams_path(gams_dir=None)[source]

	Function that attempts to search for the GAMS installation path (required to write the GDX or run gams)

It returns the path if it has been found, or an empty string otherwise. If a gams_dir argument is passed
it tries to validate before searching

Currently works for Windows, Linux and OSX. More searching rules and patterns should be added in the future

	
dispaset.misc.gdx_handler.get_gdx(gams_dir, resultfile)[source]

	Short wrapper of the two gdx reading functions (GdxToDataframe and GdxToList)

	Parameters

	
	gams_dir – Gams working directory

	resultfile – Path to the gdx file to be read

	Returns

	dictionary of dataframes

	
dispaset.misc.gdx_handler.import_local_lib(lib)[source]

	Try to import the GAMS api and gdxcc to write gdx files

	
dispaset.misc.gdx_handler.package_exists(package)[source]

	

	
dispaset.misc.gdx_handler.write_variables(config, gdx_out, list_vars)[source]

	This function performs the following:
* Use the gdxcc library to create a gdxHandle instance
* Check that the gams path is well defined
* Call the ‘insert_symbols’ function to write all sets and parameters to gdxHandle

	Parameters

	
	config – Main config dictionary

	gdx_out – (Relative) path to the gdx file to be written

	list_vars – List with the sets and parameters to be written

dispaset.misc.str_handler module

	
dispaset.misc.str_handler.clean_strings(x, exclude_digits=False, exclude_punctuation=False)[source]

	Function to convert strange unicode
and remove characters punctuation

	Parameters

	x – any string or list of strings

Usage:

df['DisplayName'].apply(clean_strings)

	
dispaset.misc.str_handler.force_str(x)[source]

	Used to get a str object both in python 2 and 3 although they represent different objects (byte vs unicode)
It is small hack for py2->3 compatibility of gams APIs which require a str object

	
dispaset.misc.str_handler.shrink_to_64(x, N=64)[source]

	Function that reduces the length of the keys to be written to 64 (max admissible length for GAMS)

	Parameters

	
	x – String or list of strings

	N – Integer with the maximum string length (if different from 64)

	Returns

	Shrinked string or list of strings

Module contents

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dispaset	

 	
 	
 dispaset.misc	

 	
 	
 dispaset.misc.colorstreamhandler	

 	
 	
 dispaset.misc.gdx_handler	

 	
 	
 dispaset.misc.str_handler	

 	
 	
 dispaset.postprocessing	

 	
 	
 dispaset.postprocessing.postprocessing	

 	
 	
 dispaset.preprocessing	

 	
 	
 dispaset.preprocessing.data_check	

 	
 	
 dispaset.preprocessing.data_handler	

 	
 	
 dispaset.preprocessing.preprocessing	

 	
 	
 dispaset.preprocessing.utils	

 	
 	
 dispaset.solve	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | U
 | W

A

 	
 	adjust_capacity() (in module dispaset.preprocessing.utils)

 	
 	adjust_storage() (in module dispaset.preprocessing.utils)

 	aggregate_by_fuel() (in module dispaset.postprocessing.postprocessing)

B

 	
 	build_simulation() (in module dispaset.preprocessing.preprocessing)

C

 	
 	check_AvailabilityFactors() (in module dispaset.preprocessing.data_check)

 	check_chp() (in module dispaset.preprocessing.data_check)

 	check_clustering() (in module dispaset.preprocessing.data_check)

 	check_df() (in module dispaset.preprocessing.data_check)

 	check_FlexibleDemand() (in module dispaset.preprocessing.data_check)

 	check_heat_demand() (in module dispaset.preprocessing.data_check)

 	check_MinMaxFlows() (in module dispaset.preprocessing.data_check)

 	check_p2h() (in module dispaset.preprocessing.data_check)

 	
 	check_simulation_environment() (in module dispaset.preprocessing.data_check)

 	check_sto() (in module dispaset.preprocessing.data_check)

 	check_temperatures() (in module dispaset.preprocessing.data_check)

 	check_units() (in module dispaset.preprocessing.data_check)

 	clean_strings() (in module dispaset.misc.str_handler)

 	clustering() (in module dispaset.preprocessing.utils)

 	ColorStreamHandler (in module dispaset.misc.colorstreamhandler)

 	CostExPost() (in module dispaset.postprocessing.postprocessing)

D

 	
 	define_parameter() (in module dispaset.preprocessing.data_handler)

 	dispaset (module)

 	dispaset.misc (module)

 	dispaset.misc.colorstreamhandler (module)

 	dispaset.misc.gdx_handler (module)

 	dispaset.misc.str_handler (module)

 	dispaset.postprocessing (module)

 	
 	dispaset.postprocessing.postprocessing (module)

 	dispaset.preprocessing (module)

 	dispaset.preprocessing.data_check (module)

 	dispaset.preprocessing.data_handler (module)

 	dispaset.preprocessing.preprocessing (module)

 	dispaset.preprocessing.utils (module)

 	dispaset.solve (module)

E

 	
 	EfficiencyTimeSeries() (in module dispaset.preprocessing.utils)

 	
 	export_yaml_config() (in module dispaset.preprocessing.data_handler)

F

 	
 	filter_by_storage() (in module dispaset.postprocessing.postprocessing)

 	filter_by_tech() (in module dispaset.postprocessing.postprocessing)

 	
 	filter_by_zone() (in module dispaset.postprocessing.postprocessing)

 	force_str() (in module dispaset.misc.str_handler)

G

 	
 	gdx_to_dataframe() (in module dispaset.misc.gdx_handler)

 	gdx_to_list() (in module dispaset.misc.gdx_handler)

 	get_gams_path() (in module dispaset.misc.gdx_handler)

 	get_gdx() (in module dispaset.misc.gdx_handler)

 	get_imports() (in module dispaset.postprocessing.postprocessing)

 	
 	get_indicators_powerplant() (in module dispaset.postprocessing.postprocessing)

 	get_load_data() (in module dispaset.postprocessing.postprocessing)

 	get_plot_data() (in module dispaset.postprocessing.postprocessing)

 	get_result_analysis() (in module dispaset.postprocessing.postprocessing)

 	get_temp_sim_results() (in module dispaset.preprocessing.preprocessing)

 	get_units_operation_cost() (in module dispaset.postprocessing.postprocessing)

I

 	
 	import_local_lib() (in module dispaset.misc.gdx_handler)

 	incidence_matrix() (in module dispaset.preprocessing.utils)

 	interconnections() (in module dispaset.preprocessing.utils)

 	
 	is_sim_folder_ok() (in module dispaset.solve)

 	isStorage() (in module dispaset.preprocessing.data_check)

 	isVRE() (in module dispaset.preprocessing.data_check)

L

 	
 	load_config() (in module dispaset.preprocessing.data_handler)

 	load_config_excel() (in module dispaset.preprocessing.data_handler)

 	
 	load_config_yaml() (in module dispaset.preprocessing.data_handler)

 	load_time_series() (in module dispaset.preprocessing.data_handler)

M

 	
 	merge_series() (in module dispaset.preprocessing.data_handler)

 	
 	mid_term_scheduling() (in module dispaset.preprocessing.preprocessing)

N

 	
 	NodeBasedTable() (in module dispaset.preprocessing.data_handler)

P

 	
 	package_exists() (in module dispaset.misc.gdx_handler)

R

 	
 	read_truefalse() (in module dispaset.preprocessing.data_handler)

S

 	
 	select_units() (in module dispaset.preprocessing.utils)

 	
 	shrink_to_64() (in module dispaset.misc.str_handler)

 	solve_GAMS() (in module dispaset.solve)

U

 	
 	UnitBasedTable() (in module dispaset.preprocessing.data_handler)

W

 	
 	write_variables() (in module dispaset.misc.gdx_handler)

 All modules for which code is available

	dispaset.misc.colorstreamhandler

	dispaset.misc.gdx_handler

	dispaset.misc.str_handler

	dispaset.postprocessing.postprocessing

	dispaset.preprocessing.data_check

	dispaset.preprocessing.data_handler

	dispaset.preprocessing.preprocessing

	dispaset.preprocessing.utils

	dispaset.solve

 Source code for dispaset.solve

-*- coding: utf-8 -*-
"""
This worksheet contains the two main functions to solve the DispaSET optimization problem using GAMS.

Solve with GAMS and the high level API

The high level interface is recommended for Linux users because it solves
the "whitespace in the simulation folder" issue.

Installation:
 To install the high-level API in Python 2.x::

 cd gams24.4_linux_x64_64_sfx/apifiles/Python/api
 python gamssetup.py install

 To install the high-level API in Python 3.x::

 cd gams24.6_linux_x64_64_sfx/apifiles/Python/api_34
 python setup.py install

Solve with GAMS and the low level APIs

Use lower level apis to run GAMS. BAsed on GAMS xpexample2.py

The advantage of the low level API is that it can easily be installed from pip::

 pip install gdxcc
 pip install gamsxcc
 pip install optcc

"""

###
Dispa-SET: main model
###

import os
import shutil
import logging
import time

from .misc.gdx_handler import get_gams_path, import_local_lib, package_exists
from .misc.gms_handler import solve_high_level, solve_low_level
from .common import commons

[docs]def is_sim_folder_ok(sim_folder):
 '''
 Function that checks if the provided path is a valid Dispa-SET simulation folder.
 The following files are required:

 - Inputs.gdx
 - UCM_h.gms

 :param sim_folder: path (absolute or relative) to the simulation folder
 '''
 if not os.path.exists(sim_folder):
 logging.error('The provided DispaSET simulation environment folder (' + sim_folder + ') does not exist')
 return False

 if not os.path.exists(os.path.join(sim_folder, u'Inputs.gdx')):
 logging.error(
 'There is no Inputs.gdx file within the specified DispaSET simulation environment folder (' + sim_folder + '). Check that the GDX output is activated in the option file and that no error stated during the pre-processing')
 return False

 if not os.path.exists(os.path.join(sim_folder, u'UCM_h.gms')):
 logging.error(
 'There is no UCM_h.gms file within the specified DispaSET simulation environment folder (' + sim_folder + ')')
 return False
 return True

[docs]def solve_GAMS(sim_folder, gams_folder=None, gams_file='UCM_h.gms', result_file='Results.gdx', output_lst=False):
 '''
 Function used to run the optimization using the GAMS engine.

 :param sim_folder: path to a valid Dispa-SET simulation folder
 :param gams_folder: path to the gams folder. If not provided, the script will try to find it automatically
 :param work_dir: path to the working directory (does not need to be provided)
 :param output_lst: Set to True to conserve a copy of the GAMS lst file in the simulation folder
 '''

 if package_exists('gamsxcc') and package_exists('optcc'):
 solv_func = solve_low_level
 logging.info('Using the low-level gams api')
 elif package_exists('gams'):
 solv_func = solve_high_level
 logging.info('Using the high-level gams api')
 else:
 logging.warning('Could not find the GAMS APIs. Trying to locate local version')
 if not import_local_lib('lowlevel'):
 return False
 gams_folder = get_gams_path(gams_folder)
 if not gams_folder: # couldn't locate
 logging.error('GAMS path cannot be located. Simulation is stopped')
 return False
 sim_folder = os.path.abspath(sim_folder)
 gams_folder = os.path.abspath(gams_folder)

 if is_sim_folder_ok(sim_folder):
 #Temporary warning for Spyder users:
 if any(['SPY_' in name for name in os.environ]): # check if spyder
 logging.info("\nIf the script seems stuck at this place \n(gams is optimizing but not output is displayed), \nit is preferable to run Dispa-SET in a \nseparate terminal (in Spyder: Preferences - Run - \nExecute in an external system terminal)")
 ret = solv_func(gams_folder, sim_folder, gams_file, result_file, output_lst=output_lst)
 if os.path.isfile(os.path.join(sim_folder, 'debug.gdx')):
 logging.warning('A debug file was created. There has probably been an optimization error')
 if os.path.isfile(commons['logfile']):
 shutil.copy(commons['logfile'], os.path.join(sim_folder, 'warn_solve.log'))
 return ret
 else:
 return False

 Source code for dispaset.misc.colorstreamhandler

colored stream handler for python logging framework (use the ColorStreamHandler class).
#
based on:
http://stackoverflow.com/questions/384076/how-can-i-color-python-logging-output/1336640#1336640

how to use:
I used a dict-based logging configuration, not sure what else would work.
#
import logging, logging.config, colorstreamhandler
#
_LOGCONFIG = {
"version": 1,
"disable_existing_loggers": False,
#
"handlers": {
"console": {
"class": "colorstreamhandler.ColorStreamHandler",
"stream": "ext://sys.stderr",
"level": "INFO"
}
},
#
"root": {
"level": "INFO",
"handlers": ["console"]
}
}
#
logging.config.dictConfig(_LOGCONFIG)
mylogger = logging.getLogger("mylogger")
mylogger.warning("foobar")

Copyright (c) 2014 Markus Pointner
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

import logging

class _AnsiColorStreamHandler(logging.StreamHandler):
 DEFAULT = '\x1b[0m'
 RED = '\x1b[31m'
 GREEN = '\x1b[32m'
 YELLOW = '\x1b[33m'
 CYAN = '\x1b[36m'

 CRITICAL = RED
 ERROR = RED
 WARNING = YELLOW
 INFO = GREEN
 DEBUG = CYAN

 @property
 def is_tty(self):
 isatty = getattr(self.stream, 'isatty', None)
 return isatty and isatty()

 @classmethod
 def _get_color(cls, level):
 if level >= logging.CRITICAL:
 return cls.CRITICAL
 elif level >= logging.ERROR:
 return cls.ERROR
 elif level >= logging.WARNING:
 return cls.WARNING
 elif level >= logging.INFO:
 return cls.INFO
 elif level >= logging.DEBUG:
 return cls.DEBUG
 else:
 return cls.DEFAULT

 def __init__(self, stream=None):
 logging.StreamHandler.__init__(self, stream)

 def format(self, record):
 text = logging.StreamHandler.format(self, record)
 color = self._get_color(record.levelno)
 if self.is_tty:
 return color + text + self.DEFAULT
 else:
 return text

class _WinColorStreamHandler(logging.StreamHandler):
 # wincon.h
 FOREGROUND_BLACK = 0x0000
 FOREGROUND_BLUE = 0x0001
 FOREGROUND_GREEN = 0x0002
 FOREGROUND_CYAN = 0x0003
 FOREGROUND_RED = 0x0004
 FOREGROUND_MAGENTA = 0x0005
 FOREGROUND_YELLOW = 0x0006
 FOREGROUND_GREY = 0x0007
 FOREGROUND_INTENSITY = 0x0008 # foreground color is intensified.
 FOREGROUND_WHITE = FOREGROUND_BLUE | FOREGROUND_GREEN | FOREGROUND_RED

 BACKGROUND_BLACK = 0x0000
 BACKGROUND_BLUE = 0x0010
 BACKGROUND_GREEN = 0x0020
 BACKGROUND_CYAN = 0x0030
 BACKGROUND_RED = 0x0040
 BACKGROUND_MAGENTA = 0x0050
 BACKGROUND_YELLOW = 0x0060
 BACKGROUND_GREY = 0x0070
 BACKGROUND_INTENSITY = 0x0080 # background color is intensified.

 DEFAULT = FOREGROUND_WHITE
 CRITICAL = BACKGROUND_YELLOW | FOREGROUND_RED | FOREGROUND_INTENSITY | BACKGROUND_INTENSITY
 ERROR = FOREGROUND_RED | FOREGROUND_INTENSITY
 WARNING = FOREGROUND_YELLOW | FOREGROUND_INTENSITY
 INFO = FOREGROUND_GREEN
 DEBUG = FOREGROUND_CYAN

 @classmethod
 def _get_color(cls, level):
 if level >= logging.CRITICAL:
 return cls.CRITICAL
 elif level >= logging.ERROR:
 return cls.ERROR
 elif level >= logging.WARNING:
 return cls.WARNING
 elif level >= logging.INFO:
 return cls.INFO
 elif level >= logging.DEBUG:
 return cls.DEBUG
 else:
 return cls.DEFAULT

 def _set_color(self, code):
 import ctypes
 ctypes.windll.kernel32.SetConsoleTextAttribute(self._outhdl, code)

 def __init__(self, stream=None):
 logging.StreamHandler.__init__(self, stream)
 # get file handle for the stream
 import ctypes, ctypes.util
 # for some reason find_msvcrt() sometimes doesn't find msvcrt.dll on my system?
 crtname = ctypes.util.find_msvcrt()
 if not crtname:
 crtname = ctypes.util.find_library("msvcrt")
 crtlib = ctypes.cdll.LoadLibrary(crtname)
 self._outhdl = crtlib._get_osfhandle(self.stream.fileno())

 def emit(self, record):
 color = self._get_color(record.levelno)
 self._set_color(color)
 logging.StreamHandler.emit(self, record)
 self._set_color(self.FOREGROUND_WHITE)

select ColorStreamHandler based on platform
import platform

if platform.system() == 'Windows':
 ColorStreamHandler = _WinColorStreamHandler
else:
 ColorStreamHandler = _AnsiColorStreamHandler

 Source code for dispaset.misc.gdx_handler

"""
Collection of functions to write Dispa-SET input data to a gdx file and/or to a simulation directory
with one excel file per parameter.

Example:
 read gdx file::

 data = GdxToList(gams_dir,'Results.gdx',varname='all',verbose=True)

 write it to a dictionary of dataframes::

 dataframes = GdxToDataframe(data,fixindex=True,verbose=True)

@author: Sylvain Quoilin (sylvain.quoilin@ec.europa.eu)

"""
import platform
import os
import sys
import time as tm
import numpy as np
import pandas as pd
import logging

from .str_handler import shrink_to_64, force_str

[docs]def package_exists(package):
 # http://stackoverflow.com/questions/14050281/how-to-check-if-a-python-module-exists-without-importing-it
 import pkgutil
 package_loader = pkgutil.find_loader(package)
 return package_loader is not None

[docs]def import_local_lib(lib):
 '''
 Try to import the GAMS api and gdxcc to write gdx files
 '''
 # First define the path to the 'Externals' folder. This path must be defined relatively to the current script location
 path_script = os.path.dirname(__file__)
 path_ext = os.path.join(path_script,'../../Externals')

 if sys.platform == 'win32' and platform.architecture()[0] == '64bit' and sys.version[:3] == '3.7':
 sys.path.append(os.path.join(path_ext,'gams_api/win64/'))
 else:
 logging.error('Pre-compiled GAMS libraries are only available for python 3.7 64 bits under windows. You are using platform ' + sys.platform + ' and '
 ' architecture ' + platform.architecture()[0] +
 'Please install the gams API using: "pip install gamsxcc gdxcc optcc"')
 sys.exit(1)

 if lib == 'gams':
 try:
 import gams
 return True
 except ImportError:
 logging.error('Could not load the gams high-level api. The gams library is required to run the GAMS versions of DispaSET.'
 'Please install the gams API using: "python setup.py install" in the gams api folder')
 sys.exit(1)
 elif lib == 'lowlevel':
 try:
 import gdxcc,gamsxcc,optcc
 return True
 except ImportError:
 logging.error('Could not load the gams low-level api. The gams library is required to run the GAMS versions of DispaSET.'
 'Please install the gams API using: "pip install gamsxcc gdxcc optcc"')
 sys.exit(1)
 elif lib == 'gdxcc':
 try:
 import gdxcc
 return True
 except ImportError:
 logging.critical("gdxcc module could not be imported from Externals. GDX cannot be produced or read"
 'Please install the gams API using: "pip install gamsxcc gdxcc optcc"')
 sys.exit(1)
 else:
 logging.error('Only "gams" and "gdxcc" are present')

if package_exists('gdxcc'):
 import gdxcc
else:
 logging.warning('Could not import gdxcc. Trying to use pre-compiled libraries')
 if import_local_lib('gdxcc'):
 import gdxcc

#####################

def _insert_symbols(gdxHandle, sets, parameters):
 """
 Function that writes all sets and parameters to the gdxHandle

 :param sets: dictionary with all the sets
 :param parameters: dictionary with all the parameters
 """

 # It is essential to write the sets first, otherwise h might be written in the wrong order
 for s in sets:
 gdxSymbolType = gdxcc.GMS_DT_SET
 dims = 1

 gdxcc.gdxDataWriteStrStart(gdxHandle, s, "", dims, gdxSymbolType, 0)
 gdxValues = gdxcc.doubleArray(5)
 gdxValues[gdxcc.GMS_VAL_LEVEL] = 0.0 # 0.0 == Y (explanatory text of set in gdx)

 Nrows = len(sets[s])

 for row in range(Nrows):
 gdxKeys = [str(ss) for ss in shrink_to_64([sets[s][row]])] # Reduce the size if bigger than 64 characters
 try:
 success = gdxcc.gdxDataWriteStr(gdxHandle, gdxKeys, gdxValues)
 except:
 success = False
 if not success:
 logging.error('Key ' + gdxKeys[0] + ' of set ' + s + ' could not be written')

 gdxcc.gdxDataWriteDone(gdxHandle)

 # Check array sizes for parameters:
 for p in parameters:
 variable = parameters[p]

 # Check that the required fields are present:
 dims = len(variable['sets'])
 shape = variable['val'].shape
 Nrows = variable['val'].shape[0]
 gdxSymbolType = gdxcc.GMS_DT_PAR

 gdxcc.gdxDataWriteStrStart(gdxHandle, p, "", dims, gdxSymbolType, 0)
 gdxValues = gdxcc.doubleArray(5)
 gdxValues[gdxcc.GMS_VAL_LEVEL] = 0.0 # 0.0 == Y (explanatory text of set in gdx)

 if len(shape) != dims:
 logging.error('Variable ' + p + ': The \'val\' data matrix has ' + str(
 len(shape)) + ' dimensions and should have ' + str(dims))
 sys.exit(1)
 for i in range(dims):
 if shape[i] != len(sets[variable['sets'][i]]):
 logging.error(
 'Variable ' + p + ': The \'val\' data matrix has ' + str(shape[i]) + ' elements for dimention ' +
 str(variable['sets'][i]) + ' while there are ' + str(
 len(variable['sets'])) + ' set values')
 sys.exit(1)

 for index, value in np.ndenumerate(variable['val']):
 # Write line by line if value is non null
 if value != 0 and not pd.isnull(value):
 gdxKeys = [] # All the set values for this line
 for i in range(dims):
 key = sets[variable['sets'][i]][
 index[i]] # Get the string value of the set by using the indice in the val matrix
 gdxKeys.append(str(key))
 gdxKeys = shrink_to_64(gdxKeys) # Reduce the size if bigger than 64 characters
 gdxValues[gdxcc.GMS_VAL_LEVEL] = float(value)
 try:
 success = gdxcc.gdxDataWriteStr(gdxHandle, gdxKeys, gdxValues)
 except:
 logging.error("Didn't work")
 success = False
 if not success:
 logging.error('Key ' + gdxKeys[0] + ' of parameter ' + p + ' could not be written')
 gdxcc.gdxDataWriteDone(gdxHandle)
 logging.debug('Parameter ' + p + ' successfully written')

 logging.debug('Set ' + s + ' successfully written')

[docs]def write_variables(config, gdx_out, list_vars):
 """
 This function performs the following:
 * Use the gdxcc library to create a gdxHandle instance
 * Check that the gams path is well defined
 * Call the 'insert_symbols' function to write all sets and parameters to gdxHandle

 :param config: Main config dictionary
 :param gdx_out: (Relative) path to the gdx file to be written
 :param list_vars: List with the sets and parameters to be written
 """
 gams_dir = get_gams_path(gams_dir=config['GAMS_folder'].encode())
 if not gams_dir: # couldn't locate
 logging.critical('GDXCC: Could not find the specified gams directory: ' + gams_dir)
 sys.exit(1)
 gams_dir = force_str(gams_dir)
 config['GAMS_folder'] = gams_dir # updating the config dictionary
 gdx_out = force_str(gdx_out)

 gdxHandle = gdxcc.new_gdxHandle_tp()
 gdxcc.gdxCreateD(gdxHandle, gams_dir, gdxcc.GMS_SSSIZE) #it accepts only str type
 gdxcc.gdxOpenWrite(gdxHandle, gdx_out, "")

 [sets, parameters] = list_vars
 _insert_symbols(gdxHandle, sets, parameters)

 gdxcc.gdxClose(gdxHandle)

 logging.info('Data Successfully written to ' + gdx_out)

[docs]def gdx_to_list(gams_dir, filename, varname='all', verbose=False):
 """original
 This function loads the gdx with the results of the simulation
 All results are stored in an unordered list

 :param gams_dir: Gams working directory
 :param filename: Path to the gdx file to be read
 :param varname: In case online one variable is needed, specify it name (otherwise specify 'all')
 :returns: Dictionary with all the collected values (within lists)
 """

 from gdxcc import gdxSymbolInfo, gdxCreate, gdxCreateD, gdxOpenRead, GMS_SSSIZE, gdxDataReadDone, new_gdxHandle_tp, \
 gdxDataReadStr, gdxFindSymbol, gdxErrorStr, gdxDataReadStrStart, gdxGetLastError
 out = {}
 tgdx = tm.time()
 gdxHandle = new_gdxHandle_tp()
 if gams_dir == None:
 gdxCreate(gdxHandle, GMS_SSSIZE)
 else:
 gdxCreateD(gdxHandle, force_str(gams_dir), GMS_SSSIZE)

 # make sure the file path is properly formatted:
 filename = filename.replace('/', os.path.sep).replace('\\\\', os.path.sep).replace('\\', os.path.sep)
 filename = str(filename) # removing possible unicode formatting

 if not os.path.isfile(filename):
 logging.critical('Gdx file "' + filename + '" does not exist')
 sys.exit(1)

 gdxOpenRead(gdxHandle, filename)

 if varname == 'all':
 # go through all the symbols one by one and add their data to the dict
 symNr = 0
 SymbolInfo = gdxSymbolInfo(gdxHandle, 0)
 while SymbolInfo[0] > 0:
 ret, nrRecs = gdxDataReadStrStart(gdxHandle, symNr)
 assert ret, "Error in gdx data string" + gdxErrorStr(gdxHandle, gdxGetLastError(gdxHandle))[1]

 res = []
 for i in range(nrRecs):
 ret, elements, values, afdim = gdxDataReadStr(gdxHandle)
 res.append(elements + [values[0]])
 out[SymbolInfo[1]] = res
 symNr += 1
 SymbolInfo = gdxSymbolInfo(gdxHandle, symNr)
 else:
 # find the number of the required symbol:
 ret, symNr = gdxFindSymbol(gdxHandle, varname)
 assert ret, "Symbol not found"

 ret, nrRecs = gdxDataReadStrStart(gdxHandle, symNr)
 assert ret, "Error in gdx data string" + gdxErrorStr(gdxHandle, gdxGetLastError(gdxHandle))[1]

 res = []
 for i in range(nrRecs):
 ret, elements, values, afdim = gdxDataReadStr(gdxHandle)
 res.append(elements + [values[0]])
 out[varname] = res

 gdxDataReadDone(gdxHandle)
 if verbose:
 logging.info("Loading gdx file " + filename + " took {}s".format(tm.time() - tgdx))
 return out

[docs]def gdx_to_dataframe(data, fixindex=False, verbose=False):
 """
 This function structures the raw data extracted from a gdx file (using the function GdxToList)
 and outputs it as a dictionary of pandas dataframes (or series)

 :param data: Dictionary with all the collected values (within lists), from GdxToList function
 :param fixindex: This flag allows converting string index into integers and sort the data
 :returns: dictionary of dataframes
 """
 out = {}
 tc = tm.time()
 for symbol in data:
 if len(data[symbol]) > 0:
 dim = len(data[symbol][0])
 if dim == 3:
 vars1 = set()
 for element in data[symbol]:
 if not element[0] in vars1:
 vars1.add(element[0])
 vals = {}
 while vars1:
 vars2 = {}
 var1 = vars1.pop()
 for element in data[symbol]:
 if var1 == element[0]:
 vars2[element[1]] = element[2]
 vals[var1] = vars2
 out[symbol] = pd.DataFrame(vals)
 logging.debug('Successfully loaded variable ' + symbol)
 elif dim == 2:
 vals = {}
 for element in data[symbol]:
 vals[element[0]] = element[1]
 out[symbol] = pd.Series(vals)
 logging.debug('Successfully loaded variable ' + symbol)
 elif dim == 1:
 logging.warning('Variable ' + symbol + ' has dimension 0, which should not occur. Skipping')
 elif dim > 3:
 logging.warning('Variable ' + symbol + ' has more than 2 dimensions, which is very tiring. Skipping')
 else:
 logging.debug('Variable ' + symbol + ' is empty. Skipping')
 for symbol in out:
 try:
 out[symbol].fillna(value=0, inplace=True)
 except:
 logging.error('Error while trying to remove nan')
 pass
 if fixindex:
 for symbol in out:
 try:
 index_int = [int(idx) for idx in out[symbol].index]
 out[symbol].index = index_int
 out[symbol].sort_index(inplace=True)
 except:
 pass
 if verbose:
 logging.info("Time to convert to dataframes: {}s".format(tm.time() - tc))
 return out

[docs]def get_gdx(gams_dir, resultfile):
 """
 Short wrapper of the two gdx reading functions (GdxToDataframe and GdxToList)

 :param gams_dir: Gams working directory
 :param resultfile: Path to the gdx file to be read
 :returns: dictionary of dataframes
 """
 return gdx_to_dataframe(gdx_to_list(gams_dir, resultfile,
 varname='all', verbose=True),
 fixindex=True, verbose=True)

[docs]def get_gams_path(gams_dir=None):
 """
 Function that attempts to search for the GAMS installation path (required to write the GDX or run gams)

 It returns the path if it has been found, or an empty string otherwise. If a gams_dir argument is passed
 it tries to validate before searching

 Currently works for Windows, Linux and OSX. More searching rules and patterns should be added in the future
 """
 if isinstance(gams_dir, bytes):
 gams_dir = gams_dir.decode()
 if gams_dir is not None:
 if os.path.isdir(gams_dir):
 return gams_dir.encode()
 else:
 logging.warning('The provided path for GAMS (' + gams_dir + ') does not exist. Trying to locate...')

 import subprocess
 out = None

 #first check if the gams path is defined as environment variable.

 if "GAMSPATH" in os.environ:
 logging.debug('Using GAMSPATH environmental variable {} '.format(os.environ['GAMSPATH']))
 return os.environ['GAMSPATH']

 try:
 from shutil import which
 out = which('gams')
 if out is not None:
 out = os.path.dirname(out)
 except ImportError:
 logging.warning("Couldn't use which to locate gams.")

 # Else try to locate
 if sys.platform == 'linux2' or sys.platform == 'linux':
 try:
 tmp = subprocess.check_output(['locate', '-i', 'libgamscall64.so']).decode()
 except:
 tmp = ''
 lines = tmp.split('\n')
 for line in lines:
 path = line.strip('libgamscall64.so')
 if os.path.exists(path):
 out = path
 break
 elif sys.platform == 'win32':
 paths = ['C:\\GAMS', 'C:\\Program Files\\GAMS', 'C:\\Program Files (x86)\\GAMS']
 lines_32 = []
 lines_64 = []
 for path in paths:
 if os.path.exists(path):
 paths_32 = [path + os.sep + tmp for tmp in os.listdir(path) if
 tmp.startswith('win32') and os.path.exists(path + os.sep + tmp)]
 paths_64 = [path + os.sep + tmp for tmp in os.listdir(path) if
 tmp.startswith('win64') and os.path.exists(path + os.sep + tmp)]
 for path1 in paths_32:
 lines_32 = lines_32 + [path1 + os.sep + tmp for tmp in os.listdir(path1) if
 tmp.startswith('24') and os.path.isfile(
 path1 + os.sep + tmp + os.sep + 'gams.exe')]
 for path1 in paths_64:
 lines_64 = lines_64 + [path1 + os.sep + tmp for tmp in os.listdir(path1) if
 tmp.startswith('24') and os.path.isfile(
 path1 + os.sep + tmp + os.sep + 'gams.exe')]
 for line in lines_64:
 if os.path.exists(line):
 out = line
 break
 if out is None: # The 32-bit version of gams should never be preferred
 for line in lines_32:
 if os.path.exists(line):
 out = line
 logging.critical('It seems that the installed version of gams is 32-bit, which might cause consol crashing and compatibility problems. Please consider using GAMS 64-bit')
 break
 elif sys.platform == 'darwin':
 paths = ['/Applications/']
 lines = []
 for path in paths:
 if os.path.exists(path):
 paths1 = [path + os.sep + tmp for tmp in os.listdir(path) if
 tmp.startswith('GAMS') and os.path.exists(path + os.sep + tmp)]
 for path1 in paths1:
 lines = lines + [path1 + os.sep + tmp for tmp in os.listdir(path1) if
 tmp.startswith('sysdir') and os.path.isfile(
 path1 + os.sep + tmp + os.sep + 'gams')]
 if len(lines) == 0:
 tmp = subprocess.check_output(['mdfind', '-name', 'libgamscall64.dylib'])
 lines = [x.strip('libgamscall64.dylib') for x in tmp.split('\n')]
 for line in lines:
 if os.path.exists(line):
 out = line
 break

 if out is not None:
 logging.info('Detected ' + out + ' as GAMS path on this computer')
 else:
 tmp = input('Specify the path to GAMS within quotes (e.g. "C:\\\\GAMS\\\\win64\\\\24.3"): ')
 if os.path.isdir(tmp):
 if sys.platform == 'win32':
 if os.path.isfile(tmp + os.sep + 'gams.exe'):
 out = tmp
 else:
 logging.critical('The provided path is not a valid windows gams folder')
 return False
 elif sys.platform == 'linux2':
 if os.path.isfile(tmp + os.sep + 'gamslib'): # does not always work... gamslib_ml
 out = tmp
 else:
 logging.critical('The provided path is not a valid linux gams folder')
 return False
 else:
 if os.path.isdir(tmp):
 out = tmp

 return out

 Source code for dispaset.misc.str_handler

import logging
import sys

[docs]def shrink_to_64(x, N=64):
 """
 Function that reduces the length of the keys to be written to 64 (max admissible length for GAMS)

 :param x: String or list of strings
 :param N: Integer with the maximum string length (if different from 64)

 :returns: Shrinked string or list of strings
 """

 def shrink_singlestring(key, N):
 if len(key) >= N:
 return key[:20] + ' ... ' + key[-20:]
 else:
 return key

 if type(x) == str:
 return shrink_singlestring(x, N)
 elif type(x) == list:
 return [shrink_singlestring(xx, N) for xx in x]
 else:
 logging.critical('Argument type not supported')
 sys.exit(1)

[docs]def clean_strings(x, exclude_digits=False, exclude_punctuation=False):
 """
 Function to convert strange unicode
 and remove characters punctuation

 :param x: any string or list of strings

 Usage::

 df['DisplayName'].apply(clean_strings)

 """
 if sys.version_info >= (3,0): # Skip this funcion if python version is >3. Have to test better TODO
 return x
 import unicodedata
 import string
 def clean_singlestring(x):
 if exclude_digits: # modify the following depending on what you need to exclude
 exclude1 = set(string.punctuation)
 # exception to the exclusion:
 exclude1.remove('_')
 exclude1.remove('-')
 exclude1.remove('[')
 exclude1.remove(']')
 else:
 exclude1 = set([])
 if exclude_punctuation:
 exclude2 = set(string.digits)
 else:
 exclude2 = set([])
 exclude = exclude1 | exclude2

 # http://stackoverflow.com/questions/2365411/python-convert-unicode-to-ascii-without-errors
 x = str(x).decode('utf-8') # to string byte and then unicode
 x = unicodedata.normalize('NFKD', x).encode('ascii', 'ignore') # convert utf characters and to ascii

 # x = x.upper() #to UPPERCASE
 x = ''.join(ch for ch in x if ch not in exclude) # remove numbers and punctuation
 return x
 if isinstance(x, str):
 return clean_singlestring(x)
 elif isinstance(x, list):
 return [clean_singlestring(xx) for xx in x]
 else:
 logging.error('Argument type not supported')
 sys.exit(1)

[docs]def force_str(x):
 """ Used to get a str object both in python 2 and 3 although they represent different objects (byte vs unicode)
 It is small hack for py2->3 compatibility of gams APIs which require a str object
 """
 if isinstance(x, str):
 return x
 elif isinstance(x,bytes):
 return str(x.decode('utf-8'))
 else:
 return x.encode()

 Source code for dispaset.preprocessing.data_check

"""
This files gathers different functions used in the DispaSET to check the input
data

__author__ = 'Sylvain Quoilin (sylvain.quoilin@ec.europa.eu)'
"""

import os
import sys
import numpy as np
import pandas as pd
import logging
from pandas.api.types import is_numeric_dtype

from ..common import commons # Load fuel types, technologies, timestep, etc

[docs]def isVRE(tech):
 '''
 Function that returns true the technology is a variable renewable energy technology
 '''
 return tech in ['HROR','PHOT','WTON','WTOF']

[docs]def isStorage(tech):
 '''
 Function that returns true the technology is a storage technology
 '''
 return tech in ['HDAM','HPHS','CAES','BATS','BEVS','THMS','P2GS']

[docs]def check_AvailabilityFactors(plants, AF):
 '''
 Function that checks the validity of the provided availability factors and warns
 if a default value of 100% is used.
 '''
 RES = ['WTON', 'WTOF', 'PHOT', 'HROR']
 for i,v in plants.iterrows():
 u = v['Unit']
 t = v['Technology']
 if t in RES and u not in AF:
 logging.error('Unit ' + str(u) + ' (technology ' + t + ') does not appear in the availbilityFactors table. Please provide')
 raise ValueError('Please provide RES AF timeseries for '+str(u))
 if u in AF:
 if pd.isna(AF[u]).any():
 Nna = pd.isna(AF[u]).count()
 logging.warning('The Availability factor of unit {} for technology {} contains {} empty values.'.format(str(u),t,Nna))
 df_af = AF[u].dropna()
 if (df_af == 1).all(axis=None):
 logging.debug('The availability factor of unit ' + str(u) + ' + for technology ' + t + ' is always 100%!')
 if ((df_af < 0) | (df_af > 1)).any(axis=None):
 Nup = df_af[df_af>1].count()
 Ndo = df_af[df_af<0].count()
 logging.error('The Availability factor of unit {} for technology {} should be between 0 and 1. There are {} values above 1.0 and {} below 0.0'.format(str(u),t,Nup,Ndo))
 else:
 logging.error('Unit ' + str(u) + ' (technology ' + t + ') does not appear in the availbilityFactors table. Its values will be set to 100%!')

[docs]def check_FlexibleDemand(flex):
 '''
 Function that checks the validity of the provided flexibility demand time series
 '''
 if (flex.dropna().values < 0).any():
 logging.error('Some flexibility demand values are negative. They must be comprised between 0 and 1')
 sys.exit(1)
 if (flex.dropna().values > 1).any():
 logging.error('Some flexibility demand values are more than 1. They must be comprised between 0 and 1')
 sys.exit(1)

[docs]def check_clustering(plants,plants_merged):
 '''
 Function that checks that the installed capacities are still equal after the clustering process

 :param plants: Non-clustered list of units
 :param plants_merged: clustered list of units
 '''
 # First, list all pairs of technology - fuel
 techs = pd.DataFrame([[plants.Technology[idx],plants.Fuel[idx]] for idx in plants.index])
 techs.drop_duplicates(inplace=True)
 for i in techs.index:
 tech = (techs.loc[i,0],techs.loc[i,1])
 units_old = plants[(plants.Technology == tech[0]) & (plants.Fuel == tech[1])]
 units_new = plants_merged[(plants_merged.Technology == tech[0]) & (plants_merged.Fuel == tech[1])]
 P_old = (units_old.PowerCapacity * units_old.Nunits).sum()
 P_new = (units_new.PowerCapacity * units_new.Nunits).sum()
 if np.abs(P_old - P_new)/(P_old + 0.0001) > 0.01:
 logging.error('The installed capacity for technology "' + tech[0] + '" and fuel "' + tech[1] + '" is not equal between the original units table (P = ' + str(P_old) + ') and the clustered table (P = ' + str(P_new) + ')')
 sys.exit(1)
 # Check the overall installed storage capacity:
 List_tech_storage = ['HDAM', 'HPHS', 'BATS', 'BEVS', 'CAES', 'THMS']
 isstorage = pd.Series(index=plants.index,dtype='bool')
 for u in isstorage.index:
 isstorage[u] = plants.Technology[u] in List_tech_storage
 isstorage_merged = pd.Series(index=plants_merged.index,dtype='bool')
 for u in isstorage_merged.index:
 isstorage_merged[u] = plants_merged.Technology[u] in List_tech_storage
 TotalStorage = (plants.STOCapacity[isstorage]*plants.Nunits[isstorage]).sum()
 TotalStorage_merged = (plants_merged.STOCapacity[isstorage_merged]*plants_merged.Nunits[isstorage_merged]).sum()
 if np.abs(TotalStorage - TotalStorage_merged)/(TotalStorage + 0.0001) > 0.01:
 logging.error('The total installed storage capacity is not equal between the original units table (' + str(TotalStorage) + ') and the clustered table (' + str(TotalStorage_merged) + ')')
 #sys.exit(1)
 return True

[docs]def check_MinMaxFlows(df_min,df_max):
 '''
 Function that checks that there is no incompatibility between the minimum and maximum flows
 '''
 if (df_min > df_max).any():
 pos = np.where(df_min > df_max)
 logging.critical('ERROR: At least one minimum flow is higher than the maximum flow, for example in line number ' + str(pos[0][0]) + ' and time step ' + str(pos[1][0]))
 sys.exit(1)

 if (df_max < 0).any():
 pos = np.where(df_max < 0)
 logging.critical('ERROR: At least one maximum flow is negative, for example in line number ' + str(pos[0][0]) + ' and time step ' + str(pos[1][0]))
 sys.exit(1)

 return True

[docs]def check_sto(config, plants,raw_data=True):
 """
 Function that checks the storage plant characteristics
 """
 if raw_data:
 keys = ['STOCapacity','STOSelfDischarge','STOMaxChargingPower','STOChargingEfficiency']
 NonNaNKeys = ['STOCapacity']
 else:
 keys = ['StorageCapacity','StorageSelfDischarge','StorageChargingCapacity','StorageChargingEfficiency']
 NonNaNKeys = ['StorageCapacity']

 if 'StorageInitial' in plants:
 logging.warning('The "StorageInitial" column is present in the power plant table, although it is deprecated (it should now be defined in the ReservoirLevel data table). It will not be considered.')

 for key in keys:
 if key not in plants:
 logging.critical('The power plants data does not contain the field "' + key + '", which is mandatory for storage units')
 sys.exit(1)

 for key in NonNaNKeys:
 for u in plants.index:
 if 'Unit' in plants:
 unitname = plants.loc[u,'Unit']
 else:
 unitname = str(u)
 if isinstance(plants.loc[u, key], str):
 logging.critical('A non numeric value was detected in the power plants inputs for parameter "' + key + '"')
 sys.exit(1)
 if np.isnan(plants.loc[u, key]):
 logging.critical('The power plants data is missing for unit ' + unitname + ' and parameter "' + key + '"')
 sys.exit(1)

 return True

[docs]def check_p2h(config, plants):
 """
 Function that checks the p2h unit characteristics
 """
 keys = ['COP']
 NonNaNKeys = ['COP']
 StrKeys = []

 if len(plants)==0: # If there are no P2HT units, exit the check
 return True

 for key in keys:
 if key not in plants:
 logging.critical('The power plants data does not contain the field "' + key + '", which is mandatory for P2HT units')
 sys.exit(1)

 for key in NonNaNKeys:
 for u in plants.index:
 if 'Unit' in plants:
 unitname = plants.loc[u,'Unit']
 else:
 unitname = str(u)
 if type(plants.loc[u, key]) == str:
 logging.critical('A non numeric value was detected in the power plants inputs for parameter "' + key + '"')
 sys.exit(1)
 if np.isnan(plants.loc[u, key]):
 logging.critical('The power plants data is missing for unit number ' + unitname + ' and parameter "' + key + '"')
 sys.exit(1)

 for key in StrKeys:
 for u in plants.index:
 if 'Unit' in plants:
 unitname = plants.loc[u,'Unit']
 else:
 unitname = str(u)
 if not isinstance(plants.loc[u, key], str):
 logging.critical(
 'A numeric value was detected in the power plants inputs for parameter "' + key + '". This column should contain strings only.')
 sys.exit(1)
 elif plants.loc[u, key] == '':
 logging.critical('An empty value was detected in the power plants inputs for unit "' + unitname + '" and parameter "' + key + '"')
 sys.exit(1)

 # Check the COP values:
 for u in plants.index:
 if plants.loc[u,'COP'] < 0 or plants.loc[u,'COP'] > 20:
 logging.critical('The COP value of p2h units must be comprised between 0 and 20. The provided value for unit ' + u + ' is "' + str(plants.loc[u,'COP'] + '"'))
 sys.exit(1)

 return True

[docs]def check_chp(config, plants):
 """
 Function that checks the CHP plant characteristics
 """
 keys = ['CHPType','CHPPowerToHeat','CHPPowerLossFactor']
 NonNaNKeys = ['CHPPowerToHeat','CHPPowerLossFactor']
 StrKeys = ['CHPType']

 for key in keys:
 if key not in plants:
 logging.critical('The power plants data does not contain the field "' + key + '", which is mandatory for CHP units')
 sys.exit(1)

 for key in NonNaNKeys:
 for u in plants.index:
 if 'Unit' in plants:
 unitname = plants.loc[u,'Unit']
 else:
 unitname = str(u)
 if type(plants.loc[u, key]) == str:
 logging.critical('A non numeric value was detected in the power plants inputs for parameter "' + key + '"')
 sys.exit(1)
 if np.isnan(plants.loc[u, key]):
 logging.critical('The power plants data is missing for unit number ' + unitname + ' and parameter "' + key + '"')
 sys.exit(1)

 for key in StrKeys:
 for u in plants.index:
 if 'Unit' in plants:
 unitname = plants.loc[u,'Unit']
 else:
 unitname = str(u)
 if not isinstance(plants.loc[u, key], str):
 logging.critical(
 'A numeric value was detected in the power plants inputs for parameter "' + key + '". This column should contain strings only.')
 sys.exit(1)
 elif plants.loc[u, key] == '':
 logging.critical('An empty value was detected in the power plants inputs for unit "' + unitname + '" and parameter "' + key + '"')
 sys.exit(1)

 # Check the efficiency values:
 for u in plants.index:
 if 'Unit' in plants:
 unitname = plants.loc[u,'Unit']
 else:
 unitname = str(u)
 plant_PowerCapacity = plants.loc[u,'PowerCapacity']
 plant_MaxHeat = plants.loc[u, 'CHPMaxHeat']
 plant_powertoheat = plants.loc[u,'CHPPowerToHeat']
 plant_powerlossfactor = plants.loc[u,'CHPPowerLossFactor']

 if plants.loc[u,'CHPType'].lower() not in ['extraction','back-pressure', 'p2h']:
 logging.critical('The value of CHPType should be "extraction", "back-pressure" or "p2h". The type of unit ' + u + ' is "' + str(plants.loc[u,'CHPType'] + '"'))
 sys.exit(1)
 if 0 > plant_powertoheat > 10:
 logging.critical('The value of CHPPowerToHeat should be higher or equal to zero and lower than 10. Unit ' + u + ' has a value of ' + str(plant_powertoheat))
 sys.exit(1)
 if 0 > plant_powerlossfactor > 1 and plants.loc[u,'CHPType'].lower() != 'p2h':
 logging.critical('The value of CHPPowerLossFactor should be higher or equal to zero and lower than 1. Unit ' + u + ' has a value of ' + str(plant_powerlossfactor))
 sys.exit(1)
 if plants.loc[u,'CHPType'].lower() == 'back-pressure' and plant_powerlossfactor != 0:
 logging.critical('The value of CHPPowerLossFactor must be zero if the CHP types is "back-pressure". Unit ' + u + ' has a value of ' + str(plant_powerlossfactor))
 sys.exit(1)
 if plants.loc[u, 'CHPType'].lower() == 'extraction':
 intersection_MaxHeat = plant_PowerCapacity / plant_powertoheat
 if not pd.isnull(plant_MaxHeat):
 if intersection_MaxHeat < plant_MaxHeat:
 logging.warning('Given Maximum heat CHPMaxHeat ({}) is higher than the intersection point of the two other constraints ({}) '
 '(power loss factor and backpressure line) therefore it will not be ignored'.format(plant_MaxHeat, intersection_MaxHeat))
 plant_MaxHeat = intersection_MaxHeat
 else:
 plant_MaxHeat = intersection_MaxHeat

 # Calculating the nominal total efficiency at the highest point:
 if plants.loc[u,'CHPType'].lower() != 'p2h':
 Fuel = (plant_PowerCapacity + plant_powerlossfactor * plant_MaxHeat)/plants.loc[u,'Efficiency'] # F = (P + C_v * Q)/eta_condensation
 TotalEfficiency = (plant_PowerCapacity + plant_MaxHeat) / Fuel # eta_tot = (P + Q) / F
 logging.debug('Highest overall efficiency of CHP plant {} is {:.2f}'.format(u,TotalEfficiency))
 if TotalEfficiency < 0 or TotalEfficiency > 1.14:
 logging.critical('The calculated value of the total CHP efficiency for unit ' + unitname + ' is ' + str(TotalEfficiency) + ', which is unrealistic!')
 sys.exit(1)
 if TotalEfficiency > 0.95:
 logging.warning('The calculated value of the total CHP efficiency for unit ' + unitname + ' is ' + str(TotalEfficiency) + ', which is very high!')

 # Check the optional MaxHeatCapacity parameter. While it adds another realistic boundary it is not a required parameter for the definition of the CHP's operational envelope.:
 if 'CHPMaxHeat' in plants:
 for u in plants.index:
 plant_MaxHeat = plants.loc[u, 'CHPMaxHeat']
 if plant_MaxHeat <=0:
 logging.warning('CHPMaxHeat for plant {} is {} which shuts down any heat production.'.format(u, plant_MaxHeat))
 # Check the optional heat storage values:
 if 'STOCapacity' in plants:
 for u in plants.index:
 Qdot = plants.loc[u,'PowerCapacity']/plants.loc[u,'CHPPowerToHeat']
 if plants.loc[u,'STOCapacity'] < Qdot * 0.5 :
 logging.warning('Unit ' + unitname + ': The value of the thermal storage capacity (' + str(plants.loc[u,'STOCapacity']) + 'MWh) seems very low compared to its thermal power (' + str(Qdot) + 'MW).')
 elif plants.loc[u,'STOCapacity'] > Qdot * 24:
 logging.warning('Unit ' + unitname + ': The value of the thermal storage capacity (' + str(plants.loc[u,'STOCapacity']) + 'MWh) seems very high compared to its thermal power (' + str(Qdot) + 'MW).')

 if 'STOSelfDischarge' in plants:
 for u in plants.index:
 if plants.loc[u,'STOSelfDischarge'] < 0 :
 logging.error('Unit ' + unitname + ': The value of the thermal storage self-discharge (' + str(plants.loc[u,'STOSelfDischarge']*100) + '%/day) cannot be negative')
 sys.exit(1)
 elif plants.loc[u,'STOSelfDischarge'] > 1:
 logging.warning('Unit ' + unitname + ': The value of the thermal storage self-discharge (' + str(plants.loc[u,'STOSelfDischarge']*100) + '%/day) seems very high')
 elif plants.loc[u,'STOSelfDischarge'] > 24:
 logging.error('Unit ' + unitname + ': The value of the thermal storage self-discharge (' + str(plants.loc[u,'STOSelfDischarge']*100) + '%/day) is too high')
 sys.exit(1)

 return True

[docs]def check_units(config, plants):
 """
 Function that checks the power plant characteristics
 """

 keys = ['Unit', 'Fuel', 'Zone', 'Technology', 'PowerCapacity', 'PartLoadMin', 'RampUpRate', 'RampDownRate',
 'StartUpTime', 'MinUpTime', 'MinDownTime', 'NoLoadCost', 'StartUpCost', 'Efficiency', 'CO2Intensity']
 NonNaNKeys = ['PowerCapacity', 'PartLoadMin', 'RampUpRate', 'RampDownRate', 'Efficiency', 'RampingCost',
 'CO2Intensity']
 StrKeys = ['Unit', 'Zone', 'Fuel', 'Technology']

 # Special treatment for the Optional key Nunits:
 if 'Nunits' in plants:
 keys.append('Nunits')
 NonNaNKeys.append('Nunits')
 if any([not float(x).is_integer() for x in plants['Nunits']]):
 logging.error('Some values are not integers in the "Nunits" column of the plant database')
 sys.exit(1)
 else:
 logging.info('The columns "Nunits" is not present in the power plant database. A value of one will be assumed by default')

 for key in keys:
 if key not in plants:
 logging.critical('The power plants data does not contain the field "' + key + '", which is mandatory')
 sys.exit(1)

 for key in NonNaNKeys:
 for u in plants.index:
 if type(plants.loc[u, key]) == str:
 logging.critical('A non numeric value was detected in the power plants inputs for parameter "' + key + '"')
 sys.exit(1)
 if np.isnan(plants.loc[u, key]):
 logging.critical('The power plants data is missing for unit number ' + str(u) + ' and parameter "' + key + '"')
 sys.exit(1)

 for key in StrKeys:
 for u in plants.index:
 if not type(plants.loc[u, key]) == str:
 logging.critical(
 'A numeric value was detected in the power plants inputs for parameter "' + key + '". This column should contain strings only.')
 sys.exit(1)
 elif plants.loc[u, key] == '':
 logging.critical('An empty value was detected in the power plants inputs for unit "' + str(
 u) + '" and parameter "' + key + '"')
 sys.exit(1)

 lower = {'PowerCapacity': 0, 'PartLoadMin': 0, 'StartUpTime': 0, 'MinUpTime': 0, 'MinDownTime': 0, 'NoLoadCost': 0,
 'StartUpCost': 0}
 lower_hard = {'RampUpRate': 0, 'RampDownRate': 0, 'Efficiency': 0}
 higher = {'PartLoadMin': 1, 'Efficiency': 1}
 higher_time = {'MinUpTime': 0, 'MinDownTime': 0} # 'StartUpTime':0,

 # Special treatment for the Optional key Nunits:
 if 'Nunits' in plants:
 lower_hard['Nunits'] = 0

 if len(plants['Unit'].unique()) != len(plants['Unit']):
 duplicates = plants['Unit'][plants['Unit'].duplicated()].tolist()
 logging.error('The names of the power plants are not unique. The following names are duplicates: ' + str(duplicates) + '. "' + str(duplicates[0] + '" appears for example in the following zones: ' + str(plants.Zone[plants['Unit']==duplicates[0]].tolist())))
 sys.exit(1)

 for key in lower:
 if any(plants[key] < lower[key]):
 plantlist = plants[plants[key] < lower[key]]
 plantlist = plantlist['Unit'].tolist()
 logging.critical(
 'The value of ' + key + ' should be higher or equal to zero. A negative value has been found for units ' + str(
 plantlist))
 sys.exit(1)

 for key in lower_hard:
 if any(plants[key] <= lower_hard[key]):
 plantlist = plants[plants[key] <= lower_hard[key]]
 plantlist = plantlist['Unit'].tolist()
 logging.critical(
 'The value of ' + key + ' should be strictly higher than zero. A null or negative value has been found for units ' + str(
 plantlist))
 sys.exit(1)

 for key in higher:
 if any(plants[key] > higher[key]):
 plantlist = plants[plants[key] > higher[key]]
 plantlist = plantlist['Unit'].tolist()
 logging.critical(
 'The value of ' + key + ' should be lower or equal to one. A higher value has been found for units ' + str(
 plantlist))
 sys.exit(1)

 for key in higher_time:
 if any(plants[key] >= config['HorizonLength'] * 24):
 plantlist = plants[plants[key] >= config['HorizonLength'] * 24]
 plantlist = plantlist['Unit'].tolist()
 logging.critical('The value of ' + key + ' should be lower than the horizon length (' + str(
 config['HorizonLength'] * 24) + ' hours). A higher value has been found for units ' + str(plantlist))
 sys.exit(1)

 # Checking che compatibility between the selected simulation time and the power plant constraints:
 if config['SimulationType'] in ('LP','LP clustered') :
 for key in ['NoLoadCost', 'PartLoadMin', 'MinEfficiency', 'StartUpTime']:
 if (plants[key] > 0).any():
 logging.error('Non-null value(s) have been found for key ' + key + ' in the power plant list. \
 This cannot be modelled with the ' + config['SimulationType'] + ' formulation and \
 will therefore not be considered.')
 return True

[docs]def check_heat_demand(plants,data):
 '''
 Function that checks the validity of the heat demand profiles

 :param plants: List of CHP plants
 '''
 plants.index = plants['Unit']
 plants_heating = plants[[str(plants['CHPType'][u]).lower() in commons['types_CHP'] or plants.loc[u,'Technology']=='P2HT' for u in plants.index]]
 plants_chp = plants[[str(plants['CHPType'][u]).lower() in commons['types_CHP'] for u in plants.index]]

 for u in data:
 if u in plants_heating.index:
 if 'Nunits' in plants_heating:
 Nunits = plants.loc[u,'Nunits']
 else:
 Nunits = 1
 if (data[u] == 0).all():
 logging.critical('Heat demand data for CHP unit "' + u + '" is either no found or always equal to zero')
 else:
 logging.warning('The heat demand profile with header "' + str(u) + '" does not correspond to any CHP plant. It will be ignored.')
 if u in plants_chp.index:
 plant_CHP_type = plants.loc[u,'CHPType'].lower()
 if pd.isnull(plants.loc[u, 'CHPMaxHeat']):
 plant_Qmax = +np.inf
 else:
 plant_Qmax = plants.loc[u,'CHPMaxHeat']
 if plant_CHP_type == 'extraction':
 Qmin = 0
 Qmax = min(plants.loc[u, 'PowerCapacity'] / plants.loc[u, 'CHPPowerToHeat'], plant_Qmax) * Nunits
 elif plant_CHP_type == 'back-pressure':
 Qmin = plants.loc[u,'PowerCapacity'] * plants.loc[u,'PartLoadMin'] /plants.loc[u,'CHPPowerToHeat']
 Qmax = min(plants.loc[u, 'PowerCapacity'] / plants.loc[u, 'CHPPowerToHeat'], plant_Qmax) * Nunits
 elif plant_CHP_type == 'p2h':
 Qmin = 0
 Qmax = plant_Qmax * Nunits
 else:
 logging.error('The CHP type for unit ' + u + ' is not valid.')
 if np.isnan(Qmax) and plant_CHP_type!='p2h':
 logging.error('CHPPowerToHeat is not defined for unit ' + str(u) + ' appearing in the heat demand profiles')
 sys.exit(1)
 elif data[u].max() > Qmax:
 logging.warning('The maximum thermal demand for unit ' + str(u) + ' (' + str(data[u].max()) + ') is higher than its thermal capacity (' + str(Qmax) + '). Slack heat will be used to cover that.')
 if data[u].min() < Qmin:
 logging.warning('The minimum thermal demand for unit ' + str(u) + ' (' + str(data[u].min()) + ') is lower than its minimum thermal generation (' + str(Qmin) + ' MWth)')

 # check that a heating demand has been provided for all heating technologies
 for u in plants_heating.index:
 if u not in data:
 logging.critical('No heat demand data was found for unit ' + u)
 sys.exit(1)

 return True

[docs]def check_temperatures(plants,Temperatures):
 '''
 Function that checks the presence and validity of the temperatures profiles for
 units with temperature-dependent characteristics

 :param plants: List of all units
 '''

 plants.index = plants['Unit']
 if 'Tnominal' in plants and is_numeric_dtype(plants['Tnominal']):
 plants_T = plants[plants.Tnominal > 0]
 if 'coef_COP_a' not in plants or 'coef_COP_b' not in plants:
 logging.critical('Columns coef_COP_a and coef_COP_b must be defined in the units table')
 sys.exit(1)
 else:
 plants_T= pd.DataFrame(columns=plants.columns)
 for u in plants_T.index:
 if plants_T.loc[u,'Zone'] not in Temperatures:
 logging.critical('No temperature data has been found for zone ' + plants_T.loc[u,'Zone'] +", although it is required for temperature-dependent unit " + u)
 sys.exit(1)

 return True

[docs]def check_df(df, StartDate=None, StopDate=None, name=''):
 """
 Function that check the time series provided as inputs
 """

 if isinstance(df.index, pd.DatetimeIndex):
 if not StartDate in df.index:
 logging.warning('The start date ' + str(StartDate) + ' is not in the index of the provided dataframe')
 if not StopDate in df.index:
 logging.warning('The stop date ' + str(StopDate) + ' is not in the index of the provided dataframe')
 if any(np.isnan(df)):
 for key in df:
 missing = np.sum(np.isnan(df[key]))
 # pos = np.where(np.isnan(df.sum(axis=1)))
 # idx_pos = [df.index[i] for i in pos]
 if missing > 1:
 logging.warning('There are ' + str(missing) + ' missing entries in the column ' + key + ' of the dataframe ' + name)
 if not df.columns.is_unique:
 logging.error('The column headers of table "' + name + '" are not unique!. The following headers are duplicated: ' + str(df.columns.get_duplicates()))
 sys.exit(1)
 return True

[docs]def check_simulation_environment(SimulationPath, store_type='pickle', firstline=7):
 """
 Function to test the validity of disapset inputs
 :param SimulationPath: Path to the simulation folder
 :param store_type: choose between: "list", "excel", "pickle"
 :param firstline: Number of the first line in the data (only if type=='excel')
 """

 import cPickle

 # minimum list of variable required for dispaSET:
 list_sets = [
 'h',
 'd',
 'mk',
 'n',
 'c',
 'p',
 'l',
 'f',
 's',
 't',
 'tr',
 'u']

 list_param = [
 'AvailabilityFactor',
 'CostFixed',
 'CostShutDown',
 'Curtailment',
 'Demand',
 'Efficiency',
 'Fuel',
 'CostVariable',
 'FuelPrice',
 'Markup',
 'CostStartUp',
 'EmissionMaximum',
 'EmissionRate',
 'FlowMaximum',
 'FlowMinimum',
 'LineNode',
 'Location',
 'LoadShedding',
 'OutageFactor',
 'PermitPrice',
 'PriceTransmission',
 'PowerCapacity',
 'PartLoadMin',
 'RampUpMaximum',
 'RampDownMaximum',
 'RampStartUpMaximum',
 'RampShutDownMaximum',
 'Reserve',
 'StorageDischargeEfficiency',
 'StorageCapacity',
 'StorageInflow',
 'StorageOutflow',
 'StorageInitial',
 'StorageMinimum',
 'StorageChargingEfficiency',
 'StorageChargingCapacity',
 'Technology',
 'TimeDownMinimum',
 'TimeUpMinimum',
 'TimeDownInitial',
 'TimeUpInitial',
 'PowerInitial']

 if store_type == 'list':
 if isinstance(SimulationPath, list):
 # The list of sets and parameters has been passed directly to the function, checking that all are present:
 SimulationPath_vars = [SimulationPath[i]['name'] for i in range(len(SimulationPath))]
 for var in list_sets + list_param:
 if var not in SimulationPath_vars:
 logging.critical('The variable "' + var + '" has not been found in the list of input variables')
 sys.exit(1)
 else:
 logging.critical('The argument must a list. Please correct or change the "type" argument')
 sys.exit(1)

 elif store_type == 'pickle':
 if os.path.exists(SimulationPath):
 if os.path.isfile(os.path.join(SimulationPath, 'Inputs.p')):
 vars = cPickle.load(open(os.path.join(SimulationPath, 'Inputs.p'), 'rb'))
 arg_vars = [vars[i]['name'] for i in range(len(vars))]
 for var in list_sets + list_param:
 if var not in arg_vars:
 logging.critical('Found Pickle file but does not contain valid DispaSET input (' + var + ' missing)')
 sys.exit(1)
 else:
 logging.critical('Could not find the Inputs.p file in the specified directory')
 sys.exit(1)
 else:
 logging.critical('The function argument is not a valid directory')
 sys.exit(1)

 elif store_type == 'excel':
 if os.path.exists(SimulationPath):
 if not os.path.isfile(os.path.join(SimulationPath, 'InputDispa-SET - Sets.xlsx')):
 logging.critical("Could not find the file 'InputDispa-SET - Sets.xlsx'")
 sys.exit(1)
 for var in list_param:
 if os.path.isfile(os.path.join(SimulationPath, 'InputDispa-SET - ' + var + '.xlsx')):
 a = 1
 else:
 logging.critical("Could not find the file 'InputDispa-SET - " + var + ".xlsx'")
 sys.exit(1)

 else:
 logging.critical('The function argument is not a valid directory')
 sys.exit(1)

 else:
 logging.critical('The "type" parameter must be one of the following : "list", "excel", "pickle"')
 sys.exit(1)

 Source code for dispaset.preprocessing.data_handler

import datetime as dt
import logging
import os
import sys

import numpy as np
import pandas as pd

from ..common import commons
try:
 from future.builtins import int
except ImportError:
 pass

DEFAULTS = {'ReservoirLevelInitial':0.5,'ReservoirLevelFinal':0.5,'ValueOfLostLoad':1E5,
 'PriceOfSpillage':1,'WaterValue':100,'ShareOfQuickStartUnits':0.5,
 'PriceOfNuclear':0,'PriceOfBlackCoal':0,'PriceOfGas':0,'PriceOfFuelOil':0,'PriceOfBiomass':0,
 'PriceOfCO2':0,'PriceOfLignite':0,'PriceOfPeat':0,'LoadShedding':0,'CostHeatSlack':0,
 'CostLoadShedding':100,'ShareOfFlexibleDemand':0,'DemandFlexibility':0}

[docs]def NodeBasedTable(varname,config,default=None):
 '''
 This function loads the tabular data stored in csv files relative to each
 zone of the simulation.

 :param varname: Variable name (as defined in config)
 :param idx: Pandas datetime index to be used for the output
 :param zones: List with the zone codes to be considered
 :param fallback: List with the order of data source.
 :param default: Default value to be applied if no data is found

 :return: Dataframe with the time series for each unit
 '''

 path = config[varname]
 zones=config['zones']
 paths = {}
 if os.path.isfile(path):
 paths['all'] = path
 SingleFile=True
 elif '##' in path:
 for z in zones:
 path_c = path.replace('##', str(z))
 if os.path.isfile(path_c):
 paths[str(z)] = path_c
 else:
 logging.critical('No data file found for the table ' + varname + ' and zone ' + z + '. File ' + path_c + ' does not exist')
 sys.exit(1)
 SingleFile=False
 elif path != '':
 logging.critical('A path has been specified for table ' + varname + ' (' + path + ') but no file has been found')
 sys.exit(1)
 data = pd.DataFrame(index=config['idx_long'])
 if len(paths) == 0:
 logging.info('No data file specified for the table ' + varname + '. Using default value ' + str(default))
 if default is None:
 pass
 elif isinstance(default,(float,int)):
 data = pd.DataFrame(default,index=config['idx_long'],columns=zones)
 else:
 logging.critical('Default value provided for table ' + varname + ' is not valid')
 sys.exit(1)
 elif SingleFile:
 # If it is only one file, there is a header with the zone code
 tmp = load_time_series(config,paths['all'])

 if len(tmp.columns) == 1: # if there is only one column, assign its value to all the zones, whatever the header
 try: # if the column header is numerical, there was probably no header. Load the file again.
 float(tmp.columns[0]) # this will fail if the header is not numerical
 tmp = load_time_series(config,paths['all'],header=None)
 except:
 pass
 for key in zones:
 data[key] = tmp.iloc[:,0]
 else:
 for key in zones:
 if key in tmp:
 data[key] = tmp[key]
 else:
 logging.error('Zone ' + key + ' could not be found in the file ' + path + '. Using default value ' + str(default))
 if default is None:
 pass
 elif isinstance(default,(float,int)):
 data[key] = default
 else:
 logging.critical('Default value provided for table ' + varname + ' is not valid')
 sys.exit(1)
 else: # assembling the files in a single dataframe:
 for z in paths:
 # In case of separated files for each zone, there is no header
 tmp = load_time_series(config,paths[z])
 data[z] = tmp.iloc[:,0]

 return data

[docs]def UnitBasedTable(plants,varname,config,fallbacks=['Unit'],default=None,RestrictWarning=None):
 '''
 This function loads the tabular data stored in csv files and assigns the
 proper values to each unit of the plants dataframe. If the unit-specific
 value is not found in the data, the script can fallback on more generic
 data (e.g. fuel-based, technology-based, zone-based) or to the default value.
 The order in which the data should be loaded is specified in the fallback
 list. For example, ['Unit','Technology'] means that the script will first
 try to find a perfect match for the unit name in the data table. If not found,
 a column with the unit technology as header is search. If not found, the
 default value is assigned.

 :param plants: Dataframe with the units for which data is required
 :param varname: Variable name (as defined in config)
 :param idx: Pandas datetime index to be used for the output
 :param zones: List with the zone codes to be considered
 :param fallback: List with the order of data source.
 :param default: Default value to be applied if no data is found
 :param RestrictWarning: Only display the warnings if the unit belongs to the list of technologies provided in this parameter

 :return: Dataframe with the time series for each unit
 '''
 path = config[varname]
 zones = config['zones']
 paths = {}
 if os.path.isfile(path):
 paths['all'] = path
 SingleFile=True
 elif '##' in path:
 for z in zones:
 path_c = path.replace('##', str(z))
 if os.path.isfile(path_c):
 paths[str(z)] = path_c
 else:
 logging.error('No data file found for the table ' + varname + ' and zone ' + z + '. File ' + path_c + ' does not exist')
sys.exit(1)
 SingleFile=False
 elif path != '':
 logging.critical('A path has been specified for table ' + varname + ' (' + path + ') but no file has been found')
 sys.exit(1)

 data = pd.DataFrame(index=config['idx_long'])
 if len(paths) == 0:
 logging.info('No data file specified for the table ' + varname + '. Using default value ' + str(default))
 if default is None:
 out = pd.DataFrame(index=config['idx_long'])
 elif isinstance(default,(float,int)):
 out = pd.DataFrame(default,index=config['idx_long'],columns=plants['Unit'])
 else:
 logging.critical('Default value provided for table ' + varname + ' is not valid')
 sys.exit(1)
 else: # assembling the files in a single dataframe:
 columns = []
 for z in paths:
 tmp = load_time_series(config,paths[z])
 if SingleFile:
 for key in tmp:
 data[key] = tmp[key]
 else: # use the multi-index header with the zone
 for key in tmp:
 columns.append((z,key))
 data[z+','+key] = tmp[key]
 if not SingleFile:
 data.columns = pd.MultiIndex.from_tuples(columns, names=['Zone', 'Data'])
 # For each plant and each fallback key, try to find the corresponding column in the data
 out = pd.DataFrame(index=config['idx_long'])
 for j in plants.index:
 warning = True
 if not RestrictWarning is None:
 warning = False
 if plants.loc[j,'Technology'] in RestrictWarning:
 warning=True
 u = plants.loc[j,'Unit']
 found = False
 for i,key in enumerate(fallbacks):
 if SingleFile:
 header = plants.loc[j,key]
 else:
 header = (plants.loc[j,'Zone'],plants.loc[j,key])
 if header in data:
 out[u] = data[header]
 found = True
 if i > 0 and warning:
 logging.warning('No specific information was found for unit ' + u + ' in table ' + varname + '. The generic information for ' + str(header) + ' has been used')
 break
 if not found:
 if warning:
 logging.info('No specific information was found for unit ' + u + ' in table ' + varname + '. Using default value ' + str(default))
 if not default is None:
 out[u] = default
 if not out.columns.is_unique:
 logging.critical('The column headers of table "' + varname + '" are not unique!. The following headers are duplicated: ' + str(out.columns.get_duplicates()))
 sys.exit(1)
 return out

[docs]def merge_series(plants, data, mapping, method='WeightedAverage', tablename=''):
 """
 Function that merges the times series corresponding to the merged units (e.g. outages, inflows, etc.)

 :param plants: Pandas dataframe with the information relative to the original units
 :param data: Pandas dataframe with the time series and the original unit names as column header
 :param mapping: Mapping between the merged units and the original units. Output of the clustering function
 :param method: Select the merging method ('WeightedAverage'/'Sum')
 :param tablename: Name of the table being processed (e.g. 'Outages'), used in the warnings
 :return merged: Pandas dataframe with the merged time series when necessary
 """
 # backward compatibility:
 if not "Nunits" in plants:
 plants['Nunits'] = 1

 plants.index = range(len(plants))
 merged = pd.DataFrame(index=data.index)
 unitnames = plants.Unit.values.tolist()
 # First check the data:
 if not isinstance(data,pd.DataFrame):
 logging.critical('The input "' + tablename + '" to the merge_series function must be a dataframe')
 sys.exit(1)
 for key in data:
 if str(data[key].dtype) not in ['bool','int','float','float16', 'float32', 'float64', 'float128','int8', 'int16', 'int32', 'int64']:
 logging.critical('The column "' + str(key) + '" of table + "' + tablename + '" is not numeric!')
 for key in data:
 if key in unitnames:
 i = unitnames.index(key)
 newunit = mapping['NewIndex'][i]
 if newunit not in merged: # if the columns name is in the mapping and the new unit has not been processed yet
 oldindexes = mapping['FormerIndexes'][newunit]
 oldnames = [plants['Unit'][x] for x in oldindexes]
 if all([name in data for name in oldnames]):
 subunits = data[oldnames]
 else:
 for name in oldnames:
 if name not in data:
 logging.critical('The column "' + name + '" is required for the aggregation of unit "' + key +
 '", but it has not been found in the input data')
 sys.exit(1)
 value = np.zeros(len(data))
 # Renaming the subunits df headers with the old plant indexes instead of the unit names:
 subunits.columns = mapping['FormerIndexes'][newunit]
 if method == 'WeightedAverage':
 for idx in oldindexes:
 name = plants['Unit'][idx]
 value = value + subunits[idx] * np.maximum(1e-9, plants['PowerCapacity'][idx]*plants['Nunits'][idx])
 P_j = np.sum(np.maximum(1e-9, plants['PowerCapacity'][oldindexes]*plants['Nunits'][oldindexes]))
 merged[newunit] = value / P_j
 elif method == 'Sum':
 merged[newunit] = subunits.sum(axis=1)
 else:
 logging.critical('Method "' + str(method) + '" unknown in function MergeSeries')
 sys.exit(1)
 elif key in plants['Unit']:
 if not isinstance(key, tuple): # if the columns header is a tuple, it does not come from the data and has been added by Dispa-SET
 logging.warning('Column ' + str(key) + ' present in the table "' + tablename + '" not found in the mapping between original and clustered units. Skipping')
 else:
 if not isinstance(key, tuple): # if the columns header is a tuple, it does not come from the data and has been added by Dispa-SET
 logging.warning('Column ' + str(key) + ' present in the table "' + tablename + '" not found in the table of power plants. Skipping')
 return merged

[docs]def define_parameter(sets_in, sets, value=0):
 """
 Function to define a DispaSET parameter and fill it with a constant value

 :param sets_in: List with the labels of the sets corresponding to the parameter
 :param sets: dictionary containing the definition of all the sets (must comprise those referenced in sets_in)
 :param value: Default value to attribute to the parameter
 """
 if value == 'bool':
 values = np.zeros([len(sets[setx]) for setx in sets_in], dtype='bool')
 elif value == 0:
 values = np.zeros([len(sets[setx]) for setx in sets_in])
 elif value == 1:
 values = np.ones([len(sets[setx]) for setx in sets_in])
 else:
 values = np.ones([len(sets[setx]) for setx in sets_in]) * value
 return {'sets': sets_in, 'val': values}

[docs]def load_time_series(config,path,header='infer'):
 """
 Function that loads time series data, checks the compatibility of the indexes
 and guesses when no exact match between the required index and the data is
 present
 """

 data = pd.read_csv(path, index_col=0, parse_dates=True, header=header)

 if not data.index.is_unique:
 logging.critical('The index of data file ' + path + ' is not unique. Please check the data')
 sys.exit(1)

 if not data.index.is_monotonic_increasing:
 logging.error('The index of data file ' + path + ' is not monotoneously increasing. Trying to check if it can be parsed with a "day first" format ')
 data = pd.read_csv(path, index_col=0, parse_dates=True, header=header, dayfirst=True)
 if not data.index.is_monotonic_increasing:
 logging.critical('Could not parse index of ' + path + '. To avoid problems make sure that you use the proper american date format (yyyy-mm-dd hh:mm:ss)')
 sys.exit(1)

 # First convert numerical indexes into datetimeindex:
 if data.index.is_numeric():
 if len(data) == len(config['idx']): # The data has the same length as the provided index range
 logging.info('A numerical index has been found for file ' + path +
 '. It has the same length as the target simulation and is therefore considered valid')
 data.index=config['idx']
 elif len(data) == 8760:
 logging.info('A numerical index has been found for file ' + path +
 '. Since it contains 8760 elements, it is assumed that it corresponds to a whole year')
 data.index = pd.date_range(start=dt.datetime(*(config['idx'][0].year,1,1,0,0)),
 end=dt.datetime(*(config['idx'][0].year,12,31,23,59,59)),
 freq=commons['TimeStep'])
 else:
 logging.critical('A numerical index has been found for file ' + path +
 '. However, its length does not allow guessing its timestamps. Please use a 8760 elements time series')
 sys.exit(1)

 if data.index.is_all_dates:
 data.index = data.index.tz_localize(None) # removing locational data
 # Checking if the required index entries are in the data:
 common = data.index.tz_localize(None).intersection(config['idx'])
 if len(common) == 0:
 # try to see if it is just a year-mismatch
 index2 = data.index.shift(8760 * (config['idx'][0].year - data.index[0].year),freq=commons['TimeStep'])
 common2 = index2.intersection(config['idx'])
 if len(common2) == len(config['idx']):
 logging.warning('File ' + path + ': data for year '+ str(data.index[0].year) + ' is used instead of year ' + str(config['idx'][0].year))
 data.index=index2
 elif len(common) == len(config['idx'])-1: # there is only one data point missing. This is deemed acceptable
 logging.warning('File ' + path + ': there is one data point missing in the time series. It will be filled with the nearest data')
 elif len(common) < len(config['idx'])-1:
 logging.critical('File ' + path + ': the index does not contain the necessary time range (from ' + str(config['idx'][0]) + ' to ' + str(config['idx'][-1]) + ')')
 sys.exit(1)
 else:
 logging.critical('Index for file ' + path + ' is not valid')
 sys.exit(1)

 # re-indexing with the longer index (including look-ahead) and filling possibly missing data at the beginning and at the end::
 return data.reindex(config['idx_long'], method='nearest').fillna(method='bfill')

[docs]def load_config(ConfigFile,AbsPath=True):
 """
 Wrapper function around load_config_excel and load_config_yaml
 """
 if ConfigFile.endswith(('.xlsx','.xls')):
 config = load_config_excel(ConfigFile,AbsPath=True)
 elif ConfigFile.endswith(('.yml','.yaml')):
 config = load_config_yaml(ConfigFile,AbsPath=True)
 else:
 logging.critical('The extension of the config file should be .xlsx or .yml')
 sys.exit(1)
 return config

[docs]def read_truefalse(sheet, rowstart, colstart, rowstop, colstop, colapart=1):
 """
 Function that reads a two column format with a list of strings in the first
 columns and a list of true false in the second column
 The list of strings associated with a True value is returned
 """
 out = []
 for i in range(rowstart, rowstop):
 if sheet.cell_value(i, colstart + colapart) == 1:
 out.append(sheet.cell_value(i, colstart))
 return out

[docs]def load_config_excel(ConfigFile,AbsPath=True):
 """
 Function that loads the DispaSET excel config file and returns a dictionary
 with the values

 :param ConfigFile: String with (relative) path to the DispaSET excel configuration file
 :param AbsPath: If true, relative paths are automatically changed into absolute paths (recommended)
 """
 import xlrd
 wb = xlrd.open_workbook(filename=ConfigFile) # Option for csv to be added later
 sheet = wb.sheet_by_name('main')
 config = {}

 if sheet.cell_value(0,0) == 'Dispa-SET Configuration File (v20.01)':
 config['Description'] = sheet.cell_value(5, 1)
 config['StartDate'] = xlrd.xldate_as_tuple(sheet.cell_value(56, 2), wb.datemode)
 config['StopDate'] = xlrd.xldate_as_tuple(sheet.cell_value(57, 2), wb.datemode)
 config['HorizonLength'] = int(sheet.cell_value(58, 2))
 config['LookAhead'] = int(sheet.cell_value(59, 2))

 # Defning the input locations in the config file:
 StdParameters={'SimulationDirectory':33,'WriteGDX':34,'WritePickle':35,'GAMS_folder':36,
 'cplex_path':37,'DataTimeStep':60,'SimulationTimeStep':61,
 'SimulationType':76,'ReserveCalculation':77,'AllowCurtailment':78,
 'HydroScheduling':98,'HydroSchedulingHorizon':99,'InitialFinalReservoirLevel':100}
 PathParameters={'Demand':124, 'Outages':126, 'PowerPlantData':127, 'RenewablesAF':128,
 'LoadShedding':129, 'NTC':130, 'Interconnections':131, 'ReservoirScaledInflows':132,
 'PriceOfNuclear':180, 'PriceOfBlackCoal':181, 'PriceOfGas':182,
 'PriceOfFuelOil':183,'PriceOfBiomass':184, 'PriceOfCO2':166,
 'ReservoirLevels':133, 'PriceOfLignite':185, 'PriceOfPeat':186,
 'HeatDemand':134,'CostHeatSlack':165,'CostLoadShedding':168,'ShareOfFlexibleDemand':125,
 'Temperatures':135}
 modifiers= {'Demand':274,'Wind':275,'Solar':276,'Storage':277}
 default = {'ReservoirLevelInitial':101,'ReservoirLevelFinal':102,'PriceOfNuclear':180,'PriceOfBlackCoal':181,
 'PriceOfGas':182,'PriceOfFuelOil':183,'PriceOfBiomass':184,'PriceOfCO2':166,'PriceOfLignite':185,
 'PriceOfPeat':186,'LoadShedding':129,'CostHeatSlack':167,'CostLoadShedding':168,'ValueOfLostLoad':204,
 'PriceOfSpillage':205,'WaterValue':206,'ShareOfQuickStartUnits':163,'ShareOfFlexibleDemand':125,
 'DemandFlexibility':162}
 for p in StdParameters:
 config[p] = sheet.cell_value(StdParameters[p], 2)
 for p in PathParameters:
 config[p] = sheet.cell_value(PathParameters[p], 2)
 config['modifiers'] = {}
 for p in modifiers:
 config['modifiers'][p] = sheet.cell_value(modifiers[p], 2)
 config['default'] = {}
 for p in default:
 config['default'][p] = sheet.cell_value(default[p], 5)

 #True/Falst values:
 config['zones'] = read_truefalse(sheet, 225, 1, 246, 3)
 config['zones'] = config['zones'] + read_truefalse(sheet, 225, 4, 246, 6)
 config['mts_zones'] = read_truefalse(sheet, 225, 1, 246, 3, 2)
 config['mts_zones'] = config['mts_zones'] + read_truefalse(sheet, 225, 4, 246, 6, 2)
 config['ReserveParticipation'] = read_truefalse(sheet, 305, 1, 319, 3)

 # Set default values (for backward compatibility):
 for param in DEFAULTS:
 if config['default'][param]=='':
 config['default'][param]=DEFAULTS[param]
 logging.warning('No value was provided in config file for {}. Will use {}'.format(param, DEFAULTS[param]))
 config['default'][param] = DEFAULTS[param]

 if AbsPath:
 # Changing all relative paths to absolute paths. Relative paths must be defined
 # relative to the parent folder of the config file.
 abspath = os.path.abspath(ConfigFile)
 basefolder = os.path.abspath(os.path.join(os.path.dirname(abspath),os.pardir))
 if not os.path.isabs(config['SimulationDirectory']):
 config['SimulationDirectory'] = os.path.join(basefolder,config['SimulationDirectory'])
 for param in PathParameters:
 if config[param] == '' or config[param].isspace():
 config[param] = ''
 elif not os.path.isabs(config[param]):
 config[param] = os.path.join(basefolder,config[param])

 logging.info("Using config file (v20.01) " + ConfigFile + " to build the simulation environment")
 logging.info("Using " + config['SimulationDirectory'] + " as simulation folder")
 logging.info("Description of the simulation: "+ config['Description'])

 return config

 elif sheet.cell_value(0,0) == 'Dispa-SET Configuration File':
 config['Description'] = sheet.cell_value(5, 1)
 config['SimulationDirectory'] = sheet.cell_value(17, 2)
 config['WriteExcel'] = sheet.cell_value(18, 2)
 config['WriteGDX'] = sheet.cell_value(19, 2)
 config['WritePickle'] = sheet.cell_value(20, 2)
 config['GAMS_folder'] = sheet.cell_value(21, 2)
 config['cplex_path'] = sheet.cell_value(22, 2)

 config['StartDate'] = xlrd.xldate_as_tuple(sheet.cell_value(30, 2), wb.datemode)
 config['StopDate'] = xlrd.xldate_as_tuple(sheet.cell_value(31, 2), wb.datemode)
 config['HorizonLength'] = int(sheet.cell_value(32, 2))
 config['LookAhead'] = int(sheet.cell_value(33, 2))
 config['DataTimeStep'] = sheet.cell_value(34, 2)
 config['SimulationTimeStep'] = sheet.cell_value(35, 2)

 config['SimulationType'] = sheet.cell_value(46, 2)
 config['ReserveCalculation'] = sheet.cell_value(47, 2)
 config['AllowCurtailment'] = sheet.cell_value(48, 2)

 config['HydroScheduling'] = sheet.cell_value(53, 2)
 config['HydroSchedulingHorizon'] = sheet.cell_value(54, 2)
 config['InitialFinalReservoirLevel'] = sheet.cell_value(55, 2)

 # Set default values (for backward compatibility):
 NonEmptyarameters = {'DataTimeStep':1,'SimulationTimeStep':1,'HydroScheduling':'Off','HydroSchedulingHorizon':'Annual','InitialFinalReservoirLevel':True}
 for param in NonEmptyarameters:
 if config[param]=='':
 config[param]=NonEmptyarameters[param]

 # List of parameters for which an external file path must be specified:
 PARAMS = ['Demand', 'Outages', 'PowerPlantData', 'RenewablesAF', 'LoadShedding', 'NTC', 'Interconnections',
 'ReservoirScaledInflows', 'PriceOfNuclear', 'PriceOfBlackCoal', 'PriceOfGas', 'PriceOfFuelOil',
 'PriceOfBiomass', 'PriceOfCO2', 'ReservoirLevels', 'PriceOfLignite', 'PriceOfPeat','HeatDemand',
 'CostHeatSlack','CostLoadShedding','ShareOfFlexibleDemand']
 for i, param in enumerate(PARAMS):
 config[param] = sheet.cell_value(61 + i, 2)

 # List of new parameters for which an external file path must be specified:
 params2 = ['Temperatures']
 if sheet.nrows>150: # for backward compatibility (old excel sheets had less than 150 rows)
 for i, param in enumerate(params2):
 config[param] = sheet.cell_value(156 + i, 2)
 else:
 for param in params2:
 config[param] = ''

 if AbsPath:
 # Changing all relative paths to absolute paths. Relative paths must be defined
 # relative to the parent folder of the config file.
 abspath = os.path.abspath(ConfigFile)
 basefolder = os.path.abspath(os.path.join(os.path.dirname(abspath),os.pardir))
 if not os.path.isabs(config['SimulationDirectory']):
 config['SimulationDirectory'] = os.path.join(basefolder,config['SimulationDirectory'])
 for param in PARAMS+params2:
 if config[param] == '' or config[param].isspace():
 config[param] = ''
 elif not os.path.isabs(config[param]):
 config[param] = os.path.join(basefolder,config[param])

 config['default'] = {}
 config['default']['ReservoirLevelInitial'] = sheet.cell_value(56, 5)
 config['default']['ReservoirLevelFinal'] = sheet.cell_value(57, 5)
 config['default']['PriceOfNuclear'] = sheet.cell_value(69, 5)
 config['default']['PriceOfBlackCoal'] = sheet.cell_value(70, 5)
 config['default']['PriceOfGas'] = sheet.cell_value(71, 5)
 config['default']['PriceOfFuelOil'] = sheet.cell_value(72, 5)
 config['default']['PriceOfBiomass'] = sheet.cell_value(73, 5)
 config['default']['PriceOfCO2'] = sheet.cell_value(74, 5)
 config['default']['PriceOfLignite'] = sheet.cell_value(76, 5)
 config['default']['PriceOfPeat'] = sheet.cell_value(77, 5)
 config['default']['LoadShedding'] = sheet.cell_value(65, 5)
 config['default']['CostHeatSlack'] = sheet.cell_value(79, 5)
 config['default']['CostLoadShedding'] = sheet.cell_value(80, 5)
 config['default']['ValueOfLostLoad'] = sheet.cell_value(81, 5)
 config['default']['PriceOfSpillage'] = sheet.cell_value(82, 5)
 config['default']['WaterValue'] = sheet.cell_value(83, 5)
 config['default']['ShareOfQuickStartUnits'] = 0.5 # to be added to xlsx file

 # Set default values (for backward compatibility):
 for param in DEFAULTS:
 if config['default'].get(param,'')=='':
 config['default'][param]=DEFAULTS[param]

 config['zones'] = read_truefalse(sheet, 86, 1, 109, 3)
 config['zones'] = config['zones'] + read_truefalse(sheet, 86, 4, 109, 6)

 config['mts_zones'] = read_truefalse(sheet, 86, 1, 109, 3, 2)
 config['mts_zones'] = config['mts_zones'] + read_truefalse(sheet, 86, 4, 109, 6, 2)

 config['modifiers'] = {}
 config['modifiers']['Demand'] = sheet.cell_value(111, 2)
 config['modifiers']['Wind'] = sheet.cell_value(112, 2)
 config['modifiers']['Solar'] = sheet.cell_value(113, 2)
 config['modifiers']['Storage'] = sheet.cell_value(114, 2)

 # Read the technologies participating to reserve markets:
 config['ReserveParticipation'] = read_truefalse(sheet, 131, 1, 145, 3)

 logging.info("Using config file " + ConfigFile + " to build the simulation environment")
 logging.info("Using " + config['SimulationDirectory'] + " as simulation folder")
 logging.info("Description of the simulation: "+ config['Description'])

 return config

 else:
 logging.critical('The format of the excel config file (defined by its main title) is not recognized')
 sys.exit(1)

[docs]def load_config_yaml(filename, AbsPath=True):
 """ Loads YAML file to dictionary"""
 import yaml
 with open(filename, 'r') as f:
 try:
 config = yaml.full_load(f)
 except yaml.YAMLError as exc:
 logging.error('Cannot parse config file: {}'.format(filename))
 raise exc

 # List of parameters to be added with a default value if not present (for backward compatibility):

 params_to_be_added = {'Temperatures':'','DataTimeStep':1,'SimulationTimeStep':1,'HydroScheduling':'Off','HydroSchedulingHorizon':'Annual','InitialFinalReservoirLevel':True}
 for param in params_to_be_added:
 if param not in config:
 config[param] = params_to_be_added[param]

 # Set default values (for backward compatibility):
 NonEmptyDefaultss = {'ReservoirLevelInitial':0.5,'ReservoirLevelFinal':0.5,'ValueOfLostLoad':1E5,'PriceOfSpillage':1,'WaterValue':100,'ShareOfQuickStartUnits':0.5}
 for param in NonEmptyDefaultss:
 if param not in config['default']:
 config['default'][param]=NonEmptyDefaultss[param]

 # Define missing parameters if they were not provided in the config file
 PARAMS = ['Demand', 'Outages', 'PowerPlantData', 'RenewablesAF', 'LoadShedding', 'NTC', 'Interconnections',
 'ReservoirScaledInflows', 'PriceOfNuclear', 'PriceOfBlackCoal', 'PriceOfGas', 'PriceOfFuelOil',
 'PriceOfBiomass', 'PriceOfCO2', 'ReservoirLevels', 'PriceOfLignite', 'PriceOfPeat','HeatDemand',
 'CostHeatSlack','CostLoadShedding','ShareOfFlexibleDemand','Temperatures']
 for param in PARAMS:
 if param not in config:
 config[param] = ''
 global DEFAULTS
 for key in DEFAULTS:
 if key not in config['default']:
 config['default'][key]=DEFAULTS[key]

 if AbsPath:
 # Changing all relative paths to absolute paths. Relative paths must be defined
 # relative to the parent folder of the config file.
 abspath = os.path.abspath(filename)
 basefolder = os.path.abspath(os.path.join(os.path.dirname(abspath),os.pardir))
 if not os.path.isabs(config['SimulationDirectory']):
 config['SimulationDirectory'] = os.path.join(basefolder,config['SimulationDirectory'])
 for param in PARAMS:
 if not os.path.isabs(config[param]):
 if config[param] == '' or config[param].isspace():
 config[param] = ''
 elif not os.path.isabs(config[param]):
 config[param] = os.path.join(basefolder,config[param])
 return config

[docs]def export_yaml_config(ExcelFile, YAMLFile):
 """
 Function that loads the DispaSET excel config file and dumps it as a yaml file.

 :param ExcelFile: Path to the Excel config file
 :param YAMLFile: Path to the YAML config file to be written
 """
 import yaml
 config = load_config_excel(ExcelFile,AbsPath=False)
 with open(YAMLFile, 'w') as outfile:
 yaml.dump(config, outfile, default_flow_style=False)
 return True

 Source code for dispaset.preprocessing.preprocessing

-*- coding: utf-8 -*-
"""
This is the main file of the DispaSET pre-processing tool. It comprises a single function that generated the DispaSET simulation environment.

@author: S. Quoilin
"""
import datetime as dt
import logging
import sys

import pandas as pd

from .build import build_single_run

from ..solve import solve_GAMS
from ..common import commons
from ..misc.gdx_handler import gdx_to_dataframe, gdx_to_list

try:
 from future.builtins import int
except ImportError:
 logging.warning("Couldn't import future package. Numeric operations may differ among different versions due to incompatible variable types")
 pass

[docs]def build_simulation(config, mts_plot=None):
 """
 Dispa-SET function that builds different simulation environments based on the hydro scheduling option in the config file
 Hydro scheduling options:

 * Off - Hydro scheduling turned off, normal call of BuildSimulation function
 * Zonal - Zonal variation of hydro scheduling, if zones are not individually specified in a list (e.a. zones = ['AT','DE']) hydro scheduling is imposed on all active zones from the Config file
 * Regional - Regional variation of hydro scheduling, if zones from a specific region are not individually specified in a list (e.a. zones = ['AT','DE']), hydro scheduling is imposed on all active zones from the Config file simultaneously

 :config: Read config file
 :zones_mts: List of zones where new reservoir levels should be calculated eg. ['AT','BE',...'UK']
 :mts_plot: If ms_plot = True indicative plot with temporary computed reservoir levels is displayed
 """
 y_start, m_start, d_start, __, __, __ = config['StartDate']
 y_stop, m_stop, d_stop, __, __, __ = config['StopDate']
 # Check existance of hydro scheduling module in the config file
 # Hydro scheduling turned off, build_simulation performed without temporary computed reservoir levels
 hydro_flag = config.get('HydroScheduling', "") # If key does not exist it returns ""
 if (hydro_flag == "") or (hydro_flag == "Off"):
 logging.info('Simulation without mid therm scheduling')
 SimData = build_single_run(config)
 # Hydro scheduling per Zone
 else:
 # Dates for the mid term scheduling
 if config['HydroSchedulingHorizon'] == 'Annual':
 config['StartDate'] = (y_start, 1, 1, 00, 00, 00) # updating start date to the beginning of the year
 config['StopDate'] = (y_start, 12, 31, 23, 59, 00) # updating stopdate to the end of the year
 logging.info('Hydro scheduling is performed for the period between 01.01.' + str(y_start) + ' and 12.31.' + str(y_start))
 else:
 logging.info('Hydro scheduling is performed between Start and Stop dates!')
 # Mid term scheduling zone selection and new profile calculation
 if config['mts_zones'] is None:
 new_profiles = mid_term_scheduling(config, config['zones'])
 logging.info('Simulation with all zones selected')
 else:
 new_profiles = mid_term_scheduling(config, config['mts_zones'])
 # Plot new profiles
 if mts_plot:
 new_profiles.plot()
 logging.info('Simulation with specified zones selected')
 else:
 logging.info('No temporary profiles selected for display')
 # Build simulation data with new profiles
 config['StartDate'] = (y_start, m_start, d_start, 00, 00, 00) # updating start date to the beginning of the year
 config['StopDate'] = (y_stop, m_stop, d_stop, 23, 59, 00) # updating stopdate to the end of the year
 SimData = build_single_run(config, new_profiles)
 return SimData

[docs]def mid_term_scheduling(config, zones, profiles=None):
 """
 This function reads the DispaSET config file, searches for active zones,
 loads data for each zone individually and solves model using UCM_h_simple.gms

 :config: Read config file
 """

 # Day/hour corresponding to the first and last days of the simulation:
 # Note that the first available data corresponds to 2015.01.31 (23.00) and the
 # last day with data is 2015.12.31 (22.00)
 import pickle
 y_end, m_end, d_end, _, _, _ = config['StopDate']
 config['StopDate'] = (y_end, m_end, d_end, 23, 59, 00) # updating stopdate to the end of the day

 # Indexes of the simulation:
 idx_std = pd.date_range(start=dt.datetime(*config['StartDate']),
 end=dt.datetime(*config['StopDate']),
 freq=commons['TimeStep'])
 idx_utc_noloc = idx_std - dt.timedelta(hours=1)
 idx = idx_utc_noloc

 # Checking which type of hydro scheduling simulation is specified in the config file:
 # Solving reservoir levels for each zone individually
 if config['HydroScheduling'] == 'Zonal':
 no_of_zones = len(zones)
 results = {}
 temp_results = {}
 i = 0
 for c in zones:
 i = i + 1
 logging.info('(Currently simulating Zone): ' + str(i) + ' out of ' + str(no_of_zones))
 temp_config = dict(config)
 temp_config['zones'] = [c] # Override zone that needs to be simulated
 _ = build_single_run(temp_config) # Create temporary SimData
 r = solve_GAMS(sim_folder=temp_config['SimulationDirectory'],
 gams_folder=temp_config['GAMS_folder'],
 gams_file='UCM_h_simple.gms',
 result_file='Results_simple.gdx')
 temp_results[c] = get_temp_sim_results(config)
 # print('Zones simulated: ' + str(i) + '/' + str(no_of_zones))
 temp = pd.DataFrame()
 for c in zones:
 if 'OutputStorageLevel' not in temp_results[c]:
 logging.critical('Storage levels in zone ' + c + ' were not computed, please check that storage units '
 'are present in the ' + c + ' power plant database! If not, unselect ' + c + ' form the '
 'zones in the MTS module')
 sys.exit(0)
 else:
 results[c] = dict(temp_results[c]['OutputStorageLevel'])
 r = pd.DataFrame.from_dict(results[c], orient='columns')
 results_t = pd.concat([temp, r], axis = 1)
 temp = results_t
 temp = temp.set_index(idx)
 temp = temp.rename(columns={col: col.split(' - ')[1] for col in temp.columns})
 # Solving reservoir levels for all regions simultaneously
 elif config['HydroScheduling'] == 'Regional':
 if zones is None:
 temp_config = dict(config)
 else:
 temp_config = dict(config)
 temp_config['zones'] = zones # Override zones that need to be simmulated
 _ = build_single_run(temp_config) # Create temporary SimData
 r = solve_GAMS(sim_folder=temp_config['SimulationDirectory'],
 gams_folder=temp_config['GAMS_folder'],
 gams_file='UCM_h_simple.gms',
 result_file='Results_simple.gdx')
 temp_results = get_temp_sim_results(config)
 if 'OutputStorageLevel' not in temp_results:
 logging.critical('Storage levels in the selected region were not computed, please check that storage units '
 'are present in the power plant database! If not, unselect zones with no storage units form '
 'the zones in the MTS module')
 sys.exit(0)
 else:
 results = dict(temp_results['OutputStorageLevel'])
 temp = pd.DataFrame()
 r = pd.DataFrame.from_dict(results, orient='columns')
 results_t = pd.concat([temp, r], axis=1)
 temp = results_t
 temp = temp.set_index(idx)
 temp = temp.rename(columns={col: col.split(' - ')[1] for col in temp.columns})
 else:
 logging.error('HydroScheduling parameter should be either "Regional" or "Zonal" (case sensitive). ')
 sys.exit()
 pickle.dump(temp, open("temp_profiles.p", "wb"))
 return temp

[docs]def get_temp_sim_results(config, gams_dir=None):
 """
 This function reads the simulation environment folder once it has been solved and loads
 the input variables together with the results.

 :param path: Relative path to the simulation environment folder (current path by default)
 :param cache: If true, caches the simulation results in a pickle file for faster loading the next time
 :param temp_path: Temporary path to store the cache file
 :returns inputs,results: Two dictionaries with all the outputs
 """

 resultfile = config['SimulationDirectory'] + '/Results_simple.gdx'
 results = gdx_to_dataframe(gdx_to_list(gams_dir, resultfile, varname='all', verbose=True), fixindex=True,
 verbose=True)
 results['OutputStorageLevel'] = results['OutputStorageLevel'].reindex(list(range(results['OutputStorageLevel'].index.min(),
 results['OutputStorageLevel'].index.max() + 1)), fill_value=0)
 return results

 Source code for dispaset.preprocessing.utils

from __future__ import division

import logging
import os
import shutil
import sys

import numpy as np
import pandas as pd

from ..misc.gdx_handler import write_variables
from ..misc.str_handler import clean_strings, shrink_to_64

[docs]def EfficiencyTimeSeries(config,plants,Temperatures):
 '''
 Function that calculates an efficiency time series for each unit
 In case of generation unit, the efficiency is constant in time (for now)
 In case of of p2h units, the efficicncy is defined as the COP, which can be
 temperature-dependent or not. If it is temperature-dependent, the formula is:
 :math:`COP = COP_{nom} + coef_a (T-T_{nom}) + coef_b (T-T_{nom})^2`

 :param plants: Pandas dataframe with the original list of units
 :param Temperatures: Dataframe with the temperature for all relevant units

 :returns: Dataframe with a time series of the efficiency for each unit
 '''
 Efficiencies = pd.DataFrame(columns = plants.index,index=config['idx_long'])
 for u in plants.index:
 z = plants.loc[u,'Zone']
 if plants.loc[u,'Technology'] == 'P2HT' and 'Tnominal' in plants:
 eff = plants.loc[u,'COP'] + plants.loc[u,'coef_COP_a'] * (Temperatures[z] - plants.loc[u,'Tnominal'])
 + plants.loc[u,'coef_COP_a'] * (Temperatures[z] - plants.loc[u,'Tnominal'])**2
 elif plants.loc[u,'Technology'] == 'P2HT':
 eff = plants.loc[u,'COP']
 else:
 eff = plants.loc[u,'Efficiency']
 Efficiencies[u] = eff
 return Efficiencies

[docs]def select_units(units,config):
 '''
 Function returning a new list of units by removing the ones that have unknown
 technology, zero capacity, or unknown zone

 :param units: Pandas dataframe with the original list of units
 :param config: Dispa-SET config dictionnary
 :return: New list of units
 '''
 for unit in units.index:
 if units.loc[unit,'Technology'] == 'Other':
 logging.warning('Removed Unit ' + str(units.loc[unit,'Unit']) + ' since its technology is unknown')
 units.drop(unit,inplace=True)
 elif units.loc[unit,'PowerCapacity'] == 0:
 logging.warning('Removed Unit ' + str(units.loc[unit,'Unit']) + ' since it has a null capacity')
 units.drop(unit,inplace=True)
 elif units.loc[unit,'Zone'] not in config['zones']:
 logging.warning('Removed Unit ' + str(units.loc[unit,'Unit']) + ' since its zone (' + str(units.loc[unit,'Zone'])+ ') is not in the list of zones')
 units.drop(unit,inplace=True)
 units.index = range(len(units))
 return units

[docs]def incidence_matrix(sets, set_used, parameters, param_used):
 """
 This function generates the incidence matrix of the lines within the nodes
 A particular case is considered for the node "Rest Of the World", which is no explicitely defined in DispaSET
 """
 for i,l in enumerate(sets[set_used]):
 [from_node, to_node] = l.split('->')
 if (from_node.strip() in sets['n']) and (to_node.strip() in sets['n']):
 parameters[param_used]['val'][i, sets['n'].index(to_node.strip())] = 1
 parameters[param_used]['val'][i, sets['n'].index(from_node.strip())] = -1
 elif (from_node.strip() in sets['n']) and (to_node.strip() == 'RoW'):
 parameters[param_used]['val'][i, sets['n'].index(from_node.strip())] = -1
 elif (from_node.strip() == 'RoW') and (to_node.strip() in sets['n']):
 parameters[param_used]['val'][i, sets['n'].index(to_node.strip())] = 1
 else:
 logging.error("The line " + str(l) + " contains unrecognized nodes (" + from_node.strip() + ' or ' + to_node.strip() + ")")

 return parameters[param_used]

[docs]def interconnections(Simulation_list, NTC_inter, Historical_flows):
 """
 Function that checks for the possible interconnections of the zones included
 in the simulation. If the interconnections occurs between two of the zones
 defined by the user to perform the simulation with, it extracts the NTC between
 those two zones. If the interconnection occurs between one of the zones
 selected by the user and one country outside the simulation, it extracts the
 physical flows; it does so for each pair (country inside-country outside) and
 sums them together creating the interconnection of this country with the RoW.

 :param Simulation_list: List of simulated zones
 :param NTC: Day-ahead net transfer capacities (pd dataframe)
 :param Historical_flows: Historical flows (pd dataframe)
 """
 index = NTC_inter.index.tz_localize(None).intersection(Historical_flows.index.tz_localize(None))
 if len(index)==0:
 logging.error('The two input dataframes (NTCs and Historical flows) must have the same index. No common values have been found')
 sys.exit(1)
 elif len(index) < len(NTC_inter) or len(index) < len(Historical_flows):
 diff = np.maximum(len(Historical_flows),len(NTC_inter)) - len(index)
 logging.warning('The two input dataframes (NTCs and Historical flows) do not share the same index, although some values are common. The intersection has been considered and ' + str(diff) + ' data points have been lost')
 # Checking that all values are positive:
 if (NTC_inter.values < 0).any():
 pos = np.where(NTC_inter.values < 0)
 logging.warning('WARNING: At least NTC value is negative, for example in line ' + str(NTC_inter.columns[pos[1][0]]) + ' and time step ' + str(NTC_inter.index[pos[0][0]]))
 if (Historical_flows.values < 0).any():
 pos = np.where(Historical_flows.values < 0)
 logging.warning('WARNING: At least one historical flow is negative, for example in line ' + str(Historical_flows.columns[pos[1][0]]) + ' and time step ' + str(Historical_flows.index[pos[0][0]]))
 all_connections = []
 simulation_connections = []
 # List all connections from the dataframe headers:
 ConList = Historical_flows.columns.tolist() + [x for x in NTC_inter.columns.tolist() if x not in Historical_flows.columns.tolist()]
 for connection in ConList:
 z = connection.split(' -> ')
 if z[0] in Simulation_list:
 all_connections.append(connection)
 if z[1] in Simulation_list:
 simulation_connections.append(connection)
 elif z[1] in Simulation_list:
 all_connections.append(connection)

 df_zones_simulated = pd.DataFrame(index=index)
 for interconnection in simulation_connections:
 if interconnection in NTC_inter.columns:
 df_zones_simulated[interconnection] = NTC_inter[interconnection]
 logging.info('Detected interconnection ' + interconnection + '. The historical NTCs will be imposed as maximum flow value')
 interconnections1 = df_zones_simulated.columns

 # Display a warning if a zone is isolated:
 for z in Simulation_list:
 if not any([z in conn for conn in interconnections1]) and len(Simulation_list)>1:
 logging.warning('Zone ' + z + ' does not appear to be connected to any other zone in the NTC table. It should be simulated in isolation')

 df_RoW_temp = pd.DataFrame(index=index)
 connNames = []
 for interconnection in all_connections:
 if interconnection in Historical_flows.columns and interconnection not in simulation_connections:
 df_RoW_temp[interconnection] = Historical_flows[interconnection]
 connNames.append(interconnection)

 compare_set = set()
 for k in connNames:
 if not k[0:2] in compare_set and k[0:2] in Simulation_list:
 compare_set.add(k[0:2])

 df_zones_RoW = pd.DataFrame(index=index)
 while compare_set:
 nameToCompare = compare_set.pop()
 exports = []
 imports = []
 for name in connNames:
 if nameToCompare[0:2] in name[0:2]:
 exports.append(connNames.index(name))
 logging.info('Detected interconnection ' + name + ', happening between a simulated zone and the rest of the world. The historical flows will be imposed to the model')
 elif nameToCompare[0:2] in name[6:8]:
 imports.append(connNames.index(name))
 logging.info('Detected interconnection ' + name + ', happening between the rest of the world and a simulated zone. The historical flows will be imposed to the model')

 flows_out = pd.concat(df_RoW_temp[connNames[exports[i]]] for i in range(len(exports)))
 flows_out = flows_out.groupby(flows_out.index).sum()
 flows_out.name = nameToCompare + ' -> RoW'
 df_zones_RoW[nameToCompare + ' -> RoW'] = flows_out
 flows_in = pd.concat(df_RoW_temp[connNames[imports[j]]] for j in range(len(imports)))
 flows_in = flows_in.groupby(flows_in.index).sum()
 flows_in.name = 'RoW -> ' + nameToCompare
 df_zones_RoW['RoW -> ' + nameToCompare] = flows_in
 interconnections2 = df_zones_RoW.columns
 inter = list(interconnections1) + list(interconnections2)
 return (df_zones_simulated, df_zones_RoW, inter)

[docs]def clustering(plants, method='Standard', Nslices=20, PartLoadMax=0.1, Pmax=30):
 """
 Merge excessively disaggregated power Units.

 :param plants: Pandas dataframe with each power plant and their characteristics (following the DispaSET format)
 :param method: Select clustering method ('Standard'/'LP'/None)
 :param Nslices: Number of slices used to fingerprint each power plant characteristics. slices in the power plant data to categorize them (fewer slices involves that the plants will be aggregated more easily)
 :param PartLoadMax: Maximum part-load capability for the unit to be clustered
 :param Pmax: Maximum power for the unit to be clustered
 :return: A list with the merged plants and the mapping between the original and merged units
 """

 # Checking the the required columns are present in the input pandas dataframe:
 required_inputs = ['Unit', 'PowerCapacity', 'PartLoadMin', 'RampUpRate', 'RampDownRate', 'StartUpTime',
 'MinUpTime', 'MinDownTime', 'NoLoadCost', 'StartUpCost', 'Efficiency']
 for input_value in required_inputs:
 if input_value not in plants.columns:
 logging.error("The plants dataframe requires a '" + input_value + "' column for clustering")
 sys.exit(1)
 if not "Nunits" in plants:
 plants['Nunits'] = 1

 # Checking the validity of the selected clustering method
 OnlyOnes = (plants['Nunits'] == 1).all()
 if method in ['Standard','MILP']:
 if not OnlyOnes:
 logging.warning("The standard (or MILP) clustering method is only applicable if all values of the Nunits column in the power plant data are set to one. At least one different value has been encountered. No clustering will be applied")
 elif method == 'LP clustered':
 if not OnlyOnes:
 logging.warning("The LP clustering method aggregates all the units of the same type. Individual units are not considered")
 # Modifying the table to remove multiple-units plants:
 for key in ['PowerCapacity', 'STOCapacity', 'STOMaxChargingPower','InitialPower','CHPMaxHeat']:
 if key in plants:
 plants.loc[:,key] = plants.loc[:,'Nunits'] * plants.loc[:,key]
 plants['Nunits'] = 1
 OnlyOnes = True
 elif method == 'LP':
 pass
 elif method == 'Integer clustering':
 pass
 elif method == 'No clustering':
 pass
 else:
 logging.error('Method argument ("' + str(method) + '") not recognized in the clustering function')
 sys.exit(1)

 # Number of units:
 Nunits = len(plants)
 plants.index = range(Nunits)

 # Definition of the mapping variable, from the old power plant list the new (merged) one:
 map_old_new = np.zeros(Nunits)
 map_plant_orig = []

 # Slicing:
 bounds = {'PartLoadMin': np.linspace(0, 1, Nslices), 'RampUpRate': np.linspace(0, 1, Nslices),
 'RampDownRate': np.linspace(0, 1, Nslices), 'StartUpTime': _mylogspace(0, 36, Nslices),
 'MinUpTime': _mylogspace(0, 168, Nslices), 'MinDownTime': _mylogspace(0, 168, Nslices),
 'NoLoadCost': np.linspace(0, 50, Nslices), 'StartUpCost': np.linspace(0, 500, Nslices),
 'Efficiency': np.linspace(0, 1, Nslices)}

 # Definition of the fingerprint value of each power plant, i.e. the pattern of the slices number in which each of
 # its characteristics falls:
 fingerprints = []
 fingerprints_merged = []
 for i in plants.index:
 fingerprints.append([_find_nearest(bounds['PartLoadMin'], plants['PartLoadMin'][i]),
 _find_nearest(bounds['RampUpRate'], plants['RampUpRate'][i]),
 _find_nearest(bounds['RampDownRate'], plants['RampDownRate'][i]),
 _find_nearest(bounds['StartUpTime'], plants['StartUpTime'][i]),
 _find_nearest(bounds['MinUpTime'], plants['MinUpTime'][i]),
 _find_nearest(bounds['MinDownTime'], plants['MinDownTime'][i]),
 _find_nearest(bounds['NoLoadCost'], plants['NoLoadCost'][i]),
 _find_nearest(bounds['StartUpCost'], plants['StartUpCost'][i]),
 _find_nearest(bounds['Efficiency'], plants['Efficiency'][i])])

 # Definition of the merged power plants dataframe:
 plants_merged = pd.DataFrame(columns=plants.columns)

 # Find the columns containing string values (in addition to "Unit")
 # string_keys = []
 # for i in range(len(plants.columns)):
 # if plants.columns[i] != 'Unit' and plants.dtypes[i] == np.dtype('O'):
 # string_keys.append(plants.columns[i])
 string_keys = ['Zone', 'Technology', 'Fuel','CHPType']
 # First, fill nan values:
 for key in string_keys:
 plants[key].fillna('',inplace=True)

 for i in plants.index: # i is the plant to be added to the new list
 merged = False
 plants_string = plants[string_keys].iloc[i].fillna('')
 for j in plants_merged.index: # j corresponds to the clustered plants
 same_type = all(plants_string == plants_merged[string_keys].iloc[j].fillna(''))
 same_fingerprint = (fingerprints[i] == fingerprints_merged[j])
 low_pmin = (plants['PartLoadMin'][i] <= PartLoadMax)
 low_pmax = (plants['PowerCapacity'][i] <= Pmax)
 highly_flexible = plants['RampUpRate'][i] > 1 / 60 and (plants['RampDownRate'][i] > 1 / 60) and (
 plants['StartUpTime'][i] < 1) and (plants['MinDownTime'][i] <= 1) and (plants['MinUpTime'][i] <= 1)
 cluster = OnlyOnes and same_type and ((same_fingerprint and low_pmin) or highly_flexible or low_pmax)
 if method in ('Standard','MILP') and cluster: # merge the two plants in plants_merged:
 P_old = plants_merged['PowerCapacity'][j] # Old power in plants_merged
 P_add = plants['PowerCapacity'][i] # Additional power to be added
 for key in plants_merged:
 if key in ['RampUpRate', 'RampDownRate', 'MinUpTime', 'MinDownTime', 'NoLoadCost', 'Efficiency',
 'MinEfficiency', 'STOChargingEfficiency', 'CO2Intensity', 'STOSelfDischarge',
 'CHPPowerToHeat','CHPPowerLossFactor','COP','TNominal','coef_COP_a','coef_COP_b']:
 # Do a weighted average:
 plants_merged.loc[j, key] = (plants_merged[key][j] * P_old + plants[key][i] * P_add) / (
 P_add + P_old)
 elif key in ['PowerCapacity', 'STOCapacity', 'STOMaxChargingPower','InitialPower','CHPMaxHeat']:
 # Do a sum:
 plants_merged.loc[j, key] = plants_merged[key][j] + plants[key][i]
 elif key in ['PartLoadMin', 'StartUpTime']:
 # Take the minimum
 plants_merged.loc[j, key] = np.minimum(plants_merged[key][j] * P_old,
 plants[key][i] * P_add) / (P_add + P_old)
 elif key == 'RampingCost':
 # The starting cost must be added to the ramping cost
 Cost_to_fullload = P_add * (1 - plants['PartLoadMin'][i]) * plants['RampingCost'][i] + \
 plants['StartUpCost'][i]
 plants_merged.loc[j, key] = (P_old * plants_merged[key][j] + Cost_to_fullload) / (P_old + P_add)
 elif key == 'Nunits':
 plants_merged.loc[j, key] = 1
 map_old_new[i] = j
 map_plant_orig[j].append(i)
 merged = True
 break
 elif method == 'LP clustered' and same_type and OnlyOnes:
 P_old = plants_merged['PowerCapacity'][j] # Old power in plants_merged
 P_add = plants['PowerCapacity'][i] # Additional power to be added
 for key in plants_merged:
 if key in ['RampUpRate', 'RampDownRate', 'MinUpTime', 'MinDownTime', 'NoLoadCost', 'Efficiency',
 'MinEfficiency', 'STOChargingEfficiency', 'CO2Intensity', 'STOSelfDischarge']:
 # Do a weighted average:
 plants_merged.loc[j, key] = (plants_merged[key][j] * P_old + plants[key][i] * P_add) / (
 P_add + P_old)
 elif key in ['PowerCapacity', 'STOCapacity', 'STOMaxChargingPower','InitialPower','CHPMaxHeat']:
 # Do a sum:
 plants_merged.loc[j, key] = plants_merged[key][j] + plants[key][i]
 elif key in ['PartLoadMin', 'StartUpTime']:
 # impose 0
 plants_merged.loc[j, key] = 0
 elif key == 'RampingCost':
 # The starting cost must be added to the ramping cost
 Cost_to_fullload = P_add * (1 - plants['PartLoadMin'][i]) * plants['RampingCost'][i] + \
 plants['StartUpCost'][i]
 plants_merged.loc[j, key] = (P_old * plants_merged[key][j] + Cost_to_fullload) / (P_old + P_add)
 elif key == 'Nunits':
 plants_merged.loc[j, key] = 1
 map_old_new[i] = j
 map_plant_orig[j].append(i)
 merged = True
 break
 elif method == 'Integer clustering' and same_type:
 for key in plants_merged:
 if key in ['PowerCapacity','RampUpRate', 'RampDownRate', 'MinUpTime', 'MinDownTime', 'NoLoadCost', 'Efficiency',
 'MinEfficiency', 'STOChargingEfficiency', 'CO2Intensity', 'STOSelfDischarge',
 'STOCapacity', 'STOMaxChargingPower','InitialPower','PartLoadMin', 'StartUpTime','RampingCost',
 'CHPPowerToHeat','CHPPowerLossFactor','CHPMaxHeat']:
 # Do a weighted average:
 plants_merged.loc[j, key] = (plants_merged.loc[j,key] * plants_merged.loc[j,'Nunits'] + plants.loc[i,key] * plants.loc[i,'Nunits']) / (plants_merged.loc[j,'Nunits'] + plants.loc[i,'Nunits'])
 plants_merged.loc[j, 'Nunits'] = plants_merged.loc[j,'Nunits'] + plants.loc[i,'Nunits']

 map_old_new[i] = j
 map_plant_orig[j].append(i)
 merged = True
 break

 if not merged: # Add a new plant in plants_merged:
 plants_merged = plants_merged.append(plants.loc[i], ignore_index=True)
 plants_merged = plants_merged.copy()
 map_plant_orig.append([i])
 map_old_new[i] = len(map_plant_orig) - 1
 fingerprints_merged.append(fingerprints[i])

 Nunits_merged = len(plants_merged)
 mapping = {'NewIndex': {}, 'FormerIndexes': {}}
 # mapping['NewIdx'] = map_plant_orig
 # mapping['OldIdx'] = map_old_new
 # Modify the Unit names with the original index number. In case of merged plants, indicate all indexes + the plant type and fuel
 for j in range(Nunits_merged):
 if len(map_plant_orig[j]) == 1: # The plant has not been merged
 NewName = str(map_plant_orig[j]) + ' - ' + plants_merged['Unit'][j]
 NewName = shrink_to_64(clean_strings(NewName))
 NewName = NewName.rstrip() # remove space at the end because it is not considered by gams
 plants_merged.loc[j, 'Unit'] = NewName
 mapping['FormerIndexes'][NewName] = [map_plant_orig[j][0]]
 mapping['NewIndex'][map_plant_orig[j][0]] = NewName
 else:
 all_stringkeys = ''
 for key in string_keys:
 all_stringkeys = all_stringkeys + ' - ' + plants_merged[key][j]
 NewName = str(map_plant_orig[j]) + all_stringkeys
 NewName = shrink_to_64(clean_strings(NewName))
 NewName = NewName.rstrip() # remove space at the end because it is not considered by gams
 plants_merged.loc[j, 'Unit'] = NewName
 list_oldplants = [x for x in map_plant_orig[j]]
 mapping['FormerIndexes'][NewName] = list_oldplants
 for oldplant in list_oldplants:
 mapping['NewIndex'][oldplant] = NewName

 # Transforming the start-up cost into ramping for the plants that did not go through any clustering:
 if method in ('LP', 'LP clustered'):
 for i in range(Nunits_merged):
 if plants_merged['RampingCost'][i] == 0:
 Power = plants_merged['PowerCapacity'][i]
 Start_up = plants_merged['StartUpCost'][i]
 plants_merged.loc[i, 'RampingCost'] = Start_up / Power

 # Correcting the Nunits field of the clustered plants (must be integer):
 elif method == 'Integer clustering':
 for idx in plants_merged.index:
 N = np.round(plants_merged.loc[idx,'Nunits'])
 for key in ['PowerCapacity', 'STOCapacity', 'STOMaxChargingPower','InitialPower','NoLoadCost']:
 if key in plants_merged.columns:
 plants_merged.loc[idx,key] = plants_merged.loc[idx,key] * N / plants_merged.loc[idx,'Nunits']
 plants_merged.loc[idx,'Nunits'] = N

 # Updating the index of the merged plants dataframe with the new unit names, after some cleaning:
 plants_merged.index = plants_merged['Unit']

 if Nunits != len(plants_merged):
 logging.info('Clustered ' + str(Nunits) + ' original units into ' + str(len(plants_merged)) + ' new units')
 else:
 logging.warning('Did not cluster any unit')
 return plants_merged, mapping

Helpers

def _mylogspace(low, high, N):
 """
 Self-defined logspace function in which low and high are the first and last values of the space
 """
 # shifting all values so that low = 1
 space = np.logspace(0, np.log10(high + low + 1), N) - (low + 1)
 return (space)

def _find_nearest(array, value):
 """
 Self-defined function to find the index of the nearest value in a vector
 """
 idx = (np.abs(array - value)).argmin()
 return idx

[docs]def adjust_storage(inputs,tech_fuel,scaling=1,value=None,write_gdx=False,dest_path=''):
 '''
 Function used to modify the storage capacities in the Dispa-SET generated input data
 The function update the Inputs.p file in the simulation directory at each call

 :param inputs: Input data dictionary OR path to the simulation directory containing Inputs.p
 :param tech_fuel: tuple with the technology and fuel type for which the capacity should be modified
 :param scaling: Scaling factor to be applied to the installed capacity
 :param value: Absolute value of the desired capacity (! Applied only if scaling != 1 !)
 :param write_gdx: boolean defining if Inputs.gdx should be also overwritten with the new data
 :param dest_path: Simulation environment path to write the new input data. If unspecified, no data is written!
 :return: New SimData dictionary
 '''
 import pickle

 if isinstance(inputs,str):
 path = inputs
 inputfile = path + '/Inputs.p'
 if not os.path.exists(path):
 sys.exit('Path + "' + path + '" not found')
 with open(inputfile, 'rb') as f:
 SimData = pickle.load(f)
 elif isinstance(inputs,dict):
 SimData = inputs
 else:
 logging.error('The input data must be either a dictionary or string containing a valid directory')
 sys.exit(1)

 if not isinstance(tech_fuel,tuple):
 sys.exit('tech_fuel must be a tuple')

 # find the units to be scaled:
 cond = (SimData['units']['Technology'] == tech_fuel[0]) & (SimData['units']['Fuel'] == tech_fuel[1]) & (SimData['units']['StorageCapacity'] > 0)
 units = SimData['units'][cond]
 idx = pd.Series(np.where(cond)[0],index=units.index)
 TotalCapacity = (units.StorageCapacity*units.Nunits).sum()
 if scaling != 1:
 RequiredCapacity = TotalCapacity*scaling
 elif value is not None:
 RequiredCapacity = value
 else:
 RequiredCapacity = TotalCapacity
 factor = RequiredCapacity/TotalCapacity
 for u in units.index:
 logging.info('Unit ' + u +':')
 logging.info(' StorageCapacity: ' + str(SimData['units'].StorageCapacity[u]) + ' --> ' + str(SimData['units'].StorageCapacity[u]*factor))
 SimData['units'].loc[u,'StorageCapacity'] = SimData['units'].loc[u,'StorageCapacity']*factor
 SimData['parameters']['StorageCapacity']['val'][idx[u]] = SimData['parameters']['StorageCapacity']['val'][idx[u]]*factor

 if dest_path == '':
 logging.info('Not writing any input data to the disk')
 else:
 if not os.path.isdir(dest_path):
 shutil.copytree(path, dest_path)
 logging.info('Created simulation environment directory ' + dest_path)
 logging.info('Writing input files to ' + dest_path)
 import cPickle
 with open(os.path.join(dest_path, 'Inputs.p'), 'wb') as pfile:
 cPickle.dump(SimData, pfile, protocol=cPickle.HIGHEST_PROTOCOL)
 if write_gdx:
 write_variables(SimData['config'], 'Inputs.gdx', [SimData['sets'], SimData['parameters']])
 shutil.copy('Inputs.gdx', dest_path + '/')
 os.remove('Inputs.gdx')
 return SimData

[docs]def adjust_capacity(inputs,tech_fuel,scaling=1,value=None,singleunit=False,write_gdx=False,dest_path=''):
 '''
 Function used to modify the installed capacities in the Dispa-SET generated input data
 The function update the Inputs.p file in the simulation directory at each call

 :param inputs: Input data dictionary OR path to the simulation directory containing Inputs.p
 :param tech_fuel: tuple with the technology and fuel type for which the capacity should be modified
 :param scaling: Scaling factor to be applied to the installed capacity
 :param value: Absolute value of the desired capacity (! Applied only if scaling != 1 !)
 :param singleunit: Set to true if the technology should remain lumped in a single unit
 :param write_gdx: boolean defining if Inputs.gdx should be also overwritten with the new data
 :param dest_path: Simulation environment path to write the new input data. If unspecified, no data is written!
 :return: New SimData dictionary
 '''
 import pickle

 if isinstance(inputs, str):
 path = inputs
 inputfile = path + '/Inputs.p'
 if not os.path.exists(path):
 sys.exit('Path + "' + path + '" not found')
 with open(inputfile, 'rb') as f:
 SimData = pickle.load(f)
 elif isinstance(inputs,dict):
 SimData = inputs
 path = SimData['config']['SimulationDirectory']
 else:
 logging.error('The input data must be either a dictionary or string containing a valid directory')
 sys.exit(1)

 if not isinstance(tech_fuel,tuple):
 sys.exit('tech_fuel must be a tuple')

 # find the units to be scaled:
 cond = (SimData['units']['Technology'] == tech_fuel[0]) & (SimData['units']['Fuel'] == tech_fuel[1])
 units = SimData['units'][cond]
 idx = pd.Series(np.where(cond)[0],index=units.index)
 TotalCapacity = (units.PowerCapacity*units.Nunits).sum()
 if scaling != 1:
 RequiredCapacity = TotalCapacity*scaling
 elif value is not None:
 RequiredCapacity = value
 else:
 RequiredCapacity = TotalCapacity
 if singleunit:
 Nunits_new = pd.Series(1,index=units.index)
 else:
 Nunits_new = (units.Nunits * RequiredCapacity/TotalCapacity).round()
 Nunits_new[Nunits_new < 1] = 1
 Cap_new = units.PowerCapacity * RequiredCapacity/(units.PowerCapacity*Nunits_new).sum()
 for u in units.index:
 logging.info('Unit ' + u +':')
 logging.info(' PowerCapacity: ' + str(SimData['units'].PowerCapacity[u]) + ' --> ' + str(Cap_new[u]))
 logging.info(' Nunits: ' + str(SimData['units'].Nunits[u]) + ' --> ' + str(Nunits_new[u]))
 factor = Cap_new[u]/SimData['units'].PowerCapacity[u]
 SimData['parameters']['PowerCapacity']['val'][idx[u]] = Cap_new[u]
 SimData['parameters']['Nunits']['val'][idx[u]] = Nunits_new[u]
 SimData['units'].loc[u,'PowerCapacity'] = Cap_new[u]
 SimData['units'].loc[u,'Nunits'] = Nunits_new[u]
 for col in ['CostStartUp', 'NoLoadCost','StorageCapacity','StorageChargingCapacity']:
 SimData['units'].loc[u,col] = SimData['units'].loc[u,col] * factor
 for param in ['CostShutDown','CostStartUp','PowerInitial','RampDownMaximum','RampShutDownMaximum','RampStartUpMaximum','RampUpMaximum','StorageCapacity']:
 SimData['parameters'][param]['val'][idx[u]] = SimData['parameters'][param]['val'][idx[u]]*factor
 for param in ['StorageChargingCapacity']:
 # find index, if any:
 idx_s = np.where(np.array(SimData['sets']['s']) == u)[0]
 if len(idx_s) == 1:
 idx_s = idx_s[0]
 SimData['parameters'][param]['val'][idx_s] = SimData['parameters'][param]['val'][idx_s]*factor
 if dest_path == '':
 logging.info('Not writing any input data to the disk')
 else:
 if not os.path.isdir(dest_path):
 shutil.copytree(path,dest_path)
 logging.info('Created simulation environment directory ' + dest_path)
 logging.info('Writing input files to ' + dest_path)
 with open(os.path.join(dest_path, 'Inputs.p'), 'wb') as pfile:
 pickle.dump(SimData, pfile, protocol=pickle.HIGHEST_PROTOCOL)
 if write_gdx:
 write_variables(SimData['config'], 'Inputs.gdx', [SimData['sets'], SimData['parameters']])
 shutil.copy('Inputs.gdx', dest_path + '/')
 os.remove('Inputs.gdx')
 return SimData

 Source code for dispaset.postprocessing.postprocessing

-*- coding: utf-8 -*-
"""
Set of functions useful to analyse to DispaSET output data.

@author: Sylvain Quoilin, JRC
"""

from __future__ import division

import datetime as dt
import logging
import sys

import numpy as np
import pandas as pd

from ..common import commons
from .data_handler import ds_to_df

[docs]def get_load_data(inputs, z):
 """
 Get the load curve, the residual load curve, and the net residual load curve of a specific zone

 :param inputs: DispaSET inputs (output of the get_sim_results function)
 :param z: Zone to consider (e.g. 'BE')
 :return out: Dataframe with the following columns:
 Load: Load curve of the specified zone
 ResidualLoad: Load minus the production of variable renewable sources
 NetResidualLoad: Residual netted from the interconnections with neightbouring zones
 """
 datain = inputs['param_df']
 out = pd.DataFrame(index=datain['Demand'].index)
 out['Load'] = datain['Demand']['DA', z]
 if ('Flex', z) in datain['Demand']:
 out['Load'] += datain['Demand'][('Flex', z)]
 # Listing power plants with non-dispatchable power generation:
 VREunits = []
 VRE = np.zeros(len(out))
 for t in commons['tech_renewables']:
 for u in datain['Technology']:
 if datain['Technology'].loc[t, u]:
 VREunits.append(u)
 VRE = VRE + datain['AvailabilityFactor'][u].values * datain['PowerCapacity'].loc[u, 'PowerCapacity']
 Interconnections = np.zeros(len(out))
 for l in datain['FlowMinimum']:
 if l[:2] == z:
 Interconnections = Interconnections - datain['FlowMinimum'][l].values
 elif l[-2:] == z:
 Interconnections = Interconnections + datain['FlowMinimum'][l].values
 out['ResidualLoad'] = out['Load'] - VRE
 out['NetResidualLoad'] = out['ResidualLoad'] - Interconnections
 return out

[docs]def aggregate_by_fuel(PowerOutput, Inputs, SpecifyFuels=None):
 """
 This function sorts the power generation curves of the different units by technology

 :param PowerOutput: Dataframe of power generationwith units as columns and time as index
 :param Inputs: Dispaset inputs version 2.1.1
 :param SpecifyFuels: If not all fuels should be considered, list containing the relevant ones
 :returns PowerByFuel: Dataframe with power generation by fuel
 """
 if SpecifyFuels is None:
 if isinstance(Inputs, list):
 fuels = Inputs[0]['f']
 elif isinstance(Inputs, dict):
 fuels = Inputs['sets']['f']
 else:
 logging.error('Inputs variable no valid')
 sys.exit(1)
 else:
 fuels = SpecifyFuels
 PowerByFuel = pd.DataFrame(0, index=PowerOutput.index, columns=fuels)
 uFuel = Inputs['units']['Fuel']

 for u in PowerOutput:
 if uFuel[u] in fuels:
 PowerByFuel[uFuel[u]] = PowerByFuel[uFuel[u]] + PowerOutput[u]
 else:
 logging.warning('Fuel not found for unit ' + u + ' with fuel ' + uFuel[u])

 return PowerByFuel

[docs]def filter_by_zone(PowerOutput, inputs, z):
 """
 This function filters the dispaset Output Power dataframe by zone

 :param PowerOutput: Dataframe of power generationwith units as columns and time as index
 :param Inputs: Dispaset inputs version 2.1.1
 :param z: Selected zone (e.g. 'BE')
 :returns Power: Dataframe with power generation by zone
 """
 loc = inputs['units']['Zone']
 Power = PowerOutput.loc[:, [u for u in PowerOutput.columns if loc[u] == z]]
 return Power

[docs]def filter_by_tech(PowerOutput, inputs, t):
 """
 This function filters the dispaset power output dataframe by technology

 :param PowerOutput: Dataframe of power generation with units as columns and time as index
 :param inputs: Dispaset inputs version 2.1.1
 :param t: Selected tech (e.g. 'HDAM')
 :returns Power:
 """
 loc = inputs['units']['Technology']
 Power = PowerOutput.loc[:, [u for u in PowerOutput.columns if loc[u] == t]]
 return Power

[docs]def filter_by_storage(PowerOutput, Inputs, StorageSubset=None):
 """
 This function filters the power generation curves of the different storage units by storage type

 :param PowerOutput: Dataframe of power generationwith units as columns and time as index
 :param Inputs: Dispaset inputs version 2.1.1
 :param SpecifySubset: If not all EES storages should be considered, list containing the relevant ones
 :returns PowerByFuel: Dataframe with power generation by fuel
 """
 storages = Inputs['sets'][StorageSubset]
 Power = PowerOutput.loc[:, PowerOutput.columns.isin(storages)]
 return Power

[docs]def get_plot_data(inputs, results, z):
 """
 Function that reads the results dataframe of a DispaSET simulation and extract the dispatch data spedific to one zone

 :param results: Pandas dataframe with the results (output of the GdxToDataframe function)
 :param z: Zone to be considered (e.g. 'BE')
 :returns plotdata: Dataframe with the dispatch data storage and outflows are negative
 """
 tmp = filter_by_zone(results['OutputPower'], inputs, z)
 plotdata = aggregate_by_fuel(tmp, inputs)

 if 'OutputStorageInput' in results:
 #onnly take the columns that correspond to storage units (StorageInput is also used for CHP plants):
 cols = [col for col in results['OutputStorageInput'] if inputs['units'].loc[col,'Technology'] in commons['tech_storage']]
 tmp = filter_by_zone(results['OutputStorageInput'][cols], inputs, z)
 bb = pd.DataFrame()
 for tech in commons['tech_storage']:
 aa = filter_by_tech(tmp, inputs, tech)
 aa = aa.sum(axis=1)
 aa = pd.DataFrame(aa,columns=[tech])
 bb = pd.concat([bb,aa],axis=1)
 bb = -bb
 plotdata = pd.concat([plotdata,bb], axis=1)
 # plotdata['Storage'] = -tmp.sum(axis=1)
 else:
 plotdata['Storage'] = 0
 plotdata.fillna(value=0, inplace=True)

 plotdata['FlowIn'] = 0
 plotdata['FlowOut'] = 0
 for col in results['OutputFlow']:
 from_node, to_node = col.split('->')
 if to_node.strip() == z:
 plotdata['FlowIn'] = plotdata['FlowIn'] + results['OutputFlow'][col]
 if from_node.strip() == z:
 plotdata['FlowOut'] = plotdata['FlowOut'] - results['OutputFlow'][col]

 # re-ordering columns:
 OrderedColumns = [col for col in commons['MeritOrder'] if col in plotdata.columns]
 plotdata = plotdata[OrderedColumns]

 # remove empty columns:
 for col in plotdata.columns:
 if plotdata[col].max() == 0 and plotdata[col].min()==0:
 del plotdata[col]

 return plotdata

[docs]def get_imports(flows, z):
 """
 Function that computes the balance of the imports/exports of a given zone

 :param flows: Pandas dataframe with the timeseries of the exchanges
 :param z: Zone to consider
 :returns NetImports: Scalar with the net balance over the whole time period
 """
 NetImports = 0
 for key in flows:
 if key[:len(z)] == z:
 NetImports -= flows[key].sum()
 elif key[-len(z):] == z:
 NetImports += flows[key].sum()
 return NetImports

%%
[docs]def get_result_analysis(inputs, results):
 """
 Reads the DispaSET results and provides useful general information to stdout

 :param inputs: DispaSET inputs
 :param results: DispaSET results
 """

 # inputs into the dataframe format:
 dfin = inputs['param_df']

 StartDate = inputs['config']['StartDate']
 StopDate = inputs['config']['StopDate']
 index = pd.date_range(start=dt.datetime(*StartDate), end=dt.datetime(*StopDate), freq='h')

 # Aggregated values:
 demand = {}
 for z in inputs['sets']['n']:
 if 'OutputPowerConsumption' in results:
 demand_p2h = filter_by_zone(results['OutputPowerConsumption'], inputs, z)
 demand_p2h = demand_p2h.sum(axis=1)
 else:
 demand_p2h = pd.Series(0, index=results['OutputPower'].index)
 if ('Flex', z) in inputs['param_df']['Demand']:
 demand_flex = inputs['param_df']['Demand'][('Flex', z)]
 else:
 demand_flex = pd.Series(0, index=results['OutputPower'].index)
 demand_da = inputs['param_df']['Demand'][('DA', z)]
 demand[z] = pd.DataFrame(demand_da + demand_p2h + demand_flex, columns = [('DA', z)])
 demand = pd.concat(demand, axis=1)
 demand.columns = demand.columns.droplevel(-1)

 TotalLoad = demand.sum().sum()
 PeakLoad = demand.sum(axis=1).max(axis=0)
 LoadShedding = results['OutputShedLoad'].sum().sum() / 1e6
 Curtailment = results['OutputCurtailedPower'].sum().sum()
 MaxCurtailemnt = results['OutputCurtailedPower'].sum(axis=1).max() / 1e6
 MaxLoadShedding = results['OutputShedLoad'].sum(axis=1).max()

 if 'OutputDemandModulation' in results:
 ShiftedLoad_net = results['OutputDemandModulation'].sum().sum() / 1E6
 ShiftedLoad_tot = results['OutputDemandModulation'].abs().sum().sum()/2 /1E6
 if ShiftedLoad_net > 0.1 * ShiftedLoad_tot:
 logging.error('The net shifted load is higher than 10% of the total shifted load, although it should be zero')
 else:
 ShiftedLoad_tot = 0

 # TotalLoad = dfin['Demand']['DA'].loc[index, :].sum().sum()
 # # PeakLoad = inputs['parameters']['Demand']['val'][0,:,idx].sum(axis=0).max()
 # PeakLoad = dfin['Demand']['DA'].sum(axis=1).max(axis=0)

 NetImports = -get_imports(results['OutputFlow'], 'RoW')

 Cost_kwh = results['OutputSystemCost'].sum() / (TotalLoad - NetImports)

 print ('\nAverage electricity cost : ' + str(Cost_kwh) + ' EUR/MWh')

 for key in ['LostLoad_RampUp', 'LostLoad_2D', 'LostLoad_MinPower',
 'LostLoad_RampDown', 'LostLoad_2U', 'LostLoad_3U', 'LostLoad_MaxPower', 'LostLoad_WaterSlack']:
 if key == 'LostLoad_WaterSlack':
 if isinstance(results[key], pd.Series):
 LL = results[key].sum()
 else:
 LL = results[key]
 else:
 LL = results[key].values.sum()
 if LL > 0.0001 * TotalLoad:
 logging.critical('\nThere is a significant amount of lost load for ' + key + ': ' + str(
 LL) + ' MWh. The results should be checked carefully')
 elif LL > 100:
 logging.warning('\nThere is lost load for ' + key + ': ' + str(
 LL) + ' MWh. The results should be checked')

 print ('\nAggregated statistics for the considered area:')
 print ('Total Consumption:' + str(TotalLoad / 1E6) + ' TWh')
 print ('Peak Load:' + str(PeakLoad) + ' MW')
 print ('Net Importations:' + str(NetImports / 1E6) + ' TWh')
 print ('Total Load Shedding:' + str(LoadShedding) + ' TWh')
 print ('Total shifted load:' + str(ShiftedLoad_tot) + ' TWh')
 print ('Maximum Load Shedding:' + str(MaxLoadShedding) + ' MW')
 print ('Total Curtailed RES:' + str(Curtailment) + ' TWh')
 print ('Maximum Curtailed RES:' + str(MaxCurtailemnt) + ' MW')

 # Zone-specific values:
 ZoneData = pd.DataFrame(index=inputs['sets']['n'])

 if 'Flex' in dfin['Demand']:
 ZoneData['Flexible Demand'] = inputs['param_df']['Demand']['Flex'].sum(axis=0) / 1E6
 ZoneData['Demand'] = dfin['Demand']['DA'].sum(axis=0) / 1E6 + ZoneData['Flexible Demand']
 ZoneData['PeakLoad'] = (dfin['Demand']['DA']+dfin['Demand']['Flex']).max(axis=0)
 else:
 ZoneData['PeakLoad'] = dfin['Demand']['DA'].max(axis=0)
 ZoneData['Demand'] = dfin['Demand']['DA'].sum(axis=0) / 1E6

 ZoneData['NetImports'] = 0
 for z in ZoneData.index:
 ZoneData.loc[z, 'NetImports'] = get_imports(results['OutputFlow'], str(z)) / 1E6

 ZoneData['LoadShedding'] = results['OutputShedLoad'].sum(axis=0) / 1E6
 ZoneData['MaxLoadShedding'] = results['OutputShedLoad'].max()
 if 'OutputDemandModulation' in results:
 ZoneData['ShiftedLoad'] = results['OutputDemandModulation'].abs().sum() / 1E6
 ZoneData['Curtailment'] = results['OutputCurtailedPower'].sum(axis=0) / 1E6
 ZoneData['MaxCurtailment'] = results['OutputCurtailedPower'].max()

 print('\nZone-Specific values (in TWh or in MW):')
 print(ZoneData)

 # Congestion:
 Congestion = {}
 if 'OutputFlow' in results:
 for l in results['OutputFlow']:
 if l[:3] != 'RoW' and l[-3:] != 'RoW':
 Congestion[l] = np.sum(
 (results['OutputFlow'][l] == dfin['FlowMaximum'].loc[results['OutputFlow'].index, l]) & (
 dfin['FlowMaximum'].loc[results['OutputFlow'].index, l] > 0))
 print("\nNumber of hours of congestion on each line: ")
 import pprint
 pprint.pprint(Congestion)

 # Zone-specific storage data:
 try:
 StorageData = pd.DataFrame(index=inputs['sets']['n'])
 for z in StorageData.index:
 isstorage = pd.Series(index=inputs['units'].index)
 for u in isstorage.index:
 isstorage[u] = inputs['units'].Technology[u] in commons['tech_storage']
 sto_units = inputs['units'][(inputs['units'].Zone == z) & isstorage]
 StorageData.loc[z,'Storage Capacity [MWh]'] = (sto_units.Nunits*sto_units.StorageCapacity).sum()
 StorageData.loc[z,'Storage Power [MW]'] = (sto_units.Nunits*sto_units.PowerCapacity).sum()
 StorageData.loc[z,'Peak load shifting [hours]'] = StorageData.loc[z,'Storage Capacity [MWh]']/ZoneData.loc[z,'PeakLoad']
 AverageStorageOutput = 0
 for u in results['OutputPower'].columns:
 if u in sto_units.index:
 AverageStorageOutput += results['OutputPower'][u].mean()
 StorageData.loc[z,'Average daily cycle depth [%]'] = AverageStorageOutput*24/(1e-9+StorageData.loc[z,'Storage Capacity [MWh]'])
 print('\nZone-Specific storage data')
 print(StorageData)
 except:
 logging.error('Could compute storage data')
 StorageData = None

 co2 = results['OutputPower'].sum() * inputs['param_df']['EmissionRate'] # MWh * tCO2 / MWh = tCO2
 co2.fillna(0,inplace=True)

 UnitData = pd.DataFrame(index=inputs['sets']['u'])
 UnitData.loc[:, 'Fuel'] = inputs['units']['Fuel']
 UnitData.loc[:, 'Technology'] = inputs['units']['Technology']
 UnitData.loc[:, 'Zone'] = inputs['units']['Zone']
 UnitData.loc[:, 'CHP'] = inputs['units']['CHPType']
 UnitData.loc[:, 'Generation [TWh]'] = results['OutputPower'].sum() / 1e6
 UnitData.loc[:, 'CO2 [t]'] = co2.loc['CO2',:]
 UnitData.loc[:, 'Total Costs [EUR]'] = get_units_operation_cost(inputs, results).sum()
 print('\nUnit-Specific data')
 print(UnitData)

 FuelData = {}
 chp = {'Extraction': 'CHP', 'back-pressure': 'CHP', 'P2H': 'CHP', '': 'Non-CHP'}
 tmp = UnitData
 tmp['CHP'] = tmp['CHP'].map(chp)
 for bo in ['CHP', 'Non-CHP']:
 tmp_data = tmp.loc[tmp['CHP'] == bo]
 FuelData[bo] = {}
 for l in ['Generation [TWh]','CO2 [t]','Total Costs [EUR]']:
 FuelData[bo][l] = pd.DataFrame(index=inputs['sets']['f'], columns=inputs['sets']['t'])
 for f in inputs['sets']['f']:
 for t in inputs['sets']['t']:
 FuelData[bo][l].loc[f,t] = tmp_data.loc[(tmp_data['Fuel'] == f) &
 (tmp_data['Technology'] == t)][l].sum()

 return {'Cost_kwh': Cost_kwh, 'TotalLoad': TotalLoad, 'PeakLoad': PeakLoad, 'NetImports': NetImports,
 'Curtailment': Curtailment, 'MaxCurtailment': MaxCurtailemnt, 'ShedLoad': LoadShedding,'ShiftedLoad':ShiftedLoad_tot,
 'MaxShedLoad': MaxLoadShedding, 'ZoneData': ZoneData, 'Congestion': Congestion, 'StorageData': StorageData,
 'UnitData': UnitData, 'FuelData': FuelData}

[docs]def get_indicators_powerplant(inputs, results):
 """
 Function that analyses the dispa-set results at the power plant level
 Computes the number of startups, the capacity factor, etc

 :param inputs: DispaSET inputs
 :param results: DispaSET results
 :returns out: Dataframe with the main power plants characteristics and the computed indicators
 """
 out = inputs['units'].loc[:, ['Nunits','PowerCapacity', 'Zone', 'Technology', 'Fuel']]

 out['startups'] = 0
 for u in out.index:
 if u in results['OutputCommitted']:
 # count the number of start-ups
 values = results['OutputCommitted'].loc[:, u].values
 diff = -(values - np.roll(values, 1))
 startups = diff > 0
 out.loc[u, 'startups'] = startups.sum()

 out['CF'] = 0
 out['Generation'] = 0
 for u in out.index:
 if u in results['OutputPower']:
 # count the number of start-ups
 out.loc[u, 'CF'] = results['OutputPower'][u].mean() / (out.loc[u, 'PowerCapacity']*out.loc[u,'Nunits'])
 out.loc[u, 'Generation'] = results['OutputPower'][u].sum()
 return out

[docs]def CostExPost(inputs,results):
 '''
 Ex post computation of the operational costs with plotting. This allows breaking down
 the cost into its different components and check that it matches with the objective
 function from the optimization.

 The cost objective function is the following:
 SystemCost(i)
 =E=
 sum(u,CostFixed(u)*Committed(u,i))
 +sum(u,CostStartUpH(u,i) + CostShutDownH(u,i))
 +sum(u,CostRampUpH(u,i) + CostRampDownH(u,i))
 +sum(u,CostVariable(u,i) * Power(u,i))
 +sum(l,PriceTransmission(l,i)*Flow(l,i))
 +sum(n,CostLoadShedding(n,i)*ShedLoad(n,i))
 +sum(chp, CostHeatSlack(chp,i) * HeatSlack(chp,i))
 +sum(chp, CostVariable(chp,i) * CHPPowerLossFactor(chp) * Heat(chp,i))
 +Config("ValueOfLostLoad","val")*(sum(n,LL_MaxPower(n,i)+LL_MinPower(n,i)))
 +0.8*Config("ValueOfLostLoad","val")*(sum(n,LL_2U(n,i)+LL_2D(n,i)+LL_3U(n,i)))
 +0.7*Config("ValueOfLostLoad","val")*sum(u,LL_RampUp(u,i)+LL_RampDown(u,i))
 +Config("CostOfSpillage","val")*sum(s,spillage(s,i));

 :returns: tuple with the cost components and their cumulative sums in two dataframes.
 '''
 import datetime

 dfin = inputs['param_df']
 timeindex = results['OutputPower'].index

 costs = pd.DataFrame(index=timeindex)

 #%% Fixed Costs:
 costs['FixedCosts'] = 0
 for u in results['OutputCommitted']:
 if u in dfin['CostFixed'].index:
 costs['FixedCosts'] =+ dfin.loc[u,'CostFixed'] * results['OutputCommitted'][u]

 #%% Ramping and startup costs:
 indexinitial = timeindex[0] - datetime.timedelta(hours=1)
 powerlong = results['OutputPower'].copy()
 powerlong.loc[indexinitial,:] = 0
 powerlong.sort_index(inplace=True)
 committedlong = results['OutputCommitted'].copy()
 for u in powerlong:
 if u in dfin['PowerInitial'].index:
 powerlong.loc[indexinitial,u] = dfin['PowerInitial'].loc[u,'PowerInitial']
 committedlong.loc[indexinitial,u] = dfin['PowerInitial'].loc[u,'PowerInitial']>0
 committedlong.sort_index(inplace=True)

 powerlong_shifted = powerlong.copy()
 powerlong_shifted.iloc[1:,:] = powerlong.iloc[:-1,:].values
 committedlong_shifted = committedlong.copy()
 committedlong_shifted.iloc[1:,:] = committedlong.iloc[:-1,:].values

 ramping = powerlong - powerlong_shifted
 startups = committedlong.astype(int) - committedlong_shifted.astype(int)
 ramping.drop([ramping.index[0]],inplace=True); startups.drop([startups.index[0]],inplace=True)

 CostStartUp = pd.DataFrame(index=startups.index,columns=startups.columns)
 for u in CostStartUp:
 if u in dfin['CostStartUp'].index:
 CostStartUp[u] = startups[startups>0][u].fillna(0) * dfin['CostStartUp'].loc[u,'CostStartUp']
 else:
 print('Unit ' + u + ' not found in input table CostStartUp!')

 CostShutDown = pd.DataFrame(index=startups.index,columns=startups.columns)
 for u in CostShutDown:
 if u in dfin['CostShutDown'].index:
 CostShutDown[u] = startups[startups<0][u].fillna(0) * dfin['CostShutDown'].loc[u,'CostShutDown']
 else:
 print('Unit ' + u + ' not found in input table CostShutDown!')

 CostRampUp = pd.DataFrame(index=ramping.index,columns=ramping.columns)
 for u in CostRampUp:
 if u in dfin['CostRampUp'].index:
 CostRampUp[u] = ramping[ramping>0][u].fillna(0) * dfin['CostRampUp'].loc[u,'CostRampUp']
 else:
 print('Unit ' + u + ' not found in input table CostRampUp!')

 CostRampDown = pd.DataFrame(index=ramping.index,columns=ramping.columns)
 for u in CostRampDown:
 if u in dfin['CostRampDown'].index:
 CostRampDown[u] = ramping[ramping<0][u].fillna(0) * dfin['CostRampDown'].loc[u,'CostRampDown']
 else:
 print('Unit ' + u + ' not found in input table CostRampDown!')

 costs['CostStartUp'] = CostStartUp.sum(axis=1).fillna(0)
 costs['CostShutDown'] = CostShutDown.sum(axis=1).fillna(0)
 costs['CostRampUp'] = CostRampUp.sum(axis=1).fillna(0)
 costs['CostRampDown'] = CostRampDown.sum(axis=1).fillna(0)

 #%% Variable cost:
 costs['CostVariable'] = (results['OutputPower'] * dfin['CostVariable']).fillna(0).sum(axis=1)

 #%% Transmission cost:
 costs['CostTransmission'] = (results['OutputFlow'] * dfin['PriceTransmission']).fillna(0).sum(axis=1)

 #%% Shedding cost:
 costs['CostLoadShedding'] = (results['OutputShedLoad'] * dfin['CostLoadShedding']).fillna(0).sum(axis=1)

 #%% Heating costs:
 costs['CostHeatSlack'] = (results['OutputHeatSlack'] * dfin['CostHeatSlack']).fillna(0).sum(axis=1)
 CostHeat = pd.DataFrame(index=results['OutputHeat'].index,columns=results['OutputHeat'].columns)
 for u in CostHeat:
 if u in dfin['CHPPowerLossFactor'].index:
 CostHeat[u] = dfin['CostVariable'][u].fillna(0) * results['OutputHeat'][u].fillna(0) * dfin['CHPPowerLossFactor'].loc[u,'CHPPowerLossFactor']
 else:
 CostHeat[u] = dfin['CostVariable'][u].fillna(0) * results['OutputHeat'][u].fillna(0)
 costs['CostHeat'] = CostHeat.sum(axis=1).fillna(0)

 #%% Lost loads:
 # NB: the value of lost load is currently hard coded. This will have to be updated
 # Locate prices for LL
 #TODO:
 costs['LostLoad'] = 80e3* (results['LostLoad_2D'].reindex(timeindex).sum(axis=1).fillna(0) + results['LostLoad_2U'].reindex(timeindex).sum(axis=1).fillna(0) + results['LostLoad_3U'].reindex(timeindex).sum(axis=1).fillna(0)) \
 + 100e3*(results['LostLoad_MaxPower'].reindex(timeindex).sum(axis=1).fillna(0) + results['LostLoad_MinPower'].reindex(timeindex).sum(axis=1).fillna(0)) \
 + 70e3*(results['LostLoad_RampDown'].reindex(timeindex).sum(axis=1).fillna(0) + results['LostLoad_RampUp'].reindex(timeindex).sum(axis=1).fillna(0))

 #%% Spillage:
 costs['Spillage'] = 1 * results['OutputSpillage'].sum(axis=1).fillna(0)

 #%% Plotting
 # Drop na columns:
 costs.dropna(axis=1, how='all',inplace=True)
 # Delete all-zero columns:
 # costs = costs.loc[:, (costs != 0).any(axis=0)]

 sumcost = costs.cumsum(axis=1)
 sumcost['OutputSystemCost'] = results['OutputSystemCost']

 sumcost.plot(title='Cumulative sum of the cost components')

 #%% Warning if significant error:
 diff = (costs.sum(axis=1) - results['OutputSystemCost']).abs()
 if diff.max() > 0.01 * results['OutputSystemCost'].max():
 logging.critical('There are significant differences between the cost computed ex post and and the cost provided by the optimization results!')
 return costs,sumcost

[docs]def get_units_operation_cost(inputs, results):
 """
 Function that computes the operation cost for each power unit at each instant of time from the DispaSET results
 Operation cost includes: CostFixed + CostStartUp + CostShutDown + CostRampUp + CostRampDown + CostVariable

 :param inputs: DispaSET inputs
 :param results: DispaSET results
 :returns out: Dataframe with the the power units in columns and the operation cost at each instant in rows

 Main Author: @AbdullahAlawad
 """

 datain = ds_to_df(inputs)

 #DataFrame with startup times for each unit (1 for startup)
 StartUps = results['OutputCommitted'].copy()
 for u in StartUps:
 values = StartUps.loc[:, u].values
 diff = -(np.roll(values, 1) - values)
 diff[diff <= 0] = 0
 StartUps[u] = diff

 #DataFrame with shutdown times for each unit (1 for shutdown)
 ShutDowns = results['OutputCommitted'].copy()
 for u in ShutDowns:
 values = ShutDowns.loc[:, u].values
 diff = (np.roll(values, 1) - values)
 diff[diff <= 0] = 0
 ShutDowns[u] = diff

 #DataFrame with ramping up levels for each unit at each instant (0 for ramping-down & leveling out)
 RampUps = results['OutputPower'].copy()
 for u in RampUps:
 values = RampUps.loc[:, u].values
 diff = -(np.roll(values, 1) - values)
 diff[diff <= 0] = 0
 RampUps[u] = diff

 #DataFrame with ramping down levels for each unit at each instant (0 for ramping-up & leveling out)
 RampDowns = results['OutputPower'].copy()
 for u in RampDowns:
 values = RampDowns.loc[:, u].values
 diff = (np.roll(values, 1) - values)
 diff[diff <= 0] = 0
 RampDowns[u] = diff

 FiexedCost = results['OutputCommitted'].copy()
 StartUpCost = results['OutputCommitted'].copy()
 ShutDownCost = results['OutputCommitted'].copy()
 RampUpCost = results['OutputCommitted'].copy()
 RampDownCost = results['OutputCommitted'].copy()
 VariableCost = results['OutputCommitted'].copy()
 UnitOperationCost = results['OutputCommitted'].copy()

 OperatedUnitList = results['OutputCommitted'].columns
 for u in OperatedUnitList:
 unit_indexNo = inputs['units'].index.get_loc(u)
 FiexedCost.loc[:,[u]] = np.array(results['OutputCommitted'].loc[:,[u]])*inputs['parameters']['CostFixed']['val'][unit_indexNo]
 StartUpCost.loc[:,[u]] = np.array(StartUps.loc[:,[u]])*inputs['parameters']['CostStartUp']['val'][unit_indexNo]
 ShutDownCost.loc[:,[u]] = np.array(ShutDowns.loc[:,[u]])*inputs['parameters']['CostShutDown']['val'][unit_indexNo]
 RampUpCost.loc[:,[u]] = np.array(RampUps.loc[:,[u]])*inputs['parameters']['CostRampUp']['val'][unit_indexNo]
 RampDownCost.loc[:,[u]] = np.array(RampDowns.loc[:,[u]])*inputs['parameters']['CostRampDown']['val'][unit_indexNo]
 VariableCost.loc[:,[u]] = np.array(datain['CostVariable'].loc[:,[u]])*np.array(results['OutputPower'][u]).reshape(-1,1)

 UnitOperationCost = FiexedCost+StartUpCost+ShutDownCost+RampUpCost+RampDownCost+VariableCost

 return UnitOperationCost

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/logo.png
&,
Dispa-SET

Power system modelling

_static/minus.png

_static/file.png

_static/plus.png

_images/Balkans_capacity.png
‘Capacity [MW]

700

00

5000

000

3000

2000

1000

Installed capacity per country (the horizontal lines indicate the peak demand)

waT

B0
HRD
UG

Nuc
=3

TR
o

liltlli

_images/Balkans_generation.png
Generation [TWh]

E

=

2

Generation per country (the horizontal lines indicate the demand)

WAt
Flowin

B0
HRD
UG
Nuc
=<3

Tinnnrnnnn
°

lll!lil!

nav.xhtml

 Table of Contents

 		
 The Dispa-SET model

 		
 Overview

 		
 Features

 		
 Libraries used and requirements

 		
 Dispa-SET in the scientific literature

 		
 Ongoing developments

 		
 Licence

 		
 Main Developers

 		
 References

 		
 Releases

 		
 Changelog

 		
 Version 2.x

 		
 Version 2.4

 		
 Version 2.3

 		
 Version 2.2

 		
 Version 2.1

 		
 Version 2.0

 		
 Getting Started

 		
 Prerequisites

 		
 Using Dispa-SET:

 		
 Step-by-step example of a Dispa-SET run

 		
 1. Using the command line interface

 		
 2. Using the Dispa-SET API.

 		
 3. Using GAMS

 		
 Postprocessing and result display

 		
 Input Data

 		
 General simulation parameters

 		
 Technologies

 		
 Fuels

 		
 Unit-specific or technology-specific inputs

 		
 Demand

 		
 Countries

 		
 Power plant data

 		
 Common fields

 		
 Storage units

 		
 CHP units

 		
 P2HT units

 		
 Renewable generation

 		
 Storage and hydro data

 		
 Inflows

 		
 Storage level

 		
 Variable capacity storage

 		
 Power plant outages

 		
 Interconnections

 		
 Net transfer capacities

 		
 Historical physical flows

 		
 Fuel Prices

 		
 Model Description

 		
 Variables

 		
 Sets

 		
 Parameters

 		
 Optimization Variables

 		
 Integer Variables

 		
 Optimisation model

 		
 Objective function

 		
 Day-ahead energy balance

 		
 Reserve constraints

 		
 Power output bounds

 		
 Ramping Constraints

 		
 Minimum up and down times

 		
 Storage-related constraints

 		
 Heat production constraints (CHP plants only)

 		
 Emission limits

 		
 Network-related constraints

 		
 Curtailment

 		
 Load shedding

 		
 Rolling Horizon

 		
 References

 		
 Model Formulations

 		
 No clustering

 		
 Standard formulation

 		
 Integer clustering

 		
 LP clustering

 		
 Implementation and interface

 		
 Resolution Flow Chart

 		
 Dispa-SET database

 		
 Configuration File

 		
 Simulation environment

 		
 UCM_h.gms and UCM.gpr

 		
 Inputs.gdx

 		
 Post-processing

 		
 Mid-term hydrothermal coordination

 		
 MTS options

 		
 NO-MTS (Historical Curves)

 		
 ZONAL-MTS

 		
 REGIONAL-MTS

 		
 How to call MTS

 		
 Examples

 		
 Case Studies

 		
 Dispa-SET for the EU28

 		
 Description

 		
 Features

 		
 Run the EU model

 		
 Documentation

 		
 Licence

 		
 Important results

 		
 Main developpers

 		
 References

 		
 Dispa-SET for the Balkans region

 		
 Description

 		
 Features

 		
 Quick start

 		
 Documentation

 		
 Licence

 		
 Important results

 		
 Main developpers

 		
 References

 		
 Other contributors

 		
 Dispa-SET for the Belarus

 		
 Description

 		
 Background

 		
 Methods and Features

 		
 Quick start

 		
 Documentation

 		
 Licence

 		
 Results

 		
 Conclusions

 		
 Highlights

 		
 Main developpers

 		
 References

 		
 External links

 		
 dispaset package

 		
 Subpackages

 		
 dispaset.preprocessing package

 		
 dispaset.postprocessing package

 		
 dispaset.misc package

 		
 Submodules

 		
 dispaset.solve module

 		
 Solve with GAMS and the high level API

 		
 Solve with GAMS and the low level APIs

 		
 Module contents

_static/up.png

_images/backpressure.png
300

o
<

o o o o o

n S 0 S n

~ ~ - i

(MIN) uonesauad 1amod

100 150 200 250 300 350

50

Heating generation (MW)

_images/cli.png
g transac
To activate th

$ conda activate dispaset
To deactivate an active environment.

$ conda deactivate

dnin\De ai >pip install -e
o anssadninsbocunents p 1t d i pRsat
optee, dispaset

Succesgfu]ly Th 1154 2T paset gahexco—L.post2492 gdxco—7.post2492 optoo—2.post]

[cdispaset G:aUsersnadnin\Docunentsngitdispaset>dispaset — ConfigFiles/Conf igT]
g config file ConfigFiles/ConfigTest.xlsx to

g G:ylserstadnin\Docunentsigiendispaset\Sim

_images/CHP_flows.png
Power =

[ommmmmmmmmmmmmmmmm e == Demand
1
CHP plant Heat
-

1
: 1 === HeatDemand
e) Storage =-=!

Storage Input

HeatSlack

_images/Flow-chart.png
Data
Raw data: . .
From various C0||ect|0In IS-1:

Legend: Pre-
g Python processing
GAMS

Simulation Environment:

Simulatioy

Post-processing @

_images/database.png
v | Database
» [AvailabilityFactors
» [CrossBorderFlows
v [DayAheadNTC
v @ 1h
[2015.csv
» [FuelPrices
» [HydroData
v [Load_DayAhead
> AT
M
v [1h
[2015.csv
> @ 15min
> [cH
» [DE
> [FR
> N
» [Load_RealTime
» [l OutageFactors.
» [PowerPlants

_images/extraction.png
o o o o o o o
153 n S 0 S n
a ~ ~ - i

(MIAI) uoiresauad 1amod

100 150 200 250 300 350

50

Heating generation (MW)

_images/clustering.png
< v

D
Same type:
All string values are identical Same type: Same type:
All string values are identical All string values are identical
Same values: OR and OR and

All characteristics are similar
- _____and Highly flexible: Low Pmax:
- StartUpTime < 1h Pmax < 30 MW
Low Pmin:

Minimum power close to zero
~—
\|l

> Merge #

_images/config.gif
Dispa-SET Configuration File

Thi i the stndrd cnfiguration il orDisps-SET.kdefines th ds souro or l the parametsrs snd provides zome ndieaios egarding the trctureof the dats. Thi encel il mustbeprovided hen
unningthe maindispa et uning st

Deseription

Standand simultonfor 6 cuntie, it the MILP formstian

Simulation director Feltive Path Simulationsisimulton_test This sctiondeies the utpu f the pre prosessing (i i henput o the Dispaset soler)

Viite excel TuerFase FaLsE The simulaton enfonment s defned 35 adector that contansa e reuguied data and GAISfles
TuerFase TRUE iseoommended o e th datainthe 3 diferet formats escelad, iolebu i ones ot needed,

Viite Pickle TrerFase TRUE itcanbe skipped

GAMS path Pan

Stare date. oae iz Dt andime parameters of the simiation

Stop date Dae Py Stat and sop daes need o b within theprovided dta

Horizon length Kiumber of dais s Four00f the dagis deied 32 midright i timezone UTC-1

Look ahead Numberof days h

Clustering TuerFase TRUE This setions define ptameters tha fluence the formuation of theproblem

Simulation type List 3 These parameersnflence both hepr-processing e LP clusterng,allunits e garegated b tpe)

Reserve caleulatio List Gensrc andthesoler (some consizins ar emoved when solingn LP)

Allow Curtalment. TrerFsse TRUE

Demand ReltivePath DatabaseLoad RealTimatht

Outages Felatie Path This setionprovides th paths o the raw dataused o generteth Disp-SET simuaton template.

Power plant data FelatisePath DatsbaselPowerPlansih#i2, The pathis areltivepah,the curent drectory beig the o where DispaSET py's exccuted

Renewsbles AF FeltvePath DatabazelAvaiabiyFscors,

Load Shedding Felatie Path Detak v 005 Fordatasts which Have one il percount, replace th countycode (2 charaters)inthe path by ¥

nrc FelativePath DatabaselDayaheadTCH for exampl:

Historical flows FeltvePath DtabaselCrossBardarFlavs s Damand I osdosy

Scaledinflows FelwtePath DatabaseydroDstaSosied it one oad s il per county by eplacing #8 ith R, DE, L etc.

Price of Nuolear Rl Path Detauk vl 3

Price of Black coa Reltve Path DstabssefFueriesiCostal Dt value "

Price of Gas FelatvePath DstabsselFusricestGast2d Difautvalue 20 Alfel pricesare n EURIMMI ofprimary snrgylowe hating vle)

Price of Fuel-0il ReltvePath DtabasefFusriesiCilZ0 Defaul vslue =

Price of Biomass FelatvePath DatabssefFueriestEioms: Defautvslue @

Price of CO2 RelatvePath Defauk vilue 7

Reservoir Levels ReltvePath DstabasefHydroDstaResers

Count

NUTS1codes (50
6.1 standard)of the
Simulted ountis.
B lthe seected
e

< to consider

ar
&
&
o
o
cz
o
oK
&

TRUE
TRUE
FaLsE
TRUE
FaLsE
FaLsE
TRUE
FaLsE
FaLsE

FaLsE
FaLsE
FaLsE
FaLsE
FaLsE
FaLsE

TRUE
FaLsE
FaLsE

_images/mts.png
NO-MTS
HISTORICAL CURVES

ZONAL-MTS

REGIONAL-MTS

Historical Historical

Default (1 at a time)

Default (all at once)

MTS-1 MTS-2

A \B

¢ o D

MTS-3 MTS-4

MTS MTS

MTS MTS

Historical Historical
LEGEND
¢ > " Interconnection

between 2 zones

= Zone / Country

= Area where MTS
is being
performed

Specified zones [A, B, D]

Specified region — [A, B, D]

MTS-1 MTS-2

A Je :\B

Historical MTS-3

_static/up-pressed.png

_images/p2h.png
=) o =) o o
=3 n S n S 2 °
@ ~ & - -

(MW) uonesauas samod

150 200 250 300 350
Heating generation (MW)

100

50

_images/report2.jpg
JRC TECHNICAL REPORTS

Modeling Future EU Power Systems
Under Wgh Shares of Reneuables

_images/results_dispatch.png

_images/results_rug.png
[46] - TIHANGE 3 . .. \(‘c oeoc ..]

[47] - DOEL 4 L

[48] - TIHANGE 2 . ' i ‘o o]

[49] - DOEL 3 | 1

[51] - TIHANGE 1N | 1

[52] - TIHANGE 1S . . ' ‘¢ o5 _______________________________]

[54] - DROGENBOS TGV | ll UNN WNMEWENGE, © MW
[55] - HERDERSBRUG STEG , il UMMM

[56] - Amercoeur LR TGV | [l INNANAE

[57]1 - DOEL 1 | I T

i I N R U |
[58] - DOEL 2 1

f W W m w o
, | , O

[59] - T-power Beringen | Il [NINIHNIN I 1

[60] - Marcinelle Energie (Carsid) Il o
[61] - Zandvliet Power | [T L]

[62] - ESCH-SUR-ALZETTE STEG (NI O T , |
[63] - RINGVAART STEG I ,
[64] - SAINT-GHISLAIN STEG | |
[66] - RODENHUIZE 4 | |
[67] - LANGERLO 1 NN R KRR R T T B NN 1
[68] - LANGERLO 2 ﬂl-l-l.l_.-l--l-l-llll_—___l.
71, 72] - Wind Offshore - BE - WEORBRVININE Il 1 ll[. L UOORAL BT A0 URE W0 T T TR [T T 1 [
[76] - DispaSET PHOT_BE | Il (e \[\ (T \[)\[OO0 \‘ Il I
[77] - DispaSET WindOn_BE l mmi 11 l[LTI | 0, 1l L0
[78] - DispaSET FossilGas_| BE1| (T OO O [I[NE NORURNN OO0 l I m LU RO TR MM T e
[79] - DispaSET Biomass_BE | | | | |
[80] - DispaSET FossilGas_BE2; Ml L0 — |] [I} O A O T O Loy |

[81] - DispaSET FossilGas_BE3, Il I WA 0 MK ; O AT [0 i | [T 0000

Jan 2015 Mar 2015 Mai 2015 Jul 2015 Sep 2015 Nov 2015 Jan 2016

_images/result_analysis.png
Aggregated statistics for the considered area:
Total consumption:1227.07310992 Twh
Peak load:203182.461067 MW
Net importations:-42.20072928 Twh

Country-Specific values (in TWh or in MW):

Demand PeakLoad
AT 59.375448 10144.000000
BE 86.971154 13632.250000
CH 44.694098 7794.262468
DE 478.030824 76212.250000
FR 470.075612 90588.000000
NL 87.925973 16285.500000
Number of hours of
{'AT -> CH': 5917,
'AT -> DE': 430,
'BE -> FR': 62,
'BE -> NL': 344,
'CH -> AT': 720,
'‘CH -> DE': 15,
'CH -> FR': 56,
'DE -> AT': 1522,
'DE -> CH': 4378,
'DE -> NL': 2803,
'FR -> BE': 2689,
'FR -> CH': 7665,
‘NL -> BE': 1403,
‘NL -> DE': 60}

NetImports

5.
8.
7.
-17.
-51.
5.

144132
911190
199527
260122
878128
682672

LoadShedding Curtailment

NaN
NaN
NaN
NaN
NaN
NaN

congestion on each line:

NaN
NaN
NaN
NaN
NaN
NaN

_images/results_balance.png
Generation [TWh]

600

500

400

300

200

100

Generation per country (the horizontal lines indicate the demand)

WAT
FlowIn
WIN
SUN
WST
OIL
GAS
BIO
HRD
LIG
NUC

mE =

DE
FR

NL

_images/rolling_horizon.png
Day j-1 Dayj Day j+1
Hours

\ Optimization period j-1

\ Optimization period j)
Look-ahead for period j-1 ‘ Optimization period j+1

_static/comment-bright.png

_static/ajax-loader.gif

