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Chainer is a powerful, flexible and intuitive deep learning framework.

* Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on
multiple GPUs with little effort.

* Chainer supports various network architectures including feed-forward nets, convnets, recurrent nets and recur-
sive nets. It also supports per-batch architectures.

» Forward computation can include any control flow statements of Python without lacking the ability of back-
propagation. It makes code intuitive and easy to debug.

TUTORIALS 1
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CHAPTER
ONE

CHAINER AT A GLANCE

Welcome to Chainer!
Chainer is a rapidly growing neural network platform. The strengths of Chainer are:

* Python-based — Chainer is developed in Python, allowing for inspection and customization of all code in python
and understandable python messages at run time

* Define by Run — neural networks definitions are defined on-the-fly at run time, allowing for dynamic network
changes

* NumPy based syntax for working with arrays, thanks to CuPy implementation

* Fully customizable — since Chainer is pure python, all classes and methods can be adapted to allow for the latest
cutting edge or specialized approaches

* Broad and deep support — Chainer is actively used for most of the current approaches for neural nets (CNN,
RNN, RL, etc.), aggressively adds new approaches as they’re developed, and provides support for many kinds
of hardware as well as parallelization for multiple GPUs

1.1 Mushrooms - tasty or deadly?

Let’s take a look at a basic program of Chainer to see how it works. For a dataset, we’ll work with Kaggle’s edible
vs. poisonous mushroom dataset, which has over 8,000 examples of mushrooms, labelled by 22 categories including
odor, cap color, habitat, etc., in a mushrooms.csv file.

How will Chainer learn which mushrooms are edible and which mushrooms will kill you? Let’s see!

The code below is from the glance example in the examples/glance directory.

1.2 Code Breakdown

1.2.1 Initialization

Let’s start the program. Here are the typical imports for a Chainer program. chainer.links contain trainable
parameters and chainer. functions do not.

import chainer as ch

from chainer import datasets
import chainer.functions as F
import chainer.links as L
from chainer import training

(continues on next page)
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(continued from previous page)

from chainer.training import extensions

import numpy as np

We’ll use Matplotlib for the graphs to show training progress.

import matplotlib
matplotlib.use ('Agg')

1.2.2 Trainer Structure

A trainerisused to set up our neural network and data for training. The components of the t ra i ner are generally
hierarchical, and are organized as follows:

Trainer

Updater —Extensions —

Iterator —— Optimizer——

Dataset rModel—‘

Each of the components is fed information from the components within it. Setting up the trainer starts at the inner
components, and moves outward, with the exception of extensions, which are added after the t rainer is defined.

1.2.3 Dataset

Trainer

Updater — Extensions —

Iterator —— Optimizer——
Dataset [Modelj

Our first step is to format the dataset. From the raw mushrooms.csv, we format the data into a Chainer
TupleDataset.

4 Chapter 1. Chainer at a Glance
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mushroomsfile = 'mushrooms.csv'
data_array = np.genfromtxt (
mushroomsfile, delimiter=',', dtype=str, skip_header=1)
for col in range(data_array.shape[l]):
data_arrayl[:, col] = np.unique(data_array[:, col], return_inverse=True) [1]

X = data_array[:, 1l:].astype(np.float32)

Y = data_array[:, 0].astype(np.int32)[:, None]

train, test = datasets.split_dataset_random(
datasets.TupleDataset (X, Y), int(data_array.shapel[0] * .7))

1.2.4 lterator

Trainet
Updater — Extensions —
lterator —— Optimizer——
ataset Model

Configure iterators to step through batches of the data for training and for testing validation. In this case, we’ll
use a batch size of 100. For the training iterator, repeating and shuffling are implicitly enabled, while they are explicitly
disabled for the testing iterator.

train_iter = ch.iterators.Seriallterator (train, 100)
test_iter = ch.iterators.Seriallterator (
test, 100, repeat=False, shuffle=False)

1.2.5 Model

Trainer
Updater — Extensions —
Iterator —— Optimizer——
ataset: Model

Next, we need to define the neural network for inclusion in our model. For our mushrooms, we’ll chain together two
fully-connected, Linear, hidden layers between the input and output layers.

As an activation function, we’ll use standard Rectified Linear Units (relu ()).

Using Sequential allows us to define the neural network model in a compact format.

1.2. Code Breakdown 5
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# Network definition

def MLP (n_units, n_out):
layer = ch.Sequential(L.Linear (n_units), F.relu)
model = layer.repeat (2)
model . append (L.Linear (n_out))

return model

Since mushrooms are either edible or poisonous (no information on psychedelic effects!) in the dataset, we’ll use a
Link Classifier for the output, with 44 units (double the features of the data) in the hidden layers and a single
edible/poisonous category for classification.

model = L.Classifier(
MLP (44, 1), lossfun=F.sigmoid_cross_entropy, accfun=F.binary_accuracy)

Note that in the two code snippets above we have not specified the size of the input layer. Once we start feeding the
neural network with samples, Chainer will recognize the dimensionality of the input automatically and initialize the
matrix for each layer with the appropriate shape. In the example above, that is 44x22 for the first hidden layer, 44x44
for the second hidden layer, and 1x44 for the output layer.

1.2.6 Optimizer

Trainer

Updater — Extensions —

Iterator —— Optimizer—

ataset |:ModeI]

Pick an optimizer, and set up the model to use it.

# Setup an optimizer
optimizer = ch.optimizers.SGD () .setup (model)

1.2.7 Updater

Trainer

Updater — Extensions —

Iterator —— Optimizer—

ataset |:ModeI]

6 Chapter 1. Chainer at a Glance
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Now that we have the training i terator and optimizer set up, we link them both together into the updater.
The updater uses the minibatches from the i terator, does the forward and backward processing of the model,
and updates the parameters of the model according to the opt imizer. Setting the device=-1 sets the device as
the CPU. To use a GPU, set device equal to the number of the GPU, usually device=0.

# Create the updater, using the optimizer
updater = training.StandardUpdater (train_iter, optimizer, device=-1)

Finally we create a Trainer object. The trainer processes minibatches using the updater defined above until
a certain stop condition is met and allows the use of extensions during the training. We set it to run for 50 epochs and
store all files created by the extensions (see below) in the result directory.

# Set up a trainer
trainer = training.Trainer (updater, (50, 'epoch'), out='result')

1.2.8 Extensions

Trainer
Updater — Extensions —
Iterator —— Optimizer——
ataset: Model

Extensions can be used to execute code at certain events during the training, such as every epoch or every 1000
iterations. This mechanism is used in Chainer to evaluate models during training, print progress messages, or dump
intermediate model files.

First, use the testing i terator defined above for an Evaluator extension to the trainer to provide test scores. If
using a GPU instead of the CPU, set device to the ID of the GPU, usually 0.

# Evaluate the model with the test dataset for each epoch
trainer.extend (extensions.Evaluator (test_iter, model, device=-1))

Save a computational graph from loss variable at the first iteration. main refers to the target link of the main
optimizer. The graph is saved in the Graphviz’s dot format. The output location (directory) to save the graph is set
by the out argument of t rainer.

# Dump a computational graph from 'loss' variable at the first iteration
# The "main" refers to the target link of the "main" optimizer.
trainer.extend(extensions.DumpGraph('main/loss"'))

Take a snapshot of the t rainer object every 20 epochs.

trainer.extend (extensions.snapshot (), trigger=(20, 'epoch'))

Write a log of evaluation statistics for each epoch.

# Write a log of evaluation statistics for each epoch
trainer.extend (extensions.LogReport ())

1.2. Code Breakdown 7
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Save two plot images to the result directory.

# Save two plot images to the result dir
trainer.extend/(
extensions.PlotReport (['main/loss', 'validation/main/loss'],
'epoch', file_name='loss.png'))
trainer.extend(
extensions.PlotReport (
['main/accuracy', 'validation/main/accuracy'],
'epoch', file_name='accuracy.png'))

Print selected entries of the log to standard output.

# Print selected entries of the log to stdout
trainer.extend (extensions.PrintReport (
['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

1.2.9 Main Loop

Finally, with the t rainer and all the extensions set up, we can add the line that actually starts the main loop:

# Run the training
trainer.run ()

1.2.10 Inference

Once the training is complete, only the model is necessary to make predictions. Let’s check that a random line from
the test data set and see if the inference is correct:

x, t = test[np.random.randint (len(test))]

predict = model.predictor (x[Nonel]) .array
predict = predict[0][0]

if predict >= O0:

print ('Predicted Poisonous, Actual ' + ['Edible', 'Poisonous'][t[O0]])
else:

print ('Predicted Edible, Actual ' + ['Edible', 'Poisonous'][t[0]1])

1.3 Output

Output for this instance will look like:

epoch main/loss validation/main/loss main/accuracy validation/main/accuracy,,
— elapsed_time

1 0.550724 0.502818 0.733509 0.752821 o
— 0.215426

2 0.454206 0.446234 0.805439 0.786926 o
— 0.902108

3 0.402783 0.395893 0.838421 0.835979 o
— 1.50414

(continues on next page)

8 Chapter 1. Chainer at a Glance
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(continued from previous page)

4 .362979 .359988 .862807 .852632 -
- 2.24171

5 .32713 .329881 .88 .874232 -
— 2.83247

6 .303469 .31104 .892456 .887284 .
— 3.45173

7 .284755 .288553 .901754 .903284 .
— 3.9877

8 .26801 .272033 .9125 .907137 -
— 4.54794

9 .25669 .261355 .920175 .917937 .
— 5.21672

10 .241789 .251821 .927193 .917937 .
— 5.79541

11 .232291 .238022 .93 .925389 -
— 6.3055

12 .222805 .22895 .934035 .923389 =
— 6.87083

13 .21276 .219291 .93614 .928189 =
— 7.54113

14 .204822 .220736 .938596 .922589 -
— 8.12495

15 .197671 .207017 .938393 .936042 .
— 8.69219

16 .190285 .199129 .941053 .934842 .
— 9.24302

17 .182827 .193303 .944386 .942695 -
— 9.80991

18 .176776 .194284 .94614 .934042 .
— 10.3603

19 .16964 .177684 .945789 .945242 .
— 10.8531

20 .164831 .171988 .949825 .947347 -
— 11.3876

21 .158394 .167459 .952982 .949747 .
— 11.9866

22 .153353 .161774 .956964 .949347 .
— 12.6433

23 .148209 .156644 .957368 .951747 -
— 13.3825

24 .144814 .15322 .957018 .955495 =
— 13.962

25 .138782 .148277 .958947 .954147 .
— 14.6

26 .135333 .145225 .961228 .956695 -
— 15.2284

27 .129593 .141141 .964561 .958295 -
— 15.7413

28 .128265 .136866 .962632 .960547 .
- 16.2711

29 .123848 .133444 .966071 .961347 -
- 16.7772

30 .119687 .129579 .967193 .964547 -
— 17.3311

31 .115857 .126606 .968596 .966547 .
— 17.8252

32 .113911 124272 .968772 .962547 -
— 18.3121 (continues on next page)
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(continued from previous page)

33 0.111502 0.122548 0.968596 0.965095 o
— 18.8973
34 0.107427 0.116724 0.970526 0.969747 o
— 19.4723
35 0.104536 0.114517 0.970877 0.969095 .
— 20.0804
36 0.099408 0.112128 0.971786 0.970547 o
— 20.6509
37 0.0972982 0.107618 0.973158 0.970947 o
— 21.2467
38 0.0927064 0.104918 0.973158 0.969347 .
— 21.7978
39 0.0904702 0.101141 0.973333 0.969747 o
— 22.3328
40 0.0860733 0.0984015 0.975263 0.971747 o
— 22.8447
41 0.0829282 0.0942095 0.977544 0.974947 .
— 23.5113
42 0.082219 0.0947418 0.975965 0.969347 .
— 24.0427
43 0.0773362 0.0906804 0.977857 0.977747 o
— 24.5252
44 0.0751769 0.0886449 0.977895 0.972147 .
— 25.1722
45 0.072056 0.0916797 0.978246 0.977495 .
— 26.0778
46 0.0708111 0.0811359 0.98 0.979347 o
— 26.6648
47 0.0671919 0.0783265 0.982456 0.978947 .
— 27.2929
48 0.0658817 0.0772342 0.981754 0.977747 o
— 27.8119
49 0.0634615 0.0762576 0.983333 0.974947 o
— 28.3876
50 0.0622394 0.0710278 0.982321 0.981747 .
— 28.9067

Predicted Edible Actual Edible

Our prediction was correct. Success!

The loss function:

10 Chapter 1. Chainer at a Glance
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—— main/loss
—— validation/main/loss
0.5 1
0.4 4
0.3 1
0.2 1
0.1 1

And the accuracy

—— main/accuracy
—— validation/main/accuracy
0.95 4
0.90 1
0.85 1
0.80 1
0.75 1

epoch

1.3. Output 1
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CHAPTER
TWO

CONCEPTS WALKTHROUGH

2.1 Define-by-Run

As mentioned on the top page, Chainer is a flexible framework for neural networks. One major goal is flexibility, so it
must enable us to write complex architectures simply and intuitively.

Most existing deep learning frameworks are based on the “Define-and-Run” scheme. That is, first a network is defined
and fixed, and then the user periodically feeds it with mini-batches of training data. Since the network is statically
defined before any forward/backward computation, all the logic must be embedded into the network architecture as
data. Consequently, defining a network architecture in such systems (e.g. Caffe) follows a declarative approach. Note
that one can still produce such a static network definition using imperative languages (e.g. torch.nn, Theano-based
frameworks, and TensorFlow).

In contrast, Chainer adopts a “Define-by-Run’’ scheme, i.e., the network is defined dynamically via the actual forward
computation. More precisely, Chainer stores the history of computation instead of programming logic. This strategy
enables us to fully leverage the power of programming logic in Python. For example, Chainer does not need any magic
to introduce conditionals and loops into the network definitions. The Define-by-Run scheme is the core concept of
Chainer. We will show in this tutorial how to define networks dynamically.

This strategy also makes it easy to write multi-GPU parallelization, since logic comes closer to network manipulation.
We will review such amenities in later sections of this tutorial.

2.2 Variables and Derivatives

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

13
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As described previously, Chainer uses the “Define-by-Run” scheme, so forward computation itself defines the network.
In order to start forward computation, we have to set the input array to a chainer. Variable object. Here we start
with a simple ndarray with only one element:

>>> x_data = np.array([5], dtype=np.float32)
>>> x = Variable (x_data)

A Variable object supports basic arithmetic operators. In order to compute y = 22 — 2 + 1, just write:

>>> y = Xxx2 — 2 % X + 1

The resulting vy is also a Variable object, whose value can be extracted by accessing the array attribute:

>>> y.array
array([16.], dtype=float32)

Note: Variable has two attributes to represent the underlying array: array and data. There is no difference
between the two; both refer to exactly the same object. However it is not recommended that you use . data because
it might be confused with numpy . ndarray.data attribute.

What y holds is not only the result value. It also holds the history of computation (or computational graph), which
enables us to compute its derivative. This is done by calling its backward () method:

>>> y.backward ()

This runs error backpropagation (a.k.a. backprop or reverse-mode automatic differentiation). Then, the gradient is
computed and stored in the grad attribute of the input variable x:

>>> x.grad
array ([8.], dtype=float32)

Also we can compute gradients of intermediate variables. Note that Chainer, by default, releases the gradient arrays
of intermediate variables for memory efficiency. In order to preserve gradient information, pass the retain_grad
argument to the backward method:

>>> 7 = 2%X

>>> y = xxx2 — z + 1

>>> y.backward(retain_grad=True)
>>> z.grad

array([-1.], dtype=float32)

All these computations can be generalized to a multi-element array input. While single-element arrays are automati-
cally initialized to [1], to start backward computation from a variable holding a multi-element array, we must set the
initial error manually. This is done simply by setting the grad attribute of the output variable:

>>> x = Variable (np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = Xxx2 — 2%x + 1

>>> y.grad = np.ones((2, 3), dtype=np.float32)

>>> y.backward ()

>>> x.grad

array ([[ 0., 2., 4.]

[ 6., 8., 10.]11, dtype=float32)

Note: Many functions taking Variable object(s) are defined in the chainer. functions module. You can
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combine them to realize complicated functions with automatic backward computation.

Note: Instead of using backward (), you can also calculate gradients of any variables in a computational graph
w.r.t. any other variables in the graph using the chainer. grad () function.

2.2.1 Higher-Order Derivatives

Variable also supports higher-order derivatives (a.k.a. double backpropagation).

Let’s see a simple example. First calculate the first-order derivative. Note that enable_double_backprop=True
is passed to y . backward ().

>>> = chainer.Variable (np.array([[0, 2, 31, [4, 5, 6]], dtype=np.float32))

X
>>>y:x**3
>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward (enable_double_backprop=True)
>>> x.grad_var
variable([[ 0., 12., 27.1,

[ 48., 75., 108.]1])
>>> assert x.grad_var.array is x.grad
>>> assert (x.grad == (3 % x%x+%2).array).all()

chainer.Variable.grad_var is a Variable for chainer.Variable.grad (which is an ndarray).
By passing enable_double_backprop=True to backward (), a computational graph for the backward cal-
culation is recorded. So, you can start backpropagation from x . grad_var to calculate the second-order derivative.

>>> gx = x.grad_var

>>> x.cleargrad()

>>> gx.grad = np.ones((2, 3), dtype=np.float32)
>>> gx.backward()

>>> x.grad

array ([[ 0., 12., 18.],
[24., 30., 36.]1]1, dtype=float32)
>>> assert (x.grad == (6 x x).array).all()

2.3 Links

In order to write neural networks, we have to combine functions with parameters and optimize the parameters. You
can use the class Link to do this. A Link is an object that holds parameters (i.e. optimization targets).

The most fundamental ones are links that behave like regular functions while replacing some arguments by their
parameters. We will introduce higher level links, but here think of links as simply functions with parameters.

One of the most frequently used links is the Linear link (a.k.a. fully-connected layer or affine transformation).
It represents a mathematical function f(x) = Wax + b, where the matrix W and the vector b are parameters. This
link corresponds to its pure counterpart 1 inear (), which accepts x, W, b as arguments. A linear link from three-
dimensional space to two-dimensional space is defined by the following line:

>>> f = L.Linear (3, 2)

2.3. Links 15
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Note: Most functions and links only accept mini-batch input, where the first dimension of the input array is considered
as the batch dimension. In the above Linear link case, input must have shape of (N, 3), where N is the mini-batch
size.

The parameters of a link are stored as attributes. Each parameter is an instance of Variable. In the case of the
Linear link, two parameters, W and b, are stored. By default, the matrix W is initialized randomly, while the vector b is
initialized with zeros. This is the preferred way to initialize these parameters.

>>> f.W.array
array ([[ 1.0184761 , 0.23103087, 0.5650746 7,
[ 1.2937803 , 1.0782351 , -0.56423163]], dtype=float32)
>>> f.b.array
array ([0., 0.], dtype=float32)

An instance of the Linear link acts like a usual function:

>>> x = Variable (np.array([[1, 2, 31, [4, 5, 6]], dtype=np.float32))
>>> y = f(x)
>>> y.array
array ([[3.1757617, 1.7575557],
[8.619507 , 7.1809077]11, dtype=float32)

Note: Sometimes it is cumbersome to compute the dimension of the input space. The linear link and some of
(de)convolution links can omit the input dimension in their instantiation and infer it from the first mini-batch.

For example, the following line creates a linear link whose output dimension is two:

>>> f = L.Linear (2)

If we feed a mini-batch of shape (2, M), the input dimension will be inferred as M, which means 1 .W will be a2 x M
matrix. Note that its parameters are initialized in a lazy manner at the first mini-batch. Therefore, 1 does not have W
attribute if no data is put to the link.

Gradients of parameters are computed by the backward () method. Note that gradients are accumulated by the
method rather than overwritten. So first you must clear the gradients to renew the computation. It can be done by
calling the cleargrads () method.

>>> f.cleargrads ()

Now we can compute the gradients of parameters by simply calling the backward method and access them via the
grad property.

>>> y.grad = np.ones((2, 2), dtype=np.float32)
>>> y.backward()
>>> f.W.grad
array ([[5., 7., 9.1,
[5., 7., 9.1]1, dtype=float32)
>>> f.b.grad
array([2., 2.], dtype=float32)
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2.4 Define your own function

In this section, you will learn about the following things:
* How to define a function on variables
* Useful tools to write a function using a GPU
* How to test the function definition
After reading this section, you will be able to:
* Write your own functions
* Define simple kernels in the function definition

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

2.4.1 Differentiable Functions

Chainer provides a collection of functions in the chainer. functions module. It covers typical use cases in deep
learning, so many existing works can be implemented with them. On the other hand, deep learning is evolving rapidly
and we cannot cover all possible functions to define unseen architectures. So it is important to learn how to define
your own functions.

2.4.2 New-Style v.s. Old-Style Functions

In Chainer, you can define a function in two ways: new-style and old-style.

* New-style functions inherit from chainer.FunctionNode class (introduced in Chainer v3). Forward com-
putation can be implemented using NumPy/CuPy. Backward computation needs to be implemented by using
(possibly a composition of) other new-style functions.

¢ Old-style functions inherit from chainer.Function class. Forward and backward computation can be
implemented using NumPy/CuPy.

The primary advantage of using new-style functions is that they support computation of higher-order gradients (a.k.a.
higher-order derivative or double backpropagation). Higher-order gradients are used in some models e.g., recently-
proposed GAN architectures. New-style functions are also better in terms of performance of backward, as the interface
allows an implementation to skip the computation of unneeded input gradients.

2.4. Define your own function 17
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Currently, most of built-in functions are implemented in new-style (with a few exceptions listed in #4449). Basically,
we recommend you use new-style when implementing new functions. However, you can still continue to use existing
old-style functions for the foreseeable future.

In the following sections, we describe steps to implenent user-defiend functions in new-style. You can also refer
to Implementing Old-Style Functions and Migrating From Old-Style Functions To New-Style Functions if you have
interest.

2.4.3 Implementing New-Style Functions

First, suppose we want to define an elementwise function f(z,y,2) = x * y + z. While it is possible to implement
this equation using a combination of the » and + functions, defining it as a single function may reduce memory
consumption, so it is not only a toy example. Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU. New-style functions must inherit the chainer.
FunctionNode class. The skeleton of a function looks like:

class MulAdd (FunctionNode) :
def forward_cpu(self, inputs):
# do forward computation on CPU
return some_tuple

def backward(self, target_input_indexes, grad_outputs):
# do backward computation
return some_tuple

We must implement forward cpu () and backward () methods.

e In forward cpu () function, inputs is a tuple of array(s). You need to return a tuple of array(s), which is
a result of forward computation.

e In backward () function, grad_outputs is a tuple of Variable(s) which are gradients with regard
to each output(s), i.e., the length of grad_outputs tuple equals to the number of outputs returned by
forward_cpu). You need to return a tuple of Variable(s) which are gradients with regard to each input(s),
i.e., the length of returned tuple equals to the number of inputs to forward_cpu. You can optionally use
target_input_indexes (atuple of indices required to compute gradients) to omit computing unnecessary
gradients. We will show you the usage of target_input_indexes later.

Warning: Be careful to return a tuple even if you have just one array or Variable to return.

Note: Unlike old-style functions, inputs and outputs of backward method in new-style functions are Variables.
In other words, the backward method is device agnostic; there are no backward_cpu or backward_gpu in
FunctionNode.

MulAdd is simple and can be implemented as follows:

class MulAdd (FunctionNode) :
def forward_cpu(self, inputs):
# Unpack input arrays ( ‘numpy.ndarray ).
X, y, z = inputs

# Mark inputs (' 'x'° and "'y ') as retained so that it can be
# accessed during the backward process.

(continues on next page)
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(continued from previous page)

self.retain_inputs((0, 1))

# Compute results.
W =X *xy + z

# Return the result as a tuple.
return w,

def backward(self, target_input_indexes, grad_outputs):
# Unpack inputs retained in the forward process ( "Variable ).
x, y = self.get_retained_inputs/()

# Get gradients w.r.t. the output (Variable).
gw, = grad_outputs

# Compute gradients w.r.t the inputs.
gx =y * gw

gy = X * gw

gz = gw

# Return the result as a tuple.
return gx, gy, gz

As per the warning above, the forward cpu () method returns a tuple of single element. Note that all arrays
appearing in forward_cpu are numpy .ndarray. The forward function is straightforward; it unpacks the input
tuple, computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule
of differentiation of multiplication. This example just implements the rule. Look at the return values, the function just
packs the gradient of each input in the same order and returns them.

By just defining the core computation of forward and backward, FunctionNode class provides a chaining logic on
it (i.e., storing the history of computation, etc.).

Note: Assuming we implement a (forward) function y = f(x) which takes as input the vector € R™ and produces
as output a vector y € R™. Then the backward method has to compute

m 3yj ,
)\izjz:;a—xi'yj fori=1...n

where v is the grad_outputs. Note, that the resulting vector A must have the same shape as the arguments of the
forward method.

Now let’s define the corresponding GPU method. You can easily predict that the method we have to write is named
forward gpu():

class MulAdd (FunctionNode) :
def forward_cpu(self, inputs):

def forward_gpu(self, inputs):
# Unpack input arrays ( ‘cupy.ndarray ).
X, y, z = inputs

# Mark inputs (' 'x'° and "y ') as retained so that it can be
# accessed during the backward process.

(continues on next page)
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self.retain_inputs((0, 1))

# Compute results.
W =X *xy + z

# Return the result as a tuple.
return w,

def backward(self, target_input_indexes, grad_outputs):

In forward_gpu method, arrays are of type cupy.ndarray. We use arithmetic operators defined for this class.
These operators implement the basic elementwise arithmetics.

You may find that the definitions of forward_gpu is exactly same as forward_cpu. In that case, we can reduce
themio forward().

class MulAdd (FunctionNode) :
def forward(self, inputs):
# Unpack input arrays ( “numpy.ndarray’ or ° 'cupy.ndarray ).
X, Yy, z = inputs

# Mark inputs (" 'x'° and "y ') as retained so that it can be
# accessed during the backward process.
self.retain_inputs((0, 1))

# Compute results.
w =X * Yy t z

# Return the result as a tuple.
return w,

def backward(self, inputs, grad_outputs):
X, y, z = inputs
gw, = grad_outputs

gx =y * gw

gy = X * gw

gz = gw

return gx, gy, gz

Since the cupy . ndarray class implements many methods of numpy . ndarray, we can write these unified meth-
ods in most cases.

The MulAdd function can be used as follows:

x = Variable (np.random.uniform (-1, 1, (3, 2)).astype(np.float32))
y = Variable (np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z Variable (np.random.uniform (-1, 1, (3, 2)).astype(np.float32))
w, = MulAdd() .apply((x, y, z))

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful
that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In
Chainer, we often define a thin wrapper Python function that hide the instantiation:

def muladd(x, y, z):
return MulAdd() .apply ((x, vy, 2z))

(continues on next page)
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w = muladd(x, y, z)

All functions under chainer. functions are implemented as wrapper functions like this.

Unified forward/backward methods with NumPy/CuPy functions

CuPy implements many functions that are compatible to those of NumPy. We can write unified forward/backward
methods with them. Consider that we want to write a backprop-able function f(z,y) = exp(x) + exp(y). We name
it ExpAdd here. It can be written straight-forward as follows:

from chainer.backends import cuda

class ExpAdd (FunctionNode) :
def forward_cpu(self, inputs):
self.retain_inputs((0, 1))

X, y = inputs
z = np.exp(x) + np.exp(y)
return z,

def forward_gpu(self, inputs):
self.retain_inputs((0, 1))
cupy = cuda.cupy

X, y = inputs
Z = cupy.exp(x) + cupy.exp(y)
return z,

def backward(self, target_input_indexes, grad_outputs):
x, y = self.get_retained_inputs()
gz, = grad_outputs

gx = gz * F.exp(x)

gy = gz * F.exp(y)
return gx, gy

def expadd(x, y):
z, = ExpAdd() .apply((x, y))
return z

Note: Here we used chainer.backends.cuda. cupy instead of directly accessing cupy. This is because the
cupy module cannot be imported if the CUDA is not installed. In order to keep the implementation valid in non-
CUDA environment, we have to defer the access to the cupy module. Note that the chainer.backends. cuda
module can be imported even if the CUDA is not installed. Of course, the module in such environment is almost
useless, but if the interpreter does not run through the code accessing CUDA-dedicated functions, the code is still
valid.

The CPU and GPU implementations are almost same, except that numpy is replaced by cupy in forward_gpu. We
can unify these functions using the chainer.backend.get_array_module () function. This function accepts
arbitrary number of arrays, and returns an appropriate module for them. See the following code:

class ExpAdd (FunctionNode) :
def forward(self, inputs):
self.retain_inputs ((0, 1))

(continues on next page)
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xp = backend.get_array_module (xinputs)
x, y = inputs

z = xp.exp(x) + xp.exp(y)

return z,

def backward(self, target_input_indexes, grad_outputs):
x, y = self.get_retained_inputs()
gz, = grad_outputs

gx = gz * F.exp(x)

gy = gz * F.exp(y)
return gx, gy

def expadd(x, Vy):
z, = ExpAdd() .apply((x, y))
return z

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found,
get_array_module () function always returns numpy. We often use the name xp for the variadic module name,
which is analogous to the abbreviation np for NumPy and cp for CuPy.

Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it
invokes two kernels during each of forward (w = x = y + z)and backward (gx = v  gwand gy = x =
gw) computations. It might hurt performance, since the intermediate temporary arrays are read and written by possibly
different GPU cores, which consumes much bandwidth. We can reduce the number of invocations by defining our own
kernel. It also reduce the memory consumption.

CuPy provides a useful tool to define elementwise kernels, the cupy . ElementwiseKernel class, and Chainer
wraps it by chainer.backends.cuda.elementwise () function. Our MulAdd implementation can be im-
proved as follows:

class MulAdd (FunctionNode) :
def forward_cpu(self, inputs):
self.retain_inputs((0, 1))

X, y, z = inputs
w =X *y + z
return w,

def forward_gpu(self, inputs):
self.retain_inputs ((0, 1))

X, y, z = inputs
w = cuda.cupy.elementwise (
'float32 x, float32 y, float32 z',
'float32 w',
'w=x xy t+ z',
'muladd_fwd') (x, y, z)
return w,

def backward(self, target_input_indexes, grad_outputs):
X, y, z = self.get_retained_inputs()
gw, = grad_outputs

(continues on next page)
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return MulAddGrad() .apply((x, vy, z, gw))

class MulAddGrad (FunctionNode) :
def forward_cpu(self, inputs):
X, yV, z, gw = inputs
gx =y * gw
gy = X * gw
gz = gw
return gx, gy, gz

def forward_gpu(self, inputs):
X, y, z, gw = inputs
gx, gy = cuda.elementwise (
'float32 x, float32 y, float32 gw',
'float32 gx, float32 gy',
gx =y * gw,
gy = x * gw;

rro
4

'muladd_bwd') (x, y, gw)

gz = gw
return gx, gy, gz

def backward(self, target_input_indexes, grad_outputs):
# You can leave this unimplemented unless you need to compute
# higher-order derivative using this function.
raise NotImplementedError ()

chainer.backends.cuda.elementwise () function accepts the essential implementation of the kernel func-
tion, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable).
In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and
an argument name.

2. Output argument list in the same format as the input argument list.
3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.
4. Name of the kernel function, which is shown in debuggers and profilers.

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by
chainer.backends.cuda.elementwise ().

The first one is binary caching: chainer.backends.cuda.elementwise () function caches the compiled
binary in the $ (HOME) /. cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if
the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order
to execute it. chainer.backends.cuda.elementwise () function memoizes the arguments and the current
device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic
kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single
character as type specifier:

class MulAdd (Function) :
def forward_cpu(self, inputs):

(continues on next page)
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def backward_cpu(self, inputs, grad_outputs):

def forward_gpu(self, inputs):
cupy = cuda.cupy

X, y, z = inputs

w = cuda.elementwise (
'Tx, Ty, T z"',
'Tw',
'w = x xy t+z',
'muladd_fwd') (x, vy, z)

return w,

def backward_gpu(self, inputs, grad_outputs):

X, Yy, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise (
'T x, Ty, T gw',
'T gx, T gy',
gx =y * gw/
gy = X * gw;

rro
’

'muladd_bwd') (x, y, gw)

gz = gw
return gx, gy, gz

The type placeholder T indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels

for more details.

2.4.4 Advanced Topics

Write a function with training/test mode

We sometimes want to make a function behave differently in training and test modes. The training/test mode in
Chainer is configured by chainer.config. This is a thread-local configuration object, and users can substitute
True or False to its t rain attribute. You can refer to Configuring Chainer to see how to configure this flag as well as

other configuration items.

Here, we just show how to use this flag to make a function support training/test mode. You will need to check the
value of the boolean flag chainer.config.train and branch appropriately.

For example, consider the following simple dropout function:

def dropout (x):

xp = backend.get_array_module(x.array)
mask = 2 % (xp.random.rand(xx.shape)

return x * mask

> 0.5) .astype (x.dtype)
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This function applies dropout to each element and doubles survived elements to preserve the scale. The above imple-
mentation applies dropout even in test mode, but it is not a desired behavior. We can fix it as follows:

def dropout (x) :
if not chainer.config.train:
return x

xp = backend.get_array_module (x.array)
mask = 2 % (xp.random.rand(xx.shape) > 0.5).astype (x.dtype)
return x * mask

The function now supports test mode. Note that you usually do not have to implement your own dropout function
because dropout () is officially provided.

Testing Functions

In order to isolate the cause of learning failure from implementation bugs, it is important to test function implemen-
tations. Chainer provides simple utilities to help writing unit tests. They are defined in the gradient_check
module.

The most important test utility is the numerical grad () function. This function computes the numerical gradient
of given function using finite differences. It can be used as follows:

x = np.random.randn (4, 3).astype(np.float32)

gy = np.ones( (4, 3), dtype=np.float32)

f = lambda: (x *» X,)

gx = gradient_check.numerical_grad(f, (x,), (gy,))

f is a closure that returns a tuple of array(s) computed from input arrays. The second and third arguments of
numerical_grad () are tuples of input arrays and output gradient arrays, respectively. The code above computes
the numerical gradients of sum (f (x) ), where sum indicates the summation over all elements. The summation can
be weighted by changing gy. numerical grad () function also accepts additional eps argument, which indicates
the quantization width of finite differences.

Note: numerical_grad () function accepts both CPU and GPU arrays. Note that we cannot mix CPU and GPU
arrays.

Another utility is chainer.testing.assert_allclose () function. This is similar to numpy.testing.
assert_allclose () function. The difference is that Chainer’s version accepts CPU and GPU arrays as inputs. We
can mix them in one invocation of chainer.testing.assert_allclose (). The default values of optional
arguments are also different.

Here is a typical usage of gradient checking utilities. This is a test example of functions.relu () function:

import unittest
from chainer import testing

class TestRelLU (unittest.TestCase) :
def test_backward_cpu(self) :
x = Variable (np.random.randn (3, 2).astype(np.float32))
vy F.relu(x)
y.grad = np.random.randn (3, 2).astype(np.float32)
y.backward (retain_grad=True)

(continues on next page)
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def f():
return F.relu(x) .array,

gx, = gradient_check.numerical_grad(f, (x.array,), (y.grad,))
testing.assert_allclose(gx, x.grad)

The first four lines of the test code are simple forward and backward computation of ReLU function. The next two lines
compute numerical gradient using the same forward function without backward routine. And at last, we compare these
two results elementwise. Note that the above test code can be easily modified to test GPU version just by replacing
CPU arrays to GPU arrays.

In most cases, we do not write the code like the above explicitly because Chainer offers a utility function chainer.
gradient_check.check_backward () that follows this procedure.

import unittest
from chainer import gradient_check

class TestRelLU (unittest.TestCase) :
def test_backward_cpu(self) :

def f (x):
return F.relu(x)

X

np.random.randn (3, 2).astype(np.float32)
y_grad = np.random.randn (3, 2).astype(np.float32)

gradient_check.check_backward(f, x, y_grad, atol=le-4, rtol=le-4)

You can find many examples of function tests under tests/chainer_tests/functions_tests directory.

You canuse chainer.gradient_check.check_double backward () torun gradient check for the second
order gradient computed by new-style functions. This function runs two backwpropagations; first to compute the
gradient gx of y w.r.t. x, and second to compute the gradient of gx w.r.t. x. It can be used like check_backward (),
but check_double backward () expects an additional argument x_grad_grad, which is an array or a tuple
of arrays used for initializing the gradient array of each gradient w.r.t. an input. In other words, this argument is used
to initialize gx . grad for the second backprop.

2.4.5 Implementing User-Defined Links

Some functions are meant to be combined with parameters. In such case, it is useful to write a small link that wraps the
function. We have already seen how to define a chain that wraps other links (by inheriting Chain class) in Creating
Models. Here we study how to define a link that does not hold any other links.

As the first example, suppose that we want to implement elementwise product function between the input array and
the parameter array. It can be defined as follows:

class EltwiseParamProduct (Link) :
def _ _init__ (self, shape):
super (EltwiseParamProduct, self).__ _init__ ()
with self.init_scope():
self.W = chainer.Parameter (initializers.Normal (scale=1.), shape)

def _ call_ (self, x):
return self.W » x
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For another example, assume we want to define a simple linear layer. It is already defined as chainer.links.
Linear, so this is an educational example. The linear layer is divided into two parts: a function and its wrapper link.
First, we have to define a function on variables:

class LinearFunction (FunctionNode) :
def forward(self, inputs):
x, W, b = inputs
return x.dot (W.T) + b,

def backward(self, inputs, grad_outputs):
x, W, b = inputs
gy, = grad_outputs

gx = gy.dot (W)

gW = gy.T.dot (x)

gb = gy.sum(axis=0)
return gx, gW, gb

def linear(x, W, Db):
return LinearFunction() (x, W, b)

This function takes three arguments: input, weight, and bias. It can be used as a part of model definition, though is
inconvenient since the user have to manage the weight and bias parameters directly. In order to make a convenient
module, let’s wrap it into a link:

class Linear (Link):
def _ init_ (self, in_size, out_size):
super (Linear, self).__init__ ()
with self.init_scope():
self.W = chainer.Parameter (
initializers.Normal (1. / math.sqgrt (in_size)),
(out_size, in_size))
self.b = chainer.Parameter (0, (out_size,))

def _ call_ (self, x):
return linear(x, self.W, self.b)

This link hides the parameters of the linear layer.

Note: An advanced tip to implement functions: if you want to preserve some information between forward and
backward computations (e.g. to cache some arrays), you can store it as attributes. Be careful that it might increase the
memory consumption during the whole forward-backward computation. If you want to train very large networks on a
GPU with limited memory, it is not recommended that you cache arrays between forward and backward. There is one
exception for this: caching the output arrays does not change the memory consumption, because they are also held by
the output Variable objects.

Warning: You should not assume a one-to-one match of calls of forward and backward. Some users may call
backward more than once after one forward call.

2.4.6 Migrating From Old-Style Functions To New-Style Functions

Here are the key differences between Function and FunctionNode.
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e Implementing forward computation (difference between chainer.Function.forward() and
chainer.FunctionNode.forward())

— There are no difference between Function and FunctionNode except that the input arrays are NOT
retained by default.

If you want the inputs to be retained to use them in backward, call retain inputs () explicitly. In
other words, self.retain_inputs (()) hasno effectin FunctionNode.

* Implementing backward computation (difference between chainer.Function.backward () and
chainer.FunctionNode.backward())

— Arguments to the method has been changed.
* inputs argument is no longer passed.

You can use get_retained inputs () and get_retained outputs () to retrieve the in-
puts/outputs retained in the forward method. Note that grad_outputs and these retained in-
puts/outputs are all given as Variable objects, and backward method must return a tuple of
Variable objects.

* target_input_indexes argument has been added.

It contains a sorted indices of the input variables w.r.t. which the gradients are required. You can use
it to skip calculation of unneeded gradients. The use of target_input_indexes is optional; it
is acceptable to calculate and return all gradients.

— All inputs (grad_outputs) and retained values are given in Variable in FunctionNode, whereas
ndarray in Function.

¢ Invoking forward computation
— Functionis a callable, whereas FunctionNode is not.

You need to use f.apply ((x,)) instead of f (x). Note that apply () always returns outputs as
tuple even if the function generates only one output value.

When migrating from old-style to new-style, typically you will need to write a new function class that implements the
first-order gradient of the original function. Here is an example of rewriting old-style MyOldFunc unary function to
new-style MyFunc function.

class MyOldFunc (chainer.Function) :

def forward(self, inputs):

x, = inputs
# forward computation code
return vy,

def backward(self, inputs, grad_outputs):
x, = 1nputs
gy, = grad_outputs
# backward computation code
return gx,

class MyFunc (chainer.FunctionNode) :

def forward(self, inputs):
self.retain_inputs ((0,))
x, = inputs
# forward computation code in MyOldFunc
return vy,

(continues on next page)
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def backward(self, target_input_indexes, grad_outputs):
x, = self.get_retained_inputs ()
gy, = grad_outputs
gx, = MyFuncGrad() .apply((x, gy))
return gx,

class MyFuncGrad (chainer.FunctionNode) :

def forward(self, inputs):
X, gy = inputs
# backward computation code in MyOldFunc
return gx,

def backward(self, target_input_indexes, grad_outputs):
# You can leave this unimplemented unless you need to compute
# higher-order derivative using this function.
raise NotImplementedError ()

2.4.7 Implementing Old-Style Functions

Note: As noted in the New-Style v.s. Old-Style Functions, we recommend that you use new-style for newly imple-
mented functions. This section uses the same example as in /mplementing New-Style Functions but using old-style.

First, suppose we want to define an elementwise function f(z,y,z) = x * y + z. While it is possible to implement
this equation using a combination of the » and + functions, defining it as a single function may reduce memory
consumption, so it is not only a toy example. Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU. Old-style functions must inherit the Function class. The
skeleton of a function looks like:

class MulAdd (Function) :
def forward_cpu(self, inputs):
# do forward computation on CPU
return some_tuple

def backward_cpu(self, inputs, grad_outputs):
# do backward computation on CPU
return some_tuple

We must implement forward_cpu () and backward_cpu () methods. The non-self arguments of these functions
are tuples of array(s), and these functions must return a tuple of array(s).

Warning: Be careful to return a tuple of arrays even if you have just one array to return.

MulAdd is simple and implemented as follows:

class MulAdd (Function) :
def forward_cpu(self, inputs):
X, Yy, z = inputs
W =X *Yy +t z

(continues on next page)
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return w,

def backward_cpu(self, inputs, grad_outputs):
X, y, z = inputs
gw, = grad_outputs

gx =y * gw

gy = X * gw

gz = gw

return gx, gy, gz

As per the warning above, the forward_cpu method returns a tuple of single element. Note that all arrays appear-
ing in CPU functions are numpy .ndarray. The forward function is straightforward; it unpacks the input tuple,
computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule of
differentiation of multiplication. This example just implements the rule. Look at the return values, the function just
packs the gradient of each input in the same order and returns them.

By just defining the core computation of forward and backward, Funct ion class provides a chaining logic on it (i.e.,
storing the history of computation, etc.).

Note: Assuming we implement a (forward) function y = f(x) which takes as input the vector € R™ and produces
as output a vector y € R™. Then the backward method has to compute

)\izzi{% forr=1...n

where v is the grad_outputs. Note, that the resulting vector A must have the same shape as the arguments of the
forward method.

Now let’s define the corresponding GPU methods. You can easily predict that the methods we have to write are named
forward _gpu () and backward_gpu ():

class MulAdd (Function) :
def forward_cpu(self, inputs):

def backward_cpu(self, inputs, grad_outputs):

def forward_gpu(self, inputs):
X, y, z = inputs
w =X *y t z
return w,

def backward_gpu(self, inputs, grad_outputs):
X, y, z = inputs
gw, = grad_outputs

gx =y * gw

gy = X * gw

gz = gw

return gx, gy, gz

In GPU methods, arrays are of type cupy.ndarray. We use arithmetic operators defined for this class. These
operators implement the basic elementwise arithmetics.
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You may find that the definitions of GPU methods are exactly same as those of CPU methods. In that case, we can
reduce them to forward () and backward () methods.

class MulAdd (Function) :
def forward(self, inputs):

X, y, z = inputs
W =X *y + z
return w,

def backward(self, inputs, grad_outputs):
X, y, z = inputs
gw, = grad_outputs

gx =y * gw

gy = X * gw

gz = gw

return gx, gy, gz

Since the cupy . ndarray class implements many methods of numpy . ndarray, we can write these unified meth-
ods in most cases.

The MulAdd function can be used as follows:

Variable
Variable
= Variable
MulAdd ()

np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
np.random.uniform (-1, 1, (3, 2)).astype(np.float32))
np.random.uniform (-1, 1, (3, 2)).astype(np.float32))

X, Y, Z)

=5 N K X
]

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful
that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In
Chainer, we often define a thin wrapper Python function that hide the instantiation:

def muladd(x, y, z):
return MulAdd() (x, y, 2z2)

w = muladd(x, y, z)

All functions under chainer. functions are implemented as wrapper functions like this.

Unified forward/backward methods with NumPy/CuPy functions

CuPy implements many functions that are compatible to those of NumPy. We can write unified forward/backward
methods with them. Consider that we want to write a backprop-able function f(z,y) = exp(x) + exp(y). We name
it ExpAdd here. It can be written straight-forward as follows:

from chainer.backends import cuda

class ExpAdd (Function) :
def forward_cpu(self, inputs):

X, y = inputs
Z = np.exp(x) + np.exp(y)
return z,

def backward_cpu(self, inputs, grad_outputs):
x, y = inputs
gz, = grad_outputs

(continues on next page)
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gx = gz * np.exp(x)
gy = gz * np.exp(y)
return gx, gy

def forward_gpu(self, inputs):
cupy = cuda.cupy
X, y = inputs
Z = Ccupy.exp(x) + cupy.exp(y)
return z,

def backward_gpu(self, inputs, grad_outputs):
cupy = cuda.cupy
X, y = inputs
gz, = grad_outputs

gx = gz * Ccupy.exp (x)
gy = gz * cupy.exp (y)
return gx, gy

def expadd(x, vy):
return ExpAdd() (x, V)

Note: Here we used chainer.backends.cuda. cupy instead of directly accessing cupy. This is because the
cupy module cannot be imported if the CUDA is not installed. In order to keep the implementation valid in non-
CUDA environment, we have to defer the access to the cupy module. Note that the chainer.backends. cuda
module can be imported even if the CUDA is not installed. Of course, the module in such environment is almost
useless, but if the interpreter does not run through the code accessing CUDA-dedicated functions, the code is still
valid.

The CPU and GPU implementations are almost same, except that numpy is replaced by cupy in GPU methods. We
can unify these functions using the chainer.backend.get_array_module () function. This function accepts
arbitrary number of arrays, and returns an appropriate module for them. See the following code:

class ExpAdd (Function) :
def forward(self, inputs):
xp = backend.get_array_module (xinputs)

X, y = inputs
zZ = xp.exp(x) + xp.exp(y)
return z,

def backward(self, inputs, grad_outputs):
xp = backend.get_array_module (xinputs)
X, y = inputs
gz, = grad_outputs

gx = gz * Xp.exp (X)
gy = gz * xp.exp(y)
return gx, gy

def expadd(x, y):
return ExpAdd() (x, V)

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found,
get_array_module () function always returns numpy. We often use the name xp for the variadic module name,
which is analogous to the abbreviation np for NumPy and cp for CuPy.
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Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it
invokes two kernels during each of forward (w = x = y + z)and backward (gx = v  gwand gy = x =
gw) computations. It might hurt performance, since the intermediate temporary arrays are read and written by possibly
different GPU cores, which consumes much bandwidth. We can reduce the number of invocations by defining our own
kernel. It also reduce the memory consumption.

Most functions only require elementwise operations like MulAdd. CuPy provides a useful tool to define elemen-
twise kernels, the cupy.ElementwiseKernel class, and Chainer wraps it by chainer.backends.cuda.
elementwise () function. Our MulAdd implementation can be improved as follows:

class MulAdd (Function) :
def forward_cpu(self, inputs):

def backward_cpu(self, inputs, grad_outputs):

def forward_gpu(self, inputs):
cupy = cuda.cupy

X, y, z = inputs
w = cuda.elementwise (
'float32 x, float32 y, float32 z',
'float32 w',
'w=x xy + z',
'muladd_fwd') (x, vy, z)
return w,

def backward_gpu(self, inputs, grad_outputs):
X, y, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise (
'float32 x, float32 y, float32 gw',
'float32 gx, float32 gy',

rro

gx =y * gw,
gy = X * gw,

rro
’

'muladd_bwd') (x, y, gw)

gz = gw
return gx, gy, gz

chainer.backends.cuda.elementwise () function accepts the essential implementation of the kernel func-
tion, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable).
In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and
an argument name.

2. Output argument list in the same format as the input argument list.
3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.

4. Name of the kernel function, which is shown in debuggers and profilers.
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Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by
chainer.backends.cuda.elementwise ().

The first one is binary caching: chainer.backends.cuda.elementwise () function caches the compiled
binary in the $ (HOME) /.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if
the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order
to execute it. chainer.backends.cuda.elementwise () function memoizes the arguments and the current
device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic
kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single
character as type specifier:

class MulAdd (Function) :
def forward_cpu(self, inputs):

def backward_cpu(self, inputs, grad_outputs):

def forward_gpu(self, inputs):
cupy = cuda.cupy

X, y, z = inputs

w = cuda.elementwise (
'T x, Ty, T z',
'Tw',

w=x*y +z',
'muladd_fwd') (x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
X, y, z = inputs
gw, = grad_outputs

gx, gy cuda.elementwise (
'T %, Ty, T gw',
'T gx, T gy',

rro

gx =y * gw,
gy = X *x gw,

rro
I4

'muladd_bwd') (x, y, gw)

gz = gw
return gx, gy, gz

The type placeholder T indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels
for more details.

2.5 Creating Models

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.
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import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

Most neural network architectures contain multiple links. For example, a multi-layer perceptron consists of multiple
linear layers. We can write complex procedures with parameters by combining multiple links like this:

>>> 11 = L.Linear (4, 3)
>>> 12 L.Linear (3, 2)

>>> def my_forward(x):
h = 11 (%)
return 12 (h)

Here the L indicates the 1inks module. A procedure with parameters defined in this way is hard to reuse. More
Pythonic way is combining the links and procedures into a class:

>>> class MyProc (object) :
def _ init_ (self):
self.ll = L.Linear (4, 3)
self.12 = L.Linear (3, 2)

def forward(self, x):
h = self.1l1(x)
return self.12 (h)

In order to make it more reusable, we want to support parameter management, CPU/GPU migration, robust and flexible
save/load features, etc. These features are all supported by the Chain class in Chainer. Then, what we have to do
here is just define the above class as a subclass of Chain:

>>> class MyChain (Chain) :
def _ init_ (self):
super (MyChain, self).__init__ ()
with self.init_scope():
self.11 = L.Linear (4, 3)
self.12 = L.Linear (3, 2)

def forward(self, x):
h = self.11(x)
return self.12 (h)

It shows how a complex chain is constructed by simpler links. Links like 11 and 12 are called child links of MyChain.
Note that Chain itself inherits Link. It means we can define more complex chains that hold MyChain objects as
their child links.

Note: We often define a single forward method of a link by the forward operator. Such links and chains are callable
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and behave like regular functions of Variables.

Another way to define a chain is using the ChainList class, which behaves like a list of links:

>>> class MyChain2 (ChainList) :
def _ init_ (self):
super (MyChain2, self).__init__ (
L.Linear (4, 3),
L.Linear (3, 2),

def forward(self, x):
h = self[0] (x)
return self[1] (h)

ChainList can conveniently use an arbitrary number of links, however if the number of links is fixed like in the above
case, the Chain class is recommended as a base class.

2.6 Optimizer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

From the previous guide on Creating Models, let’s use the MyChain class:

>>> class MyChain (Chain) :
def = init__ (self):
super (MyChain, self).__init__ ()
with self.init_scope():
self.11 = L.Linear (4, 3)
self.12 = L.Linear (3, 2)

def forward(self, x):
h = self.11(x)
return self.12 (h)

To tune parameters values to minimize loss, etc., we have to optimize them by the Optimizer class. It runs a
numerical optimization algorithm on a given link. Many algorithms are implemented in the opt imizers module.
Here we use the simplest one, called Stochastic Gradient Descent (SGD):
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>>> model = MyChain ()
>>> optimizer = optimizers.SGD () .setup (model)

The method setup () prepares for the optimization given a link.

Some parameter/gradient manipulations, e.g. weight decay and gradient clipping, can be done by setting hook func-
tions to the optimizer. Hook functions are called after the gradient computation and right before the actual update of
parameters. For example, we can set weight decay regularization by running the next line beforehand:

>>> optimizer.add_hook (chainer.optimizer_hooks.WeightDecay (0.0005))

Of course, you can write your own hook functions. It should be a function or a callable object.

There are two ways to use the optimizer. One is using it via Trainer, which we will see in the following sections.
The other way is using it directly. We here review the latter case. To use the optimizer in an automated fashion, see
the Trainer guide.

There are two further ways to use the optimizer directly. One is manually computing gradients and then calling the
update () method with no arguments. Do not forget to clear the gradients beforehand!

>>> x = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> model.cleargrads ()

>>> # compute gradient here...

>>> loss = F.sum(model (chainer.Variable(x)))

>>> loss.backward()

>>> optimizer.update ()

The other way is just passing a loss function to the update () method. In this case, cleargrads () is automatically
called by the update method, so the user does not have to call it manually.

>>> def lossfun(argl, arg2):
# calculate loss
loss = F.sum(model (argl - arg2))
return loss

>>> argl = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> arg2 = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> optimizer.update (lossfun, chainer.Variable(argl), chainer.Variable (arg?2))

See chainer.Optimizer.update () for the full specification.

2.7 Trainer

When we want to train neural networks, we have to run training loops that update the parameters many times. A
typical training loop consists of the following procedures:

1. Iterations over training datasets
. Preprocessing of extracted mini-batches
. Forward/backward computations of the neural networks

2

3

4. Parameter updates

5. Evaluations of the current parameters on validation datasets
6

. Logging and printing of the intermediate results
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Chainer provides a simple yet powerful way to make it easy to write such training processes. The training loop
abstraction mainly consists of two components:

* Dataset abstraction. It implements 1 and 2 in the above list. The core components are defined in the dataset
module. There are also many implementations of datasets and iterators in datasets and iterators mod-
ules, respectively.

e Trainer. It implements 3, 4, 5, and 6 in the above list. The whole procedure is implemented by Trainer.
The way to update parameters (3 and 4) is defined by Updater, which can be freely customized. 5 and 6 are
implemented by instances of Extension, which appends an extra procedure to the training loop. Users can
freely customize the training procedure by adding extensions. Users can also implement their own extensions.

2.8 Trainer Extensions

In this section, you will learn about the following topics:
* How to create your own trainer extension
— by defining a simple function
— by defining a function decorated with @make_extension
— by defining a class inherited from Extension class

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

2.8.1 What is trainer Extension?

Extension is a callable object that takes a Trainer object as an argument. By adding an Extensionto a
Trainer using the extend () method, the Extension will be called according to the schedule specified by using
a trigger object (See the details in /. trigger)

The Trainer object contains all information used in a training loop, e.g., models, optimizers, updaters, iterators, and
datasets, etc. This makes it possible to change settings such as the learning rate of an optimizer.

2.8.2 Write a simple function

You can make a new Extension by writing a simple function which takes a Trainer object as its argument.
For example, when you want to reduce the learning rate periodically during training, an 1r_drop extension can be
written as follows:
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def lr_drop(trainer):
trainer.updater.get_optimizer ('main').lr %= 0.1

Then you can add this function to a Trainer object via extend () method.

trainer.extend (lr_drop, trigger=(10, 'epoch'))

It lowers the learning rate every 10 epochs by multiplying 0.1 with the current learning rate.

2.8.3 Write a function decorated with @make_extension

make_extension () is a decorator that adds some attributes to a given function. For example, the simple extension
we created above can be written in this form:

@training.make_extension (trigger=(10, 'epoch'))
def lr_drop(trainer):
trainer.updater.get_optimizer ('main').lr %= 0.1

The difference between the above example and this is whether it has a default trigger or not. In the latter case,
lr_drop () has its default trigger so that unless another trigger is specified via extend () method, the
trigger specified in make_extension () is used by default. The code below acts the same as the former exam-
ple, i.e., it reduces the learning rate every 10 epochs.

trainer.extend (lr_drop)

There are several attributes you can add using the make_extension () decorator.

1. trigger

trigger is an object that takes a Trainer object as an argument and returns a boolean value. If a tuple in the form

(period, unit) is given as a trigger, it will be considered as an TntervalTrigger that invokes the extension
every period unit. For example, when the given tuple is (10, 'epoch'), the extension will run every 10
epochs.

trigger can also be given to the extend () method that adds an extension to a Trainer object. The priority of
triggersis as follows:

* When both extend () and a given Extensionhave triggers, the trigger givento extend () is used.

* When None is given to extend () as the trigger argument and a given Extension has trigger, the
trigger given to the Extension is used.

¢ When both trigger attributes in extend () and Extension are None, the Extension will be fired
every iteration.

See the details in the documentation of get_ trigger () for more information.
2. default_name

An Extension is kept in a dictionary which is a property in a Trainer. This argument gives the name of the
Extension. Users will see this name in the keys of the snapshot which is a dictionary generated by serialization.
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3. priority
As a Trainer object can be assigned multiple Ext ension objects, the execution order is defined according to the
following three values:

e PRIORITY_WRITER: The priority for extensions that write some records to the observation dictionary. It
includes cases that the extension directly adds values to the observation dictionary, or the extension uses the
chainer.report() function to report values to the observation dictionary. Extensions which write something to
reporter should go first because other Extensions which read those values may be added.

e PRIORITY_EDITOR: The priority for extensions that edit the observation dictionary based on already reported
values. Extensions which edit some values of reported ones should go after the extensions which write values
to reporter but before extensions which read the final values.

* PRIORITY_READER: The priority for extensions that only read records from the observation dictionary. This
is also suitable for extensions that do not use the observation dictionary at all. Extensions which read the
reported values should be fired after all the extensions which have other priorities, e.g, PRIORITY_WRITER
and PRIORITY_ EDITOR because it should read the final values.

See the details in the documentation of Trainer for more information.
4. finalizer

You can specify a function to finalize the extension. It is called once at the end of the training loop, i.e., when run ()
has finished.

5. initializer

You can specify a function which takes a Trainer object as an argument to initialize the extension. It is called once
before the training loop begins.

2.8.4 Write a class inherited from the Extension class

This is the way to define your own extension with the maximum degree of freedom. You can keep any values inside
of the extension and serialize them.

As an example, let’s make an extension that drops the learning rate polynomially. It calculates the learning rate by this

equation:
¢ power
7 = Ninit (1 - )
tmax

The learning rate will be dropped according to the curve below with power = 0.5:
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class PolynomialShift (training.Extension) :

def _ _init__ (self, attr, power, stop_trigger, batchsize=None,
len_dataset=None) :
self._attr = attr
self._power = power
self._init = None
self._t =0

self._last_value = 0

if stop_trigger[l] == 'iteration':
self._maxiter = stop_trigger[0]

elif stop_trigger[l] == 'epoch':

if batchsize is None or len_dataset is None:
raise ValueError (
'"When the unit of \'stop_trigger\' is \'epoch\', '
'"\'batchsize\' and \'len_dataset\' should be '
'specified to calculate the maximum iteration.')
n_iter_per_epoch = len_dataset / float (batchsize)
self._maxiter = float (stop_trigger[0] * n_iter_per_epoch)

def initialize(self, trainer):
optimizer = trainer.updater.get_optimizer ('main')
# ensure that _init is set
if self._init is None:
self._init = getattr(optimizer, self._attr)

def _ call_ (self, trainer):

(continues on next page)
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(continued from previous page)

self._t += 1

optimizer = trainer.updater.get_optimizer ('main')

value = self._init x ((1 - (self._t / self._maxiter)) *+% self._power)
setattr (optimizer, self._attr, value)

self._last_value = value

def serialize(self, serializer):
self._t = serializer('_t', self._t)
self._last_value = serializer('_last_value', self._last_value)
if isinstance(self._last_value, np.ndarray):
self._last_value = self._last_value.item()

stop_trigger = (10000, 'iteration')
trainer.extend (PolynomialShift ('1lr', 0.5, stop_trigger))

This extension PolynomialShift takes five arguments.
* attr: The name of the optimizer property you want to update using this extension.
* power: The power of the above equation to calculate the learning rate.
* stop_trigger: The trigger given to the Trainer object to specify when to stop the training loop.
* batchsize: The training mini-batchsize.
e len_dataset: The length of the dataset, i.e., the number of data in the training dataset.

This extension calculates the number of iterations which will be performed during training by using stop_trigger,
batchsize, and len_dataset, then stores it as a property _maxiter. This property will be used in the
__call__ () method to update the learning rate. The initialize () method obtains the initial learning rate
from the optimizer given to the Trainer object. The serialize () method stores or recovers the properties, _t
(number of iterations) and _last_value (the latest learning rate), belonging to this extension.

2.9 Using GPU(s) in Chainer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

In this section, you will learn about the following topics:

* Relationship between Chainer and CuPy

42 Chapter 2. Concepts Walkthrough




Chainer Documentation, Release 7.0.0b4

* Basics of CuPy

¢ Single-GPU usage of Chainer

* Multi-GPU usage of model-parallel computing

* Multi-GPU usage of data-parallel computing
After reading this section, you will be able to:

* Use Chainer on a CUDA-enabled GPU

¢ Write model-parallel computing in Chainer

» Write data-parallel computing in Chainer

2.9.1 Relationship between Chainer and CuPy

Note: Even if you have CUDA installed in your environment, you have to install CuPy separately to use GPUs. See
Working with Custom CUDA Installation for the way to set up CUDA support.

Chainer uses CuPy as its backend for GPU computation. In particular, the cupy .ndarray class is the GPU array
implementation for Chainer. CuPy supports a subset of features of NumPy with a compatible interface. It enables
us to write a common code for CPU and GPU. It also supports PyCUDA-like user-defined kernel generation, which
enables us to write fast implementations dedicated to GPU.

Note: The chainer.backends.cuda module imports many important symbols from CuPy. For example, the
cupy namespace is referred as cuda . cupy in the Chainer code. Note that the chainer.backends. cuda module
can be imported even if CUDA is not installed.

Chainer uses a memory pool for GPU memory allocation. As shown in the previous sections, Chainer constructs and
destructs many arrays during learning and evaluating iterations. It is not well suited for CUDA architecture, since
memory allocation and release in CUDA (i.e. cudaMalloc and cudaF ree functions) synchronize CPU and GPU
computations, which hurts performance. In order to avoid memory allocation and deallocation during the computation,
Chainer uses CuPy’s memory pool as the standard memory allocator. Chainer changes the default allocator of CuPy
to the memory pool, so user can use functions of CuPy directly without dealing with the memory allocator.

2.9.2 Basics of cupy.ndarray

See the documentation of CuPy for the basic usage of cupy .ndarray

CuPy is a GPU array backend that implements a subset of NumPy interface. The cupy . ndarray class is in its core,
which is a compatible GPU alternative of numpy . ndarray. CuPy implements many functions on cupy .ndarray
objects. See the reference for the supported subset of NumPy API. Understanding NumPy might help utilizing most
features of CuPy. See the NumPy documentation for learning it.

The main difference of cupy .ndarray from numpy . ndarray is that the content is allocated on the device mem-
ory. The allocation takes place on the current device by default. The current device can be changed by cupy . cuda.
Device object as follows:

with cupy.cuda.Device (1) :
x_on_gpul = cupy.array([l, 2, 3, 4, 51)
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Most operations of CuPy is done on the current device. Be careful that it causes an error to process an array on a
non-current device.

Chainer provides some convenient functions to automatically switch and choose the device. For example, the
chainer.backends.cuda.to_gpu () function copies a numpy . ndarray object to a specified device:

X_cpu = np.ones((5, 4, 3), dtype=np.float32)
X_gpu = cuda.to_gpu(x_cpu, device=1l)

It is equivalent to the following code using CuPy:

X_cpu = np.ones((5, 4, 3), dtype=np.float32)
with cupy.cuda.Device (1) :
X_gpu = cupy.array (x_cpu)

Moving a device array to the host can be done by chainer.backends.cuda.to_cpu () as follows:

x_cpu = cuda.to_cpu (x_gpu)

It is equivalent to the following code using CuPy:

with x_gpu.device:
X_Ccpu = x_gpu.get ()

Note: The with statements in these codes are required to select the appropriate CUDA device. If user uses only one de-
vice, these device switching is not needed. chainer.backends.cuda.to_cpu () and chainer.backends.
cuda.to_gpu () functions automatically switch the current device correctly.

Chainer also provides a convenient function chainer.backends.cuda.get_device from_id() and
chainer.backends.cuda.get_device from array () to select a device. The former function accepts
an integer or None. When None is given, it returns a dummy device object. Otherwise, it returns a corresponding
device object. The latter function accepts CuPy array or NumPy array. When a NumPy array is given, it returns a
dummy device object. Otherwise, it returns a corresponding device object to the give CuPy array. The dummy device
object also supports with statements like the above example but does nothing. Here are some other examples:

cuda.get_device_from_id (1) .use ()
x_gpul = cupy.empty((4, 3), dtype=cupy.float32)

with cuda.get_device_from_id(1):
x_gpul = cupy.empty((4, 3), dtype=cupy.float32)

with cuda.get_device_from_array (x_gpul) :
y_gpul = x_gpu + 1

Since it accepts NumPy arrays, we can write a function that accepts both NumPy and CuPy arrays with correct device
switching:

def addl (x):
with cuda.get_device_from_array (x) :
return x + 1

The compatibility of CuPy with NumPy enables us to write CPU/GPU generic code. It can be made easy by the
chainer.backend.get_array_module () function. This function returns the numpy or cupy module based
on arguments. A CPU/GPU generic function is defined using it like follows:
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# Stable implementation of log(l + exp(x))
def softplus (x):
xp = backend.get_array_module (x)
return xp.maximum(0, x) + xp.loglp (xp.exp(-abs(x)))

2.9.3 Run Neural Networks on a Single GPU

Single-GPU usage is very simple. What you have to do is transferring Link and input arrays to the GPU beforehand.
In this subsection, the code is based on our first MNIST example in this tutorial.

A Link object can be transferred to the specified GPU using the to_ gpu () method.

This time, we make the number of input, hidden, and output units configurable. The to_gpu () method also accepts
a device ID like model.to_gpu (0) . In this case, the link object is transferred to the appropriate GPU device. The
current device is used by default.

If we use chainer.training. Trainer, what we have to do is just let the updater know the device ID to send
each mini-batch.

updater = training.updaters.StandardUpdater (train_iter, optimizer, device=0)
trainer = training.Trainer (updater, (20, 'epoch'), out='result')

We also have to specify the device ID for an evaluator extension as well.

trainer.extend (extensions.Evaluator (test_iter, model, device=0))

When we write down the training loop by hand, we have to transfer each mini-batch to the GPU manually:

model.to_gpul()
batchsize = 100

datasize = len(x_train)
for epoch in range (20):
print ('epoch ' % epoch)
indexes = np.random.permutation (datasize)
for i in range (0, datasize, batchsize):
x = Variable (cuda.to_gpu(x_train[indexes[i : 1 + batchsize]]))
t = Variable(cuda.to_gpu(y_train[indexes[i : i + batchsize]]))

optimizer.update (model, x, t)

2.9.4 Model-parallel Computation on Multiple GPUs

Parallelization of machine learning is roughly classified into two types called “model-parallel” and ‘“data-parallel”.
Model-parallel means parallelizations of the computations inside the model. In contrast, data-parallel means paral-
lelizations using data sharding. In this subsection, we show how to use the model-parallel approach on multiple GPUs
in Chainer.

Recall the MNIST example. Now suppose that we want to modify this example by expanding the network to 6 layers
with 2000 units each using two GPUs. In order to make multi-GPU computation efficient, we only make the two
GPUs communicate at the third and sixth layer. The overall architecture looks like the following diagram:

(GPUO) input -—-+--> 11 --> 12 --> 13 ——+--> 14 ——> 15 —-> 16 ——+-—> output
\ \ \
(GPU1) +--> 11 ——> 12 ——> 13 ——+-——-> 14 ——> 15 ——> 16 ——+

We can use the above MLP chain as following diagram:
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(GPUO) input ——+--> mlpl ——+--> mlp2 -—+-—> output

(GPU1) +--> mlpl ——+--> mlp2 ——+

Let’s write a link for the whole network.

class ParallelMLP (Chain) :
def  init_ (self):
super (ParallelMLP, self)._ _init__ ()
with self.init_scope():
# the input size, 784, is inferred
self.mlpl_gpu0 = MLP (1000, 2000).to_gpu(0)
self.mlpl_gpul = MLP (1000, 2000).to_gpu(l)

# the input size, 2000, is inferred
self.mlp2_gpu0 = MLP (1000, 10).to_gpu(0)
self.mlp2_gpul = MLP (1000, 10).to_gpu(l)

def forward(self, x):
# assume x 1s on GPU 0
z0 = self.mlpl_gpu0 (x)
z1l = self.mlpl_gpul (F.copy(x, 1))

# sync
hO = F.relu(z0 + F.copy(zl, 0))
hl = F.relu(zl + F.copy(z0, 1))

y0 = self.mlp2_gpul (hO0)
vl self.mlp2_gpul (hl)

# sync
y = y0 + F.copy(yl, 0)
return y # output is on GPUO

Recall that the Zink. to_gpu () method returns the link itself. The copy () function copies an input variable to
specified GPU device and returns a new variable on the device. The copy supports backprop, which just reversely
transfers an output gradient to the input device.

Note: Above code is not parallelized on CPU, but is parallelized on GPU. This is because all the functions in the
above code run asynchronously to the host CPU.

An almost identical example code can be found at examples/mnist/train_mnist_model_parallel.py.

2.9.5 Data-parallel Computation on Multiple GPUs with Trainer

Data-parallel computation is another strategy to parallelize online processing. In the context of neural networks, it
means that a different device does computation on a different subset of the input data. In this subsection, we review
the way to achieve data-parallel learning on two GPUs.

Suppose again our task is the MNIST example. This time we want to directly parallelize the three-layer network. The
most simple form of data-parallelization is parallelizing the gradient computation for a distinct set of data. First, define
a model and optimizer instances:
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model = L.Classifier (MLP (1000, 10)) # the input size, 784, is inferred
optimizer = optimizers.SGD ()
optimizer.setup (model)

Recall that the MLP link implements the multi-layer perceptron, and the C1assifier link wraps it to provide a clas-
sifier interface. We used StandardUpdater in the previous example. In order to enable data-parallel computation
with multiple GPUs, we only have to replace it with ParallelUpdater.

updater = training.updaters.ParallelUpdater (train_iter, optimizer,
devices={'main': 0, 'second': 1})

The devices option specifies which devices to use in data-parallel learning. The device with name 'main’ is used
as the main device. The original model is sent to this device, so the optimization runs on the main device. In the above
example, the model is also cloned and sent to GPU 1. Half of each mini-batch is fed to this cloned model. After every
backward computation, the gradient is accumulated into the main device, the parameter update runs on it, and then the
updated parameters are sent to GPU 1 again.

See also the example code in examples/mnist/train_mnist_data_parallel.py.

2.9.6 Data-parallel Computation on Multiple GPUs without Trainer

We here introduce a way to write data-parallel computation without the help of Trainer. Most users can skip
this section. If you are interested in how to write a data-parallel computation by yourself, this section should be
informative. It is also helpful to, e.g., customize the ParallelUpdater class.

We again start from the MNIST example. At this time, we use a suffix like _0 and _1 to distinguish objects on each
device. First, we define a model.

model_0 = L.Classifier (MLP (1000, 10)) # the input size, 784, is inferred

We want to make two copies of this instance on different GPUs. The Link. to_gpu () method runs in place, so we
cannot use it to make a copy. In order to make a copy, we can use Link.copy () method.

model_1 = model_0.copy ()
model_0.to_gpu (0)
model_1.to_gpu(l)

The Link. copy () method copies the link into another instance. It just copies the link hierarchy, and does not copy
the arrays it holds.

Then, set up an optimizer:

optimizer = optimizers.SGD()
optimizer.setup (model_0)

Here we use the first copy of the model as the master model. Before its update, gradients of model_1 must be
aggregated to those of model_0.

Then, we can write a data-parallel learning loop as follows:

batchsize = 100

datasize = len(x_train)
for epoch in range (20):
print ('epoch ' % epoch)
indexes = np.random.permutation (datasize)

for i in range (0, datasize, batchsize):

(continues on next page)
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(continued from previous page)

x_batch = x_train[indexes[i1i : 1 + batchsize]]
y_batch y_train[indexes[i : i1 + batchsize]]

x0 = Variable
t0 = Variable
x1 = Variable
tl = Variable

cuda.to_gpu
cuda.to_gpu
cuda.to_gpu
cuda.to_gpu

x_batch[:batchsize//2], 0
y_batch[:batchsize//2], O
x_batch[batchsize//2:]1, 1
y_batch[batchsize//2:], 1

4

(
(
(
(

4

loss_0 = model_0(x0, tO0)
loss_1 model_1(x1, tl)

model_0.cleargrads ()
model_1l.cleargrads ()

loss_0.backward()
loss_1.backward ()

model_0.addgrads (model_1)
optimizer.update ()

model_1.copyparams (model_0)

Do not forget to clear the gradients of both model copies! One half of the mini-batch is forwarded to GPU O, the
other half to GPU 1. Then the gradients are accumulated by the Link.addgrads () method. This method adds the
gradients of a given link to those of the self. After the gradients are prepared, we can update the optimizer in usual
way. Note that the update only modifies the parameters of model_0. So we must manually copy them to model_1
using Link.copyparams () method.

Note: If the batch size used in one model remain the same, the scale of the gradient is roughly proportional to the
number of models, when we aggregate gradients from all models by chainer.Link.addgrads (). So you need
to adjust the batch size and/or learning rate of the optimizer accordingly.

Now you can use Chainer with GPUs. All examples in the examples directory support GPU computation, so please
refer to them if you want to know more practices on using GPUs. In the next section, we will show how to define
a differentiable (i.e. backpropable) function on Variable objects. We will also show there how to write a simple
(elementwise) CUDA kernel using Chainer’s CUDA utilities.

2.10 Type Checks

In this section, you will learn about the following things:
* Basic usage of type check
¢ Detail of type information
¢ Internal mechanism of type check
* More complicated cases
e Call functions
* Typical type check example

After reading this section, you will be able to:
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* Write a code to check types of input arguments of your own functions

2.10.1 Basic usage of type check

When you call a function with an invalid type of array, you sometimes receive no error, but get an unexpected result
by broadcasting. When you use CUDA with an illegal type of array, it causes memory corruption, and you get a
serious error. These bugs are hard to fix. Chainer can check preconditions of each function, and helps to prevent such
problems. These conditions may help a user to understand specification of functions.

Each implementation of Function has a method for type check, check type forward (). This function is
called just before the forward () method of the Function class. You can override this method to check the
condition on types and shapes of arguments.

check_type forward () getsan argument in_types:

def check_type_forward(self, in_types):

in_types is an instance of TypeInfoTuple, which is a sub-class of tuple. To get type information about the
first argument, use in_types [0]. If the function gets multiple arguments, we recommend to use new variables for
readability:

x_type, y_type = in_types

In this case, x_type represents the type of the first argument, and y_ t ype represents the second one.

We describe usage of in_types with an example. When you want to check if the number of dimension of x_type
equals to 2, write this code:

utils.type_check.expect (x_type.ndim == 2)

When this condition is true, nothing happens. Otherwise this code throws an exception, and the user gets a message
like this:

Traceback (most recent call last):

chainer.utils.type_check.InvalidType: Expect: in_types[0].ndim == 2
Actual: 3 != 2

This error message means that “ndim of the first argument expected to be 2, but actually it is 3”.

2.10.2 Detail of type information

You can access three information of x_type.
* .shape is a tuple of ints. Each value is size of each dimension.
* .ndimis int value representing the number of dimensions. Note that ndim == len (shape)
e .dtype is numpy .dtype representing data type of the value.

You can check all members. For example, the size of the first dimension must be positive, you can write like this:

utils.type_check.expect (x_type.shape[0] > 0)

You can also check data types with . dtype:
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utils.type_check.expect (x_type.dtype == np.float64)

And an error is like this:

Traceback (most recent call last):

chainer.utils.type_check.InvalidType: Expect: in_types[0].dtype == <class 'numpy.

—float64'>
Actual: float32 != <class 'numpy.float64'>

You can also check kind of dtype. This code checks if the type is floating point

’utils.type_check.expect(x_type.dtype.kin == 'f")

You can compare between variables. For example, the following code checks if the first argument and the second
argument have the same length:

’utils.type_check.expect(x_type.shape[l] == y_type.shape[l])

2.10.3 Internal mechanism of type check

How does it show an error message like "in_types[0] .ndim == 2"?If x_type is an object containing ndim
member variable, we cannot show such an error message because this equation is evaluated as a boolean value by
Python interpreter.

Actually x_type is a Expr objects, and doesn’t have a ndim member variable itself. Expr represents a syntax
tree. x_type.ndim makes a Expr object representing (getattr, x_type, 'ndim').x_type.ndim ==
2 makes an object like (eq, (getattr, x_type, 'ndim'), 2).expect () getsa Expr object and eval-
uates it. When it is True, it causes no error and shows nothing. Otherwise, this method shows a readable error
message.

If you want to evaluate a Expr object, call eval () method:

actual_type = x_type.eval()

actual_type is an instance of TypeInfo, while x_type is an instance of Expr. In the same way, x_type.
shape[0] .eval () returns an int value.

2.10.4 More powerful methods

Expr class is more powerful. It supports all mathematical operators such as + and x. You can write a condition that
the first dimension of x_type is the first dimension of y_t ype times four:

utils.type_check.expect (x_type.shape[0] == y_type.shapel[0] * 4)

When x_type.shape[0] == 3and y_type.shape[0] == 1, userscan get the error message below:

Traceback (most recent call last):

chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_types[1l].

—shape[0] * 4
Actual: 3 != 4

To compare a member variable of your function, wrap a value with Variable to show readable error message:
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’x_type.shape[O] == utils.type_check.Variable(self.in_size, "in_ size")

This code can check the equivalent condition below:

’x_type.shape[@] == self.in_size

However, the latter condition doesn’t know the meaning of this value. When this condition is not satisfied, the latter
code shows unreadable error message:

chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == 4 # what does
—'4'" mean?
Actual: 3 != 4

Note that the second argument of utils.type check.Variable is only for readability.

The former shows this message:

chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_size # OK
— in_size' 1is a value that is given to the constructor

7

Actual: 3 != 4 # You can also check actual value here

2.10.5 Call functions

How to check summation of all values of shape? Expr also supports function call:

sum = utils.type_check.Variable (np.sum, 'sum')
utils.type_check.expect (sum(x_type.shape) == 10)

Why do we need to wrap the function numpy . sum with utils. type_check.Variable? x_type.shape is
not a tuple but an object of Expr as we have seen before. Therefore, numpy . sum (x_type.shape) fails. We
need to evaluate this function lazily.

The above example produces an error message like this:

Traceback (most recent call last):

chainer.utils.type_check.InvalidType: Expect: sum(in_types[0].shape) == 10
Actual: 7 != 10

2.10.6 More complicated cases

How to write a more complicated condition that can’t be written with these operators? You can evaluate Expr and get
its result value with eval () method. Then check the condition and show warning message by hand:

x_shape = x_type.shape.eval () # get actual shape (int tuple)
if not more_complicated_condition (x_shape) :

expect_msg = 'Shape is expected to be ...'

actual_msg = 'Shape is ...'

raise utils.type_check.InvalidType (expect_msg, actual_msqg)

Please write a readable error message. This code generates the following error message:
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Traceback (most recent call last):

chainer.utils.type_check.InvalidType: Expect: Shape is expected to be
Actual: Shape is

2.10.7 Typical type check example

We show a typical type check for a function.

First check the number of arguments:

utils.type_check.expect (in_types.size() == 2)

in_types.size () returns a Expr object representing the number of arguments. You can check it in the same
way.

And then, get each type:

x_type, y_type = in_types

Don’t get each value before checking in_types.size (). When the number of argument is illegal, t ype_check.
expect might output unuseful error messages. For example, this code doesn’t work when the size of in_types is
0:

utils.type_check.expect (
in_types.size() == 2,
in_types[0] .ndim == 3,

After that, check each type:

utils.type_check.expect (

x_type.dtype == np.float32,
x_type.ndim == 3,
Xx_type.shape[l] == 2,
)
The above example works correctly even when x_type.ndim == 0 as all conditions are evaluated lazily.

2.11 Serializers — saving and loading

Serializer is a simple interface to serialize or deserialize an object. Link, Optimizer, and Trainer support
serialization.

Concrete serializers are defined in the serializers module. It supports NumPy NPZ and HDFS5 formats.
For example, we can serialize a link object into NPZ file by the save _npz () function:

Assuming we have defined a model:

>>> from chainer import serializers
>>> sgserializers.save_npz ('my.model', model)

This saves the parameters of model into the file 'my.model"' in NPZ format. The saved model can be read back
from my . mode1 back into model by the 1oad_npz () function:

52 Chapter 2. Concepts Walkthrough




Chainer Documentation, Release 7.0.0b4

>>> serializers.load_npz('my.model', model)

Note: Note that only the parameters and the persistent values are serialized by this serialization code. Other at-
tributes are not saved automatically. You can register arrays, scalars, or any serializable objects as persistent values
by the add _persistent () method. The registered values can be accessed by attributes of the name passed to the
add_persistent method.

The state of an optimizer can also be saved by the same functions:

>>> sgserializers.save_npz('my.state', optimizer)
>>> serializers.load npz('my.state', optimizer)

Note: Note that serialization of optimizer only saves its internal states including number of iterations, momentum
vectors of MomentumSGD, etc. It does not save the parameters and persistent values of the target link. We have to
explicitly save the target link with the optimizer to resume the optimization from saved states. This can be done by
saving the entire Trainer object, like this:

>>> serializers.save_npz('my.state', trainer)

Support of the HDF5 format is enabled if the hSpy package is installed. Serialization and deserialization with the
HDFS5 format are almost identical to those with the NPZ format; just replace save _npz () and l1oad npz () by
save_hdf5 () and load_hdf5 (), respectively.

2.12 Customize your own logging

In this section, you will learn about the following things:
e Whatis chainer.Reporter?
* How to report logging with chainer.Reporter?
* The naming rule for the reported values.

After reading this section, you will be able to:

¢ Write your own report.

2.12.1 What is Reporter?

chainer.Reporter isused to collect values that users want to watch. The reporter object manipulates a dictionary
from value names to the actually observed values. We call this dictionary as observation.

See the following example:

>>> from chainer import Reporter, report, report_scope

>>>
>>> reporter = Reporter ()

>>> observer = object () # it can be an arbitrary (reference) object
>>> reporter.add_observer ('my_observer:', observer)

>>> observation = {}

>>> with reporter.scope (observation) :

(continues on next page)
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reporter.report ({'x': 1}, observer)

>>> observation
{'my_observer:/x"': 1}

When a value is passed to the reporter, an object called observer can be optionally attached. In this case,
the name of the observer is added as the prefix of the value name. The observer name should be registered
beforehand. Using reporter. scope, you can select which observation to save the observed values.

There are also a global API chainer. report (), which reports observed values with the current reporter object. In
this case, current means which with statement scope the current code line is in. This function calls the Reporter.
report () method of the current reporter.

>>> observation = {}
>>> with reporter.scope (observation) :
report ({'x': 1}, observer)

>>> observation
{'my_observer:/x': 1}

2.12.2 Use report in Chain or Link

The most important application of Reporter is to report observed values from each Link or Chain in the training
and validation procedures.

But, how to report the observed values from each link or chain? Shold we prepare the Reporter? No, you only need
tocall report () inchain or link, because Trainer and some extensions prepare their own Reporter object with
the hierarchy of the target link registered as observers. We can use report () function inside any links and chains to
report the observed values (e.g., training loss, accuracy, activation statistics, etc.).

See the following example:

>>> class Classifier (Chain):
def _ _init__ (self, predictor):
super (Classifier, self).__init__ ()
with self.init_scope() :
self.predictor = predictor

def forward(self, x, t):
y = self.predictor (x)

loss = F.softmax_cross_entropy(y, t)
accuracy = F.accuracy(y, t)
report ({'loss': loss, 'accuracy': accuracy}, self)

return loss

If the link is named 'main' in the hierarchy (which is the default name of the target link in the
StandardUpdater), these reported values are named 'main/loss' and 'main/accuracy’'. If these val-
ues are reported inside the Evaluator extension, 'validation/' is added at the head of the link name,
thus the item names are changed to 'validation/main/loss' and 'validation/main/accuracy'
("validation" is the default name of the Evaluator extension).
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2.12.3 Naming rule for the reported values
So, you know almost everything about Reporter. However, there is one more thing. It is what is the naming rule
for the reported values, especially when the values are reported from a link that is not the root of the link hierarchy.

As we explained in the previous section, the root of links is named as 'main' by the the StandardUpdater and
the names of reported values in the root have the prefix 'main/'. When the values are reported from a link that is
not the root of the link hierarchy, the prefix of the names are determined by the link hierarchy, or namedlinks ().

See the following example:

>>> class MLP (Chain) :
def _ init_ (self, n_units, n_out):
super (MLP, self).__init__ ()
with self.init_scope() :
# the size of the inputs to each layer will be inferred

self.1ll = L.Linear (None, n_units) # n_1in -> n_units
self.12 = L.Linear (None, n_units) # n_units -> n_units
self.13 = L.Linear (None, n_out) # n_units —-> n_out

def forward(self, x):
hl = F.relu(self.1l1l(x))
h2 = F.relu(self.12(hl))
y = self.13(h2)
report ({'sum_vy': F.sum(y)}, self)
return y

>>> model = Classifier (MLP (100, 10))

>>> for name, observer in model.namedlinks (skipself=True) :
.. print (name)

/predictor
/predictor/11
/predictor/12
/predictor/13

You can get the parameters of the link hierarchy by namedlinks (). In this example, we report 'loss' and
'accuracy' in the root of links, and 'sum_y"' in the link of ' /predictor'. So, you can access the reported
values by 'main/accuracy’', 'main/accuracy’',and 'main/predictor/sum_y"'.

See what we explained is correct:

>>> train, test = datasets.get_mnist ()
>>> train iter = iterators.Seriallterator(train, batch size=100, shuffle=True)
>>> test_ite iterators.Seriallterator (test, batch size=100, repeat=False,

—shuffle
>>> optimize = optimizers.SGD ()
>>> optimizer.setup (model)
>>> updater = training.StandardUpdater (train_iter, optimizer)
>>> trainer = training.Trainer (updater, (1, 'epoch'), out='result')
>>> trainer.extend (extensions.Evaluator (test_iter, model))
>>> trainer.extend (extensions.LogReport ())
>>> trainer.extend (extensions.PrintReport (
['epoch', 'main/accuracy', 'main/loss', 'main/predictor/sum_y', 'validation/

—main/accuracy']))

>>> trainer.run/()

epoch main/accuracy main/loss main/predictor/sum_y validation/main/accuracy
1 0.662317 1.38345 47.9927 0.8498
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CHAPTER
THREE

NEURAL NET EXAMPLES

3.1 MNIST using Trainer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

By using Trainer, you don’t need to write the training loop explicitly any more. Furthermore, Chainer provides
many useful extensions that can be used with Trainer to visualize your results, evaluate your model, store and
manage log files more easily.

This example will show how to use the Trainer to train a fully-connected feed-forward neural network on the
MNIST dataset.

Note: If you would like to know how to write a training loop without using the Trainer, please check MNIST with
a Manual Training Loop instead of this tutorial.

3.1.1 1. Prepare the dataset

Load the MNIST dataset, which contains a training set of images and class labels as well as a corresponding test set.

from chainer.datasets import mnist

train, test = mnist.get_mnist ()

Note: You can use a Python list as a dataset. That’s because Iterator can take any object as a dataset whose
elements can be accessed via [ ] accessor and whose length can be obtained with 1en () function. For example,
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train = [(x1, tl), (x2, t2), ...]

a list of tuples like this can be used as a dataset.

There are many utility dataset classes defined in datasets. It is recommended that you utilize them in the actual
applications.

For example, if your dataset consists of a number of image files, it would take a large amount of memory to load those
data into a list like above. In that case, you can use TmageDataset, which just keeps the paths to image files. The
actual image data will be loaded from the disk when the corresponding element is requested via [] accessor. Until
then, no images are loaded to the memory to reduce memory use.

3.1.2 2. Prepare the dataset iterations

Iterator creates a mini-batch from the given dataset.

batchsize = 128

train_iter = iterators.Seriallterator(train, batchsize)
test_iter = iterators.Seriallterator (test, batchsize, False, False)

3.1.3 3. Prepare the model

Here, we are going to use the same model as the one defined in MNIST with a Manual Training Loop.

class MLP (Chain) :

def _ init_ (self, n_mid_units=100, n_out=10):
super (MLP, self).__init__ ()
with self.init_scope():
self.1ll = L.Linear (None, n_mid_units)
self.12 = L.Linear (None, n_mid_units)
self.13 = L.Linear (None, n_out)

def forward(self, x):
hl = F.relu(self.11(x))
h2 = F.relu(self.12(hl))
return self.13(h2)

gpu_id = 0 # Set to -1 if you use CPU
model = MLP ()

if gpu_id >= 0:
model.to_gpu (gpu_id)

3.1.4 4. Prepare the Updater

Trainer is a class that holds all of the necessary components needed for training. The main components are shown
below.
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Basically, all you need to pass to Trainer is an Updater. However, Updater contains an Iterator and
Optimizer. Since ITterator can access the dataset and Opt im1 zer has references to the model, Updater can
access to the model to update its parameters.

So, Updater can perform the training procedure as shown below:
1. Retrieve the data from dataset and construct a mini-batch (Iterator)
2. Pass the mini-batch to the model and calculate the loss
3. Update the parameters of the model (Opt imizer)

Now let’s create the Updater object !

max_epoch = 10

# Wrap your model by Classifier and include the process of loss calculation within,,
—your model.

# Since we do not specify a loss function here, the default 'softmax_cross_entropy'
—1s used.

model = L.Classifier (model)

# selection of your optimizing method
optimizer = optimizers.MomentumSGD ()

# Give the optimizer a reference to the model

(continues on next page)
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optimizer.setup (model)

# Get an updater that uses the Iterator and Optimizer
updater = training.updaters.StandardUpdater (train_iter, optimizer, device=gpu_id)

Note: Here, the model defined above is passed to Classifier and changed to a new Chain. Classifier,
which in fact inherits from the Chain class, keeps the given Chain model in its predictor attribute. Once you
give the input data and the corresponding class labels to the model by the () operator,

1. forward () of the model is invoked. The data is then given to predictor to obtain the output y.

2. Next, together with the given labels, the output y is passed to the loss function which is determined by 1ossfun
argument in the constructor of Classifier.

3. The loss is returned as a Variable.
InClassifier,the lossfunissetto softmax cross_entropy () as default.

StandardUpdater is the simplest class among several updaters. There are also the ParallelUpdater and the
MultiprocessParallelUpdater to utilize multiple GPUs. The MultiprocessParallelUpdater uses
the NVIDIA NCCL library, so you need to install NCCL and re-install CuPy before using it.

3.1.5 5. Setup Trainer

Lastly, we will setup Trainer. The only requirement for creating a Trainer is to pass the Updater object that
we previously created above. You can also pass a stop_trigger to the second trainer argument as a tuple like
(length, unit) to tell the trainer when to stop the training. The length is given as an integer and the unit is
given as a string which should be either epoch or iteration. Without setting stop_trigger, the training will
never be stopped.

# Setup a Trainer
trainer = training.Trainer (updater, (max_epoch, 'epoch'), out='mnist_result')

The out argument specifies an output directory used to save the log files, the image files of plots to show the time
progress of loss, accuracy, etc. when you use P1otReport extension. Next, we will explain how to display or save
those information by using trainer Extension.

3.1.6 6. Add Extensions to the Trainer object

The Trainer extensions provide the following capabilities:
* Save log files automatically (LogReport)
* Display the training information to the terminal periodically (PrintReport)
* Visualize the loss progress by plotting a graph periodically and save it as an image file (P1otReport)
* Automatically serialize the state periodically (snapshot () / snapshot_object ())
* Display a progress bar to the terminal to show the progress of training (ProgressBar)
» Save the model architecture as a Graphviz’s dot file (DumpGraph ())

To use these wide variety of tools for your training task, pass Extension objects to the extend () method of your
Trainer object.
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from chainer.training import extensions

trainer.extend (extensions.LogReport ())

trainer.extend (extensions.snapshot (filename="'snapshot_ epoch-{.updater.epoch} "))
trainer.extend (extensions.snapshot_object (model.predictor, filename='model epoch-{.
—updater.epoch}'))

trainer.extend (extensions.Evaluator (test_iter, model, device=gpu_id))

trainer.extend (extensions.PrintReport ([ 'epoch', 'main/loss', 'main/accuracy',
—'validation/main/loss', 'validation/main/accuracy', 'elapsed_time']))

trainer.extend (extensions.PlotReport (['main/loss', 'validation/main/loss'], x_key=
—'epoch', file_name='loss.png'))

trainer.extend (extensions.PlotReport (['main/accuracy', 'validation/main/accuracy'], x_

—key="epoch', file_name='accuracy.png'))
trainer.extend (extensions.DumpGraph ('main/loss"))

LogReport

Collect 1oss and accuracy automatically every epoch or iteration and store the information under the 1og
file in the directory specified by the out argument when you create a Trainer object.

snapshot ()

The snapshot () method saves the Trainer object at the designated timing (default: every epoch) in the directory
specified by out. The Trainer object, as mentioned before, has an Updater which contains an Opt imizer and
a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or make
inferences using the previously trained model later.

snapshot_object ()

However, when you keep the whole Trainer object, in some cases, it is very tedious to retrieve only the inside of
the model. By using snapshot_object (), you can save the particular object (in this case, the model wrapped
by Classifier) as a separate snapshot. Classifier is a Chain object which keeps the model that is also a
Chain object as its predictor property, and all the parameters are under the predictor, so taking the snapshot
of predictor is enough to keep all the trained parameters.

This is a list of commonly used trainer extensions:

LogReport This extension collects the loss and accuracy values every epoch or iteration and stores in a log file. The
log file will be located under the output directory (specified by out argument of the Trainer object).

snapshot () This extension saves the Trainer object at the designated timing (defaut: every epoch) in the output
directory. The Trainer object, as mentioned before, has an Updater which contains an Optimizer and
a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or
make inferences using the previously trained model later.

snapshot_object () snapshot () extension above saves the whole Trainer object. However, in some cases,
it is tedious to retrieve only the inside of the model. By using snapshot_object (), you can save the
particular object (in the example above, the model wrapped by Classifier) as a separeted snapshot. Taking
the snapshot of predictor is enough to keep all the trained parameters, because Classifier (whichis a
subclass of Chain) keeps the model as its predictor property, and all the parameters are under this property.

DumpGraph () This extension saves the structure of the computational graph of the model. The graph is saved in
Graphviz dot format under the output directory of the Trainer.
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Evaluator Iterators that use the evaluation dataset and the model object are required to use Evaluator
extension. It evaluates the model using the given dataset (typically it’s a validation dataset) at the specified
timing interval.

PrintReport This extension outputs the spcified values to the standard output.
PlotReport This extension plots the values specified by its arguments and saves it as a image file.

This is not an exhaustive list of built-in extensions. Please take a look at Extensions for more of them.

3.1.7 7. Start Training

Just call run () method from Trainer object to start training.

trainer.run ()

epoch main/loss main/accuracy validation/main/loss validation/main/accuracy,,
— elapsed_time

1 1.53241 0.638409 0.74935 0.835839 o
— 4.93409

2 0.578334 0.858059 0.444722 0.882812 o
— 7.72883

3 0.418569 0.886844 0.364943 0.899229 o
— 10.4229

4 0.362342 0.899089 0.327569 0.905558 o
— 13.148

5 0.331067 0.906517 0.304399 0.911788 o
— 15.846

6 0.309019 0.911964 0.288295 0.917722 o
— 18.5395

7 0.292312 0.916128 0.272073 0.921776 o
— 21.2173

8 0.278291 0.92059 0.261351 0.923457 o
— 23.9211

9 0.266266 0.923541 0.253195 0.927314 o
— 26.6612

10 0.255489 0.926739 0.242415 0.929094 o
— 29.466

Let’s see the plot of loss progress saved in the mnist_result directory.
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Furthermore, let’s visualize the computational graph saved with DumpGraph () using Graphviz.

)

% dot -Tpng mnist_result/cg.dot -o mnist_result/cg.png
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(100), float32 (100, 784), float32 (128, 784), float32

(128, 100), float32

(100, 100), float32 (128, 100), float32 (100), float32

(128, 100), float32

(10, 100), float32 (10), float32 (128, 100), float32

@ (128, 10), float32
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From the top to the bottom, you can see the data flow in the computational graph. It basically shows how data and
parameters are passed to the Functions.

3.1.8 8. Evaluate a pre-trained model

Evaluation using the snapshot of a model is as easy as what explained in the MNIST with a Manual Training Loop.

import matplotlib.pyplot as plt

model = MLP ()
serializers.load_npz ('mnist_result/model_epoch-10', model)

# Show the output

x, t = test[0]

plt.imshow (x.reshape (28, 28), cmap='gray')
plt.show ()

print ('label:', t)

y = model (x[None, ...])

print ('predicted_label:', y.array.argmax (axis=1) [0])

label: 7
predicted_label: 7

The prediction looks correct. Success!

3.2 MNIST with a Manual Training Loop

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.
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import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—Variable

from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

In this tutorial section, we will learn how to train a deep neural network to classify images of hand-written digits in
the popular MNIST dataset. This dataset contains 50,000 training examples and 10,000 test examples. Each example
is a set of a 28 x 28 greyscale image and a corresponding class label. Since the digits from 0 to 9 are used, there are
10 classes for the labels.

Chainer provides a feature called Trainer that can simplify the training procedure of your model. However, it is
also good to know how the training works in Chainer before starting to use the useful Trainer class that hides the
actual processes. Writing your own training loop can be useful for learning how Trainer works or for implementing
features not included in the standard trainer.

The complete training procedure consists of the following steps:

1. Prepare a dataset

2. Create a dataset iterator

3. Define a network

4. Select an optimization algorithm

5. Write a training loop
a. Retrieve a set of examples (mini-batch) from the training dataset.
b. Feed the mini-batch to your network.
c. Run a forward pass of the network and compute the loss.

d. Just call the backward () method from the loss Variable to compute the gradients for all trainable
parameters.

e. Run the optimizer to update those parameters.
6. Save the trained model

7. Perform classification by the saved model and check the network performance on validation/test sets.

3.2.1 1. Prepare a dataset
Chainer contains some built-in functions to use some popular datasets like MNIST, CIFAR10/100, etc. Those can
automatically download the data from servers and provide dataset objects which are easy to use.

The code below shows how to retrieve the MNIST dataset from the server and save an image from its training split to
make sure the images are correctly obtained.
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from __ future  import print_function
import matplotlib.pyplot as plt
from chainer.datasets import mnist

# Download the MNIST data if you haven't downloaded it yet

train, test = mnist.get_mnist (withlabel=True, ndim=1)

# Display an example from the MNI

# 'x' contains that target class
# label as an integ

X, t = trainl[O0]

plt.imshow (x.reshape (28, 28), cmap='gray')
plt.savefig('5.png')
print ('label:', t)

label: 5

The saved image 5 . png will look like:
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3.2.2 2. Create a dataset iterator

Although this is an optional step, we’d like to introduce the Tterator class that retrieves a set of data and labels
from the given dataset to easily make a mini-batch. There are some subclasses that can perform the same thing in
different ways, e.g., using multi-processing to parallelize the data loading part, etc.

Here, we use Seriallterator, which is also a subclass of Iterator in the example code below. The
Seriallterator can provide mini-batches with or without shuffling the order of data in the given dataset.

All Tterators produce a new mini-batch by calling its next () method. All Tterators also have properties to
know how many times we have taken all the data from the given dataset (epoch) and whether the next mini-batch
will be the start of a new epoch (1 s_new_epoch), and so on.

The code below shows how to create a SerialIterator object from a dataset object.
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from chainer import iterators

# Choose the minibatch size.
batchsize = 128

train_iter = iterators.Seriallterator(train, batchsize)
test_iter = iterators.Seriallterator (test, batchsize,
repeat=False, shuffle=False)

Note: Tterators can take a built-in Python list as a given dataset. It means that the example code below is able to
work,

train = [(x1, tl), (x2, t2), ...] # A list of tuples
train_iter = iterators.Seriallterator (train, batchsize)
where x1, x2, ... denotetheinputdataandtl, t2, ... denote the corresponding labels.

Details of Seriallterator
e Seriallterator is a built-in subclass of Tterator that can retrieve a mini-batch from a given dataset in
either sequential or shuffled order.
* The Tterator’s constructor takes two arguments: a dataset object and a mini-batch size.

* If you want to use the same dataset repeatedly during the training process, set the repeat argument to True
(default). Otherwise, the dataset will be used only one time. The latter case is actually for the evaluation.

* If you want to shuffle the training dataset every epoch, set the shuffle argument to True. Otherwise, the
order of each data retrieved from the dataset will be always the same at each epoch.

In the example code shown above, we set batchsize = 128 inboth train_iter and test_iter. So, these
iterators will provide 128 images and corresponding labels at a time.

3.2.3 3. Define a network

Now let’s define a neural network that we will train to classify the MNIST images. For simplicity, we use a three-
layer perceptron here. We set each hidden layer to have 100 units and set the output layer to have 10 units, which is
corresponding to the number of class labels of the MNIST.

Create your network as a subclass of Chain

You can create your network by writing a new subclass of Chain. The main steps are twofold:

1. Register the network components which have trainable parameters to the subclass. Each of them must be
instantiated and assigned to a property in the scope specified by init_scope ():

2. Define a forward () method that represents the actual forward computation of your network. This method
takes one or more Variable, numpy.ndarray, or cupy.ndarray as its inputs and calculates the forward
pass using them.

class MyNetwork (Chain) :

def _ init_ (self, n_mid_units=100, n_out=10):

(continues on next page)
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super (MyNetwork, self).__init__ ()

with self.init_scope() :
self.1l1l L.Linear (None, n_mid_units)
self.12 = L.Linear (n_mid_units, n_mid_units)
self.13 = L.Linear (n_mid_units, n_out)

def forward(self, x):
h = F.relu(self.11(x))
h = F.relu(self.12(h))
return self.13(h)

model = MyNetwork ()
gpu_id = 0 # Set to -1 if you use CPU

if gpu_id >= 0:
model.to_gpu (gpu_id)

Link, Chain, ChainList, and those subclass objects which contain trainable parameters should be registered
to the model by assigning it as a property inside the init_scope (). For example, a FunctionNode does not
contain any trainable parameters, so there is no need to keep the object as a property of your network. When you want
touse relu () in your network, using it as a function in forward () works correctly.

In Chainer, the Python code that implements the forward computation itself represents the network. In other words,
we can conceptually think of the computation graph for our network being constructed dynamically as this forward
computation code executes. This allows Chainer to describe networks in which different computations can be per-
formed in each iteration, such as branched networks, intuitively and with a high degree of flexibility. This is the key
feature of Chainer that we call Define-by-Run.

3.2.4 4. Select an optimization algorithm

Chainer provides a wide variety of optimization algorithms that can be used to optimize the network parameters during
training. They are located in opt imizers module.

Here, we are going to use the stochastic gradient descent (SGD) method with momentum, which is implemented by
MomentumSGD. To use the optimizer, we give the network object (typically it’s a Chain or ChainList) to the
setup () method of the optimizer object to register it. In this way, the Optimizer can automatically find the
model parameters and update them during training.

You can easily try out other optimizers as well. Please test and observe the results of various optimizers. For example,
you could try to change MomentumSGD to Adam, RMSprop, etc.

from chainer import optimizers

# Choose an optimizer algorithm
optimizer = optimizers.MomentumSGD (1lr=0.01, momentum=0.9)

# Give the optimizer a reference to the model so that it
# can locate the model's parameters.
optimizer.setup (model)

Note: In the above example, we set 1 to 0.01 in the constructor. This value is known as the “learning rate”, one
of the most important hyperparameters that need to be adjusted in order to obtain the best performance. The various
optimizers may each have different hyperparameters and so be sure to check the documentation for the details.
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3.2.5 5. Write a training loop

We now show how to write the training loop. Since we are working on a digit classification problem, we will use
softmax_cross_entropy () as the loss function for the optimizer to minimize. For other types of problems,
such as regression models, other loss functions might be more appropriate. See the Chainer documentation for detailed
information on the various loss functions for more details.

Our training loop will be structured as follows.

1.
2.

We will first get a mini-batch of examples from the training dataset.

We will then feed the batch into our network by calling it (a Chain object) like a function. This will execute
the forward-pass code that are written in the forward () method.

This will return the network output that represents class label predictions. We supply it to the loss function along
with the true (that is, target) values. The loss function will output the loss as a Variable object.

We then clear any previous gradients in the network and perform the backward pass by calling the backward ()
method on the loss variable which computes the parameter gradients. We need to clear the gradients first because
the backward () method accumulates gradients instead of overwriting the previous values.

. Since the optimizer already has a reference to the network, it has access to the parameters and the computed

gradients so that we can now call the update () method of the optimizer which will update the model param-
eters.

In addition to the above steps, you might want to check the performance of the network with a validation dataset. This
allows you to observe how well it is generalized to new data so far, namely, you can check whether it is overfitting to
the training data. The code below checks the performance on the test set at the end of each epoch. The code has the
same structure as the training code except that no backpropagation is performed and we also compute the accuracy on
the test data using the accuracy () function.

The training loop code is as follows:

import numpy as np
from chainer.dataset import concat_examples
from chainer.backends.cuda import to_cpu

max_

epoch = 10

while train_iter.epoch < max_epoch:

#ommm One iteration of the training loop —————————-
train_batch = train_iter.next ()
image_train, target_train = concat_examples (train_batch, gpu_id)

# Calculate the prediction of the network
prediction_train = model (image_train)

# Calculate the loss with softmax_cross_entropy
loss = F.softmax_cross_entropy (prediction_train, target_train)

# Calculate the gradients in the network
model.cleargrads ()
loss.backward()

# Update all the trainable parameters
optimizer.update ()

(continues on next page)
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# Check the validation accuracy of prediction after every epoch
if train_iter.is_new_epoch: # If this iteration is the final iteration of the_
—current epoch

# Display the training loss
print ('epoch:{:02d} train_loss:{:.04f} '.format (
train_iter.epoch, float (to_cpu(loss.array))), end='")

test_losses = []
test_accuracies = []
for test_batch in test_iter:
image_test, target_test = concat_examples (test_batch, gpu_id)

# Forward the test data
prediction_test = model (image_test)

# Calculate the loss
loss_test = F.softmax_cross_entropy (prediction_test, target_test)
test_losses.append(to_cpu(loss_test.array))

# Calculate the accuracy

accuracy = F.accuracy (prediction_test, target_test)
accuracy.to_cpu()
test_accuracies.append(accuracy.array)

test_iter.reset ()

print ('val_loss:{:.04f} val_accuracy:{:.04f}"'.format (
np.mean (test_losses), np.mean(test_accuracies)))

Output

epoch:01 train_loss:0.8072 val_loss:0.7592 val_accuracy:0.8289
epoch:02 train_loss:0.5021 val_loss:0.4467 val_accuracy:0.8841
epoch:03 train_loss:0.3539 val_loss:0.3673 val_accuracy:0.9007
epoch:04 train_loss:0.2524 val_loss:0.3307 val_accuracy:0.9067
epoch:05 train_loss:0.4232 val_loss:0.3076 val_accuracy:0.9136
epoch:06 train_loss:0.3033 val_loss:0.2910 val_accuracy:0.9167
epoch:07 train_loss:0.2004 val_loss:0.2773 val_accuracy:0.9222
epoch:08 train_loss:0.2885 val_loss:0.2679 val_accuracy:0.9239
epoch:09 train_loss:0.2818 val_loss:0.2579 val_accuracy:0.9266
epoch:10 train_loss:0.2403 val_loss:0.2484 val_accuracy:0.9307

3.2.6 6. Save the trained model

Chainer provides two types of serializers that can be used to save and restore model state. One supports the
HDFS5 format and the other supports the NumPy NPZ format. For this example, we are going to use the NPZ format to
save our model since it is easy to use with NumPy and doesn’t need to install any additional dependencies or libraries.

serializers.save_npz ('my_mnist.model', model)
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3.2.7 7. Perform classification by the saved model
Let’s use the saved model to classify a new image. In order to load the trained model parameters, we need to perform
the following two steps:

1. Instantiate the same network as what you trained.

2. Overwrite all parameters in the model instance with the saved weights using the 7oad_npz () function.

Once the model is restored, it can be used to predict image labels on new input data.

from chainer import serializers

# Create an instance of the network you trained

model = MyNetwork ()

# Load the saved parameters into the instance

serializers.load_npz('my_mnist.model', model)

# Get a test image and label

x, t = test[0]

plt.imshow (x.reshape (28, 28), cmap='gray')
plt.savefig('7.png'")

print ('label:', t)

label: 7

The saved test image looks like:
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print (x.shape, end=' -> ')
x = X[None, ...]

(continues on next page)
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print (x.shape)

# Forward calculation of the model by sending X
y = model (x)

# The result is given as Variable, then we can take a look at the contents by the,
—attribute, .array.

y = y.array

# Look up the most probable digit number using argmax
pred_label = y.argmax (axis=1)

print ('predicted label:', pred_label[0])

(784,) —> (1, 784)
predicted label: 7

The prediction result looks correct. Yay!

3.3 Convolutional Network for Visual Recognition Tasks

In this section, you will learn how to write

¢ A small convolutional network with a model class that is inherited from Chain,

* A large convolutional network that has several building block networks with ChainList.
After reading this section, you will be able to:

* Write your own original convolutional network in Chainer

A convolutional network (ConvNet) is mainly comprised of convolutional layers. This type of network is commonly
used for various visual recognition tasks, e.g., classifying hand-written digits or natural images into given object
classes, detecting objects from an image, and labeling all pixels of an image with the object classes (semantic segmen-
tation), and so on.

In such tasks, a typical ConvNet takes a set of images whose shape is (N, C, H, W), where
* N denotes the number of images in a mini-batch,
* ( denotes the number of channels of those images,
e H and W denote the height and width of those images,

respectively. Then, it typically outputs a fixed-sized vector as membership probabilities over the target object classes.
It also can output a set of feature maps that have the corresponding size to the input image for a pixel labeling task,
etc.

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math

import numpy as np

import chainer

from chainer import backend

from chainer import backends

from chainer.backends import cuda

(continues on next page)

3.3. Convolutional Network for Visual Recognition Tasks 73




Chainer Documentation, Release 7.0.0b4

(continued from previous page)

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
—~Variable

from chainer import datasets, initializers, iterators, optimizers, serializers

from chainer import Link, Chain, ChainList

import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

3.3.1 LeNet5

Here, let’s start by defining LeNet5 [LeCun98] in Chainer. In this example, we show a simplified version of LeNet5
introduced in Deep Learning Tutorials. This is a ConvNet model that has 5 layers comprised of 3 convolutional layers
and 2 fully-connected layers. This was proposed to classify hand-written digit images in 1998. In Chainer, the model
can be written as follows:

class LeNet5 (Chain) :
def _ init_ (self):
super (LeNet5, self).__init__ ()
with self.init_scope() :
self.convl = L.Convolution2D (
in_channels=1, out_channels=6, ksize=5, stride=1)
self.conv2 = L.Convolution2D (
in_channels=6, out_channels=16, ksize=5, stride=1)
self.conv3 = L.Convolution2D (
in_channels=16, out_channels=120, ksize=4, stride=1)
self.fcd4 = L.Linear (None, 84)
self.fc5 = L.Linear (84, 10)

def forward(self, x):

h = F.sigmoid(self.convl (x))
.max_pooling_2d(h, 2, 2)
.sigmoid(self.conv2 (h))
.max_pooling_2d(h, 2, 2)
.sigmoid(self.conv3(h))
= F.sigmoid(self.fc4 (h))
if chainer.config.train:

return self.fcb5 (h)
return F.softmax(self.fcb5(h))

[ e = o
Il
L e e e

A typical way to write your network is creating a new class inherited from Chain class. When defining your model in
this way, typically, all the layers which have trainable parameters are registered to the model by assigning the objects
of Link as an attribute.

The model class is instantiated before the forward and backward computations. To give input images and label vectors
simply by calling the model object like a function, forward () is usually defined in the model class. This method
performs the forward computation of the model. Chainer uses the powerful autograd system for any computational
graphs written with FunctionNodes and Links (actually a Link calls a corresponding Funct ionNode inside
of it), so that you don’t need to explicitly write the code for backward computations in the model. Just prepare the
data, then give it to the model. The way this works is the resulting output Variable from the forward computation
has a backward () method to perform autograd. In the above model, forward () has a if statement at the end to
switch its behavior by the Chainer’s running mode, i.e., training mode or not. Chainer presents the running mode as
a global variable chainer.config.train. When it’s in training mode, forward () returns the output value of
the last layer as is to compute the loss later on, otherwise it returns a prediction result by calculating softmax ().

It is recommended that you use the global configuration chainer.config.train to switch the running mode.
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If you don’t want to write conv1l and the other layers more than once, you can also write the same model like in this
way:

from functools import partial

class LeNet5 (Chain) :
def _ init_ (self):

super (LeNet5, self).__init__ ()
net = [('convl', L.Convolution2D(1l, 6, 5, 1))]
net += ' _sigml', F.sigmoid)]

net += ' _mpooll', partial (F.max_pooling_2d, ksize=2, stride=2))]
net += 'conv2', L.Convolution2D (6, 16, 5, 1))]

net += ' _sigm2', F.sigmoid)]

net += ' _mpool2', partial (F.max_pooling_2d, ksize=2, stride=2))]

[(
[(
[(
[(
[(
net += [('conv3', L.Convolution2D (16, 120, 4, 1))]
[(
[(
[(
[(
[(

net += ' _sigm3', F.sigmoid)]

net += ' _mpool3', partial (F.max_pooling_2d, ksize=2, stride=2))]
net += 'fcd4', L.Linear (None, 84))]

net += ' sigm4', F.sigmoid)]

net += 'fc5', L.Linear (84, 10))]

net += [('_sigmb', F.sigmoid)]
with self.init_scope():
for n in net:
if not n[0].startswith('_'"):
setattr(self, n[0], n[1l])
self.layers = net

def forward(self, x):
for n, £ in self.layers:
if not n.startswith('_"):
x = getattr(self, n) (x)
else:
x = f(x)
if chainer.config.train:
return x
return F.softmax (x)

Note: You can also use Sequential to write the above model more simply. Please note that Sequential is an
experimental feature introduced in Chainer v4 and its interface may be changed in the future versions.

This code creates a list of pairs of component name (e.g., convl, _sigml, etc.) and all Links and functions
(e.g., F.sigmoid, which internally invokes Funct i onNode) after calling its superclass’s constructor. In this case,
components whose name start with __ are functions (Funct ionNode), which doesn’t have any trainable parameters,
so that we don’t register (setattr) it to the model. Others (convl, fc4, etc.) are Links, which are trainable
layers that hold parameters. This operation can be freely replaced with many other ways because those component
names are just designed to select Links only from the list net easily. The list net is stored as an attribute layers
torefer itin forward (). In forward (), it retrieves all layers in the network from self . forward sequentially
and gives the input variable or the intermediate output from the previous layer to the current layer. The last part of the
forward () to switch its behavior by the training/inference mode is the same as the former way.

Ways to calculate loss

When you train the model with label vector t, the loss should be calculated using the output from the model. There
also are several ways to calculate the loss:
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model = LeNet5 ()

# Input data and label
x = np.random.rand (32, 1, 28, 28).astype(np.float32)
t = np.random.randint (0, 10, size=(32,)).astype(np.int32)

# Forward computation
y = model (x)

# Loss calculation
loss = F.softmax_cross_entropy(y, t)

This is a primitive way to calculate a loss value from the output of the model. On the other hand, the loss computation
can be included in the model itself by wrapping the model object (Chainor ChainList object) with a class inherited
from Chain. The outer Chain should take the model defined above and register it with init_scope (). Chain
is actually inherited from Link, so that Chain itself can also be registered as a trainable Link to another Chain.
Actually, Classifier class to wrap the model and add the loss computation to the model already exists. Actually,
there is already a C1assifier class that can be used to wrap the model and include the loss computation as well. It
can be used like this:

model = L.Classifier (LeNetb5())

# Foward & Loss calculation
loss = model (x, t)

This class takes a model object as an input argument and registers it to a predictor property as a trained parameter.
As shown above, the returned object can then be called like a function in which we pass x and t as the input arguments
and the resulting loss value (which we recall is a Variable) is returned.

See the detailed implementation of Classifier fromhere: chainer.links.Classifier and check the im-
plementation by looking at the source.

From the above examples, we can see that Chainer provides the flexibility to write our original network in many
different ways. Such flexibility intends to make it intuitive for users to design new and complex models.

3.3.2 VGG16

Next, let’s write some larger models in Chainer. When you write a large network consisting of several building block
networks, ChainIist is useful. First, let’s see how to write a VGG16 [Simonyan14] model.

class VGG1l6 (chainer.ChainlList) :
def _ init_ (self):
super (VGGl6, self).__init__ (
VGGBlock (64),
VGGBlock (128),
VGGBlock (256, 3),
VGGBlock (512, 3),
VGGBlock (512, 3, True))

def forward(self, x):
for £ in self.children():
x = f(x)
if chainer.config.train:
return x
return F.softmax (x)

(continues on next page)
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class VGGBlock (chainer.Chain) :
def _ init_ (self, n_channels, n_convs=2, fc=False):
w = chainer.initializers.HeNormal ()
super (VGGBlock, self).__init__ ()
with self.init_scope() :
self.convl = L.Convolution2D (None, n_channels, 3, 1, 1, initialW=w)
self.conv2 = L.Convolution2D (
n_channels, n_channels, 3, 1, 1, initialW=w)
if n_convs ==
self.conv3 = L.Convolution2D (
n_channels, n_channels, 3, 1, 1, initialW=w)
if fc:
self.fc4 = L.Linear (None, 4096, initialW=w)

self.fc5 = L.Linear (4096, 4096, initialW=w)
self.fc6 = L.Linear (4096, 1000, initialW=w)
self.n_convs = n_convs

self.fc = fc

def forward(self, x):

h = F.relu(self.convl (x))

h = F.relu(self.conv2(h))

if self.n_convs == 3:
h = F.relu(self.conv3(h))

h = F.max_pooling_2d(h, 2, 2)

if self.fc:
h = F.dropout (F.relu(self.fc4 (h)))
h = F.dropout (F.relu(self.fc5(h)))
h = self.fc6 (h)

return h

That’s it. VGG16 is a model which won the 1st place in classification + localization task at ILSVRC 2014, and since
then, has become one of the standard models for many different tasks as a pre-trained model. This has 16-layers, so
it’s called “VGG-16”, but we can write this model without writing all layers independently. Since this model consists
of several building blocks that have the same architecture, we can build the whole network by re-using the building
block definition. Each part of the network is consisted of 2 or 3 convolutional layers and activation function (relu())
following them, and max_pooling 2d () operations. This block is written as VGGBlock in the above example
code. And the whole network just calls this block one by one in sequential manner.

3.3.3 ResNet152

How about ResNet? ResNet [He16] came in the following year’s ILSVRC. It is a much deeper model than VGG16,
having up to 152 layers. This sounds super laborious to build, but it can be implemented in almost same manner as
VGG16. In the other words, it’s easy. One possible way to write ResNet-152 is:

class ResNetl52 (chainer.Chain) :
def _ init_ (self, n_blocks=[3, 8, 36, 31):
w = chainer.initializers.HeNormal ()
super (ResNetl152, self).__init__ ()
with self.init_scope():
self.convl = L.Convolution2D (None, 64, 7, 2, 3, initialW=w, nobias=True)
self.bnl = L.BatchNormalization (64)
self.res2 = ResBlock(n_blocks[0], 64, 64, 256, 1)
self.res3 = ResBlock(n_blocks[1], 256, 128, 512)

(continues on next page)
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self.resd4d = ResBlock(n_blocks([2], 512, 256, 1024)
self.resb5 = ResBlock(n_blocks([3], 1024, 512, 2048)
self.fc6 = L.Linear (2048, 1000)

def forward(self, x):

h = self.bnl(self.convl (X))
= F.max_pooling_2d(F.relu(h), 2, 2)
= self.res2 (h)
= self.res3(h)

self.res4d (h)

= self.res5 (h)
= F.average_pooling 2d(h, h.shape[2:], stride=1)
= self.fc6 (h)
if chainer.config.train:

return h
return F.softmax (h)

[op= = = g = S o )
Il

class ResBlock (chainer.ChainList):
def _ init__ (self, n_layers, n_in, n_mid, n_out, stride=2):
super (ResBlock, self).__init__ ()
self.add_link (BottleNeck (n_in, n_mid, n_out, stride, True))
for _ in range(n_layers - 1):
self.add_link (BottleNeck (n_out, n_mid, n_out))

def forward(self, x):
for £ in self.children():
x = f(x)
return x

class BottleNeck (chainer.Chain) :
def _ init__ (self, n_in, n_mid, n_out, stride=1, proj=False):
w = chainer.initializers.HeNormal ()
super (BottleNeck, self).__init__ ()
with self.init_scope() :
self.convlxla = L.Convolution2D (
n_in, n_mid, 1, stride, 0, initialW=w, nobias=True)
self.conv3x3b = L.Convolution2D (
n_mid, n_mid, 3, 1, 1, initialW=w, nobias=True)
self.convlxlc = L.Convolution2D (
n_mid, n_out, 1, 1, 0, initialW=w, nobias=True)
self.bn_a = L.BatchNormalization (n_mid)
self.bn_b = L.BatchNormalization (n_mid)
self.bn_c = L.BatchNormalization (n_out)
if proj:
self.convlxlr = L.Convolution2D (
n_in, n_out, 1, stride, 0, initialW=w, nobias=True)
self.bn_r = L.BatchNormalization (n_out)
self.proj = proj

def forward(self, x):
h = F.relu(self.bn_a(self.convlxla(x)))
h = F.relu(self.bn_b(self.conv3x3b(h)))
h self.bn_c(self.convlxlc (h))
if self.proj:
x = self.bn_r(self.convlxlr (x))

(continues on next page)
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(continued from previous page)

return F.relu(h + x)

In the Bot t LeNeck class, depending on the value of the proj argument supplied to the initializer, it will conditionally
compute a convolutional layer conv1x1r which will extend the number of channels of the input x to be equal to the
number of channels of the output of conv1x1c, and followed by a batch normalization layer before the final ReLU
layer. Writing the building block in this way improves the re-usability of a class. It switches not only the behavior in
__class___ () by flags but also the parameter registration. In this case, when proj is False, the BottleNeck
doesn’t have convixIr and bn_r layers, so the memory usage would be efficient compared to the case when it registers
both anyway and just ignore them if projis False.

Using nested Chains and ChainList for sequential part enables us to write complex and very deep models easily.

3.3.4 Use Pre-trained Models

Various ways to write your models were described above. It turns out that VGG16 and ResNet are very useful as
general feature extractors for many kinds of tasks, including but not limited to image classification. So, Chainer
provides you with the pre-trained VGG16 and ResNet-50/101/152 models with a simple API. You can use these
models as follows:

from chainer.links import VGGlé6Layers

model = VGGléLayers ()

When VGGI6Layers is instantiated, the pre-trained parameters are automatically downloaded from the author’s
server. So you can immediately start to use VGG16 with pre-trained weight as a good image feature extractor. See the
details of this model here: chainer. links.VGGIlé6Layers.

In the case of ResNet models, there are three variations differing in the number of layers. We have chainer. links.
ResNet50Layers, chainer.links.ResNetlOlLayers, and chainer.links.ResNetl52Layers
models with easy parameter loading feature. ResNet’s pre-trained parameters are not available for direct down-
loading, so you need to download the weight from the author’s web page first, and then place it into the dir
SCHAINER_DATSET_ROOT/pfnet/chainer/models or your favorite place. Once the preparation is finished,
the usage is the same as VGG16:

from chainer.links import ResNetl52Layers

model = ResNetlb52Layers()

Traceback (most recent call last):
OSError: The pre-trained caffemodel does not exist. Please download it from 'https://
—github.com/KaimingHe/deep-residual-networks', and place it on

Please see the details of usage and how to prepare the pre-trained weights for ResNet here: chainer.links.
ResNet50Layers
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3.4 DCGAN: Generate images with Deep Convolutional GAN

3.4.1 0. Introduction
In this tutorial, we generate images with generative adversarial networks (GAN). GAN are kinds of deep neural

network for generative modeling that are often applied to image generation. GAN-based models are also used in
PaintsChainer, an automatic colorization service.

In this tutorial, you will learn the following things:
1. Generative Adversarial Networks (GAN)
2. Implementation of DCGAN in Chainer

3.4.2 1. Generarive Adversarial Networks (GAN)

1.1 What are GAN?

As explained in GAN tutorial in NIPS 2016 [1], generative models can be classified into the categories as shown in
the following figure:

1 Direct

Maximum Likelihood |
| / \ / GAN

Explicit density Implicit density
) _ : : [ M k Ch ) .
Tractable density | Approximate density | arkov Chain

| — . /| GSN
-Fully visible belief nets
-NADE . / \.

_MADE Variational |Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

models (nonlinear ICA)

Fig. 1: cited from [1]
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Besides GAN, other famous generative models include Fully visible belief networks (FVBNs) and Variational autoen-
coder (VAE). Unlike FVBNs and VAE, GAN do not explicitly model the probability distribution p(s) that generates
training data. Instead, we model a generator G : z — s. The generator G samples s ~ p(s) from the latent variable z.
Apart from the generator G, we create a discriminator D(x) which discriminates between samples from the generator
G and examples from training data. While training the discriminator D, the generator G tries to maximize the proba-
bility of the discriminator D making a mistake. So, the generator G tries to create samples that seem to be drawn from
the same distribution as the training data.

The advantages of GAN are low sampling cost and its state-of-the-art performance in image generation. The disad-
vantage is that we cannot calculate the likelihood py,0qe1(S) because we do not model any probability distribution, and
we cannot infer the latent variable z from a sample.

1.2 How GAN work?

As explained above, GAN use the two models, the generator and the discriminator. When training the networks, we
should match the data distribution p(s) with the distribution of the samples s = G(z) generated from the generator.

generated
distribution

gaussian / pmodel(s)

Z

Generator

\

\ feature space

Discriminator

\

p(s)

.

feature space

true data
distribution

The generator G learns the target distribution, and ideally eventually reaches a Nash equilibrium [2] of game theory.
In detail, while training the discriminator D, the generator G is also trained, so that the discriminator D makes a
mistake.

As an intuitive example, the relationship between counterfeiters of banknotes and the police is frequently used. The
counterfeiters try to make counterfeit notes that look like real banknotes. The police try to distinguish real bank notes
from counterfeit notes. It is supposed that the ability of the police gradually rises, so that real banknotes and counterfeit
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notes can be recognized well. Then, the counterfeiters will not be able to use counterfeit banknotes, so they will create
counterfeit banknotes that appear more realistic. As the police improve their skill further, they can distinguish real and
counterfeit notes. .. Eventually, the counterfeiter will be able to produce counterfeit banknotes look as real as genuine
ones.

The training process is explained by the following mathematical expressions. First, since the discriminator D(s) is the
probability that a sample s is generated from the data distribution at, it can be expressed as follows:

_ p(s)
D(S) B p(S) + pmodel(s)

Then, when we match the data distribution s ~ p(s) and the distribution of generated samples by G, it means that we
should minimize the dissimilarity between the two distributions. It is common to use Jensen-Shannon Divergence
Djg to measure the dissimilarity between distributions[3].

The D;s of prmodel(s) and p(s) can be written as follows by using D(s):

2Djg =
Dxkw(p(s)][p(s)) + Dxr(pmoder(s)|[(s))

QP(S) :| |: 2pmodcl(s)
E log——————— | +E log ——MmMm——
p(s) & p(S) + pmodel(s) Pmodel s p(S) + pmodel(s)

E,s)log D(s) + E log(1 — D(s)) + log 4

Pmodel

E,s) log D(s) + E,, log(1 — D(G(z))) + log4

where p(s) = w. The Djg will be maximized by the discriminator D and minimized by the generator G,

namely, Piodel- And the distribution pp,qei(s) generated by G(s) can match the data distribution p(s).

m(%n max E,s) log D(s) + E,p, log(1 — D(G(z)))

When we actually train the model, the above min-max problem is solved by alternately updating the discriminator
D(s) and the generator G(z) [4]. The actual training procedures are described as follows:

1.3 What are DCGAN?
In this section, we will introduce the model called DCGAN(Deep Convolutional GAN) proposed by Radford et al.[5].
As shown below, it is a model using CNN(Convolutional Neural Network) as its name suggests.

In addition, although GAN are known for its difficulty in training, this paper introduces various techniques for suc-
cessful training:

1. Convert max-pooling layers to convolution layers with larger or fractional strides
2. Convert fully connected layers to global average pooling layers in the discriminator
3. Use batch normalization layers in the generator and the discriminator

4. Use leaky ReLU activation functions in the discriminator

3.4.3 2. Implementation of DCGAN in Chainer

There is an example of DCGAN in the official repository of Chainer, so we will explain how to implement DCGAN
based on this: chainer/examples/dcgan
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Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, &, is a hyperparameter. We used k& = 1, the least expensive option, in our
experiments.
for number of training iterations do
for & steps do

e Sample minibatch of m noise samples {z(!), ..., 2™} from noise prior p,(z).
e Sample minibatch of m examples {a:(l),...,a:[m)} from data generating distribution
pdula(a:)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 23" [iog D (20) +10g (1 - D (6 (=0)))]

i=1

end for
e Sample minibatch of m noise samples {z(1), ..., (™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, 3 ox (120 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Fig. 2: cited from [4]

Stride 2 16

Project and reshape

CONV 2

Fig. 3: cited from [5]
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2.1 Define the generator model

First, let’s define a network for the generator.

Listing 1: train_dcgan.py

class Generator (chainer.Chain) :

def

def

def

_ init_ (self, n_hidden, bottom_width=4, ch=512, wscale=0.02):
super (Generator, self).__init__ ()

self.n_hidden = n_hidden

self.ch = ch

self.bottom_width = bottom_width

with self.init_scope():
w = chainer.initializers.Normal (wscale)
self.10 = L.Linear (self.n_hidden, bottom_width * bottom_width =+ ch,
initialW=w)

self.dcl = L.Deconvolution2D(ch, ch // 2, 4, 2, 1, initialW=w)
self.dec2 = L.Deconvolution2D(ch // 2, ch // 4, 4, 2, 1, initialW=w)
self.dec3 = L.Deconvolution2D(ch // 4, ch // 8, 4, 2, 1, initialW=w)
self.dcd4 = L.Deconvolution2D(ch // 8, 3, 3, 1, 1, initialW=w)
self.bn0 = L.BatchNormalization (bottom_width * bottom_width =+ ch)
self.bnl = L.BatchNormalization(ch // 2)

self.bn2 = L.BatchNormalization(ch // 4)

self.bn3 = L.BatchNormalization(ch // 8)

make_hidden (self, batchsize):

dtype = chainer.get_dtype ()

return numpy.random.uniform(-1, 1, (batchsize, self.n_hidden, 1, 1))\
.astype (dtype)

forward(self, z):
h = F.reshape(F.relu(self.bn0(self.10(z))),
(len(z), self.ch, self.bottom_width, self.bottom_width))

.relu(self.bnl(self.dcl(h)))
.relu(self.bn2(self.dc2(h)))
.relu(self.bn3(self.dc3(h)))

= F.sigmoid(self.dc4d (h))
return x

© oo o
Il
e |

When we make a network in Chainer, there are some conventions:

L.
2.
3.

Define a network class which inherits Chain.

Make chainer. 1inks’sinstances in the init_scope () : of the initializer __init_ .

Define network connections in the __call___ operator by using the chainer.links’s instances and

chainer. functions.

If you are not familiar with constructing a new network, please refer to this tutorial.

As we can see from the initializer ___init

except the last layer.

Because the first argument of L.Deconvolution is the channel size of input and the second is the channel size
of output, we can find that each layer halves the channel size. When we construct Generator with ch=1024, the

network is same as the above image.
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Note: Be careful when passing the output of a fully connected layer to a convolution layer, because the convolutional
layer needs additional dimensions for inputs. As we can see the Ist line of __call__, the output of the fully
connected layer is reshaped by reshape to add the dimensions of the channel, the width and the height of images.

2.2 Define the discriminator model
In addtion, let’s define the network for the discriminator.

Listing 2: train_dcgan.py

class Discriminator (chainer.Chain) :

def _ init_ (self, bottom_width=4, ch=512, wscale=0.02):

initialwW=w)

N

’ ll
14 4
14 I4
’ ’

14 4

N RN e
e e

14 I4

initialW=w
initialW=w
initialW=w

initialW=w
initialW=w

w = chainer.initializers.Normal (wscale)

super (Discriminator, self).__init__ ()

with self.init_scope():
self.c0_0 = L.Convolution2D(3, ch // 8, 3, 1, 1,
self.c0_1 = L.Convolution2D(ch // 8, ch // 4, 4,
self.cl_0 = L.Convolution2D(ch // 4, ch // 4, 3,
self.cl_1 = L.Convolution2D(ch // 4, ch // 2, 4,
self.c2_0 = L.Convolution2D(ch // 2, ch // 2, 3,
self.c2_1 = L.Convolution2D(ch // 2, ch // 1, 4,
self.c3_0 = L.Convolution2D(ch // 1, ch // 1, 3,
self.l1l4 = L.Linear (bottom_width % bottom_width =«
self.bn0_1 = L.BatchNormalization(ch // 4,
self.bnl_0 = L.BatchNormalization(ch // 4,
self.bnl_1 = L.BatchNormalization(ch // 2,
self.bn2_0 = L.BatchNormalization(ch // 2,
self.bn2_1 = L.BatchNormalization(ch // 1,
self.bn3_0 = L.BatchNormalization(ch // 1,

def forward(self, x):
device = self.device
= add_noise (device, x)
.leaky_relu(add_noise (device,
.leaky_relu(add_noise (device,

self.c0_0(h)))

self.bnl_0
self.bnl_1

(
( (
.leaky_relu(add_noise (device,
.leaky_relu(add_noise (device,
.leaky_relu(add_noise (device,

( ( self.bn2_1

( ( self.bn3_0

.leaky_relu(add_noise (device,
= F.leaky_relu(add_noise (device,
return self.14 (h)

[ e = e o B aN e
Il
e I I B B 3

ch, 1,

self.bn0_1(self.c0_1(h))))
(self.cl_0(h))))
(self.cl_1(h))))
self.bn2_0(self.c2_0(h))))
(self.c2_1(h))))
(self.c3_0(h))))

)
)
)
initialW=w)
)
)
w

initialwW=
use_gamma=False)
use_gamma=False
use_gamma=False
use_gamma=False
use_gamma=False
use_gamma=False

)
)
)
)
)

)

The Discriminator network is almost mirrors of the Generator network. However, there are minor different

points:
1. Use leaky relu as activation functions

2. Deeper than Generator

3. Add some noise to every intermediate outputs before giving them to the next layers

Listing 3: train_dcgan.py

def add_noise(device, h, sigma=0.2):
if chainer.config.train:

(continues on next page)
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(continued from previous page)

xp = device.xp
# TODO (niboshi): Support random.randn in ChainerX
if device.xp is chainerx:
fallback_device = device.fallback_device
with chainer.using_device (fallback_device) :
randn = device.send(fallback_device.xp.random.randn («h.shape))
else:
randn = xp.random.randn (xh.shape)
return h + sigma * randn
else:
return h

2.3 Prepare dataset and iterator

Let’s retrieve the CIFAR-10 dataset by using Chainer’s dataset utility function get_ cifar10. CIFAR-10 is a set of
small natural images. Each example is an RGB color image of size 32x32. In the original images, each of R, G, B of
pixels is represented by one-byte unsigned integer (i.e. from 0 to 255). This function changes the scale of pixel values
into [0, scale] float values.

train, _ = chainer.datasets.get_cifarl0(withlabel=False, scale=255.)

Listing 4: train_dcgan.py

train_iter = chainer.iterators.Seriallterator(train, args.batchsize)

2.4 Prepare model and optimizer
Let’s make the instances of the generator and the discriminator.

Listing 5: train_dcgan.py

gen = Generator (n_hidden=args.n_hidden)
dis = Discriminator ()

gen.to_device (device) # Copy the model to the device
dis.to_device (device)

# Setup an optimizer
def make_optimizer (model, alpha=0.0002, betal=0.5):
optimizer = chainer.optimizers.Adam(alpha=alpha, betal=betal)
optimizer.setup (model)
optimizer.add_hook (
chainer.optimizer_hooks.WeightDecay (0.0001), 'hook_dec")
return optimizer

opt_gen = make_optimizer (gen)
opt_dis = make_optimizer (dis)

Next, let’s make optimizers for the models created above.

86 Chapter 3. Neural Net Examples




Chainer Documentation, Release 7.0.0b4

Listing 6: train_dcgan.py

def make_optimizer (model, alpha=0.0002, betal=0.5):
optimizer = chainer.optimizers.Adam(alpha=alpha, betal=betal)
optimizer.setup (model)
optimizer.add_hook (
chainer.optimizer_hooks.WeightDecay (0.0001), 'hook_dec")
return optimizer

opt_gen = make_optimizer (gen)
opt_dis = make_optimizer (dis)

2.5 Prepare updater

GAN need the two models: the generator and the discriminator. Usually, the default updaters pre-defined in Chainer
take only one model. So, we need to define a custom updater for GAN training.

The definition of DCGANUpdater is a little complicated. However, it just minimizes the loss of the discriminator and
that of the generator alternately.

As you can see in the class definition, DCGANUpdater inherits StandardUpdater. In this case, almost
all necessary functions are defined in StandardUpdater, we just override the functions of __init__ and
update_core.

Note: We do not need to define 1oss_dis and 1oss_gen because the functions are called only in update_core.
It aims at improving readability.

Listing 7: train_dcgan.py

class DCGANUpdater (chainer.training.updaters.StandardUpdater) :

def _ _init__ (self, =args, +**kwargs):
self.gen, self.dis = kwargs.pop('models’")
super (DCGANUpdater, self).__init__ (xargs, =xkwargs)

def loss_dis(self, dis, y_fake, y_real):
batchsize = len(y_fake)
Ll = F.sum(F.softplus(-y_real)) / batchsize
L2 = F.sum(F.softplus(y_fake)) / batchsize
loss = L1 + L2
chainer.report ({'loss': loss}, dis)
return loss

def loss_gen(self, gen, y_fake):
batchsize = len(y_fake)
loss = F.sum(F.softplus(-y_fake)) / batchsize
chainer.report ({'loss': loss}, gen)
return loss

def update_core(self):
gen_optimizer = self.get_optimizer ('gen')
dis_optimizer = self.get_optimizer ('dis"')

(continues on next page)
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(continued from previous page)

batch = self.get_iterator('main') .next ()
device = self.device
X_real = Variable(self.converter (batch, device)) / 255.

gen, dis = self.gen, self.dis
batchsize = len (batch)

y_real = dis(x_real)
z = Variable (device.xp.asarray (gen.make_hidden (batchsize)))
x_fake = gen(z)

y_fake = dis(x_fake)

dis_optimizer.update(self.loss_dis, dis, y_fake, y_real)
gen_optimizer.update(self.loss_gen, gen, y_fake)

In the initializer __init__, an additional keyword argument models is required as you can see the code below.
Also, we use keyword arguments iterator, optimizer and device. It should be noted that the opt imizer
augment takes a dictionary. The two different models require two different optimizers. To specify the different opti-
mizers for the models, we give a dictionary, { 'gen': opt_gen, 'dis': opt_dis},tothe optimizer
argument. we should input optimizer as a dictionary { 'gen': opt_gen, 'dis': opt_dis}. Inthe
DCGANUpdater, you can access the iterator with self.get_iterator ('main'). Also, you can access the
optimizers with self.get_optimizer ('gen') and self.get_optimizer ('dis').

In update_core, the two loss functions loss_dis and loss_gen are minimized by the optimizers.
At first two lines, we access the optimizers. Then, we create next minibatch of training data by self.
get_iterator ('main') .next (), copy batch to the device by self.converter, and make it a
Variable object. After that, we minimize the loss functions with the optimizers.

Note: When defining update_core, we may want to manipulate the underlying array of a Variable with
numpy or cupy library. Note that the type of arrays on CPU is numpy.ndarray, while the type of arrays on
GPU is cupy.ndarray. However, users do not need to write if condition explicitly, because the appropriate
array module can be obtained by xp = chainer.backend.get_array_module (variable.array). If
variable is on GPU, cupy is assigned to xp, otherwise numpy is assigned to xp.

Listing 8: train_dcgan.py

updater = DCGANUpdater (
models=(gen, dis),
iterator=train_iter,
optimizer={
'gen': opt_gen, 'dis': opt_dis},
device=device)

2.6 Prepare trainer and run

Listing 9: train_dcgan.py

trainer = training.Trainer (updater, (args.epoch, 'epoch'), out=args.out)

snapshot_interval = (args.snapshot_interval, 'iteration')

(continues on next page)
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(continued from previous page)

display_interval = (args.display_interval, 'iteration')
trainer.extend(
extensions.snapshot (filename="'snapshot_iter {.updater.iteration}.npz'),
trigger=snapshot_interval)
trainer.extend (extensions.snapshot_object (
gen, 'gen_iter_ {.updater.iteration}.npz'), trigger=snapshot_interval)
trainer.extend (extensions.snapshot_object (
dis, 'dis_iter_ {.updater.iteration}.npz'), trigger=snapshot_interval)
trainer.extend (extensions.LogReport (trigger=display_interval))
trainer.extend (extensions.PrintReport ([
'epoch', 'iteration', 'gen/loss', 'dis/loss',
1), trigger=display_interval)
trainer.extend (extensions.ProgressBar (update_interval=10))
trainer.extend(
out_generated_image (
gen, dis,
10, 10, args.seed, args.out),
trigger=snapshot_interval)

Listing 10: train_dcgan.py

trainer.run ()

2.7 Start training

We can run the example as follows.

$ pwd
/root2chainer/chainer/examples/dcgan
$ python train_dcgan.py —--gpu 0

GPU: O

# Minibatch-size: 50

# n_hidden: 100

# epoch: 1000

epoch iteration gen/loss dis/1oSS i ] 0.01%
0 100 1.2292 1.76914

L = ] 0.02%
this epoch [H##dFF#HHF . . o ottt e e e e e e ] 19.00%

190 iter, 0 epoch / 1000 epochs
10.121 iters/sec. Estimated time to finish: 1 day, 3:26:26.372445.

The results will be saved in the directory /root2chainer/chainer/examples/dcgan/result/. The im-
age is generated by the generator trained for 1000 epochs, and the GIF image on the top of this page shows generated
images after every 10 epochs.
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3.4.4 3. Reference

e [1] NIPS 2016 Tutorial: Generative Adversarial Networks
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* [3] Jensen-Shannon Divergence

¢ [4] Generative Adversarial Networks

* [5] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

3.5 Recurrent Nets and their Computational Graph

In the example code of this tutorial, we assume for simplicity that the following symbols are already

imported.

import math
import numpy

as np

import chainer

from chainer
from chainer

from chainer.

from chainer
—Variable
from chainer

import backend

import backends

backends import cuda

import Function, FunctionNode, gradient_check, report, training, utils,

import datasets, initializers, iterators, optimizers, serializers

(continues on next page)
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from chainer import Link, Chain, ChainList
import chainer.functions as F

import chainer.links as L

from chainer.training import extensions

In this section, you will learn how to write
* recurrent nets with full backprop,
* recurrent nets with truncated backprop,
* evaluation of networks with few memory.
After reading this section, you will be able to:
* Handle input sequences of variable length
* Truncate upper stream of the network during forward computation

» Use no-backprop mode to prevent network construction

3.5.1 Recurrent Nets

Recurrent nets are neural networks with loops. They are often used to learn from sequential input/output. Given an
input stream 1, 2o, . . ., Ty, . . . and the initial state hg, a recurrent net iteratively updates its state by hy = f(x¢, he—1),
and at some or every point in time ¢, it outputs y; = g(h;). If we expand the procedure along the time axis, it looks
like a regular feed-forward network except that same parameters are repeatedly used within the network.

Here we learn how to write a simple one-layer recurrent net. The task is language modeling: given a finite sequence
of words, we want to predict the next word at each position without peeking the successive words. Suppose there
are 1,000 different word types, and that we use 100 dimensional real vectors to represent each word (a.k.a. word
embedding).

Let’s start from defining the recurrent neural net language model (RNNLM) as a chain. We can use the chainer.
links.LSTM link that implements a fully-connected stateful LSTM layer. This link looks like an ordinary fully-
connected layer. On construction, you pass the input and output size to the constructor:

>>> 1 = L.LSTM(100, 50)

Then, call on this instance 1 (x) executes one step of LSTM layer:

>>> 1.reset_state()
>>> x = Variable (np.random.randn (10, 100).astype(np.float32))
>>> y = 1(x)

Do not forget to reset the internal state of the LSTM layer before the forward computation! Every recurrent layer holds
its internal state (i.e. the output of the previous call). At the first application of the recurrent layer, you must reset the
internal state. Then, the next input can be directly fed to the LSTM instance:

>>> x2 Variable (np.random.randn (10, 100) .astype(np.float32))
>>> y2 = 1(x2)

Based on this LSTM link, let’s write our recurrent network as a new chain:

class RNN (Chain) :
def _ init_ (self):
super (RNN, self).__init__ ()

(continues on next page)
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with self.init_scope():
self.embed = L.EmbedID (1000, 100) # word embedding
self.mid L.LSTM (100, 50) # the first LSTM layer
self.out = L.Linear (50, 1000) # the feed-forward output layer

def reset_state(self):
self.mid.reset_state ()

def forward(self, cur_word):
# Given the current word ID, predict the next word.
x = self.embed (cur_word)
h = self.mid(x)
y = self.out (h)
return y

rnn = RNN ()

model = L.Classifier (rnn)
optimizer = optimizers.SGD ()
optimizer.setup (model)

Here EmbedID is alink for word embedding. It converts input integers into corresponding fixed-dimensional embed-
ding vectors. The last linear link out represents the feed-forward output layer.

The RNN chain implements a one-step-forward computation. It does not handle sequences by itself, but we can use it
to process sequences by just feeding items in a sequence straight to the chain.

Suppose we have a list of word variables x_ 11 st. Then, we can compute loss values for the word sequence by simple
for loop.

def compute_loss(x_list):
loss = 0
for cur_word, next_word in zip(x_list, x_list[1l:]):
loss += model (cur_word, next_word)
return loss

Of course, the accumulated loss is a Variable object with the full history of computation. So we can just call its
backward () method to compute gradients of the total loss according to the model parameters:

# Suppose we have a list of word variables x_list.
rnn.reset_state ()

model.cleargrads ()

loss = compute_loss(x_list)

loss.backward ()

optimizer.update ()

Or equivalently we can use the compute_loss as a loss function:

rnn.reset_state ()
optimizer.update (compute_loss, x_list)

3.5.2 Truncate the Graph by Unchaining

Learning from very long sequences is also a typical use case of recurrent nets. Suppose the input and state sequence
is too long to fit into memory. In such cases, we often truncate the backpropagation into a short time range. This
technique is called truncated backprop. 1t is heuristic, and it makes the gradients biased. However, this technique
works well in practice if the time range is long enough.
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How to implement truncated backprop in Chainer? Chainer has a smart mechanism to achieve truncation, called back-
ward unchaining. It is implemented in the Variable.unchain_backward () method. Backward unchaining
starts from the Variable object, and it chops the computation history backwards from the variable. The chopped vari-
ables are disposed automatically (if they are not referenced explicitly from any other user object). As a result, they are
no longer a part of computation history, and are not involved in backprop anymore.

Let’s write an example of truncated backprop. Here we use the same network as the one used in the previous subsec-
tion. Suppose we are given a very long sequence, and we want to run backprop truncated at every 30 time steps. We
can write truncated backprop using the model defined above:

loss = 0
count = 0
seqglen = len(x_list[1l:])

rnn.reset_state ()
for cur_word, next_word in zip(x_list, x_list[l:]):
loss += model (cur_word, next_word)
count += 1
if count % 30 == 0 or count == seqglen:
model.cleargrads ()
loss.backward ()
loss.unchain_backward ()

optimizer.update ()

State is updated at model (), and the losses are accumulated to 1oss variable. At each 30 steps, backprop takes
place at the accumulated loss. Then, the unchain_backward () method is called, which deletes the computation
history backward from the accumulated loss. Note that the last state of model is not lost, since the RNN instance
holds a reference to it.

The implementation of truncated backprop is simple, and since there is no complicated trick on it, we can generalize
this method to different situations. For example, we can easily extend the above code to use different schedules
between backprop timing and truncation length.

3.5.3 Network Evaluation without Storing the Computation History
On evaluation of recurrent nets, there is typically no need to store the computation history. While unchaining enables
us to walk through unlimited length of sequences with limited memory, it is a bit of a work-around.

As an alternative, Chainer provides an evaluation mode of forward computation which does not store the computation
history. This is enabled by just calling no_backprop_mode () context:

with chainer.no_backprop_mode () :
x_1list = [Variable(...) for _ in range(100)] # list of 100 words
loss = compute_loss (x_list)

Note that we cannot call 1oss.backward () to compute the gradient here, since the variable created in the no-
backprop context does not remember the computation history.

No-backprop context is also useful to evaluate feed-forward networks to reduce the memory footprint.

We can combine a fixed feature extractor network and a trainable predictor network using no_backprop_mode ().
For example, suppose we want to train a feed-forward network predictor_func, which is located on top of another
fixed pre-trained network fixed_ func. We want to train predictor_func without storing the computation
history for fixed_func. This is simply done by following code snippets (suppose x_data and y_data indicate
input data and label, respectively):
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with chainer.no_backprop_mode () :
x = Variable (x_data)
feat = fixed_func (x)
y = predictor_func (feat)
y.backward ()

At first, the input variable x is in no-backprop mode, so fixed_func does not memorize the computation history.
Then predictor_func is executed in backprop mode, i.e., with memorizing the history of computation. Since
the history of computation is only memorized between variables feat and y, the backward computation stops at the
feat variable.

3.5.4 Making it with Trainer

The above codes are written with plain Function/Variable APIs. When we write a training loop, it is better to use
Trainer, since we can then easily add functionalities by extensions.

Before implementing it on Trainer, let’s clarify the training settings. We here use Penn Tree Bank dataset as a set
of sentences. Each sentence is represented as a word sequence. We concatenate all sentences into one long word
sequence, in which each sentence is separated by a special word <eos>, which stands for “End of Sequence”. This
dataset is easily obtained by chainer.datasets.get_pthb_words (). This function returns train, validation,
and test dataset, each of which is represented as a long array of integers. Each integer represents a word ID.

Our task is to learn a recurrent neural net language model from the long word sequence. We use words in different
locations to form mini-batches. It means we maintain B indices pointing to different locations in the sequence, read
from these indices at each iteration, and increment all indices after the read. Of course, when one index reaches the
end of the whole sequence, we turn the index back to 0.

In order to implement this training procedure, we have to customize the following components of Trainer:

e Iterator. Built-in iterators do not support reading from different locations and aggregating them into a mini-
batch.

» Update function. The default update function does not support truncated BPTT.

When we write a dataset iterator dedicated to the dataset, the dataset implementation can be arbitrary; even the interface
is not fixed. On the other hand, the iterator must support the Iterator interface. The important methods and
attributes to implement are batch_size, epoch, epoch_detail, is_new_epoch, iteration,___next__,
and serialize. Following is a code from the official example in the examples/ptb directory.

from _ future  import division

class ParallelSequentiallIterator (chainer.dataset.Iterator):
def _ _init__ (self, dataset, batch_size, repeat=True):

self.dataset = dataset
self.batch_size = batch_size
self.epoch = 0
self.is_new_epoch = False
self.repeat = repeat
self.offsets = [1i » len(dataset) // batch_size for i in range (batch_size)]
self.iteration = 0

def _ next_ (self):
length = len(self.dataset)
if not self.repeat and self.iteration * self.batch_size >= length:
raise StopIteration
cur_words = self.get_words()
self.iteration += 1

(continues on next page)
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next_words = self.get_words ()

epoch = self.iteration » self.batch_size // length
self.is_new_epoch = self.epoch < epoch
if self.is_new_epoch:

self.epoch = epoch

return list (zip (cur_words, next_words))

@property
def epoch_detail (self):
return self.iteration * self.batch_size / len(self.dataset)

def get_words (self):
return [self.dataset [ (offset + self.iteration) % len(self.dataset)]
for offset in self.offsets]

def serialize(self, serializer):
self.iteration = serializer('iteration', self.iteration)
self.epoch = serializer ('epoch', self.epoch)

train_iter = ParallelSequentiallterator (train, 20)
val_iter = ParallelSequentiallterator(val, 1, repeat=False)

Although the code is slightly long, the idea is simple. First, this iterator creates of fsets pointing to positions
equally spaced within the whole sequence. The i-th examples of mini-batches refer the sequence with the i-th offset.
The iterator returns a list of tuples of the current words and the next words. Each mini-batch is converted to a tuple of
integer arrays by the concat_examples function in the standard updater (see the previous tutorial).

Backprop Through Time is implemented as follows.

class BPTTUpdater (training.updaters.StandardUpdater) :

def _ _init__ (self, train_iter, optimizer, bprop_len):
super (BPTTUpdater, self)._ _init__ (train_iter, optimizer)
self.bprop_len = bprop_len

# The core part of the update routine can be customized by overriding.
def update_core(self):

loss = 0

# When we pass one iterator and optimizer to StandardUpdater.__init__,
# they are automatically named 'main'.

train_iter = self.get_iterator('main')

optimizer = self.get_optimizer ('main')

# Progress the dataset iterator for bprop_len words at each iteration.
for i in range(self.bprop_len):

# Get the next batch (a list of tuples of two word IDs)

batch = train_iter._ next_ ()

# Concatenate the word IDs to matrices and send them to the device
# self.converter does this job

# (it is chainer.dataset.concat_examples by default)

x, t = self.converter (batch)

# Compute the loss at this time step and accumulate it
loss += optimizer.target (chainer.Variable(x), chainer.Variable(t))

(continues on next page)
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optimizer.target.cleargrads () # Clear the parameter gradients
loss.backward () # Backprop

loss.unchain_backward/() # Truncate the graph

optimizer.update () # Update the parameters

updater = BPTTUpdater (train_iter, optimizer, bprop_len) # instantiation

In this case, we update the parameters on every bprop_len consecutive words. The call of unchain_backward
cuts the history of computation accumulated to the LSTM links. The rest of the code for setting up Trainer is almost
same as one given in the previous tutorial.

In this section we have demonstrated how to write recurrent nets in Chainer and some fundamental techniques to man-
age the history of computation (a.k.a. computational graph). The example in the examples/ptb directory implements
truncated backprop learning of a LSTM language model from the Penn Treebank corpus. In the next section, we will
review how to use GPU(s) in Chainer.

3.6 RNN Language Models

3.6.1 0. Introduction

The language model is modeling the probability of generating natural language sentences or documents. You can
use the language model to estimate how natural a sentence or a document is. Also, with the language model, you can
generate new sentences or documents.

Let’s start with modeling the probability of generating sentences. We represent a sentence as X = (xg, X1, ..., X7), in
which x; is a one-hot vector. Generally, X is the one-hot vector of BOS (beginning of sentence), and xr is that of
EOS (end of sentence).

A language model models the probability of a word occurrence under the condition of its previous words in a sentence.
Let X; ;1 be (x4, Xi41, .-, X;), the occurrence probability of sentence X can be represented as follows:

P(X) = P(xo) HP(Xt\X[o,tq])
=1

So, the language model P(X) can be decomposed into word probabilities conditioned with its previous words. In this
tutorial, we model P(x;|X{o 1)) With a recurrent neural network to obtain a language model P(X).

3.6.2 1. Basic Idea of Recurrent Neural Net Language Model

1.1 Recurrent Neural Net Language Model

Recurrent Neural Net Language Model (RNNLM) is a type of neural net language models which contains the RNNs
in the network. Since an RNN can deal with the variable length inputs, it is suitable for modeling the sequential data
such as sentences in natural language.

We show one layer of an RNNLM with these parameters.
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Symbol | Definition
X the one-hot vector of ¢-th word
Vi the ¢-th output
hg’) the ¢-th hidden layer of i-th layer
Pt the next word’s probability of ¢-th word
E Embedding matrix
W, Hidden layer matrix
W, Output layer matrix
he
Xt Pt
he
B £ ] ]
W Wo

softmax_

I
LITTIITTTTI
I

The process to get a next word prediction from i-th input word x;

1. Get the embedding vector: hEO) =Ex;

(0)

2. Calculate the hidden layer: hgl) = tanh (Wh l :ll(tl) ])
t—1

3. Calculate the output layer: y; = Wohgl)

4. Transform to probability: p; = softmax(y;)

Note:
* Note that tanh in the above equation is applied to the input vector in element-wise manner.

a

¢ Note that [ b

] denotes a concatenated vector of a and b.

¢ Note that softmax in the above equation converts an arbitrary real vector to a probability vector which the
summation over all elements is 1.
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1.2 Perplexity (Evaluation of the language model)

Perplexity is the common evaluation metric for a language model. Generally, it measures how well the proposed

probability model Py,oq01(X) represents the target data P*(X). Let a validation dataset be D = {X (™)} ‘nD:‘l, which is
a set of sentences, where the n-th sentence length is 70, and the vocabulary size of this dataset is |V, the perplexity
is represented as follows:

|D| T
1 n n
b* st. z= _M Z Z logb Pmodcl(xg )7 Xfa,)tfl])

n=1 t=1

We usually use b = 2 or b = e. The perplexity shows how much varied the predicted distribution for the next word is.
When a language model represents the dataset well, it should show a high probability only for the correct next word,
so that the entropy should be high. In the above equation, the sign is reversed, so that smaller perplexity means better
model.

During training, we minimize the below cross entropy:
H(pa Pmodel) = _P(X) lOg Pmodel(X>

where P is the empirical distribution of a sequence in the training dataset.

3.6.3 2. Implementation of Recurrent Neural Net Language Model

There is an example of RNN language model in the official repository, so we will explain how to implement a
RNNLM in Chainer based on that: examples/ptb

2.1 Model Overview

|| || | Wo —|—

dropout dropout dropout

1 2
ht—l ht—l

The RNNLM used in this notebook is depicted in the above figure. The symbols appeared in the figure are defined as
follows:
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Symbol | Definition

Xy the one-hot vector of ¢-th word

Yt the ¢-th output

NG the ¢-th hidden layer of i-th layer

Pt the next word’s probability of ¢-th word
E Embedding matrix

W, Hidden layer matrix

W, Output layer matrix

LSTMs (long short-term memory) are used for the connection of hidden layers. A LSTM is one of major recurrent
neural net modules. It is designed for remembering the long-term memory, so that it should be able to consider
relationships of distant words, such that a word at beginning of sentence and it at the end. We also use Dropout
before both LSTMs and linear transformations. Dropout is one of regularization techniques for preventing overfitting

on training dataset.
2.2 Step-by-step Implementation
2.2.1 Import Package

First, let’s import necessary packages.

Listing 11: train_ptb.py

nun

from __ future_  import division
import argparse
import sys

import numpy as np

2.2.2 Define Training Settings

Define all training settings here.

Listing 12: train_ptb.py

parser.add_argument ('--batchsize', '-b', type=int, default=20,
help='Number of examples in each mini-batch')
parser.add_argument ('--bproplen', '-1', type=int, default=35,

help='Number of words in each mini-batch '
'(= length of truncated BPTT) ')

parser.add_argument ('--epoch', '-e', type=int, default=39,

help='Number of sweeps over the dataset to train')
parser.add_argument ('-—device', '-d', type=str, default='-1",

help='Device specifier. Either ChainerX device '
'specifier or an integer. If non-negative integer,
'CuPy arrays with specified device id are used. If
'negative integer, NumPy arrays are used')

parser.add_argument ('-—-gradclip', '-c', type=float, default=5,
help='Gradient norm threshold to clip"')
parser.add_argument ('--out', '-o', default='result',

(continues on next page)
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help='Directory to output the result')

parser.add_argument ('—-—-resume', '-r', type=str,
help='Resume the training from snapshot')
parser.add_argument ('--test', action='store_ true',

help='Use tiny datasets for quick tests')
parser.set_defaults (test=False)
parser.add_argument ('--unit', '-u', type=int, default=650,
help='Number of LSTM units in each layer')
parser.add_argument ('-—-model', '-m', default='model.npz',
help='Model file name to serialize')

2.2.3 Define Network Structure

An RNNLM written in Chainer is shown below. It implements the model depicted in the above figure.

Listing 13: train_ptb.py

class RNNForLM (chainer.Chain) :

def _ init_ (self, n_vocab, n_units):
super (RNNForLM, self)._ _init__ ()
with self.init_scope():
self.embed = L.EmbedID(n_vocab, n_units)
self.l1l = L.LSTM(n_units, n_units)
self.12 = L.LSTM(n_units, n_units)
self.13 = L.Linear (n_units, n_vocab)

for param in self.params() :
param.array[...] = np.random.uniform(-0.1, 0.1, param.shape)

def reset_state(self):
self.ll.reset_state()
self.l2.reset_state()

def forward(self, x):
h0 = self.embed(x)
hl self.1l1(F.dropout (h0))
h2 self.12 (F.dropout (hl))
y = self.13(F.dropout (h2))
return y

* When we instantiate this class for making a model, we give the vocabulary size to n_vocab and the size of
hidden vectors to n_units.

¢ This network uses chainer.links.LSTM, chainer.links.Linear, and chainer.functions.
dropout as its building blocks. All the layers are registered and initialized in the context with self.
init_scope().

* You can access all the parameters in those layers by calling self.params ().
* In the constructor, it initializes all parameters with values sampled from a uniform distribution U (-1, 1).

* The forward method takes an word ID x, and calculates the word probability vector for the next word by
forwarding it through the network, and returns the output.

* Note that the word ID x is automatically converted to a |V|-dimensional one-hot vector and then multiplied with
the input embedding matrix in self.embed (x) to obtain an embed vector h0 at the first line of forward.
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2.2.4 Load the Penn Tree Bank Long Word Sequence Dataset

In this notebook, we use Penn Tree Bank dataset that contains number of sentences. Chainer provides an utility func-
tion to obtain this dataset from server and convert it to a long single sequence of word IDs. chainer.datasets.
get_ptb_words () actually returns three separated datasets which are for train, validation, and test.

Let’s download and make dataset objects using it:

Listing 14: train_ptb.py

# Load the Penn Tree Bank long word sequence dataset
train, val, test = chainer.datasets.get_ptb_words()

2.2.5 Define lterator for Making a Mini-batch from the Dataset

Dataset iterator creates a mini-batch of couple of words at different positions, namely, pairs of current word and its next
word. Each example is a part of sentences starting from different offsets equally spaced within the whole sequence.

Listing 15: train_ptb.py

class ParallelSequentiallIterator (chainer.dataset.Iterator):

def _ _init__ (self, dataset, batch_size, repeat=True):
super (ParallelSequentiallterator, self).__init__ ()
self.dataset = dataset
self.batch_size = batch_size # batch size
self.repeat = repeat
length = len(dataset)
# Offsets maintain the position of each sequence in the mini-batch.
self.offsets = [i * length // batch_size for i in range (batch_size)]
self.reset ()

def reset (self):
# Number of completed sweeps over the dataset. In this case, it is
# incremented if every word is visited at least once after the last
# increment.
self.epoch = 0
# True if the epoch is incremented at the last iteration.
self.is_new_epoch = False
# NOTE: this is not a count of parameter updates. It is just a count of
# calls of ' '__next_ "
self.iteration = 0
# use -1 instead of None internally
self._previous_epoch_detail -1.

def _ next_ (self):
# This iterator returns a list representing a mini-batch. Each item
# indicates a different position in the original sequence. Each item 1is
# represented by a pair of two word IDs. The first word 1is at the
# "current" position, while the second word at the next position.
# At each iteration, the iteration count is incremented, which pushes
# forward the "current" position.

length = len(self.dataset)

if not self.repeat and self.iteration * self.batch_size >= length:

# If not self.repeat, this iterator stops at the end of the first

(continues on next page)
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# epoch (i.e., when all words are visited once).
raise StopIteration
cur_words = self.get_words()
self._previous_epoch_detail = self.epoch_detail
self.iteration += 1
next_words = self.get_words ()

epoch = self.iteration * self.batch_size // length
self.is_new_epoch = self.epoch < epoch
if self.is_new_epoch:

self.epoch = epoch

return list (zip (cur_words, next_words))

@property
def epoch_detail (self):
# Floating point version of epoch.
return self.iteration x self.batch_size / len(self.dataset)

@property
def previous_epoch_detail (self):
if self._previous_epoch_detail < 0:
return None
return self._previous_epoch_detail

def get_words (self):
# It returns a list of current words.
return [self.dataset[ (offset + self.iteration) % len(self.dataset)]
for offset in self.offsets]

def serialize(self, serializer):
# It is important to serialize the state to be recovered on resume.
self.iteration = serializer('iteration', self.iteration)
self.epoch = serializer ('epoch', self.epoch)
try:
self._previous_epoch_detail = serializer(
'previous_epoch_detail', self._previous_epoch_detail)
except KeyError:
# guess previous_epoch _detail for older version
self._previous_epoch_detail = self.epoch + \
(self.current_position - self.batch_size) / len(self.dataset)
if self.epoch_detail > O:
self._previous_epoch_detail = max(
self._previous_epoch_detail, 0.)
else:
self._previous_epoch_detail = -1.

2.2.6 Define Updater

We use Backpropagation through time (BPTT) for optimize the RNNLM. BPTT can be implemented by overrid-
ing update_core () method of StandardUpdater. First, in the constructor of the BPTTUpdater, it takes
bprop_len as an argument in addition to other arguments StandardUpdater needs. bprop_len defines the
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length of sequence T to calculate the loss:

T V|
L=- Z Z P(Xgﬂ) log Podel (Xgi)l | XE"))
t=0 n=1

where P(x?) is a probability for n-th word in the vocabulary at the position ¢ in the training data sequence.

Listing 16: train_ptb.py

class BPTTUpdater (training.updaters.StandardUpdater) :

def _ _init__ (self, train_iter, optimizer, bprop_len, device):
super (BPTTUpdater, self)._ _init__ (
train_iter, optimizer, device=device)
self.bprop_len = bprop_len

# The core part of the update routine can be customized by overriding.
def update_core(self):

loss = 0

# When we pass one iterator and optimizer to StandardUpdater.__init__,
# they are automatically named 'main'.

train_iter = self.get_iterator('main')

optimizer = self.get_optimizer('main')

# Progress the dataset iterator for bprop_len words at each iteration.
for i in range(self.bprop_len):

# Get the next batch (a list of tuples of two word IDs)

batch = train_iter._ next_ ()

# Concatenate the word IDs to matrices and send them to the device
# self.converter does this job

# (it is chainer.dataset.concat_examples by default)

x, t = self.converter (batch, self.device)

# Compute the loss at this time step and accumulate it
loss += optimizer.target (x, t)

optimizer.target.cleargrads () # Clear the parameter gradients
loss.backward() # Backprop

loss.unchain_backward/() # Truncate the graph
optimizer.update() # Update the parameters

2.2.7 Define Evaluation Function (Perplexity)

Define a function to calculate the perplexity from the loss value. If we take e as b in the above definition of perplexity,
calculating the perplexity is just to give the loss value to the power of e:

Listing 17: train_ptb.py

def compute_perplexity (result):

result['perplexity'] = np.exp(result['main/loss'])
if 'validation/main/loss' in result:
result['val_perplexity'] = np.exp(result['validation/main/loss'])
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2.2.8 Create Iterator

Here, the code below just creates iterator objects from dataset splits (train/val/test).

Listing 18: train_ptb.py

train_iter = ParallelSequentiallterator(train, args.batchsize)
val_iter = ParallelSequentiallterator(val, 1, repeat=False)
test_iter = ParallelSequentiallterator(test, 1, repeat=False)

2.2.9 Create RNN and Classification Model

Instantiate RNNLM model and wrap it with chainer. links.Classifier because it calculates softmax cross
entropy as the loss.

Listing 19: train_ptb.py

rnn = RNNForLM (n_vocab, args.unit)
model = L.Classifier (rnn)
model.compute_accuracy = False # we only want the perplexity

Note that C1assifier computes not only the loss but also accuracy based on a given input/label pair. To learn the
RNN language model, we only need the loss (cross entropy) in the C1assifier because we calculate the perplexity
instead of classification accuracy to check the performance of the model. So, we turn off computing the accuracy by
giving False to model . compute_accuracy attribute.

2.2.10 Setup Optimizer

Prepare an optimizer. Here, we use GradientClipping to prevent gradient explosion. It automatically clips the
gradient to be used to update the parameters in the model with given constant gradclip.

Listing 20: train_ptb.py

optimizer = chainer.optimizers.S3SGD (lr=1.0)
optimizer.setup (model)
optimizer.add_hook (chainer.optimizer_hooks.GradientClipping (args.gradclip))

2.2.11 Setup and Run Trainer

Let’s make a trainer object and start the training! Note that we add an eval_hook to the Evaluator extension
to reset the internal states before starting evaluation process. It can prevent to use training data during evaluating the
model.

Listing 21: train_ptb.py

updater = BPTTUpdater (train_iter, optimizer, args.bproplen, device)
trainer = training.Trainer (updater, (args.epoch, 'epoch'), out=args.out)

eval_model = model.copy() # Model with shared params and distinct states

(continues on next page)
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eval_rnn = eval_model.predictor

trainer.extend (extensions.Evaluator (
val_iter, eval_model, device=device,
# Reset the RNN state at the beginning of each evaluation
eval_hook=lambda _: eval_rnn.reset_state()))

interval = 10 if args.test else 500
trainer.extend (extensions.LogReport (postprocess=compute_perplexity,
trigger=(interval, 'iteration')))
trainer.extend (extensions.PrintReport (
["epoch', 'iteration', 'perplexity', 'val_perplexity']
), trigger=(interval, 'iteration'))
trainer.extend (extensions.ProgressBar (
update_interval=1 if args.test else 10))
trainer.extend (extensions.snapshot ())
trainer.extend (extensions.snapshot_object (
model, 'model_iter_ {.updater.iteration}'))
if args.resume is not None:
chainer.serializers.load_npz(args.resume, trainer)

trainer.run ()

2.2.12 Evaluate the trained model on test dataset

Let’s see the perplexity on the test split. Trainer’s extension can be used as just a normal function outside of
Trainer.

Listing 22: train_ptb.py

print ('test')

eval_rnn.reset_state ()

evaluator = extensions.Evaluator (test_iter, eval_model, device=device)
result = evaluator ()

print ('test perplexity: {}'.format (np.exp(float (result['main/loss']))))

2.3 Run Example

2.3.1 Training the model

You can train the model with the script: examples/ptb/train_ptb.py

$ pwd

/root2chainer/chainer/examples/ptb

$ python train_ptb.py --test # run by test mode. If you want to use all data, remove
—"——test".

Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
—train.txt...

Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
—valid.txt...

Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
—test.txt...

(continues on next page)
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#vocab = 10000
test
test perplexity: 29889.9857364

2.3.2 Generating sentences

You can generate the sentence which starts with a word in the vocabulary. In this example, we generate a sen-
tence which starts with the word apple. We use the script in the PTB example of the official repository: exam-
ples/ptb/gentxt.py

$ pwd

/root2chainer/chainer/examples/ptb

$ python gentxt.py -m model.npz -p apple

apple a new u.s. economist with <unk> <unk> fixed more than to N the company said who_,
—~1is looking back to

3.7 Word2Vec: Obtain word embeddings

3.7.1 0. Introduction

Word2vec is the tool for generating the distributed representation of words, which is proposed by Mikolov et al[1].
When the tool assigns a real-valued vector to each word, the closer the meanings of the words, the greater similarity
the vectors will indicate.

Distributed representation means assigning a real-valued vector for each word and representing the word by the
vector. When representing a word by distributed representation, we call the word embeddings. In this tutorial, we
aim at explaining how to get the word embeddings from Penn Tree Bank dataset.

Let’s think about what the meaning of word is. Since we are human, we can understand that the words “animal” and
“dog” are deeply related each other. But what information will Word2vec use to learn the vectors for words? The
words “animal” and “dog” should have similar vectors, but the words “food” and “dog” should be far from each other.
How to know the features of those words automatically?

3.7.2 1. Basic Idea

Word2vec learns the similarity of word meanings from simple information. It learns the representation of words from
sentences. The core idea is based on the assumption that the meaning of a word is affected by the words around it.
This idea follows distributional hypothesis[2].

The word we focus on to learn its representation is called center word, and the words around it are called context
words. The window size C' determines the number of context words which is considered.

Here, let’s see the algorithm by using an example sentence: “The cute cat jumps over the lazy dog.”.
* All of the following figures consider “cat” as the center word.

¢ According to the window size C, you can see that the number of context words is changed.
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" : Center Word
: Context Word

c=0 The cute cat jumps over the lazy dog.
c=1 The cute cat jumps over the lazy dog.

c=2 | The cute cat jumps over the lazy dog.

3.7.3 2. Main Algorithm

Word2vec, the tool for creating the word embeddings, is actually built with two models, which are called Skip-gram
and CBoW.

To explain the models with the figures below, we will use the following symbols.

Symbol | Definition

[V] The size of vocabulary

D The size of embedding vector

Vi A one-hot center word vector

Vitco A set of 2C' context vectors around v, namely, {vt+c}§:70\vt
1y An embedding vector of an input word vector

lo An output vector of the network

Wy The embedding matrix for inputs

Wo The embedding matrix for outputs

Note: Using negative sampling or hierarchical softmax for the loss function is very common, however, in this
tutorial, we will use the softmax over all words and skip the other variants for the sake of simplicity.

2.1 Skip-gram
This model learns to predict context words V1~ when a center word v; is given. In the model, each row of the
embedding matrix for input W iy becomes a word embedding of each word.
When you input a center word v; into the network, you can predict one of context words V1. € V;_¢ as follows:
1. Calculate an embedding vector of the input center word vector: 17 = W v,
2. Calculate an output vector of the embedding vector: 1o = Woply
3. Calculate a probability vector of a context word: V. = softmax(lp)

Each element of the |)|-dimensional vector V. is a probability that a word in the vocabulary turns out to be a context
word at position c. So, the probability p(v¢.|v;) can be estimated by a dot product of the one-hot vector v;,. which
represents the actual word at the position ¢ and the output vector V.

P(Verelve) = Vi Vire
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The loss function to predict all the context words V; ¢ given a center word v, is defined as follows:

L(Visc|vi; Wi, Wo) = Z —log (p(Vete | Vi)

Vitce

= —log(v{iViye)

Vite

2.2 Continuous Bag of Words (CBoW)
This model learns to predict center word v; when context words V1 ¢ is given. When you give a set of context words
Vi1 to the network, you can estimate the probability of the center word v; as follows:

1. Calculate a mean embedding vector over all context words: 1 = % th o Wgyviie

2. Calculate an output vector of the embedding vector: 1o = Wply

3. Calculate a probability vector of a center word: ¥, = softmax(lp)

Each element of the |V|-dimensional vector v, is a probability that a word in the vocabulary turns out to be a center
word. So, the probability p(v:|V;c) can be estimated by a dot product of the one-hot vector v; which represents the
actual center word and the output vector V.

T ~
P(Vt‘th:C) =V V¢
The loss function to predict the center word v; given context words V; ¢ is defined as follows:

L(v|Vitc; Wr, Wo) = —log (p(v¢ | Vizc))

= —log(v{ V1)

3.7.4 3. Details of Skip-gram

In this tutorial, we mainly explain Skip-gram model because
1. It is easier to understand the algorithm than CBoW.
2. Even if the number of words increases, the accuracy is largely maintained. So, it is more scalable.
So, let’s think about a concrete example of calculating Skip-gram under this setup:
* The size of vocabulary |V| is 10.
* The size of embedding vector D is 2.
¢ Center word is “dog”.
* Context word is “animal”.
Since there should be more than one context word, repeat the following process for each context word.
1. The one-hot vector of “dog”is [0 0 1 0 0 0 0 0 O 0] and you input it as the center word.
2. The third row of embedding matrix W g is used for the word embedding of “dog” 1.
3. Then, multiply W with 1y to obtain the output vector 1p.
4

. Give 1o to the softmax function to make it a predicted probability vector v, . for a context word at the position
c.

e

Calculate the error between vy . and the one-hot vector of “animal”; [1 0 0 0 0 0 0 0 0 0 0].

6. Propagate the error back to the network to update the parameters.
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dog lo Vt-|-c animal
0 ‘NZT' 35 0.78 1
H )

0 e Wo -0.4| l0.02

1 [0.4,-0.1] -1.1 0.01 0
[-0.6, 0.4] l

0 [-05, 0.5] H 0.2 0.02 0

0 £05, 011 .06 04| softmax g3 loss 0

0 [06,-0.3] 0.4 -0.4 0.02 0

0 05, 081 -0.1 0.03 0
[0.3,-0.5]

0 [0.1,-0.6] 0.1 0.02 0

0 0.7 0.05 0

0 -0.2 0.02 0

3.7.5 4. Implementation of Skip-gram in Chainer

There is an example of Word2vec in the official repository of Chainer, so we will explain how to implement Skip-gram
based on this: examples/word2vec

4.1 Preparation
First, let’s import necessary packages:

Listing 23: train_word2vec.py

import argparse
import collections
import os

import six

import warnings

import numpy as np

import chainer

from chainer.backends import cuda
import chainer.functions as F
import chainer.initializers as I
import chainer.links as L

import chainer.optimizers as O
from chainer import reporter

4.2 Define a Skip-gram model

Next, let’s define a network for Skip-gram.
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Listing 24: train_word2vec.py

class SkipGram(chainer.Chain):
"""Definition of Skip-gram Model"""

def _ init_ (self, n_vocab, n_units, loss_func):
super (SkipGram, self).__init__ ()

with self.init_scope():
self.embed = L.EmbedID (
n_vocab, n_units, initialW=I.Uniform(l. / n_units))
self.loss_func = loss_func

def forward(self, x, contexts):

e = self.embed(contexts)
batch_size, n_context, n_units = e.shape
x = F.broadcast_to(x[:, None], (batch_size, n_context))

e = F.reshape (e, (batch_size x n_context, n_units))
x = F.reshape (x, (batch_size * n_context,))

loss = self.loss_func(e, x)

reporter.report ({'loss': loss}, self)

return loss

Listing 25: train_word2vec.py

class SoftmaxCrossEntropyLoss (chainer.Chain):
"""Softmax cross entropy loss function preceded by linear transformation.

mmn

def _ init_ (self, n_in, n_out):
super (SoftmaxCrossEntropyLoss, self).__init__ ()
with self.init_scope():
self.out = L.Linear(n_in, n_out, initialW=0)

def forward(self, x, t):
return F.softmax_cross_entropy (self.out(x), t)

Note:
* The weight matrix self.embed.W is the embedding matrix for input vector x.

¢ The function call forward takes the word ID of a center word x and word IDs of context words contexts as
inputs, and outputs the error calculated by the loss function 1oss_funcs.t. SoftmaxCrossEntropyLoss.

* Note that the initial shape of x and contexts are (batch_size,) and (batch_size, n_context),
respectively.

¢ The batch_size means the size of mini-batch, and n_ context means the number of context words.

First, we obtain the embedding vectors of contexts by e = self.embed(contexts). Then F.
broadcast_to(x[:, None], (batch_size, n_context)) performs broadcasting of x (its shape is
(batch_size,)) to (batch_size, n_context) by copying the same value n_context time to fill the
second axis, and then the broadcasted x is reshaped into 1-D vector (batchsize x n_context,) while eisre-
shaped to (batch_size » n_context, n_units). In Skip-gram model, predicting a context word from the
center word is the same as predicting the center word from a context word because the center word is always a context
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word when considering the context word as a center word. So, we create batch_size x n_context center word
predictions by applying self . out linear layer to the embedding vectors of context words. Then, calculate softmax
cross entropy between the broadcasted center word ID x and the predictions.

4.3 Prepare dataset and iterator

Let’s retrieve the Penn Tree Bank (PTB) dataset by using Chainer’s dataset utility get_ptb_words () method.

train, val, _ = chainer.datasets.get_ptb_words()
counts collections.Counter (train)

Then define an iterator to make mini-batches that contain a set of center words with their context words. train and
val means training data and validation data. Each data contains the list of Document IDs:

>>> train

array ([ O, 1, 2, «.., 39, 26, 241, dtype=int32)
>>> val
array ([2211, 396, 1129, ..., 108, 27, 241, dtype=int32)

Listing 26: train_word2vec.py

class WindowIterator (chainer.dataset.Iterator):
"""Dataset iterator to create a batch of sequences at different positions.

This iterator returns a pair of the current words and the context words.

mmn

def _ _init__ (self, dataset, window, batch_size, repeat=True):
self.dataset = np.array(dataset, np.int32)
self.window = window # size of context window
self.batch_size = batch_size
self._repeat = repeat
# order is the array which is shuffled "' [window, window + 1, ...,
# len(dataset) - window — 1] °
self.order = np.random.permutation (

len(dataset) - window x 2) .astype(np.int32)
self.order += window
self.current_position = 0

# Number of completed sweeps over the dataset. In this case, it 1is
# incremented if every word 1s visited at least once after the last
# increment.

self.epoch = 0

# True 1f the epoch is incremented at the last iteration.
self.is_new_epoch = False

def _ next_ (self):
"""This iterator returns a list representing a mini-batch.

Each item indicates a different position in the original sequence.
mmn
if not self._repeat and self.epoch > 0:

raise StopIteration

i = self.current_position
i_end = i + self.batch_size
position = self.order[i:i_end]

(continues on next page)
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w = np.random.randint (self.window - 1) + 1

offset = np.concatenate([np.arange(-w, 0), np.arange(l, w + 1)1])
pos = position[:, None] + offset[None, :]

contexts = self.dataset.take (pos)

center = self.dataset.take (position)

if i_end >= len(self.order):
np.random.shuffle(self.order)
self.epoch += 1
self.is_new_epoch = True

self.current_position = 0
else:

self.is_new_epoch = False

self.current_position = i_end

return center, contexts
@property
def epoch_detail (self):

return self.epoch + float (self.current_position) / len(self.order)

def serialize(self, serializer):

self.current_position = serializer ('current_position',
self.current_position)

self.epoch = serializer ('epoch', self.epoch)

self.is_new_epoch = serializer('is_new_epoch', self.is_new_epoch)

if self.order is not None:
serializer ('order', self.order)

* In the constructor, we create an array self.order which denotes shuffled indices of [window, window
+ 1, ..., len(dataset) - window - 1] in order to choose a center word randomly from dataset
in a mini-batch.

¢ The iterator definition ___next__ returns batch_size sets of center word and context words.

e The code self.order[i:1i_end] returns the indices for a set of center words from the random-ordered
array self.order. The center word IDs center at the random indices are retrieved by self.dataset.
take.

* np.concatenate ([np.arange (-w, 0), np.arange(l, w + 1)]) creates a set of offsets to re-
trieve context words from the dataset.

e Thecode position[:, None] + offset[None, :] generates the indices of context words for each
center word index in position. The context word IDs context are retrieved by self.dataset .take.

4.4 Prepare model, optimizer, and updater

Listing 27: train_word2vec.py

model = SkipGram(n_vocab, args.unit, loss_func)

Listing 28: train_word2vec.py

optimizer = O.Adam()
optimizer.setup (model)
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Listing 29: train_word2vec.py

train_iter = WindowIterator (train, args.window, args.batchsize)
val_iter = WindowIterator(val, args.window, args.batchsize, repeat=False)

# Set up an updater
updater = training.updaters.StandardUpdater (
train_iter, optimizer, converter=convert, device=device)

Listing 30: train_word2vec.py

trainer = training.Trainer (updater, (args.epoch, 'epoch'), out=args.out)

trainer.extend (extensions.Evaluator (

val_iter, model, converter=convert, device=device))
trainer.extend (extensions.LogReport ())
trainer.extend (extensions.PrintReport (

['epoch', 'main/loss', 'validation/main/loss']))
trainer.extend (extensions.ProgressBar())

trainer.extend(
extensions.snapshot (filename="snapshot_epoch_{.updater.epoch}'),
trigger=(args.snapshot_interval, 'epoch'))

if args.resume is not None:
chainer.serializers.load_npz(args.resume, trainer)
trainer.run ()

4.5 Start training

$ pwd

/root2chainer/chainer/examples/word2vec

$ python train_word2vec.py —-test # run by test mode. If you want to use all data,
—remove "—--test".

GPU: -1
# unit: 100
Window: 5

Minibatch-size: 1000

# epoch: 20

Training model: skipgram
Output type: hsm

n_vocab: 10000
data length: 100

epoch main/loss validation/main/loss
1 4233.75 2495.33

2 1411.14 4990.66

3 4233.11 1247.66

4 2821.66 4990.65

5 4231.94 1247.66

6 5642.04 2495.3

7 5640.82 4990.64

8 5639.31 2495.28

(continues on next page)
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9 2817.89 4990.62
10 1408.03 3742.94
11 5633.11 1247.62
12 4221.71 2495.21
13 4219.3 4990.56
14 4216.57 2495.16
15 4213.52 2495.12
16 5616.03 1247.55
17 5611.34 3742.78
18 2800.31 3742.74
19 1397.79 2494.95
20 2794.1 3742.66

4.5 Search the similar words

$ pwd
/root2chainer/chainer/examples/word2vec
$ python search.py

>> apple

query: apple

compaq: 0.6169619560241699
chip: 0.49579331278800964
retailer: 0.4904134273529053
maker: 0.4684058427810669
computer: 0.4652436673641205

>> animal

query: animal

beauty: 0.5680124759674072
human: 0.5404794216156006
insulin: 0.5365156531333923
cell: 0.5186758041381836
photographs: 0.5077002048492432

3.7.6 5. Reference

 [1] Mikolov, Tomas; et al. “Efficient Estimation of Word Representations in Vector Space”. arXiv:1301.3781

* [2] Distributional Hypothesis

3.8 Write a Sequence to Sequence (seq2seq) Model

3.8.1 0. Introduction

The sequence to sequence (seq2seq) model[1][2] is a learning model that converts an input sequence into an output
sequence. In this context, the sequence is a list of symbols, corresponding to the words in a sentence. The seq2seq
model has achieved great success in fields such as machine translation, dialogue systems, question answering, and text
summarization. All of these tasks can be regarded as the task to learn a model that converts an input sequence into an
output sequence.
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3.8.2 1. Basic Idea of Seq2seq Model

1.1 Overview of Seq2seq Model

The Notations of Sequence

The seq2seq model converts an input sequence into an output sequence. Let the input sequence and the output sequence
be X and Y. The ¢-th element of the input sequence is represented as x;, and the j-th element of the output sequence
is also represented as y;. Generally, each of the x; and the y; is the one-hot vector of the symbols. For example, in
natural language processing(NLP), the one-hot vector represents the word and its size becomes the vocabulary size.

Let’s think about the seq2seq model in the context of NLP. Let the vocabulary of the inputs and the outputs be V(*) and
V(®)_ all the elements x; and y; satisfy x; € RVl and yi € RV, The input sequence X and the output sequence
Y are represented as the following equations:

X = (%1, .., X1) = (%)
Y = (Y17«~7YJ) = (yJ)jzl

I and J are the length of the input sequence and the output sequence. Using the typical NLP notation, y is the one-hot
vector of BOS, which is the virtual word representing the beginning of the sentence, and y ;4 is that of EOS, which
is the virtual word representing the end of the sentence.

The Notations of Conditional Probability P(Y|X)

Next, let’s think about the conditional probability P(Y|X) generating the output sequence Y when the input sequence
X is given. The purpose of seq2seq model is modeling the probability P(Y |X). However, the seq2seq model does not
model the probability P(Y|X) directly. Actually, it models the probability P(y;|Y «;,X), which is the probability
of generating the j-th element of the output sequence y; given the Y .; and X. Y ; means the output sequence from
ltoj—1,o0r (yj)g;i. In this notation, you can write the model P (Y |X) with the product of Py(y;|Y <;, X):

J+1
Py(Y|X) = H Py(y;Y<;,X)

j=1

Processing Steps in Seqg2seq Model

Now, let’s think about the processing steps in seq2seq model. The feature of seq2seq model is that it consists of the
two processes:

1. The process that generates the fixed size vector z from the input sequence X
2. The process that generates the output sequence Y from z
In other words, the information of X is conveyed by z, and Py (y;|Y <;, X) is actually calculated by Py(y;|Y <;,2).

First, we represent the process which generating z from X by the function A:
z = A(X)
The function A may be the recurrent neural net such as LSTMs.

Second, we represent the process which generating Y from z by the following formula:

Py(y;[Y<;,X) = T(0{", ;)

b =w(h, y; )
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¥ is the function to generate the hidden vectors h;t), and Y is the function to calculate the generative probability of

®)

the one-hot vector y;. When j = 1, h.”; or h(()t) is z generated by A(X), and y;_1 or yy is the one-hot vector of

BOS.

J

1.2 Model Architecture of Seq2seq Model
In this section, we describe the architecture of seq2seq model. To simplify the explanation, we use the most basic
architecture. The architecture of seq2seq model can be separated to the five major roles.

1. Encoder Embedding Layer

2. Encoder Recurrent Layer

3. Decoder Embedding Layer

4. Decoder Recurrent Layer

5. Decoder Output Layer

Encoder

 (5) [ ) [ ] [ ] [ ]

h; [ ) 3 )
Encod
Rgggur?ént Layer —>
Encod = 1 1
E:%Ck?edecging Layer T; : I ! : I .

L] Ll
xT; How are

One-hot Vector

One-hot Vector

""""""""""""""" ?"”””"”””””é”””””"”””"”%”””"””'”m"”””””Z"””bééédéF"”””””"
i

Output Layer
(t)
hj

Decoder
Reccurent Layer

| ‘T‘ X [ T 1" y E f T ' «g Decoder
I I I : | J Embedding Layer
<BOS> +» | » am ‘o fine  Yj-1
L ] J L ] L . One-hot Vector
Decoder

The encoder consists of two layers: the embedding layer and the recurrent layer, and the decoder consists of three
layers: the embedding layer, the recurrent layer, and the output layer.

In the explanation, we use the following symbols:
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Symbol | Definition

H the size of the hidden vector

D the size of the embedding vector

X; the one-hot vector of i-th word in the input sentence

X; the embedding vector of i-th word in the input sentence
E®) Embedding matrix of the encoder

hgs) the i-th hidden vector of the encoder

Y the one-hot vector of j-th word in the output sentence
v the embedding vector of j-th word in the output sentence
E® Embedding matrix of the decoder

h;t) the j-th hidden vector of the decoder

1.2.1 Encoder Embedding Layer

The first layer, or the encoder embedding layer converts the each word in the input sentence to the embedding vector.
When processing the i-th word in the input sentence, the input and the output of the layer are the following:

* The input is x; : the one-hot vector which represents ¢-th word
* The output is X; : the embedding vector which represents ¢-th word

Each embedding vector is calculated by the following equation:
)_('i = E(S)Xi

E®) € RPXIVl is the embedding matrix of the encoder.

1.2.2 Encoder Recurrent Layer

The encoder recurrent layer generates the hidden vectors from the embedding vectors. When processing the i-th
embedding vector, the input and the output of the layer are the following:

* The input is X; : the embedding vector which represents the ¢-th word
* The output is hgs) : the hidden vector of the i-th position

For example, when using the uni-directional RNN of one layer, the process can be represented as the following function
VIO

b = ¥ (x;, h{"))

In this case, we use the tanh as the activation function.

1.2.3 Decoder Embedding Layer

The decoder embedding layer converts the each word in the output sentence to the embedding vector. When processing
the j-th word in the output sentence, the input and the output of the layer are the following:

* The input is y;_; : the one-hot vector which represents the (j — 1)-th word generated by the decoder output
layer
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* The output is ¥, : the embedding vector which represents the (j — 1)-th word

Each embedding vector is calculated by the following equation:
v, =EWy; 4

E® € RP*IV"I is the embedding matrix of the encoder.

1.2.4 Decoder Recurrent Layer

The decoder recurrent layer generates the hidden vectors from the embedding vectors. When processing the j-th
embedding vector, the input and the output of the layer are the following:

* The input is §; : the embedding vector

* The output is h§t) : the hidden vector of j-th position

For example, when using the uni-directional RNN of one layer, the process can be represented as the following function
o)

t _ t
b = (3, b))
h("
= tanh (W(t) [ j-1 ] +b(”)
yi
In this case, we use the tanh as the activation function. And we must use the encoder’s hidden vector of the last

position as the decoder’s hidden vector of first position as following:

h{ =z =n

1.2.5 Decoder Output Layer

The decoder output layer generates the probability of the j-th word of the output sentence from the hidden vector.
When processing the j-th embedding vector, the input and the output of the layer are the following:

)

* The input is hg-t : the hidden vector of j-th position

* The output is p; : the probability of generating the one-hot vector y; of the j-th word
p; = Pg(yj|Y<j) = softrnax(oj) 'y
= softmaX(W(o)h§t) +b)) .y,

Note: There are a lot of varieties of seq2seq models. We can use the different RNN models in terms of: (1) directional-
ity (unidirectional or bidirectional), (2) depth (single-layer or multi-layer), (3) type (a vanilla RNN, a Long Short-term
Memory (LSTM), or a gated recurrent unit (GRU)), and (4) additional functionality (s.t. Attention Mechanism).

3.8.3 2. Implementation of Seq2seq Model

The official Chainer repository includes a neural machine translation example using the seq2seq model. We
will now provide an overview of the example and explain its implementation in detail. chainer/examples/seq2seq
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2.1 Model Overview

In this simple example, an input sequence is processed by a stacked LSTM-RNN (long short-term memory recurrent
neural networks) and it is encoded as a fixed-size vector. The output sequence is also processed by another stacked
LSTM-RNN. At decoding time, an output sequence is generated using argmax.

Encoder
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2.2 Step-by-step Implementation

2.2.1 Import Package

First, let’s import necessary packages.

Listing 31: seq2seq.py

import io

from nltk.translate import bleu_score
import numpy

import progressbar

import six

import chainer
import chainer.functions as F

(continues on next page)
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import chainer.links as L
from chainer import training

2.2.2 Define Training Settings

Define all training settings here.

Listing 32: seq2seq.py

parser.add_argument ('SOURCE', help='source sentence list')
parser.add_argument ('TARGET', help='target sentence list')
parser.add_argument ('SOURCE_VOCAB', help='source vocabulary file')
parser.add_argument ('TARGET_VOCAB', help='target vocabulary file')
parser.add_argument ('--validation-source',

help='source sentence list for validation')
parser.add_argument ('--validation-target',

help='target sentence list for validation')
parser.add_argument ('--batchsize', '-b', type=int, default=64,

help="'number of sentence pairs in each mini-batch')
parser.add_argument ('-—-epoch', '—-e', type=int, default=20,

help="number of sweeps over the dataset to train')
parser.add_argument ('-—-resume', '-r', type=str,

help='resume the training from snapshot')
parser.add_argument ('—--save', '—-s', type=str,

help='save a snapshot of the training')
parser.add_argument ('--unit', '-u', type=int, default=1024,

help="number of units"')
parser.add_argument ('--layer', '-1', type=int, default=3,

help="'number of layers')
parser.add_argument ('--use-dataset-api', default=False,

action='store_true',

help='use TextDataset API to reduce CPU memory usage')

parser.add_argument ('-—-min-source-sentence', type=int, default=1,
help="minimium length of source sentence')
parser.add_argument ('-—-max-source-sentence', type=int, default=50,
help="maximum length of source sentence')
parser.add_argument ('-—min-target-sentence', type=int, default=1,
help="minimium length of target sentence')
parser.add_argument ('-—-max-target-sentence', type=int, default=50,
help="maximum length of target sentence')
parser.add_argument ('-—log-interval', type=int, default=200,
help="number of iteration to show log')
parser.add_argument ('--validation—-interval', type=int, default=4000,

help="number of iteration to evlauate the model '
'with validation dataset')
parser.add_argument ('-—-device', '-d', type=str, default='-1",
help='Device specifier. Either ChainerX device '
'specifier or an integer. If non-negative integer, '
'CuPy arrays with specified device id are used. If '
'negative integer, NumPy arrays are used')
parser.add_argument ('--out', '-o', default='result',
help='directory to output the result')
group = parser.add_argument_group ('deprecated arguments')
group.add_argument ('--gpu', '-g', dest='device',
type=int, nargs='?', const=0,

(continues on next page)
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help="'GPU ID (negative value indicates CPU) ')

2.2.3 Define Network Structure

The Chainer implementation of seq2seq is shown below. It implements the model depicted in the above figure.

Listing 33: seq2seq.py

class Seqg2seq(chainer.Chain) :

def _ init__ (self, n_layers, n_source_vocab, n_target_vocab,
super (Seg2seq, self).__init__ ()
with self.init_scope():
self.embed_x = L.EmbedID(n_source_vocab, n_units)
self.embed_y = L.EmbedID (n_target_vocab, n_units)

self.encoder = L.NStepLSTM(n_layers, n_units, n_units,
self.decoder = L.NStepLSTM(n_layers, n_units, n_units,

self.W = L.Linear (n_units, n_target_vocab)

self.n_layers = n_layers
self.n_units = n_units

def forward(self, xs, ys):
xs = [x[::-1] for x in xs]

eos = self.xp.array([EOS], numpy.int32)
ys_in = [F.concat ([eos, y], axis=0) for y in ys]
ys_out = [F.concat ([y, eos], axis=0) for y in ys]

# Both xs and ys_in are lists of arrays.
exs = sequence_embed (self.embed_x, xs)
eys = sequence_embed (self.embed_y, ys_in)

batch = len(xs)
# None represents a zero vector in an encoder.
hx, cx, = self.encoder (None, None, exs)

_, _, 0s = self.decoder (hx, cx, eys)

# It is faster to concatenate data before calculating loss

# because only one matrix multiplication is called.
concat_os = F.concat (os, axis=0)

concat_ys_out = F.concat (ys_out, axis=0)

loss = F.sum(F.softmax_cross_entropy (

self.W(concat_os), concat_ys_out, reduce='no')) / batch

chainer.report ({'loss': loss}, self)

n_words = concat_ys_out.shape[0]

perp = self.xp.exp(loss.array * batch / n_words)
chainer.report ({'perp': perp}, self)

return loss

def translate(self, xs, max_length=100) :
batch = len(xs)

n_units) :

0.1)
0.1)

with chainer.no_backprop_mode (), chainer.using_config('train', False):

xs = [x[::-1] for x in xs]

(continues on next page)
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exs = sequence_embed(self.embed_x,
h, ¢, _ = self.encoder (None, None, exs)

ys = self.xp.full (batch, EOS, numpy.int32)
result = []

for i in range (max_length) :

XS)

eys = self.embed_y (ys)

eys = F.split_axis(eys, batch, 0)
h, ¢, ys = self.decoder(h, c, eys)
cys = F.concat (ys, axis=0)

wy = self.W(cys)

ys = self.xp.argmax(wy.array,
result.append(ys)

# Using "xp.concatenate(...) 1instead of
# support NumPy 1.9.
result = chainer.get_device ('@numpy') .send(

self.xp.concatenate ([x[None, :]

# Remove EOS taggs

outs = []

for y in result:
inds = numpy.argwhere (y
if len(inds) > O:

y = yl:inds ][O,

outs.append(y)

return outs

EOS)

011

‘xp.stack (result)

axis=1) .astype (numpy.int32)

here to

for x in result]) .T)

¢ In Seg2seq, three functions are defined: the constructor __init__ , the function call forward, and the

function for translation translate.

Listing 34: seq2seq.py

def _ _init__ (self, n_layers, n_source_vocab,
super (Seqg2seq, self).__init__ ()
with self.init_scope():

n_target_vocab,

n_units) :

self.embed_x = L.EmbedID(n_source_vocab, n_units)
self.embed_y = L.EmbedID (n_target_vocab, n_units)
self.encoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)

self.decoder =
self.W =

n_units,
n_target_vocab)

(
L.NStepLSTM(n_layers,
L.Linear (n_units,

self.n_layers =
self.n_units =

n_layers
n_units

n_units, 0.1)

* When we instantiate this class for making a model, we give the number of stacked Istms to n_layers, the
vocabulary size of the source language to n_source_vocab, the vocabulary size of the target language to

n_target_vocab, and the size of hidden vectors to n_units.

e This network uses chainer.links.NStepLSTM, chainer.links.EmbedID, and chainer.
links.Linear as its building blocks. All the layers are registered and initialized in the context with self.

init_scope().

* You can access all the parameters in those layers by calling self.params ().

* In the constructor, it initializes all parameters with values sampled from a uniform distribution U(—1, 1).
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Listing 35: seq2seq.py

def forward(self, xs, ys):
xs = [x[::-1] for x in xs]

eos = self.xp.array([EOS], numpy.int32)
ys_in = [F.concat ([eos, y], axis=0) for y in ys]
ys_out = [F.concat([y, eos], axis=0) for y in ys]

# Both xs and ys_in are lists of arrays.
exs = sequence_embed (self.embed_x, xs)
eys = sequence_embed(self.embed_y, ys_in)

batch = len(xs)

# None represents a zero vector in an encoder.
hx, cx, _ = self.encoder (None, None, exs)

_, _, o0s = self.decoder (hx, cx, eys)

# It is faster to concatenate data before calculating loss
# because only one matrix multiplication is called.
concat_os = F.concat (os, axis=0)
concat_ys_out = F.concat (ys_out, axis=0)
loss = F.sum(F.softmax_cross_entropy (

self.W(concat_os), concat_ys_out, reduce='no')) / batch

chainer.report ({'loss': loss}, self)

n_words = concat_ys_out.shape[0]

perp = self.xp.exp(loss.array * batch / n_words)
chainer.report ({'perp': perp}, self)

return loss

* The forward method takes sequences of source language’s word IDs xs and sequences of target language’s
word IDs ys. Each sequence represents a sentence, and the size of xs is mini-batch size.

* Note that the sequences of word IDs xs and ys are converted to a vocabulary-size one-hot vectors and then
multiplied with the embedding matrix in sequence_embed to obtain embedding vectors exs and eys.

Listing 36: seq2seq.py

def sequence_embed (embed, xs):
x_len = [len(x) for x in xs]
x_section = numpy.cumsum(x_len[:-1])
ex = embed (F.concat (xs, axis=0))
exs = F.split_axis(ex, x_section, 0)
return exs

e self.encoder and self.decoder are the encoder and the decoder of the seq2seq model. Each element

of the decoder output os is hﬁ) J] in the figure above.

» After calculating the recurrent layer output, the loss 1oss and the perplexity perp are calculated, and the
values are logged by chainer. report.

Note: It is well known that the seq2seq model learns much better when the source sentences are reversed. The
paper[1] says that “While the LSTM is capable of solving problems with long term dependencies, we discovered that
the LSTM learns much better when the source sentences are reversed (the target sentences are not reversed). By doing
so, the LSTM’s test perplexity dropped from 5.8 to 4.7, and the test BLEU scores of its decoded translations increased
from 25.9 to 30.6.” So, at the first line in the forward, the input sentences are reversed xs = [x[::-1] for x
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in xs].

Listing 37: seq2seq.py

def translate(self, xs, max_length=100):
batch = len(xs)
with chainer.no_backprop_mode (), chainer.using_config('train', False):
xs = [x[::-1] for x in xs]
exs = sequence_embed(self.embed_x, xs)
h, ¢, _ = self.encoder (None, None, exs)
ys = self.xp.full (batch, EOS, numpy.int32)
result = []
for i in range (max_length) :
eys = self.embed_y(ys)
eys = F.split_axis(eys, batch, 0)

h, ¢, ys = self.decoder(h, c, eys)

cys = F.concat (ys, axis=0)

wy = self.W(cys)

ys = self.xp.argmax (wy.array, axis=1l).astype (numpy.int32)

result.append(ys)

# Using "xp.concatenate(...) 1instead of 'xp.stack (result) ' here to
# support NumPy 1.9.
result = chainer.get_device ('@numpy') .send(

self.xp.concatenate ([x[None, :] for x in result]).T)

# Remove EOS taggs

outs = []

for y in result:
inds = numpy.argwhere(y == EOS)
if len(inds) > O:

y = yl:inds [0, 0]]

outs.append(y)

return outs

 After the model learned the parameters, the function t ranslate is called to generate the translated sentences
out s from the source sentences xs.

* So as not to change the parameters, the codes for the translation are nested in the scope chainer.
no_backprop_mode () and chainer.using_config('train', False).

2.2.4 Load French-English Corpus from WMT15 Dataset

In this tutorial, we use French-English corpus from WMT15 website that contains 10"9 documents. We must prepare
additional libraries, dataset, and parallel corpus. To understand the pre-processing, see 2.3./ Requirements.

After the pre-processing the dataset, let’s make dataset objects:

Listing 38: seq2seq.py

# Load pre-processed dataset

print ('[{}] Loading dataset... (this may take several minutes)'.format (
datetime.datetime.now()))

source_ids = load_vocabulary (args.SOURCE_VOCAB)

target_ids = load_vocabulary (args.TARGET_VOCAB)

(continues on next page)
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if args.use_dataset_api:
# By using TextDataset, you can avoid loading whole dataset on memory.
# This significantly reduces the host memory usage.
def _filter func(s, t):

sl = len(s.strip() .split()) # number of words in source line
tl = len(t.strip() .split()) # number of words in target line
return (

args.min_source_sentence <= sl <= args.max_source_sentence and
args.min_target_sentence <= tl <= args.max_target_sentence)

train_data = load_data_using_dataset_api (
source_ids, args.SOURCE,
target_ids, args.TARGET,
_filter_func,

)

else:
# Load all records on memory.
train_source = load_data (source_ids, args.SOURCE)
train_target = load_data(target_ids, args.TARGET)
assert len(train_source) == len(train_target)
train_data = [
(s, t)
for s, t in six.moves.zip(train_source, train_target)
if (args.min_source_sentence <= len(s) <= args.max_source_sentence
and
args.min_target_sentence <= len(t) <= args.max_target_sentence)
]
print ('[{}] Dataset loaded.'.format (datetime.datetime.now()))

if not args.use_dataset_api:
# Skip printing statistics when using TextDataset API, as it is slow.

train_source_unknown = calculate_unknown_ratio(
[s for s, _ in train_datal)
train_target_unknown = calculate_unknown_ratio(

[t for _, t in train_datal)

print ('Source vocabulary size: %d' % len(source_ids))
print ('Target vocabulary size: 3d' % len(target_ids))
print ('Train data size: 2d' % len(train_data))
print ('Train source unknown ratio: $.2£%%' S (

train_source_unknown * 100))
print ('Train target unknown ratio: 2.2£%%' % (
train_target_unknown » 100))

target_words {i: w for w, i in target_ids.items() }
source_words = {i: w for w, 1 in source_ids.items ()}

* This code uses utility functions below:

Listing 39: seq2seq.py

def load_vocabulary (path):
with io.open (path, encoding='utf-8') as f:
# +2 for UNK and EOS

(continues on next page)
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word_ids = {line.strip(): i + 2 for i, line in enumerate (f)}
word_ids [ '<UNK>"'"] 0
word_ids['<EOS>"] 1
return word_ids

Listing 40: seq2seq.py

def load_data(vocabulary, path):

n_lines = count_lines (path)
bar = progressbar.ProgressBar ()
data = []
print ('loading...: ' % path)
with io.open(path, encoding='utf-8') as f:
for line in bar (f, max_value=n_lines):
words = line.strip() .split()
array = numpy.array ([vocabulary.get (w, UNK)

for w in words], numpy.int32)
data.append (array)
return data

Listing 41: seq2seq.py

def calculate_unknown_ratio(data):
unknown = sum( (s == UNK) .sum() for s in data)
total = sum(s.size for s in data)
return unknown / total

2.2.5 Define Evaluation Function (Bleu Score)

BLEUJ3] (bilingual evaluation understudy) is the evaluation metric for the quality of text which has been machine-
translated from one natural language to another.

Listing 42: seq2seq.py

class CalculateBleu(chainer.training.Extension) :

trigger = 1, 'epoch'
priority = chainer.training.PRIORITY_WRITER

def _ init_ (
self, model, test_data, key, device, batch=100, max_length=100) :
self.model = model
self.test_data = test_data
self.key = key
self.batch = batch
self.device = device
self.max_length = max_length

def _ call (self, trainer):
device = self.device

with chainer.no_backprop_mode () :
references = []
hypotheses = []

(continues on next page)

126 Chapter 3. Neural Net Examples




Chainer Documentation,

Release 7.0.0b4

(continued from previous page)

for i in range (0, len(self.test_data), self.batch):

sources, targets = zip(*xself.test_datal[i:i + self.batchl])
references.extend([[t.tolist ()] for t in targets])
sources = [device.send(x) for x in sources]

ys = [y.tolist ()

for y in self.model.translate(sources, self.max_length) ]

hypotheses.extend(ys)

bleu = bleu_score.corpus_bleu(
references, hypotheses,
smoothing_function=bleu_score.SmoothingFunction () .methodl)
chainer.report ({self.key: bleu})

2.2.6 Create Iterator

Here, the code below just creates iterator objects.

Listing 43: seq2seq.py

train_iter = chainer.iterators.Seriallterator (train_data, args.batchsize)

2.2.7 Create RNN and Classification Model

Instantiate Seq2seq model.

Listing 44: seq2seq.py

model = Seg2seq(args.layer, len(source_ids), len(target_ids), args.unit)

2.2.8 Setup Optimizer

Prepare an optimizer. We use chainer.optimizers.Adam.

Listing 45: seq2seq.py

optimizer = chainer.optimizers.Adam()
optimizer.setup (model)

2.2.9 Setup and Run Trainer

Let’s make a trainer object.

Listing 46: seq2seq.py

updater = training.updaters.StandardUpdater (
train_iter, optimizer, converter=convert, device=device)

(continues on next page)
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trainer = training.Trainer (updater, (args.epoch, 'epoch'), out=args.out)
trainer.extend (extensions.LogReport (
trigger=(args.log_interval, 'iteration')))
trainer.extend (extensions.PrintReport (
['epoch', 'iteration', 'main/loss', 'main/perp',
'validation/main/bleu', 'elapsed_time'l]),
trigger=(args.log_interval, 'iteration'))

trainer.extend/(
extensions.snapshot (filename="'snapshot_epoch_ {.updater.iteration}'),
trigger=(args.validation_interval, 'iteration'))

Setup the trainer’s extension to see the BLEU score on the test data.

Listing 47: seq2seq.py

test_source = load_data(source_ids, args.validation_source)
test_target = load_data(target_ids, args.validation_target)
assert len(test_source) == len(test_target)
test_data = list(six.moves.zip(test_source, test_target))
test_data = [(s, t) for s, t in test_data if 0 < len(s) and 0 < len(t)]
test_source_unknown = calculate_unknown_ratio(
[s for s, _ in test_datal)
test_target_unknown = calculate_unknown_ratio(

[t for _, t in test_datal)

print ('Validation data: %d' % len(test_data))

print ('Validation source unknown ratio: $.2f£%%' %
(test_source_unknown = 100))

print ('Validation target unknown ratio: %.21%%' %

(test_target_unknown = 100))

@chainer.training.make_extension ()

def translate(trainer):
source, target = test_datal[numpy.random.choice (len(test_data)) ]
result = model.translate([model.xp.array (source)]) [0]

source_sentence = ' '.join([source_words([x] for x in source])
target_sentence = ' '.Jjoin([target_words|[y] for y in target])
result_sentence = ' '.join([target_words[y] for y in result])

print ('# source + source_sentence)
print ('# result : ' + result_sentence)
print ('# expect : ' + target_sentence)

trainer.extend (
translate, trigger=(args.validation_interval, 'iteration'))
trainer.extend (
CalculateBleu (
model, test_data, 'validation/main/bleu', device),
trigger=(args.validation_interval, 'iteration'))

if args.resume is not None:
# Resume from a snapshot
chainer.serializers.load_npz(args.resume, trainer)

Let’s start the training!
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Listing 48: seq2seq.py

trainer.run()

if args.save is not None:
# Save a snapshot
chainer.serializers.save_npz(args.save, trainer)

2.3 Run Example

2.3.1 Requirements

Before running the example, you must prepare additional libraries, dataset, and parallel corpus.

* See the detail description: chainer/examples/seq2seq/README.md

2.3.1 Training the model

You can train the model with the script: chainer/examples/seq2seq/seq2seq.py

$ pwd

/root2chainer/chainer/examples/seg2seq

$ python seg2seq.py —-—-gpu=0 giga-fren.preprocess.en giga—-fren.preprocess.fr \
vocab.en vocab.fr \

--validation-source newstest2013.preprocess.en \

--validation-target newstest2013.preprocess.fr > log

100% (22520376 of 22520376) |#############| Elapsed Time: 0:09:20 Time: 0:09:20

100% (22520376 of 22520376) |#############| Elapsed Time: 0:10:36 Time: 0:10:36

100% (3000 of 3000) |############4########] Elapsed Time: 0:00:00 Time: 0:00:00

100% (3000 of 3000) |#############4##44#4#4| Elapsed Time: 0:00:00 Time: 0:00:00

epoch iteration main/loss validation/main/loss main/perp validation/main/
—perp validation/main/bleu elapsed_time

0 200 171.449 991.556 o
o 85.6739

0 400 143.918 183.594 o
. 172.473

0 600 133.48 126.945 o
— 260.315

0 800 128.734 104.127 o
o 348.062

0 1000 124.741 91.5988 o
. 436.536

Note: Before running the script, be careful the locale and the python’s encoding. Please setup them to use utf-8
encoding.
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2.3.1 Validate the model

While you are training the model, you can get the validation results:

# source : We knew the Government had tried many things , like launching <UNK> with
—<UNK> or organising speed dating evenings .

# result : Nous savions que le gouvernement avait <UNK> plusieurs fois , comme le
—<UNK> <UNK> , le <UNK> ou le <UNK> <UNK>

# expect : Nous savions que le gouvernement avait tenté plusieurs choses comme lancer,
—des parfums aux <UNK> ou organiser des soirées de <UNK>

3.8.4 3. Reference

* [1] Sequence to Sequence Learning with Neural Networks

* [2] Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation

* [3] BLEU
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CHAPTER
FOUR

API REFERENCE

4.1 Variable and Parameter

4.1.1 Variable classes and utilities

chainer.Variable Array with a structure to keep track of computation.

chainer.as_array Returns the underlying array from a variable or an array.

chainer.as_variable Converts an array or a variable into Variable.

chainer.backward Runs backpropagation from variables simultaneously.

chainer.Parameter Parameter variable that can be registered to a link.

chainer.variable.VariableNode Node in the backward computational graph representing
a variable.

chainer.Variable

class chainer.Variable (data=None, *, name=None, grad=None, requires_grad=True)
Array with a structure to keep track of computation.

Every variable holds a data array of type either numpy . ndarray or cupy .ndarray.

A variable object holds a data array and a VariableNode object of a computational graph. If the variable
is constructed by the user, the node is root and does not hold any parent. If the variable is constructed by a
FunctionNode object (i.e., by calling functions under chainer. functions or user-defined functions),
or by using operators (see the list below), the node holds a reference to its parent called creator_node. This
reference is used in backpropagation to backtrack the graph.

Users can disable (resp. enable) this chaining behavior by calling no_backprop_mode () (resp.
force_backprop_mode ()). In the former context, a variable never creates a computational graph, whereas
in the latter context, it is forced to create.

Note: The following operators are defined for variable(s).
e Indexing: a[slices] (__getitem _ ())

e Addition: a + b(_add __ (),__radd __())

e Subtraction: a — b(_sub__ (), _rsub__ ())
 Multiplication: a * b (__mul (), _rmul__ ())
e Division:a / b(_div__ (),

rdiv__(),__truediv._ (),__rtruediv__ ())

e Floor Division: a // b (__floordiv.__ (), __rfloordiv__ ())

131


https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

* Exponentiation: a »* b (_pow__ (),__rpow__())

e Matrix Multiplication: a @ b (_matmul__ (),__rmatmul__ ())

* Negation (Arithmetic): - a (__neg__ ())

Absolute value: abs (a) (__abs__ ())

Parameters
* data (N-dimensional array) — Initial data array.
¢ name (str)— Name of the variable.
* grad (N-dimensional array) — Initial gradient array.

* requires_grad (bool) — Boolean indicating whether grad will be set in backward
calculation.

Methods
__getitem _ (slices)
Extract elements from array with specified shape, axes and offsets.
Parameters
e x (Variable or N-dimensional array) — A variable to be sliced.

* slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) — An object to specify the se-
lection of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included
in slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.
uint64 and numpy.ulonglong.

Note: It does not support s1ices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

>>> x = np.arange(l2) .reshape((2, 2, 3))
>>> x
array ([[[ O, 1, 2],

[ 3, 4, 511,

[re 7, 81,

[ 9, 10, 11111)
>>> F.get_item(x, 0)
variable([[0, 1, 2],

(continues on next page)
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(continued from previous page)

[3, 4, 511)
>>> F.get_item(x, (0, 0, slice (0,
variable ([0, 17)
>>> F.get_item(x, (Ellipsis, 2))
variable([[ 2, 57,

[ 8, 1111])

>>> F.get_item(x, (1,

variable ([9])

np.newaxis,

2, 1)) # equals x][0,
# equals x[..., 2]
1, 0)) # equals x[1,

0, 0:2:1]

None, 1, 0]

len_ ()

Returns the first dimension of the data array.

Returns Number of the first dimension of the data array.

Return type int

_copy___ ()

addgrad (var)
Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even
done across the host and different devices. If this variable has uninitialized data/grad arrays, this method
initializes it with the shape of the given variable and then accumulates the gradient.

Parameters var (Variable)— Source variable.

backward (retain_grad=False, enable_double_backprop=False, loss_scale=None)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward () is called on each FunctionNode object appearing in
the backward graph starting from this variable. The backward graph is represented by backward references
from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop

does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this
method. If the shape of datais () (i.e., itis scalar) and grad is None, then this method automatically
complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

From v3, this method supports differentiable backprop (a.k.a. double backprop, grad of grads). To enable

it, pass enable_double_backprop=True.

Parameters

* retain_grad (bool) - If True, the gradient arrays of all intermediate variables are
kept. Otherwise, grad of the intermediate variables are set to None on appropriate tim-
ing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients
of parameters, not of all variables, and therefore it is recommended that this flag be set to

False.

* enable_double_backprop (bool) — (Added in v3.0) If True, computational trace
of the whole backpropagation procedure is recorded to the computational graph so that one
can further do backpropagation from the resulting gradients. Note that enabling it results
in larger memory consumption needed to store the gradients w.r.t intermediate variables
that are required for the second gradient computation.
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133



https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

* loss_scale (float)— Loss scaling factor. Loss scaling is a usefull technique to miti-
gate vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be mul-
tiplied by the factor before backprop starts. The factor is propagated to whole gradients in
a computational graph along the backprop. The gradients of parameters are divided by the
factor just before the parameters are to be updated.

cleargrad ()
Clears the gradient array.

copydata (var)
Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays
reside on different devices, including across the host and a GPU device. If this variable has an uninitialized
data array, this method initializes it by the data array of the given variable. Similarly, if the given variable
has an uninitialized data array, this method initializes it by the data array of this variable (se1f). If both
are uninitialized, this method does nothing.

Parameters var (Variable)— Source variable.

debug_print ()
Display a summary of the stored data and location of the Variable

from_chx ()
Converts the array and gradient to non-ChainerX arrays without copy.

This method converts the underlying ChainerX array and gradient residing in either a native or cuda
device to NumPy or CuPy arrays respectively, on their same physical device. It does nothing if the array
held by the Variable object is not a ChainerX array. The new array is a view of the original one.

Raises an error if such a conversion is not supported for the device.

item()
Converts the variable with one element to a Python scalar.

This will incur host-device synchronization.
Returns The element of the array.
Return type int or float

mean (axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

See also:
chainer. functions.average () for full documentation,

reshape (*shape)
Returns a variable of a different shape and the same content.

See also:
chainer. functions.reshape () for full documentation,

retain_data(()
Lets the corresponding variable node keep the underlying array.

set_creator (gen_func)
Notifies the variable that the given function is its creator.

Parameters gen_func (Function) — Function object that creates this variable as one of its
outputs.
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set_creator_node (fnode)
Notifies the variable that the given node is its creator.

Parameters fnode (FunctionNode) — Function node that has this variable as an output.
summary ()

to_chx ()
Converts the array and gradient to ChainerX arrays without copy.

This method converts the underlying array and gradient to chainerx.ndarray on the same physical
device. It does nothing if the array held by the Variable object is already a ChainerX array. The new array
is a view of the original one.

to_cpu ()
Copies the data and gradient arrays to CPU.

to_device (device)
Copies the data and gradient arrays to specified device.

Parameters device — Target device specifier. See get_device () for available values.

to_gpu (device=None)
Copies the data and gradient arrays to specified GPU.

Parameters device - Target device specifier. If omitted, the current device is used.

to_intel64 ()
Copies the data and gradient arrays to intel64 specific mdarray.

If the array is not suited for intel64, it will be converted to numpy . ndarray.

transpose ( *axes)
Permute the dimensions of an input variable without copy.

See also:
chainer.functions.transpose () for full documentation.

unchain ()
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike
unchain_backward (), it does not backtrack the graph.

This method is equivalent to self.creator_node = None.

unchain_ backward ()
Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from any-
where are deallocated by reference count GC. Also this variable itself deletes the reference to its creator
function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop
after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

zerograd ()
Initializes the gradient array by zeros.

Note that the gradient variable is unchained from the computational graph by this method, because this
operation breaks the backprop validity.

Deprecated since version v1.15: Use more efficient cleargrads () instead.

__eq__ (other)
This operator is not supported in Variables.
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ne__ (other)

This operator is not supported in Variables.

__1t__ (other)

This operator is not supported in Variables.

__le  (other)

This operator is not supported in Variables.

__gt__ (other)

This operator is not supported in Variables.

__ge__ (other)

This operator is not supported in Variables.

__nonzero__ ()

This operator is not supported in Variables.

__bool_ ()

This operator is not supported in Variables.

__neg__ ()
Element-wise negation.

Returns Output variable.
Return type Variable

__abs__ ()
Element-wise absolute.

Returns Output variable.
Return type Variable

__add__ ()
Element-wise addition.

Returns Output variable.
Return type Variable

__radd__ ()
Element-wise addition.

Returns Output variable.
Return type Variable

__sub__ (rhs)
Element-wise subtraction.

Returns Output variable.
Return type Variable

__rsub__ (rhs)
Element-wise subtraction.

Returns Output variable.
Return type Variable

__mul__ (rhs)
Element-wise multiplication.

Returns Output variable.
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Return type Variable

__rmul__ (rhs)
Element-wise multiplication.

Returns Output variable.
Return type Variable

_div__ (rhs)
Element-wise division

Returns Output variable.
Return type Variable

__truediv__ (rhs)
Element-wise division

Returns Output variable.
Return type Variable

__rdiv__ (rhs)
Element-wise division.

Returns Output variable.
Return type Variable

__rtruediv__ (rhs)
Element-wise division.

Returns Output variable.
Return type Variable

_ floordiv__ (rhs)
Element-wise floor division.

Returns Output variable.
Return type Variable

_ _rfloordiv__ (rhs)
Element-wise floor division.

Returns Output variable.
Return type Variable

pow___(rhs)
Element-wise power function.

Returns Output variable.
Return type Variable

__rpow___ (rhs)
Element-wise power function.

Returns Output variable.
Return type Variable

__matmul__ (rhs)
Matrix multiplication.
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Returns Output variable.
Return type Variable

__rmatmul__ (rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

Attributes
T
Transposition of this variable.

array
The underlying data array.

It is either numpy .ndarray or cupy.ndarray object, or None if the variable in in an uninitialized
state.

chx_array
A view of the raw ChainerX array.

In contrary to Variable.array which is always disconnected, the array represented by this attribute
may be connected to the computational graph.

It is a view, so it has a distinct gradient from the original array.
If this attribute is queried on a Variable with a non-ChainerX array, ValueError will be raised.

creator
Function implementation that created this variable.

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of
Funct 1ion), this property returns that Funct i on object.

When this variable has been created by a new-style function (i.e., it is implemented as a subclass of
FunctionNode class), this property returns that node object.

creator_node
FunctionNode object that created this variable.

This property has a setter to which None can be set. Setting None to this property is equivalent to call
unchain (); it purges the variable from the function that created this variable.

The setter also accepts the original Funct i onNode object that created this variable. For example, you
can once set None to this property and then set the original value again.

Note: Setting an irrelevant FunctionNode () object does not emit any error immediately, whereas the
behavior is undefined. Do not set a FunctionNode () object that did not create this variable object.

data
The underlying data array (equivalent to array).

Note that using this attribute directly is discouraged; use array instead. Using array, you can find an
error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute
.array while it has . data.
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device
Device on which the data array of this variable reside.

dtype

grad
Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable
itself; to get/set gradient variable, use grad_var instead.

If the underlying array is a chainerx.ndarray and requires_grad is false, trying to access the gradient
will results in and error.

grad_var
Gradient variable.

label
Short text that represents the variable.

name
ndim
node
rank

requires_grad
It indicates that grad will be set in backward calculation.

shape
size

Xp
Array module for the data array of this variable.

chainer.as_array
chainer.as_array (obj)
Returns the underlying array from a variable or an array.

This is a convenient function to get the underlying array object transparently from an object that could be either
a variable or an array.

Parameters obj (N-dimensional array or ~chainer.Variable) — An array or a variable.
Returns The underlying array object of the argument.

Return type N-dimensional array or ~chainer.Variable

chainer.as_variable

chainer.as_variable (0bj)
Converts an array or a variable into Variable.

This is a convenient function to get a Variable object transparently from a raw array or a variable.

Note that this function should only be used for type consistency (i.e., to enforce the return value of an API
having type Variable). The requires_grad flag is kept as is; if obj is a raw array, the newly created
variable has requires_grad = False. In order to make a variable w.r.t. which you want to compute the
gradient, you should use Variable directly.
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Parameters obj (N-dimensional array or ~chainer.Variable) — An array or a variable that you want
to convertto Variable.

Returns A variable converted from ob j. If ob j is a raw array, this is a new Variable object that
wraps the array. If ob j is already a Variable object, this function returns obj as is.

Return type Variable
chainer.backward

chainer.backward (outputs, grad_outputs=None, *, enable_double_backprop="False)
Runs backpropagation from variables simultaneously.

Warning: This feature is experimental. The interface can change in the future.

Parameters

* outputs (tuple or list of Variable)— A sequence of output variables from which back-
prop starts.

* grad_outputs (None or tuple or list of Variable) — A sequence of variables that
gives the initial value of each output gradient. If this argument is None, backprop uses
grad_var of outputs.

* enable_double_backprop (bool)-If True, computational trace of the whole back-
propagation procedure is recorded to the computational graph so that one can further do
backpropagation from the resulting gradients. Note that enabling it results in larger memory
consumption needed to store the gradients w.r.t intermediate variables that are required for
the second gradient computation.

See also:

chainer.Variable.backward () chainer.grad()

chainer.Parameter

class chainer.Parameter (initializer=None, shape=None, name=None)
Parameter variable that can be registered to a link.

Parameter is a subclass of Variable. It almost behaves as same as a usual variable except that a parameter
can be registered to a i nk object just by assigning it to an attribute of the link within an init_scope ()
context.

Parameter also supports an initialization by an initializer. It can have two initializers: one for the data array, and
the other for the gradient array. The initializer only specifies the way of filling the elements of these arrays, and
the shape information is specified at the initialization point.

When a link that the parameter has been registered to is passed to an GradientMethod, an update rule is
set to the parameter. This update rule specifies how to update the data array of the parameter using its gradient
array.

Parameters

* initializer (~chainer.Initializer or N-dimensional array) — Initializer of the data array.
If shape is given, this initializer is immediately used to initialize the data array. Otherwise,
if it is an array, it is immediately used as the data array, and otherwise the data array is left
uninitialized and will be initialized by this initializer in initialize (). It can also be a
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scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

* shape (int or tuple of int or None)- Shape of the parameter. If it is None,
the initialization is deferred to the callof initialize ().

* name (str)— Name of the parameter.
Variables

* initializer — Initializer of the data array. It is used for initializing the data array of an
uninitialized variable.

* update_rule — UpdateRule instance that updates this variable as a parameter. This
argument is set to update_rule.

Methods
__getitem__ (slices)
Extract elements from array with specified shape, axes and offsets.
Parameters
e x (Variable or N-dimensional array) — A variable to be sliced.

e slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) — An object to specify the se-
lection of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included
in slices. The supported types are numpy . float32, numpy.int32, numpy.uint32, numpy.
uint64 and numpy.ulonglong.

Note: It does not support s1ices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example
>>> x = np.arange(1l2) .reshape((2, 2, 3))
>>> x
array ([[[ O, 1, 21,
[ 3, 4, 511,
[re 7, 81,
[ 9, 10, 11111)
>>> F.get_item(x, 0)
variable([[0, 1, 2],
[3, 4, 511)
>>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]
variable ([0, 11)

(continues on next page)
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(continued from previous page)

>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[ 2, 57,
[ 8, 1111])
>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]
variable ([9])

len_ ()
Returns the first dimension of the data array.

Returns Number of the first dimension of the data array.
Return type int

_copy__ ()

addgrad (var)
Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even
done across the host and different devices. If this variable has uninitialized data/grad arrays, this method
initializes it with the shape of the given variable and then accumulates the gradient.

Parameters var (Variable)— Source variable.

backward (retain_grad=False, enable_double_backprop=False, loss_scale=None)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward () is called on each FunctionNode object appearing in
the backward graph starting from this variable. The backward graph is represented by backward references
from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop
does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this
method. If the shape of datais () (i.e., itis scalar) and grad is None, then this method automatically
complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

From v3, this method supports differentiable backprop (a.k.a. double backprop, grad of grads). To enable
it, pass enable_double_backprop=True.

Parameters

* retain_grad (bool) — If True, the gradient arrays of all intermediate variables are
kept. Otherwise, grad of the intermediate variables are set to None on appropriate tim-
ing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients
of parameters, not of all variables, and therefore it is recommended that this flag be set to
False.

* enable_double_backprop (bool) — (Added in v3.0) If True, computational trace
of the whole backpropagation procedure is recorded to the computational graph so that one
can further do backpropagation from the resulting gradients. Note that enabling it results
in larger memory consumption needed to store the gradients w.r.t intermediate variables
that are required for the second gradient computation.

* loss_scale (float)— Loss scaling factor. Loss scaling is a usefull technique to miti-
gate vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be mul-
tiplied by the factor before backprop starts. The factor is propagated to whole gradients in
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a computational graph along the backprop. The gradients of parameters are divided by the
factor just before the parameters are to be updated.

cleargrad ()
Clears the gradient array.

copydata (var)
Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays
reside on different devices, including across the host and a GPU device. If this variable has an uninitialized
data array, this method initializes it by the data array of the given variable. Similarly, if the given variable
has an uninitialized data array, this method initializes it by the data array of this variable (self). If both
are uninitialized, this method does nothing.

Parameters var (Variable)— Source variable.

debug_print ()
Display a summary of the stored data and location of the Variable

from_chx ()
Converts the array and gradient to non-ChainerX arrays without copy.

This method converts the underlying ChainerX array and gradient residing in either a native or cuda
device to NumPy or CuPy arrays respectively, on their same physical device. It does nothing if the array
held by the Variable object is not a ChainerX array. The new array is a view of the original one.

Raises an error if such a conversion is not supported for the device.

initialize (shape)
Initializes the uninitialized variable.

Uninitialized variable is a variable created with the data array set to None. This method creates and
initializes the data array. The shape of the variable can be left unknown until this method is called.

Parameters shape (tuple of int)- Shape of the data array.

item()
Converts the variable with one element to a Python scalar.

This will incur host-device synchronization.
Returns The element of the array.
Return type int or float

mean (axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

See also:
chainer. functions.average () for full documentation,

reshape ( *shape)
Returns a variable of a different shape and the same content.

See also:
chainer. functions.reshape () for full documentation,

retain_data ()
Lets the corresponding variable node keep the underlying array.

set_creator (gen_func)
Notifies the variable that the given function is its creator.
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Parameters gen_func (Function) — Function object that creates this variable as one of its
outputs.

set_creator_node (fnode)
Notifies the variable that the given node is its creator.

Parameters fnode (FunctionNode) — Function node that has this variable as an output.
summary ()

to_chx ()
Converts the array and gradient to ChainerX arrays without copy.

This method converts the underlying array and gradient to chainerx.ndarray on the same physical
device. It does nothing if the array held by the Variable object is already a ChainerX array. The new array
is a view of the original one.

to_cpu ()
Copies the data and gradient arrays to CPU.

to_device (device)
Copies the data and gradient arrays to specified device.

Parameters device — Target device specifier. See get_device () for available values.

to_gpu (device=None)
Copies the data and gradient arrays to specified GPU.

Parameters device — Target device specifier. If omitted, the current device is used.

to_intel64 ()
Copies the data and gradient arrays to intel64 specific mdarray.

If the array is not suited for intel64, it will be converted to numpy . ndarray.

transpose ( *axes)
Permute the dimensions of an input variable without copy.

See also:
chainer. functions.transpose () for full documentation.

unchain ()
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike
unchain_backward (), it does not backtrack the graph.

This method is equivalent to self.creator_node = None.

unchain_backward ()
Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from any-
where are deallocated by reference count GC. Also this variable itself deletes the reference to its creator
function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop
after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

update ()
Updates the data array using the gradient and the update rule.

This method updates the parameter using the attached update rule.

zerograd ()
Initializes the gradient array by zeros.
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Note that the gradient variable is unchained from the computational graph by this method, because this
operation breaks the backprop validity.

Deprecated since version v1.15: Use more efficient cleargrads () instead.

__eq__ (other)
This operator is not supported in Variables.

__ne__ (other)
This operator is not supported in Variables.

__ 1t (other)
This operator is not supported in Variables.

__le  (other)
This operator is not supported in Variables.

__gt__ (other)
This operator is not supported in Variables.

__ge___(other)
This operator is not supported in Variables.

__nonzero__ ()
This operator is not supported in Variables.

__bool_ ()
This operator is not supported in Variables.

__neg__ ()
Element-wise negation.

Returns Output variable.
Return type Variable

__abs__ ()
Element-wise absolute.

Returns Output variable.
Return type Variable

__add__ ()
Element-wise addition.

Returns Output variable.
Return type Variable

__radd_ ()
Element-wise addition.

Returns Output variable.
Return type Variable

_ _sub__ (rhs)
Element-wise subtraction.

Returns Output variable.
Return type Variable

__rsub__ (rhs)
Element-wise subtraction.
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Returns Output variable.
Return type Variable

__mul__ (rhs)
Element-wise multiplication.

Returns Output variable.
Return type Variable

_rmul__ (rhs)
Element-wise multiplication.

Returns Output variable.
Return type Variable

_div__ (rhs)
Element-wise division

Returns Output variable.
Return type Variable

__truediv__ (rhs)
Element-wise division

Returns Output variable.
Return type Variable

_rdiv__ (rhs)
Element-wise division.

Returns Output variable.
Return type Variable

_ rtruediv__ (rhs)
Element-wise division.

Returns Output variable.
Return type Variable

_ floordiv__ (rhs)
Element-wise floor division.

Returns Output variable.
Return type Variable

__rfloordiv__ (rhs)
Element-wise floor division.

Returns Output variable.
Return type Variable

pow___(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable
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__rpow___(rhs)
Element-wise power function.

Returns Output variable.
Return type Variable

__matmul__ (rhs)
Matrix multiplication.

Returns Output variable.
Return type Variable

__rmatmul__ (rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

Attributes
T
Transposition of this variable.

array
The underlying data array.

It is either numpy .ndarray or cupy.ndarray object, or None if the variable in in an uninitialized
state.

chx_array
A view of the raw ChainerX array.

In contrary to Variable.array which is always disconnected, the array represented by this attribute
may be connected to the computational graph.

It is a view, so it has a distinct gradient from the original array.
If this attribute is queried on a Variable with a non-ChainerX array, ValueError will be raised.

creator
Function implementation that created this variable.

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of
Funct ion), this property returns that Function object.

When this variable has been created by a new-style function (i.e., it is implemented as a subclass of
FunctionNode class), this property returns that node object.

creator node
FunctionNode object that created this variable.

This property has a setter to which None can be set. Setting None to this property is equivalent to call
unchain (); it purges the variable from the function that created this variable.

The setter also accepts the original Funct ionNode object that created this variable. For example, you
can once set None to this property and then set the original value again.

Note: Setting an irrelevant FunctionNode () object does not emit any error immediately, whereas the
behavior is undefined. Do not set a FunctionNode () object that did not create this variable object.
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data
The underlying data array (equivalent to array).

Note that using this attribute directly is discouraged; use array instead. Using array, you can find an
error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute
.array while it has .data.

device
Device on which the data array of this variable reside.

dtype

grad
Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable
itself; to get/set gradient variable, use grad_var instead.

If the underlying array is a chainerx.ndarray and requires_grad is false, trying to access the gradient
will results in and error.

grad_var
Gradient variable.

initializer = None

label
Short text that represents the variable.

name
ndim
node
rank

requires_grad
It indicates that grad will be set in backward calculation.

shape
size

Xp
Array module for the data array of this variable.

chainer.variable.VariableNode

class chainer.variable.VariableNode (variable, name, **kwargs)

Node in the backward computational graph representing a variable.

This object represents a variable node in a computational graph. The node is used in error backpropagation
(a.k.a. backprop) to determine which gradient to be passed to each function.

A variable node is held by the corresponding Variable object, which is managed by users. Funct ionNode
objects that take the variable as an input also hold references to the variable node.

Note that the node does not hold a reference to the corresponding data array in general. The data array is actually
accessible by the node in the following cases.

1. If there exists a Variable object that holds a reference to the variable node, the variable node holds a
weak reference to the variable object, and thus the data array is accessible via the weak reference.
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2. If retain _data () is called, the node holds a reference to the data array. It is mainly called by a
function that needs the input or output data array in its backprop procedure. See FunctionNode.
retain_inputs () and FunctionNode.retain outputs () for more details.

Users usually do not need to touch this variable node object. The computational graph is automatically managed
by Chainer, and any interface that is beneficial for users is also provided by Variable.

Parameters
* variable (Variable) - The corresponding variable object.
e name (st r)— Name of the variable node.
Variables
* dtype — Data type of the data array.
* shape — Shape of the data array.

e name (str)— Name of the variable node.

Methods

get_variable ()
Returns the corresponding Variable object.

VariableNode object holds a weak reference of the variable object. If the reference is alive, it is returned by
this property. Otherwise, this property creates a new Variable object from this node object and returns
it.

Returns The variable object that refers this node.
Return type Variable

get_variable_or_none ()
Returns the holding Variable object or None.

VariableNode object holds a weak reference of the variable object.If the reference is alive, it is returned by
this property. Otherwise, returns None.

Returns The variable object that refers this node.
Return type Variable

retain_data(()
Lets the node hold a reference to the underlying data array.

This method gets the data array of the corresponding variable and keeps it. If the weak reference to the
corresponding variable is dead, it raises an error.

set_creator (creator)
Sets a Function object that created this node.

This method is equivalent to self.creator = creator. A FunctionNode object can also be
passed.

Parameters creator (Function or FunctionNode) — Function that has created this
variable.

set_creator_ node (creator_node)
Sets a Funct ionNode object that created this node.

This method is equivalent to self.creator_node = creator_node. A Function object can
also be passed, in which case the Function. node attribute is used.
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Parameters creator node (FunctionNode or Function) - Function node that has
this variable as an output.

unchain ()
Deletes the reference to the creator of this variable node.

This method is equivalent to self.creator_node = None.

_eq ()
Return self==value.

ne_ ()
Return self!=value.

1t ()
Return self<value.

le_ ()
Return self<=value.

_gt_ ()
Return self>value.

_ge_ ()
Return self>=value.

Attributes

creator
Function object that created this variable node.

When the function is implemented with the old-style API (i.e., it uses Function class), this property
returns the Function object. The object is extracted from the FunctionAdapter object, so the
returned object is not the function node, but instead the actual implementation of forward and backward
procedures.

When the function is implemented with the new-style API (i.e., it uses Funct i onNode class), this prop-
erty returns the function node object. In this case, the returned object is same as creator._node.

Warning: As of v3.0.0, when the creator is an old-style function, the following code is invalid:

creator = v.creator
v.creator = None
v.creator = creator

The point is that FunctionNode objects are used as nodes in the computational graph instead
of Function, and each Function object only holds a weak reference to the corresponding
FunctionNode. Since creator returns the Function object, the FunctionNode object is
not kept by preserving creator.

The above code should be fixed as follows.

creator_node = v.creator_node
v.creator_node = None
v.creator_node = creator_node
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creator_ node
Function node that has this variable as an output.

See FunctionNode for the definition of a function node.

data
Data array of the corresponding variable.

If the data is not available, it returns None.

grad
Gradient array of the corresponding variable.

If the variable is not available, it returns None.

grad_var
Gradient variable of the corresponding variable.

If the corresponding variable is not available, it return None.

label
Short text that represents the variable node.

rank

requires_grad
It indicates that grad will be set in backward calculation.

4.1.2 N-dimensional array

chainer.Variable holds its value as an n-dimensional array (ndarray). Chainer supports the following classes:
* numpy .ndarray, including ideepdpy.mdarray
* cupy.ndarray

* chainerx.ndarray

Note: Python scalars (f1loat, etc.) and NumPy scalars (numpy.float16, numpy.float32, etc.) cannot be
used as chainer.Variable.array. See also chainer.utils.force_array ().

4.2 Functions

Chainer provides variety of built-in function implementations in chainer. functions package. These functions
usually return a Variable object or a tuple of multiple Variable objects. For a Variable argument of a
function, an N-dimensional array can be passed if you do not need its gradient. Some functions additionally supports
scalar arguments.

Note: Functions implemented in Chainer consists of the following two parts:
* A class that inherits FunctionNode, which defines forward/backward computation.
e A “wrapper” function around the class.

APIs listed in this page are “wrapper” of FunctionNode implementations. In most cases, you don’t have to use
FunctionNode classes directly.
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For example,

chainer.functions.sum()

is a wrapper function defined as def sum(...): in

chainer/functions/math/sum.py, and it calls its corresponding Funct ionNode implementation, Sum. Some func-
tions may not have the corresponding FunctionNode implementation; one example is chainer. functions.
average (), which is defined in chainer/functions/math/average.py, which calls other wrapper functions to calculate

average.

If you are implementing your own functions, please see Define your own function.

4.2.1 Arithmetic functions

Basic arithmetic operations for Variables are implemented as operators. Refer to the Notes section of Variable

for details.

chainer.functions.add () provides better performance when accumulating three or more Variables at

once.

chainer. functions.add

Element-wise addition.

chainer.functions.add

chainer.functions.add (*xs)
Element-wise addition.

Returns Output variable.

Return type Variable

4.2.2 Activation functions

chainer. functions.clipped_relu Clipped Rectifier Unit function.
chainer.functions.crelu Concatenated Rectified Linear Unit function.
chainer. functions.elu Exponential Linear Unit function.
chainer. functions.hard_sigmoid Element-wise hard-sigmoid function.
chainer. functions.leaky relu Leaky Rectified Linear Unit function.
chainer. functions.log_softmax Channel-wise log-softmax function.
chainer. functions.lstm Long Short-Term Memory units as an activation func-
tion.

chainer. functions.maxout Maxout activation function.
chainer. functions.prelu Parametric ReLLU function.
chainer.functions.rrelu Randomized Leaky Rectified Liner Unit function.
chainer. functions.relu Rectified Linear Unit function.
chainer. functions.relu6 Rectifier Unit function clipped at 6.
chainer. functions.selu Scaled Exponential Linear Unit function.
chainer. functions.sigmoid Element-wise sigmoid logistic function.
chainer.functions.slstm S-LSTM units as an activation function.
chainer.functions.softmax Softmax function.
chainer. functions.softplus Element-wise softplus function.
chainer. functions.swish Swish activation function.
chainer. functions.tanh Elementwise hyperbolic tangent function.
chainer.functions.tree lstm TreeLSTM unit as an activation function.
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chainer.functions.clipped_relu
chainer.functions.clipped_relu (x, z=20.0)
Clipped Rectifier Unit function.

For a clipping value z(> 0), it computes
ClippedReLU(z, z) = min(max(0, ), z).

Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1,S2, ..., S, )-shaped float
array.

* z (float)— Clipping value. (default = 20.0)
Returns Output variable. A (s1, s9, ..., S, )-shaped float array.

Return type Variable

Example

>>> x = np.random.uniform(-100, 100, (10, 20)) .astype(np.float32)
>>> z = 10.0

>>> np.any(x < 0)

True

>>> np.any(x > z)

True

>>> y = F.clipped_relu(x, z=z)
>>> np.any(y.array < 0)

False

>>> np.any(y.array > z)

False

chainer.functions.crelu
chainer.functions.crelu (x, axis=1)
Concatenated Rectified Linear Unit function.

This function is expressed as follows

f(x) = (max(0, ), max(0, —z)).

Here, two output values are concatenated along an axis.
See: https://arxiv.org/abs/1603.05201
Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, S, ..., S )-shaped float
array.

* axis (int)— Axis that the output values are concatenated along. Default is 1.

Returns Output variable of concatenated array. If the axis is 1, A (s1,s2 X 2, ..., sy )-shaped float
array.
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Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3]], np.float32)

>>> x
array ([[-1., 0.1,

[ 2., -3.1]1, dtype=float32)
>>> y = F.crelu(x, axis=1l)

>>> y.array
array([[0., O., 1., 0.],
[2., 0., 0., 3.]1]1, dtype=float32)

chainer.functions.elu

chainer. functions.elu (x, alpha=1.0)
Exponential Linear Unit function.

For a parameter «, it is expressed as

T ifx>0

flw) = { alexp(z) —1) ifz <0,
See: https://arxiv.org/abs/1511.07289

Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, sa, ..., Sy )-shaped float

array.
* alpha (float)— Parameter o. Default is 1.0.
Returns Output variable. A (s1, S2, ..., S )-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3]]1, np.float32)
>>> x
array ([[-1., 0.1,
[ 2., -3.11, dtype=float32)
>>> y = F.elu(x, alpha=1.)
>>> y.array
array ([[-0.63212055, O. 1,
[ 2. , —0.95021296]], dtype=float32)

chainer.functions.hard_sigmoid

chainer.functions.hard_sigmoid (x)
Element-wise hard-sigmoid function.
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This function is defined as

0 if 2 < —2.5
fl@)={ 022405 if —25<z<25
1 if 2.5 < .

Parameters x (Variable or N-dimensional array) — Input variable. A (s1, S, ..., Sy )-shaped
float array.

Returns Output variable. A (s1, so, ..., sy )-shaped float array.

Return type Variable

Example

It maps the input values into the range of [0, 1].

>>> x = np.array([-2.6, -1, 0, 1, 2.61])
>>> x

array([-2.6, -1. , 0. , 1., 2.671)
>>> F.hard_sigmoid(x) .array

array([0. , 0.3, 0.5, 0.7, 1. 1)

chainer.functions.leaky_relu
chainer.functions.leaky_relu (x, slope=0.2)
Leaky Rectified Linear Unit function.
This function is expressed as
x ifx>0
f(x)—{ ax ifx <0,
where a is a configurable slope value.
Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, g, ..., sy )-shaped float
array.

* slope (float) - Slope value a.
Returns Output variable. A (s1, So, ..., sy )-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]1], np.float32)
>>> x
1., 0.7,
2., =3.1,
[-2., 1.]1]1, dtype=float32)
>>> F.leaky_relu(x, slope=0.2).array

array ([ [-
(

array ([[-0.2, 0. 1,
[ 2., -0.6],
[-0.4, 1. 1], dtype=float32)
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chainer.functions.log_softmax

chainer.functions.log_softmax (x, axis=1)

Channel-wise log-softmax function.

This function computes its logarithm of softmax along the second axis. Let ¢ = (¢1, ¢a, ..., cp) be the slice of
x along with the second axis. For each slice ¢, it computes the logarithm of the function f(c) defined as

o = _exp(e)
7o) ZdeXp(Cd).

This method is theoretically equivalent to 1og (softmax (x) ) butis more stable.

Note: log(softmax (x)) may cause underflow when x is too small, because softmax (x) may returns
0. log_softmax method is more stable.

Parameters

* x (Variable or N-dimensional array) — Input variable. A n-dimensional (n > 2) float
array.

* axis (int)— The axis along which the softmax is to be computed.
Returns Output variable. A n-dimensional (n > 2) float array, which is the same shape with x.

Return type Variable

See also:

softmax ()

Example

>>> x = np.array ([[0, 1, 21, [0, 2, 411, np.float32)
>>> x
array ([[0., 1., 2.1,
[0., 2., 4.]1], dtype=float32)
>>> F.log_softmax (x) .array
array ([[-2.407606 , -1.4076059 , -0.4076059 7,
[-4.1429315 , -2.1429315 , -0.14293146]], dtype=float32)
>>> np.allclose (F.log_softmax (x) .data, F.log(F.softmax(x)) .data)
True

chainer.functions.lstm

chainer.functions.1lstm(c_prev, x)

Long Short-Term Memory units as an activation function.

This function implements LSTM units with forget gates. Let the previous cell state c_prev and the input array
X.

First, the input array x is split into four arrays a, ¢, f, o of the same shapes along the second axis. It means that
x ‘s second axis must have 4 times the c_prev ‘s second axis.

The split input arrays are corresponding to:
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* a: sources of cell input
* 4 : sources of input gate
e f : sources of forget gate
* o: sources of output gate
Second, it computes the updated cell state ¢ and the outgoing signal h as:
¢ = tanh(a)o (i) + cprevo (f),
h = tanh(c)o(0),
where o is the elementwise sigmoid function. These are returned as a tuple of two variables.

This function supports variable length inputs. The mini-batch size of the current input must be equal to or
smaller than that of the previous one. When mini-batch size of x is smaller than that of c, this function only
updates c[0: 1len (x) ] and doesn’t change the rest of ¢, c[len (x) :]. So, please sort input sequences in
descending order of lengths before applying the function.

Parameters

* c_prev (Variable or N-dimensional array) — Variable that holds the previous cell state.
The cell state should be a zero array or the output of the previous call of LSTM.

* x (Variable or N-dimensional array)— Variable that holds the sources of cell input, input
gate, forget gate and output gate. It must have the second dimension whose size is four times
of that of the cell state.

Returns Two Variable objects c and h. c is the updated cell state. h indicates the outgoing
signal.

Return type tuple

See the original paper proposing LSTM with forget gates: Long Short-Term Memory in Recurrent Neural
Networks.

See also:

LSTM

Example

Assuming v is the current incoming signal, c is the previous cell state, and h is the previous outgoing signal
from an 1stm function. Each of y, ¢ and h has n_units channels. Most typical preparation of x is:

>>> n_units = 100
>>> y = chainer.Variable (np.zeros((l, n_units), np.float32))
>>> h = chainer.Variable (np.zeros((l, n_units), np.float32))
>>> ¢ = chainer.Variable(np.zeros((l, n_units), np.float32))
>>> model = chainer.Chain()
>>> with model.init_scope():

model.w = L.Linear (n_units, 4 * n_units)

model.v = L.Linear (n_units, 4 * n_units)

>>> x = model.w(y) + model.v(h)
>>> ¢, h = F.lstm(c, x)

It corresponds to calculate the input array x, or the input sources a, ¢, f, o, from the current incoming signal y
and the previous outgoing signal h. Different parameters are used for different kind of input sources.

Note: We use the naming rule below.
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* incoming signal The formal input of the formulation of LSTM (e.g. in NLP, word vector or output of
lower RNN layer). The input of chainer. l1inks.LSTM is the incoming signal.

* input array The array which is linear transformed from incoming signal and the previous outgoing signal.
The input array contains four sources, the sources of cell input, input gate, forget gate and output gate.

The input of chainer. functions.activation.lstm.LSTMis the input array.

chainer.functions.maxout

chainer. functions.maxout (x, pool_size, axis=1)

Maxout activation function.

It accepts an input tensor x, reshapes the axis dimension (say the size being M * pool_size) into two

dimensions (M, pool_size), and takes maximum along the axis dimension.
Parameters

* x (Variable or N-dimensional array) — Input variable. A n-dimensional (n > axis)
float array. In general, its first dimension is assumed to be the minibatch dimension. The
other dimensions are treated as one concatenated dimension.

* pool_size (int) - The size used for downsampling of pooling layer.

* axis (int) — The axis dimension to be reshaped. The size of axis dimension should
beM * pool_size.

Returns Output variable. The shape of the output is same as x except that axis dimension is
transformed from M * pool_size toM.

Return type Variable
See also:

Maxout

Example

Typically, x is the output of a linear layer or a convolution layer. The following is the example where we use

maxout () in combination with a Linear link.

>>> in_size, out_size, pool_size = 10, 10, 10

>>> pbias = np.arange (out_size % pool_size) .astype(np.float32)

>>> 1 = L.Linear (in_size, out_size * pool_size, initial_bias=bias)

>>> x = np.zeros((l, in_size), np.float32) # prepare data

>>> x = 1(x)

>>> y = F.maxout (x, pool_size)

>>> x.shape

(1, 100)

>>> y.shape

(1, 10)

>>> x.reshape ((out_size, pool_size)) .array

array([([r 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.1,
f.o., 1., 12., 13., 14., 15., 16., 17., 18., 19.1,
[20., 21., 22., 23., 24., 25., 26., 27., 28., 29.1,
[30., 31., 32., 33., 34., 35., 36., 37., 38., 39.1,
[4o0., 41., 42., 43., 44., 45., 46., 47., 48., 49.71,
[50., 51., 52., 53., 54., 55., 56., 57., 58., 59.],
[60., 61., 62., 63., 64., 65., 66., 67., 68., 69.1,

(continues on next page)
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(continued from previous page)

(70., 71., 72., 73., 74., 75., 6., 77., 718., 19.1,

[80., 81., 82., 83., 84., 85., 86., 87., 88., 89.],

[90., 91., 92., 93., 94., 95., 96., 97., 98., 99.]], dtype=float32)
>>> y.array
array ([[ 9., 19., 29., 39., 49., 59., 69., 79., 89., 99.1], dtype=float32)

chainer.functions.prelu
chainer. functions.prelu(x, W)
Parametric ReL.U function.
It accepts two arguments: an input x and a weight array W and computes the output as

PReLU (z;) =
eLU(:) W; xx; (otherwise)

Parameters

* x (Variable or N-dimensional array) — Input variable. Its first axis is assumed to be the
minibatch dimension.

* W(Variable or N-dimensional array) — Weight variable.
Returns Output variable

Return type Variable

Example

>>> x = np.arange (-3, 3, dtype=np.float32) .reshape((2, 3))
>>> x
array ([[-3., -2., -1.1,
[ 0., 1., 2.11, dtype=float32)
>>> W = np.array([0.01, 0.1, 1], dtype=np.float32)

>>> W

array([0.01, 0.1 , 1. ], dtype=float32)
>>> F.prelu(x, W)

variable ([[-0.03, -0.2 , -1. ]

o~

ro. , 1. , 2. ]

Note: When the PReLU function is combined with two-dimensional convolution, the elements of parameter
W are typically shared across the same filter of different pixels. In order to support such usage, this func-
tion supports the shape of parameter array that indicates leading dimensions of input arrays except the batch
dimension.

For example, if W has the shape of (2, 3,4), x must have the shape of (B,2,3,4,5, ..., Sy) where B is the
batch size and the number of trailing S’s IV is an arbitrary non-negative integer.

Warning: W is a trainable parameter in the original paper (https://arxiv.org/abs/1502.01852). To train W,
use chainer.links.PReLU instead.
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See also:

chainer.links.PReLU to manage the model parameter W.

chainer.functions.rrelu

chainer.functions.rrelu (x,[=1./8, u=1./3, * r=None, return_r=False)
Randomized Leaky Rectified Liner Unit function.

This function is expressed as
f(z) = max(z, rz),

where r is a random number sampled from a uniform distribution U (I, u).

Note: The r corresponds to a in the original paper (https://arxiv.org/pdf/1505.00853.pdf).

Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, sa, ..., sy )-shaped float
array.

* 1 (float)— The lower bound of the uniform distribution.
* u(float)— The upper bound of the uniform distribution.

* r (N-dimensional array or None) — The r to be used for rrelu. The shape and dtype must be
the same as x [ 0] and should be on the same device. If r is not specified or set to None, an
r will be generated randomly according to the given 1 and u. If r is specified, 1 and u will
be ignored.

* return_r (bool) - If True, the r used for rrelu is returned altogether with the output
variable. The returned r can latter be reused by passing it to r argument.

Returns When return_r is False (default), return the output variable. Otherwise returnes the
tuple of the output variable and r (N-dimensional array). The r will be on the same device as
the input. A (s, S2, ..., s )-shaped float array.

Return type Variable or tuple

Example

>>> x = np.array([[-1, 01, [2, -3], [-2, 111, np.float32)

>>> x
array ([[-1., 0.1,
[ 2., -3.1,
[-2., 1.11, dtype=float32)
>>> F.rrelu(x).array
array ([[-0.24850948, 0. 1,
[ 2. , —0.508441277,
[-0.598535 , 1. 11, dtype=float32)
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chainer.functions.relu

chainer.functions.relu (x)
Rectified Linear Unit function.

f(z) = max(0, z).

Parameters x (Variable or N-dimensional array) — Input variable. A (s1, sa, ..., s )-shaped
float array.

Returns Output variable. A (s1, s2, ..., $v)-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]1], np.float32)
>>> np.any(x < 0)

True

>>> y = F.relu(x)

>>> np.any(y.array < 0)

False

>>> y.shape

(3, 2)

chainer.functions.relu6
chainer.functions.relu6 (x)
Rectifier Unit function clipped at 6.
It computes
ReLU6(x) = min(max(0, z), 6).
Parameters x (Variable or N-dimensional array) — Input variable. A (s, S, ..., $n)-shaped float
array.
Returns Output variable. A (s1, s9, ..., S, )-shaped float array.
Return type Variable
See also:

chainer. functions.clipped_relu()

Example

>>> x = np.array([-20, -2, 0, 2, 4, 10, 100]).astype(np.float32)
>>> x

array([-20., -2., 0., 2., 4., 10., 100.], dtype=float32)
>>> F.relub (x)

variable([0., 0., 0., 2., 4., 6., 6.])
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chainer.functions.selu
chainer. functions.selu (x, alpha=1.6732632423543772, scale=1.0507009873554805)
Scaled Exponential Linear Unit function.
For parameters « and , it is expressed as
T ifxz>0
)= )\{ alexp(z) —1) ifx <0,
See: https://arxiv.org/abs/1706.02515

Parameters

* x (Variable or N-dimensional array) — Input variable. A (si, s2, ..., sy )-shaped float
array.

* alpha (float) — Parameter c.
e scale (float)— Parameter \.
Returns Output variable. A (s1, sa, ..., sy )-shaped float array.

Return type Variable

chainer.functions.sigmoid

chainer.functions.sigmoid (x)
Element-wise sigmoid logistic function.

fla) = (1 +exp(—a))~".
Parameters x (Variable or N-dimensional array) — Input variable. A (s1, sa, ..., s )-shaped

float array.

Returns Output variable. A (s1, so, ..., sy )-shaped float array.

Return type Variable

Example

It maps the input values into the range of [0, 1].

>>> x = np.arange (-2, 3, 2).astype(np.float32)
>>> x

array ([-2., 0., 2.1, dtype=float32)

>>> F.sigmoid(x) .array

array ([0.11920291, 0.5 , 0.8807971 ], dtype=float32)

chainer.functions.slstm

chainer.functions.slstm(c_prevl, c_prev2, xl, x2)
S-LSTM units as an activation function.
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This function implements S-LSTM unit. It is an extension of LSTM unit applied to tree structures. The function
is applied to binary trees. Each node has two child nodes. It gets four arguments, previous cell states c_prevl
and c_prev?2, and input arrays x1 and x2.

First both input arrays x1 and x2 are split into eight arrays a1, i1, f1, 01, and asg, t2, f2, 02. They have the same
shape along the second axis. It means that x1 and x2 ‘s second axis must have 4 times the length of c_prevl
and c_prev2.

The split input arrays are corresponding to:

* a; : sources of cell input

* 4; : sources of input gate

e f; : sources of forget gate

* 0, : sources of output gate

It computes the updated cell state ¢ and the outgoing signal h as:

c= tanh(a1 + GQ)U(i1 + iz) + Cprevlg(f1> + Cprev2‘7(f2)»
h = tanh(c)o (o1 + 02),

where o is the elementwise sigmoid function. The function returns c and h as a tuple.

Parameters

* c_prevl (Variable or N-dimensional array)— Variable that holds the previous cell state
of the first child node. The cell state should be a zero array or the output of the previous call
of LSTM.

* c_prev2 (Variable or N-dimensional array)— Variable that holds the previous cell state
of the second child node.

* x1 (Variable or N-dimensional array) — Variable that holds the sources of cell input,
input gate, forget gate and output gate from the first child node. It must have the second
dimension whose size is four times of that of the cell state.

* x2 (Variable or N-dimensional array) — Variable that holds the input sources from the
second child node.

Returns Two Variable objects c and h. c is the cell state. h indicates the outgoing signal.

Return type tuple

See detail in paper: Long Short-Term Memory Over Tree Structures.

Example

Assuming c1, c2 is the previous cell state of children, and h1, h2 is the previous outgoing signal from children.
Each of c1, c2, h1l and h2 has n_units channels. Most typical preparation of x1, x2 is:

>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

n_units = 100
hl = chainer.Variable(np.zeros((l, n_units), np.float32))
h2 = chainer.Variable (np.zeros((l, n_units), np.float32))
cl = chainer.Variable (np.zeros((l, n_units), np.float32))
c2 = chainer.Variable (np.zeros((l, n_units), np.float32))
modell = chainer.Chain ()
with modell.init_scope () :

modell.w = L.Linear(n_units, 4 * n_units)

modell.v = L.Linear (n_units, 4 * n_units)
model2 = chainer.Chain ()

(continues on next page)
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(continued from previous page)

>>> with model2.init_scope () :

model2.w = L.Linear(n_units, 4 x n_units)
. model2.v = L.Linear (n_units, 4 * n_units)
>>> x1 = modell.w(cl) + modell.v (hl)
>>> x2 = model2.w(c2) + model2.v (h2)
>>> ¢, h = F.slstm(cl, c2, x1, x2)

It corresponds to calculate the input array x1, or the input sources a1, i1, f1, 01 from the previous cell state of
first child node c1, and the previous outgoing signal from first child node h1. Different parameters are used for
different kind of input sources.

chainer.functions.softmax
chainer.functions.softmax (x, axis=1)
Softmax function.

This function computes its softmax along an axis. Let ¢ = (¢1, ca, .. ., ¢p) be the slice of x along with the axis.

For each slice ¢, it computes the function f(c) defined as f(c) = %.

Parameters

* x (Variable or N-dimensional array) — Input variable. A n-dimensional (n > 2) float
array.

* axis (int)— The axis along which the softmax is to be computed.
Returns Output variable. A n-dimensional (n > 2) float array, which is the same shape with x.

Return type Variable

Example

>>> x = np.array ([[0, 1, 21, [0, 2, 411, np.float32)
>>> x
array ([[0., 1., 2.1,
[0., 2., 4.]1], dtype=float32)
>>> y = F.softmax (x, axis=1)
>>> y.array
array ([[0.09003057, 0.24472848, 0.66524094],
[0.01587624, 0.11731043, 0.86681336]]1, dtype=float32)
>>> F.sum(y, axis=1).array
array([1., 1.], dtype=float32)

chainer.functions.softplus

chainer.functions.softplus (x, beta=1.0)
Element-wise softplus function.

The softplus function is the smooth approximation of ReL.U.
1
fz) = 3 log(1 + exp(Bz)),

where (3 is a parameter. The function becomes curved and akin to ReL.U as the f3 is increasing.

164 Chapter 4. API Reference


https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Parameters

* x (Variable or N-dimensional array) — Input variable. A (s1, sa, ..., sy )-shaped float
array.

* beta (float)— Parameter 3.
Returns Output variable. A (s1, s2, ..., $v)-shaped float array.

Return type Variable

Example

>>> x = np.arange (-2, 3, 2).astype(np.float32)

>>> x

array ([-2., 0., 2.1, dtype=float32)

>>> F.softplus(x, beta=1.0).array

array ([0.126928 , 0.6931472, 2.126928 ], dtype=float32)

chainer.functions.swish

chainer.functions.swish (x, beta)
Swish activation function.

f(z,B) =x-o(Bx),

where o (-) is the sigmoid function. It has the following properties:

J@,0)= 3.
lim f(z,B) = max(0, x).

B—o00

Parameters

* x (Variable or N-dimensional array) — Input variable of shape (sg, s1, S2, ..., Sn ), where
sp 1s assumed to be the minibatch dimension.

* beta (Variable or N-dimensional array) — Parameter variable (3 of shape
(s1, 82, ..., Snr), where M is an arbitrary integer between 0 < M < N. The number of
dimensions of beta will be matched with x by reshaping it as (1, s1, ..., sas, 1, ...1), then
beta and x are multiplied together in an element-wise manner.

Returns Output variable of the same shape as x.

Return type Variable

Warning: [ is a trainable parameter in the original paper (https://arxiv.org/abs/1710.05941). To train 3,
use chainer.links.Swish instead.

See also:

chainer.links.Swish to manage the model parameter beta.
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chainer.functions.tanh

chainer.functions.tanh (x)
Elementwise hyperbolic tangent function.

f(z) = tanh(x).

Parameters x (Variable or N-dimensional array) — Input variable. A (s1, sa, .

float array.
Returns Output variable. A (s1, s2, ..., v )-shaped float array.

Return type Variable

.., S\ )-shaped

Example

>>> x = np.arange (-1, 4, 2).astype(np.float32)

>>> x

array ([-1., 1., 3.], dtype=float32)

>>> F.tanh(x) .array

array ([-0.7615942, 0.7615942, 0.9950548], dtype=float32)

chainer.functions.tree_Istm

chainer.functions.tree_1lstm (*inputs)
TreeLSTM unit as an activation function.

This function implements TreeLSTM units both for N-ary TreeLSTM and Child-Sum TreeLSTM. Let the chil-

dren cell states ¢y, ¢, . . ., cN, and the incoming signal x.

First, the incoming signal x is split into (3 + N) arrays a, i, 0, f1, f2, ..., fn of the same shapes along the second

axis. It means that = ‘s second axis must have (3 + N) times of the length of each c,,.
The splitted input signals are corresponding to:
* a: sources of cell input
* ¢ : sources of input gate
* o: sources of output gate
e f, : sources of forget gate for n-th ary
Second, it computes outputs as:
¢ = tanh(a)sigmoid(7)
+ ¢;sigmoid( fy),
+ ¢psigmoid( f),
+ ..,

+ ensigmoid(fx),
h = tanh(c)sigmoid(o).

These are returned as a tuple of (N + 1) variables.
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Parameters inputs (list of Variable)— Variable arguments which include all cell vectors from
child-nodes, and an input vector. Each of the cell vectors and the input vector is Variable or
N-dimensional array. The input vector must have the second dimension whose size is (N + 3)
times of that of each cell, where N denotes the total number of cells.

Returns Two Variable objects ¢ and h. c is the updated cell state. h indicates the outgoing

signal.

Return type tuple

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman
et al. Specifically, eq. 10 in Tai et al. only has one W matrix to be applied to z, consistently for all children.
On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each

child’s cell individually.

Example

Assuming v is the current input signal, c is the previous cell state, and h is the previous output signal from an
tree_lstm/() function. Each of y, c and h has n_units channels. Using 2-ary (binary) TreeLSTM, most

typical preparation of x is:

>>> model = chainer.Chain()

>>> with model.init_scope() :

model.w = L.Linear (10, 5 % 10)

model.vl = L.Linear (10, 5 * 10)
C model.v2 = L.Linear (10, 5 * 10)
>>> y = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> hl = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> h2 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> cl = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> c2 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> x = model.w(y) + model.vl(hl) + model.v2(h2)
>>> ¢, h = F.tree_lstm(cl, c2, x)

It corresponds to calculate the input sources a, 7, o, fi, f> from the current input y and the children’s outputs h1
and h2. Different parameters are used for different kind of input sources.

4.2.3 Array manipulations

chainer. functions.as_strided

Create a new view of array with the given shape, strides,
and offset.

chainer. functions.broadcast Broadcast given variables.

chainer. functions.broadcast_to Broadcast a given variable to a given shape.

chainer. functions.cast Cast an input variable to a given type.

chainer. functions.concat Concatenates given variables along an axis.

chainer. functions.copy Copies the input variable onto the specified device.

chainer. functions.depthlspace Computes the depth2space transformation for subpixel
calculations.

chainer. functions.diagonal Take diagonal

chainer. functions.dstack Concatenate variables along third axis (depth wise).

Continued on next page
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Table 4 — continued from previous page

chainer. functions.

expand_dims

Expands dimensions of an input variable without copy.

chainer.functions.flatten Flatten a given array into one dimension.

chainer. functions.flip Flips an input variable in reverse order along the given
axis.

chainer.functions.fliplr Flip array in the left/right direction.

chainer. functions. flipud Flip array in the up/down direction.

chainer. functions.

get_item

Extract elements from array with specified shape, axes
and offsets.

chainer.functions.

hstack

Concatenate variables horizontally (column wise).

chainer.functions.

im2col

Extract patches from an image based on the filter.

chainer.functions.

moveaxis

Move the source axes to the destination.

chainer.functions

.pad

Pad an input variable.

chainer.functions

.pad_sequence

Pad given arrays to make a matrix.

chainer. functions

.permutate

Permutates a given variable along an axis.

chainer. functions.repeat Construct an array by repeating a given array.
chainer. functions.reshape Reshapes an input variable without copy.
chainer.functions.resize_images Resize images to the given shape.
chainer. functions.rollaxis Roll the axis backwards to the given position.

chainer. functions.

scatter_add

Adds given values to specified elements of an array.

chainer.functions.

select_item

Select elements stored in given indices.

chainer. functions.

separate

Separates an array along a given axis.

chainer.functions.

spaceldepth

Computes the space2depth transformation for subpixel
calculations.

chainer.functions.

spatial_ transformer_grid

2D Spatial Transformer grid.

chainer. functions.

spatial_transformer_sampler

2D Spatial Transformer sampler.

chainer.functions.

split_axis

Splits given variables along an axis.

chainer. functions.squeeze Remove dimensions of size one from the shape of a
ndarray.

chainer. functions.stack Concatenate variables along a new axis.

chainer. functions.swapaxes Swap two axes of a variable.

chainer.functions.tile Construct an array by tiling a given array.

chainer. functions.transpose Permute the dimensions of an input variable without

copy.

chainer.functions.

transpose_sequence

Transpose a list of Variables.

chainer.functions.

vstack

Concatenate variables vertically (row wise).

chainer.functions.

where

Choose elements depending on condition.

chainer.functions.as_strided

chainer.functions.as_strided (x, shape, strides, storage_offset=None)
Create a new view of array with the given shape, strides, and offset.

Parameters

* x (tuple of Variable or numpy.ndarray or cupy.ndarray)— The array pointing a
memory buffer. Its view is totally ignored.

* shape (tuple of int)- The shape of output.

* strides (tuple of int)- The strides of output, given in the unit of steps.

* storage_offset (int) — The offset between the head of allocated memory and the
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pointer of first element, given in the unit of steps.
Returns The strided variable.

Return type Variable

Warning:  Users should be aware that this function potentially causes unintended side effects. See
numpy.lib.stride_tricks.as_strided for the detail.

Note: The backward algorithm is borrowed from torch.Tensor.as_strided. Therefore, the returned gradient of
backward is layout-agnostic when x contains memory overlap. See notes in pytorch’s source code (as_strided
Backward and layout-aware/agnostic autograd) too.

Note: In this function strides and storage_offset are given in the unit of steps instead of bytes. This
specification differs from numpy.1lib.stride_tricks.as_strided().

Example

>>> from chainer import functions as F, Variable
>>> x = Variable (np.arange (4, dtype=np.float32))
>>> x

variable ([0., 1., 2., 3.1)

>>> y = F.as_strided(x, (3, 2), (1, 1), 0)

>>> y

variable ([[0., 1.],
[1., 2.1,
[2., 3.11)

>>> y.grad = np.ones((3, 2), dtype=np.float32)
>>> y.backward ()

>>> x.grad

array([l., 2., 2., 1.], dtype=float32)

chainer.functions.broadcast
chainer.functions.broadcast (*args)
Broadcast given variables.

Parameters args (Variable or N-dimensional array) — Input variables to be broadcasted. Each
dimension of the shapes of the input variables must have the same size.

Returns Variable or tuple of Variable objects which are broadcasted from the given argu-
ments.

Return type Variable

Example

>>> x = np.random.uniform(0, 1, (3, 2)).astype(np.float32)
>>> y = F.broadcast (x)

(continues on next page)
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>>> np.all(x == y.array)

True

>>> z = np.random.uniform (0, 1, (3, 2)).astype(np.float32)
>>> vy, w = F.broadcast (x, z)

>>> np.all(x == y.array) & np.all(z == w.array)

True

chainer.functions.broadcast_to
chainer.functions.broadcast_to (x, shape)
Broadcast a given variable to a given shape.
Parameters

* x (Variable or N-dimensional array) — Input variable to be broadcasted. A
(s1, 82, ..., sn )-shaped float array.

* shape (tuple)—Tuple of int of the shape of the output variable.
Returns Output variable broadcasted to the given shape.

Return type Variable

Example

>>> x = np.arange (0, 3)
>>> x
array ([0, 1, 2])
>>> y = F.broadcast_to(x, (3, 3))
>>> y.array
array ([[0, 1, 21,
[0, 1, 21

chainer.functions.cast
chainer.functions.cast (x, fyp)
Cast an input variable to a given type.
Parameters

* x (Variable or N-dimensional array) — Input variable to be casted. A (si,S2,...,SN)-
shaped array.

* typ (str of dtype or numpy . dt ype) — Typecode or data type to cast.
Returns Variable holding a casted array.

Return type Variable

Example
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>>> x = np.arange (0, 3, dtype=np.float64)
>>> x.dtype

dtype ('float64")

>>> y = F.cast (x, np.float32)

>>> y.dtype

dtype ('float32")

>>> y = F.cast(x, 'floatlé6")

>>> y.dtype

dtype ('floatl6")

chainer.functions.concat
chainer.functions.concat (xs, axis=1)
Concatenates given variables along an axis.
Parameters

* xs (tuple of Variable or N-dimensional array) — Input variables to be concatenated. The
variables must have the same shape, except in the dimension corresponding to axis.

* axis (int)— The axis along which the arrays will be joined. Default is 1.
Returns The concatenated variable.

Return type Variable

Example
>>> x = np.arange (0, 12).reshape (3, 4)
>>> x
array ([[ 0O, 1, 2, 31,
[ 4, 5, 6, 71,
[ 8, 9, 10, 1111)
>>> y = np.arange (0, 3).reshape(3, 1)
>>> y
array ([[0],
[11,
[211)
>>> z = F.concat ((x, y), axis=1)
>>> z.array
array ([[ O, 1, 2, 3, 01,
[ 4, 5, 6, 7, 11,
[ 8, 9, 10, 11, 211)

chainer.functions.copy

chainer.functions.copy (x, dst)
Copies the input variable onto the specified device.

If the input x already resides on the device specified by dst, no copy will actually take place and the returned
variable will hold a view of the input. In other cases, the input will be copied to dst. When dst == -1, the
array is copied to the host memory. This function supports copies from host to host, from host to device, from
device to device and from device to host.
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Parameters
* x (Variable or N-dimensional array) — Variable to be copied.
* dst — Target device specifier.

Returns Output variable.

Return type Variable

Example

>>> import chainer.backends.cuda as cuda

>>> x_arr = np.random.uniform(-1, 1, (5, 10))

>>> x = chainer.Variable (x_arr)

>>> x.device

<CpuDevice (numpy) >

>>> y = F.copy(x, '@cupy:0'"') # from CPU (NumPy) to GPU 0 (CuPy)
>>> y.device

<GpuDevice (cupy) :0>

Note: Copies between non-ChainerX devices and ChainerX devices are not supported.

chainer.functions.depth2space
chainer.functions.depth2space (X, r)
Computes the depth2space transformation for subpixel calculations.
Parameters

* X (Variable or N-dimensional array) — Variable holding a 4d array of shape (batch,
channel = r * r, diml, dim2).

* r (int) - the upscaling factor.

Returns A variable holding the upscaled array from interspersed depth layers. The shape is
(batch, channel, diml * r, dim2 % r).

Return type Variable

Note: This can be used to compute super-resolution transformations. See https://arxiv.org/abs/1609.05158 for
details.

See also:

spaceZdepth ()

Example

>>> X = np.arange (24) .reshape(l, 4, 2, 3).astype(np.float32)
>>> X.shape

(1, 4, 2, 3)

>>> X

array ([[[[ 0., 1., 2.1,

(continues on next page)
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(r 6., 7., 8.1,
[ 9., 10., 11.11,
((12., 13., 14.1,
[15., 16., 17.11,
(r(18., 19., 20.1,
[21., 22., 23.1111, dtype=float32)
>>> y = F.depth2space (X, 2)
>>> y.shape
(1, 1, 4, 6)
>>> y.array
array ([[[[ 0., 6., 1., 7., 2., 8.1,
(2., 18., 13., 19., 14., 20.71,
[ 3., 9., 4., 10., 5., 11.71,
[15., 21., 16., 22., 17., 23.111]1, dtype=float32)

chainer.functions.diagonal
chainer.functions.diagonal (x, offset=0, axisl1=0, axis2=1)
Take diagonal
Axes other than axis1 and axis?2 are regarded as batch dimensions.
Parameters
e x (Variable or N-dimensional array) — A variable to be sliced.

* offset (int) — Offset from the principal diagonal. An upper diagonal matrix can have
nonzero diagonals with nonnegative offsets.

* axisl (int)— First axis (that has row indices) of matrix
e axis2 (int) - Second axis (that has column indices) of matrix
Returns (Batched) diagonal vectors

Return type Variable

Example
>>> x = chainer.Variable (np.arange(9) .reshape (3, 3).astype(np.float32))
>>> x
variable([[0., 1., 2.1,
[3., 4., 5.7,
[6., 7., 8.11)

>>> chainer.functions.diagonal (x,
variable ([1., 5.1])

offset=1)

4.2. Functions

173



https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

chainer.functions.dstack

chainer.functions.dstack (xs)
Concatenate variables along third axis (depth wise).

Parameters xs (list of Variable or N-dimensional array) — Input variables to be concatenated.
The variables must have the same ndim. When the variables have the third axis (i.e. ndim > 3),
the variables must have the same shape along all but the third axis. When the variables do not

have the third axis(i.e. ndim < 3), the variables must have the same shape.

Returns Output variable. When the input variables have the third axis (i.e. ndim > 3), the shapes
of inputs and output are the same along all but the third axis. The length of third axis is the sum
of the lengths of inputs’ third axis. When the shape of variables are (N1, N2) (i.e. ndim = 2),

the shape of outputis (N1, N2,
the shape of outputis (1, N1,

shape of outputis (1, 1, 2).

Return type Variable

2) . When the shape of variables are (N1, ) (i.e. ndim = 1),
2) . When the shape of variables are () (i.e. ndim = 0), the

Example
>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.dstack ((x1l, x2))
>>> y.shape
(1, 3, 2)
>>> y.array
array ([[[1, 2],
(2, 31,
(3, 4111)
>>> x1 = np.arange (0, 6).reshape(3, 2)
>>> x1.shape
(3, 2)
>>> x1
array ([[0, 11,
(2, 31,
[4, 511)
>>> x2 = np.arange (6, 12).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array ([[ 6, 71,
[ 8, 91,
[10, 1111)
>>> y = F.dstack([x1l, x2])
>>> y.shape
(3, 2, 2)
>>> y.array
array ([[[ 0, 6],
(1, 711,
[rz2, 8l,

(continues on next page)
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3, 911,
4, 101,
S5, 11111)

>>> x1 =

np.arange (0,

12) .reshape (3,

2,

2)

>>> x2 = np.arange (12,
>>> y = F.dstack ([x1,
>>> y.shape

18) .reshape (3, 2, 1)
x21])

(3, 2, 3)
>>> y.array
array ([[[ O, 1, 12]

L2, 3, 1311,

[t

chainer.functions.expand_dims
chainer. functions.expand_dims (x, axis)
Expands dimensions of an input variable without copy.
Parameters
* x (Variable or N-dimensional array) — Input variable.

* axis (int)— Position where new axis is to be inserted. The axis parameter is acceptable
when —ndim — 1 < azis < ndim. (ndim is the dimension of input variables). When
axis < 0, the result is the same with ndim + 1 — |axis|.

Returns Variable that holds an expanded input. The ndim of output is one greater than that of x.

Return type Variable

Example

>>> x = np.array([1l, 2, 31])

>>> x.shape

(3,)

>>> y = F.expand_dims (x, axis=0)
>>> y.shape

(1, 3)

>>> y.array

array ([[1, 2, 311)

>>> y = F.expand_dims (x, axis=1)

>>> y.shape

(3, 1)

>>> y.array

array ([ [1],
(21,
[311)

(continues on next page)
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>>> y = F.expand_dims (x, axis=-2)
>>> y.shape

(1, 3)

>>> y.array

array ([[1, 2, 311)

chainer.functions.flatten

chainer.functions.flatten (x)

Flatten a given array into one dimension.
Parameters x (Variable or N-dimensional array) — Input variable.
Returns Output variable flatten to one dimension.

Return type Variable

Note: When you input a scalar array (i.e. the shape is () ), you can also get the one dimension array whose
shapeis (1,).

Example

>>> x = np.array ([[1l, 2], [3, 411])
>>> x.shape

(2, 2)

>>> y = F.flatten (x)

>>> y.shape

(4,)

>>> y.array

array ([1, 2, 3, 41)

>>> x = np.arange (8) .reshape (2, 2, 2)
>>> x.shape

(2, 2, 2)

>>> y = F.flatten (x)

>>> y.shape

(8,)

>>> y.array

array ([0, 1, 2, 3, 4, 5, 6, 71)

chainer.functions.flip

chainer.functions. £flip (x, axis)

Flips an input variable in reverse order along the given axis.

Parameters
* x (Variable or N-dimensional array) — Input variable.

* axis (int)— Axis along which the input variable is reversed.
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Returns Output variable.
Return type Variable
chainer.functions.fliplr

chainer.functions.fliplr (a)
Flip array in the left/right direction.

Parameters a (Variable or N-dimensional array) — Input variable.

Returns Output variable.
Return type Variable
chainer.functions.flipud

chainer.functions. flipud(a)
Flip array in the up/down direction.

Parameters a (Variable or N-dimensional array) — Input variable.

Returns Output variable.

Return type Variable

chainer.functions.get_item

chainer.functions.get_item (x, slices)

Extract elements from array with specified shape, axes and offsets.

Parameters

* x (Variable or N-dimensional array) — A variable to be sliced.

e slices (int, slice,

Ellipsis,

None, integer array-like,

boolean array-like or tuple of them) — An object to specify the selection

of elements.

Returns A Variable object which contains sliced array of x.

Note:

It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in

slices. The supported types are numpy . £loat 32, numpy.int32, numpy.uint32, numpy.uint64

and numpy .ulonglong.

Note: It does not support s1ices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example
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>>> x = np.arange(12) .reshape((2, 2,
>>> x
array ([[[ 0, 1, 2]

0 ’
(3, 4, 511,
(e 7, 8]

[ 9, 10, 11111)
>>> F.get_item(x, 0)

variable ([9])

3))

)

variable([[0, 1, 21,
[3, 4, 511)
>>> F.get_item(x, (0, 0, slice(0, 2,
variable ([0, 11)
>>> F.get_item(x, (Ellipsis, 2)) # equals x[...,
variable([[ 2, 51,
[ 8, 1111)
>>> F.get_item(x, (1, np.newaxis, 1,

0))

# equals x[0,

# equals x/[1,

0:2:1]

None, 1, 0]

chainer.functions.hstack

chainer.functions.hstack (xs)

Concatenate variables horizontally (column wise).

Parameters xs (list of Variable or N-dimensional array) — Input variables to be concatenated.
The variables must have the same ndim. When the variables have the second axis (i.e. ndim >
2), the variables must have the same shape along all but the second axis. When the variables do
not have the second axis(i.e. ndim < 2), the variables need not to have the same shape.

Returns Output variable. When the input variables have the second axis (i.e. ndim > 2), the shapes
of inputs and output are the same along all but the second axis. The length of second axis is the
sum of the lengths of inputs’ second axis. When the variables do not have the second axis (i.e.

) (N is the sum of the input variables’ size).

ndim < 2), the shape of output is (N,

Return type Variable

Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape

(3,)

>>> x2 = np.array((2, 3, 4))
>>> x2.shape

(3,)

>>> y = F.hstack ((x1l, x2))
>>> y.shape

(6,)

>>> y.array

array ([1, 2, 3, 2, 3, 4])

>>> x1 = np.arange (0, 12).reshape (3,
>>> x1.shape
(3, 4)
>>> x1
array ([[ O, 1, 2, 31,
[ 4, 5, 6, 71,

4)

(continues on next page)
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(8 9, 10, 1111)

>>> x2 = np.arange (12, 18).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[12, 13],
[14, 15],
[16, 1711)

>>> y = F.hstack ([x1l, x21])
>>> y.shape

(3, 6)
>>> y.array
array([[ O, 1, 2, 3, 12, 13],

[ 4, 5, 6, 7, 14, 157,
[ 8 9, 10, 11, 16, 1711)

chainer.functions.im2col
chainer.functions.im2col (x, ksize, stride=1, pad=0, cover_all=False, dilate=1)
Extract patches from an image based on the filter.
This function rearranges patches of an image and puts them in the channel dimension of the output.

Patches are extracted at positions shifted by multiples of st ride from the first position —pad for each spatial
axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Notation: here is a notation.
* n is the batch size.
¢ cis the number of the input channels.
e h and w are the height and width of the input image, respectively.
* kp and kyy are the height and width of the filters, respectively.
* sy and sx are the strides of the filter.
* py and pyy are the spatial padding sizes.
* dy and dx are the dilation factors of filter application.
The output size (ho, wo) is determined by the following equations when cover_all = False:
ho = (h+2pg — kg — (kg — 1) x (dy — 1))/sy + 1,
wo = (w+2pw — kw — (kw — 1) % (dx — 1))/sx + 1.
When cover_all = True, the output size is determined by the following equations:
ho=(h+2pg — kg — (kg — 1) x (dy — 1)+ sy — 1)/sy + 1,
wo = (w+2pw —kw — (kw — 1) % (dx — 1) +sx —1)/sx + 1.
Parameters
* x (Variable or N-dimensional array) — Input variable of shape (n, ¢, h, w).

e ksize (int or pair of ints) — Size of filters (a.k.a. Kkernels). ksize=k and
ksize=(k, k) areequivalent.
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* stride (int or pair of ints) — Stride of filter applications. stride=s and

stride= (s, s) areequivalent.

* pad (int or pair of ints) - Spatial padding width for input arrays. pad=p and

pad=(p, p) are equivalent.

* cover_all (bool)-If True, all spatial locations are rearranged into some output pixels.

It may make the output size larger.

* dilate (int or pair of ints) - Dilation factor of filter applications. dilate=d

and dilate=(d, d) areequivalent.
Returns Output variable whose shape is (n,c¢- ky - kw, ho, wo)

Return type Variable

chainer.functions.moveaxis

chainer.functions.moveaxis (x, source, destination)
Move the source axes to the destination.

This function transpose the input x by moving the axes source to the axes destination. Other axes remain

in their original order.
See also chainer. functions.transpose (), chainer. functions.swapaxes ().
Parameters

* x (Variable or N-dimensional array) — Input variable.

* source (int or tuple of int) — Original positions of the axes to move. These

must be unique.

* destination (int or tuple of int)- Destination positions for each of the orig-

inal axes. These must also be unique.
Returns Variable whose axis is moved.

Return type Variable

Example

>>> x = np.zeros((2, 3, 4, 5), np.float32)

>>> chainer.functions.moveaxis(x, 0, —1).shape

(3, 4, 5, 2)

>>> chainer.functions.moveaxis(x, (0, 3), (2, 0)).shape
(5, 3, 2, 4)

chainer.functions.pad
chainer. functions.pad (x, pad_width, mode, **keywords)
Pad an input variable.
Parameters

* x (Variable or N-dimensional array) — Input data.

* pad_width (int or array-like)— Number of values padded to the edges of each

axis.
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* mode (str) — Specifies how the function fills the periphery of the array. The mode is
passed to numpy . pad () or cupy.pad (). Ifitis 'constant', the input is padded by
a constant value specified by constant_values.

* constant_values (int or array-1like)- Constant values to fill the periphery in
the 'constant ' mode.

Returns Output variable.

Return type Variable

chainer.functions.pad_sequence
chainer.functions.pad_sequence (xs, length=None, padding=0)
Pad given arrays to make a matrix.
Parameters
* xs (list of ~chainer.Variable or N-dimensional array) — Variables you want to concatenate.

* length (None or int) — Size of the first dimension of a padded array. If it is None,
the longest size of the first dimension of xs is used.

* padding (int or float)- Value to fill.
Returns A padded matrix. Its shape is (n, length, ...),wheren == len(xs).

Return type Variable

chainer.functions.permutate

chainer.functions.permutate (x, indices, axis=0, inv=False)
Permutates a given variable along an axis.

This function permutate x with given indices. That means y[i] = x[indices[i]] for all i. Note
that this result is same as y = x.take (indices). indices must be a permutation of [0, 1,
len(x) — 117.

-7

When invis True, indices is treated as its inverse. That means y [indices[i]] = x[i].

Parameters

* x (Variable or N-dimensional array) — Variable to permutate. A (s1, $2, ..., S5 ) -shaped
float array.

* indices (Variable or N-dimensional array) — Indices to extract from the variable. A
one-dimensional int array.

* axis (int)— Axis that the input array is permutate along.
e inv (bool)-1If True, indices is treated as its inverse.
Returns Output variable.

Return type Variable

Example
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>>> x = np.arange (6) .reshape ((3, 2)) .astype(np.float32)

>>> x
array ([[0., 1.7,
[2., 3.1,
[4., 5.]1]1, dtype=float32)
>>> indices = np.array([2, 0, 1], np.int32)
>>> y = F.permutate(x, indices)
>>> y.array
array ([[4., 5.7,
[0., 1.1,
[2., 3.]11, dtype=float32)
>>> y = F.permutate(x, indices, inv=True)
>>> y.array
array ([[2., 3.7,
[4., 5.1,
[0., 1.]], dtype=float32)

>>> indices np.array([1l, 0], np.int32)
>>> y = F.permutate(x, indices, axis=1)
>>> y.array

array ([[1., 0.],
[3., 2.1,
[5., 4.]], dtype=float32)

chainer.functions.repeat
chainer. functions.repeat (x, repeats, axis=None)
Construct an array by repeating a given array.
Parameters
* x (Variable or N-dimensional array) — Input variable.

* repeats (int or tuple of int s) — The number of times which each element of x is
repeated.

* axis (int) - The axis along which to repeat values.
Returns The repeated output Variable.

Return type Variable

Example

>>> x = np.array ([0, 1, 21])
>>> x.shape

(3,)

>>> y = F.repeat (x, 2)

>>> y.shape

(6,)

>>> y.array

array ([0, O, 1, 1, 2, 2])

>>> x = np.array ([[1,2], [3,4]1])
>>> x.shape

(2, 2)

>>> y = F.repeat (x, 3, axis=1)

>>> y.shape

(continues on next page)
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(2, 6)

>>> y.array

array ([[1, 1, 1, 2, 2, 2
[3, 3, 3, 4, 4, 4

>>> y = F.repeat (x, (1,

>>> y.shape

(3, 2)

>>> y.array

array ([[1, 2],
[3, 41,
[3, 411)

chainer.functions.reshape
chainer. functions.reshape (x, shape)
Reshapes an input variable without copy.
Parameters
* x (Variable or N-dimensional array) — Input variable.

* shape (tuple of int s) — Expected shape of the output array. The number of elements
which the array of shape contains must be equal to that of input array. One shape dimen-
sion can be -1. In this case, the value is inferred from the length of the array and remaining
dimensions.

Returns Variable that holds a reshaped version of the input variable.
Return type Variable
See also:

numpy .reshape (), cupy.reshape ()

Example

>>> x = np.array([[1, 2, 3, 41, [5, 6, 7, 811)
>>> y = F.reshape(x, (8,))

>>> y.shape

(8,)

>>> y.array

array ([1, 2, 3, 4, 5, 6, 7, 81)

>>> y = F.reshape(x, (4, -1)) # the shape of output is inferred
>>> y.shape
(4, 2)
>>> y.array
array ([[1, 21,
[3, 41,
[5, 61,
(7, 811)
>>> y = F.reshape(x, (4, 3)) # the shape of input and output are not consistent

Traceback (most recent call last):

chainer.utils.type_check.InvalidType:
Invalid operation is performed in: Reshape (Forward)

(continues on next page)
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Expect: prod(in_types[0].shape) == prod((4, 3))
Actual: 8 != 12

chainer.functions.resize_images
chainer.functions.resize_images (x, output_shape, mode="bilinear’, align_corners=True)
Resize images to the given shape.

This function resizes 2D data to output_shape. Currently, only bilinear interpolation is supported as the
sampling method.

Notation: here is a notation for dimensionalities.
* n is the batch size.
* ¢y is the number of the input channels.
e h and w are the height and width of the input image, respectively.

* ho and wop are the height and width of the output image.

Parameters
* x (Variable or N-dimensional array) — Input variable of shape (n, ¢y, h, w).

* output_shape (tuple) — This is a tuple of length 2 whose values are (h_0O, w_0O).
Note that the order of height and width is opposite of the one in OpenCV.

* mode ({ 'bilinear', 'nearest'})— Defines the sampling rule.

* align_corners (bool)— When this value is True, the corners of the input are mapped
to the corners of the output. When False, the behavior is the same as OpenCV.

Returns Resized image whose shape is (1, ¢;, ho, wo).

Return type Variable

chainer.functions.rollaxis
chainer.functions.rollaxis (x, axis, start=0)
Roll the axis backwards to the given position.

This function continues to be supported for backward compatibility, but 