
Chainer Documentation
Release 7.0.0b4

Preferred Networks, inc. and Preferred Infrastructure, inc.

Oct 07, 2019

TUTORIALS

1 Chainer at a Glance 3
1.1 Mushrooms – tasty or deadly? . 3
1.2 Code Breakdown . 3
1.3 Output . 8

2 Concepts Walkthrough 13
2.1 Define-by-Run . 13
2.2 Variables and Derivatives . 13
2.3 Links . 15
2.4 Define your own function . 17
2.5 Creating Models . 34
2.6 Optimizer . 36
2.7 Trainer . 37
2.8 Trainer Extensions . 38
2.9 Using GPU(s) in Chainer . 42
2.10 Type Checks . 48
2.11 Serializers – saving and loading . 52
2.12 Customize your own logging . 53

3 Neural Net Examples 57
3.1 MNIST using Trainer . 57
3.2 MNIST with a Manual Training Loop . 65
3.3 Convolutional Network for Visual Recognition Tasks . 73
3.4 DCGAN: Generate images with Deep Convolutional GAN . 80
3.5 Recurrent Nets and their Computational Graph . 90
3.6 RNN Language Models . 96
3.7 Word2Vec: Obtain word embeddings . 106
3.8 Write a Sequence to Sequence (seq2seq) Model . 114

4 API Reference 131
4.1 Variable and Parameter . 131
4.2 Functions . 151
4.3 Link and Chains . 315
4.4 Probability Distributions . 796
4.5 Optimizers . 863
4.6 Weight Initializers . 925
4.7 Snapshot Writers . 939
4.8 Training Tools . 946
4.9 Datasets . 1008
4.10 Iterator . 1053

i

4.11 Serializers . 1063
4.12 Backends and Devices . 1074
4.13 Utilities . 1090
4.14 Configuring Chainer . 1102
4.15 Debug Mode . 1110
4.16 Visualization of Computational Graph . 1111
4.17 Static Subgraph Optimizations: Usage . 1114
4.18 Static Subgraph Optimizations: Design Notes . 1119
4.19 Caffe Model Support . 1122
4.20 Assertion and Testing . 1123

5 Installation 1163
5.1 Recommended Environments . 1163
5.2 Requirements . 1163
5.3 Install Chainer . 1164
5.4 Uninstall Chainer . 1165
5.5 Upgrade Chainer . 1165
5.6 Reinstall Chainer . 1165
5.7 Run Chainer with Docker . 1166
5.8 FAQ . 1166

6 ChainerX Documentation 1167
6.1 Installation . 1167
6.2 ChainerX Tutorial . 1169
6.3 Limitations . 1172
6.4 Reference . 1173
6.5 Contribution Guide . 1178
6.6 Tips and FAQs . 1180

7 Distributed Deep Learning with ChainerMN 1183
7.1 Installation . 1183
7.2 Tutorial . 1192
7.3 Model Parallel . 1198
7.4 API Reference . 1217

8 Export Chainer to ONNX 1239
8.1 Introduction . 1239
8.2 Module Reference . 1243
8.3 Indices and tables . 1244

9 API Compatibility Policy 1245
9.1 Versioning and Backward Compatibility . 1245
9.2 Breaking the Compatibility . 1245
9.3 Experimental APIs . 1246
9.4 Supported Backward Compatibility . 1246
9.5 Model Format Compatibility . 1247
9.6 Installation Compatibility . 1247

10 Contribution Guide 1249
10.1 Issues and Pull Requests . 1249
10.2 Coding Guidelines . 1250
10.3 Unit Testing . 1251
10.4 Documentation . 1253
10.5 Other Forms of Contribution . 1254
10.6 Development Cycle . 1254

ii

11 Tips and FAQs 1257
11.1 It takes too long time to compile a computational graph. Can I skip it? 1257
11.2 MNIST example does not converge in CPU mode on Mac OS X . 1257
11.3 How do I fix InvalidType error? . 1258
11.4 How do I accelerate my model using Chainer Backend for Intel Architecture? 1259
11.5 My training process gets stuck when using MultiprocessIterator . 1260

12 Performance Best Practices 1261
12.1 Use the Latest Version . 1261
12.2 Enable Hardware Accelerations . 1261
12.3 Migrate Data Preprocessing Code from NumPy to CuPy . 1262
12.4 Avoid Data Transfer . 1262
12.5 Optimize cuDNN Convolution . 1262
12.6 Fine-Tune Configuration . 1263
12.7 Load Datasets Concurrently . 1263
12.8 Use Multiple GPUs . 1264
12.9 Use Multiple Nodes . 1264

13 Upgrade Guide 1265
13.1 Chainer v7 . 1265
13.2 Chainer v6 . 1265
13.3 Chainer v5 . 1266
13.4 Chainer v4 . 1268
13.5 Chainer v3 . 1270
13.6 Chainer v2 . 1271

14 License 1287

15 Indices and tables 1289

Bibliography 1291

Python Module Index 1293

Index 1295

iii

iv

Chainer Documentation, Release 7.0.0b4

Chainer is a powerful, flexible and intuitive deep learning framework.

• Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on
multiple GPUs with little effort.

• Chainer supports various network architectures including feed-forward nets, convnets, recurrent nets and recur-
sive nets. It also supports per-batch architectures.

• Forward computation can include any control flow statements of Python without lacking the ability of back-
propagation. It makes code intuitive and easy to debug.

TUTORIALS 1

https://chainer.org

Chainer Documentation, Release 7.0.0b4

2 TUTORIALS

CHAPTER

ONE

CHAINER AT A GLANCE

Welcome to Chainer!

Chainer is a rapidly growing neural network platform. The strengths of Chainer are:

• Python-based – Chainer is developed in Python, allowing for inspection and customization of all code in python
and understandable python messages at run time

• Define by Run – neural networks definitions are defined on-the-fly at run time, allowing for dynamic network
changes

• NumPy based syntax for working with arrays, thanks to CuPy implementation

• Fully customizable – since Chainer is pure python, all classes and methods can be adapted to allow for the latest
cutting edge or specialized approaches

• Broad and deep support – Chainer is actively used for most of the current approaches for neural nets (CNN,
RNN, RL, etc.), aggressively adds new approaches as they’re developed, and provides support for many kinds
of hardware as well as parallelization for multiple GPUs

1.1 Mushrooms – tasty or deadly?

Let’s take a look at a basic program of Chainer to see how it works. For a dataset, we’ll work with Kaggle’s edible
vs. poisonous mushroom dataset, which has over 8,000 examples of mushrooms, labelled by 22 categories including
odor, cap color, habitat, etc., in a mushrooms.csv file.

How will Chainer learn which mushrooms are edible and which mushrooms will kill you? Let’s see!

The code below is from the glance example in the examples/glance directory.

1.2 Code Breakdown

1.2.1 Initialization

Let’s start the program. Here are the typical imports for a Chainer program. chainer.links contain trainable
parameters and chainer.functions do not.

6 import chainer as ch
7 from chainer import datasets
8 import chainer.functions as F
9 import chainer.links as L

10 from chainer import training

(continues on next page)

3

https://www.kaggle.com/uciml/mushroom-classification
https://www.kaggle.com/uciml/mushroom-classification
https://raw.githubusercontent.com/chainer/chainer/master/examples/glance/mushrooms.csv
https://github.com/chainer/chainer/tree/master/examples/glance

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

11 from chainer.training import extensions
12

13 import numpy as np

We’ll use Matplotlib for the graphs to show training progress.

15 import matplotlib
16 matplotlib.use('Agg')

1.2.2 Trainer Structure

A trainer is used to set up our neural network and data for training. The components of the trainer are generally
hierarchical, and are organized as follows:

Each of the components is fed information from the components within it. Setting up the trainer starts at the inner
components, and moves outward, with the exception of extensions, which are added after the trainer is defined.

1.2.3 Dataset

Our first step is to format the dataset. From the raw mushrooms.csv, we format the data into a Chainer
TupleDataset.

4 Chapter 1. Chainer at a Glance

Chainer Documentation, Release 7.0.0b4

18 mushroomsfile = 'mushrooms.csv'
19 data_array = np.genfromtxt(
20 mushroomsfile, delimiter=',', dtype=str, skip_header=1)
21 for col in range(data_array.shape[1]):
22 data_array[:, col] = np.unique(data_array[:, col], return_inverse=True)[1]
23

24 X = data_array[:, 1:].astype(np.float32)
25 Y = data_array[:, 0].astype(np.int32)[:, None]
26 train, test = datasets.split_dataset_random(
27 datasets.TupleDataset(X, Y), int(data_array.shape[0] * .7))

1.2.4 Iterator

Configure iterators to step through batches of the data for training and for testing validation. In this case, we’ll
use a batch size of 100. For the training iterator, repeating and shuffling are implicitly enabled, while they are explicitly
disabled for the testing iterator.

29 train_iter = ch.iterators.SerialIterator(train, 100)
30 test_iter = ch.iterators.SerialIterator(
31 test, 100, repeat=False, shuffle=False)

1.2.5 Model

Next, we need to define the neural network for inclusion in our model. For our mushrooms, we’ll chain together two
fully-connected, Linear, hidden layers between the input and output layers.

As an activation function, we’ll use standard Rectified Linear Units (relu()).

Using Sequential allows us to define the neural network model in a compact format.

1.2. Code Breakdown 5

Chainer Documentation, Release 7.0.0b4

34 # Network definition
35 def MLP(n_units, n_out):
36 layer = ch.Sequential(L.Linear(n_units), F.relu)
37 model = layer.repeat(2)
38 model.append(L.Linear(n_out))
39

40 return model

Since mushrooms are either edible or poisonous (no information on psychedelic effects!) in the dataset, we’ll use a
Link Classifier for the output, with 44 units (double the features of the data) in the hidden layers and a single
edible/poisonous category for classification.

43 model = L.Classifier(
44 MLP(44, 1), lossfun=F.sigmoid_cross_entropy, accfun=F.binary_accuracy)

Note that in the two code snippets above we have not specified the size of the input layer. Once we start feeding the
neural network with samples, Chainer will recognize the dimensionality of the input automatically and initialize the
matrix for each layer with the appropriate shape. In the example above, that is 44×22 for the first hidden layer, 44×44
for the second hidden layer, and 1×44 for the output layer.

1.2.6 Optimizer

Pick an optimizer, and set up the model to use it.

46 # Setup an optimizer
47 optimizer = ch.optimizers.SGD().setup(model)

1.2.7 Updater

6 Chapter 1. Chainer at a Glance

Chainer Documentation, Release 7.0.0b4

Now that we have the training iterator and optimizer set up, we link them both together into the updater.
The updater uses the minibatches from the iterator, does the forward and backward processing of the model,
and updates the parameters of the model according to the optimizer. Setting the device=-1 sets the device as
the CPU. To use a GPU, set device equal to the number of the GPU, usually device=0.

49 # Create the updater, using the optimizer
50 updater = training.StandardUpdater(train_iter, optimizer, device=-1)

Finally we create a Trainer object. The trainer processes minibatches using the updater defined above until
a certain stop condition is met and allows the use of extensions during the training. We set it to run for 50 epochs and
store all files created by the extensions (see below) in the result directory.

52 # Set up a trainer
53 trainer = training.Trainer(updater, (50, 'epoch'), out='result')

1.2.8 Extensions

Extensions can be used to execute code at certain events during the training, such as every epoch or every 1000
iterations. This mechanism is used in Chainer to evaluate models during training, print progress messages, or dump
intermediate model files.

First, use the testing iterator defined above for an Evaluator extension to the trainer to provide test scores. If
using a GPU instead of the CPU, set device to the ID of the GPU, usually 0.

54 # Evaluate the model with the test dataset for each epoch
55 trainer.extend(extensions.Evaluator(test_iter, model, device=-1))

Save a computational graph from loss variable at the first iteration. main refers to the target link of the main
optimizer. The graph is saved in the Graphviz’s dot format. The output location (directory) to save the graph is set
by the out argument of trainer.

57 # Dump a computational graph from 'loss' variable at the first iteration
58 # The "main" refers to the target link of the "main" optimizer.
59 trainer.extend(extensions.DumpGraph('main/loss'))

Take a snapshot of the trainer object every 20 epochs.

61 trainer.extend(extensions.snapshot(), trigger=(20, 'epoch'))

Write a log of evaluation statistics for each epoch.

63 # Write a log of evaluation statistics for each epoch
64 trainer.extend(extensions.LogReport())

1.2. Code Breakdown 7

https://www.graphviz.org/

Chainer Documentation, Release 7.0.0b4

Save two plot images to the result directory.

66 # Save two plot images to the result dir
67 trainer.extend(
68 extensions.PlotReport(['main/loss', 'validation/main/loss'],
69 'epoch', file_name='loss.png'))
70 trainer.extend(
71 extensions.PlotReport(
72 ['main/accuracy', 'validation/main/accuracy'],
73 'epoch', file_name='accuracy.png'))

Print selected entries of the log to standard output.

75 # Print selected entries of the log to stdout
76 trainer.extend(extensions.PrintReport(
77 ['epoch', 'main/loss', 'validation/main/loss',
78 'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

1.2.9 Main Loop

Finally, with the trainer and all the extensions set up, we can add the line that actually starts the main loop:

80 # Run the training
81 trainer.run()

1.2.10 Inference

Once the training is complete, only the model is necessary to make predictions. Let’s check that a random line from
the test data set and see if the inference is correct:

83 x, t = test[np.random.randint(len(test))]
84

85 predict = model.predictor(x[None]).array
86 predict = predict[0][0]
87

88 if predict >= 0:
89 print('Predicted Poisonous, Actual ' + ['Edible', 'Poisonous'][t[0]])
90 else:
91 print('Predicted Edible, Actual ' + ['Edible', 'Poisonous'][t[0]])

1.3 Output

Output for this instance will look like:

epoch main/loss validation/main/loss main/accuracy validation/main/accuracy
→˓ elapsed_time
1 0.550724 0.502818 0.733509 0.752821
→˓ 0.215426
2 0.454206 0.446234 0.805439 0.786926
→˓ 0.902108
3 0.402783 0.395893 0.838421 0.835979
→˓ 1.50414

(continues on next page)

8 Chapter 1. Chainer at a Glance

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

4 0.362979 0.359988 0.862807 0.852632
→˓ 2.24171
5 0.32713 0.329881 0.88 0.874232
→˓ 2.83247
6 0.303469 0.31104 0.892456 0.887284
→˓ 3.45173
7 0.284755 0.288553 0.901754 0.903284
→˓ 3.9877
8 0.26801 0.272033 0.9125 0.907137
→˓ 4.54794
9 0.25669 0.261355 0.920175 0.917937
→˓ 5.21672
10 0.241789 0.251821 0.927193 0.917937
→˓ 5.79541
11 0.232291 0.238022 0.93 0.925389
→˓ 6.3055
12 0.222805 0.22895 0.934035 0.923389
→˓ 6.87083
13 0.21276 0.219291 0.93614 0.928189
→˓ 7.54113
14 0.204822 0.220736 0.938596 0.922589
→˓ 8.12495
15 0.197671 0.207017 0.938393 0.936042
→˓ 8.69219
16 0.190285 0.199129 0.941053 0.934842
→˓ 9.24302
17 0.182827 0.193303 0.944386 0.942695
→˓ 9.80991
18 0.176776 0.194284 0.94614 0.934042
→˓ 10.3603
19 0.16964 0.177684 0.945789 0.945242
→˓ 10.8531
20 0.164831 0.171988 0.949825 0.947347
→˓ 11.3876
21 0.158394 0.167459 0.952982 0.949747
→˓ 11.9866
22 0.153353 0.161774 0.956964 0.949347
→˓ 12.6433
23 0.148209 0.156644 0.957368 0.951747
→˓ 13.3825
24 0.144814 0.15322 0.957018 0.955495
→˓ 13.962
25 0.138782 0.148277 0.958947 0.954147
→˓ 14.6
26 0.135333 0.145225 0.961228 0.956695
→˓ 15.2284
27 0.129593 0.141141 0.964561 0.958295
→˓ 15.7413
28 0.128265 0.136866 0.962632 0.960547
→˓ 16.2711
29 0.123848 0.133444 0.966071 0.961347
→˓ 16.7772
30 0.119687 0.129579 0.967193 0.964547
→˓ 17.3311
31 0.115857 0.126606 0.968596 0.966547
→˓ 17.8252
32 0.113911 0.124272 0.968772 0.962547
→˓ 18.3121 (continues on next page)

1.3. Output 9

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

33 0.111502 0.122548 0.968596 0.965095
→˓ 18.8973
34 0.107427 0.116724 0.970526 0.969747
→˓ 19.4723
35 0.104536 0.114517 0.970877 0.969095
→˓ 20.0804
36 0.099408 0.112128 0.971786 0.970547
→˓ 20.6509
37 0.0972982 0.107618 0.973158 0.970947
→˓ 21.2467
38 0.0927064 0.104918 0.973158 0.969347
→˓ 21.7978
39 0.0904702 0.101141 0.973333 0.969747
→˓ 22.3328
40 0.0860733 0.0984015 0.975263 0.971747
→˓ 22.8447
41 0.0829282 0.0942095 0.977544 0.974947
→˓ 23.5113
42 0.082219 0.0947418 0.975965 0.969347
→˓ 24.0427
43 0.0773362 0.0906804 0.977857 0.977747
→˓ 24.5252
44 0.0751769 0.0886449 0.977895 0.972147
→˓ 25.1722
45 0.072056 0.0916797 0.978246 0.977495
→˓ 26.0778
46 0.0708111 0.0811359 0.98 0.979347
→˓ 26.6648
47 0.0671919 0.0783265 0.982456 0.978947
→˓ 27.2929
48 0.0658817 0.0772342 0.981754 0.977747
→˓ 27.8119
49 0.0634615 0.0762576 0.983333 0.974947
→˓ 28.3876
50 0.0622394 0.0710278 0.982321 0.981747
→˓ 28.9067
Predicted Edible Actual Edible

Our prediction was correct. Success!

The loss function:

10 Chapter 1. Chainer at a Glance

Chainer Documentation, Release 7.0.0b4

And the accuracy

1.3. Output 11

Chainer Documentation, Release 7.0.0b4

12 Chapter 1. Chainer at a Glance

CHAPTER

TWO

CONCEPTS WALKTHROUGH

2.1 Define-by-Run

As mentioned on the top page, Chainer is a flexible framework for neural networks. One major goal is flexibility, so it
must enable us to write complex architectures simply and intuitively.

Most existing deep learning frameworks are based on the “Define-and-Run” scheme. That is, first a network is defined
and fixed, and then the user periodically feeds it with mini-batches of training data. Since the network is statically
defined before any forward/backward computation, all the logic must be embedded into the network architecture as
data. Consequently, defining a network architecture in such systems (e.g. Caffe) follows a declarative approach. Note
that one can still produce such a static network definition using imperative languages (e.g. torch.nn, Theano-based
frameworks, and TensorFlow).

In contrast, Chainer adopts a “Define-by-Run” scheme, i.e., the network is defined dynamically via the actual forward
computation. More precisely, Chainer stores the history of computation instead of programming logic. This strategy
enables us to fully leverage the power of programming logic in Python. For example, Chainer does not need any magic
to introduce conditionals and loops into the network definitions. The Define-by-Run scheme is the core concept of
Chainer. We will show in this tutorial how to define networks dynamically.

This strategy also makes it easy to write multi-GPU parallelization, since logic comes closer to network manipulation.
We will review such amenities in later sections of this tutorial.

2.2 Variables and Derivatives

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

13

Chainer Documentation, Release 7.0.0b4

As described previously, Chainer uses the “Define-by-Run” scheme, so forward computation itself defines the network.
In order to start forward computation, we have to set the input array to a chainer.Variable object. Here we start
with a simple ndarray with only one element:

>>> x_data = np.array([5], dtype=np.float32)
>>> x = Variable(x_data)

A Variable object supports basic arithmetic operators. In order to compute 𝑦 = 𝑥2 − 2𝑥+ 1, just write:

>>> y = x**2 - 2 * x + 1

The resulting y is also a Variable object, whose value can be extracted by accessing the array attribute:

>>> y.array
array([16.], dtype=float32)

Note: Variable has two attributes to represent the underlying array: array and data. There is no difference
between the two; both refer to exactly the same object. However it is not recommended that you use .data because
it might be confused with numpy.ndarray.data attribute.

What y holds is not only the result value. It also holds the history of computation (or computational graph), which
enables us to compute its derivative. This is done by calling its backward() method:

>>> y.backward()

This runs error backpropagation (a.k.a. backprop or reverse-mode automatic differentiation). Then, the gradient is
computed and stored in the grad attribute of the input variable x:

>>> x.grad
array([8.], dtype=float32)

Also we can compute gradients of intermediate variables. Note that Chainer, by default, releases the gradient arrays
of intermediate variables for memory efficiency. In order to preserve gradient information, pass the retain_grad
argument to the backward method:

>>> z = 2*x
>>> y = x**2 - z + 1
>>> y.backward(retain_grad=True)
>>> z.grad
array([-1.], dtype=float32)

All these computations can be generalized to a multi-element array input. While single-element arrays are automati-
cally initialized to [1], to start backward computation from a variable holding a multi-element array, we must set the
initial error manually. This is done simply by setting the grad attribute of the output variable:

>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = x**2 - 2*x + 1
>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward()
>>> x.grad
array([[0., 2., 4.],

[6., 8., 10.]], dtype=float32)

Note: Many functions taking Variable object(s) are defined in the chainer.functions module. You can

14 Chapter 2. Concepts Walkthrough

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.data.html#numpy.ndarray.data

Chainer Documentation, Release 7.0.0b4

combine them to realize complicated functions with automatic backward computation.

Note: Instead of using backward(), you can also calculate gradients of any variables in a computational graph
w.r.t. any other variables in the graph using the chainer.grad() function.

2.2.1 Higher-Order Derivatives

Variable also supports higher-order derivatives (a.k.a. double backpropagation).

Let’s see a simple example. First calculate the first-order derivative. Note that enable_double_backprop=True
is passed to y.backward().

>>> x = chainer.Variable(np.array([[0, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = x ** 3
>>> y.grad = np.ones((2, 3), dtype=np.float32)
>>> y.backward(enable_double_backprop=True)
>>> x.grad_var
variable([[0., 12., 27.],

[48., 75., 108.]])
>>> assert x.grad_var.array is x.grad
>>> assert (x.grad == (3 * x**2).array).all()

chainer.Variable.grad_var is a Variable for chainer.Variable.grad (which is an ndarray).
By passing enable_double_backprop=True to backward(), a computational graph for the backward cal-
culation is recorded. So, you can start backpropagation from x.grad_var to calculate the second-order derivative.

>>> gx = x.grad_var
>>> x.cleargrad()
>>> gx.grad = np.ones((2, 3), dtype=np.float32)
>>> gx.backward()
>>> x.grad
array([[0., 12., 18.],

[24., 30., 36.]], dtype=float32)
>>> assert (x.grad == (6 * x).array).all()

2.3 Links

In order to write neural networks, we have to combine functions with parameters and optimize the parameters. You
can use the class Link to do this. A Link is an object that holds parameters (i.e. optimization targets).

The most fundamental ones are links that behave like regular functions while replacing some arguments by their
parameters. We will introduce higher level links, but here think of links as simply functions with parameters.

One of the most frequently used links is the Linear link (a.k.a. fully-connected layer or affine transformation).
It represents a mathematical function 𝑓(𝑥) = 𝑊𝑥 + 𝑏, where the matrix 𝑊 and the vector 𝑏 are parameters. This
link corresponds to its pure counterpart linear(), which accepts 𝑥,𝑊, 𝑏 as arguments. A linear link from three-
dimensional space to two-dimensional space is defined by the following line:

>>> f = L.Linear(3, 2)

2.3. Links 15

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

Note: Most functions and links only accept mini-batch input, where the first dimension of the input array is considered
as the batch dimension. In the above Linear link case, input must have shape of (𝑁, 3), where 𝑁 is the mini-batch
size.

The parameters of a link are stored as attributes. Each parameter is an instance of Variable. In the case of the
Linear link, two parameters, W and b, are stored. By default, the matrix W is initialized randomly, while the vector b is
initialized with zeros. This is the preferred way to initialize these parameters.

>>> f.W.array
array([[1.0184761 , 0.23103087, 0.5650746],

[1.2937803 , 1.0782351 , -0.56423163]], dtype=float32)
>>> f.b.array
array([0., 0.], dtype=float32)

An instance of the Linear link acts like a usual function:

>>> x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
>>> y = f(x)
>>> y.array
array([[3.1757617, 1.7575557],

[8.619507 , 7.1809077]], dtype=float32)

Note: Sometimes it is cumbersome to compute the dimension of the input space. The linear link and some of
(de)convolution links can omit the input dimension in their instantiation and infer it from the first mini-batch.

For example, the following line creates a linear link whose output dimension is two:

>>> f = L.Linear(2)

If we feed a mini-batch of shape (2,𝑀), the input dimension will be inferred as M, which means l.W will be a 2 x M
matrix. Note that its parameters are initialized in a lazy manner at the first mini-batch. Therefore, l does not have W
attribute if no data is put to the link.

Gradients of parameters are computed by the backward() method. Note that gradients are accumulated by the
method rather than overwritten. So first you must clear the gradients to renew the computation. It can be done by
calling the cleargrads() method.

>>> f.cleargrads()

Now we can compute the gradients of parameters by simply calling the backward method and access them via the
grad property.

>>> y.grad = np.ones((2, 2), dtype=np.float32)
>>> y.backward()
>>> f.W.grad
array([[5., 7., 9.],

[5., 7., 9.]], dtype=float32)
>>> f.b.grad
array([2., 2.], dtype=float32)

16 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 7.0.0b4

2.4 Define your own function

In this section, you will learn about the following things:

• How to define a function on variables

• Useful tools to write a function using a GPU

• How to test the function definition

After reading this section, you will be able to:

• Write your own functions

• Define simple kernels in the function definition

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

2.4.1 Differentiable Functions

Chainer provides a collection of functions in the chainer.functions module. It covers typical use cases in deep
learning, so many existing works can be implemented with them. On the other hand, deep learning is evolving rapidly
and we cannot cover all possible functions to define unseen architectures. So it is important to learn how to define
your own functions.

2.4.2 New-Style v.s. Old-Style Functions

In Chainer, you can define a function in two ways: new-style and old-style.

• New-style functions inherit from chainer.FunctionNode class (introduced in Chainer v3). Forward com-
putation can be implemented using NumPy/CuPy. Backward computation needs to be implemented by using
(possibly a composition of) other new-style functions.

• Old-style functions inherit from chainer.Function class. Forward and backward computation can be
implemented using NumPy/CuPy.

The primary advantage of using new-style functions is that they support computation of higher-order gradients (a.k.a.
higher-order derivative or double backpropagation). Higher-order gradients are used in some models e.g., recently-
proposed GAN architectures. New-style functions are also better in terms of performance of backward, as the interface
allows an implementation to skip the computation of unneeded input gradients.

2.4. Define your own function 17

Chainer Documentation, Release 7.0.0b4

Currently, most of built-in functions are implemented in new-style (with a few exceptions listed in #4449). Basically,
we recommend you use new-style when implementing new functions. However, you can still continue to use existing
old-style functions for the foreseeable future.

In the following sections, we describe steps to implenent user-defiend functions in new-style. You can also refer
to Implementing Old-Style Functions and Migrating From Old-Style Functions To New-Style Functions if you have
interest.

2.4.3 Implementing New-Style Functions

First, suppose we want to define an elementwise function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 * 𝑦 + 𝑧. While it is possible to implement
this equation using a combination of the * and + functions, defining it as a single function may reduce memory
consumption, so it is not only a toy example. Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU. New-style functions must inherit the chainer.
FunctionNode class. The skeleton of a function looks like:

class MulAdd(FunctionNode):
def forward_cpu(self, inputs):

do forward computation on CPU
return some_tuple

def backward(self, target_input_indexes, grad_outputs):
do backward computation
return some_tuple

We must implement forward_cpu() and backward() methods.

• In forward_cpu() function, inputs is a tuple of array(s). You need to return a tuple of array(s), which is
a result of forward computation.

• In backward() function, grad_outputs is a tuple of Variable(s) which are gradients with regard
to each output(s), i.e., the length of grad_outputs tuple equals to the number of outputs returned by
forward_cpu). You need to return a tuple of Variable(s) which are gradients with regard to each input(s),
i.e., the length of returned tuple equals to the number of inputs to forward_cpu. You can optionally use
target_input_indexes (a tuple of indices required to compute gradients) to omit computing unnecessary
gradients. We will show you the usage of target_input_indexes later.

Warning: Be careful to return a tuple even if you have just one array or Variable to return.

Note: Unlike old-style functions, inputs and outputs of backward method in new-style functions are Variables.
In other words, the backward method is device agnostic; there are no backward_cpu or backward_gpu in
FunctionNode.

MulAdd is simple and can be implemented as follows:

class MulAdd(FunctionNode):
def forward_cpu(self, inputs):

Unpack input arrays (``numpy.ndarray``).
x, y, z = inputs

Mark inputs (``x`` and ``y``) as retained so that it can be
accessed during the backward process.

(continues on next page)

18 Chapter 2. Concepts Walkthrough

https://github.com/chainer/chainer/issues/4449

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

self.retain_inputs((0, 1))

Compute results.
w = x * y + z

Return the result as a tuple.
return w,

def backward(self, target_input_indexes, grad_outputs):
Unpack inputs retained in the forward process (``Variable``).
x, y = self.get_retained_inputs()

Get gradients w.r.t. the output (Variable).
gw, = grad_outputs

Compute gradients w.r.t the inputs.
gx = y * gw
gy = x * gw
gz = gw

Return the result as a tuple.
return gx, gy, gz

As per the warning above, the forward_cpu() method returns a tuple of single element. Note that all arrays
appearing in forward_cpu are numpy.ndarray. The forward function is straightforward; it unpacks the input
tuple, computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule
of differentiation of multiplication. This example just implements the rule. Look at the return values, the function just
packs the gradient of each input in the same order and returns them.

By just defining the core computation of forward and backward, FunctionNode class provides a chaining logic on
it (i.e., storing the history of computation, etc.).

Note: Assuming we implement a (forward) function 𝑦 = 𝑓(𝑥) which takes as input the vector 𝑥 ∈ R𝑛 and produces
as output a vector 𝑦 ∈ R𝑚. Then the backward method has to compute

𝜆𝑖 =

𝑚∑︁
𝑗=1

𝜕𝑦𝑗
𝜕𝑥𝑖

𝛾𝑗 for 𝑖 = 1 . . . 𝑛

where 𝛾 is the grad_outputs. Note, that the resulting vector 𝜆 must have the same shape as the arguments of the
forward method.

Now let’s define the corresponding GPU method. You can easily predict that the method we have to write is named
forward_gpu():

class MulAdd(FunctionNode):
def forward_cpu(self, inputs):

...

def forward_gpu(self, inputs):
Unpack input arrays (``cupy.ndarray``).
x, y, z = inputs

Mark inputs (``x`` and ``y``) as retained so that it can be
accessed during the backward process.

(continues on next page)

2.4. Define your own function 19

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

self.retain_inputs((0, 1))

Compute results.
w = x * y + z

Return the result as a tuple.
return w,

def backward(self, target_input_indexes, grad_outputs):
...

In forward_gpu method, arrays are of type cupy.ndarray. We use arithmetic operators defined for this class.
These operators implement the basic elementwise arithmetics.

You may find that the definitions of forward_gpu is exactly same as forward_cpu. In that case, we can reduce
them io forward().

class MulAdd(FunctionNode):
def forward(self, inputs):

Unpack input arrays (``numpy.ndarray`` or ``cupy.ndarray``).
x, y, z = inputs

Mark inputs (``x`` and ``y``) as retained so that it can be
accessed during the backward process.
self.retain_inputs((0, 1))

Compute results.
w = x * y + z

Return the result as a tuple.
return w,

def backward(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

Since the cupy.ndarray class implements many methods of numpy.ndarray, we can write these unified meth-
ods in most cases.

The MulAdd function can be used as follows:

x = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
y = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
w, = MulAdd().apply((x, y, z))

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful
that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In
Chainer, we often define a thin wrapper Python function that hide the instantiation:

def muladd(x, y, z):
return MulAdd().apply((x, y, z))

(continues on next page)

20 Chapter 2. Concepts Walkthrough

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

w = muladd(x, y, z)

All functions under chainer.functions are implemented as wrapper functions like this.

Unified forward/backward methods with NumPy/CuPy functions

CuPy implements many functions that are compatible to those of NumPy. We can write unified forward/backward
methods with them. Consider that we want to write a backprop-able function 𝑓(𝑥, 𝑦) = exp(𝑥) + exp(𝑦). We name
it ExpAdd here. It can be written straight-forward as follows:

from chainer.backends import cuda

class ExpAdd(FunctionNode):
def forward_cpu(self, inputs):

self.retain_inputs((0, 1))
x, y = inputs
z = np.exp(x) + np.exp(y)
return z,

def forward_gpu(self, inputs):
self.retain_inputs((0, 1))
cupy = cuda.cupy
x, y = inputs
z = cupy.exp(x) + cupy.exp(y)
return z,

def backward(self, target_input_indexes, grad_outputs):
x, y = self.get_retained_inputs()
gz, = grad_outputs

gx = gz * F.exp(x)
gy = gz * F.exp(y)
return gx, gy

def expadd(x, y):
z, = ExpAdd().apply((x, y))
return z

Note: Here we used chainer.backends.cuda.cupy instead of directly accessing cupy. This is because the
cupy module cannot be imported if the CUDA is not installed. In order to keep the implementation valid in non-
CUDA environment, we have to defer the access to the cupy module. Note that the chainer.backends.cuda
module can be imported even if the CUDA is not installed. Of course, the module in such environment is almost
useless, but if the interpreter does not run through the code accessing CUDA-dedicated functions, the code is still
valid.

The CPU and GPU implementations are almost same, except that numpy is replaced by cupy in forward_gpu. We
can unify these functions using the chainer.backend.get_array_module() function. This function accepts
arbitrary number of arrays, and returns an appropriate module for them. See the following code:

class ExpAdd(FunctionNode):
def forward(self, inputs):

self.retain_inputs((0, 1))

(continues on next page)

2.4. Define your own function 21

https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

xp = backend.get_array_module(*inputs)
x, y = inputs
z = xp.exp(x) + xp.exp(y)
return z,

def backward(self, target_input_indexes, grad_outputs):
x, y = self.get_retained_inputs()
gz, = grad_outputs

gx = gz * F.exp(x)
gy = gz * F.exp(y)
return gx, gy

def expadd(x, y):
z, = ExpAdd().apply((x, y))
return z

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found,
get_array_module() function always returns numpy. We often use the name xp for the variadic module name,
which is analogous to the abbreviation np for NumPy and cp for CuPy.

Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it
invokes two kernels during each of forward (w = x * y + z) and backward (gx = y * gw and gy = x *
gw) computations. It might hurt performance, since the intermediate temporary arrays are read and written by possibly
different GPU cores, which consumes much bandwidth. We can reduce the number of invocations by defining our own
kernel. It also reduce the memory consumption.

CuPy provides a useful tool to define elementwise kernels, the cupy.ElementwiseKernel class, and Chainer
wraps it by chainer.backends.cuda.elementwise() function. Our MulAdd implementation can be im-
proved as follows:

class MulAdd(FunctionNode):
def forward_cpu(self, inputs):

self.retain_inputs((0, 1))
x, y, z = inputs
w = x * y + z
return w,

def forward_gpu(self, inputs):
self.retain_inputs((0, 1))
x, y, z = inputs
w = cuda.cupy.elementwise(

'float32 x, float32 y, float32 z',
'float32 w',
'w = x * y + z',
'muladd_fwd')(x, y, z)

return w,

def backward(self, target_input_indexes, grad_outputs):
x, y, z = self.get_retained_inputs()
gw, = grad_outputs

(continues on next page)

22 Chapter 2. Concepts Walkthrough

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

return MulAddGrad().apply((x, y, z, gw))

class MulAddGrad(FunctionNode):
def forward_cpu(self, inputs):

x, y, z, gw = inputs
gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

def forward_gpu(self, inputs):
x, y, z, gw = inputs
gx, gy = cuda.elementwise(

'float32 x, float32 y, float32 gw',
'float32 gx, float32 gy',
'''

gx = y * gw;
gy = x * gw;

''',
'muladd_bwd')(x, y, gw)

gz = gw
return gx, gy, gz

def backward(self, target_input_indexes, grad_outputs):
You can leave this unimplemented unless you need to compute
higher-order derivative using this function.
raise NotImplementedError()

chainer.backends.cuda.elementwise() function accepts the essential implementation of the kernel func-
tion, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable).
In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and
an argument name.

2. Output argument list in the same format as the input argument list.

3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.

4. Name of the kernel function, which is shown in debuggers and profilers.

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by
chainer.backends.cuda.elementwise().

The first one is binary caching: chainer.backends.cuda.elementwise() function caches the compiled
binary in the $(HOME)/.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if
the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order
to execute it. chainer.backends.cuda.elementwise() function memoizes the arguments and the current
device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic
kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single
character as type specifier:

class MulAdd(Function):
def forward_cpu(self, inputs):

(continues on next page)

2.4. Define your own function 23

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y, z = inputs
w = cuda.elementwise(

'T x, T y, T z',
'T w',
'w = x * y + z',
'muladd_fwd')(x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise(
'T x, T y, T gw',
'T gx, T gy',
'''

gx = y * gw;
gy = x * gw;

''',
'muladd_bwd')(x, y, gw)

gz = gw
return gx, gy, gz

The type placeholder T indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels
for more details.

2.4.4 Advanced Topics

Write a function with training/test mode

We sometimes want to make a function behave differently in training and test modes. The training/test mode in
Chainer is configured by chainer.config. This is a thread-local configuration object, and users can substitute
True or False to its train attribute. You can refer to Configuring Chainer to see how to configure this flag as well as
other configuration items.

Here, we just show how to use this flag to make a function support training/test mode. You will need to check the
value of the boolean flag chainer.config.train and branch appropriately.

For example, consider the following simple dropout function:

def dropout(x):
xp = backend.get_array_module(x.array)
mask = 2 * (xp.random.rand(*x.shape) > 0.5).astype(x.dtype)
return x * mask

24 Chapter 2. Concepts Walkthrough

https://docs-cupy.chainer.org/en/latest/tutorial/kernel.html#udkernel
https://docs-cupy.chainer.org/en/latest/tutorial/kernel.html#udkernel

Chainer Documentation, Release 7.0.0b4

This function applies dropout to each element and doubles survived elements to preserve the scale. The above imple-
mentation applies dropout even in test mode, but it is not a desired behavior. We can fix it as follows:

def dropout(x):
if not chainer.config.train:

return x

xp = backend.get_array_module(x.array)
mask = 2 * (xp.random.rand(*x.shape) > 0.5).astype(x.dtype)
return x * mask

The function now supports test mode. Note that you usually do not have to implement your own dropout function
because dropout() is officially provided.

Testing Functions

In order to isolate the cause of learning failure from implementation bugs, it is important to test function implemen-
tations. Chainer provides simple utilities to help writing unit tests. They are defined in the gradient_check
module.

The most important test utility is the numerical_grad() function. This function computes the numerical gradient
of given function using finite differences. It can be used as follows:

x = np.random.randn(4, 3).astype(np.float32)
gy = np.ones((4, 3), dtype=np.float32)
f = lambda: (x * x,)
gx = gradient_check.numerical_grad(f, (x,), (gy,))

f is a closure that returns a tuple of array(s) computed from input arrays. The second and third arguments of
numerical_grad() are tuples of input arrays and output gradient arrays, respectively. The code above computes
the numerical gradients of sum(f(x)), where sum indicates the summation over all elements. The summation can
be weighted by changing gy. numerical_grad() function also accepts additional eps argument, which indicates
the quantization width of finite differences.

Note: numerical_grad() function accepts both CPU and GPU arrays. Note that we cannot mix CPU and GPU
arrays.

Another utility is chainer.testing.assert_allclose() function. This is similar to numpy.testing.
assert_allclose() function. The difference is that Chainer’s version accepts CPU and GPU arrays as inputs. We
can mix them in one invocation of chainer.testing.assert_allclose(). The default values of optional
arguments are also different.

Here is a typical usage of gradient checking utilities. This is a test example of functions.relu() function:

import unittest

from chainer import testing

class TestReLU(unittest.TestCase):
def test_backward_cpu(self):

x = Variable(np.random.randn(3, 2).astype(np.float32))
y = F.relu(x)
y.grad = np.random.randn(3, 2).astype(np.float32)
y.backward(retain_grad=True)

(continues on next page)

2.4. Define your own function 25

https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose
https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.assert_allclose.html#numpy.testing.assert_allclose

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

def f():
return F.relu(x).array,

gx, = gradient_check.numerical_grad(f, (x.array,), (y.grad,))
testing.assert_allclose(gx, x.grad)

The first four lines of the test code are simple forward and backward computation of ReLU function. The next two lines
compute numerical gradient using the same forward function without backward routine. And at last, we compare these
two results elementwise. Note that the above test code can be easily modified to test GPU version just by replacing
CPU arrays to GPU arrays.

In most cases, we do not write the code like the above explicitly because Chainer offers a utility function chainer.
gradient_check.check_backward() that follows this procedure.

import unittest

from chainer import gradient_check

class TestReLU(unittest.TestCase):
def test_backward_cpu(self):

def f(x):
return F.relu(x)

x = np.random.randn(3, 2).astype(np.float32)
y_grad = np.random.randn(3, 2).astype(np.float32)

gradient_check.check_backward(f, x, y_grad, atol=1e-4, rtol=1e-4)

You can find many examples of function tests under tests/chainer_tests/functions_tests directory.

You can use chainer.gradient_check.check_double_backward() to run gradient check for the second
order gradient computed by new-style functions. This function runs two backwpropagations; first to compute the
gradient gx of yw.r.t. x, and second to compute the gradient of gxw.r.t. x. It can be used like check_backward(),
but check_double_backward() expects an additional argument x_grad_grad, which is an array or a tuple
of arrays used for initializing the gradient array of each gradient w.r.t. an input. In other words, this argument is used
to initialize gx.grad for the second backprop.

2.4.5 Implementing User-Defined Links

Some functions are meant to be combined with parameters. In such case, it is useful to write a small link that wraps the
function. We have already seen how to define a chain that wraps other links (by inheriting Chain class) in Creating
Models. Here we study how to define a link that does not hold any other links.

As the first example, suppose that we want to implement elementwise product function between the input array and
the parameter array. It can be defined as follows:

class EltwiseParamProduct(Link):
def __init__(self, shape):

super(EltwiseParamProduct, self).__init__()
with self.init_scope():

self.W = chainer.Parameter(initializers.Normal(scale=1.), shape)

def __call__(self, x):
return self.W * x

26 Chapter 2. Concepts Walkthrough

https://github.com/chainer/chainer/tree/master/tests/chainer_tests/functions_tests

Chainer Documentation, Release 7.0.0b4

For another example, assume we want to define a simple linear layer. It is already defined as chainer.links.
Linear, so this is an educational example. The linear layer is divided into two parts: a function and its wrapper link.
First, we have to define a function on variables:

class LinearFunction(FunctionNode):
def forward(self, inputs):

x, W, b = inputs
return x.dot(W.T) + b,

def backward(self, inputs, grad_outputs):
x, W, b = inputs
gy, = grad_outputs

gx = gy.dot(W)
gW = gy.T.dot(x)
gb = gy.sum(axis=0)
return gx, gW, gb

def linear(x, W, b):
return LinearFunction()(x, W, b)

This function takes three arguments: input, weight, and bias. It can be used as a part of model definition, though is
inconvenient since the user have to manage the weight and bias parameters directly. In order to make a convenient
module, let’s wrap it into a link:

class Linear(Link):
def __init__(self, in_size, out_size):

super(Linear, self).__init__()
with self.init_scope():

self.W = chainer.Parameter(
initializers.Normal(1. / math.sqrt(in_size)),
(out_size, in_size))

self.b = chainer.Parameter(0, (out_size,))

def __call__(self, x):
return linear(x, self.W, self.b)

This link hides the parameters of the linear layer.

Note: An advanced tip to implement functions: if you want to preserve some information between forward and
backward computations (e.g. to cache some arrays), you can store it as attributes. Be careful that it might increase the
memory consumption during the whole forward-backward computation. If you want to train very large networks on a
GPU with limited memory, it is not recommended that you cache arrays between forward and backward. There is one
exception for this: caching the output arrays does not change the memory consumption, because they are also held by
the output Variable objects.

Warning: You should not assume a one-to-one match of calls of forward and backward. Some users may call
backward more than once after one forward call.

2.4.6 Migrating From Old-Style Functions To New-Style Functions

Here are the key differences between Function and FunctionNode.

2.4. Define your own function 27

Chainer Documentation, Release 7.0.0b4

• Implementing forward computation (difference between chainer.Function.forward() and
chainer.FunctionNode.forward())

– There are no difference between Function and FunctionNode except that the input arrays are NOT
retained by default.

If you want the inputs to be retained to use them in backward, call retain_inputs() explicitly. In
other words, self.retain_inputs(()) has no effect in FunctionNode.

• Implementing backward computation (difference between chainer.Function.backward() and
chainer.FunctionNode.backward())

– Arguments to the method has been changed.

* inputs argument is no longer passed.

You can use get_retained_inputs() and get_retained_outputs() to retrieve the in-
puts/outputs retained in the forward method. Note that grad_outputs and these retained in-
puts/outputs are all given as Variable objects, and backward method must return a tuple of
Variable objects.

* target_input_indexes argument has been added.

It contains a sorted indices of the input variables w.r.t. which the gradients are required. You can use
it to skip calculation of unneeded gradients. The use of target_input_indexes is optional; it
is acceptable to calculate and return all gradients.

– All inputs (grad_outputs) and retained values are given in Variable in FunctionNode, whereas
ndarray in Function.

• Invoking forward computation

– Function is a callable, whereas FunctionNode is not.

You need to use f.apply((x,)) instead of f(x). Note that apply() always returns outputs as
tuple even if the function generates only one output value.

When migrating from old-style to new-style, typically you will need to write a new function class that implements the
first-order gradient of the original function. Here is an example of rewriting old-style MyOldFunc unary function to
new-style MyFunc function.

class MyOldFunc(chainer.Function):

def forward(self, inputs):
x, = inputs
... # forward computation code
return y,

def backward(self, inputs, grad_outputs):
x, = inputs
gy, = grad_outputs
... # backward computation code
return gx,

class MyFunc(chainer.FunctionNode):

def forward(self, inputs):
self.retain_inputs((0,))
x, = inputs
... # forward computation code in MyOldFunc
return y,

(continues on next page)

28 Chapter 2. Concepts Walkthrough

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

def backward(self, target_input_indexes, grad_outputs):
x, = self.get_retained_inputs()
gy, = grad_outputs
gx, = MyFuncGrad().apply((x, gy))
return gx,

class MyFuncGrad(chainer.FunctionNode):

def forward(self, inputs):
x, gy = inputs
... # backward computation code in MyOldFunc
return gx,

def backward(self, target_input_indexes, grad_outputs):
You can leave this unimplemented unless you need to compute
higher-order derivative using this function.
raise NotImplementedError()

2.4.7 Implementing Old-Style Functions

Note: As noted in the New-Style v.s. Old-Style Functions, we recommend that you use new-style for newly imple-
mented functions. This section uses the same example as in Implementing New-Style Functions but using old-style.

First, suppose we want to define an elementwise function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥 * 𝑦 + 𝑧. While it is possible to implement
this equation using a combination of the * and + functions, defining it as a single function may reduce memory
consumption, so it is not only a toy example. Here we call this function MulAdd.

Let’s start with defining MulAdd working on the CPU. Old-style functions must inherit the Function class. The
skeleton of a function looks like:

class MulAdd(Function):
def forward_cpu(self, inputs):

do forward computation on CPU
return some_tuple

def backward_cpu(self, inputs, grad_outputs):
do backward computation on CPU
return some_tuple

We must implement forward_cpu() and backward_cpu()methods. The non-self arguments of these functions
are tuples of array(s), and these functions must return a tuple of array(s).

Warning: Be careful to return a tuple of arrays even if you have just one array to return.

MulAdd is simple and implemented as follows:

class MulAdd(Function):
def forward_cpu(self, inputs):

x, y, z = inputs
w = x * y + z

(continues on next page)

2.4. Define your own function 29

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

return w,

def backward_cpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

As per the warning above, the forward_cpu method returns a tuple of single element. Note that all arrays appear-
ing in CPU functions are numpy.ndarray. The forward function is straightforward; it unpacks the input tuple,
computes the output, and packs it into a tuple. The backward function is a bit more complicated. Recall the rule of
differentiation of multiplication. This example just implements the rule. Look at the return values, the function just
packs the gradient of each input in the same order and returns them.

By just defining the core computation of forward and backward, Function class provides a chaining logic on it (i.e.,
storing the history of computation, etc.).

Note: Assuming we implement a (forward) function 𝑦 = 𝑓(𝑥) which takes as input the vector 𝑥 ∈ R𝑛 and produces
as output a vector 𝑦 ∈ R𝑚. Then the backward method has to compute

𝜆𝑖 =

𝑚∑︁
𝑗=1

𝜕𝑦𝑗
𝜕𝑥𝑖

𝛾𝑗 for 𝑖 = 1 . . . 𝑛

where 𝛾 is the grad_outputs. Note, that the resulting vector 𝜆 must have the same shape as the arguments of the
forward method.

Now let’s define the corresponding GPU methods. You can easily predict that the methods we have to write are named
forward_gpu() and backward_gpu():

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
x, y, z = inputs
w = x * y + z
return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

In GPU methods, arrays are of type cupy.ndarray. We use arithmetic operators defined for this class. These
operators implement the basic elementwise arithmetics.

30 Chapter 2. Concepts Walkthrough

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

You may find that the definitions of GPU methods are exactly same as those of CPU methods. In that case, we can
reduce them to forward() and backward() methods.

class MulAdd(Function):
def forward(self, inputs):

x, y, z = inputs
w = x * y + z
return w,

def backward(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx = y * gw
gy = x * gw
gz = gw
return gx, gy, gz

Since the cupy.ndarray class implements many methods of numpy.ndarray, we can write these unified meth-
ods in most cases.

The MulAdd function can be used as follows:

x = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
y = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
z = Variable(np.random.uniform(-1, 1, (3, 2)).astype(np.float32))
w = MulAdd()(x, y, z)

It looks a bit ugly: we have to explicitly instantiate MulAdd before applying it to variables. We also have to be careful
that one instance of MulAdd must not be used multiple times, since it acts as a node in the computational graph. In
Chainer, we often define a thin wrapper Python function that hide the instantiation:

def muladd(x, y, z):
return MulAdd()(x, y, z)

w = muladd(x, y, z)

All functions under chainer.functions are implemented as wrapper functions like this.

Unified forward/backward methods with NumPy/CuPy functions

CuPy implements many functions that are compatible to those of NumPy. We can write unified forward/backward
methods with them. Consider that we want to write a backprop-able function 𝑓(𝑥, 𝑦) = exp(𝑥) + exp(𝑦). We name
it ExpAdd here. It can be written straight-forward as follows:

from chainer.backends import cuda

class ExpAdd(Function):
def forward_cpu(self, inputs):

x, y = inputs
z = np.exp(x) + np.exp(y)
return z,

def backward_cpu(self, inputs, grad_outputs):
x, y = inputs
gz, = grad_outputs

(continues on next page)

2.4. Define your own function 31

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

gx = gz * np.exp(x)
gy = gz * np.exp(y)
return gx, gy

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y = inputs
z = cupy.exp(x) + cupy.exp(y)
return z,

def backward_gpu(self, inputs, grad_outputs):
cupy = cuda.cupy
x, y = inputs
gz, = grad_outputs

gx = gz * cupy.exp(x)
gy = gz * cupy.exp(y)
return gx, gy

def expadd(x, y):
return ExpAdd()(x, y)

Note: Here we used chainer.backends.cuda.cupy instead of directly accessing cupy. This is because the
cupy module cannot be imported if the CUDA is not installed. In order to keep the implementation valid in non-
CUDA environment, we have to defer the access to the cupy module. Note that the chainer.backends.cuda
module can be imported even if the CUDA is not installed. Of course, the module in such environment is almost
useless, but if the interpreter does not run through the code accessing CUDA-dedicated functions, the code is still
valid.

The CPU and GPU implementations are almost same, except that numpy is replaced by cupy in GPU methods. We
can unify these functions using the chainer.backend.get_array_module() function. This function accepts
arbitrary number of arrays, and returns an appropriate module for them. See the following code:

class ExpAdd(Function):
def forward(self, inputs):

xp = backend.get_array_module(*inputs)
x, y = inputs
z = xp.exp(x) + xp.exp(y)
return z,

def backward(self, inputs, grad_outputs):
xp = backend.get_array_module(*inputs)
x, y = inputs
gz, = grad_outputs

gx = gz * xp.exp(x)
gy = gz * xp.exp(y)
return gx, gy

def expadd(x, y):
return ExpAdd()(x, y)

Note that this code works correctly even if CUDA is not installed in the environment. If CUDA is not found,
get_array_module() function always returns numpy. We often use the name xp for the variadic module name,
which is analogous to the abbreviation np for NumPy and cp for CuPy.

32 Chapter 2. Concepts Walkthrough

https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

Chainer Documentation, Release 7.0.0b4

Write an Elementwise Kernel Function

Let’s turn back to the MulAdd example.

The GPU implementation of MulAdd as shown above is already fast and parallelized on GPU cores. However, it
invokes two kernels during each of forward (w = x * y + z) and backward (gx = y * gw and gy = x *
gw) computations. It might hurt performance, since the intermediate temporary arrays are read and written by possibly
different GPU cores, which consumes much bandwidth. We can reduce the number of invocations by defining our own
kernel. It also reduce the memory consumption.

Most functions only require elementwise operations like MulAdd. CuPy provides a useful tool to define elemen-
twise kernels, the cupy.ElementwiseKernel class, and Chainer wraps it by chainer.backends.cuda.
elementwise() function. Our MulAdd implementation can be improved as follows:

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y, z = inputs
w = cuda.elementwise(

'float32 x, float32 y, float32 z',
'float32 w',
'w = x * y + z',
'muladd_fwd')(x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise(
'float32 x, float32 y, float32 gw',
'float32 gx, float32 gy',
'''

gx = y * gw;
gy = x * gw;

''',
'muladd_bwd')(x, y, gw)

gz = gw
return gx, gy, gz

chainer.backends.cuda.elementwise() function accepts the essential implementation of the kernel func-
tion, and returns a kernel invocation function (actually, it returns ElementwiseKernel object, which is callable).
In typical usage, we pass four arguments to this function as follows:

1. Input argument list. This is a comma-separated string each entry of which consists of a type specification and
an argument name.

2. Output argument list in the same format as the input argument list.

3. Body of parallel loop. We can use the input/output argument names as an element of these arrays.

4. Name of the kernel function, which is shown in debuggers and profilers.

2.4. Define your own function 33

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel

Chainer Documentation, Release 7.0.0b4

Above code is not compiled on every forward/backward computation thanks to two caching mechanisms provided by
chainer.backends.cuda.elementwise().

The first one is binary caching: chainer.backends.cuda.elementwise() function caches the compiled
binary in the $(HOME)/.cupy/kernel_cache directory with a hash value of the CUDA code, and reuses it if
the given code matches the hash value. This caching mechanism is actually implemented in CuPy.

The second one is upload caching: Given a compiled binary code, we have to upload it to the current GPU in order
to execute it. chainer.backends.cuda.elementwise() function memoizes the arguments and the current
device, and if it is called with the same arguments for the same device, it reuses the previously uploaded kernel code.

The above MulAdd code only works for float32 arrays. The ElementwiseKernel also supports the type-variadic
kernel definition. In order to define variadic kernel functions, you can use type placeholder by placing a single
character as type specifier:

class MulAdd(Function):
def forward_cpu(self, inputs):

...

def backward_cpu(self, inputs, grad_outputs):
...

def forward_gpu(self, inputs):
cupy = cuda.cupy
x, y, z = inputs
w = cuda.elementwise(

'T x, T y, T z',
'T w',
'w = x * y + z',
'muladd_fwd')(x, y, z)

return w,

def backward_gpu(self, inputs, grad_outputs):
x, y, z = inputs
gw, = grad_outputs

gx, gy = cuda.elementwise(
'T x, T y, T gw',
'T gx, T gy',
'''

gx = y * gw;
gy = x * gw;

''',
'muladd_bwd')(x, y, gw)

gz = gw
return gx, gy, gz

The type placeholder T indicates an arbitrary data type that CuPy supports.

There are more functionalities on user-defined kernels in CuPy. See the CuPy documentation on user-defined kernels
for more details.

2.5 Creating Models

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

34 Chapter 2. Concepts Walkthrough

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel
https://docs-cupy.chainer.org/en/latest/tutorial/kernel.html#udkernel
https://docs-cupy.chainer.org/en/latest/tutorial/kernel.html#udkernel

Chainer Documentation, Release 7.0.0b4

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

Most neural network architectures contain multiple links. For example, a multi-layer perceptron consists of multiple
linear layers. We can write complex procedures with parameters by combining multiple links like this:

>>> l1 = L.Linear(4, 3)
>>> l2 = L.Linear(3, 2)

>>> def my_forward(x):
... h = l1(x)
... return l2(h)

Here the L indicates the links module. A procedure with parameters defined in this way is hard to reuse. More
Pythonic way is combining the links and procedures into a class:

>>> class MyProc(object):
... def __init__(self):
... self.l1 = L.Linear(4, 3)
... self.l2 = L.Linear(3, 2)
...
... def forward(self, x):
... h = self.l1(x)
... return self.l2(h)

In order to make it more reusable, we want to support parameter management, CPU/GPU migration, robust and flexible
save/load features, etc. These features are all supported by the Chain class in Chainer. Then, what we have to do
here is just define the above class as a subclass of Chain:

>>> class MyChain(Chain):
... def __init__(self):
... super(MyChain, self).__init__()
... with self.init_scope():
... self.l1 = L.Linear(4, 3)
... self.l2 = L.Linear(3, 2)
...
... def forward(self, x):
... h = self.l1(x)
... return self.l2(h)

It shows how a complex chain is constructed by simpler links. Links like l1 and l2 are called child links of MyChain.
Note that Chain itself inherits Link. It means we can define more complex chains that hold MyChain objects as
their child links.

Note: We often define a single forward method of a link by the forward operator. Such links and chains are callable

2.5. Creating Models 35

Chainer Documentation, Release 7.0.0b4

and behave like regular functions of Variables.

Another way to define a chain is using the ChainList class, which behaves like a list of links:

>>> class MyChain2(ChainList):
... def __init__(self):
... super(MyChain2, self).__init__(
... L.Linear(4, 3),
... L.Linear(3, 2),
...)
...
... def forward(self, x):
... h = self[0](x)
... return self[1](h)

ChainList can conveniently use an arbitrary number of links, however if the number of links is fixed like in the above
case, the Chain class is recommended as a base class.

2.6 Optimizer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

From the previous guide on Creating Models, let’s use the MyChain class:

>>> class MyChain(Chain):
... def __init__(self):
... super(MyChain, self).__init__()
... with self.init_scope():
... self.l1 = L.Linear(4, 3)
... self.l2 = L.Linear(3, 2)
...
... def forward(self, x):
... h = self.l1(x)
... return self.l2(h)

To tune parameters values to minimize loss, etc., we have to optimize them by the Optimizer class. It runs a
numerical optimization algorithm on a given link. Many algorithms are implemented in the optimizers module.
Here we use the simplest one, called Stochastic Gradient Descent (SGD):

36 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 7.0.0b4

>>> model = MyChain()
>>> optimizer = optimizers.SGD().setup(model)

The method setup() prepares for the optimization given a link.

Some parameter/gradient manipulations, e.g. weight decay and gradient clipping, can be done by setting hook func-
tions to the optimizer. Hook functions are called after the gradient computation and right before the actual update of
parameters. For example, we can set weight decay regularization by running the next line beforehand:

>>> optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(0.0005))

Of course, you can write your own hook functions. It should be a function or a callable object.

There are two ways to use the optimizer. One is using it via Trainer, which we will see in the following sections.
The other way is using it directly. We here review the latter case. To use the optimizer in an automated fashion, see
the Trainer guide.

There are two further ways to use the optimizer directly. One is manually computing gradients and then calling the
update() method with no arguments. Do not forget to clear the gradients beforehand!

>>> x = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> model.cleargrads()
>>> # compute gradient here...
>>> loss = F.sum(model(chainer.Variable(x)))
>>> loss.backward()
>>> optimizer.update()

The other way is just passing a loss function to the update()method. In this case, cleargrads() is automatically
called by the update method, so the user does not have to call it manually.

>>> def lossfun(arg1, arg2):
... # calculate loss
... loss = F.sum(model(arg1 - arg2))
... return loss

>>> arg1 = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> arg2 = np.random.uniform(-1, 1, (2, 4)).astype(np.float32)
>>> optimizer.update(lossfun, chainer.Variable(arg1), chainer.Variable(arg2))

See chainer.Optimizer.update() for the full specification.

2.7 Trainer

When we want to train neural networks, we have to run training loops that update the parameters many times. A
typical training loop consists of the following procedures:

1. Iterations over training datasets

2. Preprocessing of extracted mini-batches

3. Forward/backward computations of the neural networks

4. Parameter updates

5. Evaluations of the current parameters on validation datasets

6. Logging and printing of the intermediate results

2.7. Trainer 37

Chainer Documentation, Release 7.0.0b4

Chainer provides a simple yet powerful way to make it easy to write such training processes. The training loop
abstraction mainly consists of two components:

• Dataset abstraction. It implements 1 and 2 in the above list. The core components are defined in the dataset
module. There are also many implementations of datasets and iterators in datasets and iterators mod-
ules, respectively.

• Trainer. It implements 3, 4, 5, and 6 in the above list. The whole procedure is implemented by Trainer.
The way to update parameters (3 and 4) is defined by Updater, which can be freely customized. 5 and 6 are
implemented by instances of Extension, which appends an extra procedure to the training loop. Users can
freely customize the training procedure by adding extensions. Users can also implement their own extensions.

2.8 Trainer Extensions

In this section, you will learn about the following topics:

• How to create your own trainer extension

– by defining a simple function

– by defining a function decorated with @make_extension

– by defining a class inherited from Extension class

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

2.8.1 What is trainer Extension?

Extension is a callable object that takes a Trainer object as an argument. By adding an Extension to a
Trainer using the extend() method, the Extension will be called according to the schedule specified by using
a trigger object (See the details in 1. trigger)

The Trainer object contains all information used in a training loop, e.g., models, optimizers, updaters, iterators, and
datasets, etc. This makes it possible to change settings such as the learning rate of an optimizer.

2.8.2 Write a simple function

You can make a new Extension by writing a simple function which takes a Trainer object as its argument.
For example, when you want to reduce the learning rate periodically during training, an lr_drop extension can be
written as follows:

38 Chapter 2. Concepts Walkthrough

https://docs.python.org/3/reference/compound_stmts.html#function

Chainer Documentation, Release 7.0.0b4

def lr_drop(trainer):
trainer.updater.get_optimizer('main').lr *= 0.1

Then you can add this function to a Trainer object via extend() method.

trainer.extend(lr_drop, trigger=(10, 'epoch'))

It lowers the learning rate every 10 epochs by multiplying 0.1 with the current learning rate.

2.8.3 Write a function decorated with @make_extension

make_extension() is a decorator that adds some attributes to a given function. For example, the simple extension
we created above can be written in this form:

@training.make_extension(trigger=(10, 'epoch'))
def lr_drop(trainer):

trainer.updater.get_optimizer('main').lr *= 0.1

The difference between the above example and this is whether it has a default trigger or not. In the latter case,
lr_drop() has its default trigger so that unless another trigger is specified via extend() method, the
trigger specified in make_extension() is used by default. The code below acts the same as the former exam-
ple, i.e., it reduces the learning rate every 10 epochs.

trainer.extend(lr_drop)

There are several attributes you can add using the make_extension() decorator.

1. trigger

trigger is an object that takes a Trainer object as an argument and returns a boolean value. If a tuple in the form
(period, unit) is given as a trigger, it will be considered as an IntervalTrigger that invokes the extension
every period unit. For example, when the given tuple is (10, 'epoch'), the extension will run every 10
epochs.

trigger can also be given to the extend() method that adds an extension to a Trainer object. The priority of
triggers is as follows:

• When both extend() and a given Extension have triggers, the trigger given to extend() is used.

• When None is given to extend() as the trigger argument and a given Extension has trigger, the
trigger given to the Extension is used.

• When both trigger attributes in extend() and Extension are None, the Extension will be fired
every iteration.

See the details in the documentation of get_trigger() for more information.

2. default_name

An Extension is kept in a dictionary which is a property in a Trainer. This argument gives the name of the
Extension. Users will see this name in the keys of the snapshot which is a dictionary generated by serialization.

2.8. Trainer Extensions 39

Chainer Documentation, Release 7.0.0b4

3. priority

As a Trainer object can be assigned multiple Extension objects, the execution order is defined according to the
following three values:

• PRIORITY_WRITER: The priority for extensions that write some records to the observation dictionary. It
includes cases that the extension directly adds values to the observation dictionary, or the extension uses the
chainer.report() function to report values to the observation dictionary. Extensions which write something to
reporter should go first because other Extensions which read those values may be added.

• PRIORITY_EDITOR: The priority for extensions that edit the observation dictionary based on already reported
values. Extensions which edit some values of reported ones should go after the extensions which write values
to reporter but before extensions which read the final values.

• PRIORITY_READER: The priority for extensions that only read records from the observation dictionary. This
is also suitable for extensions that do not use the observation dictionary at all. Extensions which read the
reported values should be fired after all the extensions which have other priorities, e.g, PRIORITY_WRITER
and PRIORITY_EDITOR because it should read the final values.

See the details in the documentation of Trainer for more information.

4. finalizer

You can specify a function to finalize the extension. It is called once at the end of the training loop, i.e., when run()
has finished.

5. initializer

You can specify a function which takes a Trainer object as an argument to initialize the extension. It is called once
before the training loop begins.

2.8.4 Write a class inherited from the Extension class

This is the way to define your own extension with the maximum degree of freedom. You can keep any values inside
of the extension and serialize them.

As an example, let’s make an extension that drops the learning rate polynomially. It calculates the learning rate by this
equation:

𝜂 = 𝜂init

(︂
1− 𝑡

𝑡max

)︂power

The learning rate will be dropped according to the curve below with power = 0.5:

40 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 7.0.0b4

class PolynomialShift(training.Extension):

def __init__(self, attr, power, stop_trigger, batchsize=None,
len_dataset=None):

self._attr = attr
self._power = power
self._init = None
self._t = 0
self._last_value = 0

if stop_trigger[1] == 'iteration':
self._maxiter = stop_trigger[0]

elif stop_trigger[1] == 'epoch':
if batchsize is None or len_dataset is None:

raise ValueError(
'When the unit of \'stop_trigger\' is \'epoch\', '
'\'batchsize\' and \'len_dataset\' should be '
'specified to calculate the maximum iteration.')

n_iter_per_epoch = len_dataset / float(batchsize)
self._maxiter = float(stop_trigger[0] * n_iter_per_epoch)

def initialize(self, trainer):
optimizer = trainer.updater.get_optimizer('main')
ensure that _init is set
if self._init is None:

self._init = getattr(optimizer, self._attr)

def __call__(self, trainer):
(continues on next page)

2.8. Trainer Extensions 41

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

self._t += 1

optimizer = trainer.updater.get_optimizer('main')
value = self._init * ((1 - (self._t / self._maxiter)) ** self._power)
setattr(optimizer, self._attr, value)
self._last_value = value

def serialize(self, serializer):
self._t = serializer('_t', self._t)
self._last_value = serializer('_last_value', self._last_value)
if isinstance(self._last_value, np.ndarray):

self._last_value = self._last_value.item()

stop_trigger = (10000, 'iteration')
trainer.extend(PolynomialShift('lr', 0.5, stop_trigger))

This extension PolynomialShift takes five arguments.

• attr: The name of the optimizer property you want to update using this extension.

• power: The power of the above equation to calculate the learning rate.

• stop_trigger: The trigger given to the Trainer object to specify when to stop the training loop.

• batchsize: The training mini-batchsize.

• len_dataset: The length of the dataset, i.e., the number of data in the training dataset.

This extension calculates the number of iterations which will be performed during training by using stop_trigger,
batchsize, and len_dataset, then stores it as a property _maxiter. This property will be used in the
__call__() method to update the learning rate. The initialize() method obtains the initial learning rate
from the optimizer given to the Trainer object. The serialize() method stores or recovers the properties, _t
(number of iterations) and _last_value (the latest learning rate), belonging to this extension.

2.9 Using GPU(s) in Chainer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

In this section, you will learn about the following topics:

• Relationship between Chainer and CuPy

42 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 7.0.0b4

• Basics of CuPy

• Single-GPU usage of Chainer

• Multi-GPU usage of model-parallel computing

• Multi-GPU usage of data-parallel computing

After reading this section, you will be able to:

• Use Chainer on a CUDA-enabled GPU

• Write model-parallel computing in Chainer

• Write data-parallel computing in Chainer

2.9.1 Relationship between Chainer and CuPy

Note: Even if you have CUDA installed in your environment, you have to install CuPy separately to use GPUs. See
Working with Custom CUDA Installation for the way to set up CUDA support.

Chainer uses CuPy as its backend for GPU computation. In particular, the cupy.ndarray class is the GPU array
implementation for Chainer. CuPy supports a subset of features of NumPy with a compatible interface. It enables
us to write a common code for CPU and GPU. It also supports PyCUDA-like user-defined kernel generation, which
enables us to write fast implementations dedicated to GPU.

Note: The chainer.backends.cuda module imports many important symbols from CuPy. For example, the
cupy namespace is referred as cuda.cupy in the Chainer code. Note that the chainer.backends.cudamodule
can be imported even if CUDA is not installed.

Chainer uses a memory pool for GPU memory allocation. As shown in the previous sections, Chainer constructs and
destructs many arrays during learning and evaluating iterations. It is not well suited for CUDA architecture, since
memory allocation and release in CUDA (i.e. cudaMalloc and cudaFree functions) synchronize CPU and GPU
computations, which hurts performance. In order to avoid memory allocation and deallocation during the computation,
Chainer uses CuPy’s memory pool as the standard memory allocator. Chainer changes the default allocator of CuPy
to the memory pool, so user can use functions of CuPy directly without dealing with the memory allocator.

2.9.2 Basics of cupy.ndarray

See the documentation of CuPy for the basic usage of cupy.ndarray

CuPy is a GPU array backend that implements a subset of NumPy interface. The cupy.ndarray class is in its core,
which is a compatible GPU alternative of numpy.ndarray. CuPy implements many functions on cupy.ndarray
objects. See the reference for the supported subset of NumPy API. Understanding NumPy might help utilizing most
features of CuPy. See the NumPy documentation for learning it.

The main difference of cupy.ndarray from numpy.ndarray is that the content is allocated on the device mem-
ory. The allocation takes place on the current device by default. The current device can be changed by cupy.cuda.
Device object as follows:

with cupy.cuda.Device(1):
x_on_gpu1 = cupy.array([1, 2, 3, 4, 5])

2.9. Using GPU(s) in Chainer 43

https://docs-cupy.chainer.org/en/latest/install.html#install-cuda
https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/index.html#cupy-reference
https://docs.scipy.org/doc/numpy/index.html
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device

Chainer Documentation, Release 7.0.0b4

Most operations of CuPy is done on the current device. Be careful that it causes an error to process an array on a
non-current device.

Chainer provides some convenient functions to automatically switch and choose the device. For example, the
chainer.backends.cuda.to_gpu() function copies a numpy.ndarray object to a specified device:

x_cpu = np.ones((5, 4, 3), dtype=np.float32)
x_gpu = cuda.to_gpu(x_cpu, device=1)

It is equivalent to the following code using CuPy:

x_cpu = np.ones((5, 4, 3), dtype=np.float32)
with cupy.cuda.Device(1):

x_gpu = cupy.array(x_cpu)

Moving a device array to the host can be done by chainer.backends.cuda.to_cpu() as follows:

x_cpu = cuda.to_cpu(x_gpu)

It is equivalent to the following code using CuPy:

with x_gpu.device:
x_cpu = x_gpu.get()

Note: The with statements in these codes are required to select the appropriate CUDA device. If user uses only one de-
vice, these device switching is not needed. chainer.backends.cuda.to_cpu() and chainer.backends.
cuda.to_gpu() functions automatically switch the current device correctly.

Chainer also provides a convenient function chainer.backends.cuda.get_device_from_id() and
chainer.backends.cuda.get_device_from_array() to select a device. The former function accepts
an integer or None. When None is given, it returns a dummy device object. Otherwise, it returns a corresponding
device object. The latter function accepts CuPy array or NumPy array. When a NumPy array is given, it returns a
dummy device object. Otherwise, it returns a corresponding device object to the give CuPy array. The dummy device
object also supports with statements like the above example but does nothing. Here are some other examples:

cuda.get_device_from_id(1).use()
x_gpu1 = cupy.empty((4, 3), dtype=cupy.float32)

with cuda.get_device_from_id(1):
x_gpu1 = cupy.empty((4, 3), dtype=cupy.float32)

with cuda.get_device_from_array(x_gpu1):
y_gpu1 = x_gpu + 1

Since it accepts NumPy arrays, we can write a function that accepts both NumPy and CuPy arrays with correct device
switching:

def add1(x):
with cuda.get_device_from_array(x):

return x + 1

The compatibility of CuPy with NumPy enables us to write CPU/GPU generic code. It can be made easy by the
chainer.backend.get_array_module() function. This function returns the numpy or cupy module based
on arguments. A CPU/GPU generic function is defined using it like follows:

44 Chapter 2. Concepts Walkthrough

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Stable implementation of log(1 + exp(x))
def softplus(x):

xp = backend.get_array_module(x)
return xp.maximum(0, x) + xp.log1p(xp.exp(-abs(x)))

2.9.3 Run Neural Networks on a Single GPU

Single-GPU usage is very simple. What you have to do is transferring Link and input arrays to the GPU beforehand.
In this subsection, the code is based on our first MNIST example in this tutorial.

A Link object can be transferred to the specified GPU using the to_gpu() method.

This time, we make the number of input, hidden, and output units configurable. The to_gpu() method also accepts
a device ID like model.to_gpu(0). In this case, the link object is transferred to the appropriate GPU device. The
current device is used by default.

If we use chainer.training.Trainer, what we have to do is just let the updater know the device ID to send
each mini-batch.

updater = training.updaters.StandardUpdater(train_iter, optimizer, device=0)
trainer = training.Trainer(updater, (20, 'epoch'), out='result')

We also have to specify the device ID for an evaluator extension as well.

trainer.extend(extensions.Evaluator(test_iter, model, device=0))

When we write down the training loop by hand, we have to transfer each mini-batch to the GPU manually:

model.to_gpu()
batchsize = 100
datasize = len(x_train)
for epoch in range(20):

print('epoch %d' % epoch)
indexes = np.random.permutation(datasize)
for i in range(0, datasize, batchsize):

x = Variable(cuda.to_gpu(x_train[indexes[i : i + batchsize]]))
t = Variable(cuda.to_gpu(y_train[indexes[i : i + batchsize]]))
optimizer.update(model, x, t)

2.9.4 Model-parallel Computation on Multiple GPUs

Parallelization of machine learning is roughly classified into two types called “model-parallel” and “data-parallel”.
Model-parallel means parallelizations of the computations inside the model. In contrast, data-parallel means paral-
lelizations using data sharding. In this subsection, we show how to use the model-parallel approach on multiple GPUs
in Chainer.

Recall the MNIST example. Now suppose that we want to modify this example by expanding the network to 6 layers
with 2000 units each using two GPUs. In order to make multi-GPU computation efficient, we only make the two
GPUs communicate at the third and sixth layer. The overall architecture looks like the following diagram:

(GPU0) input --+--> l1 --> l2 --> l3 --+--> l4 --> l5 --> l6 --+--> output
| | |

(GPU1) +--> l1 --> l2 --> l3 --+--> l4 --> l5 --> l6 --+

We can use the above MLP chain as following diagram:

2.9. Using GPU(s) in Chainer 45

Chainer Documentation, Release 7.0.0b4

(GPU0) input --+--> mlp1 --+--> mlp2 --+--> output
| | |

(GPU1) +--> mlp1 --+--> mlp2 --+

Let’s write a link for the whole network.

class ParallelMLP(Chain):
def __init__(self):

super(ParallelMLP, self).__init__()
with self.init_scope():

the input size, 784, is inferred
self.mlp1_gpu0 = MLP(1000, 2000).to_gpu(0)
self.mlp1_gpu1 = MLP(1000, 2000).to_gpu(1)

the input size, 2000, is inferred
self.mlp2_gpu0 = MLP(1000, 10).to_gpu(0)
self.mlp2_gpu1 = MLP(1000, 10).to_gpu(1)

def forward(self, x):
assume x is on GPU 0
z0 = self.mlp1_gpu0(x)
z1 = self.mlp1_gpu1(F.copy(x, 1))

sync
h0 = F.relu(z0 + F.copy(z1, 0))
h1 = F.relu(z1 + F.copy(z0, 1))

y0 = self.mlp2_gpu0(h0)
y1 = self.mlp2_gpu1(h1)

sync
y = y0 + F.copy(y1, 0)
return y # output is on GPU0

Recall that the Link.to_gpu() method returns the link itself. The copy() function copies an input variable to
specified GPU device and returns a new variable on the device. The copy supports backprop, which just reversely
transfers an output gradient to the input device.

Note: Above code is not parallelized on CPU, but is parallelized on GPU. This is because all the functions in the
above code run asynchronously to the host CPU.

An almost identical example code can be found at examples/mnist/train_mnist_model_parallel.py.

2.9.5 Data-parallel Computation on Multiple GPUs with Trainer

Data-parallel computation is another strategy to parallelize online processing. In the context of neural networks, it
means that a different device does computation on a different subset of the input data. In this subsection, we review
the way to achieve data-parallel learning on two GPUs.

Suppose again our task is the MNIST example. This time we want to directly parallelize the three-layer network. The
most simple form of data-parallelization is parallelizing the gradient computation for a distinct set of data. First, define
a model and optimizer instances:

46 Chapter 2. Concepts Walkthrough

https://github.com/chainer/chainer/blob/master/examples/mnist/train_mnist_model_parallel.py

Chainer Documentation, Release 7.0.0b4

model = L.Classifier(MLP(1000, 10)) # the input size, 784, is inferred
optimizer = optimizers.SGD()
optimizer.setup(model)

Recall that the MLP link implements the multi-layer perceptron, and the Classifier link wraps it to provide a clas-
sifier interface. We used StandardUpdater in the previous example. In order to enable data-parallel computation
with multiple GPUs, we only have to replace it with ParallelUpdater.

updater = training.updaters.ParallelUpdater(train_iter, optimizer,
devices={'main': 0, 'second': 1})

The devices option specifies which devices to use in data-parallel learning. The device with name 'main' is used
as the main device. The original model is sent to this device, so the optimization runs on the main device. In the above
example, the model is also cloned and sent to GPU 1. Half of each mini-batch is fed to this cloned model. After every
backward computation, the gradient is accumulated into the main device, the parameter update runs on it, and then the
updated parameters are sent to GPU 1 again.

See also the example code in examples/mnist/train_mnist_data_parallel.py.

2.9.6 Data-parallel Computation on Multiple GPUs without Trainer

We here introduce a way to write data-parallel computation without the help of Trainer. Most users can skip
this section. If you are interested in how to write a data-parallel computation by yourself, this section should be
informative. It is also helpful to, e.g., customize the ParallelUpdater class.

We again start from the MNIST example. At this time, we use a suffix like _0 and _1 to distinguish objects on each
device. First, we define a model.

model_0 = L.Classifier(MLP(1000, 10)) # the input size, 784, is inferred

We want to make two copies of this instance on different GPUs. The Link.to_gpu() method runs in place, so we
cannot use it to make a copy. In order to make a copy, we can use Link.copy() method.

model_1 = model_0.copy()
model_0.to_gpu(0)
model_1.to_gpu(1)

The Link.copy() method copies the link into another instance. It just copies the link hierarchy, and does not copy
the arrays it holds.

Then, set up an optimizer:

optimizer = optimizers.SGD()
optimizer.setup(model_0)

Here we use the first copy of the model as the master model. Before its update, gradients of model_1 must be
aggregated to those of model_0.

Then, we can write a data-parallel learning loop as follows:

batchsize = 100
datasize = len(x_train)
for epoch in range(20):

print('epoch %d' % epoch)
indexes = np.random.permutation(datasize)
for i in range(0, datasize, batchsize):

(continues on next page)

2.9. Using GPU(s) in Chainer 47

https://github.com/chainer/chainer/blob/master/examples/mnist/train_mnist_data_parallel.py

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

x_batch = x_train[indexes[i : i + batchsize]]
y_batch = y_train[indexes[i : i + batchsize]]

x0 = Variable(cuda.to_gpu(x_batch[:batchsize//2], 0))
t0 = Variable(cuda.to_gpu(y_batch[:batchsize//2], 0))
x1 = Variable(cuda.to_gpu(x_batch[batchsize//2:], 1))
t1 = Variable(cuda.to_gpu(y_batch[batchsize//2:], 1))

loss_0 = model_0(x0, t0)
loss_1 = model_1(x1, t1)

model_0.cleargrads()
model_1.cleargrads()

loss_0.backward()
loss_1.backward()

model_0.addgrads(model_1)
optimizer.update()

model_1.copyparams(model_0)

Do not forget to clear the gradients of both model copies! One half of the mini-batch is forwarded to GPU 0, the
other half to GPU 1. Then the gradients are accumulated by the Link.addgrads() method. This method adds the
gradients of a given link to those of the self. After the gradients are prepared, we can update the optimizer in usual
way. Note that the update only modifies the parameters of model_0. So we must manually copy them to model_1
using Link.copyparams() method.

Note: If the batch size used in one model remain the same, the scale of the gradient is roughly proportional to the
number of models, when we aggregate gradients from all models by chainer.Link.addgrads(). So you need
to adjust the batch size and/or learning rate of the optimizer accordingly.

Now you can use Chainer with GPUs. All examples in the examples directory support GPU computation, so please
refer to them if you want to know more practices on using GPUs. In the next section, we will show how to define
a differentiable (i.e. backpropable) function on Variable objects. We will also show there how to write a simple
(elementwise) CUDA kernel using Chainer’s CUDA utilities.

2.10 Type Checks

In this section, you will learn about the following things:

• Basic usage of type check

• Detail of type information

• Internal mechanism of type check

• More complicated cases

• Call functions

• Typical type check example

After reading this section, you will be able to:

48 Chapter 2. Concepts Walkthrough

https://github.com/chainer/chainer/tree/master/examples

Chainer Documentation, Release 7.0.0b4

• Write a code to check types of input arguments of your own functions

2.10.1 Basic usage of type check

When you call a function with an invalid type of array, you sometimes receive no error, but get an unexpected result
by broadcasting. When you use CUDA with an illegal type of array, it causes memory corruption, and you get a
serious error. These bugs are hard to fix. Chainer can check preconditions of each function, and helps to prevent such
problems. These conditions may help a user to understand specification of functions.

Each implementation of Function has a method for type check, check_type_forward(). This function is
called just before the forward() method of the Function class. You can override this method to check the
condition on types and shapes of arguments.

check_type_forward() gets an argument in_types:

def check_type_forward(self, in_types):
...

in_types is an instance of TypeInfoTuple, which is a sub-class of tuple. To get type information about the
first argument, use in_types[0]. If the function gets multiple arguments, we recommend to use new variables for
readability:

x_type, y_type = in_types

In this case, x_type represents the type of the first argument, and y_type represents the second one.

We describe usage of in_types with an example. When you want to check if the number of dimension of x_type
equals to 2, write this code:

utils.type_check.expect(x_type.ndim == 2)

When this condition is true, nothing happens. Otherwise this code throws an exception, and the user gets a message
like this:

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: in_types[0].ndim == 2
Actual: 3 != 2

This error message means that “ndim of the first argument expected to be 2, but actually it is 3”.

2.10.2 Detail of type information

You can access three information of x_type.

• .shape is a tuple of ints. Each value is size of each dimension.

• .ndim is int value representing the number of dimensions. Note that ndim == len(shape)

• .dtype is numpy.dtype representing data type of the value.

You can check all members. For example, the size of the first dimension must be positive, you can write like this:

utils.type_check.expect(x_type.shape[0] > 0)

You can also check data types with .dtype:

2.10. Type Checks 49

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

utils.type_check.expect(x_type.dtype == np.float64)

And an error is like this:

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: in_types[0].dtype == <class 'numpy.
→˓float64'>
Actual: float32 != <class 'numpy.float64'>

You can also check kind of dtype. This code checks if the type is floating point

utils.type_check.expect(x_type.dtype.kind == 'f')

You can compare between variables. For example, the following code checks if the first argument and the second
argument have the same length:

utils.type_check.expect(x_type.shape[1] == y_type.shape[1])

2.10.3 Internal mechanism of type check

How does it show an error message like "in_types[0].ndim == 2"? If x_type is an object containing ndim
member variable, we cannot show such an error message because this equation is evaluated as a boolean value by
Python interpreter.

Actually x_type is a Expr objects, and doesn’t have a ndim member variable itself. Expr represents a syntax
tree. x_type.ndim makes a Expr object representing (getattr, x_type, 'ndim'). x_type.ndim ==
2 makes an object like (eq, (getattr, x_type, 'ndim'), 2). expect() gets a Expr object and eval-
uates it. When it is True, it causes no error and shows nothing. Otherwise, this method shows a readable error
message.

If you want to evaluate a Expr object, call eval() method:

actual_type = x_type.eval()

actual_type is an instance of TypeInfo, while x_type is an instance of Expr. In the same way, x_type.
shape[0].eval() returns an int value.

2.10.4 More powerful methods

Expr class is more powerful. It supports all mathematical operators such as + and *. You can write a condition that
the first dimension of x_type is the first dimension of y_type times four:

utils.type_check.expect(x_type.shape[0] == y_type.shape[0] * 4)

When x_type.shape[0] == 3 and y_type.shape[0] == 1, users can get the error message below:

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_types[1].
→˓shape[0] * 4
Actual: 3 != 4

To compare a member variable of your function, wrap a value with Variable to show readable error message:

50 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 7.0.0b4

x_type.shape[0] == utils.type_check.Variable(self.in_size, "in_size")

This code can check the equivalent condition below:

x_type.shape[0] == self.in_size

However, the latter condition doesn’t know the meaning of this value. When this condition is not satisfied, the latter
code shows unreadable error message:

chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == 4 # what does
→˓'4' mean?
Actual: 3 != 4

Note that the second argument of utils.type_check.Variable is only for readability.

The former shows this message:

chainer.utils.type_check.InvalidType: Expect: in_types[0].shape[0] == in_size # OK,
→˓`in_size` is a value that is given to the constructor
Actual: 3 != 4 # You can also check actual value here

2.10.5 Call functions

How to check summation of all values of shape? Expr also supports function call:

sum = utils.type_check.Variable(np.sum, 'sum')
utils.type_check.expect(sum(x_type.shape) == 10)

Why do we need to wrap the function numpy.sum with utils.type_check.Variable? x_type.shape is
not a tuple but an object of Expr as we have seen before. Therefore, numpy.sum(x_type.shape) fails. We
need to evaluate this function lazily.

The above example produces an error message like this:

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: sum(in_types[0].shape) == 10
Actual: 7 != 10

2.10.6 More complicated cases

How to write a more complicated condition that can’t be written with these operators? You can evaluate Expr and get
its result value with eval() method. Then check the condition and show warning message by hand:

x_shape = x_type.shape.eval() # get actual shape (int tuple)
if not more_complicated_condition(x_shape):

expect_msg = 'Shape is expected to be ...'
actual_msg = 'Shape is ...'
raise utils.type_check.InvalidType(expect_msg, actual_msg)

Please write a readable error message. This code generates the following error message:

2.10. Type Checks 51

Chainer Documentation, Release 7.0.0b4

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType: Expect: Shape is expected to be ...
Actual: Shape is ...

2.10.7 Typical type check example

We show a typical type check for a function.

First check the number of arguments:

utils.type_check.expect(in_types.size() == 2)

in_types.size() returns a Expr object representing the number of arguments. You can check it in the same
way.

And then, get each type:

x_type, y_type = in_types

Don’t get each value before checking in_types.size(). When the number of argument is illegal, type_check.
expect might output unuseful error messages. For example, this code doesn’t work when the size of in_types is
0:

utils.type_check.expect(
in_types.size() == 2,
in_types[0].ndim == 3,

)

After that, check each type:

utils.type_check.expect(
x_type.dtype == np.float32,
x_type.ndim == 3,
x_type.shape[1] == 2,

)

The above example works correctly even when x_type.ndim == 0 as all conditions are evaluated lazily.

2.11 Serializers – saving and loading

Serializer is a simple interface to serialize or deserialize an object. Link, Optimizer, and Trainer support
serialization.

Concrete serializers are defined in the serializers module. It supports NumPy NPZ and HDF5 formats.

For example, we can serialize a link object into NPZ file by the save_npz() function:

Assuming we have defined a model:

>>> from chainer import serializers
>>> serializers.save_npz('my.model', model)

This saves the parameters of model into the file 'my.model' in NPZ format. The saved model can be read back
from my.model back into model by the load_npz() function:

52 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 7.0.0b4

>>> serializers.load_npz('my.model', model)

Note: Note that only the parameters and the persistent values are serialized by this serialization code. Other at-
tributes are not saved automatically. You can register arrays, scalars, or any serializable objects as persistent values
by the add_persistent() method. The registered values can be accessed by attributes of the name passed to the
add_persistent method.

The state of an optimizer can also be saved by the same functions:

>>> serializers.save_npz('my.state', optimizer)
>>> serializers.load_npz('my.state', optimizer)

Note: Note that serialization of optimizer only saves its internal states including number of iterations, momentum
vectors of MomentumSGD, etc. It does not save the parameters and persistent values of the target link. We have to
explicitly save the target link with the optimizer to resume the optimization from saved states. This can be done by
saving the entire Trainer object, like this:

>>> serializers.save_npz('my.state', trainer)

Support of the HDF5 format is enabled if the h5py package is installed. Serialization and deserialization with the
HDF5 format are almost identical to those with the NPZ format; just replace save_npz() and load_npz() by
save_hdf5() and load_hdf5(), respectively.

2.12 Customize your own logging

In this section, you will learn about the following things:

• What is chainer.Reporter?

• How to report logging with chainer.Reporter?

• The naming rule for the reported values.

After reading this section, you will be able to:

• Write your own report.

2.12.1 What is Reporter?

chainer.Reporter is used to collect values that users want to watch. The reporter object manipulates a dictionary
from value names to the actually observed values. We call this dictionary as observation.

See the following example:

>>> from chainer import Reporter, report, report_scope
>>>
>>> reporter = Reporter()
>>> observer = object() # it can be an arbitrary (reference) object
>>> reporter.add_observer('my_observer:', observer)
>>> observation = {}
>>> with reporter.scope(observation):

(continues on next page)

2.12. Customize your own logging 53

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

... reporter.report({'x': 1}, observer)

...
>>> observation
{'my_observer:/x': 1}

When a value is passed to the reporter, an object called observer can be optionally attached. In this case,
the name of the observer is added as the prefix of the value name. The observer name should be registered
beforehand. Using reporter.scope, you can select which observation to save the observed values.

There are also a global API chainer.report(), which reports observed values with the current reporter object. In
this case, current means which with statement scope the current code line is in. This function calls the Reporter.
report() method of the current reporter.

>>> observation = {}
>>> with reporter.scope(observation):
... report({'x': 1}, observer)
...
>>> observation
{'my_observer:/x': 1}

2.12.2 Use report in Chain or Link

The most important application of Reporter is to report observed values from each Link or Chain in the training
and validation procedures.

But, how to report the observed values from each link or chain? Shold we prepare the Reporter? No, you only need
to call report() in chain or link, because Trainer and some extensions prepare their own Reporter object with
the hierarchy of the target link registered as observers. We can use report() function inside any links and chains to
report the observed values (e.g., training loss, accuracy, activation statistics, etc.).

See the following example:

>>> class Classifier(Chain):
... def __init__(self, predictor):
... super(Classifier, self).__init__()
... with self.init_scope():
... self.predictor = predictor
...
... def forward(self, x, t):
... y = self.predictor(x)
... loss = F.softmax_cross_entropy(y, t)
... accuracy = F.accuracy(y, t)
... report({'loss': loss, 'accuracy': accuracy}, self)
... return loss
...

If the link is named 'main' in the hierarchy (which is the default name of the target link in the
StandardUpdater), these reported values are named 'main/loss' and 'main/accuracy'. If these val-
ues are reported inside the Evaluator extension, 'validation/' is added at the head of the link name,
thus the item names are changed to 'validation/main/loss' and 'validation/main/accuracy'
('validation' is the default name of the Evaluator extension).

54 Chapter 2. Concepts Walkthrough

Chainer Documentation, Release 7.0.0b4

2.12.3 Naming rule for the reported values

So, you know almost everything about Reporter. However, there is one more thing. It is what is the naming rule
for the reported values, especially when the values are reported from a link that is not the root of the link hierarchy.

As we explained in the previous section, the root of links is named as 'main' by the the StandardUpdater and
the names of reported values in the root have the prefix 'main/'. When the values are reported from a link that is
not the root of the link hierarchy, the prefix of the names are determined by the link hierarchy, or namedlinks().

See the following example:

>>> class MLP(Chain):
... def __init__(self, n_units, n_out):
... super(MLP, self).__init__()
... with self.init_scope():
... # the size of the inputs to each layer will be inferred
... self.l1 = L.Linear(None, n_units) # n_in -> n_units
... self.l2 = L.Linear(None, n_units) # n_units -> n_units
... self.l3 = L.Linear(None, n_out) # n_units -> n_out
...
... def forward(self, x):
... h1 = F.relu(self.l1(x))
... h2 = F.relu(self.l2(h1))
... y = self.l3(h2)
... report({'sum_y': F.sum(y)}, self)
... return y
...
>>> model = Classifier(MLP(100, 10))
>>> for name, observer in model.namedlinks(skipself=True):
... print(name)
/predictor
/predictor/l1
/predictor/l2
/predictor/l3

You can get the parameters of the link hierarchy by namedlinks(). In this example, we report 'loss' and
'accuracy' in the root of links, and 'sum_y' in the link of '/predictor'. So, you can access the reported
values by 'main/accuracy', 'main/accuracy', and 'main/predictor/sum_y'.

See what we explained is correct:

>>> train, test = datasets.get_mnist()
>>> train_iter = iterators.SerialIterator(train, batch_size=100, shuffle=True)
>>> test_iter = iterators.SerialIterator(test, batch_size=100, repeat=False,
→˓shuffle=False)
>>> optimizer = optimizers.SGD()
>>> optimizer.setup(model)
>>> updater = training.StandardUpdater(train_iter, optimizer)
>>> trainer = training.Trainer(updater, (1, 'epoch'), out='result')
>>> trainer.extend(extensions.Evaluator(test_iter, model))
>>> trainer.extend(extensions.LogReport())
>>> trainer.extend(extensions.PrintReport(
... ['epoch', 'main/accuracy', 'main/loss', 'main/predictor/sum_y', 'validation/
→˓main/accuracy']))
>>> trainer.run()
epoch main/accuracy main/loss main/predictor/sum_y validation/main/accuracy
1 0.662317 1.38345 47.9927 0.8498

2.12. Customize your own logging 55

Chainer Documentation, Release 7.0.0b4

56 Chapter 2. Concepts Walkthrough

CHAPTER

THREE

NEURAL NET EXAMPLES

3.1 MNIST using Trainer

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

By using Trainer, you don’t need to write the training loop explicitly any more. Furthermore, Chainer provides
many useful extensions that can be used with Trainer to visualize your results, evaluate your model, store and
manage log files more easily.

This example will show how to use the Trainer to train a fully-connected feed-forward neural network on the
MNIST dataset.

Note: If you would like to know how to write a training loop without using the Trainer, please check MNIST with
a Manual Training Loop instead of this tutorial.

3.1.1 1. Prepare the dataset

Load the MNIST dataset, which contains a training set of images and class labels as well as a corresponding test set.

from chainer.datasets import mnist

train, test = mnist.get_mnist()

Note: You can use a Python list as a dataset. That’s because Iterator can take any object as a dataset whose
elements can be accessed via [] accessor and whose length can be obtained with len() function. For example,

57

Chainer Documentation, Release 7.0.0b4

train = [(x1, t1), (x2, t2), ...]

a list of tuples like this can be used as a dataset.

There are many utility dataset classes defined in datasets. It is recommended that you utilize them in the actual
applications.

For example, if your dataset consists of a number of image files, it would take a large amount of memory to load those
data into a list like above. In that case, you can use ImageDataset, which just keeps the paths to image files. The
actual image data will be loaded from the disk when the corresponding element is requested via [] accessor. Until
then, no images are loaded to the memory to reduce memory use.

3.1.2 2. Prepare the dataset iterations

Iterator creates a mini-batch from the given dataset.

batchsize = 128

train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize, False, False)

3.1.3 3. Prepare the model

Here, we are going to use the same model as the one defined in MNIST with a Manual Training Loop.

class MLP(Chain):

def __init__(self, n_mid_units=100, n_out=10):
super(MLP, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_mid_units)
self.l2 = L.Linear(None, n_mid_units)
self.l3 = L.Linear(None, n_out)

def forward(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)

gpu_id = 0 # Set to -1 if you use CPU

model = MLP()
if gpu_id >= 0:

model.to_gpu(gpu_id)

3.1.4 4. Prepare the Updater

Trainer is a class that holds all of the necessary components needed for training. The main components are shown
below.

58 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

Basically, all you need to pass to Trainer is an Updater. However, Updater contains an Iterator and
Optimizer. Since Iterator can access the dataset and Optimizer has references to the model, Updater can
access to the model to update its parameters.

So, Updater can perform the training procedure as shown below:

1. Retrieve the data from dataset and construct a mini-batch (Iterator)

2. Pass the mini-batch to the model and calculate the loss

3. Update the parameters of the model (Optimizer)

Now let’s create the Updater object !

max_epoch = 10

Wrap your model by Classifier and include the process of loss calculation within
→˓your model.
Since we do not specify a loss function here, the default 'softmax_cross_entropy'
→˓is used.
model = L.Classifier(model)

selection of your optimizing method
optimizer = optimizers.MomentumSGD()

Give the optimizer a reference to the model

(continues on next page)

3.1. MNIST using Trainer 59

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

optimizer.setup(model)

Get an updater that uses the Iterator and Optimizer
updater = training.updaters.StandardUpdater(train_iter, optimizer, device=gpu_id)

Note: Here, the model defined above is passed to Classifier and changed to a new Chain. Classifier,
which in fact inherits from the Chain class, keeps the given Chain model in its predictor attribute. Once you
give the input data and the corresponding class labels to the model by the () operator,

1. forward() of the model is invoked. The data is then given to predictor to obtain the output y.

2. Next, together with the given labels, the output y is passed to the loss function which is determined by lossfun
argument in the constructor of Classifier.

3. The loss is returned as a Variable.

In Classifier, the lossfun is set to softmax_cross_entropy() as default.

StandardUpdater is the simplest class among several updaters. There are also the ParallelUpdater and the
MultiprocessParallelUpdater to utilize multiple GPUs. The MultiprocessParallelUpdater uses
the NVIDIA NCCL library, so you need to install NCCL and re-install CuPy before using it.

3.1.5 5. Setup Trainer

Lastly, we will setup Trainer. The only requirement for creating a Trainer is to pass the Updater object that
we previously created above. You can also pass a stop_trigger to the second trainer argument as a tuple like
(length, unit) to tell the trainer when to stop the training. The length is given as an integer and the unit is
given as a string which should be either epoch or iteration. Without setting stop_trigger, the training will
never be stopped.

Setup a Trainer
trainer = training.Trainer(updater, (max_epoch, 'epoch'), out='mnist_result')

The out argument specifies an output directory used to save the log files, the image files of plots to show the time
progress of loss, accuracy, etc. when you use PlotReport extension. Next, we will explain how to display or save
those information by using trainer Extension.

3.1.6 6. Add Extensions to the Trainer object

The Trainer extensions provide the following capabilities:

• Save log files automatically (LogReport)

• Display the training information to the terminal periodically (PrintReport)

• Visualize the loss progress by plotting a graph periodically and save it as an image file (PlotReport)

• Automatically serialize the state periodically (snapshot() / snapshot_object())

• Display a progress bar to the terminal to show the progress of training (ProgressBar)

• Save the model architecture as a Graphviz’s dot file (DumpGraph())

To use these wide variety of tools for your training task, pass Extension objects to the extend() method of your
Trainer object.

60 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

from chainer.training import extensions

trainer.extend(extensions.LogReport())
trainer.extend(extensions.snapshot(filename='snapshot_epoch-{.updater.epoch}'))
trainer.extend(extensions.snapshot_object(model.predictor, filename='model_epoch-{.
→˓updater.epoch}'))
trainer.extend(extensions.Evaluator(test_iter, model, device=gpu_id))
trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'main/accuracy',
→˓'validation/main/loss', 'validation/main/accuracy', 'elapsed_time']))
trainer.extend(extensions.PlotReport(['main/loss', 'validation/main/loss'], x_key=
→˓'epoch', file_name='loss.png'))
trainer.extend(extensions.PlotReport(['main/accuracy', 'validation/main/accuracy'], x_
→˓key='epoch', file_name='accuracy.png'))
trainer.extend(extensions.DumpGraph('main/loss'))

LogReport

Collect loss and accuracy automatically every epoch or iteration and store the information under the log
file in the directory specified by the out argument when you create a Trainer object.

snapshot()

The snapshot() method saves the Trainer object at the designated timing (default: every epoch) in the directory
specified by out. The Trainer object, as mentioned before, has an Updater which contains an Optimizer and
a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or make
inferences using the previously trained model later.

snapshot_object()

However, when you keep the whole Trainer object, in some cases, it is very tedious to retrieve only the inside of
the model. By using snapshot_object(), you can save the particular object (in this case, the model wrapped
by Classifier) as a separate snapshot. Classifier is a Chain object which keeps the model that is also a
Chain object as its predictor property, and all the parameters are under the predictor, so taking the snapshot
of predictor is enough to keep all the trained parameters.

This is a list of commonly used trainer extensions:

LogReport This extension collects the loss and accuracy values every epoch or iteration and stores in a log file. The
log file will be located under the output directory (specified by out argument of the Trainer object).

snapshot() This extension saves the Trainer object at the designated timing (defaut: every epoch) in the output
directory. The Trainer object, as mentioned before, has an Updater which contains an Optimizer and
a model inside. Therefore, as long as you have the snapshot file, you can use it to come back to the training or
make inferences using the previously trained model later.

snapshot_object() snapshot() extension above saves the whole Trainer object. However, in some cases,
it is tedious to retrieve only the inside of the model. By using snapshot_object(), you can save the
particular object (in the example above, the model wrapped by Classifier) as a separeted snapshot. Taking
the snapshot of predictor is enough to keep all the trained parameters, because Classifier (which is a
subclass of Chain) keeps the model as its predictor property, and all the parameters are under this property.

DumpGraph() This extension saves the structure of the computational graph of the model. The graph is saved in
Graphviz dot format under the output directory of the Trainer.

3.1. MNIST using Trainer 61

http://www.graphviz.org/

Chainer Documentation, Release 7.0.0b4

Evaluator Iterators that use the evaluation dataset and the model object are required to use Evaluator
extension. It evaluates the model using the given dataset (typically it’s a validation dataset) at the specified
timing interval.

PrintReport This extension outputs the spcified values to the standard output.

PlotReport This extension plots the values specified by its arguments and saves it as a image file.

This is not an exhaustive list of built-in extensions. Please take a look at Extensions for more of them.

3.1.7 7. Start Training

Just call run() method from Trainer object to start training.

trainer.run()

epoch main/loss main/accuracy validation/main/loss validation/main/accuracy
→˓ elapsed_time
1 1.53241 0.638409 0.74935 0.835839
→˓ 4.93409
2 0.578334 0.858059 0.444722 0.882812
→˓ 7.72883
3 0.418569 0.886844 0.364943 0.899229
→˓ 10.4229
4 0.362342 0.899089 0.327569 0.905558
→˓ 13.148
5 0.331067 0.906517 0.304399 0.911788
→˓ 15.846
6 0.309019 0.911964 0.288295 0.917722
→˓ 18.5395
7 0.292312 0.916128 0.272073 0.921776
→˓ 21.2173
8 0.278291 0.92059 0.261351 0.923457
→˓ 23.9211
9 0.266266 0.923541 0.253195 0.927314
→˓ 26.6612
10 0.255489 0.926739 0.242415 0.929094
→˓ 29.466

Let’s see the plot of loss progress saved in the mnist_result directory.

62 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

How about the accuracy?

Furthermore, let’s visualize the computational graph saved with DumpGraph() using Graphviz.

% dot -Tpng mnist_result/cg.dot -o mnist_result/cg.png

3.1. MNIST using Trainer 63

Chainer Documentation, Release 7.0.0b4

64 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

From the top to the bottom, you can see the data flow in the computational graph. It basically shows how data and
parameters are passed to the Functions.

3.1.8 8. Evaluate a pre-trained model

Evaluation using the snapshot of a model is as easy as what explained in the MNIST with a Manual Training Loop.

import matplotlib.pyplot as plt

model = MLP()
serializers.load_npz('mnist_result/model_epoch-10', model)

Show the output
x, t = test[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.show()
print('label:', t)

y = model(x[None, ...])

print('predicted_label:', y.array.argmax(axis=1)[0])

label: 7
predicted_label: 7

The prediction looks correct. Success!

3.2 MNIST with a Manual Training Loop

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

3.2. MNIST with a Manual Training Loop 65

Chainer Documentation, Release 7.0.0b4

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

In this tutorial section, we will learn how to train a deep neural network to classify images of hand-written digits in
the popular MNIST dataset. This dataset contains 50,000 training examples and 10,000 test examples. Each example
is a set of a 28 x 28 greyscale image and a corresponding class label. Since the digits from 0 to 9 are used, there are
10 classes for the labels.

Chainer provides a feature called Trainer that can simplify the training procedure of your model. However, it is
also good to know how the training works in Chainer before starting to use the useful Trainer class that hides the
actual processes. Writing your own training loop can be useful for learning how Trainer works or for implementing
features not included in the standard trainer.

The complete training procedure consists of the following steps:

1. Prepare a dataset

2. Create a dataset iterator

3. Define a network

4. Select an optimization algorithm

5. Write a training loop

a. Retrieve a set of examples (mini-batch) from the training dataset.

b. Feed the mini-batch to your network.

c. Run a forward pass of the network and compute the loss.

d. Just call the backward() method from the loss Variable to compute the gradients for all trainable
parameters.

e. Run the optimizer to update those parameters.

6. Save the trained model

7. Perform classification by the saved model and check the network performance on validation/test sets.

3.2.1 1. Prepare a dataset

Chainer contains some built-in functions to use some popular datasets like MNIST, CIFAR10/100, etc. Those can
automatically download the data from servers and provide dataset objects which are easy to use.

The code below shows how to retrieve the MNIST dataset from the server and save an image from its training split to
make sure the images are correctly obtained.

66 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

from __future__ import print_function
import matplotlib.pyplot as plt
from chainer.datasets import mnist

Download the MNIST data if you haven't downloaded it yet
train, test = mnist.get_mnist(withlabel=True, ndim=1)

Display an example from the MNIST dataset.
`x` contains the input image array and `t` contains that target class
label as an integer.
x, t = train[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.savefig('5.png')
print('label:', t)

label: 5

The saved image 5.png will look like:

3.2.2 2. Create a dataset iterator

Although this is an optional step, we’d like to introduce the Iterator class that retrieves a set of data and labels
from the given dataset to easily make a mini-batch. There are some subclasses that can perform the same thing in
different ways, e.g., using multi-processing to parallelize the data loading part, etc.

Here, we use SerialIterator, which is also a subclass of Iterator in the example code below. The
SerialIterator can provide mini-batches with or without shuffling the order of data in the given dataset.

All Iterators produce a new mini-batch by calling its next() method. All Iterators also have properties to
know how many times we have taken all the data from the given dataset (epoch) and whether the next mini-batch
will be the start of a new epoch (is_new_epoch), and so on.

The code below shows how to create a SerialIterator object from a dataset object.

3.2. MNIST with a Manual Training Loop 67

Chainer Documentation, Release 7.0.0b4

from chainer import iterators

Choose the minibatch size.
batchsize = 128

train_iter = iterators.SerialIterator(train, batchsize)
test_iter = iterators.SerialIterator(test, batchsize,

repeat=False, shuffle=False)

Note: Iterators can take a built-in Python list as a given dataset. It means that the example code below is able to
work,

train = [(x1, t1), (x2, t2), ...] # A list of tuples
train_iter = iterators.SerialIterator(train, batchsize)

where x1, x2, ... denote the input data and t1, t2, ... denote the corresponding labels.

Details of SerialIterator

• SerialIterator is a built-in subclass of Iterator that can retrieve a mini-batch from a given dataset in
either sequential or shuffled order.

• The Iterator’s constructor takes two arguments: a dataset object and a mini-batch size.

• If you want to use the same dataset repeatedly during the training process, set the repeat argument to True
(default). Otherwise, the dataset will be used only one time. The latter case is actually for the evaluation.

• If you want to shuffle the training dataset every epoch, set the shuffle argument to True. Otherwise, the
order of each data retrieved from the dataset will be always the same at each epoch.

In the example code shown above, we set batchsize = 128 in both train_iter and test_iter. So, these
iterators will provide 128 images and corresponding labels at a time.

3.2.3 3. Define a network

Now let’s define a neural network that we will train to classify the MNIST images. For simplicity, we use a three-
layer perceptron here. We set each hidden layer to have 100 units and set the output layer to have 10 units, which is
corresponding to the number of class labels of the MNIST.

Create your network as a subclass of Chain

You can create your network by writing a new subclass of Chain. The main steps are twofold:

1. Register the network components which have trainable parameters to the subclass. Each of them must be
instantiated and assigned to a property in the scope specified by init_scope():

2. Define a forward() method that represents the actual forward computation of your network. This method
takes one or more Variable, numpy.ndarray, or cupy.ndarray as its inputs and calculates the forward
pass using them.

class MyNetwork(Chain):

def __init__(self, n_mid_units=100, n_out=10):

(continues on next page)

68 Chapter 3. Neural Net Examples

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

super(MyNetwork, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_mid_units)
self.l2 = L.Linear(n_mid_units, n_mid_units)
self.l3 = L.Linear(n_mid_units, n_out)

def forward(self, x):
h = F.relu(self.l1(x))
h = F.relu(self.l2(h))
return self.l3(h)

model = MyNetwork()

gpu_id = 0 # Set to -1 if you use CPU
if gpu_id >= 0:

model.to_gpu(gpu_id)

Link, Chain, ChainList, and those subclass objects which contain trainable parameters should be registered
to the model by assigning it as a property inside the init_scope(). For example, a FunctionNode does not
contain any trainable parameters, so there is no need to keep the object as a property of your network. When you want
to use relu() in your network, using it as a function in forward() works correctly.

In Chainer, the Python code that implements the forward computation itself represents the network. In other words,
we can conceptually think of the computation graph for our network being constructed dynamically as this forward
computation code executes. This allows Chainer to describe networks in which different computations can be per-
formed in each iteration, such as branched networks, intuitively and with a high degree of flexibility. This is the key
feature of Chainer that we call Define-by-Run.

3.2.4 4. Select an optimization algorithm

Chainer provides a wide variety of optimization algorithms that can be used to optimize the network parameters during
training. They are located in optimizers module.

Here, we are going to use the stochastic gradient descent (SGD) method with momentum, which is implemented by
MomentumSGD. To use the optimizer, we give the network object (typically it’s a Chain or ChainList) to the
setup() method of the optimizer object to register it. In this way, the Optimizer can automatically find the
model parameters and update them during training.

You can easily try out other optimizers as well. Please test and observe the results of various optimizers. For example,
you could try to change MomentumSGD to Adam, RMSprop, etc.

from chainer import optimizers

Choose an optimizer algorithm
optimizer = optimizers.MomentumSGD(lr=0.01, momentum=0.9)

Give the optimizer a reference to the model so that it
can locate the model's parameters.
optimizer.setup(model)

Note: In the above example, we set lr to 0.01 in the constructor. This value is known as the “learning rate”, one
of the most important hyperparameters that need to be adjusted in order to obtain the best performance. The various
optimizers may each have different hyperparameters and so be sure to check the documentation for the details.

3.2. MNIST with a Manual Training Loop 69

Chainer Documentation, Release 7.0.0b4

3.2.5 5. Write a training loop

We now show how to write the training loop. Since we are working on a digit classification problem, we will use
softmax_cross_entropy() as the loss function for the optimizer to minimize. For other types of problems,
such as regression models, other loss functions might be more appropriate. See the Chainer documentation for detailed
information on the various loss functions for more details.

Our training loop will be structured as follows.

1. We will first get a mini-batch of examples from the training dataset.

2. We will then feed the batch into our network by calling it (a Chain object) like a function. This will execute
the forward-pass code that are written in the forward() method.

3. This will return the network output that represents class label predictions. We supply it to the loss function along
with the true (that is, target) values. The loss function will output the loss as a Variable object.

4. We then clear any previous gradients in the network and perform the backward pass by calling the backward()
method on the loss variable which computes the parameter gradients. We need to clear the gradients first because
the backward() method accumulates gradients instead of overwriting the previous values.

5. Since the optimizer already has a reference to the network, it has access to the parameters and the computed
gradients so that we can now call the update() method of the optimizer which will update the model param-
eters.

In addition to the above steps, you might want to check the performance of the network with a validation dataset. This
allows you to observe how well it is generalized to new data so far, namely, you can check whether it is overfitting to
the training data. The code below checks the performance on the test set at the end of each epoch. The code has the
same structure as the training code except that no backpropagation is performed and we also compute the accuracy on
the test data using the accuracy() function.

The training loop code is as follows:

import numpy as np
from chainer.dataset import concat_examples
from chainer.backends.cuda import to_cpu

max_epoch = 10

while train_iter.epoch < max_epoch:

---------- One iteration of the training loop ----------
train_batch = train_iter.next()
image_train, target_train = concat_examples(train_batch, gpu_id)

Calculate the prediction of the network
prediction_train = model(image_train)

Calculate the loss with softmax_cross_entropy
loss = F.softmax_cross_entropy(prediction_train, target_train)

Calculate the gradients in the network
model.cleargrads()
loss.backward()

Update all the trainable parameters
optimizer.update()
--------------------- until here ---------------------

(continues on next page)

70 Chapter 3. Neural Net Examples

../reference/functions.html#loss-functions
../reference/functions.html#loss-functions

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

Check the validation accuracy of prediction after every epoch
if train_iter.is_new_epoch: # If this iteration is the final iteration of the

→˓current epoch

Display the training loss
print('epoch:{:02d} train_loss:{:.04f} '.format(

train_iter.epoch, float(to_cpu(loss.array))), end='')

test_losses = []
test_accuracies = []
for test_batch in test_iter:

image_test, target_test = concat_examples(test_batch, gpu_id)

Forward the test data
prediction_test = model(image_test)

Calculate the loss
loss_test = F.softmax_cross_entropy(prediction_test, target_test)
test_losses.append(to_cpu(loss_test.array))

Calculate the accuracy
accuracy = F.accuracy(prediction_test, target_test)
accuracy.to_cpu()
test_accuracies.append(accuracy.array)

test_iter.reset()

print('val_loss:{:.04f} val_accuracy:{:.04f}'.format(
np.mean(test_losses), np.mean(test_accuracies)))

Output

epoch:01 train_loss:0.8072 val_loss:0.7592 val_accuracy:0.8289
epoch:02 train_loss:0.5021 val_loss:0.4467 val_accuracy:0.8841
epoch:03 train_loss:0.3539 val_loss:0.3673 val_accuracy:0.9007
epoch:04 train_loss:0.2524 val_loss:0.3307 val_accuracy:0.9067
epoch:05 train_loss:0.4232 val_loss:0.3076 val_accuracy:0.9136
epoch:06 train_loss:0.3033 val_loss:0.2910 val_accuracy:0.9167
epoch:07 train_loss:0.2004 val_loss:0.2773 val_accuracy:0.9222
epoch:08 train_loss:0.2885 val_loss:0.2679 val_accuracy:0.9239
epoch:09 train_loss:0.2818 val_loss:0.2579 val_accuracy:0.9266
epoch:10 train_loss:0.2403 val_loss:0.2484 val_accuracy:0.9307

3.2.6 6. Save the trained model

Chainer provides two types of serializers that can be used to save and restore model state. One supports the
HDF5 format and the other supports the NumPy NPZ format. For this example, we are going to use the NPZ format to
save our model since it is easy to use with NumPy and doesn’t need to install any additional dependencies or libraries.

serializers.save_npz('my_mnist.model', model)

3.2. MNIST with a Manual Training Loop 71

Chainer Documentation, Release 7.0.0b4

3.2.7 7. Perform classification by the saved model

Let’s use the saved model to classify a new image. In order to load the trained model parameters, we need to perform
the following two steps:

1. Instantiate the same network as what you trained.

2. Overwrite all parameters in the model instance with the saved weights using the load_npz() function.

Once the model is restored, it can be used to predict image labels on new input data.

from chainer import serializers

Create an instance of the network you trained
model = MyNetwork()

Load the saved parameters into the instance
serializers.load_npz('my_mnist.model', model)

Get a test image and label
x, t = test[0]
plt.imshow(x.reshape(28, 28), cmap='gray')
plt.savefig('7.png')
print('label:', t)

label: 7

The saved test image looks like:

Change the shape of the minibatch.
In this example, the size of minibatch is 1.
Inference using any mini-batch size can be performed.

print(x.shape, end=' -> ')
x = x[None, ...]

(continues on next page)

72 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

print(x.shape)

Forward calculation of the model by sending X
y = model(x)

The result is given as Variable, then we can take a look at the contents by the
→˓attribute, .array.
y = y.array

Look up the most probable digit number using argmax
pred_label = y.argmax(axis=1)

print('predicted label:', pred_label[0])

(784,) -> (1, 784)
predicted label: 7

The prediction result looks correct. Yay!

3.3 Convolutional Network for Visual Recognition Tasks

In this section, you will learn how to write

• A small convolutional network with a model class that is inherited from Chain,

• A large convolutional network that has several building block networks with ChainList.

After reading this section, you will be able to:

• Write your own original convolutional network in Chainer

A convolutional network (ConvNet) is mainly comprised of convolutional layers. This type of network is commonly
used for various visual recognition tasks, e.g., classifying hand-written digits or natural images into given object
classes, detecting objects from an image, and labeling all pixels of an image with the object classes (semantic segmen-
tation), and so on.

In such tasks, a typical ConvNet takes a set of images whose shape is (𝑁,𝐶,𝐻,𝑊), where

• 𝑁 denotes the number of images in a mini-batch,

• 𝐶 denotes the number of channels of those images,

• 𝐻 and 𝑊 denote the height and width of those images,

respectively. Then, it typically outputs a fixed-sized vector as membership probabilities over the target object classes.
It also can output a set of feature maps that have the corresponding size to the input image for a pixel labeling task,
etc.

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda

(continues on next page)

3.3. Convolutional Network for Visual Recognition Tasks 73

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

3.3.1 LeNet5

Here, let’s start by defining LeNet5 [LeCun98] in Chainer. In this example, we show a simplified version of LeNet5
introduced in Deep Learning Tutorials. This is a ConvNet model that has 5 layers comprised of 3 convolutional layers
and 2 fully-connected layers. This was proposed to classify hand-written digit images in 1998. In Chainer, the model
can be written as follows:

class LeNet5(Chain):
def __init__(self):

super(LeNet5, self).__init__()
with self.init_scope():

self.conv1 = L.Convolution2D(
in_channels=1, out_channels=6, ksize=5, stride=1)

self.conv2 = L.Convolution2D(
in_channels=6, out_channels=16, ksize=5, stride=1)

self.conv3 = L.Convolution2D(
in_channels=16, out_channels=120, ksize=4, stride=1)

self.fc4 = L.Linear(None, 84)
self.fc5 = L.Linear(84, 10)

def forward(self, x):
h = F.sigmoid(self.conv1(x))
h = F.max_pooling_2d(h, 2, 2)
h = F.sigmoid(self.conv2(h))
h = F.max_pooling_2d(h, 2, 2)
h = F.sigmoid(self.conv3(h))
h = F.sigmoid(self.fc4(h))
if chainer.config.train:

return self.fc5(h)
return F.softmax(self.fc5(h))

A typical way to write your network is creating a new class inherited from Chain class. When defining your model in
this way, typically, all the layers which have trainable parameters are registered to the model by assigning the objects
of Link as an attribute.

The model class is instantiated before the forward and backward computations. To give input images and label vectors
simply by calling the model object like a function, forward() is usually defined in the model class. This method
performs the forward computation of the model. Chainer uses the powerful autograd system for any computational
graphs written with FunctionNodes and Links (actually a Link calls a corresponding FunctionNode inside
of it), so that you don’t need to explicitly write the code for backward computations in the model. Just prepare the
data, then give it to the model. The way this works is the resulting output Variable from the forward computation
has a backward() method to perform autograd. In the above model, forward() has a if statement at the end to
switch its behavior by the Chainer’s running mode, i.e., training mode or not. Chainer presents the running mode as
a global variable chainer.config.train. When it’s in training mode, forward() returns the output value of
the last layer as is to compute the loss later on, otherwise it returns a prediction result by calculating softmax().

It is recommended that you use the global configuration chainer.config.train to switch the running mode.

74 Chapter 3. Neural Net Examples

http://deeplearning.net/tutorial/lenet.html#lenet

Chainer Documentation, Release 7.0.0b4

If you don’t want to write conv1 and the other layers more than once, you can also write the same model like in this
way:

from functools import partial

class LeNet5(Chain):
def __init__(self):

super(LeNet5, self).__init__()
net = [('conv1', L.Convolution2D(1, 6, 5, 1))]
net += [('_sigm1', F.sigmoid)]
net += [('_mpool1', partial(F.max_pooling_2d, ksize=2, stride=2))]
net += [('conv2', L.Convolution2D(6, 16, 5, 1))]
net += [('_sigm2', F.sigmoid)]
net += [('_mpool2', partial(F.max_pooling_2d, ksize=2, stride=2))]
net += [('conv3', L.Convolution2D(16, 120, 4, 1))]
net += [('_sigm3', F.sigmoid)]
net += [('_mpool3', partial(F.max_pooling_2d, ksize=2, stride=2))]
net += [('fc4', L.Linear(None, 84))]
net += [('_sigm4', F.sigmoid)]
net += [('fc5', L.Linear(84, 10))]
net += [('_sigm5', F.sigmoid)]
with self.init_scope():

for n in net:
if not n[0].startswith('_'):

setattr(self, n[0], n[1])
self.layers = net

def forward(self, x):
for n, f in self.layers:

if not n.startswith('_'):
x = getattr(self, n)(x)

else:
x = f(x)

if chainer.config.train:
return x

return F.softmax(x)

Note: You can also use Sequential to write the above model more simply. Please note that Sequential is an
experimental feature introduced in Chainer v4 and its interface may be changed in the future versions.

This code creates a list of pairs of component name (e.g., conv1, _sigm1, etc.) and all Links and functions
(e.g., F.sigmoid, which internally invokes FunctionNode) after calling its superclass’s constructor. In this case,
components whose name start with _ are functions (FunctionNode), which doesn’t have any trainable parameters,
so that we don’t register (setattr) it to the model. Others (conv1, fc4, etc.) are Links, which are trainable
layers that hold parameters. This operation can be freely replaced with many other ways because those component
names are just designed to select Links only from the list net easily. The list net is stored as an attribute layers
to refer it in forward(). In forward(), it retrieves all layers in the network from self.forward sequentially
and gives the input variable or the intermediate output from the previous layer to the current layer. The last part of the
forward() to switch its behavior by the training/inference mode is the same as the former way.

Ways to calculate loss

When you train the model with label vector t, the loss should be calculated using the output from the model. There
also are several ways to calculate the loss:

3.3. Convolutional Network for Visual Recognition Tasks 75

Chainer Documentation, Release 7.0.0b4

model = LeNet5()

Input data and label
x = np.random.rand(32, 1, 28, 28).astype(np.float32)
t = np.random.randint(0, 10, size=(32,)).astype(np.int32)

Forward computation
y = model(x)

Loss calculation
loss = F.softmax_cross_entropy(y, t)

This is a primitive way to calculate a loss value from the output of the model. On the other hand, the loss computation
can be included in the model itself by wrapping the model object (Chain or ChainList object) with a class inherited
from Chain. The outer Chain should take the model defined above and register it with init_scope(). Chain
is actually inherited from Link, so that Chain itself can also be registered as a trainable Link to another Chain.
Actually, Classifier class to wrap the model and add the loss computation to the model already exists. Actually,
there is already a Classifier class that can be used to wrap the model and include the loss computation as well. It
can be used like this:

model = L.Classifier(LeNet5())

Foward & Loss calculation
loss = model(x, t)

This class takes a model object as an input argument and registers it to a predictor property as a trained parameter.
As shown above, the returned object can then be called like a function in which we pass x and t as the input arguments
and the resulting loss value (which we recall is a Variable) is returned.

See the detailed implementation of Classifier from here: chainer.links.Classifier and check the im-
plementation by looking at the source.

From the above examples, we can see that Chainer provides the flexibility to write our original network in many
different ways. Such flexibility intends to make it intuitive for users to design new and complex models.

3.3.2 VGG16

Next, let’s write some larger models in Chainer. When you write a large network consisting of several building block
networks, ChainList is useful. First, let’s see how to write a VGG16 [Simonyan14] model.

class VGG16(chainer.ChainList):
def __init__(self):

super(VGG16, self).__init__(
VGGBlock(64),
VGGBlock(128),
VGGBlock(256, 3),
VGGBlock(512, 3),
VGGBlock(512, 3, True))

def forward(self, x):
for f in self.children():

x = f(x)
if chainer.config.train:

return x
return F.softmax(x)

(continues on next page)

76 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

class VGGBlock(chainer.Chain):
def __init__(self, n_channels, n_convs=2, fc=False):

w = chainer.initializers.HeNormal()
super(VGGBlock, self).__init__()
with self.init_scope():

self.conv1 = L.Convolution2D(None, n_channels, 3, 1, 1, initialW=w)
self.conv2 = L.Convolution2D(

n_channels, n_channels, 3, 1, 1, initialW=w)
if n_convs == 3:

self.conv3 = L.Convolution2D(
n_channels, n_channels, 3, 1, 1, initialW=w)

if fc:
self.fc4 = L.Linear(None, 4096, initialW=w)
self.fc5 = L.Linear(4096, 4096, initialW=w)
self.fc6 = L.Linear(4096, 1000, initialW=w)

self.n_convs = n_convs
self.fc = fc

def forward(self, x):
h = F.relu(self.conv1(x))
h = F.relu(self.conv2(h))
if self.n_convs == 3:

h = F.relu(self.conv3(h))
h = F.max_pooling_2d(h, 2, 2)
if self.fc:

h = F.dropout(F.relu(self.fc4(h)))
h = F.dropout(F.relu(self.fc5(h)))
h = self.fc6(h)

return h

That’s it. VGG16 is a model which won the 1st place in classification + localization task at ILSVRC 2014, and since
then, has become one of the standard models for many different tasks as a pre-trained model. This has 16-layers, so
it’s called “VGG-16”, but we can write this model without writing all layers independently. Since this model consists
of several building blocks that have the same architecture, we can build the whole network by re-using the building
block definition. Each part of the network is consisted of 2 or 3 convolutional layers and activation function (relu())
following them, and max_pooling_2d() operations. This block is written as VGGBlock in the above example
code. And the whole network just calls this block one by one in sequential manner.

3.3.3 ResNet152

How about ResNet? ResNet [He16] came in the following year’s ILSVRC. It is a much deeper model than VGG16,
having up to 152 layers. This sounds super laborious to build, but it can be implemented in almost same manner as
VGG16. In the other words, it’s easy. One possible way to write ResNet-152 is:

class ResNet152(chainer.Chain):
def __init__(self, n_blocks=[3, 8, 36, 3]):

w = chainer.initializers.HeNormal()
super(ResNet152, self).__init__()
with self.init_scope():

self.conv1 = L.Convolution2D(None, 64, 7, 2, 3, initialW=w, nobias=True)
self.bn1 = L.BatchNormalization(64)
self.res2 = ResBlock(n_blocks[0], 64, 64, 256, 1)
self.res3 = ResBlock(n_blocks[1], 256, 128, 512)

(continues on next page)

3.3. Convolutional Network for Visual Recognition Tasks 77

http://www.image-net.org/challenges/LSVRC/2014/results#clsloc

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

self.res4 = ResBlock(n_blocks[2], 512, 256, 1024)
self.res5 = ResBlock(n_blocks[3], 1024, 512, 2048)
self.fc6 = L.Linear(2048, 1000)

def forward(self, x):
h = self.bn1(self.conv1(x))
h = F.max_pooling_2d(F.relu(h), 2, 2)
h = self.res2(h)
h = self.res3(h)
h = self.res4(h)
h = self.res5(h)
h = F.average_pooling_2d(h, h.shape[2:], stride=1)
h = self.fc6(h)
if chainer.config.train:

return h
return F.softmax(h)

class ResBlock(chainer.ChainList):
def __init__(self, n_layers, n_in, n_mid, n_out, stride=2):

super(ResBlock, self).__init__()
self.add_link(BottleNeck(n_in, n_mid, n_out, stride, True))
for _ in range(n_layers - 1):

self.add_link(BottleNeck(n_out, n_mid, n_out))

def forward(self, x):
for f in self.children():

x = f(x)
return x

class BottleNeck(chainer.Chain):
def __init__(self, n_in, n_mid, n_out, stride=1, proj=False):

w = chainer.initializers.HeNormal()
super(BottleNeck, self).__init__()
with self.init_scope():

self.conv1x1a = L.Convolution2D(
n_in, n_mid, 1, stride, 0, initialW=w, nobias=True)

self.conv3x3b = L.Convolution2D(
n_mid, n_mid, 3, 1, 1, initialW=w, nobias=True)

self.conv1x1c = L.Convolution2D(
n_mid, n_out, 1, 1, 0, initialW=w, nobias=True)

self.bn_a = L.BatchNormalization(n_mid)
self.bn_b = L.BatchNormalization(n_mid)
self.bn_c = L.BatchNormalization(n_out)
if proj:

self.conv1x1r = L.Convolution2D(
n_in, n_out, 1, stride, 0, initialW=w, nobias=True)

self.bn_r = L.BatchNormalization(n_out)
self.proj = proj

def forward(self, x):
h = F.relu(self.bn_a(self.conv1x1a(x)))
h = F.relu(self.bn_b(self.conv3x3b(h)))
h = self.bn_c(self.conv1x1c(h))
if self.proj:

x = self.bn_r(self.conv1x1r(x))
(continues on next page)

78 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

return F.relu(h + x)

In the BottleNeck class, depending on the value of the proj argument supplied to the initializer, it will conditionally
compute a convolutional layer conv1x1r which will extend the number of channels of the input x to be equal to the
number of channels of the output of conv1x1c, and followed by a batch normalization layer before the final ReLU
layer. Writing the building block in this way improves the re-usability of a class. It switches not only the behavior in
__class__() by flags but also the parameter registration. In this case, when proj is False, the BottleNeck
doesn’t have conv1x1r and bn_r layers, so the memory usage would be efficient compared to the case when it registers
both anyway and just ignore them if proj is False.

Using nested Chains and ChainList for sequential part enables us to write complex and very deep models easily.

3.3.4 Use Pre-trained Models

Various ways to write your models were described above. It turns out that VGG16 and ResNet are very useful as
general feature extractors for many kinds of tasks, including but not limited to image classification. So, Chainer
provides you with the pre-trained VGG16 and ResNet-50/101/152 models with a simple API. You can use these
models as follows:

from chainer.links import VGG16Layers

model = VGG16Layers()

When VGG16Layers is instantiated, the pre-trained parameters are automatically downloaded from the author’s
server. So you can immediately start to use VGG16 with pre-trained weight as a good image feature extractor. See the
details of this model here: chainer.links.VGG16Layers.

In the case of ResNet models, there are three variations differing in the number of layers. We have chainer.links.
ResNet50Layers, chainer.links.ResNet101Layers, and chainer.links.ResNet152Layers
models with easy parameter loading feature. ResNet’s pre-trained parameters are not available for direct down-
loading, so you need to download the weight from the author’s web page first, and then place it into the dir
$CHAINER_DATSET_ROOT/pfnet/chainer/models or your favorite place. Once the preparation is finished,
the usage is the same as VGG16:

from chainer.links import ResNet152Layers

model = ResNet152Layers()

Traceback (most recent call last):
OSError: The pre-trained caffemodel does not exist. Please download it from 'https://
→˓github.com/KaimingHe/deep-residual-networks', and place it on ...

Please see the details of usage and how to prepare the pre-trained weights for ResNet here: chainer.links.
ResNet50Layers

3.3. Convolutional Network for Visual Recognition Tasks 79

Chainer Documentation, Release 7.0.0b4

References

3.4 DCGAN: Generate images with Deep Convolutional GAN

3.4.1 0. Introduction

In this tutorial, we generate images with generative adversarial networks (GAN). GAN are kinds of deep neural
network for generative modeling that are often applied to image generation. GAN-based models are also used in
PaintsChainer, an automatic colorization service.

In this tutorial, you will learn the following things:

1. Generative Adversarial Networks (GAN)

2. Implementation of DCGAN in Chainer

3.4.2 1. Generarive Adversarial Networks (GAN)

1.1 What are GAN?

As explained in GAN tutorial in NIPS 2016 [1], generative models can be classified into the categories as shown in
the following figure:

Fig. 1: cited from [1]

80 Chapter 3. Neural Net Examples

https://paintschainer.preferred.tech/index_en.html

Chainer Documentation, Release 7.0.0b4

Besides GAN, other famous generative models include Fully visible belief networks (FVBNs) and Variational autoen-
coder (VAE). Unlike FVBNs and VAE, GAN do not explicitly model the probability distribution 𝑝(s) that generates
training data. Instead, we model a generator 𝐺 : z ↦→ s. The generator 𝐺 samples s ∼ 𝑝(s) from the latent variable z.
Apart from the generator 𝐺, we create a discriminator 𝐷(x) which discriminates between samples from the generator
G and examples from training data. While training the discriminator 𝐷, the generator 𝐺 tries to maximize the proba-
bility of the discriminator 𝐷 making a mistake. So, the generator 𝐺 tries to create samples that seem to be drawn from
the same distribution as the training data.

The advantages of GAN are low sampling cost and its state-of-the-art performance in image generation. The disad-
vantage is that we cannot calculate the likelihood 𝑝model(s) because we do not model any probability distribution, and
we cannot infer the latent variable z from a sample.

1.2 How GAN work?

As explained above, GAN use the two models, the generator and the discriminator. When training the networks, we
should match the data distribution 𝑝(s) with the distribution of the samples s = 𝐺(z) generated from the generator.

The generator 𝐺 learns the target distribution, and ideally eventually reaches a Nash equilibrium [2] of game theory.
In detail, while training the discriminator 𝐷, the generator 𝐺 is also trained, so that the discriminator 𝐷 makes a
mistake.

As an intuitive example, the relationship between counterfeiters of banknotes and the police is frequently used. The
counterfeiters try to make counterfeit notes that look like real banknotes. The police try to distinguish real bank notes
from counterfeit notes. It is supposed that the ability of the police gradually rises, so that real banknotes and counterfeit

3.4. DCGAN: Generate images with Deep Convolutional GAN 81

Chainer Documentation, Release 7.0.0b4

notes can be recognized well. Then, the counterfeiters will not be able to use counterfeit banknotes, so they will create
counterfeit banknotes that appear more realistic. As the police improve their skill further, they can distinguish real and
counterfeit notes. . . Eventually, the counterfeiter will be able to produce counterfeit banknotes look as real as genuine
ones.

The training process is explained by the following mathematical expressions. First, since the discriminator 𝐷(s) is the
probability that a sample s is generated from the data distribution at, it can be expressed as follows:

𝐷(s) =
𝑝(s)

𝑝(s) + 𝑝model(s)

Then, when we match the data distribution s ∼ 𝑝(s) and the distribution of generated samples by 𝐺, it means that we
should minimize the dissimilarity between the two distributions. It is common to use Jensen-Shannon Divergence
𝐷JS to measure the dissimilarity between distributions[3].

The 𝐷JS of 𝑝model(s) and 𝑝(s) can be written as follows by using 𝐷(s):

2𝐷JS =

𝐷KL(𝑝(s)||𝑝(s)) +𝐷KL(𝑝model(s)||𝑝(s))
=

E𝑝(s)

[︂
log

2𝑝(s)

𝑝(s) + 𝑝model(s)

]︂
+ E𝑝model

[︂
log

2𝑝model(s)

𝑝(s) + 𝑝model(s)

]︂
=

E𝑝(s) log𝐷(s) + E𝑝model
log(1−𝐷(s)) + log 4

=

E𝑝(s) log𝐷(s) + E𝑝z log(1−𝐷(𝐺(z))) + log 4

where 𝑝(s) = 𝑝(s)+𝑝model(s)
2 . The 𝐷JS will be maximized by the discriminator 𝐷 and minimized by the generator 𝐺,

namely, 𝑝model. And the distribution 𝑝m𝑜𝑑𝑒𝑙(s) generated by 𝐺(s) can match the data distribution 𝑝(s).

min
𝐺

max
𝐷

E𝑝(s) log𝐷(s) + E𝑝z log(1−𝐷(𝐺(z)))

When we actually train the model, the above min-max problem is solved by alternately updating the discriminator
𝐷(s) and the generator 𝐺(z) [4]. The actual training procedures are described as follows:

1.3 What are DCGAN?

In this section, we will introduce the model called DCGAN(Deep Convolutional GAN) proposed by Radford et al.[5].
As shown below, it is a model using CNN(Convolutional Neural Network) as its name suggests.

In addition, although GAN are known for its difficulty in training, this paper introduces various techniques for suc-
cessful training:

1. Convert max-pooling layers to convolution layers with larger or fractional strides

2. Convert fully connected layers to global average pooling layers in the discriminator

3. Use batch normalization layers in the generator and the discriminator

4. Use leaky ReLU activation functions in the discriminator

3.4.3 2. Implementation of DCGAN in Chainer

There is an example of DCGAN in the official repository of Chainer, so we will explain how to implement DCGAN
based on this: chainer/examples/dcgan

82 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/master/examples/dcgan

Chainer Documentation, Release 7.0.0b4

Fig. 2: cited from [4]

Fig. 3: cited from [5]

3.4. DCGAN: Generate images with Deep Convolutional GAN 83

Chainer Documentation, Release 7.0.0b4

2.1 Define the generator model

First, let’s define a network for the generator.

Listing 1: train_dcgan.py

class Generator(chainer.Chain):

def __init__(self, n_hidden, bottom_width=4, ch=512, wscale=0.02):
super(Generator, self).__init__()
self.n_hidden = n_hidden
self.ch = ch
self.bottom_width = bottom_width

with self.init_scope():
w = chainer.initializers.Normal(wscale)
self.l0 = L.Linear(self.n_hidden, bottom_width * bottom_width * ch,

initialW=w)
self.dc1 = L.Deconvolution2D(ch, ch // 2, 4, 2, 1, initialW=w)
self.dc2 = L.Deconvolution2D(ch // 2, ch // 4, 4, 2, 1, initialW=w)
self.dc3 = L.Deconvolution2D(ch // 4, ch // 8, 4, 2, 1, initialW=w)
self.dc4 = L.Deconvolution2D(ch // 8, 3, 3, 1, 1, initialW=w)
self.bn0 = L.BatchNormalization(bottom_width * bottom_width * ch)
self.bn1 = L.BatchNormalization(ch // 2)
self.bn2 = L.BatchNormalization(ch // 4)
self.bn3 = L.BatchNormalization(ch // 8)

def make_hidden(self, batchsize):
dtype = chainer.get_dtype()
return numpy.random.uniform(-1, 1, (batchsize, self.n_hidden, 1, 1))\

.astype(dtype)

def forward(self, z):
h = F.reshape(F.relu(self.bn0(self.l0(z))),

(len(z), self.ch, self.bottom_width, self.bottom_width))
h = F.relu(self.bn1(self.dc1(h)))
h = F.relu(self.bn2(self.dc2(h)))
h = F.relu(self.bn3(self.dc3(h)))
x = F.sigmoid(self.dc4(h))
return x

When we make a network in Chainer, there are some conventions:

1. Define a network class which inherits Chain.

2. Make chainer.links’s instances in the init_scope(): of the initializer __init__.

3. Define network connections in the __call__ operator by using the chainer.links’s instances and
chainer.functions.

If you are not familiar with constructing a new network, please refer to this tutorial.

As we can see from the initializer __init__, the Generator uses deconvolution layers Deconvolution2D and
batch normalization layers BatchNormalization. In __call__, each layer is called and followed by relu
except the last layer.

Because the first argument of L.Deconvolution is the channel size of input and the second is the channel size
of output, we can find that each layer halves the channel size. When we construct Generator with ch=1024, the
network is same as the above image.

84 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

Note: Be careful when passing the output of a fully connected layer to a convolution layer, because the convolutional
layer needs additional dimensions for inputs. As we can see the 1st line of __call__, the output of the fully
connected layer is reshaped by reshape to add the dimensions of the channel, the width and the height of images.

2.2 Define the discriminator model

In addtion, let’s define the network for the discriminator.

Listing 2: train_dcgan.py

class Discriminator(chainer.Chain):

def __init__(self, bottom_width=4, ch=512, wscale=0.02):
w = chainer.initializers.Normal(wscale)
super(Discriminator, self).__init__()
with self.init_scope():

self.c0_0 = L.Convolution2D(3, ch // 8, 3, 1, 1, initialW=w)
self.c0_1 = L.Convolution2D(ch // 8, ch // 4, 4, 2, 1, initialW=w)
self.c1_0 = L.Convolution2D(ch // 4, ch // 4, 3, 1, 1, initialW=w)
self.c1_1 = L.Convolution2D(ch // 4, ch // 2, 4, 2, 1, initialW=w)
self.c2_0 = L.Convolution2D(ch // 2, ch // 2, 3, 1, 1, initialW=w)
self.c2_1 = L.Convolution2D(ch // 2, ch // 1, 4, 2, 1, initialW=w)
self.c3_0 = L.Convolution2D(ch // 1, ch // 1, 3, 1, 1, initialW=w)
self.l4 = L.Linear(bottom_width * bottom_width * ch, 1, initialW=w)
self.bn0_1 = L.BatchNormalization(ch // 4, use_gamma=False)
self.bn1_0 = L.BatchNormalization(ch // 4, use_gamma=False)
self.bn1_1 = L.BatchNormalization(ch // 2, use_gamma=False)
self.bn2_0 = L.BatchNormalization(ch // 2, use_gamma=False)
self.bn2_1 = L.BatchNormalization(ch // 1, use_gamma=False)
self.bn3_0 = L.BatchNormalization(ch // 1, use_gamma=False)

def forward(self, x):
device = self.device
h = add_noise(device, x)
h = F.leaky_relu(add_noise(device, self.c0_0(h)))
h = F.leaky_relu(add_noise(device, self.bn0_1(self.c0_1(h))))
h = F.leaky_relu(add_noise(device, self.bn1_0(self.c1_0(h))))
h = F.leaky_relu(add_noise(device, self.bn1_1(self.c1_1(h))))
h = F.leaky_relu(add_noise(device, self.bn2_0(self.c2_0(h))))
h = F.leaky_relu(add_noise(device, self.bn2_1(self.c2_1(h))))
h = F.leaky_relu(add_noise(device, self.bn3_0(self.c3_0(h))))
return self.l4(h)

The Discriminator network is almost mirrors of the Generator network. However, there are minor different
points:

1. Use leaky_relu as activation functions

2. Deeper than Generator

3. Add some noise to every intermediate outputs before giving them to the next layers

Listing 3: train_dcgan.py

def add_noise(device, h, sigma=0.2):
if chainer.config.train:

(continues on next page)

3.4. DCGAN: Generate images with Deep Convolutional GAN 85

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

xp = device.xp
TODO(niboshi): Support random.randn in ChainerX
if device.xp is chainerx:

fallback_device = device.fallback_device
with chainer.using_device(fallback_device):

randn = device.send(fallback_device.xp.random.randn(*h.shape))
else:

randn = xp.random.randn(*h.shape)
return h + sigma * randn

else:
return h

2.3 Prepare dataset and iterator

Let’s retrieve the CIFAR-10 dataset by using Chainer’s dataset utility function get_cifar10. CIFAR-10 is a set of
small natural images. Each example is an RGB color image of size 32x32. In the original images, each of R, G, B of
pixels is represented by one-byte unsigned integer (i.e. from 0 to 255). This function changes the scale of pixel values
into [0, scale] float values.

train, _ = chainer.datasets.get_cifar10(withlabel=False, scale=255.)

Listing 4: train_dcgan.py

train_iter = chainer.iterators.SerialIterator(train, args.batchsize)

2.4 Prepare model and optimizer

Let’s make the instances of the generator and the discriminator.

Listing 5: train_dcgan.py

gen = Generator(n_hidden=args.n_hidden)
dis = Discriminator()

gen.to_device(device) # Copy the model to the device
dis.to_device(device)

Setup an optimizer
def make_optimizer(model, alpha=0.0002, beta1=0.5):

optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
optimizer.setup(model)
optimizer.add_hook(

chainer.optimizer_hooks.WeightDecay(0.0001), 'hook_dec')
return optimizer

opt_gen = make_optimizer(gen)
opt_dis = make_optimizer(dis)

Next, let’s make optimizers for the models created above.

86 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

Listing 6: train_dcgan.py

def make_optimizer(model, alpha=0.0002, beta1=0.5):
optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
optimizer.setup(model)
optimizer.add_hook(

chainer.optimizer_hooks.WeightDecay(0.0001), 'hook_dec')
return optimizer

opt_gen = make_optimizer(gen)
opt_dis = make_optimizer(dis)

2.5 Prepare updater

GAN need the two models: the generator and the discriminator. Usually, the default updaters pre-defined in Chainer
take only one model. So, we need to define a custom updater for GAN training.

The definition of DCGANUpdater is a little complicated. However, it just minimizes the loss of the discriminator and
that of the generator alternately.

As you can see in the class definition, DCGANUpdater inherits StandardUpdater. In this case, almost
all necessary functions are defined in StandardUpdater, we just override the functions of __init__ and
update_core.

Note: We do not need to define loss_dis and loss_gen because the functions are called only in update_core.
It aims at improving readability.

Listing 7: train_dcgan.py

class DCGANUpdater(chainer.training.updaters.StandardUpdater):

def __init__(self, *args, **kwargs):
self.gen, self.dis = kwargs.pop('models')
super(DCGANUpdater, self).__init__(*args, **kwargs)

def loss_dis(self, dis, y_fake, y_real):
batchsize = len(y_fake)
L1 = F.sum(F.softplus(-y_real)) / batchsize
L2 = F.sum(F.softplus(y_fake)) / batchsize
loss = L1 + L2
chainer.report({'loss': loss}, dis)
return loss

def loss_gen(self, gen, y_fake):
batchsize = len(y_fake)
loss = F.sum(F.softplus(-y_fake)) / batchsize
chainer.report({'loss': loss}, gen)
return loss

def update_core(self):
gen_optimizer = self.get_optimizer('gen')
dis_optimizer = self.get_optimizer('dis')

(continues on next page)

3.4. DCGAN: Generate images with Deep Convolutional GAN 87

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

batch = self.get_iterator('main').next()
device = self.device
x_real = Variable(self.converter(batch, device)) / 255.

gen, dis = self.gen, self.dis
batchsize = len(batch)

y_real = dis(x_real)

z = Variable(device.xp.asarray(gen.make_hidden(batchsize)))
x_fake = gen(z)
y_fake = dis(x_fake)

dis_optimizer.update(self.loss_dis, dis, y_fake, y_real)
gen_optimizer.update(self.loss_gen, gen, y_fake)

In the initializer __init__, an additional keyword argument models is required as you can see the code below.
Also, we use keyword arguments iterator, optimizer and device. It should be noted that the optimizer
augment takes a dictionary. The two different models require two different optimizers. To specify the different opti-
mizers for the models, we give a dictionary, {'gen': opt_gen, 'dis': opt_dis}, to the optimizer
argument. we should input optimizer as a dictionary {'gen': opt_gen, 'dis': opt_dis}. In the
DCGANUpdater, you can access the iterator with self.get_iterator('main'). Also, you can access the
optimizers with self.get_optimizer('gen') and self.get_optimizer('dis').

In update_core, the two loss functions loss_dis and loss_gen are minimized by the optimizers.
At first two lines, we access the optimizers. Then, we create next minibatch of training data by self.
get_iterator('main').next(), copy batch to the device by self.converter, and make it a
Variable object. After that, we minimize the loss functions with the optimizers.

Note: When defining update_core, we may want to manipulate the underlying array of a Variable with
numpy or cupy library. Note that the type of arrays on CPU is numpy.ndarray, while the type of arrays on
GPU is cupy.ndarray. However, users do not need to write if condition explicitly, because the appropriate
array module can be obtained by xp = chainer.backend.get_array_module(variable.array). If
variable is on GPU, cupy is assigned to xp, otherwise numpy is assigned to xp.

Listing 8: train_dcgan.py

updater = DCGANUpdater(
models=(gen, dis),
iterator=train_iter,
optimizer={

'gen': opt_gen, 'dis': opt_dis},
device=device)

2.6 Prepare trainer and run

Listing 9: train_dcgan.py

trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

snapshot_interval = (args.snapshot_interval, 'iteration')

(continues on next page)

88 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

display_interval = (args.display_interval, 'iteration')
trainer.extend(

extensions.snapshot(filename='snapshot_iter_{.updater.iteration}.npz'),
trigger=snapshot_interval)

trainer.extend(extensions.snapshot_object(
gen, 'gen_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)

trainer.extend(extensions.snapshot_object(
dis, 'dis_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)

trainer.extend(extensions.LogReport(trigger=display_interval))
trainer.extend(extensions.PrintReport([

'epoch', 'iteration', 'gen/loss', 'dis/loss',
]), trigger=display_interval)
trainer.extend(extensions.ProgressBar(update_interval=10))
trainer.extend(

out_generated_image(
gen, dis,
10, 10, args.seed, args.out),

trigger=snapshot_interval)

Listing 10: train_dcgan.py

trainer.run()

2.7 Start training

We can run the example as follows.

$ pwd
/root2chainer/chainer/examples/dcgan
$ python train_dcgan.py --gpu 0
GPU: 0
Minibatch-size: 50
n_hidden: 100
epoch: 1000

epoch iteration gen/loss dis/loss] 0.01%
0 100 1.2292 1.76914

total [..] 0.02%
this epoch [#########...] 19.00%

190 iter, 0 epoch / 1000 epochs
10.121 iters/sec. Estimated time to finish: 1 day, 3:26:26.372445.

The results will be saved in the directory /root2chainer/chainer/examples/dcgan/result/. The im-
age is generated by the generator trained for 1000 epochs, and the GIF image on the top of this page shows generated
images after every 10 epochs.

3.4. DCGAN: Generate images with Deep Convolutional GAN 89

Chainer Documentation, Release 7.0.0b4

3.4.4 3. Reference

• [1] NIPS 2016 Tutorial: Generative Adversarial Networks

• [2] Nash equilibrium

• [3] Jensen-Shannon Divergence

• [4] Generative Adversarial Networks

• [5] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

3.5 Recurrent Nets and their Computational Graph

In the example code of this tutorial, we assume for simplicity that the following symbols are already
imported.

import math
import numpy as np
import chainer
from chainer import backend
from chainer import backends
from chainer.backends import cuda
from chainer import Function, FunctionNode, gradient_check, report, training, utils,
→˓Variable
from chainer import datasets, initializers, iterators, optimizers, serializers

(continues on next page)

90 Chapter 3. Neural Net Examples

http://arxiv.org/abs/1701.00160
http://en.wikipedia.org/wiki/Nash_equilibrium
http://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1511.06434

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions

In this section, you will learn how to write

• recurrent nets with full backprop,

• recurrent nets with truncated backprop,

• evaluation of networks with few memory.

After reading this section, you will be able to:

• Handle input sequences of variable length

• Truncate upper stream of the network during forward computation

• Use no-backprop mode to prevent network construction

3.5.1 Recurrent Nets

Recurrent nets are neural networks with loops. They are often used to learn from sequential input/output. Given an
input stream 𝑥1, 𝑥2, . . . , 𝑥𝑡, . . . and the initial state ℎ0, a recurrent net iteratively updates its state by ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1),
and at some or every point in time 𝑡, it outputs 𝑦𝑡 = 𝑔(ℎ𝑡). If we expand the procedure along the time axis, it looks
like a regular feed-forward network except that same parameters are repeatedly used within the network.

Here we learn how to write a simple one-layer recurrent net. The task is language modeling: given a finite sequence
of words, we want to predict the next word at each position without peeking the successive words. Suppose there
are 1,000 different word types, and that we use 100 dimensional real vectors to represent each word (a.k.a. word
embedding).

Let’s start from defining the recurrent neural net language model (RNNLM) as a chain. We can use the chainer.
links.LSTM link that implements a fully-connected stateful LSTM layer. This link looks like an ordinary fully-
connected layer. On construction, you pass the input and output size to the constructor:

>>> l = L.LSTM(100, 50)

Then, call on this instance l(x) executes one step of LSTM layer:

>>> l.reset_state()
>>> x = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y = l(x)

Do not forget to reset the internal state of the LSTM layer before the forward computation! Every recurrent layer holds
its internal state (i.e. the output of the previous call). At the first application of the recurrent layer, you must reset the
internal state. Then, the next input can be directly fed to the LSTM instance:

>>> x2 = Variable(np.random.randn(10, 100).astype(np.float32))
>>> y2 = l(x2)

Based on this LSTM link, let’s write our recurrent network as a new chain:

class RNN(Chain):
def __init__(self):

super(RNN, self).__init__()

(continues on next page)

3.5. Recurrent Nets and their Computational Graph 91

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

with self.init_scope():
self.embed = L.EmbedID(1000, 100) # word embedding
self.mid = L.LSTM(100, 50) # the first LSTM layer
self.out = L.Linear(50, 1000) # the feed-forward output layer

def reset_state(self):
self.mid.reset_state()

def forward(self, cur_word):
Given the current word ID, predict the next word.
x = self.embed(cur_word)
h = self.mid(x)
y = self.out(h)
return y

rnn = RNN()
model = L.Classifier(rnn)
optimizer = optimizers.SGD()
optimizer.setup(model)

Here EmbedID is a link for word embedding. It converts input integers into corresponding fixed-dimensional embed-
ding vectors. The last linear link out represents the feed-forward output layer.

The RNN chain implements a one-step-forward computation. It does not handle sequences by itself, but we can use it
to process sequences by just feeding items in a sequence straight to the chain.

Suppose we have a list of word variables x_list. Then, we can compute loss values for the word sequence by simple
for loop.

def compute_loss(x_list):
loss = 0
for cur_word, next_word in zip(x_list, x_list[1:]):

loss += model(cur_word, next_word)
return loss

Of course, the accumulated loss is a Variable object with the full history of computation. So we can just call its
backward() method to compute gradients of the total loss according to the model parameters:

Suppose we have a list of word variables x_list.
rnn.reset_state()
model.cleargrads()
loss = compute_loss(x_list)
loss.backward()
optimizer.update()

Or equivalently we can use the compute_loss as a loss function:

rnn.reset_state()
optimizer.update(compute_loss, x_list)

3.5.2 Truncate the Graph by Unchaining

Learning from very long sequences is also a typical use case of recurrent nets. Suppose the input and state sequence
is too long to fit into memory. In such cases, we often truncate the backpropagation into a short time range. This
technique is called truncated backprop. It is heuristic, and it makes the gradients biased. However, this technique
works well in practice if the time range is long enough.

92 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

How to implement truncated backprop in Chainer? Chainer has a smart mechanism to achieve truncation, called back-
ward unchaining. It is implemented in the Variable.unchain_backward() method. Backward unchaining
starts from the Variable object, and it chops the computation history backwards from the variable. The chopped vari-
ables are disposed automatically (if they are not referenced explicitly from any other user object). As a result, they are
no longer a part of computation history, and are not involved in backprop anymore.

Let’s write an example of truncated backprop. Here we use the same network as the one used in the previous subsec-
tion. Suppose we are given a very long sequence, and we want to run backprop truncated at every 30 time steps. We
can write truncated backprop using the model defined above:

loss = 0
count = 0
seqlen = len(x_list[1:])

rnn.reset_state()
for cur_word, next_word in zip(x_list, x_list[1:]):

loss += model(cur_word, next_word)
count += 1
if count % 30 == 0 or count == seqlen:

model.cleargrads()
loss.backward()
loss.unchain_backward()
optimizer.update()

State is updated at model(), and the losses are accumulated to loss variable. At each 30 steps, backprop takes
place at the accumulated loss. Then, the unchain_backward() method is called, which deletes the computation
history backward from the accumulated loss. Note that the last state of model is not lost, since the RNN instance
holds a reference to it.

The implementation of truncated backprop is simple, and since there is no complicated trick on it, we can generalize
this method to different situations. For example, we can easily extend the above code to use different schedules
between backprop timing and truncation length.

3.5.3 Network Evaluation without Storing the Computation History

On evaluation of recurrent nets, there is typically no need to store the computation history. While unchaining enables
us to walk through unlimited length of sequences with limited memory, it is a bit of a work-around.

As an alternative, Chainer provides an evaluation mode of forward computation which does not store the computation
history. This is enabled by just calling no_backprop_mode() context:

with chainer.no_backprop_mode():
x_list = [Variable(...) for _ in range(100)] # list of 100 words
loss = compute_loss(x_list)

Note that we cannot call loss.backward() to compute the gradient here, since the variable created in the no-
backprop context does not remember the computation history.

No-backprop context is also useful to evaluate feed-forward networks to reduce the memory footprint.

We can combine a fixed feature extractor network and a trainable predictor network using no_backprop_mode().
For example, suppose we want to train a feed-forward network predictor_func, which is located on top of another
fixed pre-trained network fixed_func. We want to train predictor_func without storing the computation
history for fixed_func. This is simply done by following code snippets (suppose x_data and y_data indicate
input data and label, respectively):

3.5. Recurrent Nets and their Computational Graph 93

Chainer Documentation, Release 7.0.0b4

with chainer.no_backprop_mode():
x = Variable(x_data)
feat = fixed_func(x)

y = predictor_func(feat)
y.backward()

At first, the input variable x is in no-backprop mode, so fixed_func does not memorize the computation history.
Then predictor_func is executed in backprop mode, i.e., with memorizing the history of computation. Since
the history of computation is only memorized between variables feat and y, the backward computation stops at the
feat variable.

3.5.4 Making it with Trainer

The above codes are written with plain Function/Variable APIs. When we write a training loop, it is better to use
Trainer, since we can then easily add functionalities by extensions.

Before implementing it on Trainer, let’s clarify the training settings. We here use Penn Tree Bank dataset as a set
of sentences. Each sentence is represented as a word sequence. We concatenate all sentences into one long word
sequence, in which each sentence is separated by a special word <eos>, which stands for “End of Sequence”. This
dataset is easily obtained by chainer.datasets.get_ptb_words(). This function returns train, validation,
and test dataset, each of which is represented as a long array of integers. Each integer represents a word ID.

Our task is to learn a recurrent neural net language model from the long word sequence. We use words in different
locations to form mini-batches. It means we maintain 𝐵 indices pointing to different locations in the sequence, read
from these indices at each iteration, and increment all indices after the read. Of course, when one index reaches the
end of the whole sequence, we turn the index back to 0.

In order to implement this training procedure, we have to customize the following components of Trainer:

• Iterator. Built-in iterators do not support reading from different locations and aggregating them into a mini-
batch.

• Update function. The default update function does not support truncated BPTT.

When we write a dataset iterator dedicated to the dataset, the dataset implementation can be arbitrary; even the interface
is not fixed. On the other hand, the iterator must support the Iterator interface. The important methods and
attributes to implement are batch_size, epoch, epoch_detail, is_new_epoch, iteration, __next__,
and serialize. Following is a code from the official example in the examples/ptb directory.

from __future__ import division

class ParallelSequentialIterator(chainer.dataset.Iterator):
def __init__(self, dataset, batch_size, repeat=True):

self.dataset = dataset
self.batch_size = batch_size
self.epoch = 0
self.is_new_epoch = False
self.repeat = repeat
self.offsets = [i * len(dataset) // batch_size for i in range(batch_size)]
self.iteration = 0

def __next__(self):
length = len(self.dataset)
if not self.repeat and self.iteration * self.batch_size >= length:

raise StopIteration
cur_words = self.get_words()
self.iteration += 1

(continues on next page)

94 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/master/examples/ptb

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

next_words = self.get_words()

epoch = self.iteration * self.batch_size // length
self.is_new_epoch = self.epoch < epoch
if self.is_new_epoch:

self.epoch = epoch

return list(zip(cur_words, next_words))

@property
def epoch_detail(self):

return self.iteration * self.batch_size / len(self.dataset)

def get_words(self):
return [self.dataset[(offset + self.iteration) % len(self.dataset)]

for offset in self.offsets]

def serialize(self, serializer):
self.iteration = serializer('iteration', self.iteration)
self.epoch = serializer('epoch', self.epoch)

train_iter = ParallelSequentialIterator(train, 20)
val_iter = ParallelSequentialIterator(val, 1, repeat=False)

Although the code is slightly long, the idea is simple. First, this iterator creates offsets pointing to positions
equally spaced within the whole sequence. The i-th examples of mini-batches refer the sequence with the i-th offset.
The iterator returns a list of tuples of the current words and the next words. Each mini-batch is converted to a tuple of
integer arrays by the concat_examples function in the standard updater (see the previous tutorial).

Backprop Through Time is implemented as follows.

class BPTTUpdater(training.updaters.StandardUpdater):

def __init__(self, train_iter, optimizer, bprop_len):
super(BPTTUpdater, self).__init__(train_iter, optimizer)
self.bprop_len = bprop_len

The core part of the update routine can be customized by overriding.
def update_core(self):

loss = 0
When we pass one iterator and optimizer to StandardUpdater.__init__,
they are automatically named 'main'.
train_iter = self.get_iterator('main')
optimizer = self.get_optimizer('main')

Progress the dataset iterator for bprop_len words at each iteration.
for i in range(self.bprop_len):

Get the next batch (a list of tuples of two word IDs)
batch = train_iter.__next__()

Concatenate the word IDs to matrices and send them to the device
self.converter does this job
(it is chainer.dataset.concat_examples by default)
x, t = self.converter(batch)

Compute the loss at this time step and accumulate it
loss += optimizer.target(chainer.Variable(x), chainer.Variable(t))

(continues on next page)

3.5. Recurrent Nets and their Computational Graph 95

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

optimizer.target.cleargrads() # Clear the parameter gradients
loss.backward() # Backprop
loss.unchain_backward() # Truncate the graph
optimizer.update() # Update the parameters

updater = BPTTUpdater(train_iter, optimizer, bprop_len) # instantiation

In this case, we update the parameters on every bprop_len consecutive words. The call of unchain_backward
cuts the history of computation accumulated to the LSTM links. The rest of the code for setting up Trainer is almost
same as one given in the previous tutorial.

In this section we have demonstrated how to write recurrent nets in Chainer and some fundamental techniques to man-
age the history of computation (a.k.a. computational graph). The example in the examples/ptb directory implements
truncated backprop learning of a LSTM language model from the Penn Treebank corpus. In the next section, we will
review how to use GPU(s) in Chainer.

3.6 RNN Language Models

3.6.1 0. Introduction

The language model is modeling the probability of generating natural language sentences or documents. You can
use the language model to estimate how natural a sentence or a document is. Also, with the language model, you can
generate new sentences or documents.

Let’s start with modeling the probability of generating sentences. We represent a sentence as X = (x0,x1, ...,x𝑇), in
which x𝑡 is a one-hot vector. Generally, x0 is the one-hot vector of BOS (beginning of sentence), and x𝑇 is that of
EOS (end of sentence).

A language model models the probability of a word occurrence under the condition of its previous words in a sentence.
Let X[𝑖,𝑗] be (x𝑖,x𝑖+1, ...,x𝑗), the occurrence probability of sentence X can be represented as follows:

𝑃 (X) = 𝑃 (x0)

𝑇∏︁
𝑡=1

𝑃 (x𝑡|X[0,𝑡−1])

So, the language model 𝑃 (X) can be decomposed into word probabilities conditioned with its previous words. In this
tutorial, we model 𝑃 (x𝑡|X[0,𝑡−1]) with a recurrent neural network to obtain a language model 𝑃 (X).

3.6.2 1. Basic Idea of Recurrent Neural Net Language Model

1.1 Recurrent Neural Net Language Model

Recurrent Neural Net Language Model (RNNLM) is a type of neural net language models which contains the RNNs
in the network. Since an RNN can deal with the variable length inputs, it is suitable for modeling the sequential data
such as sentences in natural language.

We show one layer of an RNNLM with these parameters.

96 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/master/examples/ptb

Chainer Documentation, Release 7.0.0b4

Symbol Definition
x𝑡 the one-hot vector of 𝑡-th word
y𝑡 the 𝑡-th output
h
(𝑖)
𝑡 the 𝑡-th hidden layer of 𝑖-th layer

p𝑡 the next word’s probability of 𝑡-th word
E Embedding matrix
Wℎ Hidden layer matrix
W𝑜 Output layer matrix

The process to get a next word prediction from 𝑖-th input word x𝑡

1. Get the embedding vector: h(0)
𝑡 = Ex𝑡

2. Calculate the hidden layer: h(1)
𝑡 = tanh

(︃
Wℎ

[︃
h
(0)
𝑡

h
(1)
𝑡−1

]︃)︃

3. Calculate the output layer: y𝑡 = W𝑜h
(1)
𝑡

4. Transform to probability: p𝑡 = softmax(y𝑡)

Note:

• Note that tanh in the above equation is applied to the input vector in element-wise manner.

• Note that
[︂

a
b

]︂
denotes a concatenated vector of a and b.

• Note that softmax in the above equation converts an arbitrary real vector to a probability vector which the
summation over all elements is 1.

3.6. RNN Language Models 97

Chainer Documentation, Release 7.0.0b4

1.2 Perplexity (Evaluation of the language model)

Perplexity is the common evaluation metric for a language model. Generally, it measures how well the proposed
probability model 𝑃model(X) represents the target data 𝑃 *(X). Let a validation dataset be 𝐷 = {X(𝑛)}|𝐷|

𝑛=1, which is
a set of sentences, where the 𝑛-th sentence length is 𝑇 (𝑛), and the vocabulary size of this dataset is |𝒱|, the perplexity
is represented as follows:

𝑏𝑧 𝑠.𝑡. 𝑧 = − 1

|𝒱|

|𝐷|∑︁
𝑛=1

𝑇 (𝑛)∑︁
𝑡=1

log𝑏 𝑃model(x
(𝑛)
𝑡 ,X

(𝑛)
[𝑎,𝑡−1])

We usually use 𝑏 = 2 or 𝑏 = 𝑒. The perplexity shows how much varied the predicted distribution for the next word is.
When a language model represents the dataset well, it should show a high probability only for the correct next word,
so that the entropy should be high. In the above equation, the sign is reversed, so that smaller perplexity means better
model.

During training, we minimize the below cross entropy:

ℋ(𝑃 , 𝑃model) = −𝑃 (X) log𝑃model(X)

where 𝑃 is the empirical distribution of a sequence in the training dataset.

3.6.3 2. Implementation of Recurrent Neural Net Language Model

There is an example of RNN language model in the official repository, so we will explain how to implement a
RNNLM in Chainer based on that: examples/ptb

2.1 Model Overview

The RNNLM used in this notebook is depicted in the above figure. The symbols appeared in the figure are defined as
follows:

98 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/master/examples/ptb

Chainer Documentation, Release 7.0.0b4

Symbol Definition
x𝑡 the one-hot vector of 𝑡-th word
y𝑡 the 𝑡-th output
h
(𝑖)
𝑡 the 𝑡-th hidden layer of 𝑖-th layer

p𝑡 the next word’s probability of 𝑡-th word
E Embedding matrix
Wℎ Hidden layer matrix
W𝑜 Output layer matrix

LSTMs (long short-term memory) are used for the connection of hidden layers. A LSTM is one of major recurrent
neural net modules. It is designed for remembering the long-term memory, so that it should be able to consider
relationships of distant words, such that a word at beginning of sentence and it at the end. We also use Dropout
before both LSTMs and linear transformations. Dropout is one of regularization techniques for preventing overfitting
on training dataset.

2.2 Step-by-step Implementation

2.2.1 Import Package

First, let’s import necessary packages.

Listing 11: train_ptb.py

"""
from __future__ import division
import argparse
import sys

import numpy as np

2.2.2 Define Training Settings

Define all training settings here.

Listing 12: train_ptb.py

parser.add_argument('--batchsize', '-b', type=int, default=20,
help='Number of examples in each mini-batch')

parser.add_argument('--bproplen', '-l', type=int, default=35,
help='Number of words in each mini-batch '

'(= length of truncated BPTT)')
parser.add_argument('--epoch', '-e', type=int, default=39,

help='Number of sweeps over the dataset to train')
parser.add_argument('--device', '-d', type=str, default='-1',

help='Device specifier. Either ChainerX device '
'specifier or an integer. If non-negative integer, '
'CuPy arrays with specified device id are used. If '
'negative integer, NumPy arrays are used')

parser.add_argument('--gradclip', '-c', type=float, default=5,
help='Gradient norm threshold to clip')

parser.add_argument('--out', '-o', default='result',

(continues on next page)

3.6. RNN Language Models 99

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

help='Directory to output the result')
parser.add_argument('--resume', '-r', type=str,

help='Resume the training from snapshot')
parser.add_argument('--test', action='store_true',

help='Use tiny datasets for quick tests')
parser.set_defaults(test=False)
parser.add_argument('--unit', '-u', type=int, default=650,

help='Number of LSTM units in each layer')
parser.add_argument('--model', '-m', default='model.npz',

help='Model file name to serialize')

2.2.3 Define Network Structure

An RNNLM written in Chainer is shown below. It implements the model depicted in the above figure.

Listing 13: train_ptb.py

class RNNForLM(chainer.Chain):

def __init__(self, n_vocab, n_units):
super(RNNForLM, self).__init__()
with self.init_scope():

self.embed = L.EmbedID(n_vocab, n_units)
self.l1 = L.LSTM(n_units, n_units)
self.l2 = L.LSTM(n_units, n_units)
self.l3 = L.Linear(n_units, n_vocab)

for param in self.params():
param.array[...] = np.random.uniform(-0.1, 0.1, param.shape)

def reset_state(self):
self.l1.reset_state()
self.l2.reset_state()

def forward(self, x):
h0 = self.embed(x)
h1 = self.l1(F.dropout(h0))
h2 = self.l2(F.dropout(h1))
y = self.l3(F.dropout(h2))
return y

• When we instantiate this class for making a model, we give the vocabulary size to n_vocab and the size of
hidden vectors to n_units.

• This network uses chainer.links.LSTM , chainer.links.Linear, and chainer.functions.
dropout as its building blocks. All the layers are registered and initialized in the context with self.
init_scope().

• You can access all the parameters in those layers by calling self.params().

• In the constructor, it initializes all parameters with values sampled from a uniform distribution 𝑈(−1, 1).

• The forward method takes an word ID x, and calculates the word probability vector for the next word by
forwarding it through the network, and returns the output.

• Note that the word ID x is automatically converted to a |𝒱|-dimensional one-hot vector and then multiplied with
the input embedding matrix in self.embed(x) to obtain an embed vector h0 at the first line of forward.

100 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

2.2.4 Load the Penn Tree Bank Long Word Sequence Dataset

In this notebook, we use Penn Tree Bank dataset that contains number of sentences. Chainer provides an utility func-
tion to obtain this dataset from server and convert it to a long single sequence of word IDs. chainer.datasets.
get_ptb_words() actually returns three separated datasets which are for train, validation, and test.

Let’s download and make dataset objects using it:

Listing 14: train_ptb.py

Load the Penn Tree Bank long word sequence dataset
train, val, test = chainer.datasets.get_ptb_words()

2.2.5 Define Iterator for Making a Mini-batch from the Dataset

Dataset iterator creates a mini-batch of couple of words at different positions, namely, pairs of current word and its next
word. Each example is a part of sentences starting from different offsets equally spaced within the whole sequence.

Listing 15: train_ptb.py

class ParallelSequentialIterator(chainer.dataset.Iterator):

def __init__(self, dataset, batch_size, repeat=True):
super(ParallelSequentialIterator, self).__init__()
self.dataset = dataset
self.batch_size = batch_size # batch size
self.repeat = repeat
length = len(dataset)
Offsets maintain the position of each sequence in the mini-batch.
self.offsets = [i * length // batch_size for i in range(batch_size)]
self.reset()

def reset(self):
Number of completed sweeps over the dataset. In this case, it is
incremented if every word is visited at least once after the last
increment.
self.epoch = 0
True if the epoch is incremented at the last iteration.
self.is_new_epoch = False
NOTE: this is not a count of parameter updates. It is just a count of
calls of ``__next__``.
self.iteration = 0
use -1 instead of None internally
self._previous_epoch_detail = -1.

def __next__(self):
This iterator returns a list representing a mini-batch. Each item
indicates a different position in the original sequence. Each item is
represented by a pair of two word IDs. The first word is at the
"current" position, while the second word at the next position.
At each iteration, the iteration count is incremented, which pushes
forward the "current" position.
length = len(self.dataset)
if not self.repeat and self.iteration * self.batch_size >= length:

If not self.repeat, this iterator stops at the end of the first
(continues on next page)

3.6. RNN Language Models 101

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

epoch (i.e., when all words are visited once).
raise StopIteration

cur_words = self.get_words()
self._previous_epoch_detail = self.epoch_detail
self.iteration += 1
next_words = self.get_words()

epoch = self.iteration * self.batch_size // length
self.is_new_epoch = self.epoch < epoch
if self.is_new_epoch:

self.epoch = epoch

return list(zip(cur_words, next_words))

@property
def epoch_detail(self):

Floating point version of epoch.
return self.iteration * self.batch_size / len(self.dataset)

@property
def previous_epoch_detail(self):

if self._previous_epoch_detail < 0:
return None

return self._previous_epoch_detail

def get_words(self):
It returns a list of current words.
return [self.dataset[(offset + self.iteration) % len(self.dataset)]

for offset in self.offsets]

def serialize(self, serializer):
It is important to serialize the state to be recovered on resume.
self.iteration = serializer('iteration', self.iteration)
self.epoch = serializer('epoch', self.epoch)
try:

self._previous_epoch_detail = serializer(
'previous_epoch_detail', self._previous_epoch_detail)

except KeyError:
guess previous_epoch_detail for older version
self._previous_epoch_detail = self.epoch + \

(self.current_position - self.batch_size) / len(self.dataset)
if self.epoch_detail > 0:

self._previous_epoch_detail = max(
self._previous_epoch_detail, 0.)

else:
self._previous_epoch_detail = -1.

2.2.6 Define Updater

We use Backpropagation through time (BPTT) for optimize the RNNLM. BPTT can be implemented by overrid-
ing update_core() method of StandardUpdater. First, in the constructor of the BPTTUpdater, it takes
bprop_len as an argument in addition to other arguments StandardUpdater needs. bprop_len defines the

102 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

length of sequence 𝑇 to calculate the loss:

ℒ = −
𝑇∑︁

𝑡=0

|𝒱|∑︁
𝑛=1

𝑃 (x
(𝑛)
𝑡+1) log𝑃model(x

(𝑛)
𝑡+1 | x

(𝑛)
𝑡)

where 𝑃 (x𝑛
𝑡) is a probability for 𝑛-th word in the vocabulary at the position 𝑡 in the training data sequence.

Listing 16: train_ptb.py

class BPTTUpdater(training.updaters.StandardUpdater):

def __init__(self, train_iter, optimizer, bprop_len, device):
super(BPTTUpdater, self).__init__(

train_iter, optimizer, device=device)
self.bprop_len = bprop_len

The core part of the update routine can be customized by overriding.
def update_core(self):

loss = 0
When we pass one iterator and optimizer to StandardUpdater.__init__,
they are automatically named 'main'.
train_iter = self.get_iterator('main')
optimizer = self.get_optimizer('main')

Progress the dataset iterator for bprop_len words at each iteration.
for i in range(self.bprop_len):

Get the next batch (a list of tuples of two word IDs)
batch = train_iter.__next__()

Concatenate the word IDs to matrices and send them to the device
self.converter does this job
(it is chainer.dataset.concat_examples by default)
x, t = self.converter(batch, self.device)

Compute the loss at this time step and accumulate it
loss += optimizer.target(x, t)

optimizer.target.cleargrads() # Clear the parameter gradients
loss.backward() # Backprop
loss.unchain_backward() # Truncate the graph
optimizer.update() # Update the parameters

2.2.7 Define Evaluation Function (Perplexity)

Define a function to calculate the perplexity from the loss value. If we take 𝑒 as 𝑏 in the above definition of perplexity,
calculating the perplexity is just to give the loss value to the power of 𝑒:

Listing 17: train_ptb.py

def compute_perplexity(result):
result['perplexity'] = np.exp(result['main/loss'])
if 'validation/main/loss' in result:

result['val_perplexity'] = np.exp(result['validation/main/loss'])

3.6. RNN Language Models 103

Chainer Documentation, Release 7.0.0b4

2.2.8 Create Iterator

Here, the code below just creates iterator objects from dataset splits (train/val/test).

Listing 18: train_ptb.py

train_iter = ParallelSequentialIterator(train, args.batchsize)
val_iter = ParallelSequentialIterator(val, 1, repeat=False)
test_iter = ParallelSequentialIterator(test, 1, repeat=False)

2.2.9 Create RNN and Classification Model

Instantiate RNNLM model and wrap it with chainer.links.Classifier because it calculates softmax cross
entropy as the loss.

Listing 19: train_ptb.py

rnn = RNNForLM(n_vocab, args.unit)
model = L.Classifier(rnn)
model.compute_accuracy = False # we only want the perplexity

Note that Classifier computes not only the loss but also accuracy based on a given input/label pair. To learn the
RNN language model, we only need the loss (cross entropy) in the Classifier because we calculate the perplexity
instead of classification accuracy to check the performance of the model. So, we turn off computing the accuracy by
giving False to model.compute_accuracy attribute.

2.2.10 Setup Optimizer

Prepare an optimizer. Here, we use GradientClipping to prevent gradient explosion. It automatically clips the
gradient to be used to update the parameters in the model with given constant gradclip.

Listing 20: train_ptb.py

optimizer = chainer.optimizers.SGD(lr=1.0)
optimizer.setup(model)
optimizer.add_hook(chainer.optimizer_hooks.GradientClipping(args.gradclip))

2.2.11 Setup and Run Trainer

Let’s make a trainer object and start the training! Note that we add an eval_hook to the Evaluator extension
to reset the internal states before starting evaluation process. It can prevent to use training data during evaluating the
model.

Listing 21: train_ptb.py

updater = BPTTUpdater(train_iter, optimizer, args.bproplen, device)
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

eval_model = model.copy() # Model with shared params and distinct states

(continues on next page)

104 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

eval_rnn = eval_model.predictor
trainer.extend(extensions.Evaluator(

val_iter, eval_model, device=device,
Reset the RNN state at the beginning of each evaluation
eval_hook=lambda _: eval_rnn.reset_state()))

interval = 10 if args.test else 500
trainer.extend(extensions.LogReport(postprocess=compute_perplexity,

trigger=(interval, 'iteration')))
trainer.extend(extensions.PrintReport(

['epoch', 'iteration', 'perplexity', 'val_perplexity']
), trigger=(interval, 'iteration'))
trainer.extend(extensions.ProgressBar(

update_interval=1 if args.test else 10))
trainer.extend(extensions.snapshot())
trainer.extend(extensions.snapshot_object(

model, 'model_iter_{.updater.iteration}'))
if args.resume is not None:

chainer.serializers.load_npz(args.resume, trainer)

trainer.run()

2.2.12 Evaluate the trained model on test dataset

Let’s see the perplexity on the test split. Trainer’s extension can be used as just a normal function outside of
Trainer.

Listing 22: train_ptb.py

print('test')
eval_rnn.reset_state()
evaluator = extensions.Evaluator(test_iter, eval_model, device=device)
result = evaluator()
print('test perplexity: {}'.format(np.exp(float(result['main/loss']))))

2.3 Run Example

2.3.1 Training the model

You can train the model with the script: examples/ptb/train_ptb.py

$ pwd
/root2chainer/chainer/examples/ptb
$ python train_ptb.py --test # run by test mode. If you want to use all data, remove
→˓"--test".
Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
→˓train.txt...
Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
→˓valid.txt...
Downloading from https://raw.githubusercontent.com/wojzaremba/lstm/master/data/ptb.
→˓test.txt...

(continues on next page)

3.6. RNN Language Models 105

https://github.com/chainer/chainer/blob/master/examples/ptb/train_ptb.py

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

#vocab = 10000
test
test perplexity: 29889.9857364

2.3.2 Generating sentences

You can generate the sentence which starts with a word in the vocabulary. In this example, we generate a sen-
tence which starts with the word apple. We use the script in the PTB example of the official repository: exam-
ples/ptb/gentxt.py

$ pwd
/root2chainer/chainer/examples/ptb
$ python gentxt.py -m model.npz -p apple
apple a new u.s. economist with <unk> <unk> fixed more than to N the company said who
→˓is looking back to

3.7 Word2Vec: Obtain word embeddings

3.7.1 0. Introduction

Word2vec is the tool for generating the distributed representation of words, which is proposed by Mikolov et al[1].
When the tool assigns a real-valued vector to each word, the closer the meanings of the words, the greater similarity
the vectors will indicate.

Distributed representation means assigning a real-valued vector for each word and representing the word by the
vector. When representing a word by distributed representation, we call the word embeddings. In this tutorial, we
aim at explaining how to get the word embeddings from Penn Tree Bank dataset.

Let’s think about what the meaning of word is. Since we are human, we can understand that the words “animal” and
“dog” are deeply related each other. But what information will Word2vec use to learn the vectors for words? The
words “animal” and “dog” should have similar vectors, but the words “food” and “dog” should be far from each other.
How to know the features of those words automatically?

3.7.2 1. Basic Idea

Word2vec learns the similarity of word meanings from simple information. It learns the representation of words from
sentences. The core idea is based on the assumption that the meaning of a word is affected by the words around it.
This idea follows distributional hypothesis[2].

The word we focus on to learn its representation is called center word, and the words around it are called context
words. The window size 𝐶 determines the number of context words which is considered.

Here, let’s see the algorithm by using an example sentence: “The cute cat jumps over the lazy dog.”.

• All of the following figures consider “cat” as the center word.

• According to the window size 𝐶, you can see that the number of context words is changed.

106 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/blob/master/examples/ptb/gentxt.py
https://github.com/chainer/chainer/blob/master/examples/ptb/gentxt.py

Chainer Documentation, Release 7.0.0b4

3.7.3 2. Main Algorithm

Word2vec, the tool for creating the word embeddings, is actually built with two models, which are called Skip-gram
and CBoW.

To explain the models with the figures below, we will use the following symbols.

Symbol Definition
|𝒱| The size of vocabulary
𝐷 The size of embedding vector
v𝑡 A one-hot center word vector
𝑉𝑡±𝐶 A set of 2𝐶 context vectors around v𝑡, namely, {v𝑡+𝑐}𝐶𝑐=−𝐶∖v𝑡

l𝐻 An embedding vector of an input word vector
l𝑂 An output vector of the network
W𝐻 The embedding matrix for inputs
W𝑂 The embedding matrix for outputs

Note: Using negative sampling or hierarchical softmax for the loss function is very common, however, in this
tutorial, we will use the softmax over all words and skip the other variants for the sake of simplicity.

2.1 Skip-gram

This model learns to predict context words 𝑉𝑡±𝐶 when a center word v𝑡 is given. In the model, each row of the
embedding matrix for input W𝐻 becomes a word embedding of each word.

When you input a center word v𝑡 into the network, you can predict one of context words v̂𝑡+𝑐 ∈ 𝑉𝑡±𝐶 as follows:

1. Calculate an embedding vector of the input center word vector: l𝐻 = W𝐻v𝑡

2. Calculate an output vector of the embedding vector: l𝑂 = W𝑂l𝐻

3. Calculate a probability vector of a context word: v̂𝑡+𝑐 = softmax(l𝑂)

Each element of the |𝒱|-dimensional vector v̂𝑡+𝑐 is a probability that a word in the vocabulary turns out to be a context
word at position 𝑐. So, the probability 𝑝(v𝑡+𝑐|v𝑡) can be estimated by a dot product of the one-hot vector v𝑡+𝑐 which
represents the actual word at the position 𝑐 and the output vector v̂𝑡+𝑐.

𝑝(v𝑡+𝑐|v𝑡) = v𝑇
𝑡+𝑐v̂𝑡+𝑐

3.7. Word2Vec: Obtain word embeddings 107

Chainer Documentation, Release 7.0.0b4

The loss function to predict all the context words 𝑉𝑡±𝐶 given a center word v𝑡 is defined as follows:

𝐿(𝑉𝑡±𝐶 |v𝑡;W𝐻 ,W𝑂) =
∑︁
𝑉𝑡±𝐶

− log (𝑝(v𝑡+𝑐 | v𝑡))

=
∑︁
𝑉𝑡±𝐶

− log(v𝑇
𝑡+𝑐v̂𝑡+𝑐)

2.2 Continuous Bag of Words (CBoW)

This model learns to predict center word v𝑡 when context words 𝑉𝑡±𝐶 is given. When you give a set of context words
𝑉𝑡±𝐶 to the network, you can estimate the probability of the center word v̂𝑡 as follows:

1. Calculate a mean embedding vector over all context words: l𝐻 = 1
2𝐶

∑︀
𝑉𝑡±𝐶

W𝐻v𝑡+𝑐

2. Calculate an output vector of the embedding vector: l𝑂 = W𝑂l𝐻

3. Calculate a probability vector of a center word: v̂𝑡 = softmax(l𝑂)

Each element of the |𝒱|-dimensional vector v̂𝑡 is a probability that a word in the vocabulary turns out to be a center
word. So, the probability 𝑝(v𝑡|𝑉𝑡±𝐶) can be estimated by a dot product of the one-hot vector v𝑡 which represents the
actual center word and the output vector v̂𝑡.

𝑝(v𝑡|𝑉𝑡±𝐶) = v𝑇
𝑡 v̂𝑡

The loss function to predict the center word v𝑡 given context words 𝑉𝑡±𝐶 is defined as follows:

𝐿(v𝑡|𝑉𝑡±𝐶 ;W𝐻 ,W𝑂) = − log (𝑝(v𝑡 | 𝑉𝑡±𝐶))

= − log(v𝑇
𝑡 v̂𝑡)

3.7.4 3. Details of Skip-gram

In this tutorial, we mainly explain Skip-gram model because

1. It is easier to understand the algorithm than CBoW.

2. Even if the number of words increases, the accuracy is largely maintained. So, it is more scalable.

So, let’s think about a concrete example of calculating Skip-gram under this setup:

• The size of vocabulary |𝒱| is 10.

• The size of embedding vector 𝐷 is 2.

• Center word is “dog”.

• Context word is “animal”.

Since there should be more than one context word, repeat the following process for each context word.

1. The one-hot vector of “dog” is [0 0 1 0 0 0 0 0 0 0] and you input it as the center word.

2. The third row of embedding matrix W𝐻 is used for the word embedding of “dog” l𝐻 .

3. Then, multiply W𝑂 with l𝐻 to obtain the output vector l𝑂.

4. Give l𝑂 to the softmax function to make it a predicted probability vector v̂𝑡+𝑐 for a context word at the position
𝑐.

5. Calculate the error between v̂𝑡+𝑐 and the one-hot vector of “animal”; [1 0 0 0 0 0 0 0 0 0 0].

6. Propagate the error back to the network to update the parameters.

108 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

3.7.5 4. Implementation of Skip-gram in Chainer

There is an example of Word2vec in the official repository of Chainer, so we will explain how to implement Skip-gram
based on this: examples/word2vec

4.1 Preparation

First, let’s import necessary packages:

Listing 23: train_word2vec.py

import argparse
import collections
import os
import six
import warnings

import numpy as np

import chainer
from chainer.backends import cuda
import chainer.functions as F
import chainer.initializers as I
import chainer.links as L
import chainer.optimizers as O
from chainer import reporter

4.2 Define a Skip-gram model

Next, let’s define a network for Skip-gram.

3.7. Word2Vec: Obtain word embeddings 109

https://github.com/chainer/chainer/tree/master/examples/word2vec

Chainer Documentation, Release 7.0.0b4

Listing 24: train_word2vec.py

class SkipGram(chainer.Chain):
"""Definition of Skip-gram Model"""

def __init__(self, n_vocab, n_units, loss_func):
super(SkipGram, self).__init__()

with self.init_scope():
self.embed = L.EmbedID(

n_vocab, n_units, initialW=I.Uniform(1. / n_units))
self.loss_func = loss_func

def forward(self, x, contexts):
e = self.embed(contexts)
batch_size, n_context, n_units = e.shape
x = F.broadcast_to(x[:, None], (batch_size, n_context))
e = F.reshape(e, (batch_size * n_context, n_units))
x = F.reshape(x, (batch_size * n_context,))
loss = self.loss_func(e, x)
reporter.report({'loss': loss}, self)
return loss

Listing 25: train_word2vec.py

class SoftmaxCrossEntropyLoss(chainer.Chain):
"""Softmax cross entropy loss function preceded by linear transformation.

"""

def __init__(self, n_in, n_out):
super(SoftmaxCrossEntropyLoss, self).__init__()
with self.init_scope():

self.out = L.Linear(n_in, n_out, initialW=0)

def forward(self, x, t):
return F.softmax_cross_entropy(self.out(x), t)

Note:

• The weight matrix self.embed.W is the embedding matrix for input vector x.

• The function call forward takes the word ID of a center word x and word IDs of context words contexts as
inputs, and outputs the error calculated by the loss function loss_func s.t. SoftmaxCrossEntropyLoss.

• Note that the initial shape of x and contexts are (batch_size,) and (batch_size, n_context),
respectively.

• The batch_size means the size of mini-batch, and n_context means the number of context words.

First, we obtain the embedding vectors of contexts by e = self.embed(contexts). Then F.
broadcast_to(x[:, None], (batch_size, n_context)) performs broadcasting of x (its shape is
(batch_size,)) to (batch_size, n_context) by copying the same value n_context time to fill the
second axis, and then the broadcasted x is reshaped into 1-D vector (batchsize * n_context,) while e is re-
shaped to (batch_size * n_context, n_units). In Skip-gram model, predicting a context word from the
center word is the same as predicting the center word from a context word because the center word is always a context

110 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

word when considering the context word as a center word. So, we create batch_size * n_context center word
predictions by applying self.out linear layer to the embedding vectors of context words. Then, calculate softmax
cross entropy between the broadcasted center word ID x and the predictions.

4.3 Prepare dataset and iterator

Let’s retrieve the Penn Tree Bank (PTB) dataset by using Chainer’s dataset utility get_ptb_words() method.

train, val, _ = chainer.datasets.get_ptb_words()
counts = collections.Counter(train)

Then define an iterator to make mini-batches that contain a set of center words with their context words. train and
val means training data and validation data. Each data contains the list of Document IDs:

>>> train
array([0, 1, 2, ..., 39, 26, 24], dtype=int32)
>>> val
array([2211, 396, 1129, ..., 108, 27, 24], dtype=int32)

Listing 26: train_word2vec.py

class WindowIterator(chainer.dataset.Iterator):
"""Dataset iterator to create a batch of sequences at different positions.

This iterator returns a pair of the current words and the context words.
"""

def __init__(self, dataset, window, batch_size, repeat=True):
self.dataset = np.array(dataset, np.int32)
self.window = window # size of context window
self.batch_size = batch_size
self._repeat = repeat
order is the array which is shuffled ``[window, window + 1, ...,
len(dataset) - window - 1]``
self.order = np.random.permutation(

len(dataset) - window * 2).astype(np.int32)
self.order += window
self.current_position = 0
Number of completed sweeps over the dataset. In this case, it is
incremented if every word is visited at least once after the last
increment.
self.epoch = 0
True if the epoch is incremented at the last iteration.
self.is_new_epoch = False

def __next__(self):
"""This iterator returns a list representing a mini-batch.

Each item indicates a different position in the original sequence.
"""
if not self._repeat and self.epoch > 0:

raise StopIteration

i = self.current_position
i_end = i + self.batch_size
position = self.order[i:i_end]

(continues on next page)

3.7. Word2Vec: Obtain word embeddings 111

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

w = np.random.randint(self.window - 1) + 1
offset = np.concatenate([np.arange(-w, 0), np.arange(1, w + 1)])
pos = position[:, None] + offset[None, :]
contexts = self.dataset.take(pos)
center = self.dataset.take(position)

if i_end >= len(self.order):
np.random.shuffle(self.order)
self.epoch += 1
self.is_new_epoch = True
self.current_position = 0

else:
self.is_new_epoch = False
self.current_position = i_end

return center, contexts

@property
def epoch_detail(self):

return self.epoch + float(self.current_position) / len(self.order)

def serialize(self, serializer):
self.current_position = serializer('current_position',

self.current_position)
self.epoch = serializer('epoch', self.epoch)
self.is_new_epoch = serializer('is_new_epoch', self.is_new_epoch)
if self.order is not None:

serializer('order', self.order)

• In the constructor, we create an array self.order which denotes shuffled indices of [window, window
+ 1, ..., len(dataset) - window - 1] in order to choose a center word randomly from dataset
in a mini-batch.

• The iterator definition __next__ returns batch_size sets of center word and context words.

• The code self.order[i:i_end] returns the indices for a set of center words from the random-ordered
array self.order. The center word IDs center at the random indices are retrieved by self.dataset.
take.

• np.concatenate([np.arange(-w, 0), np.arange(1, w + 1)]) creates a set of offsets to re-
trieve context words from the dataset.

• The code position[:, None] + offset[None, :] generates the indices of context words for each
center word index in position. The context word IDs context are retrieved by self.dataset.take.

4.4 Prepare model, optimizer, and updater

Listing 27: train_word2vec.py

model = SkipGram(n_vocab, args.unit, loss_func)

Listing 28: train_word2vec.py

optimizer = O.Adam()
optimizer.setup(model)

112 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

Listing 29: train_word2vec.py

train_iter = WindowIterator(train, args.window, args.batchsize)
val_iter = WindowIterator(val, args.window, args.batchsize, repeat=False)

Set up an updater
updater = training.updaters.StandardUpdater(

train_iter, optimizer, converter=convert, device=device)

Listing 30: train_word2vec.py

trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

trainer.extend(extensions.Evaluator(
val_iter, model, converter=convert, device=device))

trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(

['epoch', 'main/loss', 'validation/main/loss']))
trainer.extend(extensions.ProgressBar())

trainer.extend(
extensions.snapshot(filename='snapshot_epoch_{.updater.epoch}'),
trigger=(args.snapshot_interval, 'epoch'))

if args.resume is not None:
chainer.serializers.load_npz(args.resume, trainer)

trainer.run()

4.5 Start training

$ pwd
/root2chainer/chainer/examples/word2vec
$ python train_word2vec.py --test # run by test mode. If you want to use all data,
→˓remove "--test".
GPU: -1
unit: 100
Window: 5
Minibatch-size: 1000
epoch: 20
Training model: skipgram
Output type: hsm

n_vocab: 10000
data length: 100
epoch main/loss validation/main/loss
1 4233.75 2495.33
2 1411.14 4990.66
3 4233.11 1247.66
4 2821.66 4990.65
5 4231.94 1247.66
6 5642.04 2495.3
7 5640.82 4990.64
8 5639.31 2495.28

(continues on next page)

3.7. Word2Vec: Obtain word embeddings 113

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

9 2817.89 4990.62
10 1408.03 3742.94
11 5633.11 1247.62
12 4221.71 2495.21
13 4219.3 4990.56
14 4216.57 2495.16
15 4213.52 2495.12
16 5616.03 1247.55
17 5611.34 3742.78
18 2800.31 3742.74
19 1397.79 2494.95
20 2794.1 3742.66

4.5 Search the similar words

$ pwd
/root2chainer/chainer/examples/word2vec
$ python search.py
>> apple
query: apple
compaq: 0.6169619560241699
chip: 0.49579331278800964
retailer: 0.4904134273529053
maker: 0.4684058427810669
computer: 0.4652436673641205
>> animal
query: animal
beauty: 0.5680124759674072
human: 0.5404794216156006
insulin: 0.5365156531333923
cell: 0.5186758041381836
photographs: 0.5077002048492432

3.7.6 5. Reference

• [1] Mikolov, Tomas; et al. “Efficient Estimation of Word Representations in Vector Space”. arXiv:1301.3781

• [2] Distributional Hypothesis

3.8 Write a Sequence to Sequence (seq2seq) Model

3.8.1 0. Introduction

The sequence to sequence (seq2seq) model[1][2] is a learning model that converts an input sequence into an output
sequence. In this context, the sequence is a list of symbols, corresponding to the words in a sentence. The seq2seq
model has achieved great success in fields such as machine translation, dialogue systems, question answering, and text
summarization. All of these tasks can be regarded as the task to learn a model that converts an input sequence into an
output sequence.

114 Chapter 3. Neural Net Examples

https://arxiv.org/abs/1301.3781
https://aclweb.org/aclwiki/Distributional_Hypothesis

Chainer Documentation, Release 7.0.0b4

3.8.2 1. Basic Idea of Seq2seq Model

1.1 Overview of Seq2seq Model

The Notations of Sequence

The seq2seq model converts an input sequence into an output sequence. Let the input sequence and the output sequence
be X and Y. The 𝑖-th element of the input sequence is represented as x𝑖, and the 𝑗-th element of the output sequence
is also represented as y𝑗 . Generally, each of the x𝑖 and the y𝑗 is the one-hot vector of the symbols. For example, in
natural language processing(NLP), the one-hot vector represents the word and its size becomes the vocabulary size.

Let’s think about the seq2seq model in the context of NLP. Let the vocabulary of the inputs and the outputs be 𝒱(𝑠) and
𝒱(𝑡), all the elements x𝑖 and y𝑗 satisfy x𝑖 ∈ R|𝒱(𝑠)| and y𝑖 ∈ R|𝒱(𝑡)|. The input sequence X and the output sequence
Y are represented as the following equations:

X = (x1, ...,x𝐼) = (x𝑖)
𝐼
𝑖=1

Y = (y1, ...,y𝐽) = (y𝑗)
𝐽
𝑗=1

𝐼 and 𝐽 are the length of the input sequence and the output sequence. Using the typical NLP notation, y0 is the one-hot
vector of BOS, which is the virtual word representing the beginning of the sentence, and y𝐽+1 is that of EOS, which
is the virtual word representing the end of the sentence.

The Notations of Conditional Probability 𝑃 (Y|X)

Next, let’s think about the conditional probability 𝑃 (Y|X) generating the output sequence Y when the input sequence
X is given. The purpose of seq2seq model is modeling the probability 𝑃 (Y|X). However, the seq2seq model does not
model the probability 𝑃 (Y|X) directly. Actually, it models the probability 𝑃 (y𝑗 |Y<𝑗 ,X), which is the probability
of generating the 𝑗-th element of the output sequence y𝑗 given the Y<𝑗 and X. Y<𝑗 means the output sequence from
1 to 𝑗 − 1, or (y𝑗)

𝑗−1
𝑗=1. In this notation, you can write the model 𝑃𝜃(Y|X) with the product of 𝑃𝜃(y𝑗 |Y<𝑗 ,X):

𝑃𝜃(Y|X) =

𝐽+1∏︁
𝑗=1

𝑃𝜃(y𝑗 |Y<𝑗 ,X)

Processing Steps in Seq2seq Model

Now, let’s think about the processing steps in seq2seq model. The feature of seq2seq model is that it consists of the
two processes:

1. The process that generates the fixed size vector z from the input sequence X

2. The process that generates the output sequence Y from z

In other words, the information of X is conveyed by z, and 𝑃𝜃(y𝑗 |Y<𝑗 ,X) is actually calculated by 𝑃𝜃(y𝑗 |Y<𝑗 , z).

First, we represent the process which generating z from X by the function Λ:

z = Λ(X)

The function Λ may be the recurrent neural net such as LSTMs.

Second, we represent the process which generating Y from z by the following formula:

𝑃𝜃(y𝑗 |Y<𝑗 ,X) = Υ(h
(𝑡)
𝑗 ,y𝑗)

h
(𝑡)
𝑗 = Ψ(h

(𝑡)
𝑗−1,y𝑗−1)

3.8. Write a Sequence to Sequence (seq2seq) Model 115

Chainer Documentation, Release 7.0.0b4

Ψ is the function to generate the hidden vectors h(𝑡)
𝑗 , and Υ is the function to calculate the generative probability of

the one-hot vector y𝑗 . When 𝑗 = 1, h(𝑡)
𝑗−1 or h(𝑡)

0 is z generated by Λ(X), and y𝑗−1 or y0 is the one-hot vector of
BOS.

1.2 Model Architecture of Seq2seq Model

In this section, we describe the architecture of seq2seq model. To simplify the explanation, we use the most basic
architecture. The architecture of seq2seq model can be separated to the five major roles.

1. Encoder Embedding Layer

2. Encoder Recurrent Layer

3. Decoder Embedding Layer

4. Decoder Recurrent Layer

5. Decoder Output Layer

The encoder consists of two layers: the embedding layer and the recurrent layer, and the decoder consists of three
layers: the embedding layer, the recurrent layer, and the output layer.

In the explanation, we use the following symbols:

116 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

Symbol Definition
𝐻 the size of the hidden vector
𝐷 the size of the embedding vector
x𝑖 the one-hot vector of 𝑖-th word in the input sentence
x̄𝑖 the embedding vector of 𝑖-th word in the input sentence
E(𝑠) Embedding matrix of the encoder
h
(𝑠)
𝑖 the 𝑖-th hidden vector of the encoder

y𝑗 the one-hot vector of 𝑗-th word in the output sentence
ȳ𝑗 the embedding vector of 𝑗-th word in the output sentence
E(𝑡) Embedding matrix of the decoder
h
(𝑡)
𝑗 the 𝑗-th hidden vector of the decoder

1.2.1 Encoder Embedding Layer

The first layer, or the encoder embedding layer converts the each word in the input sentence to the embedding vector.
When processing the 𝑖-th word in the input sentence, the input and the output of the layer are the following:

• The input is x𝑖 : the one-hot vector which represents 𝑖-th word

• The output is x̄𝑖 : the embedding vector which represents 𝑖-th word

Each embedding vector is calculated by the following equation:

x̄𝑖 = E(𝑠)x𝑖

E(𝑠) ∈ R𝐷×|𝒱(𝑠)| is the embedding matrix of the encoder.

1.2.2 Encoder Recurrent Layer

The encoder recurrent layer generates the hidden vectors from the embedding vectors. When processing the 𝑖-th
embedding vector, the input and the output of the layer are the following:

• The input is x̄𝑖 : the embedding vector which represents the 𝑖-th word

• The output is h(𝑠)
𝑖 : the hidden vector of the 𝑖-th position

For example, when using the uni-directional RNN of one layer, the process can be represented as the following function
Ψ(𝑠):

h
(𝑠)
𝑖 = Ψ(𝑠)(x̄𝑖,h

(𝑠)
𝑖−1)

= tanh

(︂
W(𝑠)

[︂
h
(𝑠)
𝑖−1

x̄𝑖

]︂
+ b(𝑠)

)︂
In this case, we use the tanh as the activation function.

1.2.3 Decoder Embedding Layer

The decoder embedding layer converts the each word in the output sentence to the embedding vector. When processing
the 𝑗-th word in the output sentence, the input and the output of the layer are the following:

• The input is y𝑗−1 : the one-hot vector which represents the (𝑗 − 1)-th word generated by the decoder output
layer

3.8. Write a Sequence to Sequence (seq2seq) Model 117

Chainer Documentation, Release 7.0.0b4

• The output is ȳ𝑗 : the embedding vector which represents the (𝑗 − 1)-th word

Each embedding vector is calculated by the following equation:

ȳ𝑗 = E(𝑡)y𝑗−1

E(𝑡) ∈ R𝐷×|𝒱(𝑡)| is the embedding matrix of the encoder.

1.2.4 Decoder Recurrent Layer

The decoder recurrent layer generates the hidden vectors from the embedding vectors. When processing the 𝑗-th
embedding vector, the input and the output of the layer are the following:

• The input is ȳ𝑗 : the embedding vector

• The output is h(𝑡)
𝑗 : the hidden vector of 𝑗-th position

For example, when using the uni-directional RNN of one layer, the process can be represented as the following function
Ψ(𝑡):

h
(𝑡)
𝑗 = Ψ(𝑡)(ȳ𝑗 ,h

(𝑡)
𝑗−1)

= tanh

(︂
W(𝑡)

[︂
h
(𝑡)
𝑗−1

ȳ𝑗

]︂
+ b(𝑡)

)︂
In this case, we use the tanh as the activation function. And we must use the encoder’s hidden vector of the last
position as the decoder’s hidden vector of first position as following:

h
(𝑡)
0 = z = h

(𝑠)
𝐼

1.2.5 Decoder Output Layer

The decoder output layer generates the probability of the 𝑗-th word of the output sentence from the hidden vector.
When processing the 𝑗-th embedding vector, the input and the output of the layer are the following:

• The input is h(𝑡)
𝑗 : the hidden vector of 𝑗-th position

• The output is 𝑝𝑗 : the probability of generating the one-hot vector y𝑗 of the 𝑗-th word

𝑝𝑗 = 𝑃𝜃(y𝑗 |Y<𝑗) = softmax(o𝑗) · y𝑗

= softmax(W(𝑜)h
(𝑡)
𝑗 + b(𝑜)) · y𝑗

Note: There are a lot of varieties of seq2seq models. We can use the different RNN models in terms of: (1) directional-
ity (unidirectional or bidirectional), (2) depth (single-layer or multi-layer), (3) type (a vanilla RNN, a Long Short-term
Memory (LSTM), or a gated recurrent unit (GRU)), and (4) additional functionality (s.t. Attention Mechanism).

3.8.3 2. Implementation of Seq2seq Model

The official Chainer repository includes a neural machine translation example using the seq2seq model. We
will now provide an overview of the example and explain its implementation in detail. chainer/examples/seq2seq

118 Chapter 3. Neural Net Examples

https://github.com/chainer/chainer/tree/master/examples/seq2seq

Chainer Documentation, Release 7.0.0b4

2.1 Model Overview

In this simple example, an input sequence is processed by a stacked LSTM-RNN (long short-term memory recurrent
neural networks) and it is encoded as a fixed-size vector. The output sequence is also processed by another stacked
LSTM-RNN. At decoding time, an output sequence is generated using argmax.

2.2 Step-by-step Implementation

2.2.1 Import Package

First, let’s import necessary packages.

Listing 31: seq2seq.py

import io

from nltk.translate import bleu_score
import numpy
import progressbar
import six

import chainer
import chainer.functions as F

(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model 119

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

import chainer.links as L
from chainer import training

2.2.2 Define Training Settings

Define all training settings here.

Listing 32: seq2seq.py

parser.add_argument('SOURCE', help='source sentence list')
parser.add_argument('TARGET', help='target sentence list')
parser.add_argument('SOURCE_VOCAB', help='source vocabulary file')
parser.add_argument('TARGET_VOCAB', help='target vocabulary file')
parser.add_argument('--validation-source',

help='source sentence list for validation')
parser.add_argument('--validation-target',

help='target sentence list for validation')
parser.add_argument('--batchsize', '-b', type=int, default=64,

help='number of sentence pairs in each mini-batch')
parser.add_argument('--epoch', '-e', type=int, default=20,

help='number of sweeps over the dataset to train')
parser.add_argument('--resume', '-r', type=str,

help='resume the training from snapshot')
parser.add_argument('--save', '-s', type=str,

help='save a snapshot of the training')
parser.add_argument('--unit', '-u', type=int, default=1024,

help='number of units')
parser.add_argument('--layer', '-l', type=int, default=3,

help='number of layers')
parser.add_argument('--use-dataset-api', default=False,

action='store_true',
help='use TextDataset API to reduce CPU memory usage')

parser.add_argument('--min-source-sentence', type=int, default=1,
help='minimium length of source sentence')

parser.add_argument('--max-source-sentence', type=int, default=50,
help='maximum length of source sentence')

parser.add_argument('--min-target-sentence', type=int, default=1,
help='minimium length of target sentence')

parser.add_argument('--max-target-sentence', type=int, default=50,
help='maximum length of target sentence')

parser.add_argument('--log-interval', type=int, default=200,
help='number of iteration to show log')

parser.add_argument('--validation-interval', type=int, default=4000,
help='number of iteration to evlauate the model '
'with validation dataset')

parser.add_argument('--device', '-d', type=str, default='-1',
help='Device specifier. Either ChainerX device '
'specifier or an integer. If non-negative integer, '
'CuPy arrays with specified device id are used. If '
'negative integer, NumPy arrays are used')

parser.add_argument('--out', '-o', default='result',
help='directory to output the result')

group = parser.add_argument_group('deprecated arguments')
group.add_argument('--gpu', '-g', dest='device',

type=int, nargs='?', const=0,

(continues on next page)

120 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

help='GPU ID (negative value indicates CPU)')

2.2.3 Define Network Structure

The Chainer implementation of seq2seq is shown below. It implements the model depicted in the above figure.

Listing 33: seq2seq.py

class Seq2seq(chainer.Chain):

def __init__(self, n_layers, n_source_vocab, n_target_vocab, n_units):
super(Seq2seq, self).__init__()
with self.init_scope():

self.embed_x = L.EmbedID(n_source_vocab, n_units)
self.embed_y = L.EmbedID(n_target_vocab, n_units)
self.encoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
self.decoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
self.W = L.Linear(n_units, n_target_vocab)

self.n_layers = n_layers
self.n_units = n_units

def forward(self, xs, ys):
xs = [x[::-1] for x in xs]

eos = self.xp.array([EOS], numpy.int32)
ys_in = [F.concat([eos, y], axis=0) for y in ys]
ys_out = [F.concat([y, eos], axis=0) for y in ys]

Both xs and ys_in are lists of arrays.
exs = sequence_embed(self.embed_x, xs)
eys = sequence_embed(self.embed_y, ys_in)

batch = len(xs)
None represents a zero vector in an encoder.
hx, cx, _ = self.encoder(None, None, exs)
_, _, os = self.decoder(hx, cx, eys)

It is faster to concatenate data before calculating loss
because only one matrix multiplication is called.
concat_os = F.concat(os, axis=0)
concat_ys_out = F.concat(ys_out, axis=0)
loss = F.sum(F.softmax_cross_entropy(

self.W(concat_os), concat_ys_out, reduce='no')) / batch

chainer.report({'loss': loss}, self)
n_words = concat_ys_out.shape[0]
perp = self.xp.exp(loss.array * batch / n_words)
chainer.report({'perp': perp}, self)
return loss

def translate(self, xs, max_length=100):
batch = len(xs)
with chainer.no_backprop_mode(), chainer.using_config('train', False):

xs = [x[::-1] for x in xs]

(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model 121

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

exs = sequence_embed(self.embed_x, xs)
h, c, _ = self.encoder(None, None, exs)
ys = self.xp.full(batch, EOS, numpy.int32)
result = []
for i in range(max_length):

eys = self.embed_y(ys)
eys = F.split_axis(eys, batch, 0)
h, c, ys = self.decoder(h, c, eys)
cys = F.concat(ys, axis=0)
wy = self.W(cys)
ys = self.xp.argmax(wy.array, axis=1).astype(numpy.int32)
result.append(ys)

Using `xp.concatenate(...)` instead of `xp.stack(result)` here to
support NumPy 1.9.
result = chainer.get_device('@numpy').send(

self.xp.concatenate([x[None, :] for x in result]).T)

Remove EOS taggs
outs = []
for y in result:

inds = numpy.argwhere(y == EOS)
if len(inds) > 0:

y = y[:inds[0, 0]]
outs.append(y)

return outs

• In Seq2seq, three functions are defined: the constructor __init__, the function call forward, and the
function for translation translate.

Listing 34: seq2seq.py

def __init__(self, n_layers, n_source_vocab, n_target_vocab, n_units):
super(Seq2seq, self).__init__()
with self.init_scope():

self.embed_x = L.EmbedID(n_source_vocab, n_units)
self.embed_y = L.EmbedID(n_target_vocab, n_units)
self.encoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
self.decoder = L.NStepLSTM(n_layers, n_units, n_units, 0.1)
self.W = L.Linear(n_units, n_target_vocab)

self.n_layers = n_layers
self.n_units = n_units

• When we instantiate this class for making a model, we give the number of stacked lstms to n_layers, the
vocabulary size of the source language to n_source_vocab, the vocabulary size of the target language to
n_target_vocab, and the size of hidden vectors to n_units.

• This network uses chainer.links.NStepLSTM , chainer.links.EmbedID, and chainer.
links.Linear as its building blocks. All the layers are registered and initialized in the context with self.
init_scope().

• You can access all the parameters in those layers by calling self.params().

• In the constructor, it initializes all parameters with values sampled from a uniform distribution 𝑈(−1, 1).

122 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

Listing 35: seq2seq.py

def forward(self, xs, ys):
xs = [x[::-1] for x in xs]

eos = self.xp.array([EOS], numpy.int32)
ys_in = [F.concat([eos, y], axis=0) for y in ys]
ys_out = [F.concat([y, eos], axis=0) for y in ys]

Both xs and ys_in are lists of arrays.
exs = sequence_embed(self.embed_x, xs)
eys = sequence_embed(self.embed_y, ys_in)

batch = len(xs)
None represents a zero vector in an encoder.
hx, cx, _ = self.encoder(None, None, exs)
_, _, os = self.decoder(hx, cx, eys)

It is faster to concatenate data before calculating loss
because only one matrix multiplication is called.
concat_os = F.concat(os, axis=0)
concat_ys_out = F.concat(ys_out, axis=0)
loss = F.sum(F.softmax_cross_entropy(

self.W(concat_os), concat_ys_out, reduce='no')) / batch

chainer.report({'loss': loss}, self)
n_words = concat_ys_out.shape[0]
perp = self.xp.exp(loss.array * batch / n_words)
chainer.report({'perp': perp}, self)
return loss

• The forward method takes sequences of source language’s word IDs xs and sequences of target language’s
word IDs ys. Each sequence represents a sentence, and the size of xs is mini-batch size.

• Note that the sequences of word IDs xs and ys are converted to a vocabulary-size one-hot vectors and then
multiplied with the embedding matrix in sequence_embed to obtain embedding vectors exs and eys.

Listing 36: seq2seq.py

def sequence_embed(embed, xs):
x_len = [len(x) for x in xs]
x_section = numpy.cumsum(x_len[:-1])
ex = embed(F.concat(xs, axis=0))
exs = F.split_axis(ex, x_section, 0)
return exs

• self.encoder and self.decoder are the encoder and the decoder of the seq2seq model. Each element
of the decoder output os is ℎ(𝑡)[1:𝐽] in the figure above.

• After calculating the recurrent layer output, the loss loss and the perplexity perp are calculated, and the
values are logged by chainer.report.

Note: It is well known that the seq2seq model learns much better when the source sentences are reversed. The
paper[1] says that “While the LSTM is capable of solving problems with long term dependencies, we discovered that
the LSTM learns much better when the source sentences are reversed (the target sentences are not reversed). By doing
so, the LSTM’s test perplexity dropped from 5.8 to 4.7, and the test BLEU scores of its decoded translations increased
from 25.9 to 30.6.” So, at the first line in the forward, the input sentences are reversed xs = [x[::-1] for x

3.8. Write a Sequence to Sequence (seq2seq) Model 123

Chainer Documentation, Release 7.0.0b4

in xs].

Listing 37: seq2seq.py

def translate(self, xs, max_length=100):
batch = len(xs)
with chainer.no_backprop_mode(), chainer.using_config('train', False):

xs = [x[::-1] for x in xs]
exs = sequence_embed(self.embed_x, xs)
h, c, _ = self.encoder(None, None, exs)
ys = self.xp.full(batch, EOS, numpy.int32)
result = []
for i in range(max_length):

eys = self.embed_y(ys)
eys = F.split_axis(eys, batch, 0)
h, c, ys = self.decoder(h, c, eys)
cys = F.concat(ys, axis=0)
wy = self.W(cys)
ys = self.xp.argmax(wy.array, axis=1).astype(numpy.int32)
result.append(ys)

Using `xp.concatenate(...)` instead of `xp.stack(result)` here to
support NumPy 1.9.
result = chainer.get_device('@numpy').send(

self.xp.concatenate([x[None, :] for x in result]).T)

Remove EOS taggs
outs = []
for y in result:

inds = numpy.argwhere(y == EOS)
if len(inds) > 0:

y = y[:inds[0, 0]]
outs.append(y)

return outs

• After the model learned the parameters, the function translate is called to generate the translated sentences
outs from the source sentences xs.

• So as not to change the parameters, the codes for the translation are nested in the scope chainer.
no_backprop_mode() and chainer.using_config('train', False).

2.2.4 Load French-English Corpus from WMT15 Dataset

In this tutorial, we use French-English corpus from WMT15 website that contains 10^9 documents. We must prepare
additional libraries, dataset, and parallel corpus. To understand the pre-processing, see 2.3.1 Requirements.

After the pre-processing the dataset, let’s make dataset objects:

Listing 38: seq2seq.py

Load pre-processed dataset
print('[{}] Loading dataset... (this may take several minutes)'.format(

datetime.datetime.now()))
source_ids = load_vocabulary(args.SOURCE_VOCAB)
target_ids = load_vocabulary(args.TARGET_VOCAB)

(continues on next page)

124 Chapter 3. Neural Net Examples

http://www.statmt.org/wmt15/translation-task.html

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

if args.use_dataset_api:
By using TextDataset, you can avoid loading whole dataset on memory.
This significantly reduces the host memory usage.
def _filter_func(s, t):

sl = len(s.strip().split()) # number of words in source line
tl = len(t.strip().split()) # number of words in target line
return (

args.min_source_sentence <= sl <= args.max_source_sentence and
args.min_target_sentence <= tl <= args.max_target_sentence)

train_data = load_data_using_dataset_api(
source_ids, args.SOURCE,
target_ids, args.TARGET,
_filter_func,

)
else:

Load all records on memory.
train_source = load_data(source_ids, args.SOURCE)
train_target = load_data(target_ids, args.TARGET)
assert len(train_source) == len(train_target)

train_data = [
(s, t)
for s, t in six.moves.zip(train_source, train_target)
if (args.min_source_sentence <= len(s) <= args.max_source_sentence

and
args.min_target_sentence <= len(t) <= args.max_target_sentence)

]
print('[{}] Dataset loaded.'.format(datetime.datetime.now()))

if not args.use_dataset_api:
Skip printing statistics when using TextDataset API, as it is slow.
train_source_unknown = calculate_unknown_ratio(

[s for s, _ in train_data])
train_target_unknown = calculate_unknown_ratio(

[t for _, t in train_data])

print('Source vocabulary size: %d' % len(source_ids))
print('Target vocabulary size: %d' % len(target_ids))
print('Train data size: %d' % len(train_data))
print('Train source unknown ratio: %.2f%%' % (

train_source_unknown * 100))
print('Train target unknown ratio: %.2f%%' % (

train_target_unknown * 100))

target_words = {i: w for w, i in target_ids.items()}
source_words = {i: w for w, i in source_ids.items()}

• This code uses utility functions below:

Listing 39: seq2seq.py

def load_vocabulary(path):
with io.open(path, encoding='utf-8') as f:

+2 for UNK and EOS
(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model 125

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

word_ids = {line.strip(): i + 2 for i, line in enumerate(f)}
word_ids['<UNK>'] = 0
word_ids['<EOS>'] = 1
return word_ids

Listing 40: seq2seq.py

def load_data(vocabulary, path):
n_lines = count_lines(path)
bar = progressbar.ProgressBar()
data = []
print('loading...: %s' % path)
with io.open(path, encoding='utf-8') as f:

for line in bar(f, max_value=n_lines):
words = line.strip().split()
array = numpy.array([vocabulary.get(w, UNK)

for w in words], numpy.int32)
data.append(array)

return data

Listing 41: seq2seq.py

def calculate_unknown_ratio(data):
unknown = sum((s == UNK).sum() for s in data)
total = sum(s.size for s in data)
return unknown / total

2.2.5 Define Evaluation Function (Bleu Score)

BLEU[3] (bilingual evaluation understudy) is the evaluation metric for the quality of text which has been machine-
translated from one natural language to another.

Listing 42: seq2seq.py

class CalculateBleu(chainer.training.Extension):

trigger = 1, 'epoch'
priority = chainer.training.PRIORITY_WRITER

def __init__(
self, model, test_data, key, device, batch=100, max_length=100):

self.model = model
self.test_data = test_data
self.key = key
self.batch = batch
self.device = device
self.max_length = max_length

def __call__(self, trainer):
device = self.device

with chainer.no_backprop_mode():
references = []
hypotheses = []

(continues on next page)

126 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

for i in range(0, len(self.test_data), self.batch):
sources, targets = zip(*self.test_data[i:i + self.batch])
references.extend([[t.tolist()] for t in targets])

sources = [device.send(x) for x in sources]
ys = [y.tolist()

for y in self.model.translate(sources, self.max_length)]
hypotheses.extend(ys)

bleu = bleu_score.corpus_bleu(
references, hypotheses,
smoothing_function=bleu_score.SmoothingFunction().method1)

chainer.report({self.key: bleu})

2.2.6 Create Iterator

Here, the code below just creates iterator objects.

Listing 43: seq2seq.py

train_iter = chainer.iterators.SerialIterator(train_data, args.batchsize)

2.2.7 Create RNN and Classification Model

Instantiate Seq2seq model.

Listing 44: seq2seq.py

model = Seq2seq(args.layer, len(source_ids), len(target_ids), args.unit)

2.2.8 Setup Optimizer

Prepare an optimizer. We use chainer.optimizers.Adam.

Listing 45: seq2seq.py

optimizer = chainer.optimizers.Adam()
optimizer.setup(model)

2.2.9 Setup and Run Trainer

Let’s make a trainer object.

Listing 46: seq2seq.py

updater = training.updaters.StandardUpdater(
train_iter, optimizer, converter=convert, device=device)

(continues on next page)

3.8. Write a Sequence to Sequence (seq2seq) Model 127

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
trainer.extend(extensions.LogReport(

trigger=(args.log_interval, 'iteration')))
trainer.extend(extensions.PrintReport(

['epoch', 'iteration', 'main/loss', 'main/perp',
'validation/main/bleu', 'elapsed_time']),

trigger=(args.log_interval, 'iteration'))

trainer.extend(
extensions.snapshot(filename='snapshot_epoch_{.updater.iteration}'),
trigger=(args.validation_interval, 'iteration'))

Setup the trainer’s extension to see the BLEU score on the test data.

Listing 47: seq2seq.py

test_source = load_data(source_ids, args.validation_source)
test_target = load_data(target_ids, args.validation_target)
assert len(test_source) == len(test_target)
test_data = list(six.moves.zip(test_source, test_target))
test_data = [(s, t) for s, t in test_data if 0 < len(s) and 0 < len(t)]
test_source_unknown = calculate_unknown_ratio(

[s for s, _ in test_data])
test_target_unknown = calculate_unknown_ratio(

[t for _, t in test_data])

print('Validation data: %d' % len(test_data))
print('Validation source unknown ratio: %.2f%%' %

(test_source_unknown * 100))
print('Validation target unknown ratio: %.2f%%' %

(test_target_unknown * 100))

@chainer.training.make_extension()
def translate(trainer):

source, target = test_data[numpy.random.choice(len(test_data))]
result = model.translate([model.xp.array(source)])[0]

source_sentence = ' '.join([source_words[x] for x in source])
target_sentence = ' '.join([target_words[y] for y in target])
result_sentence = ' '.join([target_words[y] for y in result])
print('# source : ' + source_sentence)
print('# result : ' + result_sentence)
print('# expect : ' + target_sentence)

trainer.extend(
translate, trigger=(args.validation_interval, 'iteration'))

trainer.extend(
CalculateBleu(

model, test_data, 'validation/main/bleu', device),
trigger=(args.validation_interval, 'iteration'))

if args.resume is not None:
Resume from a snapshot
chainer.serializers.load_npz(args.resume, trainer)

Let’s start the training!

128 Chapter 3. Neural Net Examples

Chainer Documentation, Release 7.0.0b4

Listing 48: seq2seq.py

trainer.run()

if args.save is not None:
Save a snapshot
chainer.serializers.save_npz(args.save, trainer)

2.3 Run Example

2.3.1 Requirements

Before running the example, you must prepare additional libraries, dataset, and parallel corpus.

• See the detail description: chainer/examples/seq2seq/README.md

2.3.1 Training the model

You can train the model with the script: chainer/examples/seq2seq/seq2seq.py

$ pwd
/root2chainer/chainer/examples/seq2seq
$ python seq2seq.py --gpu=0 giga-fren.preprocess.en giga-fren.preprocess.fr \
vocab.en vocab.fr \
--validation-source newstest2013.preprocess.en \
--validation-target newstest2013.preprocess.fr > log
100% (22520376 of 22520376) |#############| Elapsed Time: 0:09:20 Time: 0:09:20
100% (22520376 of 22520376) |#############| Elapsed Time: 0:10:36 Time: 0:10:36
100% (3000 of 3000) |#####################| Elapsed Time: 0:00:00 Time: 0:00:00
100% (3000 of 3000) |#####################| Elapsed Time: 0:00:00 Time: 0:00:00
epoch iteration main/loss validation/main/loss main/perp validation/main/
→˓perp validation/main/bleu elapsed_time
0 200 171.449 991.556
→˓ 85.6739
0 400 143.918 183.594
→˓ 172.473
0 600 133.48 126.945
→˓ 260.315
0 800 128.734 104.127
→˓ 348.062
0 1000 124.741 91.5988
→˓ 436.536
...

Note: Before running the script, be careful the locale and the python’s encoding. Please setup them to use utf-8
encoding.

3.8. Write a Sequence to Sequence (seq2seq) Model 129

https://github.com/chainer/chainer/tree/master/examples/seq2seq/README.md
https://github.com/chainer/chainer/tree/master/examples/seq2seq/seq2seq.py

Chainer Documentation, Release 7.0.0b4

2.3.1 Validate the model

While you are training the model, you can get the validation results:

...
source : We knew the Government had tried many things , like launching <UNK> with
→˓<UNK> or organising speed dating evenings .
result : Nous savions que le gouvernement avait <UNK> plusieurs fois , comme le
→˓<UNK> <UNK> , le <UNK> ou le <UNK> <UNK> .
expect : Nous savions que le gouvernement avait tenté plusieurs choses comme lancer
→˓des parfums aux <UNK> ou organiser des soirées de <UNK>
...

3.8.4 3. Reference

• [1] Sequence to Sequence Learning with Neural Networks

• [2] Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

• [3] BLEU

130 Chapter 3. Neural Net Examples

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf
https://en.wikipedia.org/wiki/BLEU

CHAPTER

FOUR

API REFERENCE

4.1 Variable and Parameter

4.1.1 Variable classes and utilities

chainer.Variable Array with a structure to keep track of computation.
chainer.as_array Returns the underlying array from a variable or an array.
chainer.as_variable Converts an array or a variable into Variable.
chainer.backward Runs backpropagation from variables simultaneously.
chainer.Parameter Parameter variable that can be registered to a link.
chainer.variable.VariableNode Node in the backward computational graph representing

a variable.

chainer.Variable

class chainer.Variable(data=None, *, name=None, grad=None, requires_grad=True)
Array with a structure to keep track of computation.

Every variable holds a data array of type either numpy.ndarray or cupy.ndarray.

A variable object holds a data array and a VariableNode object of a computational graph. If the variable
is constructed by the user, the node is root and does not hold any parent. If the variable is constructed by a
FunctionNode object (i.e., by calling functions under chainer.functions or user-defined functions),
or by using operators (see the list below), the node holds a reference to its parent called creator_node. This
reference is used in backpropagation to backtrack the graph.

Users can disable (resp. enable) this chaining behavior by calling no_backprop_mode() (resp.
force_backprop_mode()). In the former context, a variable never creates a computational graph, whereas
in the latter context, it is forced to create.

Note: The following operators are defined for variable(s).

• Indexing: a[slices] (__getitem__())

• Addition: a + b (__add__(), __radd__())

• Subtraction: a - b (__sub__(), __rsub__())

• Multiplication: a * b (__mul__(), __rmul__())

• Division: a / b (__div__(), __rdiv__(), __truediv__(), __rtruediv__())

• Floor Division: a // b (__floordiv__(), __rfloordiv__())

131

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

• Exponentiation: a ** b (__pow__(), __rpow__())

• Matrix Multiplication: a @ b (__matmul__(), __rmatmul__())

• Negation (Arithmetic): - a (__neg__())

• Absolute value: abs(a) (__abs__())

Parameters

• data (N-dimensional array) – Initial data array.

• name (str) – Name of the variable.

• grad (N-dimensional array) – Initial gradient array.

• requires_grad (bool) – Boolean indicating whether grad will be set in backward
calculation.

Methods

__getitem__(slices)
Extract elements from array with specified shape, axes and offsets.

Parameters

• x (Variable or N-dimensional array) – A variable to be sliced.

• slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) – An object to specify the se-
lection of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included
in slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.
uint64 and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

>>> x = np.arange(12).reshape((2, 2, 3))
>>> x
array([[[0, 1, 2],

[3, 4, 5]],

[[6, 7, 8],
[9, 10, 11]]])

>>> F.get_item(x, 0)
variable([[0, 1, 2],

(continues on next page)

132 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

[3, 4, 5]])
>>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]
variable([0, 1])
>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[2, 5],

[8, 11]])
>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]
variable([9])

__len__()
Returns the first dimension of the data array.

Returns Number of the first dimension of the data array.

Return type int

__copy__()

addgrad(var)
Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even
done across the host and different devices. If this variable has uninitialized data/grad arrays, this method
initializes it with the shape of the given variable and then accumulates the gradient.

Parameters var (Variable) – Source variable.

backward(retain_grad=False, enable_double_backprop=False, loss_scale=None)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward() is called on each FunctionNode object appearing in
the backward graph starting from this variable. The backward graph is represented by backward references
from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop
does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this
method. If the shape of data is () (i.e., it is scalar) and grad is None, then this method automatically
complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

From v3, this method supports differentiable backprop (a.k.a. double backprop, grad of grads). To enable
it, pass enable_double_backprop=True.

Parameters

• retain_grad (bool) – If True, the gradient arrays of all intermediate variables are
kept. Otherwise, grad of the intermediate variables are set to None on appropriate tim-
ing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients
of parameters, not of all variables, and therefore it is recommended that this flag be set to
False.

• enable_double_backprop (bool) – (Added in v3.0) If True, computational trace
of the whole backpropagation procedure is recorded to the computational graph so that one
can further do backpropagation from the resulting gradients. Note that enabling it results
in larger memory consumption needed to store the gradients w.r.t intermediate variables
that are required for the second gradient computation.

4.1. Variable and Parameter 133

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to miti-
gate vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be mul-
tiplied by the factor before backprop starts. The factor is propagated to whole gradients in
a computational graph along the backprop. The gradients of parameters are divided by the
factor just before the parameters are to be updated.

cleargrad()
Clears the gradient array.

copydata(var)
Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays
reside on different devices, including across the host and a GPU device. If this variable has an uninitialized
data array, this method initializes it by the data array of the given variable. Similarly, if the given variable
has an uninitialized data array, this method initializes it by the data array of this variable (self). If both
are uninitialized, this method does nothing.

Parameters var (Variable) – Source variable.

debug_print()
Display a summary of the stored data and location of the Variable

from_chx()
Converts the array and gradient to non-ChainerX arrays without copy.

This method converts the underlying ChainerX array and gradient residing in either a native or cuda
device to NumPy or CuPy arrays respectively, on their same physical device. It does nothing if the array
held by the Variable object is not a ChainerX array. The new array is a view of the original one.

Raises an error if such a conversion is not supported for the device.

item()
Converts the variable with one element to a Python scalar.

This will incur host-device synchronization.

Returns The element of the array.

Return type int or float

mean(axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

See also:

chainer.functions.average() for full documentation,

reshape(*shape)
Returns a variable of a different shape and the same content.

See also:

chainer.functions.reshape() for full documentation,

retain_data()
Lets the corresponding variable node keep the underlying array.

set_creator(gen_func)
Notifies the variable that the given function is its creator.

Parameters gen_func (Function) – Function object that creates this variable as one of its
outputs.

134 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

set_creator_node(fnode)
Notifies the variable that the given node is its creator.

Parameters fnode (FunctionNode) – Function node that has this variable as an output.

summary()

to_chx()
Converts the array and gradient to ChainerX arrays without copy.

This method converts the underlying array and gradient to chainerx.ndarray on the same physical
device. It does nothing if the array held by the Variable object is already a ChainerX array. The new array
is a view of the original one.

to_cpu()
Copies the data and gradient arrays to CPU.

to_device(device)
Copies the data and gradient arrays to specified device.

Parameters device – Target device specifier. See get_device() for available values.

to_gpu(device=None)
Copies the data and gradient arrays to specified GPU.

Parameters device – Target device specifier. If omitted, the current device is used.

to_intel64()
Copies the data and gradient arrays to intel64 specific mdarray.

If the array is not suited for intel64, it will be converted to numpy.ndarray.

transpose(*axes)
Permute the dimensions of an input variable without copy.

See also:

chainer.functions.transpose() for full documentation.

unchain()
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike
unchain_backward(), it does not backtrack the graph.

This method is equivalent to self.creator_node = None.

unchain_backward()
Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from any-
where are deallocated by reference count GC. Also this variable itself deletes the reference to its creator
function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop
after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

zerograd()
Initializes the gradient array by zeros.

Note that the gradient variable is unchained from the computational graph by this method, because this
operation breaks the backprop validity.

Deprecated since version v1.15: Use more efficient cleargrads() instead.

__eq__(other)
This operator is not supported in Variables.

4.1. Variable and Parameter 135

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

__ne__(other)
This operator is not supported in Variables.

__lt__(other)
This operator is not supported in Variables.

__le__(other)
This operator is not supported in Variables.

__gt__(other)
This operator is not supported in Variables.

__ge__(other)
This operator is not supported in Variables.

__nonzero__()
This operator is not supported in Variables.

__bool__()
This operator is not supported in Variables.

__neg__()
Element-wise negation.

Returns Output variable.

Return type Variable

__abs__()
Element-wise absolute.

Returns Output variable.

Return type Variable

__add__()
Element-wise addition.

Returns Output variable.

Return type Variable

__radd__()
Element-wise addition.

Returns Output variable.

Return type Variable

__sub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__rsub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__mul__(rhs)
Element-wise multiplication.

Returns Output variable.

136 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Return type Variable

__rmul__(rhs)
Element-wise multiplication.

Returns Output variable.

Return type Variable

__div__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__truediv__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__rdiv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__rtruediv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__floordiv__(rhs)
Element-wise floor division.

Returns Output variable.

Return type Variable

__rfloordiv__(rhs)
Element-wise floor division.

Returns Output variable.

Return type Variable

__pow__(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable

__rpow__(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable

__matmul__(rhs)
Matrix multiplication.

4.1. Variable and Parameter 137

Chainer Documentation, Release 7.0.0b4

Returns Output variable.

Return type Variable

__rmatmul__(rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

Attributes

T
Transposition of this variable.

array
The underlying data array.

It is either numpy.ndarray or cupy.ndarray object, or None if the variable in in an uninitialized
state.

chx_array
A view of the raw ChainerX array.

In contrary to Variable.array which is always disconnected, the array represented by this attribute
may be connected to the computational graph.

It is a view, so it has a distinct gradient from the original array.

If this attribute is queried on a Variable with a non-ChainerX array, ValueError will be raised.

creator
Function implementation that created this variable.

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of
Function), this property returns that Function object.

When this variable has been created by a new-style function (i.e., it is implemented as a subclass of
FunctionNode class), this property returns that node object.

creator_node
FunctionNode object that created this variable.

This property has a setter to which None can be set. Setting None to this property is equivalent to call
unchain(); it purges the variable from the function that created this variable.

The setter also accepts the original FunctionNode object that created this variable. For example, you
can once set None to this property and then set the original value again.

Note: Setting an irrelevant FunctionNode() object does not emit any error immediately, whereas the
behavior is undefined. Do not set a FunctionNode() object that did not create this variable object.

data
The underlying data array (equivalent to array).

Note that using this attribute directly is discouraged; use array instead. Using array , you can find an
error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute
.array while it has .data.

138 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 7.0.0b4

device
Device on which the data array of this variable reside.

dtype

grad
Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable
itself; to get/set gradient variable, use grad_var instead.

If the underlying array is a chainerx.ndarray and requires_grad is false, trying to access the gradient
will results in and error.

grad_var
Gradient variable.

label
Short text that represents the variable.

name

ndim

node

rank

requires_grad
It indicates that grad will be set in backward calculation.

shape

size

xp
Array module for the data array of this variable.

chainer.as_array

chainer.as_array(obj)
Returns the underlying array from a variable or an array.

This is a convenient function to get the underlying array object transparently from an object that could be either
a variable or an array.

Parameters obj (N-dimensional array or ~chainer.Variable) – An array or a variable.

Returns The underlying array object of the argument.

Return type N-dimensional array or ~chainer.Variable

chainer.as_variable

chainer.as_variable(obj)
Converts an array or a variable into Variable.

This is a convenient function to get a Variable object transparently from a raw array or a variable.

Note that this function should only be used for type consistency (i.e., to enforce the return value of an API
having type Variable). The requires_grad flag is kept as is; if obj is a raw array, the newly created
variable has requires_grad = False. In order to make a variable w.r.t. which you want to compute the
gradient, you should use Variable directly.

4.1. Variable and Parameter 139

Chainer Documentation, Release 7.0.0b4

Parameters obj (N-dimensional array or ~chainer.Variable) – An array or a variable that you want
to convert to Variable.

Returns A variable converted from obj. If obj is a raw array, this is a new Variable object that
wraps the array. If obj is already a Variable object, this function returns obj as is.

Return type Variable

chainer.backward

chainer.backward(outputs, grad_outputs=None, *, enable_double_backprop=False)
Runs backpropagation from variables simultaneously.

Warning: This feature is experimental. The interface can change in the future.

Parameters

• outputs (tuple or list of Variable) – A sequence of output variables from which back-
prop starts.

• grad_outputs (None or tuple or list of Variable) – A sequence of variables that
gives the initial value of each output gradient. If this argument is None, backprop uses
grad_var of outputs.

• enable_double_backprop (bool) – If True, computational trace of the whole back-
propagation procedure is recorded to the computational graph so that one can further do
backpropagation from the resulting gradients. Note that enabling it results in larger memory
consumption needed to store the gradients w.r.t intermediate variables that are required for
the second gradient computation.

See also:

chainer.Variable.backward() chainer.grad()

chainer.Parameter

class chainer.Parameter(initializer=None, shape=None, name=None)
Parameter variable that can be registered to a link.

Parameter is a subclass of Variable. It almost behaves as same as a usual variable except that a parameter
can be registered to a Link object just by assigning it to an attribute of the link within an init_scope()
context.

Parameter also supports an initialization by an initializer. It can have two initializers: one for the data array, and
the other for the gradient array. The initializer only specifies the way of filling the elements of these arrays, and
the shape information is specified at the initialization point.

When a link that the parameter has been registered to is passed to an GradientMethod, an update rule is
set to the parameter. This update rule specifies how to update the data array of the parameter using its gradient
array.

Parameters

• initializer (~chainer.Initializer or N-dimensional array) – Initializer of the data array.
If shape is given, this initializer is immediately used to initialize the data array. Otherwise,
if it is an array, it is immediately used as the data array, and otherwise the data array is left
uninitialized and will be initialized by this initializer in initialize(). It can also be a

140 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

• shape (int or tuple of int or None) – Shape of the parameter. If it is None,
the initialization is deferred to the call of initialize().

• name (str) – Name of the parameter.

Variables

• initializer – Initializer of the data array. It is used for initializing the data array of an
uninitialized variable.

• update_rule – UpdateRule instance that updates this variable as a parameter. This
argument is set to update_rule.

Methods

__getitem__(slices)
Extract elements from array with specified shape, axes and offsets.

Parameters

• x (Variable or N-dimensional array) – A variable to be sliced.

• slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) – An object to specify the se-
lection of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included
in slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.
uint64 and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

>>> x = np.arange(12).reshape((2, 2, 3))
>>> x
array([[[0, 1, 2],

[3, 4, 5]],

[[6, 7, 8],
[9, 10, 11]]])

>>> F.get_item(x, 0)
variable([[0, 1, 2],

[3, 4, 5]])
>>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]
variable([0, 1])

(continues on next page)

4.1. Variable and Parameter 141

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[2, 5],

[8, 11]])
>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]
variable([9])

__len__()
Returns the first dimension of the data array.

Returns Number of the first dimension of the data array.

Return type int

__copy__()

addgrad(var)
Accumulates the gradient array from given source variable.

This method adds the gradient of a given variable to the gradient of this variable. The accumulation is even
done across the host and different devices. If this variable has uninitialized data/grad arrays, this method
initializes it with the shape of the given variable and then accumulates the gradient.

Parameters var (Variable) – Source variable.

backward(retain_grad=False, enable_double_backprop=False, loss_scale=None)
Runs error backpropagation (a.k.a. backprop) from this variable.

On backprop, FunctionNode.backward() is called on each FunctionNode object appearing in
the backward graph starting from this variable. The backward graph is represented by backward references
from variable nodes to their creators, and from function nodes to their input variable nodes. The backprop
stops at all root nodes. Some function nodes set None as gradients of some inputs, where further backprop
does not take place at such inputs.

This method uses grad as the initial error array. User can manually set a gradient array before calling this
method. If the shape of data is () (i.e., it is scalar) and grad is None, then this method automatically
complements 1.0 as the initial error. This is useful on starting backprop from some scalar loss value.

From v3, this method supports differentiable backprop (a.k.a. double backprop, grad of grads). To enable
it, pass enable_double_backprop=True.

Parameters

• retain_grad (bool) – If True, the gradient arrays of all intermediate variables are
kept. Otherwise, grad of the intermediate variables are set to None on appropriate tim-
ing, which may reduce the maximum memory consumption.

In most cases of training some models, the purpose of backprop is to compute gradients
of parameters, not of all variables, and therefore it is recommended that this flag be set to
False.

• enable_double_backprop (bool) – (Added in v3.0) If True, computational trace
of the whole backpropagation procedure is recorded to the computational graph so that one
can further do backpropagation from the resulting gradients. Note that enabling it results
in larger memory consumption needed to store the gradients w.r.t intermediate variables
that are required for the second gradient computation.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to miti-
gate vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be mul-
tiplied by the factor before backprop starts. The factor is propagated to whole gradients in

142 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

a computational graph along the backprop. The gradients of parameters are divided by the
factor just before the parameters are to be updated.

cleargrad()
Clears the gradient array.

copydata(var)
Copies the data array from given source variable.

This method copies the data array from given variable to this variable. The copy is done even if the arrays
reside on different devices, including across the host and a GPU device. If this variable has an uninitialized
data array, this method initializes it by the data array of the given variable. Similarly, if the given variable
has an uninitialized data array, this method initializes it by the data array of this variable (self). If both
are uninitialized, this method does nothing.

Parameters var (Variable) – Source variable.

debug_print()
Display a summary of the stored data and location of the Variable

from_chx()
Converts the array and gradient to non-ChainerX arrays without copy.

This method converts the underlying ChainerX array and gradient residing in either a native or cuda
device to NumPy or CuPy arrays respectively, on their same physical device. It does nothing if the array
held by the Variable object is not a ChainerX array. The new array is a view of the original one.

Raises an error if such a conversion is not supported for the device.

initialize(shape)
Initializes the uninitialized variable.

Uninitialized variable is a variable created with the data array set to None. This method creates and
initializes the data array. The shape of the variable can be left unknown until this method is called.

Parameters shape (tuple of int) – Shape of the data array.

item()
Converts the variable with one element to a Python scalar.

This will incur host-device synchronization.

Returns The element of the array.

Return type int or float

mean(axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

See also:

chainer.functions.average() for full documentation,

reshape(*shape)
Returns a variable of a different shape and the same content.

See also:

chainer.functions.reshape() for full documentation,

retain_data()
Lets the corresponding variable node keep the underlying array.

set_creator(gen_func)
Notifies the variable that the given function is its creator.

4.1. Variable and Parameter 143

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Parameters gen_func (Function) – Function object that creates this variable as one of its
outputs.

set_creator_node(fnode)
Notifies the variable that the given node is its creator.

Parameters fnode (FunctionNode) – Function node that has this variable as an output.

summary()

to_chx()
Converts the array and gradient to ChainerX arrays without copy.

This method converts the underlying array and gradient to chainerx.ndarray on the same physical
device. It does nothing if the array held by the Variable object is already a ChainerX array. The new array
is a view of the original one.

to_cpu()
Copies the data and gradient arrays to CPU.

to_device(device)
Copies the data and gradient arrays to specified device.

Parameters device – Target device specifier. See get_device() for available values.

to_gpu(device=None)
Copies the data and gradient arrays to specified GPU.

Parameters device – Target device specifier. If omitted, the current device is used.

to_intel64()
Copies the data and gradient arrays to intel64 specific mdarray.

If the array is not suited for intel64, it will be converted to numpy.ndarray.

transpose(*axes)
Permute the dimensions of an input variable without copy.

See also:

chainer.functions.transpose() for full documentation.

unchain()
Deletes the reference to the creator of this variable.

This method deletes the reference to the creator from the corresponding variable node. Unlike
unchain_backward(), it does not backtrack the graph.

This method is equivalent to self.creator_node = None.

unchain_backward()
Deletes references between variable nodes and functions backward.

After this method completes, intermediate variable nodes and functions that are not referenced from any-
where are deallocated by reference count GC. Also this variable itself deletes the reference to its creator
function from the node, i.e. the node becomes root in the computation graph. It indicates that backprop
after unchaining stops at this variable. This behavior is useful to implement truncated BPTT.

update()
Updates the data array using the gradient and the update rule.

This method updates the parameter using the attached update rule.

zerograd()
Initializes the gradient array by zeros.

144 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

Note that the gradient variable is unchained from the computational graph by this method, because this
operation breaks the backprop validity.

Deprecated since version v1.15: Use more efficient cleargrads() instead.

__eq__(other)
This operator is not supported in Variables.

__ne__(other)
This operator is not supported in Variables.

__lt__(other)
This operator is not supported in Variables.

__le__(other)
This operator is not supported in Variables.

__gt__(other)
This operator is not supported in Variables.

__ge__(other)
This operator is not supported in Variables.

__nonzero__()
This operator is not supported in Variables.

__bool__()
This operator is not supported in Variables.

__neg__()
Element-wise negation.

Returns Output variable.

Return type Variable

__abs__()
Element-wise absolute.

Returns Output variable.

Return type Variable

__add__()
Element-wise addition.

Returns Output variable.

Return type Variable

__radd__()
Element-wise addition.

Returns Output variable.

Return type Variable

__sub__(rhs)
Element-wise subtraction.

Returns Output variable.

Return type Variable

__rsub__(rhs)
Element-wise subtraction.

4.1. Variable and Parameter 145

Chainer Documentation, Release 7.0.0b4

Returns Output variable.

Return type Variable

__mul__(rhs)
Element-wise multiplication.

Returns Output variable.

Return type Variable

__rmul__(rhs)
Element-wise multiplication.

Returns Output variable.

Return type Variable

__div__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__truediv__(rhs)
Element-wise division

Returns Output variable.

Return type Variable

__rdiv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__rtruediv__(rhs)
Element-wise division.

Returns Output variable.

Return type Variable

__floordiv__(rhs)
Element-wise floor division.

Returns Output variable.

Return type Variable

__rfloordiv__(rhs)
Element-wise floor division.

Returns Output variable.

Return type Variable

__pow__(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable

146 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__rpow__(rhs)
Element-wise power function.

Returns Output variable.

Return type Variable

__matmul__(rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

__rmatmul__(rhs)
Matrix multiplication.

Returns Output variable.

Return type Variable

Attributes

T
Transposition of this variable.

array
The underlying data array.

It is either numpy.ndarray or cupy.ndarray object, or None if the variable in in an uninitialized
state.

chx_array
A view of the raw ChainerX array.

In contrary to Variable.array which is always disconnected, the array represented by this attribute
may be connected to the computational graph.

It is a view, so it has a distinct gradient from the original array.

If this attribute is queried on a Variable with a non-ChainerX array, ValueError will be raised.

creator
Function implementation that created this variable.

When this variable has been created by an old-style function (i.e., it is implemented as a subclass of
Function), this property returns that Function object.

When this variable has been created by a new-style function (i.e., it is implemented as a subclass of
FunctionNode class), this property returns that node object.

creator_node
FunctionNode object that created this variable.

This property has a setter to which None can be set. Setting None to this property is equivalent to call
unchain(); it purges the variable from the function that created this variable.

The setter also accepts the original FunctionNode object that created this variable. For example, you
can once set None to this property and then set the original value again.

Note: Setting an irrelevant FunctionNode() object does not emit any error immediately, whereas the
behavior is undefined. Do not set a FunctionNode() object that did not create this variable object.

4.1. Variable and Parameter 147

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 7.0.0b4

data
The underlying data array (equivalent to array).

Note that using this attribute directly is discouraged; use array instead. Using array , you can find an
error earlier when your code mixes up Variable and ndarray because ndarray does not have an attribute
.array while it has .data.

device
Device on which the data array of this variable reside.

dtype

grad
Gradient array of this variable.

Note that this property returns the underlying array of the gradient variable instead of the gradient variable
itself; to get/set gradient variable, use grad_var instead.

If the underlying array is a chainerx.ndarray and requires_grad is false, trying to access the gradient
will results in and error.

grad_var
Gradient variable.

initializer = None

label
Short text that represents the variable.

name

ndim

node

rank

requires_grad
It indicates that grad will be set in backward calculation.

shape

size

xp
Array module for the data array of this variable.

chainer.variable.VariableNode

class chainer.variable.VariableNode(variable, name, **kwargs)
Node in the backward computational graph representing a variable.

This object represents a variable node in a computational graph. The node is used in error backpropagation
(a.k.a. backprop) to determine which gradient to be passed to each function.

A variable node is held by the corresponding Variable object, which is managed by users. FunctionNode
objects that take the variable as an input also hold references to the variable node.

Note that the node does not hold a reference to the corresponding data array in general. The data array is actually
accessible by the node in the following cases.

1. If there exists a Variable object that holds a reference to the variable node, the variable node holds a
weak reference to the variable object, and thus the data array is accessible via the weak reference.

148 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

2. If retain_data() is called, the node holds a reference to the data array. It is mainly called by a
function that needs the input or output data array in its backprop procedure. See FunctionNode.
retain_inputs() and FunctionNode.retain_outputs() for more details.

Users usually do not need to touch this variable node object. The computational graph is automatically managed
by Chainer, and any interface that is beneficial for users is also provided by Variable.

Parameters

• variable (Variable) – The corresponding variable object.

• name (str) – Name of the variable node.

Variables

• dtype – Data type of the data array.

• shape – Shape of the data array.

• name (str) – Name of the variable node.

Methods

get_variable()
Returns the corresponding Variable object.

VariableNode object holds a weak reference of the variable object. If the reference is alive, it is returned by
this property. Otherwise, this property creates a new Variable object from this node object and returns
it.

Returns The variable object that refers this node.

Return type Variable

get_variable_or_none()
Returns the holding Variable object or None.

VariableNode object holds a weak reference of the variable object.If the reference is alive, it is returned by
this property. Otherwise, returns None.

Returns The variable object that refers this node.

Return type Variable

retain_data()
Lets the node hold a reference to the underlying data array.

This method gets the data array of the corresponding variable and keeps it. If the weak reference to the
corresponding variable is dead, it raises an error.

set_creator(creator)
Sets a Function object that created this node.

This method is equivalent to self.creator = creator. A FunctionNode object can also be
passed.

Parameters creator (Function or FunctionNode) – Function that has created this
variable.

set_creator_node(creator_node)
Sets a FunctionNode object that created this node.

This method is equivalent to self.creator_node = creator_node. A Function object can
also be passed, in which case the Function.node attribute is used.

4.1. Variable and Parameter 149

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters creator_node (FunctionNode or Function) – Function node that has
this variable as an output.

unchain()
Deletes the reference to the creator of this variable node.

This method is equivalent to self.creator_node = None.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

creator
Function object that created this variable node.

When the function is implemented with the old-style API (i.e., it uses Function class), this property
returns the Function object. The object is extracted from the FunctionAdapter object, so the
returned object is not the function node, but instead the actual implementation of forward and backward
procedures.

When the function is implemented with the new-style API (i.e., it uses FunctionNode class), this prop-
erty returns the function node object. In this case, the returned object is same as creator_node.

Warning: As of v3.0.0, when the creator is an old-style function, the following code is invalid:

creator = v.creator
v.creator = None
...
v.creator = creator

The point is that FunctionNode objects are used as nodes in the computational graph instead
of Function, and each Function object only holds a weak reference to the corresponding
FunctionNode. Since creator returns the Function object, the FunctionNode object is
not kept by preserving creator.

The above code should be fixed as follows.

creator_node = v.creator_node
v.creator_node = None
...
v.creator_node = creator_node

150 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

creator_node
Function node that has this variable as an output.

See FunctionNode for the definition of a function node.

data
Data array of the corresponding variable.

If the data is not available, it returns None.

grad
Gradient array of the corresponding variable.

If the variable is not available, it returns None.

grad_var
Gradient variable of the corresponding variable.

If the corresponding variable is not available, it return None.

label
Short text that represents the variable node.

rank

requires_grad
It indicates that grad will be set in backward calculation.

4.1.2 N-dimensional array

chainer.Variable holds its value as an n-dimensional array (ndarray). Chainer supports the following classes:

• numpy.ndarray, including ideep4py.mdarray

• cupy.ndarray

• chainerx.ndarray

Note: Python scalars (float, etc.) and NumPy scalars (numpy.float16, numpy.float32, etc.) cannot be
used as chainer.Variable.array . See also chainer.utils.force_array().

4.2 Functions

Chainer provides variety of built-in function implementations in chainer.functions package. These functions
usually return a Variable object or a tuple of multiple Variable objects. For a Variable argument of a
function, an N-dimensional array can be passed if you do not need its gradient. Some functions additionally supports
scalar arguments.

Note: Functions implemented in Chainer consists of the following two parts:

• A class that inherits FunctionNode, which defines forward/backward computation.

• A “wrapper” function around the class.

APIs listed in this page are “wrapper” of FunctionNode implementations. In most cases, you don’t have to use
FunctionNode classes directly.

4.2. Functions 151

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

For example, chainer.functions.sum() is a wrapper function defined as def sum(...): in
chainer/functions/math/sum.py, and it calls its corresponding FunctionNode implementation, Sum. Some func-
tions may not have the corresponding FunctionNode implementation; one example is chainer.functions.
average(), which is defined in chainer/functions/math/average.py, which calls other wrapper functions to calculate
average.

If you are implementing your own functions, please see Define your own function.

4.2.1 Arithmetic functions

Basic arithmetic operations for Variables are implemented as operators. Refer to the Notes section of Variable
for details.

chainer.functions.add() provides better performance when accumulating three or more Variables at
once.

chainer.functions.add Element-wise addition.

chainer.functions.add

chainer.functions.add(*xs)
Element-wise addition.

Returns Output variable.

Return type Variable

4.2.2 Activation functions

chainer.functions.clipped_relu Clipped Rectifier Unit function.
chainer.functions.crelu Concatenated Rectified Linear Unit function.
chainer.functions.elu Exponential Linear Unit function.
chainer.functions.hard_sigmoid Element-wise hard-sigmoid function.
chainer.functions.leaky_relu Leaky Rectified Linear Unit function.
chainer.functions.log_softmax Channel-wise log-softmax function.
chainer.functions.lstm Long Short-Term Memory units as an activation func-

tion.
chainer.functions.maxout Maxout activation function.
chainer.functions.prelu Parametric ReLU function.
chainer.functions.rrelu Randomized Leaky Rectified Liner Unit function.
chainer.functions.relu Rectified Linear Unit function.
chainer.functions.relu6 Rectifier Unit function clipped at 6.
chainer.functions.selu Scaled Exponential Linear Unit function.
chainer.functions.sigmoid Element-wise sigmoid logistic function.
chainer.functions.slstm S-LSTM units as an activation function.
chainer.functions.softmax Softmax function.
chainer.functions.softplus Element-wise softplus function.
chainer.functions.swish Swish activation function.
chainer.functions.tanh Elementwise hyperbolic tangent function.
chainer.functions.tree_lstm TreeLSTM unit as an activation function.

152 Chapter 4. API Reference

https://github.com/chainer/chainer/blob/master/chainer/functions/math/sum.py
https://github.com/chainer/chainer/blob/master/chainer/functions/math/average.py

Chainer Documentation, Release 7.0.0b4

chainer.functions.clipped_relu

chainer.functions.clipped_relu(x, z=20.0)
Clipped Rectifier Unit function.

For a clipping value 𝑧(> 0), it computes

ClippedReLU(𝑥, 𝑧) = min(max(0, 𝑥), 𝑧).

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped float
array.

• z (float) – Clipping value. (default = 20.0)

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped float array.

Return type Variable

Example

>>> x = np.random.uniform(-100, 100, (10, 20)).astype(np.float32)
>>> z = 10.0
>>> np.any(x < 0)
True
>>> np.any(x > z)
True
>>> y = F.clipped_relu(x, z=z)
>>> np.any(y.array < 0)
False
>>> np.any(y.array > z)
False

chainer.functions.crelu

chainer.functions.crelu(x, axis=1)
Concatenated Rectified Linear Unit function.

This function is expressed as follows

𝑓(𝑥) = (max(0, 𝑥),max(0,−𝑥)).

Here, two output values are concatenated along an axis.

See: https://arxiv.org/abs/1603.05201

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float
array.

• axis (int) – Axis that the output values are concatenated along. Default is 1.

Returns Output variable of concatenated array. If the axis is 1, A (𝑠1, 𝑠2 × 2, ..., 𝑠𝑁)-shaped float
array.

4.2. Functions 153

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1603.05201
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3]], np.float32)
>>> x
array([[-1., 0.],

[2., -3.]], dtype=float32)
>>> y = F.crelu(x, axis=1)
>>> y.array
array([[0., 0., 1., 0.],

[2., 0., 0., 3.]], dtype=float32)

chainer.functions.elu

chainer.functions.elu(x, alpha=1.0)
Exponential Linear Unit function.

For a parameter 𝛼, it is expressed as

𝑓(𝑥) =

{︂
𝑥 if 𝑥 ≥ 0
𝛼(exp(𝑥)− 1) if 𝑥 < 0,

See: https://arxiv.org/abs/1511.07289

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float
array.

• alpha (float) – Parameter 𝛼. Default is 1.0.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3]], np.float32)
>>> x
array([[-1., 0.],

[2., -3.]], dtype=float32)
>>> y = F.elu(x, alpha=1.)
>>> y.array
array([[-0.63212055, 0.],

[2. , -0.95021296]], dtype=float32)

chainer.functions.hard_sigmoid

chainer.functions.hard_sigmoid(x)
Element-wise hard-sigmoid function.

154 Chapter 4. API Reference

https://arxiv.org/abs/1511.07289
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

This function is defined as

𝑓(𝑥) =

⎧⎨⎩ 0 if 𝑥 < −2.5
0.2𝑥+ 0.5 if − 2.5 < 𝑥 < 2.5
1 if 2.5 < 𝑥.

Parameters x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped
float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

It maps the input values into the range of [0, 1].

>>> x = np.array([-2.6, -1, 0, 1, 2.6])
>>> x
array([-2.6, -1. , 0. , 1. , 2.6])
>>> F.hard_sigmoid(x).array
array([0. , 0.3, 0.5, 0.7, 1.])

chainer.functions.leaky_relu

chainer.functions.leaky_relu(x, slope=0.2)
Leaky Rectified Linear Unit function.

This function is expressed as

𝑓(𝑥) =

{︂
𝑥 if 𝑥 ≥ 0
𝑎𝑥 if 𝑥 < 0,

where 𝑎 is a configurable slope value.

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float
array.

• slope (float) – Slope value 𝑎.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> x
array([[-1., 0.],

[2., -3.],
[-2., 1.]], dtype=float32)

>>> F.leaky_relu(x, slope=0.2).array
array([[-0.2, 0.],

[2. , -0.6],
[-0.4, 1.]], dtype=float32)

4.2. Functions 155

https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

chainer.functions.log_softmax

chainer.functions.log_softmax(x, axis=1)
Channel-wise log-softmax function.

This function computes its logarithm of softmax along the second axis. Let 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝐷) be the slice of
x along with the second axis. For each slice 𝑐, it computes the logarithm of the function 𝑓(𝑐) defined as

𝑓(𝑐) =
exp(𝑐)∑︀
𝑑 exp(𝑐𝑑)

.

This method is theoretically equivalent to log(softmax(x)) but is more stable.

Note: log(softmax(x)) may cause underflow when x is too small, because softmax(x) may returns
0. log_softmax method is more stable.

Parameters

• x (Variable or N-dimensional array) – Input variable. A 𝑛-dimensional (𝑛 ≥ 2) float
array.

• axis (int) – The axis along which the softmax is to be computed.

Returns Output variable. A 𝑛-dimensional (𝑛 ≥ 2) float array, which is the same shape with x.

Return type Variable

See also:

softmax()

Example

>>> x = np.array([[0, 1, 2], [0, 2, 4]], np.float32)
>>> x
array([[0., 1., 2.],

[0., 2., 4.]], dtype=float32)
>>> F.log_softmax(x).array
array([[-2.407606 , -1.4076059 , -0.4076059],

[-4.1429315 , -2.1429315 , -0.14293146]], dtype=float32)
>>> np.allclose(F.log_softmax(x).data, F.log(F.softmax(x)).data)
True

chainer.functions.lstm

chainer.functions.lstm(c_prev, x)
Long Short-Term Memory units as an activation function.

This function implements LSTM units with forget gates. Let the previous cell state c_prev and the input array
x.

First, the input array x is split into four arrays 𝑎, 𝑖, 𝑓, 𝑜 of the same shapes along the second axis. It means that
x ‘s second axis must have 4 times the c_prev ‘s second axis.

The split input arrays are corresponding to:

156 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• 𝑎 : sources of cell input

• 𝑖 : sources of input gate

• 𝑓 : sources of forget gate

• 𝑜 : sources of output gate

Second, it computes the updated cell state c and the outgoing signal h as:

𝑐 = tanh(𝑎)𝜎(𝑖) + 𝑐prev𝜎(𝑓),

ℎ = tanh(𝑐)𝜎(𝑜),

where 𝜎 is the elementwise sigmoid function. These are returned as a tuple of two variables.

This function supports variable length inputs. The mini-batch size of the current input must be equal to or
smaller than that of the previous one. When mini-batch size of x is smaller than that of c, this function only
updates c[0:len(x)] and doesn’t change the rest of c, c[len(x):]. So, please sort input sequences in
descending order of lengths before applying the function.

Parameters

• c_prev (Variable or N-dimensional array) – Variable that holds the previous cell state.
The cell state should be a zero array or the output of the previous call of LSTM.

• x (Variable or N-dimensional array) – Variable that holds the sources of cell input, input
gate, forget gate and output gate. It must have the second dimension whose size is four times
of that of the cell state.

Returns Two Variable objects c and h. c is the updated cell state. h indicates the outgoing
signal.

Return type tuple

See the original paper proposing LSTM with forget gates: Long Short-Term Memory in Recurrent Neural
Networks.

See also:

LSTM

Example

Assuming y is the current incoming signal, c is the previous cell state, and h is the previous outgoing signal
from an lstm function. Each of y, c and h has n_units channels. Most typical preparation of x is:

>>> n_units = 100
>>> y = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> h = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> c = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> model = chainer.Chain()
>>> with model.init_scope():
... model.w = L.Linear(n_units, 4 * n_units)
... model.v = L.Linear(n_units, 4 * n_units)
>>> x = model.w(y) + model.v(h)
>>> c, h = F.lstm(c, x)

It corresponds to calculate the input array x, or the input sources 𝑎, 𝑖, 𝑓, 𝑜, from the current incoming signal y
and the previous outgoing signal h. Different parameters are used for different kind of input sources.

Note: We use the naming rule below.

4.2. Functions 157

https://docs.python.org/3/library/stdtypes.html#tuple
http://www.felixgers.de/papers/phd.pdf
http://www.felixgers.de/papers/phd.pdf

Chainer Documentation, Release 7.0.0b4

• incoming signal The formal input of the formulation of LSTM (e.g. in NLP, word vector or output of
lower RNN layer). The input of chainer.links.LSTM is the incoming signal.

• input array The array which is linear transformed from incoming signal and the previous outgoing signal.
The input array contains four sources, the sources of cell input, input gate, forget gate and output gate.
The input of chainer.functions.activation.lstm.LSTM is the input array.

chainer.functions.maxout

chainer.functions.maxout(x, pool_size, axis=1)
Maxout activation function.

It accepts an input tensor x, reshapes the axis dimension (say the size being M * pool_size) into two
dimensions (M, pool_size), and takes maximum along the axis dimension.

Parameters

• x (Variable or N-dimensional array) – Input variable. A 𝑛-dimensional (𝑛 ≥ axis)
float array. In general, its first dimension is assumed to be the minibatch dimension. The
other dimensions are treated as one concatenated dimension.

• pool_size (int) – The size used for downsampling of pooling layer.

• axis (int) – The axis dimension to be reshaped. The size of axis dimension should
be M * pool_size.

Returns Output variable. The shape of the output is same as x except that axis dimension is
transformed from M * pool_size to M.

Return type Variable

See also:

Maxout

Example

Typically, x is the output of a linear layer or a convolution layer. The following is the example where we use
maxout() in combination with a Linear link.

>>> in_size, out_size, pool_size = 10, 10, 10
>>> bias = np.arange(out_size * pool_size).astype(np.float32)
>>> l = L.Linear(in_size, out_size * pool_size, initial_bias=bias)
>>> x = np.zeros((1, in_size), np.float32) # prepare data
>>> x = l(x)
>>> y = F.maxout(x, pool_size)
>>> x.shape
(1, 100)
>>> y.shape
(1, 10)
>>> x.reshape((out_size, pool_size)).array
array([[0., 1., 2., 3., 4., 5., 6., 7., 8., 9.],

[10., 11., 12., 13., 14., 15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24., 25., 26., 27., 28., 29.],
[30., 31., 32., 33., 34., 35., 36., 37., 38., 39.],
[40., 41., 42., 43., 44., 45., 46., 47., 48., 49.],
[50., 51., 52., 53., 54., 55., 56., 57., 58., 59.],
[60., 61., 62., 63., 64., 65., 66., 67., 68., 69.],

(continues on next page)

158 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

[70., 71., 72., 73., 74., 75., 76., 77., 78., 79.],
[80., 81., 82., 83., 84., 85., 86., 87., 88., 89.],
[90., 91., 92., 93., 94., 95., 96., 97., 98., 99.]], dtype=float32)

>>> y.array
array([[9., 19., 29., 39., 49., 59., 69., 79., 89., 99.]], dtype=float32)

chainer.functions.prelu

chainer.functions.prelu(x, W)
Parametric ReLU function.

It accepts two arguments: an input x and a weight array W and computes the output as

𝑃𝑅𝑒𝐿𝑈(𝑥𝑖) =

{︃
𝑥𝑖 (𝑥𝑖 > 0)

𝑊𝑖 * 𝑥𝑖 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

Parameters

• x (Variable or N-dimensional array) – Input variable. Its first axis is assumed to be the
minibatch dimension.

• W (Variable or N-dimensional array) – Weight variable.

Returns Output variable

Return type Variable

Example

>>> x = np.arange(-3, 3, dtype=np.float32).reshape((2, 3))
>>> x
array([[-3., -2., -1.],

[0., 1., 2.]], dtype=float32)
>>> W = np.array([0.01, 0.1, 1], dtype=np.float32)
>>> W
array([0.01, 0.1 , 1.], dtype=float32)
>>> F.prelu(x, W)
variable([[-0.03, -0.2 , -1.],

[0. , 1. , 2.]])

Note: When the PReLU function is combined with two-dimensional convolution, the elements of parameter
𝑊 are typically shared across the same filter of different pixels. In order to support such usage, this func-
tion supports the shape of parameter array that indicates leading dimensions of input arrays except the batch
dimension.

For example, if 𝑊 has the shape of (2, 3, 4), 𝑥 must have the shape of (𝐵, 2, 3, 4, 𝑆1, ..., 𝑆𝑁) where 𝐵 is the
batch size and the number of trailing 𝑆’s 𝑁 is an arbitrary non-negative integer.

Warning: 𝑊 is a trainable parameter in the original paper (https://arxiv.org/abs/1502.01852). To train 𝑊 ,
use chainer.links.PReLU instead.

4.2. Functions 159

https://arxiv.org/abs/1502.01852

Chainer Documentation, Release 7.0.0b4

See also:

chainer.links.PReLU to manage the model parameter W.

chainer.functions.rrelu

chainer.functions.rrelu(x, l=1. / 8, u=1. / 3, *, r=None, return_r=False)
Randomized Leaky Rectified Liner Unit function.

This function is expressed as

𝑓(𝑥) = max(𝑥, 𝑟𝑥),

where 𝑟 is a random number sampled from a uniform distribution 𝑈(𝑙, 𝑢).

Note: The 𝑟 corresponds to 𝑎 in the original paper (https://arxiv.org/pdf/1505.00853.pdf).

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float
array.

• l (float) – The lower bound of the uniform distribution.

• u (float) – The upper bound of the uniform distribution.

• r (N-dimensional array or None) – The r to be used for rrelu. The shape and dtype must be
the same as x[0] and should be on the same device. If r is not specified or set to None, an
r will be generated randomly according to the given l and u. If r is specified, l and u will
be ignored.

• return_r (bool) – If True, the r used for rrelu is returned altogether with the output
variable. The returned r can latter be reused by passing it to r argument.

Returns When return_r is False (default), return the output variable. Otherwise returnes the
tuple of the output variable and r (N-dimensional array). The r will be on the same device as
the input. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable or tuple

Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> x
array([[-1., 0.],

[2., -3.],
[-2., 1.]], dtype=float32)

>>> F.rrelu(x).array
array([[-0.24850948, 0.],

[2. , -0.50844127],
[-0.598535 , 1.]], dtype=float32)

160 Chapter 4. API Reference

https://arxiv.org/pdf/1505.00853.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

chainer.functions.relu

chainer.functions.relu(x)
Rectified Linear Unit function.

𝑓(𝑥) = max(0, 𝑥).

Parameters x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped
float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> np.any(x < 0)
True
>>> y = F.relu(x)
>>> np.any(y.array < 0)
False
>>> y.shape
(3, 2)

chainer.functions.relu6

chainer.functions.relu6(x)
Rectifier Unit function clipped at 6.

It computes

ReLU6(𝑥) = min(max(0, 𝑥), 6).

Parameters x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped float
array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped float array.

Return type Variable

See also:

chainer.functions.clipped_relu()

Example

>>> x = np.array([-20, -2, 0, 2, 4, 10, 100]).astype(np.float32)
>>> x
array([-20., -2., 0., 2., 4., 10., 100.], dtype=float32)
>>> F.relu6(x)
variable([0., 0., 0., 2., 4., 6., 6.])

4.2. Functions 161

Chainer Documentation, Release 7.0.0b4

chainer.functions.selu

chainer.functions.selu(x, alpha=1.6732632423543772, scale=1.0507009873554805)
Scaled Exponential Linear Unit function.

For parameters 𝛼 and 𝜆, it is expressed as

𝑓(𝑥) = 𝜆

{︂
𝑥 if 𝑥 ≥ 0
𝛼(exp(𝑥)− 1) if 𝑥 < 0,

See: https://arxiv.org/abs/1706.02515

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float
array.

• alpha (float) – Parameter 𝛼.

• scale (float) – Parameter 𝜆.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

chainer.functions.sigmoid

chainer.functions.sigmoid(x)
Element-wise sigmoid logistic function.

𝑓(𝑥) = (1 + exp(−𝑥))−1.

Parameters x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped
float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

It maps the input values into the range of [0, 1].

>>> x = np.arange(-2, 3, 2).astype(np.float32)
>>> x
array([-2., 0., 2.], dtype=float32)
>>> F.sigmoid(x).array
array([0.11920291, 0.5 , 0.8807971], dtype=float32)

chainer.functions.slstm

chainer.functions.slstm(c_prev1, c_prev2, x1, x2)
S-LSTM units as an activation function.

162 Chapter 4. API Reference

https://arxiv.org/abs/1706.02515
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

This function implements S-LSTM unit. It is an extension of LSTM unit applied to tree structures. The function
is applied to binary trees. Each node has two child nodes. It gets four arguments, previous cell states c_prev1
and c_prev2, and input arrays x1 and x2.

First both input arrays x1 and x2 are split into eight arrays 𝑎1, 𝑖1, 𝑓1, 𝑜1, and 𝑎2, 𝑖2, 𝑓2, 𝑜2. They have the same
shape along the second axis. It means that x1 and x2 ‘s second axis must have 4 times the length of c_prev1
and c_prev2.

The split input arrays are corresponding to:

• 𝑎𝑖 : sources of cell input

• 𝑖𝑖 : sources of input gate

• 𝑓𝑖 : sources of forget gate

• 𝑜𝑖 : sources of output gate

It computes the updated cell state c and the outgoing signal h as:

𝑐 = tanh(𝑎1 + 𝑎2)𝜎(𝑖1 + 𝑖2) + 𝑐prev1𝜎(𝑓1) + 𝑐prev2𝜎(𝑓2),

ℎ = tanh(𝑐)𝜎(𝑜1 + 𝑜2),

where 𝜎 is the elementwise sigmoid function. The function returns c and h as a tuple.

Parameters

• c_prev1 (Variable or N-dimensional array) – Variable that holds the previous cell state
of the first child node. The cell state should be a zero array or the output of the previous call
of LSTM.

• c_prev2 (Variable or N-dimensional array) – Variable that holds the previous cell state
of the second child node.

• x1 (Variable or N-dimensional array) – Variable that holds the sources of cell input,
input gate, forget gate and output gate from the first child node. It must have the second
dimension whose size is four times of that of the cell state.

• x2 (Variable or N-dimensional array) – Variable that holds the input sources from the
second child node.

Returns Two Variable objects c and h. c is the cell state. h indicates the outgoing signal.

Return type tuple

See detail in paper: Long Short-Term Memory Over Tree Structures.

Example

Assuming c1, c2 is the previous cell state of children, and h1, h2 is the previous outgoing signal from children.
Each of c1, c2, h1 and h2 has n_units channels. Most typical preparation of x1, x2 is:

>>> n_units = 100
>>> h1 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> h2 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> c1 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> c2 = chainer.Variable(np.zeros((1, n_units), np.float32))
>>> model1 = chainer.Chain()
>>> with model1.init_scope():
... model1.w = L.Linear(n_units, 4 * n_units)
... model1.v = L.Linear(n_units, 4 * n_units)
>>> model2 = chainer.Chain()

(continues on next page)

4.2. Functions 163

https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1503.04881

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> with model2.init_scope():
... model2.w = L.Linear(n_units, 4 * n_units)
... model2.v = L.Linear(n_units, 4 * n_units)
>>> x1 = model1.w(c1) + model1.v(h1)
>>> x2 = model2.w(c2) + model2.v(h2)
>>> c, h = F.slstm(c1, c2, x1, x2)

It corresponds to calculate the input array x1, or the input sources 𝑎1, 𝑖1, 𝑓1, 𝑜1 from the previous cell state of
first child node c1, and the previous outgoing signal from first child node h1. Different parameters are used for
different kind of input sources.

chainer.functions.softmax

chainer.functions.softmax(x, axis=1)
Softmax function.

This function computes its softmax along an axis. Let 𝑐 = (𝑐1, 𝑐2, . . . , 𝑐𝐷) be the slice of x along with the axis.
For each slice 𝑐, it computes the function 𝑓(𝑐) defined as 𝑓(𝑐) = exp(𝑐)∑︀

𝑑 exp(𝑐𝑑)
.

Parameters

• x (Variable or N-dimensional array) – Input variable. A 𝑛-dimensional (𝑛 ≥ 2) float
array.

• axis (int) – The axis along which the softmax is to be computed.

Returns Output variable. A 𝑛-dimensional (𝑛 ≥ 2) float array, which is the same shape with x.

Return type Variable

Example

>>> x = np.array([[0, 1, 2], [0, 2, 4]], np.float32)
>>> x
array([[0., 1., 2.],

[0., 2., 4.]], dtype=float32)
>>> y = F.softmax(x, axis=1)
>>> y.array
array([[0.09003057, 0.24472848, 0.66524094],

[0.01587624, 0.11731043, 0.86681336]], dtype=float32)
>>> F.sum(y, axis=1).array
array([1., 1.], dtype=float32)

chainer.functions.softplus

chainer.functions.softplus(x, beta=1.0)
Element-wise softplus function.

The softplus function is the smooth approximation of ReLU.

𝑓(𝑥) =
1

𝛽
log(1 + exp(𝛽𝑥)),

where 𝛽 is a parameter. The function becomes curved and akin to ReLU as the 𝛽 is increasing.

164 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float
array.

• beta (float) – Parameter 𝛽.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

>>> x = np.arange(-2, 3, 2).astype(np.float32)
>>> x
array([-2., 0., 2.], dtype=float32)
>>> F.softplus(x, beta=1.0).array
array([0.126928 , 0.6931472, 2.126928], dtype=float32)

chainer.functions.swish

chainer.functions.swish(x, beta)
Swish activation function.

𝑓(𝑥, 𝛽) = 𝑥 · 𝜎(𝛽𝑥),

where 𝜎(·) is the sigmoid function. It has the following properties:

𝑓(𝑥, 0) =
𝑥

2
,

lim
𝛽→∞

𝑓(𝑥, 𝛽) = max(0, 𝑥).

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑠𝐵 , 𝑠1, 𝑠2, ..., 𝑠𝑁), where
𝑠𝐵 is assumed to be the minibatch dimension.

• beta (Variable or N-dimensional array) – Parameter variable 𝛽 of shape
(𝑠1, 𝑠2, ..., 𝑠𝑀), where 𝑀 is an arbitrary integer between 0 ≤ 𝑀 ≤ 𝑁 . The number of
dimensions of beta will be matched with x by reshaping it as (1, 𝑠1, ..., 𝑠𝑀 , 1, ...1), then
beta and x are multiplied together in an element-wise manner.

Returns Output variable of the same shape as x.

Return type Variable

Warning: 𝛽 is a trainable parameter in the original paper (https://arxiv.org/abs/1710.05941). To train 𝛽,
use chainer.links.Swish instead.

See also:

chainer.links.Swish to manage the model parameter beta.

4.2. Functions 165

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1710.05941

Chainer Documentation, Release 7.0.0b4

chainer.functions.tanh

chainer.functions.tanh(x)
Elementwise hyperbolic tangent function.

𝑓(𝑥) = tanh(𝑥).

Parameters x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped
float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

Return type Variable

Example

>>> x = np.arange(-1, 4, 2).astype(np.float32)
>>> x
array([-1., 1., 3.], dtype=float32)
>>> F.tanh(x).array
array([-0.7615942, 0.7615942, 0.9950548], dtype=float32)

chainer.functions.tree_lstm

chainer.functions.tree_lstm(*inputs)
TreeLSTM unit as an activation function.

This function implements TreeLSTM units both for N-ary TreeLSTM and Child-Sum TreeLSTM. Let the chil-
dren cell states 𝑐1, 𝑐2, . . . , 𝑐N, and the incoming signal 𝑥.

First, the incoming signal 𝑥 is split into (3 + N) arrays 𝑎, 𝑖, 𝑜, 𝑓1, 𝑓2, ..., 𝑓N of the same shapes along the second
axis. It means that 𝑥 ‘s second axis must have (3 + N) times of the length of each 𝑐𝑛.

The splitted input signals are corresponding to:

• 𝑎 : sources of cell input

• 𝑖 : sources of input gate

• 𝑜 : sources of output gate

• 𝑓𝑛 : sources of forget gate for n-th ary

Second, it computes outputs as:

𝑐 = tanh(𝑎)sigmoid(𝑖)

+ 𝑐1sigmoid(𝑓1),

+ 𝑐2sigmoid(𝑓2),

+ ...,

+ 𝑐Nsigmoid(𝑓N),

ℎ = tanh(𝑐)sigmoid(𝑜).

These are returned as a tuple of (N + 1) variables.

166 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Parameters inputs (list of Variable) – Variable arguments which include all cell vectors from
child-nodes, and an input vector. Each of the cell vectors and the input vector is Variable or
N-dimensional array. The input vector must have the second dimension whose size is (N + 3)
times of that of each cell, where N denotes the total number of cells.

Returns Two Variable objects c and h. c is the updated cell state. h indicates the outgoing
signal.

Return type tuple

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman
et al. Specifically, eq. 10 in Tai et al. only has one 𝑊 matrix to be applied to 𝑥, consistently for all children.
On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each
child’s cell individually.

Example

Assuming y is the current input signal, c is the previous cell state, and h is the previous output signal from an
tree_lstm() function. Each of y, c and h has n_units channels. Using 2-ary (binary) TreeLSTM, most
typical preparation of x is:

>>> model = chainer.Chain()
>>> with model.init_scope():
... model.w = L.Linear(10, 5 * 10)
... model.v1 = L.Linear(10, 5 * 10)
... model.v2 = L.Linear(10, 5 * 10)
>>> y = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> h1 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> h2 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> c1 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> c2 = np.random.uniform(-1, 1, (4, 10)).astype(np.float32)
>>> x = model.w(y) + model.v1(h1) + model.v2(h2)
>>> c, h = F.tree_lstm(c1, c2, x)

It corresponds to calculate the input sources 𝑎, 𝑖, 𝑜, 𝑓1, 𝑓2 from the current input y and the children’s outputs h1
and h2. Different parameters are used for different kind of input sources.

4.2.3 Array manipulations

chainer.functions.as_strided Create a new view of array with the given shape, strides,
and offset.

chainer.functions.broadcast Broadcast given variables.
chainer.functions.broadcast_to Broadcast a given variable to a given shape.
chainer.functions.cast Cast an input variable to a given type.
chainer.functions.concat Concatenates given variables along an axis.
chainer.functions.copy Copies the input variable onto the specified device.
chainer.functions.depth2space Computes the depth2space transformation for subpixel

calculations.
chainer.functions.diagonal Take diagonal
chainer.functions.dstack Concatenate variables along third axis (depth wise).

Continued on next page

4.2. Functions 167

https://docs.python.org/3/library/stdtypes.html#tuple
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://arxiv.org/pdf/1603.06021.pdf

Chainer Documentation, Release 7.0.0b4

Table 4 – continued from previous page
chainer.functions.expand_dims Expands dimensions of an input variable without copy.
chainer.functions.flatten Flatten a given array into one dimension.
chainer.functions.flip Flips an input variable in reverse order along the given

axis.
chainer.functions.fliplr Flip array in the left/right direction.
chainer.functions.flipud Flip array in the up/down direction.
chainer.functions.get_item Extract elements from array with specified shape, axes

and offsets.
chainer.functions.hstack Concatenate variables horizontally (column wise).
chainer.functions.im2col Extract patches from an image based on the filter.
chainer.functions.moveaxis Move the source axes to the destination.
chainer.functions.pad Pad an input variable.
chainer.functions.pad_sequence Pad given arrays to make a matrix.
chainer.functions.permutate Permutates a given variable along an axis.
chainer.functions.repeat Construct an array by repeating a given array.
chainer.functions.reshape Reshapes an input variable without copy.
chainer.functions.resize_images Resize images to the given shape.
chainer.functions.rollaxis Roll the axis backwards to the given position.
chainer.functions.scatter_add Adds given values to specified elements of an array.
chainer.functions.select_item Select elements stored in given indices.
chainer.functions.separate Separates an array along a given axis.
chainer.functions.space2depth Computes the space2depth transformation for subpixel

calculations.
chainer.functions.
spatial_transformer_grid

2D Spatial Transformer grid.

chainer.functions.
spatial_transformer_sampler

2D Spatial Transformer sampler.

chainer.functions.split_axis Splits given variables along an axis.
chainer.functions.squeeze Remove dimensions of size one from the shape of a

ndarray.
chainer.functions.stack Concatenate variables along a new axis.
chainer.functions.swapaxes Swap two axes of a variable.
chainer.functions.tile Construct an array by tiling a given array.
chainer.functions.transpose Permute the dimensions of an input variable without

copy.
chainer.functions.transpose_sequence Transpose a list of Variables.
chainer.functions.vstack Concatenate variables vertically (row wise).
chainer.functions.where Choose elements depending on condition.

chainer.functions.as_strided

chainer.functions.as_strided(x, shape, strides, storage_offset=None)
Create a new view of array with the given shape, strides, and offset.

Parameters

• x (tuple of Variable or numpy.ndarray or cupy.ndarray) – The array pointing a
memory buffer. Its view is totally ignored.

• shape (tuple of int) – The shape of output.

• strides (tuple of int) – The strides of output, given in the unit of steps.

• storage_offset (int) – The offset between the head of allocated memory and the

168 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

pointer of first element, given in the unit of steps.

Returns The strided variable.

Return type Variable

Warning: Users should be aware that this function potentially causes unintended side effects. See
numpy.lib.stride_tricks.as_strided for the detail.

Note: The backward algorithm is borrowed from torch.Tensor.as_strided. Therefore, the returned gradient of
backward is layout-agnostic when x contains memory overlap. See notes in pytorch’s source code (as_strided
Backward and layout-aware/agnostic autograd) too.

Note: In this function strides and storage_offset are given in the unit of steps instead of bytes. This
specification differs from numpy.lib.stride_tricks.as_strided().

Example

>>> from chainer import functions as F, Variable
>>> x = Variable(np.arange(4, dtype=np.float32))
>>> x
variable([0., 1., 2., 3.])
>>> y = F.as_strided(x, (3, 2), (1, 1), 0)
>>> y
variable([[0., 1.],

[1., 2.],
[2., 3.]])

>>> y.grad = np.ones((3, 2), dtype=np.float32)
>>> y.backward()
>>> x.grad
array([1., 2., 2., 1.], dtype=float32)

chainer.functions.broadcast

chainer.functions.broadcast(*args)
Broadcast given variables.

Parameters args (Variable or N-dimensional array) – Input variables to be broadcasted. Each
dimension of the shapes of the input variables must have the same size.

Returns Variable or tuple of Variable objects which are broadcasted from the given argu-
ments.

Return type Variable

Example

>>> x = np.random.uniform(0, 1, (3, 2)).astype(np.float32)
>>> y = F.broadcast(x)

(continues on next page)

4.2. Functions 169

https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.stride_tricks.as_strided.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.lib.stride_tricks.as_strided.html#numpy.lib.stride_tricks.as_strided

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> np.all(x == y.array)
True
>>> z = np.random.uniform(0, 1, (3, 2)).astype(np.float32)
>>> y, w = F.broadcast(x, z)
>>> np.all(x == y.array) & np.all(z == w.array)
True

chainer.functions.broadcast_to

chainer.functions.broadcast_to(x, shape)
Broadcast a given variable to a given shape.

Parameters

• x (Variable or N-dimensional array) – Input variable to be broadcasted. A
(𝑠1, 𝑠2, ..., 𝑠𝑁)-shaped float array.

• shape (tuple) – Tuple of int of the shape of the output variable.

Returns Output variable broadcasted to the given shape.

Return type Variable

Example

>>> x = np.arange(0, 3)
>>> x
array([0, 1, 2])
>>> y = F.broadcast_to(x, (3, 3))
>>> y.array
array([[0, 1, 2],

[0, 1, 2],
[0, 1, 2]])

chainer.functions.cast

chainer.functions.cast(x, typ)
Cast an input variable to a given type.

Parameters

• x (Variable or N-dimensional array) – Input variable to be casted. A (𝑠1, 𝑠2, ..., 𝑠𝑁)-
shaped array.

• typ (str of dtype or numpy.dtype) – Typecode or data type to cast.

Returns Variable holding a casted array.

Return type Variable

Example

170 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Chainer Documentation, Release 7.0.0b4

>>> x = np.arange(0, 3, dtype=np.float64)
>>> x.dtype
dtype('float64')
>>> y = F.cast(x, np.float32)
>>> y.dtype
dtype('float32')
>>> y = F.cast(x, 'float16')
>>> y.dtype
dtype('float16')

chainer.functions.concat

chainer.functions.concat(xs, axis=1)
Concatenates given variables along an axis.

Parameters

• xs (tuple of Variable or N-dimensional array) – Input variables to be concatenated. The
variables must have the same shape, except in the dimension corresponding to axis.

• axis (int) – The axis along which the arrays will be joined. Default is 1.

Returns The concatenated variable.

Return type Variable

Example

>>> x = np.arange(0, 12).reshape(3, 4)
>>> x
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> y = np.arange(0, 3).reshape(3, 1)
>>> y
array([[0],

[1],
[2]])

>>> z = F.concat((x, y), axis=1)
>>> z.array
array([[0, 1, 2, 3, 0],

[4, 5, 6, 7, 1],
[8, 9, 10, 11, 2]])

chainer.functions.copy

chainer.functions.copy(x, dst)
Copies the input variable onto the specified device.

If the input x already resides on the device specified by dst, no copy will actually take place and the returned
variable will hold a view of the input. In other cases, the input will be copied to dst. When dst == -1, the
array is copied to the host memory. This function supports copies from host to host, from host to device, from
device to device and from device to host.

4.2. Functions 171

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Parameters

• x (Variable or N-dimensional array) – Variable to be copied.

• dst – Target device specifier.

Returns Output variable.

Return type Variable

Example

>>> import chainer.backends.cuda as cuda
>>> x_arr = np.random.uniform(-1, 1, (5, 10))
>>> x = chainer.Variable(x_arr)
>>> x.device
<CpuDevice (numpy)>
>>> y = F.copy(x, '@cupy:0') # from CPU (NumPy) to GPU 0 (CuPy)
>>> y.device
<GpuDevice (cupy):0>

Note: Copies between non-ChainerX devices and ChainerX devices are not supported.

chainer.functions.depth2space

chainer.functions.depth2space(X, r)
Computes the depth2space transformation for subpixel calculations.

Parameters

• X (Variable or N-dimensional array) – Variable holding a 4d array of shape (batch,
channel * r * r, dim1, dim2).

• r (int) – the upscaling factor.

Returns A variable holding the upscaled array from interspersed depth layers. The shape is
(batch, channel, dim1 * r, dim2 * r).

Return type Variable

Note: This can be used to compute super-resolution transformations. See https://arxiv.org/abs/1609.05158 for
details.

See also:

space2depth()

Example

>>> X = np.arange(24).reshape(1, 4, 2, 3).astype(np.float32)
>>> X.shape
(1, 4, 2, 3)
>>> X
array([[[[0., 1., 2.],

(continues on next page)

172 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1609.05158

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

[3., 4., 5.]],

[[6., 7., 8.],
[9., 10., 11.]],

[[12., 13., 14.],
[15., 16., 17.]],

[[18., 19., 20.],
[21., 22., 23.]]]], dtype=float32)

>>> y = F.depth2space(X, 2)
>>> y.shape
(1, 1, 4, 6)
>>> y.array
array([[[[0., 6., 1., 7., 2., 8.],

[12., 18., 13., 19., 14., 20.],
[3., 9., 4., 10., 5., 11.],
[15., 21., 16., 22., 17., 23.]]]], dtype=float32)

chainer.functions.diagonal

chainer.functions.diagonal(x, offset=0, axis1=0, axis2=1)
Take diagonal

Axes other than axis1 and axis2 are regarded as batch dimensions.

Parameters

• x (Variable or N-dimensional array) – A variable to be sliced.

• offset (int) – Offset from the principal diagonal. An upper diagonal matrix can have
nonzero diagonals with nonnegative offsets.

• axis1 (int) – First axis (that has row indices) of matrix

• axis2 (int) – Second axis (that has column indices) of matrix

Returns (Batched) diagonal vectors

Return type Variable

Example

>>> x = chainer.Variable(np.arange(9).reshape(3, 3).astype(np.float32))
>>> x
variable([[0., 1., 2.],

[3., 4., 5.],
[6., 7., 8.]])

>>> chainer.functions.diagonal(x, offset=1)
variable([1., 5.])

4.2. Functions 173

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

chainer.functions.dstack

chainer.functions.dstack(xs)
Concatenate variables along third axis (depth wise).

Parameters xs (list of Variable or N-dimensional array) – Input variables to be concatenated.
The variables must have the same ndim. When the variables have the third axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 3),
the variables must have the same shape along all but the third axis. When the variables do not
have the third axis(i.e. 𝑛𝑑𝑖𝑚 < 3), the variables must have the same shape.

Returns Output variable. When the input variables have the third axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 3), the shapes
of inputs and output are the same along all but the third axis. The length of third axis is the sum
of the lengths of inputs’ third axis. When the shape of variables are (N1, N2) (i.e. 𝑛𝑑𝑖𝑚 = 2),
the shape of output is (N1, N2, 2). When the shape of variables are (N1,) (i.e. 𝑛𝑑𝑖𝑚 = 1),
the shape of output is (1, N1, 2). When the shape of variables are () (i.e. 𝑛𝑑𝑖𝑚 = 0), the
shape of output is (1, 1, 2).

Return type Variable

Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.dstack((x1, x2))
>>> y.shape
(1, 3, 2)
>>> y.array
array([[[1, 2],

[2, 3],
[3, 4]]])

>>> x1 = np.arange(0, 6).reshape(3, 2)
>>> x1.shape
(3, 2)
>>> x1
array([[0, 1],

[2, 3],
[4, 5]])

>>> x2 = np.arange(6, 12).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[6, 7],

[8, 9],
[10, 11]])

>>> y = F.dstack([x1, x2])
>>> y.shape
(3, 2, 2)
>>> y.array
array([[[0, 6],

[1, 7]],

[[2, 8],

(continues on next page)

174 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

[3, 9]],

[[4, 10],
[5, 11]]])

>>> x1 = np.arange(0, 12).reshape(3, 2, 2)
>>> x2 = np.arange(12, 18).reshape(3, 2, 1)
>>> y = F.dstack([x1, x2])
>>> y.shape
(3, 2, 3)
>>> y.array
array([[[0, 1, 12],

[2, 3, 13]],

[[4, 5, 14],
[6, 7, 15]],

[[8, 9, 16],
[10, 11, 17]]])

chainer.functions.expand_dims

chainer.functions.expand_dims(x, axis)
Expands dimensions of an input variable without copy.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• axis (int) – Position where new axis is to be inserted. The axis parameter is acceptable
when −𝑛𝑑𝑖𝑚 − 1 ≤ 𝑎𝑥𝑖𝑠 ≤ 𝑛𝑑𝑖𝑚. (ndim is the dimension of input variables). When
𝑎𝑥𝑖𝑠 < 0, the result is the same with 𝑛𝑑𝑖𝑚+ 1− |𝑎𝑥𝑖𝑠|.

Returns Variable that holds an expanded input. The ndim of output is one greater than that of x.

Return type Variable

Example

>>> x = np.array([1, 2, 3])
>>> x.shape
(3,)
>>> y = F.expand_dims(x, axis=0)
>>> y.shape
(1, 3)
>>> y.array
array([[1, 2, 3]])
>>> y = F.expand_dims(x, axis=1)
>>> y.shape
(3, 1)
>>> y.array
array([[1],

[2],
[3]])

(continues on next page)

4.2. Functions 175

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> y = F.expand_dims(x, axis=-2)
>>> y.shape
(1, 3)
>>> y.array
array([[1, 2, 3]])

chainer.functions.flatten

chainer.functions.flatten(x)
Flatten a given array into one dimension.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable flatten to one dimension.

Return type Variable

Note: When you input a scalar array (i.e. the shape is ()), you can also get the one dimension array whose
shape is (1,).

Example

>>> x = np.array([[1, 2], [3, 4]])
>>> x.shape
(2, 2)
>>> y = F.flatten(x)
>>> y.shape
(4,)
>>> y.array
array([1, 2, 3, 4])

>>> x = np.arange(8).reshape(2, 2, 2)
>>> x.shape
(2, 2, 2)
>>> y = F.flatten(x)
>>> y.shape
(8,)
>>> y.array
array([0, 1, 2, 3, 4, 5, 6, 7])

chainer.functions.flip

chainer.functions.flip(x, axis)
Flips an input variable in reverse order along the given axis.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• axis (int) – Axis along which the input variable is reversed.

176 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Returns Output variable.

Return type Variable

chainer.functions.fliplr

chainer.functions.fliplr(a)
Flip array in the left/right direction.

Parameters a (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.flipud

chainer.functions.flipud(a)
Flip array in the up/down direction.

Parameters a (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.get_item

chainer.functions.get_item(x, slices)
Extract elements from array with specified shape, axes and offsets.

Parameters

• x (Variable or N-dimensional array) – A variable to be sliced.

• slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) – An object to specify the selection
of elements.

Returns A Variable object which contains sliced array of x.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in
slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.uint64
and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

Note: See NumPy documentation for details of indexing.

Example

4.2. Functions 177

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Chainer Documentation, Release 7.0.0b4

>>> x = np.arange(12).reshape((2, 2, 3))
>>> x
array([[[0, 1, 2],

[3, 4, 5]],

[[6, 7, 8],
[9, 10, 11]]])

>>> F.get_item(x, 0)
variable([[0, 1, 2],

[3, 4, 5]])
>>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1]
variable([0, 1])
>>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2]
variable([[2, 5],

[8, 11]])
>>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0]
variable([9])

chainer.functions.hstack

chainer.functions.hstack(xs)
Concatenate variables horizontally (column wise).

Parameters xs (list of Variable or N-dimensional array) – Input variables to be concatenated.
The variables must have the same ndim. When the variables have the second axis (i.e. 𝑛𝑑𝑖𝑚 ≥
2), the variables must have the same shape along all but the second axis. When the variables do
not have the second axis(i.e. 𝑛𝑑𝑖𝑚 < 2), the variables need not to have the same shape.

Returns Output variable. When the input variables have the second axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 2), the shapes
of inputs and output are the same along all but the second axis. The length of second axis is the
sum of the lengths of inputs’ second axis. When the variables do not have the second axis (i.e.
𝑛𝑑𝑖𝑚 < 2), the shape of output is (N,) (N is the sum of the input variables’ size).

Return type Variable

Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.hstack((x1, x2))
>>> y.shape
(6,)
>>> y.array
array([1, 2, 3, 2, 3, 4])
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[0, 1, 2, 3],

[4, 5, 6, 7],

(continues on next page)

178 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

[8, 9, 10, 11]])
>>> x2 = np.arange(12, 18).reshape(3, 2)
>>> x2.shape
(3, 2)
>>> x2
array([[12, 13],

[14, 15],
[16, 17]])

>>> y = F.hstack([x1, x2])
>>> y.shape
(3, 6)
>>> y.array
array([[0, 1, 2, 3, 12, 13],

[4, 5, 6, 7, 14, 15],
[8, 9, 10, 11, 16, 17]])

chainer.functions.im2col

chainer.functions.im2col(x, ksize, stride=1, pad=0, cover_all=False, dilate=1)
Extract patches from an image based on the filter.

This function rearranges patches of an image and puts them in the channel dimension of the output.

Patches are extracted at positions shifted by multiples of stride from the first position -pad for each spatial
axis. The right-most (or bottom-most) patches do not run over the padded spatial size.

Notation: here is a notation.

• 𝑛 is the batch size.

• 𝑐 is the number of the input channels.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

• 𝑠𝑌 and 𝑠𝑋 are the strides of the filter.

• 𝑝𝐻 and 𝑝𝑊 are the spatial padding sizes.

• 𝑑𝑌 and 𝑑𝑋 are the dilation factors of filter application.

The output size (ℎ𝑂, 𝑤𝑂) is determined by the following equations when cover_all = False:

ℎ𝑂 = (ℎ+ 2𝑝𝐻 − 𝑘𝐻 − (𝑘𝐻 − 1) * (𝑑𝑌 − 1))/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊 − (𝑘𝑊 − 1) * (𝑑𝑋 − 1))/𝑠𝑋 + 1.

When cover_all = True, the output size is determined by the following equations:

ℎ𝑂 = (ℎ+ 2𝑝𝐻 − 𝑘𝐻 − (𝑘𝐻 − 1) * (𝑑𝑌 − 1) + 𝑠𝑌 − 1)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊 − (𝑘𝑊 − 1) * (𝑑𝑋 − 1) + 𝑠𝑋 − 1)/𝑠𝑋 + 1.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐, ℎ, 𝑤).

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

4.2. Functions 179

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• cover_all (bool) – If True, all spatial locations are rearranged into some output pixels.
It may make the output size larger.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

Returns Output variable whose shape is (𝑛, 𝑐 · 𝑘𝐻 · 𝑘𝑊 , ℎ𝑂, 𝑤𝑂)

Return type Variable

chainer.functions.moveaxis

chainer.functions.moveaxis(x, source, destination)
Move the source axes to the destination.

This function transpose the input x by moving the axes source to the axes destination. Other axes remain
in their original order.

See also chainer.functions.transpose(), chainer.functions.swapaxes().

Parameters

• x (Variable or N-dimensional array) – Input variable.

• source (int or tuple of int) – Original positions of the axes to move. These
must be unique.

• destination (int or tuple of int) – Destination positions for each of the orig-
inal axes. These must also be unique.

Returns Variable whose axis is moved.

Return type Variable

Example

>>> x = np.zeros((2, 3, 4, 5), np.float32)
>>> chainer.functions.moveaxis(x, 0, -1).shape
(3, 4, 5, 2)
>>> chainer.functions.moveaxis(x, (0, 3), (2, 0)).shape
(5, 3, 2, 4)

chainer.functions.pad

chainer.functions.pad(x, pad_width, mode, **keywords)
Pad an input variable.

Parameters

• x (Variable or N-dimensional array) – Input data.

• pad_width (int or array-like) – Number of values padded to the edges of each
axis.

180 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• mode (str) – Specifies how the function fills the periphery of the array. The mode is
passed to numpy.pad() or cupy.pad(). If it is 'constant', the input is padded by
a constant value specified by constant_values.

• constant_values (int or array-like) – Constant values to fill the periphery in
the 'constant' mode.

Returns Output variable.

Return type Variable

chainer.functions.pad_sequence

chainer.functions.pad_sequence(xs, length=None, padding=0)
Pad given arrays to make a matrix.

Parameters

• xs (list of ~chainer.Variable or N-dimensional array) – Variables you want to concatenate.

• length (None or int) – Size of the first dimension of a padded array. If it is None,
the longest size of the first dimension of xs is used.

• padding (int or float) – Value to fill.

Returns A padded matrix. Its shape is (n, length, ...), where n == len(xs).

Return type Variable

chainer.functions.permutate

chainer.functions.permutate(x, indices, axis=0, inv=False)
Permutates a given variable along an axis.

This function permutate x with given indices. That means y[i] = x[indices[i]] for all i. Note
that this result is same as y = x.take(indices). indices must be a permutation of [0, 1, ...,
len(x) - 1].

When inv is True, indices is treated as its inverse. That means y[indices[i]] = x[i].

Parameters

• x (Variable or N-dimensional array) – Variable to permutate. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped
float array.

• indices (Variable or N-dimensional array) – Indices to extract from the variable. A
one-dimensional int array.

• axis (int) – Axis that the input array is permutate along.

• inv (bool) – If True, indices is treated as its inverse.

Returns Output variable.

Return type Variable

Example

4.2. Functions 181

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.pad.html#numpy.pad
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.pad.html#cupy.pad
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

>>> x = np.arange(6).reshape((3, 2)).astype(np.float32)
>>> x
array([[0., 1.],

[2., 3.],
[4., 5.]], dtype=float32)

>>> indices = np.array([2, 0, 1], np.int32)
>>> y = F.permutate(x, indices)
>>> y.array
array([[4., 5.],

[0., 1.],
[2., 3.]], dtype=float32)

>>> y = F.permutate(x, indices, inv=True)
>>> y.array
array([[2., 3.],

[4., 5.],
[0., 1.]], dtype=float32)

>>> indices = np.array([1, 0], np.int32)
>>> y = F.permutate(x, indices, axis=1)
>>> y.array
array([[1., 0.],

[3., 2.],
[5., 4.]], dtype=float32)

chainer.functions.repeat

chainer.functions.repeat(x, repeats, axis=None)
Construct an array by repeating a given array.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• repeats (int or tuple of int s) – The number of times which each element of x is
repeated.

• axis (int) – The axis along which to repeat values.

Returns The repeated output Variable.

Return type Variable

Example

>>> x = np.array([0, 1, 2])
>>> x.shape
(3,)
>>> y = F.repeat(x, 2)
>>> y.shape
(6,)
>>> y.array
array([0, 0, 1, 1, 2, 2])
>>> x = np.array([[1,2], [3,4]])
>>> x.shape
(2, 2)
>>> y = F.repeat(x, 3, axis=1)
>>> y.shape

(continues on next page)

182 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

(2, 6)
>>> y.array
array([[1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 4]])
>>> y = F.repeat(x, (1, 2), axis=0)
>>> y.shape
(3, 2)
>>> y.array
array([[1, 2],

[3, 4],
[3, 4]])

chainer.functions.reshape

chainer.functions.reshape(x, shape)
Reshapes an input variable without copy.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• shape (tuple of int s) – Expected shape of the output array. The number of elements
which the array of shape contains must be equal to that of input array. One shape dimen-
sion can be -1. In this case, the value is inferred from the length of the array and remaining
dimensions.

Returns Variable that holds a reshaped version of the input variable.

Return type Variable

See also:

numpy.reshape(), cupy.reshape()

Example

>>> x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
>>> y = F.reshape(x, (8,))
>>> y.shape
(8,)
>>> y.array
array([1, 2, 3, 4, 5, 6, 7, 8])
>>> y = F.reshape(x, (4, -1)) # the shape of output is inferred
>>> y.shape
(4, 2)
>>> y.array
array([[1, 2],

[3, 4],
[5, 6],
[7, 8]])

>>> y = F.reshape(x, (4, 3)) # the shape of input and output are not consistent
Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType:
Invalid operation is performed in: Reshape (Forward)

(continues on next page)

4.2. Functions 183

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy.reshape
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.reshape.html#cupy.reshape

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

Expect: prod(in_types[0].shape) == prod((4, 3))
Actual: 8 != 12

chainer.functions.resize_images

chainer.functions.resize_images(x, output_shape, mode=’bilinear’, align_corners=True)
Resize images to the given shape.

This function resizes 2D data to output_shape. Currently, only bilinear interpolation is supported as the
sampling method.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 is the number of the input channels.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• ℎ𝑂 and 𝑤𝑂 are the height and width of the output image.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• output_shape (tuple) – This is a tuple of length 2 whose values are (h_O, w_O).
Note that the order of height and width is opposite of the one in OpenCV.

• mode ({'bilinear', 'nearest'}) – Defines the sampling rule.

• align_corners (bool) – When this value is True, the corners of the input are mapped
to the corners of the output. When False, the behavior is the same as OpenCV.

Returns Resized image whose shape is (𝑛, 𝑐𝐼 , ℎ𝑂, 𝑤𝑂).

Return type Variable

chainer.functions.rollaxis

chainer.functions.rollaxis(x, axis, start=0)
Roll the axis backwards to the given position.

This function continues to be supported for backward compatibility, but you should prefer chainer.
functions.moveaxis(x, source, destination). See chainer.functions.moveaxis().

Parameters

• x (Variable or N-dimensional array) – Input variable.

• axis (int) – The axis to roll backwards.

• start (int) – The place to which the axis is moved.

Returns Variable whose axis is rolled.

Return type Variable

184 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

chainer.functions.scatter_add

chainer.functions.scatter_add(a, slices, b)
Adds given values to specified elements of an array.

This function adds b to the specified elements of the copy of a, and returns the copy. The value of the original
a is not changed.

Parameters

• a (Variable or N-dimensional array) – A variable.

• slices (int, slice, Ellipsis, None, integer array-like,
boolean array-like or tuple of them) – It is an integer, a slice, an
ellipsis, a numpy.newaxis, an integer array-like, a boolean array-like or tuple of them.

• b (Variable or N-dimensional array) – A variable that is scatter added to a. Its shape has
to equal a[slices] because broadcasting of variables is not supported.

Returns A Variable object which is the result of scatter addition.

Note: It only supports types that are supported by CUDA’s atomicAdd when an integer array is included in
slices. The supported types are numpy.float32, numpy.int32, numpy.uint32, numpy.uint64
and numpy.ulonglong.

Note: It does not support slices that contains multiple boolean arrays.

See also:

numpy.add.at() and cupyx.scatter_add().

chainer.functions.select_item

chainer.functions.select_item(x, t)
Select elements stored in given indices.

This function returns t.choose(x.T), that means y[i] == x[i, t[i]] for all i.

Parameters

• x (Variable or N-dimensional array) – Variable storing arrays. A two-dimensional float
array.

• t (Variable or N-dimensional array) – Variable storing index numbers. A one-
dimensional int array. Length of the t should be equal to x.shape[0].

Returns Variable that holds t-th element of x.

Return type Variable

Example

>>> x = np.array([[0, 1, 2], [3, 4, 5]], np.float32)
>>> t = np.array([0, 2], np.int32)
>>> y = F.select_item(x, t)
>>> y.shape

(continues on next page)

4.2. Functions 185

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs-cupy.chainer.org/en/latest/reference/generated/cupyx.scatter_add.html#cupyx.scatter_add

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

(2,)
>>> y.array
array([0., 5.], dtype=float32)

chainer.functions.separate

chainer.functions.separate(x, axis=0)
Separates an array along a given axis.

This function separates an array along a given axis. For example, shape of an array is (2, 3, 4). When it
separates the array with axis=1, it returns three (2, 4) arrays.

This function is an inverse of chainer.functions.stack().

Parameters

• x (Variable or N-dimensional array) – Variable to be separated. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -
shaped float array.

• axis (int) – Axis along which variables are separated.

Returns Output variables.

Return type tuple of chainer.Variable

See also:

chainer.functions.stack()

Example

>>> x = np.arange(6).reshape((2, 3)).astype(np.float32)
>>> x
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)
>>> x.shape
(2, 3)
>>> y = F.separate(x) # split along axis=0
>>> isinstance(y, tuple)
True
>>> len(y)
2
>>> y[0].shape
(3,)
>>> y[0].array
array([0., 1., 2.], dtype=float32)
>>> y = F.separate(x, axis=1)
>>> len(y)
3
>>> y[0].shape
(2,)
>>> y[0].array
array([0., 3.], dtype=float32)

186 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

chainer.functions.space2depth

chainer.functions.space2depth(X, r)
Computes the space2depth transformation for subpixel calculations.

Parameters

• X (Variable or N-dimensional array) – Variable holding a 4d array of shape (batch,
channel, dim1 * r, dim2 * r).

• r (int) – the downscaling factor.

Returns A variable holding the downscaled layer array from subpixel array sampling. The shape is
(batch, channel * r * r, dim1, dim2).

Return type Variable

Note: This can be used to compute inverse super-resolution transformations. See https://arxiv.org/abs/1609.
05158 for details.

See also:

depth2space()

Example

>>> X = np.arange(24).reshape(1, 1, 4, 6).astype(np.float32)
>>> X.shape
(1, 1, 4, 6)
>>> X
array([[[[0., 1., 2., 3., 4., 5.],

[6., 7., 8., 9., 10., 11.],
[12., 13., 14., 15., 16., 17.],
[18., 19., 20., 21., 22., 23.]]]], dtype=float32)

>>> y = F.space2depth(X, 2)
>>> y.shape
(1, 4, 2, 3)
>>> y.array
array([[[[0., 2., 4.],

[12., 14., 16.]],

[[1., 3., 5.],
[13., 15., 17.]],

[[6., 8., 10.],
[18., 20., 22.]],

[[7., 9., 11.],
[19., 21., 23.]]]], dtype=float32)

chainer.functions.spatial_transformer_grid

chainer.functions.spatial_transformer_grid(theta, output_shape, **kwargs)
2D Spatial Transformer grid.

4.2. Functions 187

https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1609.05158
https://arxiv.org/abs/1609.05158

Chainer Documentation, Release 7.0.0b4

This function generates coordinates of the points sampled from an image to perform warping described in Spatial
Transformer Networks.

Given a coordinate in the warped image (𝑥𝑡𝑖, 𝑦
𝑡
𝑖), the point sampled from the source image (𝑥𝑠𝑖 , 𝑦

𝑠
𝑖) are calculated

by the following equation.

Note: cuDNN supports SpatialTransformerGrid from version 5.0.0.

(︂
𝑥𝑠𝑖
𝑦𝑠𝑖

)︂
=

(︂
𝜃11 𝜃12 𝜃13
𝜃21 𝜃22 𝜃23

)︂⎛⎝𝑥𝑡𝑖𝑦𝑡𝑖
1

⎞⎠
Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• ℎ𝑂 and 𝑤𝑂 are the height and the width of the output image.

Parameters

• theta (Variable or N-dimensional array) – An array of shape (𝑛, 2, 3). This is a batch
of 2× 3 matrix used for the warping described above.

• output_shape (tuple) – A tuple of 2 elements: ℎ𝑂, 𝑤𝑂.

Returns A variable of shape (𝑛, 2, ℎ𝑂, 𝑤𝑂). In the 2nd dimension, the first element is the coordinate
along the x axis, and the second element is the coordinate along the y axis. All the coordinates in
the image are scaled to fit range [−1, 1]. This means that the coordinate (−1,−1) corresponds
to the upper-left corner of the input image.

Return type Variable

chainer.functions.spatial_transformer_sampler

chainer.functions.spatial_transformer_sampler(x, grid, **kwargs)
2D Spatial Transformer sampler.

This is a differentiable image sampler. With a set of sampling points grid and an input feature map x, this
produces a sampled output feature map.

This function currently only supports bilinear interpolation as a sampling kernel.

When coordinates in grid is outside range [−1, 1], values are sampled from a zero padded input image.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 is the number of the input channels.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• ℎ𝑂 and 𝑤𝑂 are the height and width of the output image.

See detail in the following paper: Spatial Transformer Networks.

Note: cuDNN supports SpatialTransformerSampler from version 5.0.0.

188 Chapter 4. API Reference

https://arxiv.org/abs/1506.02025
https://arxiv.org/abs/1506.02025
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1506.02025

Chainer Documentation, Release 7.0.0b4

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• grid (Variable) – Coordinate variable of shape (𝑛, 2, ℎ𝑂, 𝑤𝑂). Each coordinate defines
the spatial location in the input where a sampling kernel is applied to get the value at a
particular pixel in the output. grid[idx, :, i, j] corresponds to the coordinate
that is used to sample the values for an output pixel at location (𝑖, 𝑗).

In the second dimension, the first coordinate corresponds to the location along the horizontal
axis, and the second coordinate corresponds to the location along the vertical axis.

The coordinate (−1,−1) corresponds to the upper-left corner of the input image.

Returns Output feature map of shape (𝑛, 𝑐𝐼 , ℎ𝑂, 𝑤𝑂).

Return type Variable

chainer.functions.split_axis

chainer.functions.split_axis(x, indices_or_sections, axis, force_tuple=True)
Splits given variables along an axis.

Parameters

• x (Variable or N-dimensional array) – A variable to be split.

• indices_or_sections (int or 1-D array) – If this argument is an integer, N,
the array will be divided into N equal arrays along axis. If it is a 1-D array of sorted integers,
it indicates the positions where the array is split.

• axis (int) – Axis that the input array is split along.

• force_tuple (bool) – If True (the default) this method returns a tuple even when the
number of outputs is one. Otherwise, if False a Variable will be returned when the number
of outputs is one.

Returns Tuple of Variable objects if the number of outputs is more than 1 or Variable other-
wise. When force_tuple is True, returned value is always a tuple regardless of the number
of outputs.

Return type tuple or Variable

chainer.functions.squeeze

chainer.functions.squeeze(x, axis=None)
Remove dimensions of size one from the shape of a ndarray.

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float
array.

• axis (None or int or tuple of ints) – A subset of the single-dimensional en-
tries in the shape to remove. If None is supplied, all of them are removed. The dimension
index starts at zero. If an axis with dimension greater than one is selected, an error is raised.

Returns Variable whose dimensions of size 1 are removed.

Return type Variable

4.2. Functions 189

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Example

>>> x = np.array([[[[0, 1, 2]]], [[[3, 4, 5]]]], np.float32)
>>> x.shape
(2, 1, 1, 3)
>>> y = F.squeeze(x)
>>> y.shape
(2, 3)
>>> y.array
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)
>>> y = F.squeeze(x, axis=1)
>>> y.shape
(2, 1, 3)
>>> y.array
array([[[0., 1., 2.]],

[[3., 4., 5.]]], dtype=float32)
>>> y = F.squeeze(x, axis=(1, 2))
>>> y.shape
(2, 3)
>>> y.array
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)

chainer.functions.stack

chainer.functions.stack(xs, axis=0)
Concatenate variables along a new axis.

Parameters

• xs (list of Variable or N-dimensional array) – Input variables to be concatenated. The
variables must have the same shape.

• axis (int) – The axis along which the arrays will be stacked. The axis parameter is
acceptable when −𝑛𝑑𝑖𝑚− 1 ≤ 𝑎𝑥𝑖𝑠 ≤ 𝑛𝑑𝑖𝑚. (ndim is the dimension of input variables).
When 𝑎𝑥𝑖𝑠 < 0, the result is the same with 𝑛𝑑𝑖𝑚+ 1− |𝑎𝑥𝑖𝑠|.

Returns Output variable. Let x_1, x_2, ..., x_n and y be the input variables and the output
variable, y[:, ..., 0, ..., :] is x_1, y[:, ..., 1, ..., :] is x_2 and
y[:, ..., n-1, ..., :] is x_n (The indexed axis indicates the axis).

Return type Variable

Example

>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x2 = np.arange(12, 24).reshape(3, 4)

(continues on next page)

190 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> x2.shape
(3, 4)
>>> x2
array([[12, 13, 14, 15],

[16, 17, 18, 19],
[20, 21, 22, 23]])

>>> y = F.stack([x1, x2], axis=0)
>>> y.shape
(2, 3, 4)
>>> y.array
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y = F.stack([x1, x2], axis=1)
>>> y.shape
(3, 2, 4)
>>> y.array
array([[[0, 1, 2, 3],

[12, 13, 14, 15]],

[[4, 5, 6, 7],
[16, 17, 18, 19]],

[[8, 9, 10, 11],
[20, 21, 22, 23]]])

>>> y = F.stack([x1, x2], axis=2)
>>> y.shape
(3, 4, 2)
>>> y.array
array([[[0, 12],

[1, 13],
[2, 14],
[3, 15]],

[[4, 16],
[5, 17],
[6, 18],
[7, 19]],

[[8, 20],
[9, 21],
[10, 22],
[11, 23]]])

>>> y = F.stack([x1, x2], axis=-1)
>>> y.shape
(3, 4, 2)

chainer.functions.swapaxes

chainer.functions.swapaxes(x, axis1, axis2)
Swap two axes of a variable.

4.2. Functions 191

Chainer Documentation, Release 7.0.0b4

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float
array.

• axis1 (int) – The first axis to swap.

• axis2 (int) – The second axis to swap.

Returns Variable whose axes are swapped.

Return type Variable

Example

>>> x = np.array([[[0, 1, 2], [3, 4, 5]]], np.float32)
>>> x.shape
(1, 2, 3)
>>> y = F.swapaxes(x, axis1=0, axis2=1)
>>> y.shape
(2, 1, 3)
>>> y.array
array([[[0., 1., 2.]],

[[3., 4., 5.]]], dtype=float32)

chainer.functions.tile

chainer.functions.tile(x, reps)
Construct an array by tiling a given array.

Parameters

• x (Variable or N-dimensional array) – Input variable. Let the length of reps be d. If
x.ndim < d, x is treated as d-dimensional array by prepending new axes. For example,
when the shape of x is (2,) and tiled with 2-dim repetitions, x is treated as the shape (1,
2). If x.ndim > d, reps is treated as x.ndim-dimensional by pre-pending 1’s. For
example, when the shape of x is (2, 3, 2, 3), the 2-dim reps of (2, 2) is treated
as (1, 1, 2, 2).

• reps (int or tuple of int s) – The number of times which x is replicated along each
axis.

Returns The tiled output Variable. Let the length of reps be d, the output has the dimension of
max(d, x.ndim).

Return type Variable

Example

>>> x = np.array([0, 1, 2])
>>> x.shape
(3,)
>>> y = F.tile(x, 2)
>>> y.shape
(6,)
>>> y.array

(continues on next page)

192 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

array([0, 1, 2, 0, 1, 2])
>>> y = F.tile(x, (2, 2))
>>> y.shape
(2, 6)
>>> y.array
array([[0, 1, 2, 0, 1, 2],

[0, 1, 2, 0, 1, 2]])
>>> y = F.tile(x, (2, 1, 2))
>>> y.shape
(2, 1, 6)
>>> y.array
array([[[0, 1, 2, 0, 1, 2]],

[[0, 1, 2, 0, 1, 2]]])

>>> x = np.array([[1, 2], [3, 4]])
>>> x.shape
(2, 2)
>>> y = F.tile(x, 2)
>>> y.shape
(2, 4)
>>> y.array
array([[1, 2, 1, 2],

[3, 4, 3, 4]])
>>> y = F.tile(x, (2, 2))
>>> y.shape
(4, 4)
>>> y.array
array([[1, 2, 1, 2],

[3, 4, 3, 4],
[1, 2, 1, 2],
[3, 4, 3, 4]])

>>> y = F.tile(x, (2, 1, 2))
>>> y.shape
(2, 2, 4)
>>> y.array
array([[[1, 2, 1, 2],

[3, 4, 3, 4]],

[[1, 2, 1, 2],
[3, 4, 3, 4]]])

chainer.functions.transpose

chainer.functions.transpose(x, axes=None)
Permute the dimensions of an input variable without copy.

Parameters

• x (Variable or N-dimensional array) – Input variable to be transposed. A (𝑠1, 𝑠2, ..., 𝑠𝑁)
-shaped float array.

• axes (tuple of ints) – By default, reverse the dimensions, otherwise permute the
axes according to the values given.

Returns Variable whose axes are permuted.

4.2. Functions 193

Chainer Documentation, Release 7.0.0b4

Return type Variable

Example

>>> x = np.array([[[0, 1, 2], [3, 4, 5]]], np.float32)
>>> x.shape
(1, 2, 3)
>>> y = F.transpose(x) # reverse the dimensions
>>> y.shape
(3, 2, 1)
>>> y.array
array([[[0.],

[3.]],

[[1.],
[4.]],

[[2.],
[5.]]], dtype=float32)

>>> y = F.transpose(x, axes=(1, 0, 2)) # swap 1st and 2nd axis
>>> y.shape
(2, 1, 3)
>>> y.array
array([[[0., 1., 2.]],

[[3., 4., 5.]]], dtype=float32)

chainer.functions.transpose_sequence

chainer.functions.transpose_sequence(xs)
Transpose a list of Variables.

This function transposes a list of Variables and returns a list of Variables. For example a user gives [(0,
1, 2, 3), (4, 5), (6)], the function returns [(0, 4, 6), (1, 5), (2), (3)]. Note that a
given list needs to be sorted by each length of Variable.

Parameters xs (list of Variable or N-dimensional array) – Variables to transpose.

Returns Transposed list.

Return type tuple of Variable

Example

>>> lst = [chainer.Variable(np.array([1, 1, 1])),
... chainer.Variable(np.array([2, 2])),
... chainer.Variable(np.array([3]))]
>>> lst
[variable([1, 1, 1]), variable([2, 2]), variable([3])]
>>> transposed = F.transpose_sequence(lst)
>>> transposed
(variable([1, 2, 3]), variable([1, 2]), variable([1]))

194 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

chainer.functions.vstack

chainer.functions.vstack(xs)
Concatenate variables vertically (row wise).

Parameters xs (list of Variable or N-dimensional array) – Input variables to be concatenated.
The variables must have the same ndim. When the variables have the second axis (i.e. 𝑛𝑑𝑖𝑚 ≥
2), the variables must have the same shape along all but the first axis. When the variables do not
have the second axis(i.e. 𝑛𝑑𝑖𝑚 < 2), the variables must have the same shape.

Returns Output variable. When the input variables have the second axis (i.e. 𝑛𝑑𝑖𝑚 ≥ 2), the shapes
of inputs and output are the same along all but the first axis. The length of first axis is the sum of
the lengths of inputs’ first axis. When the variables do not have the second axis (i.e. 𝑛𝑑𝑖𝑚 < 2),
the shape of output is (2, N) (N is the size of the input variable).

Return type Variable

Example

>>> x1 = np.array((1, 2, 3))
>>> x1.shape
(3,)
>>> x2 = np.array((2, 3, 4))
>>> x2.shape
(3,)
>>> y = F.vstack((x1, x2))
>>> y.shape
(2, 3)
>>> y.array
array([[1, 2, 3],

[2, 3, 4]])
>>> x1 = np.arange(0, 12).reshape(3, 4)
>>> x1.shape
(3, 4)
>>> x1
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]])

>>> x2 = np.arange(12, 20).reshape(2, 4)
>>> x2.shape
(2, 4)
>>> x2
array([[12, 13, 14, 15],

[16, 17, 18, 19]])
>>> y = F.vstack([x1, x2])
>>> y.shape
(5, 4)
>>> y.array
array([[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])

4.2. Functions 195

Chainer Documentation, Release 7.0.0b4

chainer.functions.where

chainer.functions.where(condition, x, y)
Choose elements depending on condition.

This function choose values depending on a given condition. All condition, x, and y must have the same
shape.

Parameters

• condition (Variable or N-dimensional array) – Input variable containing the condi-
tion. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped boolean array. Only boolean array is permitted.

• x (Variable or N-dimensional array) – Input variable chosen when condition is
True. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

• y (Variable or N-dimensional array) – Input variable chosen when condition is
False. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

Returns Variable containing chosen values.

Return type Variable

Example

>>> cond = np.array([[1, 0], [0, 1]], dtype=np.bool)
>>> cond
array([[True, False],

[False, True]])
>>> x = np.array([[1, 2], [3, 4]], np.float32)
>>> y = np.zeros((2, 2), np.float32)
>>> F.where(cond, x, y).array
array([[1., 0.],

[0., 4.]], dtype=float32)

4.2.4 Neural network connections

chainer.functions.bilinear Applies a bilinear function based on given parameters.
chainer.functions.convolution_1d 1-dimensional convolution function.
chainer.functions.convolution_2d Two-dimensional convolution function.
chainer.functions.convolution_3d 3-dimensional convolution function.
chainer.functions.convolution_nd N-dimensional convolution function.
chainer.functions.deconvolution_1d 1-dimensional deconvolution function.
chainer.functions.deconvolution_2d Two dimensional deconvolution function.
chainer.functions.deconvolution_3d 3-dimensional deconvolution function.
chainer.functions.deconvolution_nd N-dimensional deconvolution function.
chainer.functions.
depthwise_convolution_2d

Two-dimensional depthwise convolution function.

chainer.functions.
deformable_convolution_2d_sampler

Two-dimensional deformable convolution function us-
ing computed offset.

chainer.functions.
dilated_convolution_2d

Two-dimensional dilated convolution function.

chainer.functions.embed_id Efficient linear function for one-hot input.
Continued on next page

196 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Table 5 – continued from previous page
chainer.functions.linear Linear function, or affine transformation.
chainer.functions.
local_convolution_2d

Two-dimensional local convolution function.

chainer.functions.n_step_bigru Stacked Bi-directional Gated Recurrent Unit function.
chainer.functions.n_step_bilstm Stacked Bi-directional Long Short-Term Memory func-

tion.
chainer.functions.n_step_birnn Stacked Bi-directional RNN function for sequence in-

puts.
chainer.functions.n_step_gru Stacked Uni-directional Gated Recurrent Unit function.
chainer.functions.n_step_lstm Stacked Uni-directional Long Short-Term Memory

function.
chainer.functions.n_step_rnn Stacked Uni-directional RNN function for sequence in-

puts.
chainer.functions.shift Shift function.

chainer.functions.bilinear

chainer.functions.bilinear(e1, e2, W, V1=None, V2=None, b=None)
Applies a bilinear function based on given parameters.

This is a building block of Neural Tensor Network (see the reference paper below). It takes two input variables
and one or four parameters, and outputs one variable.

To be precise, denote six input arrays mathematically by 𝑒1 ∈ R𝐼·𝐽 , 𝑒2 ∈ R𝐼·𝐾 , 𝑊 ∈ R𝐽·𝐾·𝐿, 𝑉 1 ∈ R𝐽·𝐿,
𝑉 2 ∈ R𝐾·𝐿, and 𝑏 ∈ R𝐿, where 𝐼 is mini-batch size. In this document, we call 𝑉 1, 𝑉 2, and 𝑏 linear parameters.

The output of forward propagation is calculated as

𝑦𝑖𝑙 =
∑︁
𝑗𝑘

𝑒1𝑖𝑗𝑒
2
𝑖𝑘𝑊𝑗𝑘𝑙 +

∑︁
𝑗

𝑒1𝑖𝑗𝑉
1
𝑗𝑙 +

∑︁
𝑘

𝑒2𝑖𝑘𝑉
2
𝑘𝑙 + 𝑏𝑙.

Note that V1, V2, b are optional. If these are not given, then this function omits the last three terms in the above
equation.

Note: This function accepts an input variable e1 or e2 of a non-matrix array. In this case, the leading
dimension is treated as the batch dimension, and the other dimensions are reduced to one dimension.

Note: In the original paper, 𝐽 and 𝐾 must be equal and the author denotes [𝑉 1𝑉 2] (concatenation of matrices)
by 𝑉 .

Parameters

• e1 (Variable or N-dimensional array) – Left input variable.

• e2 (Variable or N-dimensional array) – Right input variable.

• W (Variable or N-dimensional array) – Quadratic weight variable.

• V1 (Variable or N-dimensional array) – Left coefficient variable.

• V2 (Variable or N-dimensional array) – Right coefficient variable.

• b (Variable or N-dimensional array) – Bias variable.

Returns Output variable.

4.2. Functions 197

Chainer Documentation, Release 7.0.0b4

Return type Variable

See: Reasoning With Neural Tensor Networks for Knowledge Base Completion [Socher+, NIPS2013].

See also:

Bilinear to manage the model parameters W, V1, V2, and b.

chainer.functions.convolution_1d

chainer.functions.convolution_1d(x, W, b=None, stride=1, pad=0, cover_all=False, dilate=1,
groups=1)

1-dimensional convolution function.

Note: This function calls convolution_nd() internally, so see the details of the behavior in the documen-
tation of convolution_nd().

chainer.functions.convolution_2d

chainer.functions.convolution_2d(x, W, b=None, stride=1, pad=0, cover_all=False, *, dilate=1,
groups=1)

Two-dimensional convolution function.

This is an implementation of two-dimensional convolution in ConvNets. It takes three variables: the input image
x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• ℎ𝐼 and 𝑤𝐼 are the height and width of the input image, respectively.

• ℎ𝐾 and 𝑤𝐾 are the height and width of the filters, respectively.

• ℎ𝑃 and 𝑤𝑃 are the height and width of the spatial padding size, respectively.

Then the Convolution2D function computes correlations between filters and patches of size (ℎ𝐾 , 𝑤𝐾) in x.
Note that correlation here is equivalent to the inner product between expanded vectors. Patches are extracted at
positions shifted by multiples of stride from the first position (-h_P, -w_P) for each spatial axis. The
right-most (or bottom-most) patches do not run over the padded spatial size.

Let (𝑠𝑌 , 𝑠𝑋) be the stride of filter application. Then, the output size (ℎ𝑂, 𝑤𝑂) is determined by the following
equations:

ℎ𝑂 = (ℎ𝐼 + 2ℎ𝑃 − ℎ𝐾)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤𝐼 + 2𝑤𝑃 − 𝑤𝐾)/𝑠𝑋 + 1.

If cover_all option is True, the filter will cover the all spatial locations. So, if the last stride of filter does
not cover the end of spatial locations, an additional stride will be applied to the end part of spatial locations. In
this case, the output size (ℎ𝑂, 𝑤𝑂) is determined by the following equations:

ℎ𝑂 = (ℎ𝐼 + 2ℎ𝑃 − ℎ𝐾 + 𝑠𝑌 − 1)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤𝐼 + 2𝑤𝑃 − 𝑤𝐾 + 𝑠𝑋 − 1)/𝑠𝑋 + 1.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

198 Chapter 4. API Reference

https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion

Chainer Documentation, Release 7.0.0b4

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.cudnn_deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deter-
ministic algorithm.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

When the dilation factor is greater than one, cuDNN is not used unless the version is 6.0 or higher.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ𝐼 , 𝑤𝐼).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝑂, 𝑐𝐼 , ℎ𝐾 , 𝑤𝐾).

• b (None or Variable or N-dimensional array) – Bias variable of length 𝑐𝑂 (optional).

• stride (int or pair of int s) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of int s) – Spatial padding width for input arrays. pad=p and pad=(p,
p) are equivalent.

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.

• dilate (int or pair of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d) are equivalent.

• groups (int) – Number of groups of channels. If the number is greater than 1, input
tensor 𝑊 is divided into some blocks by this value. For each tensor blocks, convolution
operation will be executed independently. Input channel size 𝑐𝐼 and output channel size 𝑐𝑂
must be exactly divisible by this value.

Returns Output variable of shape (𝑛, 𝑐𝑂, ℎ𝑂, 𝑤𝑂).

Return type Variable

See also:

Convolution2D to manage the model parameters W and b.

Example

>>> n = 10
>>> c_i, c_o = 3, 1
>>> h_i, w_i = 30, 40
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype(np.float32)
>>> x.shape
(10, 3, 30, 40)
>>> W = np.random.uniform(0, 1, (c_o, c_i, h_k, w_k)).astype(np.float32)
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o,)).astype(np.float32)
>>> b.shape
(1,)
>>> s_y, s_x = 5, 7
>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 1, 7, 6)

(continues on next page)

4.2. Functions 199

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> h_o = int((h_i + 2 * h_p - h_k) / s_y + 1)
>>> w_o = int((w_i + 2 * w_p - w_k) / s_x + 1)
>>> y.shape == (n, c_o, h_o, w_o)
True
>>> y = F.convolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p), cover_
→˓all=True)
>>> y.shape == (n, c_o, h_o, w_o + 1)
True

chainer.functions.convolution_3d

chainer.functions.convolution_3d(x, W, b=None, stride=1, pad=0, cover_all=False, dilate=1,
groups=1)

3-dimensional convolution function.

Note: This function calls convolution_nd() internally, so see the details of the behavior in the documen-
tation of convolution_nd().

chainer.functions.convolution_nd

chainer.functions.convolution_nd(x, W, b=None, stride=1, pad=0, cover_all=False, dilate=1,
groups=1)

N-dimensional convolution function.

This is an implementation of N-dimensional convolution which is generalized two-dimensional convolution in
ConvNets. It takes three variables: the input x, the filter weight W and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑁 is the number of spatial dimensions.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• 𝑑1, 𝑑2, ..., 𝑑𝑁 are the size of each axis of the input’s spatial dimensions, respectively.

• 𝑘1, 𝑘2, ..., 𝑘𝑁 are the size of each axis of the filters, respectively.

• 𝑙1, 𝑙2, ..., 𝑙𝑁 are the size of each axis of the output’s spatial dimensions, respectively.

• 𝑝1, 𝑝2, ..., 𝑝𝑁 are the size of each axis of the spatial padding size, respectively.

Then the convolution_nd function computes correlations between filters and patches of size (𝑘1, 𝑘2, ..., 𝑘𝑁)
in x. Note that correlation here is equivalent to the inner product between expanded tensors. Patches are
extracted at positions shifted by multiples of stride from the first position (-p_1, -p_2, ..., -p_N)
for each spatial axis.

Let (𝑠1, 𝑠2, ..., 𝑠𝑁) be the stride of filter application. Then, the output size (𝑙1, 𝑙2, ..., 𝑙𝑁) is determined by the
following equations:

𝑙𝑛 = (𝑑𝑛 + 2𝑝𝑛 − 𝑘𝑛)/𝑠𝑛 + 1 (𝑛 = 1, ..., 𝑁)

If cover_all option is True, the filter will cover the all spatial locations. So, if the last stride of filter does
not cover the end of spatial locations, an additional stride will be applied to the end part of spatial locations. In

200 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

this case, the output size is determined by the following equations:

𝑙𝑛 = (𝑑𝑛 + 2𝑝𝑛 − 𝑘𝑛 + 𝑠𝑛 − 1)/𝑠𝑛 + 1 (𝑛 = 1, ..., 𝑁)

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , 𝑑1, 𝑑2, ..., 𝑑𝑁).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝑂, 𝑐𝐼 , 𝑘1, 𝑘2, ..., 𝑘𝑁).

• b (None or Variable or N-dimensional array) – One-dimensional bias variable with
length 𝑐𝑂 (optional).

• stride (int or tuple of int s) – Stride of filter applications (𝑠1, 𝑠2, ..., 𝑠𝑁).
stride=s is equivalent to (s, s, ..., s).

• pad (int or tuple of int s) – Spatial padding width for input arrays (𝑝1, 𝑝2, ..., 𝑝𝑁).
pad=p is equivalent to (p, p, ..., p).

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger. cover_all needs to be False if you want to use cuDNN.

• dilate (int or tuple of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d, ..., d) are equivalent.

• groups (int) – The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

Returns Output variable of shape (𝑛, 𝑐𝑂, 𝑙1, 𝑙2, ..., 𝑙𝑁).

Return type Variable

Note: This function uses cuDNN implementation for its forward and backward computation if ALL of the
following conditions are satisfied:

• cuda.cudnn_enabled is True

• chainer.config.use_cudnn is 'always' or 'auto'

• The number of spatial dimensions is more than one.

• cover_all is False

• The input’s dtype is equal to the filter weight’s.

• The dtype is FP16, FP32 or FP64. (FP16 is only available when cuDNN version ≥ v3.)

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

See also:

ConvolutionND to manage the model parameters W and b.

See also:

convolution_2d()

Example

4.2. Functions 201

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 30, 40, 50
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 30, 40, 50)
>>> W = np.random.uniform(0, 1, (c_o, c_i, k1, k2, k3)).astype(np.float32)
>>> W.shape
(1, 3, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 16, 11, 9)
>>> l1 = int((d1 + 2 * p1 - k1) / s1 + 1)
>>> l2 = int((d2 + 2 * p2 - k2) / s2 + 1)
>>> l3 = int((d3 + 2 * p3 - k3) / s3 + 1)
>>> y.shape == (n, c_o, l1, l2, l3)
True
>>> y = F.convolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3), cover_
→˓all=True)
>>> y.shape == (n, c_o, l1, l2, l3 + 1)
True

chainer.functions.deconvolution_1d

chainer.functions.deconvolution_1d(x, W, b=None, stride=1, pad=0, outsize=None, dilate=1,
groups=1)

1-dimensional deconvolution function.

Note: This function calls deconvolution_nd() internally, so see the details of the behavior in the docu-
mentation of deconvolution_nd().

chainer.functions.deconvolution_2d

chainer.functions.deconvolution_2d(x, W, b=None, stride=1, pad=0, outsize=None, *, di-
late=1, groups=1)

Two dimensional deconvolution function.

This is an implementation of two-dimensional deconvolution. In most of deep learning frameworks and pa-
pers, this function is called transposed convolution. But because of historical reasons (e.g. paper by Ziller
Deconvolutional Networks) and backward compatibility, this function is called deconvolution in Chainer.

It takes three variables: input image x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

202 Chapter 4. API Reference

http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf

Chainer Documentation, Release 7.0.0b4

• ℎ𝐼 and 𝑤𝐼 are the height and width of the input image, respectively.

• ℎ𝐾 and 𝑤𝐾 are the height and width of the filters, respectively.

• ℎ𝑃 and 𝑤𝑃 are the height and width of the spatial padding size, respectively.

Let (𝑠𝑌 , 𝑠𝑋) be the stride of filter application. Then, the output size (ℎ𝑂, 𝑤𝑂) is estimated by the following
equations:

ℎ𝑂 = 𝑠𝑌 (ℎ𝐼 − 1) + ℎ𝐾 − 2ℎ𝑃 ,

𝑤𝑂 = 𝑠𝑋(𝑤𝐼 − 1) + 𝑤𝐾 − 2𝑤𝑃 .

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deterministic
algorithm.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ𝐼 , 𝑤𝐼).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝐼 , 𝑐𝑂, ℎ𝐾 , 𝑤𝐾).

• b (None or Variable or N-dimensional array) – Bias variable of length 𝑐𝑂 (optional).

• stride (int or pair of int s) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of int s) – Spatial padding width for input arrays. pad=p and pad=(p,
p) are equivalent.

• outsize (None or tuple of int s) – Expected output size of deconvolutional operation.
It should be pair of height and width (ℎ𝑂, 𝑤𝑂). Default value is None and the outsize is
estimated by input size, stride and pad.

• dilate (int or pair of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d) are equivalent.

• groups (int) – The number of groups to use grouped deconvolution. The default is one,
where grouped deconvolution is not used.

Returns Output variable of shape (𝑛, 𝑐𝑂, ℎ𝑂, 𝑤𝑂).

Return type Variable

See also:

Deconvolution2D to manage the model parameters W and b.

Example

>>> n = 10
>>> c_i, c_o = 1, 3
>>> h_i, w_i = 5, 10
>>> h_k, w_k = 10, 10
>>> h_p, w_p = 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, h_i, w_i)).astype(np.float32)
>>> x.shape
(10, 1, 5, 10)

(continues on next page)

4.2. Functions 203

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> W = np.random.uniform(0, 1, (c_i, c_o, h_k, w_k)).astype(np.float32)
>>> W.shape
(1, 3, 10, 10)
>>> b = np.random.uniform(0, 1, c_o).astype(np.float32)
>>> b.shape
(3,)
>>> s_y, s_x = 5, 5
>>> y = F.deconvolution_2d(x, W, b, stride=(s_y, s_x), pad=(h_p, w_p))
>>> y.shape
(10, 3, 20, 45)
>>> h_o = s_y * (h_i - 1) + h_k - 2 * h_p
>>> w_o = s_x * (w_i - 1) + w_k - 2 * w_p
>>> y.shape == (n, c_o, h_o, w_o)
True

chainer.functions.deconvolution_3d

chainer.functions.deconvolution_3d(x, W, b=None, stride=1, pad=0, outsize=None, dilate=1,
groups=1)

3-dimensional deconvolution function.

Note: This function calls deconvolution_nd() internally, so see the details of the behavior in the docu-
mentation of deconvolution_nd().

chainer.functions.deconvolution_nd

chainer.functions.deconvolution_nd(x, W, b=None, stride=1, pad=0, outsize=None, dilate=1,
groups=1)

N-dimensional deconvolution function.

This is an implementation of N-dimensional deconvolution which generalizes two-dimensional one. In most of
deep learning frameworks and papers, this function is called transposed convolution. But because of historical
reasons (e.g. paper by Ziller Deconvolutional Networks) and backward compatibility, this function is called
deconvolution in Chainer.

It takes three variables: the input x, the filter weight W, and the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑁 is the number of spatial dimensions.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output channels, respectively.

• 𝑑1, 𝑑2, ..., 𝑑𝑁 are the size of each axis of the input’s spatial dimensions, respectively.

• 𝑘1, 𝑘2, ..., 𝑘𝑁 are the size of each axis of the filters, respectively.

• 𝑝1, 𝑝2, ..., 𝑝𝑁 are the size of each axis of the spatial padding size, respectively.

• 𝑠1, 𝑠2, ..., 𝑠𝑁 are the stride of each axis of filter application, respectively.

204 Chapter 4. API Reference

http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf

Chainer Documentation, Release 7.0.0b4

If outsize option is None, the output size (𝑙1, 𝑙2, ..., 𝑙𝑁) is determined by the following equations with the
items in the above list:

𝑙𝑛 = 𝑠𝑛(𝑑𝑛 − 1) + 𝑘𝑛 − 2𝑝𝑛 (𝑛 = 1, ..., 𝑁)

If outsize option is given, the output size is determined by outsize. In this case, the outsize
(𝑙1, 𝑙2, ..., 𝑙𝑁) must satisfy the following equations:

𝑑𝑛 = ⌊(𝑙𝑛 + 2𝑝𝑛 − 𝑘𝑛)/𝑠𝑛⌋+ 1 (𝑛 = 1, ..., 𝑁)

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , 𝑑1, 𝑑2, ..., 𝑑𝑁).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝐼 , 𝑐𝑂, 𝑘1, 𝑘2, ..., 𝑘𝑁).

• b (None or Variable or N-dimensional array) – One-dimensional bias variable with
length 𝑐𝑂 (optional).

• stride (int or tuple of int s) – Stride of filter applications (𝑠1, 𝑠2, ..., 𝑠𝑁).
stride=s is equivalent to (s, s, ..., s).

• pad (int or tuple of int s) – Spatial padding width for input arrays (𝑝1, 𝑝2, ..., 𝑝𝑁).
pad=p is equivalent to (p, p, ..., p).

• outsize (None or tuple of int s) – Expected output size of deconvolutional operation.
It should be a tuple of ints (𝑙1, 𝑙2, ..., 𝑙𝑁). Default value is None and the outsize is estimated
by input size, stride and pad.

• dilate (int or tuple of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d, ..., d) are equivalent.

• groups (int) – The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

Returns Output variable of shape (𝑛, 𝑐𝑂, 𝑙1, 𝑙2, ..., 𝑙𝑁).

Return type Variable

See also:

DeconvolutionND to manage the model parameters W and b.

See also:

deconvolution_2d()

Example

Example1: the case when outsize is not given.

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape

(continues on next page)

4.2. Functions 205

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

(10, 3, 5, 10, 15)
>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32)
>>> W.shape
(3, 1, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3))
>>> y.shape
(10, 1, 8, 36, 84)
>>> l1 = s1 * (d1 - 1) + k1 - 2 * p1
>>> l2 = s2 * (d2 - 1) + k2 - 2 * p2
>>> l3 = s3 * (d3 - 1) + k3 - 2 * p3
>>> y.shape == (n, c_o, l1, l2, l3)
True

Example2: the case when outsize is given.

>>> n = 10
>>> c_i, c_o = 3, 1
>>> d1, d2, d3 = 5, 10, 15
>>> k1, k2, k3 = 10, 10, 10
>>> p1, p2, p3 = 5, 5, 5
>>> x = np.random.uniform(0, 1, (n, c_i, d1, d2, d3)).astype(np.float32)
>>> x.shape
(10, 3, 5, 10, 15)
>>> W = np.random.uniform(0, 1, (c_i, c_o, k1, k2, k3)).astype(np.float32)
>>> W.shape
(3, 1, 10, 10, 10)
>>> b = np.random.uniform(0, 1, (c_o)).astype(np.float32)
>>> b.shape
(1,)
>>> s1, s2, s3 = 2, 4, 6
>>> l1, l2, l3 = 9, 38, 87
>>> d1 == int((l1 + 2 * p1 - k1) / s1) + 1
True
>>> d2 == int((l2 + 2 * p2 - k2) / s2) + 1
True
>>> d3 == int((l3 + 2 * p3 - k3) / s3) + 1
True
>>> y = F.deconvolution_nd(x, W, b, stride=(s1, s2, s3), pad=(p1, p2, p3),
→˓outsize=(l1, l2, l3))
>>> y.shape
(10, 1, 9, 38, 87)
>>> y.shape == (n, c_o, l1, l2, l3)
True

chainer.functions.depthwise_convolution_2d

chainer.functions.depthwise_convolution_2d(x, W, b=None, stride=1, pad=0)
Two-dimensional depthwise convolution function.

This is an implementation of two-dimensional depthwise convolution. It takes two or three variables: the input
image x, the filter weight W, and optionally, the bias vector b.

206 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 is the number of the input.

• 𝑐𝑀 is the channel multiplier.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• ℎ𝑂 and 𝑤𝑂 are the height and width of the output image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝑀 , 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊).

• b (Variable or N-dimensional array) – Bias variable of length 𝑐𝑀 * 𝑐𝐼 (optional).

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

Returns Output variable. Its shape is (𝑛, 𝑐𝐼 * 𝑐𝑀 , ℎ𝑂, 𝑤𝑂).

Return type Variable

Like Convolution2D, DepthwiseConvolution2D function computes correlations between filters and
patches of size (𝑘𝐻 , 𝑘𝑊) in x. But unlike Convolution2D, DepthwiseConvolution2D does not add up
input channels of filters but concatenates them. For that reason, the shape of outputs of depthwise convolution
are (𝑛, 𝑐𝐼 * 𝑐𝑀 , ℎ𝑂, 𝑤𝑂), 𝑐𝑀 is called channel_multiplier.

(ℎ𝑂, 𝑤𝑂) is determined by the equivalent equation of Convolution2D.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See: L. Sifre. Rigid-motion scattering for image classification

See also:

DepthwiseConvolution2D to manage the model parameters W and b.

Example

>>> x = np.random.uniform(0, 1, (2, 3, 4, 7))
>>> W = np.random.uniform(0, 1, (2, 3, 3, 3))
>>> b = np.random.uniform(0, 1, (6,))
>>> y = F.depthwise_convolution_2d(x, W, b)
>>> y.shape
(2, 6, 2, 5)

chainer.functions.deformable_convolution_2d_sampler

chainer.functions.deformable_convolution_2d_sampler(x, offset, W, b=None, stride=1,
pad=0)

Two-dimensional deformable convolution function using computed offset.

4.2. Functions 207

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.di.ens.fr/data/publications/papers/phd_sifre.pdf

Chainer Documentation, Release 7.0.0b4

This is an implementation of two-dimensional deformable convolution from Deformable Convolutional Net-
works.

It takes four variables: the input image x, the offset image offset, the filter weight W, and the bias vector b.

Notation: here is the notation for the dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output, respectively.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

• 𝑠𝑌 and 𝑠𝑋 are the strides of the filter.

• 𝑝𝐻 and 𝑝𝑊 are the spatial padding sizes.

The output size (ℎ𝑂, 𝑤𝑂) is determined by the following equations:

ℎ𝑂 = (ℎ+ 2𝑝𝐻 − 𝑘𝐻)/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊)/𝑠𝑋 + 1.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• offset (Variable or N-dimensional array) – Offset variable of shape (𝑛, 2 · 𝑘𝐻 ·
𝑘𝑊 , ℎ𝑂, 𝑤𝑂). The first 𝑘𝐻 · 𝑘𝑊 index of the second axis corresponds to the offsets in the
horizontal direction. The last 𝑘𝐻 · 𝑘𝑊 index of the second axis corresponds to the offsets in
the vertical direction.

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝑂, 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊).

• b (Variable or N-dimensional array) – Bias variable of length 𝑐𝑂 (optional).

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

Returns Output variable.

Return type Variable

Deformable convolution adds 2D offsets to the regular grid sampling locations in the standard convolution. It
enables free form deformation of the sampling grid.

See Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, Yichen Wei. Deformable Convolu-
tional Networks

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See also:

DeformableConvolution2D to manage the model parameters W and b.

Example

>>> x = np.random.uniform(0, 1, (2, 3, 4, 7)).astype(np.float32)
>>> offset = np.random.uniform(
... 0, 1, (2, 2 * 3 * 3, 2, 5)).astype(np.float32)

(continues on next page)

208 Chapter 4. API Reference

https://arxiv.org/abs/1703.06211
https://arxiv.org/abs/1703.06211
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://arxiv.org/abs/1703.06211
https://arxiv.org/abs/1703.06211

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> W = np.random.uniform(0, 1, (4, 3, 3, 3)).astype(np.float32)
>>> b = np.random.uniform(0, 1, (4,)).astype(np.float32)
>>> y = F.deformable_convolution_2d_sampler(x, offset, W, b)
>>> y.shape
(2, 4, 2, 5)

chainer.functions.dilated_convolution_2d

chainer.functions.dilated_convolution_2d(x, W, b=None, stride=1, pad=0, dilate=1,
cover_all=False)

Two-dimensional dilated convolution function.

This is an implementation of two-dimensional dilated convolution in ConvNets. It takes three variables: the
input image x, the filter weight W, and the bias vector b.

Note: You can also perform dilated convolution by passing dilate argument to chainer.functions.
convolution_2d. The functionality is the same.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 and 𝑐𝑂 are the number of the input and output, respectively.

• ℎ and 𝑤 are the height and width of the input image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑐𝑂, 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊).

• b (Variable or N-dimensional array) – Bias variable of length 𝑐𝑂 (optional).

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger.

Returns Output variable.

Return type Variable

The two-dimensional dilated convolution function is defined as follows. Then the DilatedConvolution2D
function computes correlations between filters and patches of size (𝑘𝐻 , 𝑘𝑊) in x. Patches here are extracted at
intervals of the dilation factor. Note that correlation here is equivalent to the inner product between expanded
vectors. Patches are extracted at intervals of the dilation factor and at positions shifted by multiples of stride

4.2. Functions 209

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

from the first position -pad for each spatial axis. The right-most (or bottom-most) patches do not run over the
padded spatial size.

Let (𝑠𝑌 , 𝑠𝑋) be the stride of filter application, (𝑝𝐻 , 𝑝𝑊) the spatial padding size, and (𝑑𝑌 , 𝑑𝑋) the dilation
factor of filter application. Then, the output size (ℎ𝑂, 𝑤𝑂) is determined by the following equations:

ℎ𝑂 = (ℎ+ 2𝑝𝐻 − 𝑘𝐻 − (𝑘𝐻 − 1) * (𝑑𝑌 − 1))/𝑠𝑌 + 1,

𝑤𝑂 = (𝑤 + 2𝑝𝑊 − 𝑘𝑊 − (𝑘𝑊 − 1) * (𝑑𝑋 − 1))/𝑠𝑋 + 1.

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

chainer.functions.embed_id

chainer.functions.embed_id(x, W, ignore_label=None)
Efficient linear function for one-hot input.

This function implements so called word embeddings. It takes two arguments: a set of IDs (words) x in 𝐵
dimensional integer vector, and a set of all ID (word) embeddings W in 𝑉 × 𝑑 float matrix. It outputs 𝐵 × 𝑑
matrix whose i-th row is the x[i]-th row of W.

This function is only differentiable on the input W.

Parameters

• x (Variable or N-dimensional array) – Batch vectors of IDs. Each element must be
signed integer.

• W (Variable or N-dimensional array) – Distributed representation of each ID (a.k.a. word
embeddings).

• ignore_label (int or None) – If ignore_label is an int value, i-th row of return
value is filled with 0.

Returns Output variable.

Return type Variable

See also:

EmbedID to manage the model parameter W.

Example

>>> x = np.array([2, 1]).astype(np.int32)
>>> x
array([2, 1], dtype=int32)
>>> W = np.array([[0, 0, 0],
... [1, 1, 1],
... [2, 2, 2]]).astype(np.float32)
>>> W
array([[0., 0., 0.],

[1., 1., 1.],
[2., 2., 2.]], dtype=float32)

>>> F.embed_id(x, W).array
array([[2., 2., 2.],

[1., 1., 1.]], dtype=float32)
>>> F.embed_id(x, W, ignore_label=1).array
array([[2., 2., 2.],

[0., 0., 0.]], dtype=float32)

210 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

chainer.functions.linear

chainer.functions.linear(x, W, b=None, n_batch_axes=1)
Linear function, or affine transformation.

It accepts two or three arguments: an input minibatch x, a weight matrix W, and optionally a bias vector b. It
computes

𝑦𝑖 = 𝑊𝑥𝑖 + 𝑏.

Parameters

• x (Variable or N-dimensional array) – Input variable, which is a (𝑠1, 𝑠2, ..., 𝑠𝑛)-shaped
float array. Its first n_batch_axes dimensions are handled as minibatch dimensions.
The other dimensions are handled as concatenated one dimension whose size must be
(𝑠n_batch_axes * ... * 𝑠𝑛 = 𝑁).

• W (Variable or N-dimensional array) – Weight variable of shape (𝑀,𝑁), where (𝑁 =
𝑠n_batch_axes * ... * 𝑠𝑛).

• b (Variable or N-dimensional array) – Bias variable (optional) of shape (𝑀,).

• n_batch_axes (int) – The number of batch axes. The default is 1. The input variable
is reshaped into (n_batch_axes + 1)-dimensional tensor. This should be greater than 0.

Returns Output variable. A float array with shape of (𝑠1, ..., 𝑠n_batch_axes,𝑀).

Return type Variable

See also:

Linear to manage the model parameters W and b.

Example

>>> x = np.random.uniform(0, 1, (3, 4)).astype(np.float32)
>>> W = np.random.uniform(0, 1, (5, 4)).astype(np.float32)
>>> b = np.random.uniform(0, 1, (5,)).astype(np.float32)
>>> y = F.linear(x, W, b)
>>> y.shape
(3, 5)

chainer.functions.local_convolution_2d

chainer.functions.local_convolution_2d(x, W, b=None, stride=1)
Two-dimensional local convolution function.

Locally-connected function for 2D inputs. Works similarly to convolution_2d, except that weights are unshared,
that is, a different set of filters is applied at each different patch of the input. It takes two or three variables: the
input image x, the filter weight W, and optionally, the bias vector b.

Notation: here is a notation for dimensionalities.

• 𝑛 is the batch size.

• 𝑐𝐼 is the number of the input.

• 𝑐𝑂 is the number of output channels.

• ℎ and 𝑤 are the height and width of the input image, respectively.

4.2. Functions 211

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• ℎ𝑂 and 𝑤𝑂 are the height and width of the output image, respectively.

• 𝑘𝐻 and 𝑘𝑊 are the height and width of the filters, respectively.

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐𝐼 , ℎ, 𝑤).

• W (Variable or N-dimensional array) – Weight variable of shape
(𝑐𝑂, ℎ𝑂, 𝑤𝑂, 𝑐𝐼 , 𝑘𝐻 , 𝑘𝑊).

• b (Variable or N-dimensional array) – Bias variable of shape (𝑐𝑂, ℎ𝑂, 𝑤𝑂) (optional).

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

Returns Output variable. Its shape is (𝑛, 𝑐𝐼 * 𝑐𝑂, ℎ𝑂, 𝑤𝑂).

Return type Variable

Like Convolution2D, LocalConvolution2D function computes correlations between filters and patches
of size (𝑘𝐻 , 𝑘𝑊) in x. But unlike Convolution2D, LocalConvolution2D has a separate filter for each
patch of the input

(ℎ𝑂, 𝑤𝑂) is determined by the equivalent equation of Convolution2D, without any padding

If the bias vector is given, then it is added to all spatial locations of the output of convolution.

See also:

LocalConvolution2D to manage the model parameters W and b.

Example

>>> x = np.random.uniform(0, 1, (2, 3, 7, 7))
>>> W = np.random.uniform(0, 1, (2, 5, 5, 3, 3, 3))
>>> b = np.random.uniform(0, 1, (2, 5, 5))
>>> y = F.local_convolution_2d(x, W, b)
>>> y.shape
(2, 2, 5, 5)

chainer.functions.n_step_bigru

chainer.functions.n_step_bigru(n_layers, dropout_ratio, hx, ws, bs, xs)
Stacked Bi-directional Gated Recurrent Unit function.

This function calculates stacked Bi-directional GRU with sequences. This function gets an initial hidden state
ℎ0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates hidden states ℎ𝑡 for

212 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

each time 𝑡 from input 𝑥𝑡.

𝑟𝑓𝑡 = 𝜎(𝑊 𝑓
0 𝑥𝑡 +𝑊 𝑓

3 ℎ𝑡−1 + 𝑏𝑓0 + 𝑏𝑓3)

𝑧𝑓𝑡 = 𝜎(𝑊 𝑓
1 𝑥𝑡 +𝑊 𝑓

4 ℎ𝑡−1 + 𝑏𝑓1 + 𝑏𝑓4)

ℎ𝑓
′

𝑡 = tanh(𝑊 𝑓
2 𝑥𝑡 + 𝑏𝑓2 + 𝑟𝑓𝑡 · (𝑊

𝑓
5 ℎ𝑡−1 + 𝑏𝑓5))

ℎ𝑓𝑡 = (1− 𝑧𝑓𝑡) · ℎ𝑓
′

𝑡 + 𝑧𝑓𝑡 · ℎ𝑡−1

𝑟𝑏𝑡 = 𝜎(𝑊 𝑏
0𝑥𝑡 +𝑊 𝑏

3ℎ𝑡−1 + 𝑏𝑏0 + 𝑏𝑏3)

𝑧𝑏𝑡 = 𝜎(𝑊 𝑏
1𝑥𝑡 +𝑊 𝑏

4ℎ𝑡−1 + 𝑏𝑏1 + 𝑏𝑏4)

ℎ𝑏
′

𝑡 = tanh(𝑊 𝑏
2𝑥𝑡 + 𝑏𝑏2 + 𝑟𝑏𝑡 · (𝑊 𝑏

5ℎ𝑡−1 + 𝑏𝑏5))

ℎ𝑏𝑡 = (1− 𝑧𝑏𝑡) · ℎ𝑏
′

𝑡 + 𝑧𝑏𝑡 · ℎ𝑡−1

ℎ𝑡 = [ℎ𝑓𝑡 ;ℎ𝑏𝑡]

where 𝑊 𝑓 is weight matrices for forward-GRU, 𝑊 𝑏 is weight matrices for backward-GRU.

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Six weight matrices and six bias
vectors are required for each layers. So, when 𝑆 layers exists, you need to prepare 6𝑆 weight matrices and 6𝑆
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Parameters

• n_layers (int) – Number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (2S, B, N)where
S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension
of hidden units.

• ws (list of list of Variable) – Weight matrices. ws[i] represents weights for i-th layer.
Each ws[i] is a list containing six matrices. ws[i][j] is corresponding with W_j in the
equation. Only ws[0][j] where 0 <= j < 3 is (I, N) shape as they are multiplied
with input variables. All other matrices has (N, N) shape.

• bs (list of list of Variable) – Bias vectors. bs[i] represnents biases for i-th layer.
Each bs[i] is a list containing six vectors. bs[i][j] is corresponding with b_j in the
equation. Shape of each matrix is (N,) where N is dimension of hidden units.

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for
time t, and I is size of input units. Note that this function supports variable length se-
quences. When sequneces has different lengths, sort sequences in descending order by
length, and transpose the sorted sequence. transpose_sequence() transpose a list of
Variable() holding sequence. So xs needs to satisfy xs[t].shape[0] >= xs[t
+ 1].shape[0].

• use_bi_direction (bool) – If True, this function uses Bi-direction GRU.

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

4.2. Functions 213

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

chainer.functions.n_step_bilstm

chainer.functions.n_step_bilstm(n_layers, dropout_ratio, hx, cx, ws, bs, xs)
Stacked Bi-directional Long Short-Term Memory function.

This function calculates stacked Bi-directional LSTM with sequences. This function gets an initial hidden state
ℎ0, an initial cell state 𝑐0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates
hidden states ℎ𝑡 and 𝑐𝑡 for each time 𝑡 from input 𝑥𝑡.

𝑖𝑓𝑡 =

𝜎(𝑊 𝑓
0 𝑥𝑡 +𝑊 𝑓

4 ℎ𝑡−1 + 𝑏𝑓0 + 𝑏𝑓4),

𝑓𝑓𝑡 =

𝜎(𝑊 𝑓
1 𝑥𝑡 +𝑊 𝑓

5 ℎ𝑡−1 + 𝑏𝑓1 + 𝑏𝑓5),

𝑜𝑓𝑡 =

𝜎(𝑊 𝑓
2 𝑥𝑡 +𝑊 𝑓

6 ℎ𝑡−1 + 𝑏𝑓2 + 𝑏𝑓6),

𝑎𝑓𝑡 =

tanh(𝑊 𝑓
3 𝑥𝑡 +𝑊 𝑓

7 ℎ𝑡−1 + 𝑏𝑓3 + 𝑏𝑓7),

𝑐𝑓𝑡 =

𝑓𝑓𝑡 · 𝑐
𝑓
𝑡−1 + 𝑖𝑓𝑡 · 𝑎

𝑓
𝑡 ,

ℎ𝑓𝑡 =

𝑜𝑓𝑡 · tanh(𝑐𝑓𝑡),

𝑖𝑏𝑡 =

𝜎(𝑊 𝑏
0𝑥𝑡 +𝑊 𝑏

4ℎ𝑡−1 + 𝑏𝑏0 + 𝑏𝑏4),

𝑓 𝑏𝑡 =

𝜎(𝑊 𝑏
1𝑥𝑡 +𝑊 𝑏

5ℎ𝑡−1 + 𝑏𝑏1 + 𝑏𝑏5),

𝑜𝑏𝑡 =

𝜎(𝑊 𝑏
2𝑥𝑡 +𝑊 𝑏

6ℎ𝑡−1 + 𝑏𝑏2 + 𝑏𝑏6),

𝑎𝑏𝑡 =

tanh(𝑊 𝑏
3𝑥𝑡 +𝑊 𝑏

7ℎ𝑡−1 + 𝑏𝑏3 + 𝑏𝑏7),

𝑐𝑏𝑡 =

𝑓 𝑏𝑡 · 𝑐𝑏𝑡−1 + 𝑖𝑏𝑡 · 𝑎𝑏𝑡 ,
ℎ𝑏𝑡 =

𝑜𝑏𝑡 · tanh(𝑐𝑏𝑡),

ℎ𝑡 =

[ℎ𝑓𝑡 ;ℎ𝑏𝑡]

where 𝑊 𝑓 is the weight matrices for forward-LSTM, 𝑊 𝑏 is weight matrices for backward-LSTM.

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Eight weight matrices and eight bias

214 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

vectors are required for each layer of each direction. So, when 𝑆 layers exist, you need to prepare 16𝑆 weight
matrices and 16𝑆 bias vectors.

If the number of layers n_layers is greater than 1, the input of the k-th layer is the hidden state h_t of the
k-1-th layer. Note that all input variables except the first layer may have different shape from the first layer.

Parameters

• n_layers (int) – The number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (2S, B, N)where
S is the number of layers and is equal to n_layers, B is the mini-batch size, and N is the
dimension of the hidden units. Because of bi-direction, the first dimension length is 2S.

• cx (Variable) – Variable holding stacked cell states. It has the same shape as hx.

• ws (list of list of Variable) – Weight matrices. ws[2 * l + m] represents the weights
for the l-th layer of the m-th direction. (m == 0 means the forward direction and m == 1
means the backward direction.) Each ws[i] is a list containing eight matrices. ws[i][j]
corresponds to 𝑊𝑗 in the equation. ws[0][j] and ws[1][j] where 0 <= j < 4 are
(I, N)-shaped because they are multiplied with input variables, where I is the size of the
input. ws[i][j] where 2 <= i and 0 <= j < 4 are (N, 2N)-shaped because they
are multiplied with two hidden layers ℎ𝑡 = [ℎ𝑓𝑡 ;ℎ𝑏𝑡]. All other matrices are (N, N)-shaped.

• bs (list of list of Variable) – Bias vectors. bs[2 * l + m] represents the weights
for the l-th layer of m-th direction. (m == 0 means the forward direction and m == 1
means the backward direction.) Each bs[i] is a list containing eight vectors. bs[i][j]
corresponds to 𝑏𝑗 in the equation. The shape of each matrix is (N,).

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is the mini-batch size for
time t. The sequences must be transposed. transpose_sequence() can be used to
transpose a list of Variables each representing a sequence. When sequences has different
lengths, they must be sorted in descending order of their lengths before transposing. So xs
needs to satisfy xs[t].shape[0] >= xs[t + 1].shape[0].

Returns

This function returns a tuple containing three elements, hy, cy and ys.

• hy is an updated hidden states whose shape is the same as hx.

• cy is an updated cell states whose shape is the same as cx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, 2N) where B_t is the mini-batch
size for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

Example

>>> batchs = [3, 2, 1] # support variable length sequences
>>> in_size, out_size, n_layers = 3, 2, 2
>>> dropout_ratio = 0.0
>>> xs = [np.ones((b, in_size)).astype(np.float32) for b in batchs]
>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers * 2, batchs[0], out_size)

(continues on next page)

4.2. Functions 215

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> hx = np.ones(h_shape).astype(np.float32)
>>> cx = np.ones(h_shape).astype(np.float32)
>>> def w_in(i, j):
... if i == 0 and j < 4:
... return in_size
... elif i > 0 and j < 4:
... return out_size * 2
... else:
... return out_size
...
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
... for direction in (0, 1):
... ws.append([np.ones((out_size, w_in(n, i))).astype(np.float32) for i
→˓in range(8)])
... bs.append([np.ones((out_size,)).astype(np.float32) for _ in range(8)])
...
>>> ws[0][0].shape # ws[0:2][:4].shape are (out_size, in_size)
(2, 3)
>>> ws[2][0].shape # ws[2:][:4].shape are (out_size, 2 * out_size)
(2, 4)
>>> ws[0][4].shape # others are (out_size, out_size)
(2, 2)
>>> bs[0][0].shape
(2,)
>>> hy, cy, ys = F.n_step_bilstm(
... n_layers, dropout_ratio, hx, cx, ws, bs, xs)
>>> hy.shape
(4, 3, 2)
>>> cy.shape
(4, 3, 2)
>>> [y.shape for y in ys]
[(3, 4), (2, 4), (1, 4)]

chainer.functions.n_step_birnn

chainer.functions.n_step_birnn(n_layers, dropout_ratio, hx, ws, bs, xs, activation=’tanh’)
Stacked Bi-directional RNN function for sequence inputs.

This function calculates stacked Bi-directional RNN with sequences. This function gets an initial hidden state
ℎ0, an initial cell state 𝑐0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates
hidden states ℎ𝑡 and 𝑐𝑡 for each time 𝑡 from input 𝑥𝑡.

ℎ𝑓𝑡 =

𝑓(𝑊 𝑓
0 𝑥𝑡 +𝑊 𝑓

1 ℎ𝑡−1 + 𝑏𝑓0 + 𝑏𝑓1),

ℎ𝑏𝑡 =

𝑓(𝑊 𝑏
0𝑥𝑡 +𝑊 𝑏

1ℎ𝑡−1 + 𝑏𝑏0 + 𝑏𝑏1),

ℎ𝑡 =

[ℎ𝑓𝑡 ;ℎ𝑓𝑡],

where 𝑓 is an activation function.

216 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Weight matrices 𝑊 contains two matrices 𝑊 𝑓 and 𝑊 𝑏. 𝑊 𝑓 is weight matrices for forward directional RNN.
𝑊 𝑏 is weight matrices for backward directional RNN.

𝑊 𝑓 contains 𝑊 𝑓
0 for an input sequence and 𝑊 𝑓

1 for a hidden state. 𝑊 𝑏 contains 𝑊 𝑏
0 for an input sequence and

𝑊 𝑏
1 for a hidden state.

Bias matrices 𝑏 contains two matrices 𝑏𝑓 and 𝑏𝑓 . 𝑏𝑓 contains 𝑏𝑓0 for an input sequence and 𝑏𝑓1 for a hidden state.
𝑏𝑏 contains 𝑏𝑏0 for an input sequence and 𝑏𝑏1 for a hidden state.

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Two weight matrices and two bias
vectors are required for each layer. So, when 𝑆 layers exist, you need to prepare 2𝑆 weight matrices and 2𝑆
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Parameters

• n_layers (int) – Number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (2S, B, N)where
S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension
of hidden units. Because of bi-direction, the first dimension length is 2S.

• ws (list of list of Variable) – Weight matrices. ws[i + di] represents weights for
i-th layer. Note that di = 0 for forward-RNN and di = 1 for backward-RNN. Each
ws[i + di] is a list containing two matrices. ws[i + di][j] is corresponding with
W^{f}_j if di = 0 and corresponding with W^{b}_j if di = 1 in the equation. Only
ws[0][j] and ws[1][j] where 0 <= j < 1 are (I, N) shape as they are multi-
plied with input variables. All other matrices has (N, N) shape.

• bs (list of list of Variable) – Bias vectors. bs[i + di] represnents biases for i-
th layer. Note that di = 0 for forward-RNN and di = 1 for backward-RNN. Each
bs[i + di] is a list containing two vectors. bs[i + di][j] is corresponding with
b^{f}_j if di = 0 and corresponding with b^{b}_j if di = 1 in the equation. Shape
of each matrix is (N,) where N is dimension of hidden units.

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for
time t, and I is size of input units. Note that this function supports variable length se-
quences. When sequneces has different lengths, sort sequences in descending order by
length, and transpose the sorted sequence. transpose_sequence() transpose a list of
Variable() holding sequence. So xs needs to satisfy xs[t].shape[0] >= xs[t
+ 1].shape[0].

• activation (str) – Activation function name. Please select tanh or relu.

Returns

This function returns a tuple containing three elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

4.2. Functions 217

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

chainer.functions.n_step_gru

chainer.functions.n_step_gru(n_layers, dropout_ratio, hx, ws, bs, xs)
Stacked Uni-directional Gated Recurrent Unit function.

This function calculates stacked Uni-directional GRU with sequences. This function gets an initial hidden state
ℎ0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates hidden states ℎ𝑡 for
each time 𝑡 from input 𝑥𝑡.

𝑟𝑡 = 𝜎(𝑊0𝑥𝑡 +𝑊3ℎ𝑡−1 + 𝑏0 + 𝑏3)

𝑧𝑡 = 𝜎(𝑊1𝑥𝑡 +𝑊4ℎ𝑡−1 + 𝑏1 + 𝑏4)

ℎ′𝑡 = tanh(𝑊2𝑥𝑡 + 𝑏2 + 𝑟𝑡 · (𝑊5ℎ𝑡−1 + 𝑏5))

ℎ𝑡 = (1− 𝑧𝑡) · ℎ′𝑡 + 𝑧𝑡 · ℎ𝑡−1

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Six weight matrices and six bias
vectors are required for each layers. So, when 𝑆 layers exists, you need to prepare 6𝑆 weight matrices and 6𝑆
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Parameters

• n_layers (int) – Number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (S, B, N) where
S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension
of hidden units.

• ws (list of list of Variable) – Weight matrices. ws[i] represents weights for i-th layer.
Each ws[i] is a list containing six matrices. ws[i][j] is corresponding with W_j in the
equation. Only ws[0][j] where 0 <= j < 3 is (I, N) shape as they are multiplied
with input variables. All other matrices has (N, N) shape.

• bs (list of list of Variable) – Bias vectors. bs[i] represnents biases for i-th layer.
Each bs[i] is a list containing six vectors. bs[i][j] is corresponding with b_j in the
equation. Shape of each matrix is (N,) where N is dimension of hidden units.

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for
time t, and I is size of input units. Note that this function supports variable length se-
quences. When sequneces has different lengths, sort sequences in descending order by
length, and transpose the sorted sequence. transpose_sequence() transpose a list of
Variable() holding sequence. So xs needs to satisfy xs[t].shape[0] >= xs[t
+ 1].shape[0].

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

218 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

chainer.functions.n_step_lstm

chainer.functions.n_step_lstm(n_layers, dropout_ratio, hx, cx, ws, bs, xs)
Stacked Uni-directional Long Short-Term Memory function.

This function calculates stacked Uni-directional LSTM with sequences. This function gets an initial hidden state
ℎ0, an initial cell state 𝑐0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates
hidden states ℎ𝑡 and 𝑐𝑡 for each time 𝑡 from input 𝑥𝑡.

𝑖𝑡 = 𝜎(𝑊0𝑥𝑡 +𝑊4ℎ𝑡−1 + 𝑏0 + 𝑏4)

𝑓𝑡 = 𝜎(𝑊1𝑥𝑡 +𝑊5ℎ𝑡−1 + 𝑏1 + 𝑏5)

𝑜𝑡 = 𝜎(𝑊2𝑥𝑡 +𝑊6ℎ𝑡−1 + 𝑏2 + 𝑏6)

𝑎𝑡 = tanh(𝑊3𝑥𝑡 +𝑊7ℎ𝑡−1 + 𝑏3 + 𝑏7)

𝑐𝑡 = 𝑓𝑡 · 𝑐𝑡−1 + 𝑖𝑡 · 𝑎𝑡
ℎ𝑡 = 𝑜𝑡 · tanh(𝑐𝑡)

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Eight weight matrices and eight bias
vectors are required for each layer. So, when 𝑆 layers exist, you need to prepare 8𝑆 weight matrices and 8𝑆
bias vectors.

If the number of layers n_layers is greater than 1, the input of the k-th layer is the hidden state h_t of the
k-1-th layer. Note that all input variables except the first layer may have different shape from the first layer.

Parameters

• n_layers (int) – The number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (S, B, N) where
S is the number of layers and is equal to n_layers, B is the mini-batch size, and N is the
dimension of the hidden units.

• cx (Variable) – Variable holding stacked cell states. It has the same shape as hx.

• ws (list of list of Variable) – Weight matrices. ws[i] represents the weights for the
i-th layer. Each ws[i] is a list containing eight matrices. ws[i][j] corresponds to 𝑊𝑗

in the equation. Only ws[0][j] where 0 <= j < 4 are (I, N)-shaped as they are
multiplied with input variables, where I is the size of the input and N is the dimension of
the hidden units. All other matrices are (N, N)-shaped.

• bs (list of list of Variable) – Bias vectors. bs[i] represents the biases for the i-th
layer. Each bs[i] is a list containing eight vectors. bs[i][j] corresponds to 𝑏𝑗 in the
equation. The shape of each matrix is (N,) where N is the dimension of the hidden units.

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is the mini-batch size for
time t. The sequences must be transposed. transpose_sequence() can be used to
transpose a list of Variables each representing a sequence. When sequences has different
lengths, they must be sorted in descending order of their lengths before transposing. So xs
needs to satisfy xs[t].shape[0] >= xs[t + 1].shape[0].

Returns

This function returns a tuple containing three elements, hy, cy and ys.

• hy is an updated hidden states whose shape is the same as hx.

• cy is an updated cell states whose shape is the same as cx.

4.2. Functions 219

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is the mini-batch
size for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

Note: The dimension of hidden units is limited to only one size N. If you want to use variable dimension of
hidden units, please use chainer.functions.lstm.

See also:

chainer.functions.lstm()

Example

>>> batchs = [3, 2, 1] # support variable length sequences
>>> in_size, out_size, n_layers = 3, 2, 2
>>> dropout_ratio = 0.0
>>> xs = [np.ones((b, in_size)).astype(np.float32) for b in batchs]
>>> [x.shape for x in xs]
[(3, 3), (2, 3), (1, 3)]
>>> h_shape = (n_layers, batchs[0], out_size)
>>> hx = np.ones(h_shape).astype(np.float32)
>>> cx = np.ones(h_shape).astype(np.float32)
>>> w_in = lambda i, j: in_size if i == 0 and j < 4 else out_size
>>> ws = []
>>> bs = []
>>> for n in range(n_layers):
... ws.append([np.ones((out_size, w_in(n, i))).astype(np.float32) for i in
→˓range(8)])
... bs.append([np.ones((out_size,)).astype(np.float32) for _ in range(8)])
...
>>> ws[0][0].shape # ws[0][:4].shape are (out_size, in_size)
(2, 3)
>>> ws[1][0].shape # others are (out_size, out_size)
(2, 2)
>>> bs[0][0].shape
(2,)
>>> hy, cy, ys = F.n_step_lstm(
... n_layers, dropout_ratio, hx, cx, ws, bs, xs)
>>> hy.shape
(2, 3, 2)
>>> cy.shape
(2, 3, 2)
>>> [y.shape for y in ys]
[(3, 2), (2, 2), (1, 2)]

chainer.functions.n_step_rnn

chainer.functions.n_step_rnn(n_layers, dropout_ratio, hx, ws, bs, xs, activation=’tanh’)
Stacked Uni-directional RNN function for sequence inputs.

This function calculates stacked Uni-directional RNN with sequences. This function gets an initial hidden state
ℎ0, an initial cell state 𝑐0, an input sequence 𝑥, weight matrices 𝑊 , and bias vectors 𝑏. This function calculates

220 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

hidden states ℎ𝑡 and 𝑐𝑡 for each time 𝑡 from input 𝑥𝑡.

ℎ𝑡 = 𝑓(𝑊0𝑥𝑡 +𝑊1ℎ𝑡−1 + 𝑏0 + 𝑏1)

where 𝑓 is an activation function.

Weight matrices 𝑊 contains two matrices 𝑊0 and 𝑊1. 𝑊0 is a parameter for an input sequence. 𝑊1 is a
parameter for a hidden state. Bias matrices 𝑏 contains two matrices 𝑏0 and 𝑏1. 𝑏0 is a parameter for an input
sequence. 𝑏1 is a parameter for a hidden state.

As the function accepts a sequence, it calculates ℎ𝑡 for all 𝑡 with one call. Two weight matrices and two bias
vectors are required for each layer. So, when 𝑆 layers exist, you need to prepare 2𝑆 weight matrices and 2𝑆
bias vectors.

If the number of layers n_layers is greather than 1, input of k-th layer is hidden state h_t of k-1-th layer.
Note that all input variables except first layer may have different shape from the first layer.

Parameters

• n_layers (int) – Number of layers.

• dropout_ratio (float) – Dropout ratio.

• hx (Variable) – Variable holding stacked hidden states. Its shape is (S, B, N) where
S is number of layers and is equal to n_layers, B is mini-batch size, and N is dimension
of hidden units.

• ws (list of list of Variable) – Weight matrices. ws[i] represents weights for i-th layer.
Each ws[i] is a list containing two matrices. ws[i][j] is corresponding with W_j in the
equation. Only ws[0][j] where 0 <= j < 1 is (I, N) shape as they are multiplied
with input variables. All other matrices has (N, N) shape.

• bs (list of list of Variable) – Bias vectors. bs[i] represnents biases for i-th layer.
Each bs[i] is a list containing two vectors. bs[i][j] is corresponding with b_j in the
equation. Shape of each matrix is (N,) where N is dimension of hidden units.

• xs (list of Variable) – A list of Variable holding input values. Each element xs[t]
holds input value for time t. Its shape is (B_t, I), where B_t is mini-batch size for
time t, and I is size of input units. Note that this function supports variable length se-
quences. When sequneces has different lengths, sort sequences in descending order by
length, and transpose the sorted sequence. transpose_sequence() transpose a list of
Variable() holding sequence. So xs needs to satisfy xs[t].shape[0] >= xs[t
+ 1].shape[0].

• activation (str) – Activation function name. Please select tanh or relu.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[t] holds hidden states of the last layer
corresponding to an input xs[t]. Its shape is (B_t, N) where B_t is mini-batch size
for time t, and N is size of hidden units. Note that B_t is the same value as xs[t].

Return type tuple

chainer.functions.shift

chainer.functions.shift(x, ksize=3, dilate=1)
Shift function.

4.2. Functions 221

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

See: Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions

Parameters

• x (Variable or N-dimensional array) – Input variable of shape (𝑛, 𝑐, ℎ, 𝑤).

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

Returns Output variable of same shape as x.

Return type Variable

4.2.5 Evaluation functions

chainer.functions.accuracy Computes multiclass classification accuracy of the
minibatch.

chainer.functions.binary_accuracy Computes binary classification accuracy of the mini-
batch.

chainer.functions.
classification_summary

Calculates Precision, Recall, F beta Score, and support.

chainer.functions.f1_score
chainer.functions.precision
chainer.functions.r2_score Computes R^2(coefficient of determination) regression

score function.
chainer.functions.recall

chainer.functions.accuracy

chainer.functions.accuracy(y, t, ignore_label=None)
Computes multiclass classification accuracy of the minibatch.

Parameters

• y (Variable or N-dimensional array) – Array whose (i, j, k, . . .)-th element indicates the
score of the class j at the (i, k, . . .)-th sample. The prediction label 𝑡 is calculated by the
formula 𝑡(𝑖, 𝑘, ...) = argmax𝑗 𝑦(𝑖, 𝑗, 𝑘, ...).

• t (Variable or N-dimensional array) – Array of ground truth labels.

• ignore_label (int or None) – Skip calculating accuracy if the true label is
ignore_label.

Returns A variable holding a scalar array of the accuracy.

Return type Variable

Note: This function is non-differentiable.

Example

We show the most common case, when y is the two dimensional array.

222 Chapter 4. API Reference

https://arxiv.org/abs/1711.08141
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 7.0.0b4

>>> y = np.array([[0.1, 0.7, 0.2], # prediction label is 1
... [8.0, 1.0, 2.0], # prediction label is 0
... [-8.0, 1.0, 2.0], # prediction label is 2
... [-8.0, -1.0, -2.0]]) # prediction label is 1
>>> t = np.array([1, 0, 2, 1], np.int32)
>>> F.accuracy(y, t).array # 100% accuracy because all samples are correct
array(1.)
>>> t = np.array([1, 0, 0, 0], np.int32)
>>> F.accuracy(y, t).array # 50% accuracy because 1st and 2nd samples are correct.
array(0.5)
>>> F.accuracy(y, t, ignore_label=0).array # 100% accuracy because of ignoring
→˓the 2nd, 3rd and 4th samples.
array(1.)

chainer.functions.binary_accuracy

chainer.functions.binary_accuracy(y, t)
Computes binary classification accuracy of the minibatch.

Parameters

• y (Variable or N-dimensional array) – Array whose i-th element indicates the score of
positive at the i-th sample. The prediction label 𝑡[𝑖] is 1 if y[i] >= 0, otherwise 0.

• t (Variable or N-dimensional array) – Array holding a signed integer vector of ground
truth labels. If t[i] == 1, it indicates that i-th sample is positive. If t[i] == 0, it
indicates that i-th sample is negative. If t[i] == -1, corresponding y[i] is ignored.
Accuracy is zero if all ground truth labels are -1.

Returns A variable holding a scalar array of the accuracy.

Return type Variable

Note: This function is non-differentiable.

Example

We show the most common case, when y is the two dimensional array.

>>> y = np.array([[-2.0, 0.0], # prediction labels are [0, 1]
... [3.0, -5.0]]) # prediction labels are [1, 0]
>>> t = np.array([[0, 1],
... [1, 0]], np.int32)
>>> F.binary_accuracy(y, t).array # 100% accuracy because all samples are correct.
array(1.)
>>> t = np.array([[0, 0],
... [1, 1]], np.int32)
>>> F.binary_accuracy(y, t).array # 50% accuracy because y[0][0] and y[1][0] are
→˓correct.
array(0.5)
>>> t = np.array([[0, -1],
... [1, -1]], np.int32)

(continues on next page)

4.2. Functions 223

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> F.binary_accuracy(y, t).array # 100% accuracy because of ignoring y[0][1] and
→˓y[1][1].
array(1.)

chainer.functions.classification_summary

chainer.functions.classification_summary(y, t, label_num=None, beta=1.0, ignore_label=-
1)

Calculates Precision, Recall, F beta Score, and support.

This function calculates the following quantities for each class.

• Precision: tp
tp+fp

• Recall: tp
tp+fn

• F beta Score: The weighted harmonic average of Precision and Recall.

• Support: The number of instances of each ground truth label.

Here, tp, fp, tn, and fn stand for the number of true positives, false positives, true negatives, and false
negatives, respectively.

label_num specifies the number of classes, that is, each value in t must be an integer in the range of [0,
label_num). If label_num is None, this function regards label_num as a maximum of in t plus one.

ignore_label determines which instances should be ignored. Specifically, instances with the given label
are not taken into account for calculating the above quantities. By default, it is set to -1 so that all instances are
taken into consideration, as labels are supposed to be non-negative integers. Setting ignore_label to a non-
negative integer less than label_num is illegal and yields undefined behavior. In the current implementation,
it arises RuntimeWarning and ignore_label-th entries in output arrays do not contain correct quantities.

Parameters

• y (Variable or N-dimensional array) – Variable holding a vector of scores.

• t (Variable or N-dimensional array) – Variable holding a vector of ground truth labels.

• label_num (int) – The number of classes.

• beta (float) – The parameter which determines the weight of precision in the F-beta
score.

• ignore_label (int) – Instances with this label are ignored.

Returns 4-tuple of ~chainer.Variable of size (label_num,). Each element represents precision,
recall, F beta score, and support of this minibatch.

chainer.functions.f1_score

chainer.functions.f1_score(y, t, label_num=None, ignore_label=-1)

chainer.functions.precision

chainer.functions.precision(y, t, label_num=None, ignore_label=-1)

224 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

chainer.functions.r2_score

chainer.functions.r2_score(pred, true, sample_weight=None, multioutput=’uniform_average’)
Computes R^2(coefficient of determination) regression score function.

Parameters

• pred (Variable or N-dimensional array) – Variable holding a vector, matrix or tensor of
estimated target values.

• true (Variable or N-dimensional array) – Variable holding a vector, matrix or tensor of
correct target values.

• sample_weight – This argument is for compatibility with scikit-learn’s implementation
of r2_score. Current implementation admits None only.

• multioutput (string) – [‘uniform_average’, ‘raw_values’]. if ‘uniform_average’, this
function returns an average of R^2 score of multiple output. If ‘raw_average’, this function
return a set of R^2 score of multiple output.

Returns A Variable holding a scalar array of the R^2 score if ‘multioutput’ is ‘uniform_average’ or
a vector of R^2 scores if ‘multioutput’ is ‘raw_values’.

Return type Variable

Note: This function is non-differentiable.

chainer.functions.recall

chainer.functions.recall(y, t, label_num=None, ignore_label=-1)

4.2.6 Loss functions

chainer.functions.absolute_error Element-wise absolute error function.
chainer.functions.bernoulli_nll Computes the negative log-likelihood of a Bernoulli dis-

tribution.
chainer.functions.black_out BlackOut loss function.
chainer.functions.
connectionist_temporal_classification

Connectionist Temporal Classification loss function.

chainer.functions.contrastive Computes contrastive loss.
chainer.functions.crf1d Calculates negative log-likelihood of linear-chain CRF.
chainer.functions.argmax_crf1d Computes a state that maximizes a joint probability of

the given CRF.
chainer.functions.cross_covariance Computes the sum-squared cross-covariance penalty

between y and z
chainer.functions.decov Computes the DeCov loss of h
chainer.functions.
discriminative_margin_based_clustering_loss

Discriminative margin-based clustering loss function

chainer.functions.
gaussian_kl_divergence

Computes the KL-divergence of Gaussian variables
from the standard one.

chainer.functions.gaussian_nll Computes the negative log-likelihood of a Gaussian dis-
tribution.

Continued on next page

4.2. Functions 225

Chainer Documentation, Release 7.0.0b4

Table 7 – continued from previous page
chainer.functions.hinge Computes the hinge loss for a one-of-many classifica-

tion task.
chainer.functions.huber_loss Computes the Huber loss.
chainer.functions.
mean_absolute_error

Mean absolute error function.

chainer.functions.mean_squared_error Mean squared error function.
chainer.functions.negative_sampling Negative sampling loss function.
chainer.functions.
sigmoid_cross_entropy

Computes cross entropy loss for pre-sigmoid activa-
tions.

chainer.functions.
softmax_cross_entropy

Computes cross entropy loss for pre-softmax activa-
tions.

chainer.functions.squared_error Squared error function.
chainer.functions.triplet Computes triplet loss.

chainer.functions.absolute_error

chainer.functions.absolute_error(x0, x1)
Element-wise absolute error function.

Computes the element-wise absolute error 𝐿 between two inputs 𝑥0 and 𝑥1 defined as follows.

𝐿 = |𝑥0 − 𝑥1|

Parameters

• x0 (Variable or N-dimensional array) – First input variable.

• x1 (Variable or N-dimensional array) – Second input variable.

Returns An array representing the element-wise absolute error between the two inputs.

Return type Variable

chainer.functions.bernoulli_nll

chainer.functions.bernoulli_nll(x, y, reduce=’sum’)
Computes the negative log-likelihood of a Bernoulli distribution.

This function calculates the negative log-likelihood of a Bernoulli distribution.

− log𝐵(𝑥; 𝑝) = −
∑︁
𝑖

{𝑥𝑖 log(𝑝𝑖) + (1− 𝑥𝑖) log(1− 𝑝𝑖)},

where 𝑝 = 𝜎(𝑦), 𝜎(·) is a sigmoid function, and 𝐵(𝑥; 𝑝) is a Bernoulli distribution.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'sum' or 'mean', loss values are summed up or averaged respectively.

Note: As this function uses a sigmoid function, you can pass a result of fully-connected layer (that means
Linear) to this function directly.

Parameters

• x (Variable or N-dimensional array) – Input variable.

226 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

• y (Variable or N-dimensional array) – A variable representing the parameter of Bernoulli
distribution.

• reduce (str) – Reduction option. Its value must be either 'sum', 'mean' or 'no'.
Otherwise, ValueError is raised.

Returns A variable representing the negative log-likelihood. If reduce is 'no', the output vari-
able holds array whose shape is same as one of (hence both of) input variables. If it is 'sum'
or 'mean', the output variable holds a scalar value.

Return type Variable

chainer.functions.black_out

chainer.functions.black_out(x, t, W, samples, reduce=’mean’)
BlackOut loss function.

BlackOut loss function is defined as

− log(𝑝(𝑡))−
∑︁
𝑠∈𝑆

log(1− 𝑝(𝑠)),

where 𝑡 is the correct label, 𝑆 is a set of negative examples and 𝑝(·) is likelihood of a given label. And, 𝑝 is
defined as

𝑝(𝑦) =
exp(𝑊⊤

𝑦 𝑥)∑︀
𝑠∈𝑠𝑎𝑚𝑝𝑙𝑒𝑠 exp(𝑊⊤

𝑠 𝑥)
.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the no
loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

• x (Variable or N-dimensional array) – Batch of input vectors. Its shape should be
(𝑁,𝐷).

• t (Variable or N-dimensional array) – Vector of ground truth labels. Its shape should be
(𝑁,). Each elements 𝑣 should satisfy 0 ≥ 𝑣 ≥ 𝑉 or −1 where 𝑉 is the number of label
types.

• W (Variable or N-dimensional array) – Weight matrix. Its shape should be (𝑉,𝐷)

• samples (Variable) – Negative samples. Its shape should be (𝑁,𝑆) where 𝑆 is the
number of negative samples.

• reduce (str) – Reduction option. Its value must be either 'no' or 'mean'. Otherwise,
ValueError is raised.

Returns A variable object holding loss value(s). If reduce is 'no', the output variable holds an
array whose shape is (𝑁,) . If it is 'mean', it holds a scalar.

Return type Variable

See: BlackOut: Speeding up Recurrent Neural Network Language Models With Very Large Vocabularies

See also:

BlackOut to manage the model parameter W.

4.2. Functions 227

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1511.06909

Chainer Documentation, Release 7.0.0b4

chainer.functions.connectionist_temporal_classification

chainer.functions.connectionist_temporal_classification(x, t, blank_symbol,
input_length=None,
label_length=None, re-
duce=’mean’)

Connectionist Temporal Classification loss function.

Connectionist Temporal Classification(CTC) [Graves2006] is a loss function of sequence labeling where the
alignment between the inputs and target is unknown. See also [Graves2012]

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
samplewise loss values. If it is 'mean', it takes the mean of loss values.

Parameters

• x (list or tuple of Variable) – A list of unnormalized probabilities for labels. Each ele-
ment of x, x[i] is a Variable object, which has shape (B, V), where B is the batch
size and V is the number of labels. The softmax of x[i] represents the probabilities of the
labels at time i.

• t (Variable or N-dimensional array) – A matrix including expected label sequences.
Its shape is (B, M), where B is the batch size and M is the maximum length of the label
sequences. All elements in t must be less than V, the number of labels.

• blank_symbol (int) – Index of blank_symbol. This value must be non-negative.

• input_length (Variable or N-dimensional array) – Length of sequence for each of
mini batch x (optional). Its shape must be (B,). If the input_length is omitted or
None, it assumes that all of x is valid input.

• label_length (Variable or N-dimensional array) – Length of sequence for each of
mini batch t (optional). Its shape must be (B,). If the label_length is omitted or
None, it assumes that all of t is valid input.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding a scalar value of the CTC loss. If reduce is 'no', the output variable
holds array whose shape is (B,) where B is the number of samples. If it is 'mean', it holds a
scalar.

Return type Variable

Note: You need to input x without applying to activation functions(e.g. softmax function), because this
function applies softmax functions to x before calculating CTC loss to avoid numerical limitations. You also
need to apply softmax function to forwarded values before you decode it.

Note: This function is differentiable only by x.

Note: This function supports (batch, sequence, 1-dimensional input)-data.

228 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 7.0.0b4

chainer.functions.contrastive

chainer.functions.contrastive(x0, x1, y, margin=1, reduce=’mean’)
Computes contrastive loss.

It takes a pair of samples and a label as inputs. The label is 1 when those samples are similar, or 0 when they
are dissimilar.

Let 𝑁 and 𝐾 denote mini-batch size and the dimension of input variables, respectively. The shape of both input
variables x0 and x1 should be (N, K). The loss value of the 𝑛-th sample pair 𝐿𝑛 is

𝐿𝑛 =
1

2

(︀
𝑦𝑛𝑑

2
𝑛 + (1− 𝑦𝑛) max(margin− 𝑑𝑛, 0)2

)︀
where 𝑑𝑛 = ‖x0𝑛 − x1𝑛‖2, x0𝑛 and x1𝑛 are 𝑛-th K-dimensional vectors of x0 and x1.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

• x0 (Variable or N-dimensional array) – The first input variable. The shape should be
(N, K), where N denotes the mini-batch size, and K denotes the dimension of x0.

• x1 (Variable or N-dimensional array) – The second input variable. The shape should be
the same as x0.

• y (Variable or N-dimensional array) – Labels. All values should be 0 or 1. The shape
should be (N,), where N denotes the mini-batch size.

• margin (float) – A parameter for contrastive loss. It should be positive value.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding the loss value(s) calculated by the above equation. If reduce is 'no',
the output variable holds array whose shape is same as one of (hence both of) input variables. If
it is 'mean', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to train siamese networks. See Learning a Similarity Metric Discriminatively, with
Application to Face Verification for details.

Example

>>> x0 = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x1 = np.array([[-1.0, 3.0, 1.0], [3.5, 0.5, -2.0]]).astype(np.float32)
>>> y = np.array([1, 0]).astype(np.int32)
>>> F.contrastive(x0, x1, y)
variable(0.3125)
>>> F.contrastive(x0, x1, y, margin=3.0) # harder penalty
variable(0.3528857)
>>> z = F.contrastive(x0, x1, y, reduce='no')
>>> z.shape
(2,)
>>> z.array
array([0.625, 0.], dtype=float32)

4.2. Functions 229

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf
http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf

Chainer Documentation, Release 7.0.0b4

chainer.functions.crf1d

chainer.functions.crf1d(cost, xs, ys, reduce=’mean’)
Calculates negative log-likelihood of linear-chain CRF.

It takes a transition cost matrix, a sequence of costs, and a sequence of labels. Let 𝑐𝑠𝑡 be a transition cost from a
label 𝑠 to a label 𝑡, 𝑥𝑖𝑡 be a cost of a label 𝑡 at position 𝑖, and 𝑦𝑖 be an expected label at position 𝑖. The negative
log-likelihood of linear-chain CRF is defined as

𝐿 = −

(︃
𝑙∑︁

𝑖=1

𝑥𝑖𝑦𝑖 +

𝑙−1∑︁
𝑖=1

𝑐𝑦𝑖𝑦𝑖+1 − log(𝑍)

)︃
,

where 𝑙 is the length of the input sequence and 𝑍 is the normalizing constant called partition function.

Note: When you want to calculate the negative log-likelihood of sequences which have different lengths, sort
the sequences in descending order of lengths and transpose the sequences. For example, you have three input
sequences:

>>> a1 = a2 = a3 = a4 = np.random.uniform(-1, 1, 3).astype(np.float32)
>>> b1 = b2 = b3 = np.random.uniform(-1, 1, 3).astype(np.float32)
>>> c1 = c2 = np.random.uniform(-1, 1, 3).astype(np.float32)

>>> a = [a1, a2, a3, a4]
>>> b = [b1, b2, b3]
>>> c = [c1, c2]

where a1 and all other variables are arrays with (K,) shape. Make a transpose of the sequences:

>>> x1 = np.stack([a1, b1, c1])
>>> x2 = np.stack([a2, b2, c2])
>>> x3 = np.stack([a3, b3])
>>> x4 = np.stack([a4])

and make a list of the arrays:

>>> xs = [x1, x2, x3, x4]

You need to make label sequences in the same fashion. And then, call the function:

>>> cost = chainer.Variable(
... np.random.uniform(-1, 1, (3, 3)).astype(np.float32))
>>> ys = [np.zeros(x.shape[0:1], dtype=np.int32) for x in xs]
>>> loss = F.crf1d(cost, xs, ys)

It calculates mean of the negative log-likelihood of the three sequences.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'mean', it holds mean of the loss values.

Parameters

• cost (Variable or N-dimensional array) – A 𝐾 ×𝐾 matrix which holds transition cost
between two labels, where 𝐾 is the number of labels.

• xs (list of Variable) – Input vector for each label. len(xs) denotes the length of
the sequence, and each Variable holds a 𝐵 ×𝐾 matrix, where 𝐵 is mini-batch size, 𝐾

230 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

is the number of labels. Note that 𝐵s in all the variables are not necessary the same, i.e., it
accepts the input sequences with different lengths.

• ys (list of Variable) – Expected output labels. It needs to have the same length as
xs. Each Variable holds a 𝐵 integer vector. When x in xs has the different 𝐵, corre-
spoding y has the same 𝐵. In other words, ys must satisfy ys[i].shape == xs[i].
shape[0:1] for all i.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding the average negative log-likelihood of the input sequences.

Return type Variable

Note: See detail in the original paper: Conditional Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data.

chainer.functions.argmax_crf1d

chainer.functions.argmax_crf1d(cost, xs)
Computes a state that maximizes a joint probability of the given CRF.

Parameters

• cost (Variable or N-dimensional array) – A 𝐾 ×𝐾 matrix which holds transition cost
between two labels, where 𝐾 is the number of labels.

• xs (list of Variable) – Input vector for each label. len(xs) denotes the length of
the sequence, and each Variable holds a 𝐵 ×𝐾 matrix, where 𝐵 is mini-batch size, 𝐾
is the number of labels. Note that 𝐵s in all the variables are not necessary the same, i.e., it
accepts the input sequences with different lengths.

Returns A tuple of Variable object s and a list ps. The shape of s is (B,), where B is the
mini-batch size. i-th element of s, s[i], represents log-likelihood of i-th data. ps is a list
of N-dimensional array, and denotes the state that maximizes the point probability. len(ps)
is equal to len(xs), and shape of each ps[i] is the mini-batch size of the corresponding
xs[i]. That means, ps[i].shape == xs[i].shape[0:1].

Return type tuple

chainer.functions.cross_covariance

chainer.functions.cross_covariance(y, z, reduce=’half_squared_sum’)
Computes the sum-squared cross-covariance penalty between y and z

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it
holds the covariant matrix that has as many rows (resp. columns) as the dimension of y (resp.z). If it is
'half_squared_sum', it holds the half of the Frobenius norm (i.e. L2 norm of a matrix flattened to a
vector) of the covarianct matrix.

Parameters

• y (Variable or N-dimensional array) – Variable holding a matrix where the first dimen-
sion corresponds to the batches.

4.2. Functions 231

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://repository.upenn.edu/cis_papers/159/
https://repository.upenn.edu/cis_papers/159/
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

• z (Variable or N-dimensional array) – Variable holding a matrix where the first dimen-
sion corresponds to the batches.

• reduce (str) – Reduction option. Its value must be either 'half_squared_sum' or
'no'. Otherwise, ValueError is raised.

Returns A variable holding the cross covariance loss. If reduce is 'no', the output variable holds
2-dimensional array matrix of shape (M, N) where M (resp. N) is the number of columns of y
(resp. z). If it is 'half_squared_sum', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to disentangle variables. See https://arxiv.org/abs/1412.6583v3 for details.

chainer.functions.decov

chainer.functions.decov(h, reduce=’half_squared_sum’)
Computes the DeCov loss of h

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds a matrix
whose size is same as the number of columns of y. If it is 'half_squared_sum', it holds the half of the
squared Frobenius norm (i.e. squared of the L2 norm of a matrix flattened to a vector) of the matrix.

Parameters

• h (Variable or N-dimensional array) – Variable holding a matrix where the first dimen-
sion corresponds to the batches.

• recude (str) – Reduction option. Its value must be either 'half_squared_sum' or
'no'. Otherwise, ValueError is raised.

Returns A variable holding a scalar of the DeCov loss. If reduce is 'no', the output variable
holds 2-dimensional array matrix of shape (N, N) where N is the number of columns of y. If
it is 'half_squared_sum', the output variable holds a scalar value.

Return type Variable

Note: See https://arxiv.org/abs/1511.06068 for details.

chainer.functions.discriminative_margin_based_clustering_loss

chainer.functions.discriminative_margin_based_clustering_loss(embeddings, la-
bels, delta_v,
delta_d,
max_embedding_dim,
norm=1, al-
pha=1.0,
beta=1.0,
gamma=0.001)

Discriminative margin-based clustering loss function

This is the implementation of the following paper: https://arxiv.org/abs/1708.02551 This method is a semi-
supervised solution to instance segmentation. It calculates pixel embeddings, and calculates three different
terms based on those embeddings and applies them as loss. The main idea is that the pixel embeddings for same
instances have to be closer to each other (pull force), for different instances, they have to be further away (push

232 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1412.6583v3
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1511.06068
https://arxiv.org/abs/1708.02551

Chainer Documentation, Release 7.0.0b4

force). The loss also brings a weak regularization term to prevent overfitting. This loss function calculates the
following three parameters:

Variance Loss Loss to penalize distances between pixels which are belonging to the same instance. (Pull force)

Distance loss Loss to penalize distances between the centers of instances. (Push force)

Regularization loss Small regularization loss to penalize weights against overfitting.

Parameters

• embeddings (Variable or N-dimensional array) – predicted embedding vectors (batch
size, max embedding dimensions, height, width)

• labels (N-dimensional array) – instance segmentation ground truth each unique value has
to be denoting one instance (batch size, height, width)

• delta_v (float) – Minimum distance to start penalizing variance

• delta_d (float) – Maximum distance to stop penalizing distance

• max_embedding_dim (int) – Maximum number of embedding dimensions

• norm (int) – Norm to calculate pixels and cluster center distances

• alpha (float) – Weight for variance loss

• beta (float) – Weight for distance loss

• gamma (float) – Weight for regularization loss

Returns

• Variance loss: Variance loss multiplied by alpha

• Distance loss: Distance loss multiplied by beta

• Regularization loss: Regularization loss multiplied by gamma

Return type tuple of chainer.Variable

chainer.functions.gaussian_kl_divergence

chainer.functions.gaussian_kl_divergence(mean, ln_var, reduce=’sum’)
Computes the KL-divergence of Gaussian variables from the standard one.

Given two variable mean representing 𝜇 and ln_var representing log(𝜎2), this function calculates the KL-
divergence in elementwise manner between the given multi-dimensional Gaussian 𝑁(𝜇, 𝑆) and the standard
Gaussian 𝑁(0, 𝐼)

𝐷KL(𝑁(𝜇, 𝑆)‖𝑁(0, 𝐼)),

where 𝑆 is a diagonal matrix such that 𝑆𝑖𝑖 = 𝜎2
𝑖 and 𝐼 is an identity matrix.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'sum' or 'mean', loss values are summed up or averaged respectively.

Parameters

• mean (Variable or N-dimensional array) – A variable representing mean of given gaus-
sian distribution, 𝜇.

• ln_var (Variable or N-dimensional array) – A variable representing logarithm of vari-
ance of given gaussian distribution, log(𝜎2).

4.2. Functions 233

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

• reduce (str) – Reduction option. Its value must be either 'sum', 'mean' or 'no'.
Otherwise, ValueError is raised.

Returns A variable representing KL-divergence between given gaussian distribution and the stan-
dard gaussian. If reduce is 'no', the output variable holds array whose shape is same as one
of (hence both of) input variables. If it is 'sum' or 'mean', the output variable holds a scalar
value.

Return type Variable

chainer.functions.gaussian_nll

chainer.functions.gaussian_nll(x, mean, ln_var, reduce=’sum’)
Computes the negative log-likelihood of a Gaussian distribution.

Given two variable mean representing 𝜇 and ln_var representing log(𝜎2), this function computes in elemen-
twise manner the negative log-likelihood of 𝑥 on a Gaussian distribution 𝑁(𝜇, 𝑆),

− log𝑁(𝑥;𝜇, 𝜎2) = log

(︂√︁
(2𝜋)𝐷|𝑆|

)︂
+

1

2
(𝑥− 𝜇)⊤𝑆−1(𝑥− 𝜇),

where 𝐷 is a dimension of 𝑥 and 𝑆 is a diagonal matrix where 𝑆𝑖𝑖 = 𝜎2
𝑖 .

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'sum' or 'mean', loss values are summed up or averaged respectively.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• mean (Variable or N-dimensional array) – A variable representing mean of a Gaussian
distribution, 𝜇.

• ln_var (Variable or N-dimensional array) – A variable representing logarithm of vari-
ance of a Gaussian distribution, log(𝜎2).

• reduce (str) – Reduction option. Its value must be either 'sum', 'mean' or 'no'.
Otherwise, ValueError is raised.

Returns A variable representing the negative log-likelihood. If reduce is 'no', the output vari-
able holds array whose shape is same as one of (hence both of) input variables. If it is 'sum'
or 'mean', the output variable holds a scalar value.

Return type Variable

chainer.functions.hinge

chainer.functions.hinge(x, t, norm=’L1’, reduce=’mean’)
Computes the hinge loss for a one-of-many classification task.

𝐿 =
1

𝑁

𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

[max(0, 1− 𝛿{𝑡𝑛 = 𝑘}𝑥𝑛𝑘)]
𝑝

where 𝑁 denotes the batch size and 𝐾 is the number of classes of interest,

𝛿{condition} =

{︂
1 if condition is true
−1 otherwise,

234 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 7.0.0b4

and

𝑝 =

{︂
1 if norm = L1
2 if norm = L2.

Let the hinge loss function 𝑙(𝑥, 𝛿) be [max(0, 1− 𝛿𝑥)]
𝑝. When 𝑥 and 𝛿 have the same sign (meaning

𝑥 predicts the proper score for classification) and |𝑥| ≥ 1, the hinge loss 𝑙(𝑥, 𝛿) = 0, but when they
have opposite sign, 𝑙(𝑥, 𝛿) increases linearly with 𝑥.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it
holds the elementwise loss values. If it is 'mean', it takes the mean of loss values.

Parameters

• x (Variable or N-dimensional array) – Input variable. The shape of x should be (𝑁 , 𝐾).

• t (Variable or N-dimensional array) – The 𝑁 -dimensional label vector with values 𝑡𝑛 ∈
{0, 1, 2, . . . ,𝐾 − 1}. The shape of t should be (𝑁 ,).

• norm (string) – Specifies norm type. Either 'L1' or 'L2' is acceptable.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable object holding a scalar array of the hinge loss 𝐿. If reduce is 'no', the
output variable holds array whose shape is same as one of (hence both of) input variables. If it
is 'mean', the output variable holds a scalar value.

Return type Variable

Example

In this case, the batch size N is 2 and the number of classes K is 3.

>>> x = np.array([[-2.0, 3.0, 0.5],
... [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x
array([[-2. , 3. , 0.5],

[5. , 2. , -0.5]], dtype=float32)
>>> t = np.array([1, 0]).astype(np.int32)
>>> t
array([1, 0], dtype=int32)
>>> F.hinge(x, t)
variable(2.5)
>>> F.hinge(x, t, reduce='no')
variable([[0. , 0. , 1.5],

[0. , 3. , 0.5]])
>>> F.hinge(x, t, norm='L2')
variable(5.75)

chainer.functions.huber_loss

chainer.functions.huber_loss(x, t, delta, reduce=’sum_along_second_axis’)
Computes the Huber loss.

4.2. Functions 235

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 7.0.0b4

The Huber loss is similar to the mean_squared_error() but is less sensitive to outliers in the data. It is
defined as

𝐿𝛿(𝑎) =

{︂
1
2𝑎

2 if |a| ≤ 𝛿
𝛿(|𝑎| − 1

2𝛿) otherwise,

where 𝑎 = 𝑥− 𝑡 is the difference between the input 𝑥 and the target 𝑡.

The loss is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'sum_along_second_axis', loss values are summed up along the second
axis (i.e. axis=1).

See: Huber loss - Wikipedia.

Parameters

• x (Variable or N-dimensional array) – Input variable. The shape of x should be (𝑁 , 𝐾,
. . .) if reduce='sum_along_second_axis'.

• t (Variable or N-dimensional array) – Target variable for regression. The shape of t
should be (𝑁 , 𝐾, . . .) if reduce='sum_along_second_axis'.

• delta (float) – Constant variable for Huber loss function as used in definition.

• reduce (str) – Reduction option. Its value must be either
'sum_along_second_axis' or 'no'. Otherwise, ValueError is raised.

Returns A variable object holding a scalar array of the Huber loss 𝐿𝛿 . If reduce is 'no', the
output variable holds array whose shape is same as one of (hence both of) input variables. If it is
'sum_along_second_axis', the shape of the array is same as the input variables, except
the second axis is removed.

Return type Variable

Example

Example without reduction, in which case the output y will have the same shape as the inputs x and t.

>>> import numpy as np
>>> from chainer import functions as F
>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x.shape
(2, 3)
>>> t = np.array([[-2.0, 3.0, 0.0], [10.0, 2.0, -0.5]]).astype(np.float32)
>>> t.shape
(2, 3)
>>> y = F.huber_loss(x, t, delta=1.0, reduce='no')
>>> y.shape
(2, 3)
>>> y
variable([[0. , 0. , 0.125],

[4.5 , 0. , 0.]])

Example with reduction along the second axis.

>>> y = F.huber_loss(x, t, delta=1.0, reduce='sum_along_second_axis')
>>> y.shape
(2,)
>>> y
variable([0.125, 4.5])

236 Chapter 4. API Reference

https://en.wikipedia.org/wiki/Huber_loss
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

Chainer Documentation, Release 7.0.0b4

chainer.functions.mean_absolute_error

chainer.functions.mean_absolute_error(x0, x1)
Mean absolute error function.

The function computes the mean absolute error between two variables. The mean is taken over the minibatch.
Args x0 and x1 must have the same dimensions. This function first calculates the absolute value differences
between the corresponding elements in x0 and x1, and then returns the mean of those differences.

Parameters

• x0 (Variable or N-dimensional array) – Input variable.

• x1 (Variable or N-dimensional array) – Input variable.

Returns A variable holding an array representing the mean absolute error of two inputs.

Return type Variable

Example

1D array examples:

>>> x = np.array([1, 2, 3]).astype(np.float32)
>>> y = np.array([0, 0, 0]).astype(np.float32)
>>> F.mean_absolute_error(x, y)
variable(2.)
>>> x = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32)
>>> y = np.array([7, 8, 9, 10, 11, 12]).astype(np.float32)
>>> F.mean_absolute_error(x, y)
variable(6.)

2D array example:

In this example, there are 4 elements, and thus 4 errors >>> x = np.array([[1, 2], [3, 4]]).astype(np.float32) >>>
y = np.array([[8, 8], [8, 8]]).astype(np.float32) >>> F.mean_absolute_error(x, y) variable(5.5)

3D array example:

In this example, there are 8 elements, and thus 8 errors >>> x = np.reshape(np.array([1, 2, 3, 4, 5, 6, 7, 8]),
(2, 2, 2)) >>> y = np.reshape(np.array([8, 8, 8, 8, 8, 8, 8, 8]), (2, 2, 2)) >>> x = x.astype(np.float32) >>> y =
y.astype(np.float32) >>> F.mean_absolute_error(x, y) variable(3.5)

chainer.functions.mean_squared_error

chainer.functions.mean_squared_error(x0, x1)
Mean squared error function.

The function computes the mean squared error between two variables. The mean is taken over the minibatch.
Args x0 and x1 must have the same dimensions. Note that the error is not scaled by 1/2.

Parameters

• x0 (Variable or N-dimensional array) – Input variable.

• x1 (Variable or N-dimensional array) – Input variable.

Returns A variable holding an array representing the mean squared error of two inputs.

4.2. Functions 237

Chainer Documentation, Release 7.0.0b4

Return type

~chainer.Variable

Example

1D array examples:

>>> x = np.array([1, 2, 3, 4]).astype(np.float32)
>>> y = np.array([0, 0, 0, 0]).astype(np.float32)
>>> F.mean_squared_error(x, y)
variable(7.5)
>>> x = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32)
>>> y = np.array([7, 8, 9, 10, 11, 12]).astype(np.float32)
>>> F.mean_squared_error(x, y)
variable(36.)

2D array example:

In this example, there are 4 elements, and thus 4 errors >>> x = np.array([[1,
2], [3, 4]]).astype(np.float32) >>> y = np.array([[8, 8], [8, 8]]).astype(np.float32) >>>
F.mean_squared_error(x, y) variable(31.5)

3D array example:

In this example, there are 8 elements, and thus 8 errors >>> x = np.reshape(np.array([1, 2, 3,
4, 5, 6, 7, 8]), (2, 2, 2)) >>> y = np.reshape(np.array([8, 8, 8, 8, 8, 8, 8, 8]), (2, 2, 2)) >>>
x = x.astype(np.float32) >>> y = y.astype(np.float32) >>> F.mean_squared_error(x, y) vari-
able(17.5)

chainer.functions.negative_sampling

chainer.functions.negative_sampling(x, t, W, sampler, sample_size, reduce=’sum’, *, re-
turn_samples=False)

Negative sampling loss function.

In natural language processing, especially language modeling, the number of words in a vocabulary can be very
large. Therefore, you need to spend a lot of time calculating the gradient of the embedding matrix.

By using the negative sampling trick you only need to calculate the gradient for a few sampled negative exam-
ples.

The loss is defined as follows.

𝑓(𝑥, 𝑝) = − log 𝜎(𝑥⊤𝑤𝑝)− 𝑘𝐸𝑖∼𝑃 (𝑖)[log 𝜎(−𝑥⊤𝑤𝑖)]

where 𝜎(·) is a sigmoid function, 𝑤𝑖 is the weight vector for the word 𝑖, and 𝑝 is a positive example. It is
approximated with 𝑘 examples 𝑁 sampled from probability 𝑃 (𝑖).

𝑓(𝑥, 𝑝) ≈ − log 𝜎(𝑥⊤𝑤𝑝)−
∑︁
𝑛∈𝑁

log 𝜎(−𝑥⊤𝑤𝑛)

Each sample of 𝑁 is drawn from the word distribution 𝑃 (𝑤) = 1
𝑍 𝑐(𝑤)𝛼, where 𝑐(𝑤) is the unigram count of

the word 𝑤, 𝛼 is a hyper-parameter, and 𝑍 is the normalization constant.

Parameters

• x (Variable or N-dimensional array) – Batch of input vectors.

238 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

• t (Variable or N-dimensional array) – Vector of ground truth labels.

• W (Variable or N-dimensional array) – Weight matrix.

• sampler (FunctionType) – Sampling function. It takes a shape and returns an integer
array of the shape. Each element of this array is a sample from the word distribution. A
WalkerAlias object built with the power distribution of word frequency is recommended.

• sample_size (int) – Number of samples.

• reduce (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise,
ValueError is raised.

• return_samples (bool) – If True, the sample array is also returned. The sample array is
a (

Returns

If return_samples is False (default), the output variable holding the loss value(s) calcu-
lated by the above equation is returned. Otherwise, a tuple of the output variable and the sample
array is returned.

If reduce is 'no', the output variable holds array whose shape is same as one of (hence both
of) input variables. If it is 'sum', the output variable holds a scalar value.

Return type Variable or tuple

See: Distributed Representations of Words and Phrases and their Compositionality

See also:

NegativeSampling to manage the model parameter W.

chainer.functions.sigmoid_cross_entropy

chainer.functions.sigmoid_cross_entropy(x, t, normalize=True, reduce=’mean’)
Computes cross entropy loss for pre-sigmoid activations.

Parameters

• x (Variable or N-dimensional array) – A variable object holding a matrix whose (i, j)-th
element indicates the unnormalized log probability of the j-th unit at the i-th example.

• t (Variable or N-dimensional array) – A variable object holding a matrix whose (i, j)-th
element indicates a signed integer vector of ground truth labels 0 or 1. If t[i, j] ==
-1, corresponding x[i, j] is ignored. Loss is zero if all ground truth labels are -1.

• normalize (bool) – Variable holding a boolean value which determines the normaliza-
tion constant. If true, this function normalizes the cross entropy loss across all instances. If
else, it only normalizes along a batch size.

• reduce (str) – Variable holding a str which determines whether to reduce the shape of
the input. If it is 'mean', it computes the sum of cross entropy and normalize it according
to normalize option. If is is 'no', this function computes cross entropy for each instance
and does not normalize it (normalize option is ignored). In this case, the loss value of
the ignored instance, which has -1 as its target value, is set to 0.

Returns A variable object holding an array of the cross entropy. If reduce is 'mean', it is a
scalar array. If reduce is 'no', the shape is same as those of x and t.

Return type Variable

4.2. Functions 239

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1310.4546
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Note: This function is differentiable only by x.

Example

>>> x = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> x
array([[-2. , 3. , 0.5],

[5. , 2. , -0.5]], dtype=float32)
>>> t = np.array([[0, 1, 0], [1, 1, -1]]).astype(np.int32)
>>> t
array([[0, 1, 0],

[1, 1, -1]], dtype=int32)
>>> F.sigmoid_cross_entropy(x, t)
variable(0.25664714)
>>> F.sigmoid_cross_entropy(x, t, normalize=False)
variable(0.64161783)
>>> y = F.sigmoid_cross_entropy(x, t, reduce='no')
>>> y.shape
(2, 3)
>>> y.array
array([[0.126928 , 0.04858735, 0.974077],

[0.00671535, 0.126928 , -0.]], dtype=float32)

chainer.functions.softmax_cross_entropy

chainer.functions.softmax_cross_entropy(x, t, normalize=True, cache_score=True,
class_weight=None, ignore_label=-1, re-
duce=’mean’, enable_double_backprop=False)

Computes cross entropy loss for pre-softmax activations.

Parameters

• x (Variable or N-dimensional array) – Variable holding a multidimensional array whose
element indicates unnormalized log probability: the first axis of the variable represents the
number of samples, and the second axis represents the number of classes. While this func-
tion computes a usual softmax cross entropy if the number of dimensions is equal to 2, it
computes a cross entropy of the replicated softmax if the number of dimensions is greater
than 2.

• t (Variable or N-dimensional array) – Variable holding a signed integer vector of ground
truth labels. If t[i] == ignore_label, corresponding x[i] is ignored.

• normalize (bool) – If True, this function normalizes the cross entropy loss across all
instances. If False, it only normalizes along a batch size.

• cache_score (bool) – When it is True, the function stores result of forward compu-
tation to use it on backward computation. It reduces computational cost though consumes
more memory. If enable_double_backprop option is True, this option is forcibly
turned off and the function does not cache the intermediate value.

• class_weight (N-dimensional array) – An array that contains constant weights that will
be multiplied with the loss values along with the second dimension. The shape of this array
should be (x.shape[1],). If this is not None, each class weight class_weight[i]

240 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

is actually multiplied to y[:, i] that is the corresponding log-softmax output of x and
has the same shape as x before calculating the actual loss value.

• ignore_label (int) – Label value you want to ignore. Its default value is -1. See
description of the argument t.

• reduce (str) – A string that determines whether to reduce the loss values. If it is
'mean', it computes the sum of the individual cross entropy and normalize it according
to normalize option. If it is 'no', this function computes cross entropy for each in-
stance and does not normalize it (normalize option is ignored). In this case, the loss
value of the ignored instance, which has ignore_label as its target value, is set to 0.

• enable_double_backprop (bool) – If True, this function uses implementation that
supports higher order differentiation. If False, it uses single-backprop implementation.
This function use the single-backprop version because we expect it is faster. So, if you need
second or higher derivatives, you need to turn it on explicitly.

Returns A variable holding a scalar array of the cross entropy loss. If reduce is 'mean', it is a
scalar array. If reduce is 'no', the shape is same as that of t.

Return type Variable

Note: This function is differentiable only by x.

Example

>>> x = np.array([[-1, 0, 1, 2], [2, 0, 1, -1]]).astype(np.float32)
>>> x
array([[-1., 0., 1., 2.],

[2., 0., 1., -1.]], dtype=float32)
>>> t = np.array([3, 0]).astype(np.int32)
>>> t
array([3, 0], dtype=int32)
>>> y = F.softmax_cross_entropy(x, t)
>>> y
variable(0.44018972)
>>> log_softmax = -F.log_softmax(x)
>>> expected_loss = np.mean([log_softmax[row, column].data for row, column in
→˓enumerate(t)])
>>> y.array == expected_loss
True

chainer.functions.squared_error

chainer.functions.squared_error(x0, x1)
Squared error function.

This function computes the squared error between two variables:

(𝑥0 − 𝑥1)2

where operation is done in elementwise manner. Note that the error is not scaled by 1/2:

Parameters

• x0 (Variable or N-dimensional array) – Input variable.

4.2. Functions 241

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

• x1 (Variable or N-dimensional array) – Input variable.

Returns A variable holding an array representing the squared error of two inputs.

Return type Variable

Note: squared_error() and squared_difference() are identical functions, aside from the different
argument names. They are both kept for backward compatibility.

See also:

squared_difference()

Example

>>> x1 = np.arange(6).astype(np.float32)
>>> x1
array([0., 1., 2., 3., 4., 5.], dtype=float32)
>>> x2 = np.array([5, 4, 3, 2, 1, 0]).astype(np.float32)
>>> x2
array([5., 4., 3., 2., 1., 0.], dtype=float32)
>>> y = F.squared_error(x1, x2)
>>> y.shape
(6,)
>>> y.array
array([25., 9., 1., 1., 9., 25.], dtype=float32)

See also:

squared_difference()

chainer.functions.triplet

chainer.functions.triplet(anchor, positive, negative, margin=0.2, reduce=’mean’)
Computes triplet loss.

It takes a triplet of variables as inputs, 𝑎, 𝑝 and 𝑛: anchor, positive example and negative example respectively.
The triplet defines a relative similarity between samples. Let𝑁 and𝐾 denote mini-batch size and the dimension
of input variables, respectively. The shape of all input variables should be (𝑁,𝐾).

𝐿(𝑎, 𝑝, 𝑛) =
1

𝑁

(︃
𝑁∑︁
𝑖=1

max{𝑑(𝑎𝑖, 𝑝𝑖)− 𝑑(𝑎𝑖, 𝑛𝑖) + margin, 0}

)︃

where 𝑑(𝑥𝑖, 𝑦𝑖) = ‖x𝑖 − y𝑖‖22.

The output is a variable whose value depends on the value of the option reduce. If it is 'no', it holds the
elementwise loss values. If it is 'mean', this function takes a mean of loss values.

Parameters

• anchor (Variable or N-dimensional array) – The anchor example variable. The shape
should be (𝑁,𝐾), where𝑁 denotes the minibatch size, and𝐾 denotes the dimension of the
anchor.

• positive (Variable or N-dimensional array) – The positive example variable. The
shape should be the same as anchor.

242 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

• negative (Variable or N-dimensional array) – The negative example variable. The
shape should be the same as anchor.

• margin (float) – A parameter for triplet loss. It should be a positive value.

• reduce (str) – Reduction option. Its value must be either 'mean' or 'no'. Otherwise,
ValueError is raised.

Returns A variable holding a scalar that is the loss value calculated by the above equation. If
reduce is 'no', the output variable holds array whose shape is same as one of (hence both
of) input variables. If it is 'mean', the output variable holds a scalar value.

Return type Variable

Note: This cost can be used to train triplet networks. See Learning Fine-grained Image Similarity with Deep
Ranking for details.

Example

>>> anchor = np.array([[-2.0, 3.0, 0.5], [5.0, 2.0, -0.5]]).astype(np.float32)
>>> pos = np.array([[-2.1, 2.8, 0.5], [4.9, 2.0, -0.4]]).astype(np.float32)
>>> neg = np.array([[-2.1, 2.7, 0.7], [4.9, 2.0, -0.7]]).astype(np.float32)
>>> F.triplet(anchor, pos, neg)
variable(0.14000003)
>>> y = F.triplet(anchor, pos, neg, reduce='no')
>>> y.shape
(2,)
>>> y.array
array([0.11000005, 0.17], dtype=float32)
>>> F.triplet(anchor, pos, neg, margin=0.5) # harder penalty
variable(0.44000003)

4.2.7 Mathematical functions

chainer.functions.absolute Element-wise absolute.
chainer.functions.arccos Elementwise arccosine function.
chainer.functions.arcsin Elementwise arcsine function.
chainer.functions.arctan Elementwise arctangent function.
chainer.functions.arctan2 Elementwise arctangent function with two arguments.
chainer.functions.arctanh Elementwise inverse hyperbolic tangent function.
chainer.functions.argmax Returns index which holds maximum of array elements

over a given axis.
chainer.functions.argmin Returns index which holds minimum of array elements

over a given axis.
chainer.functions.average Calculate weighted average of array elements over a

given axis.
chainer.functions.batch_inv Computes the inverse of a batch of square matrices.
chainer.functions.
batch_l2_norm_squared

L2 norm (a.k.a. Euclidean norm) squared.

chainer.functions.batch_matmul Computes the batch matrix multiplications of two sets
of arrays.

Continued on next page

4.2. Functions 243

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://arxiv.org/abs/1404.4661
https://arxiv.org/abs/1404.4661

Chainer Documentation, Release 7.0.0b4

Table 8 – continued from previous page
chainer.functions.bias Elementwise summation with broadcasting.
chainer.functions.ceil Elementwise ceil function.
chainer.functions.clip Clips (limits) elements of input variable.
chainer.functions.cos Elementwise cos function.
chainer.functions.cosh Elementwise hyperbolic cosine function.
chainer.functions.cumprod Cumulative prod of array elements over a given axis.
chainer.functions.cumsum Cumulative sum of array elements over a given axis.
chainer.functions.det Computes the determinant of a single square matrix.
chainer.functions.batch_det Computes the determinant of a batch of square matrices.
chainer.functions.digamma Digamma function.
chainer.functions.einsum Einstein summation
chainer.functions.erf Elementwise error function.
chainer.functions.erfc Elementwise complementary error function.
chainer.functions.erfcinv Elementwise inverse function of complementary error

function.
chainer.functions.erfcx Elementwise scaled complementary error function.
chainer.functions.erfinv Elementwise inverse function of error function.
chainer.functions.exp Elementwise exponential function.
chainer.functions.expm1 Elementwise exponential minus one function.
chainer.functions.fft Fast Fourier transform.
chainer.functions.fix Elementwise fix function.
chainer.functions.fmod Elementwise mod function.
chainer.functions.floor Elementwise floor function.
chainer.functions.identity Just returns input variables.
chainer.functions.ifft Inverse fast Fourier transform.
chainer.functions.inv Computes the inverse of square matrix.
chainer.functions.lgamma logarithm of gamma function.
chainer.functions.linear_interpolate Elementwise linear-interpolation function.
chainer.functions.log Elementwise natural logarithm function.
chainer.functions.log10 Elementwise logarithm function to the base 10.
chainer.functions.log1p Elementwise natural logarithm plus one function.
chainer.functions.log2 Elementwise logarithm function to the base 2.
chainer.functions.log_ndtr Logarithm of cumulative distribution function of normal

distribution.
chainer.functions.logsumexp Log-sum-exp of array elements over a given axis.
chainer.functions.matmul Computes the matrix multiplication of two arrays.
chainer.functions.max Maximum of array elements over a given axis.
chainer.functions.maximum Element-wise maximum of input variables.
chainer.functions.mean Calculate weighted average of array elements over a

given axis.
chainer.functions.min Minimum of array elements over a given axis.
chainer.functions.minimum Element-wise minimum of input variables.
chainer.functions.ndtr Elementwise cumulative distribution function of normal

distribution.
chainer.functions.ndtri Elementwise inverse function of ndtr.
chainer.functions.prod Product of array elements over a given axis.
chainer.functions.polygamma Polygamma function.
chainer.functions.rsqrt Computes elementwise reciprocal of square root of in-

put 𝑥𝑖.
chainer.functions.scale Elementwise product with broadcasting.

Continued on next page

244 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Table 8 – continued from previous page
chainer.functions.sin Elementwise sin function.
chainer.functions.sinh Elementwise hyperbolic sine function.
chainer.functions.sign Elementwise sign function.
chainer.functions.sparse_matmul Computes the batched multiplication of sparse and

dense matrix.
chainer.functions.sqrt Elementwise square root function.
chainer.functions.square Elementwise square function.
chainer.functions.squared_difference Squared difference function.
chainer.functions.sum Sum of array elements over a given axis.
chainer.functions.sum_to Sum elements along axes to output an array of a given

shape.
chainer.functions.tanh Elementwise hyperbolic tangent function.
chainer.functions.tan Elementwise tan function.
chainer.functions.tensordot Returns the tensor dot product of two arrays along spec-

ified axes.
chainer.functions.zeta Zeta function.

chainer.functions.absolute

chainer.functions.absolute(self)
Element-wise absolute.

Returns Output variable.

Return type Variable

chainer.functions.arccos

chainer.functions.arccos(x)
Elementwise arccosine function.

𝑦𝑖 = arccos𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.arcsin

chainer.functions.arcsin(x)
Elementwise arcsine function.

𝑦𝑖 = arcsin𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

4.2. Functions 245

Chainer Documentation, Release 7.0.0b4

chainer.functions.arctan

chainer.functions.arctan(x)
Elementwise arctangent function.

𝑦𝑖 = arctan𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.arctan2

chainer.functions.arctan2(x1, x2)
Elementwise arctangent function with two arguments.

Parameters

• x1 (Variable or N-dimensional array) – Y-coordinates.

• x2 (Variable or N-dimensional array) – X-coordinates.

Returns Angles in radians, in the range [-pi, pi].

Return type Variable

chainer.functions.arctanh

chainer.functions.arctanh(x)
Elementwise inverse hyperbolic tangent function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.argmax

chainer.functions.argmax(x, axis=None)
Returns index which holds maximum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Array to find maximum elements.

• axis (None or int) – Axis over which a max is performed. The default (axis = None)
is perform a max over all the dimensions of the input array.

Returns Output variable.

Return type Variable

246 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

chainer.functions.argmin

chainer.functions.argmin(x, axis=None)
Returns index which holds minimum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Array to find minimum elements.

• axis (None or int) – Axis over which a min is performed. The default (axis = None)
is perform a min over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.average

chainer.functions.average(x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Elements to sum.

• axis (None or int or tuple of int) – Axis which the method is performed.
With the default (axis = None) it performs a mean over all the dimensions of the input array.

• weights (None or Variable or N-dimensional array) – An array holding weights to
calculate weighted average. If it is None, all weights are assumed to be one. When axis is
None, weights must have the same shape of x. And when axis is int, it must be 1-D
array satisfying weights.shape == (x.shape[axis],).

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.

Return type Variable

chainer.functions.batch_inv

chainer.functions.batch_inv(a)
Computes the inverse of a batch of square matrices.

Parameters a (Variable or N-dimensional array) – Input array to compute the inverse for. Shape
of the array should be (m, n, n) where m is the number of matrices in the batch, and n is the
dimensionality of a square matrix.

Returns Inverse of every matrix in the batch of matrices.

Return type Variable

chainer.functions.batch_l2_norm_squared

chainer.functions.batch_l2_norm_squared(x)
L2 norm (a.k.a. Euclidean norm) squared.

This function implements the square of L2 norm on a vector. No reduction along batch axis is done.

4.2. Functions 247

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters x (Variable or N-dimensional array) – Input variable. The first dimension is as-
sumed to be the minibatch dimension. If x has more than two dimensions all but the first dimen-
sion are flattened to one dimension.

Returns Two dimensional output variable.

Return type Variable

chainer.functions.batch_matmul

chainer.functions.batch_matmul(a, b, transa=False, transb=False)
Computes the batch matrix multiplications of two sets of arrays.

Parameters

• a (Variable or N-dimensional array) – The left operand of the batch matrix multiplica-
tions. A 2-D array of shape (B, N) is considered as B 𝑁 × 1 matrices. A 3-D array of
shape (B, M, N) is considered as B 𝑀 ×𝑁 matrices.

• b (Variable or N-dimensional array) – The right operand of the batch matrix multiplica-
tions. Its array is treated as matrices in the same way as a’s array.

• transa (bool) – If True, transpose each matrix in a.

• transb (bool) – If True, transpose each matrix in b.

Returns The result of the batch matrix multiplications as a 3-D array.

Return type Variable

Deprecated since version v3.0.0: batch_matmul is deprecated. Use matmul instead.

chainer.functions.bias

chainer.functions.bias(x, y, axis=1)
Elementwise summation with broadcasting.

Computes a elementwise summation of two input variables, with the shape of the latter variable broadcasted to
match the shape of the former. axis is the first axis of the first variable along which the second variable is
applied.

The term “broadcasting” here comes from Caffe’s bias layer so the “broadcasting” with the following arguments:

x : 100 x 3 x 40 x 5 x 6
y : 3 x 40

axis : 1

is equivalent to the following numpy broadcasting:

x : 100 x 3 x 40 x 5 x 6
y : (1 x) 3 x 40 x 1 x 1

Note that the axis of x to which we apply y is specified by the argument axis, whose meaning is different from
numpy’s axis.

Parameters

• x (Variable or N-dimensional array) – Input variable to be summed.

• y (Variable or N-dimensional array) – Input variable to sum, broadcasted.

248 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

• axis (int) – The first axis of x along which y is applied.

Returns Output variable.

Return type Variable

chainer.functions.ceil

chainer.functions.ceil(x)
Elementwise ceil function.

𝑦𝑖 = ⌈𝑥𝑖⌉

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.clip

chainer.functions.clip(x, x_min, x_max)
Clips (limits) elements of input variable.

Given an interval [x_min, xmax], elements outside the interval are clipped to the interval edges.

Its gradients at x_min and x_max are regarded as 1.

Parameters

• x (Variable or N-dimensional array) – Input variable to be clipped.

• x_min (float) – Minimum value.

• x_max (float) – Maximum value.

Returns Output variable.

Return type Variable

chainer.functions.cos

chainer.functions.cos(x)
Elementwise cos function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.cosh

chainer.functions.cosh(x)
Elementwise hyperbolic cosine function.

𝑦𝑖 = cosh𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

4.2. Functions 249

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Returns Output variable.

Return type Variable

chainer.functions.cumprod

chainer.functions.cumprod(x, axis=None)
Cumulative prod of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Elements to calculate the cumulative prod.

• axis (int or None) – Axis along which the cumulative prod is taken. If it is not spec-
ified, the input is flattened.

Returns Output variable.

Return type Variable

chainer.functions.cumsum

chainer.functions.cumsum(x, axis=None)
Cumulative sum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Elements to calculate the cumulative sum.

• axis (int or None) – Axis along which the cumulative sum is taken. If it is not speci-
fied, the input is flattened.

Returns Output variable.

Return type Variable

chainer.functions.det

chainer.functions.det(a)
Computes the determinant of a single square matrix.

Parameters a (Variable or N-dimensional array) – Input array to compute the determinant for.

Returns Scalar determinant of the matrix a.

Return type Variable

chainer.functions.batch_det

chainer.functions.batch_det(a)
Computes the determinant of a batch of square matrices.

Parameters a (Variable or N-dimensional array) – Input array to compute the determinant for.
The first dimension should iterate over each matrix and be of the batchsize.

Returns vector of determinants for every matrix in the batch.

Return type Variable

250 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 7.0.0b4

chainer.functions.digamma

chainer.functions.digamma(x)
Digamma function.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.einsum

chainer.functions.einsum(*operands)
Einstein summation

This function supports two formats of inputs:

• einsum(subscripts, op0, op1, ...)

• einsum(op0, sublist0, op1, sublist1, ..., [sublistout])

See also numpy.einsum()

Example

The following example computes a batched application of a bilinear function with weight w.

>>> x1 = np.arange(12).reshape(3, 4).astype(np.float32)
>>> x2 = np.arange(15).reshape(3, 5).astype(np.float32)
>>> w = np.arange(120).reshape(4, 5, 6).astype(np.float32)
>>> y = F.einsum('ij,ik,jkl->il', x1, x2, w)
>>> y.shape
(3, 6)

The batch axes can be denoted by If the string of output subscripts is omitted, the summation is taken over
the subscript alphabets with two (or more) occurrences.

>>> np.allclose(y.array, F.einsum('...j,...k,jkl', x1, x2, w).array)
True

In the other format:

>>> y = F.einsum(x1, [0, 1], x2, [0, 2], w, [1, 2, 3], [0, 3])
>>> y.shape
(3, 6)
>>> y = F.einsum(x1, [Ellipsis, 1], x2, [Ellipsis, 2], w, [1, 2, 3])
>>> y.shape
(3, 6)

4.2. Functions 251

https://www.scipy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html#numpy.einsum

Chainer Documentation, Release 7.0.0b4

chainer.functions.erf

chainer.functions.erf(x)
Elementwise error function.

Note: Forward computation in CPU can be slow if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.erfc

chainer.functions.erfc(x)
Elementwise complementary error function.

Note: Forward computation in CPU can be slow if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.erfcinv

chainer.functions.erfcinv(x)
Elementwise inverse function of complementary error function.

Note: Forward computation in CPU cannot be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.erfcx

chainer.functions.erfcx(x)
Elementwise scaled complementary error function.

Note: Forward computation in CPU cannot be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

252 Chapter 4. API Reference

https://www.scipy.org/
https://www.scipy.org/
https://www.scipy.org/
https://www.scipy.org/

Chainer Documentation, Release 7.0.0b4

Return type Variable

chainer.functions.erfinv

chainer.functions.erfinv(x)
Elementwise inverse function of error function.

Note: Forward computation in CPU cannot be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.exp

chainer.functions.exp(x)
Elementwise exponential function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.expm1

chainer.functions.expm1(x)
Elementwise exponential minus one function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.fft

chainer.functions.fft(x)
Fast Fourier transform.

Parameters x (tuple) – (real, imag) where real is a Variable or an N-dimensional
array storing the real part and imag is a Variable or an N-dimensional array storing the
imaginary part.

Returns Returns (ry, iy) where ry is the real part of the result and iy is the imaginary part of
the result.

Return type tuple

Note: Currently this function supports a tuple as input. It will support a complex numbers directly in the future.

4.2. Functions 253

https://www.scipy.org/
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

chainer.functions.fix

chainer.functions.fix(x)
Elementwise fix function.

𝑦𝑖 = 𝑥𝑖

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.fmod

chainer.functions.fmod(x, divisor)
Elementwise mod function.

𝑦𝑖 = 𝑥𝑖 mod divisor.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• divisor (Variable or N-dimensional array) – Input divisor.

Returns Output variable.

Return type Variable

chainer.functions.floor

chainer.functions.floor(x)
Elementwise floor function.

𝑦𝑖 = ⌊𝑥𝑖⌋

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.identity

chainer.functions.identity(*inputs)
Just returns input variables.

chainer.functions.ifft

chainer.functions.ifft(x)
Inverse fast Fourier transform.

Parameters x (tuple) – (real, imag) where real is a Variable or an N-dimensional
array storing the real part and imag is a Variable or an N-dimensional array storing the
imaginary part.

254 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

Returns Returns (ry, iy) where ry is the real part of the result and iy is the imaginary part of
the result.

Return type tuple

Note: Currently this function supports a tuple as input. It will support a complex numbers directly in the future.

chainer.functions.inv

chainer.functions.inv(a)
Computes the inverse of square matrix.

a (Variable or N-dimensional array): Input array to compute the inverse for. Shape of the array
should be (n, n) where n is the dimensionality of a square matrix.

Returns Matrix inverse of a.

Return type Variable

chainer.functions.lgamma

chainer.functions.lgamma(x)
logarithm of gamma function.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.linear_interpolate

chainer.functions.linear_interpolate(p, x, y)
Elementwise linear-interpolation function.

This function is defined as

𝑓(𝑝, 𝑥, 𝑦) = 𝑝𝑥+ (1− 𝑝)𝑦.

Parameters

• p (Variable or N-dimensional array) – Input variable.

• x (Variable or N-dimensional array) – Input variable.

• y (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

4.2. Functions 255

https://docs.python.org/3/library/stdtypes.html#tuple
https://www.scipy.org/

Chainer Documentation, Release 7.0.0b4

chainer.functions.log

chainer.functions.log(x)
Elementwise natural logarithm function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log10

chainer.functions.log10(x)
Elementwise logarithm function to the base 10.

𝑦𝑖 = log10 𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log1p

chainer.functions.log1p(x)
Elementwise natural logarithm plus one function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log2

chainer.functions.log2(x)
Elementwise logarithm function to the base 2.

𝑦𝑖 = log2 𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.log_ndtr

chainer.functions.log_ndtr(x)
Logarithm of cumulative distribution function of normal distribution.

Note: Forward computation in CPU can not be done if SciPy is not available.

256 Chapter 4. API Reference

https://www.scipy.org/

Chainer Documentation, Release 7.0.0b4

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.logsumexp

chainer.functions.logsumexp(x, axis=None)
Log-sum-exp of array elements over a given axis.

This function calculates logarithm of sum of exponential of array elements.

𝑦𝑖 = log

⎛⎝∑︁
𝑗

exp(𝑥𝑖𝑗)

⎞⎠
Parameters

• x (Variable or N-dimensional array) – Elements to log-sum-exp.

• axis (None, int, or tuple of int) – Axis which a sum is performed. The de-
fault (axis = None) is perform a sum over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.matmul

chainer.functions.matmul(a, b, transa=False, transb=False)
Computes the matrix multiplication of two arrays.

Parameters

• a (Variable or N-dimensional array) – The left operand of the matrix multiplication. If
a and b are both 1-D arrays, matmul returns a dot product of vector a and vector b. If 2-D
arrays, matmul returns matrix product of a and b. If either’s dimension is larger than 2,
they are treated as a stack of matrices residing in the last two indexes. matmul returns a
stack of each two arrays. In this case, a and b are broadcasted along axes except the last
two.

• b (Variable or N-dimensional array) – The right operand of the matrix multiplication.
Its array is treated as a matrix in the same way as a’s array.

• transa (bool) – If True, each matrices in a will be transposed. If a.ndim == 1, do
nothing.

• transb (bool) – If True, each matrices in b will be transposed. If b.ndim == 1, do
nothing.

Returns The result of the matrix multiplication.

Return type Variable

Example

4.2. Functions 257

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

>>> a = np.array([[1, 0], [0, 1]], np.float32)
>>> b = np.array([[4, 1], [2, 2]], np.float32)
>>> F.matmul(a, b).array
array([[4., 1.],

[2., 2.]], dtype=float32)

chainer.functions.max

chainer.functions.max(x, axis=None, keepdims=False)
Maximum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Array to be maximized.

• axis (None, int, or tuple of int) – Axis over which a max is performed. The
default (axis = None) is perform a max over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.maximum

chainer.functions.maximum(x1, x2)
Element-wise maximum of input variables.

Parameters

• x1 (Variable or N-dimensional array) – Input variables to be compared. A
(𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

• x2 (Variable or N-dimensional array) – Input variables to be compared. A
(𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

Returns Output variable.

Return type Variable

Example

>>> x1 = np.arange(6).astype(np.float32)
>>> x1
array([0., 1., 2., 3., 4., 5.], dtype=float32)
>>> x2 = np.array([5, 4, 3, 2, 1, 0]).astype(np.float32)
>>> x2
array([5., 4., 3., 2., 1., 0.], dtype=float32)
>>> y = F.maximum(x1, x2)
>>> y.shape
(6,)
>>> y.array
array([5., 4., 3., 3., 4., 5.], dtype=float32)

258 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

chainer.functions.mean

chainer.functions.mean(x, axis=None, weights=None, keepdims=False)
Calculate weighted average of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Elements to sum.

• axis (None or int or tuple of int) – Axis which the method is performed.
With the default (axis = None) it performs a mean over all the dimensions of the input array.

• weights (None or Variable or N-dimensional array) – An array holding weights to
calculate weighted average. If it is None, all weights are assumed to be one. When axis is
None, weights must have the same shape of x. And when axis is int, it must be 1-D
array satisfying weights.shape == (x.shape[axis],).

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.

Return type Variable

chainer.functions.min

chainer.functions.min(x, axis=None, keepdims=False)
Minimum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Array to be minimized.

• axis (None, int, or tuple of int) – Axis over which a min is performed. The
default (axis = None) is perform a min over all the dimensions of the input array.

Returns Output variable.

Return type Variable

chainer.functions.minimum

chainer.functions.minimum(x1, x2)
Element-wise minimum of input variables.

Parameters

• x1 (Variable or N-dimensional array) – Input variables to be compared.

• x2 (Variable or N-dimensional array) – Input variables to be compared.

Returns Output variable.

Return type Variable

chainer.functions.ndtr

chainer.functions.ndtr(x)
Elementwise cumulative distribution function of normal distribution.

4.2. Functions 259

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Note: Forward computation in CPU can be slow if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.ndtri

chainer.functions.ndtri(x)
Elementwise inverse function of ndtr.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.prod

chainer.functions.prod(x, axis=None, keepdims=False)
Product of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Elements to calculate the product.

• axis (None, int, or tuple of int) – Axis which a product is performed. The
default (axis = None) is perform a product over all the dimensions of the input array.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.

Return type Variable

chainer.functions.polygamma

chainer.functions.polygamma(n, x)
Polygamma function.

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters

• n (Variable or N-dimensional array) – Input variable.

• x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

260 Chapter 4. API Reference

https://www.scipy.org/
https://www.scipy.org/
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://www.scipy.org/

Chainer Documentation, Release 7.0.0b4

Return type Variable

chainer.functions.rsqrt

chainer.functions.rsqrt(x)
Computes elementwise reciprocal of square root of input 𝑥𝑖.

𝑦𝑖 =
1√
𝑥𝑖
.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

See also:

sqrt()

chainer.functions.scale

chainer.functions.scale(x, y, axis=1)
Elementwise product with broadcasting.

Computes a elementwise product of two input variables, with the shape of the latter variable broadcasted to
match the shape of the former. axis is the first axis of the first variable along which the second variable is
applied.

The term “broadcasting” here comes from Caffe’s scale layer so the “broadcasting” with the following argu-
ments:

x : 100 x 3 x 40 x 5 x 6
y : 3 x 40

axis : 1

is equivalent to the following numpy broadcasting:

x : 100 x 3 x 40 x 5 x 6
y : (1 x) 3 x 40 x 1 x 1

Note that the axis of x to which we apply y is specified by the argument axis, whose meaning is different from
numpy’s axis.

Parameters

• x (Variable or N-dimensional array) – Input variable to be scaled.

• y (Variable or N-dimensional array) – Input variable to scale, broadcasted.

• axis (int) – The first axis of x along which y is applied.

Returns Output variable.

Return type Variable

4.2. Functions 261

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

chainer.functions.sin

chainer.functions.sin(x)
Elementwise sin function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.sinh

chainer.functions.sinh(x)
Elementwise hyperbolic sine function.

𝑦𝑖 = sinh𝑥𝑖.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.sign

chainer.functions.sign(x)
Elementwise sign function.

For a given input 𝑥, this function returns 𝑠𝑔𝑛(𝑥) defined as

𝑠𝑔𝑛(𝑥) =

⎧⎨⎩ −1 if x < 0
0 if x = 0
1 if x > 0

Note: The gradient of this function is None everywhere and therefore unchains the computational graph.

Parameters x (Variable or N-dimensional array) – Input variable for which the sign is computed.

Returns Output variable.

Return type Variable

chainer.functions.sparse_matmul

chainer.functions.sparse_matmul(a, b, transa=False, transb=False)
Computes the batched multiplication of sparse and dense matrix.

The following use cases are supported:

1. C (dense) = A (sparse) * B (dense)

2. C (dense) = A (dense) * B (sparse)

Parameters

• a (Variable or CooMatrix) – The left operand of matrix multiplication.

262 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

• b (Variable or CooMatrix) – The right operand of matrix multiplication.

• transa (bool) – If True, each matrix in a will be transposed.

• transb (bool) – If True, each matrix in b will be transposed.

Returns Result of batched mat-mul.

Return type Variable

See also:

See to_coo() for how to construct a COO matrix from an array.

Note: Performance of this function on GPU can be improved by using the order argument of CooMatrix
when the sparse matrix is created.

chainer.functions.sqrt

chainer.functions.sqrt(x)
Elementwise square root function.

𝑦𝑖 =
√
𝑥𝑖.

If the value of 𝑥𝑖 is negative, it returns Nan for 𝑦𝑖 respect to underlying numpy and cupy specification.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.square

chainer.functions.square(x)
Elementwise square function.

𝑦𝑖 = 𝑥2𝑖 .

Parameters x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped
float array.

Returns Output variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float array.

Return type Variable

Example

>>> x = np.arange(6).reshape(2,3).astype(np.float32)
>>> x
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)
>>> y = F.square(x)
>>> y.shape
(2, 3)
>>> y.array
array([[0., 1., 4.],

[9., 16., 25.]], dtype=float32)

4.2. Functions 263

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

chainer.functions.squared_difference

chainer.functions.squared_difference(x1, x2)
Squared difference function.

This functions is identical to squared_error() except for the names of the arguments.

See also:

squared_error()

chainer.functions.sum

chainer.functions.sum(x, axis=None, keepdims=False)
Sum of array elements over a given axis.

Parameters

• x (Variable or N-dimensional array) – Elements to sum. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float
array.

• axis (None, int, or tuple of int) – Axis along which a sum is performed.
The default (axis = None) is perform a sum over all the dimensions of the input array.

• keepdims (bool) – If True, the specified axes are remained as axes of length one.

Returns Output variable.

Return type Variable

Example

>>> x = np.arange(6).reshape(2,3).astype(np.float32)
>>> x
array([[0., 1., 2.],

[3., 4., 5.]], dtype=float32)
>>> y = F.sum(x)
>>> y.shape
()
>>> y.array
array(15., dtype=float32)
>>> y = F.sum(x, axis=1)
>>> y.shape
(2,)
>>> y.array
array([3., 12.], dtype=float32)
>>> y = F.sum(x, keepdims=True)
>>> y.shape
(1, 1)
>>> y.array
array([[15.]], dtype=float32)

264 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

chainer.functions.sum_to

chainer.functions.sum_to(x, shape)
Sum elements along axes to output an array of a given shape.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• shape (tuple of int) – The target shape.

Returns Output variable of shape shape.

Return type Variable

Example

>>> x = np.array([[1., 2., 3.], [4., 5., 6.]])
>>> x
array([[1., 2., 3.],

[4., 5., 6.]])
>>> y = F.sum_to(x, (1, 3))
>>> y
variable([[5., 7., 9.]])
>>> z = F.sum_to(x, (2, 1))
>>> z
variable([[6.],

[15.]])

chainer.functions.tan

chainer.functions.tan(x)
Elementwise tan function.

Parameters x (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

chainer.functions.tensordot

chainer.functions.tensordot(a, b, axes=2)
Returns the tensor dot product of two arrays along specified axes.

This is equivalent to compute dot product along the specified axes which are treated as one axis by reshaping.

Parameters

• a (Variable or N-dimensional array) – The first argument.

• b (Variable or N-dimensional array) – The second argument.

• axes –

– If it is an integer, then axes axes at the last of a and the first of b are used.

– If it is a pair of sequences of integers, then these two sequences specify the list of axes for
a and b. The corresponding axes are paired for sum-product.

4.2. Functions 265

Chainer Documentation, Release 7.0.0b4

Returns The tensor dot product of a and b along the axes specified by axes.

Return type Variable

Example

>>> a = np.random.rand(5, 3, 2)
>>> b = np.random.rand(3, 2, 4)
>>> c = F.tensordot(a, b, axes=2)
>>> c.shape
(5, 4)

See also:

numpy.tensordot()

chainer.functions.zeta

chainer.functions.zeta(x, q)
Zeta function.

Differentiable only with respect to q

Note: Forward computation in CPU can not be done if SciPy is not available.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• q (Variable or N-dimensional array) – Input variable.

Returns Output variable.

Return type Variable

4.2.8 Noise injections

chainer.functions.dropout Drops elements of input variable randomly.
chainer.functions.gaussian Gaussian sampling function.
chainer.functions.gumbel_softmax Gumbel-Softmax sampling function.
chainer.functions.
simplified_dropconnect

Linear unit regularized by simplified dropconnect.

chainer.functions.zoneout Drops elements of input variable and sets to previous
variable randomly.

chainer.functions.dropout

chainer.functions.dropout(x, ratio=.5, *, mask=None, return_mask=False)
Drops elements of input variable randomly.

This function drops input elements randomly with probability ratio and scales the remaining elements by
factor 1 / (1 - ratio). In testing mode (i.e., chainer.config.train is set to False), it does
nothing and just returns x.

266 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html#numpy.tensordot
https://www.scipy.org/

Chainer Documentation, Release 7.0.0b4

Parameters

• x (Variable or N-dimensional array) – Input variable. A (𝑠1, 𝑠2, ..., 𝑠𝑁) -shaped float
array.

• ratio (float) – Dropout ratio. The ratio must be 0.0 <= ratio < 1.0.

• mask (N-dimensional array or None) – The mask to be used for dropout. You do not have
to specify this value, unless you need to make results deterministic. If mask is not specified
or set to None, a mask will be generated randomly according to the given ratio. If mask
is specified, ratio will be ignored. The shape and dtype must be the same as x and should
be on the same device. Note that iDeep and cuDNN will not be used for this function if
mask is specified, as iDeep and cuDNN do not support it.

• return_mask (bool) – If True, the mask used for dropout is returned together with the
output variable. The returned mask can later be reused by passing it to mask argument.

Returns When return_mask is False (default), returns the output variable. When True, re-
turns the tuple of the output variable and mask (N-dimensional array). The mask will be on the
same device as the input. The mask will become None when chainer.config.train is
set to False.

Return type Variable or tuple

See the paper by G. Hinton: Improving neural networks by preventing co-adaptation of feature detectors.

Example

>>> x = np.array([[-1, 0], [2, -3], [-2, 1]], np.float32)
>>> with chainer.using_config('train', True):
... y = F.dropout(x)
>>> y.array
array([[-2., 0.],

[4., -6.],
[-0., 2.]], dtype=float32)

>>> with chainer.using_config('train', True):
... y = F.dropout(x, ratio=0.0) # dropout returns original input if ratio=0.0
>>> (x == y.array).all()
True
>>> with chainer.using_config('train', False):
... y = F.dropout(x) # dropout in test mode returns original input
>>> (x == y.array).all()
True

chainer.functions.gaussian

chainer.functions.gaussian(mean, ln_var, *, eps=None, return_eps=False)
Gaussian sampling function.

This function takes a mean 𝜇 and the logarithm of a variance log(𝜎2) as inputs and outputs a sample drawn from
a Gaussian distribution 𝑁(𝜇, 𝜎).

The inputs must have the same shape.

Parameters

• mean (Variable or N-dimensional array) – Input variable representing the mean 𝜇.

4.2. Functions 267

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1207.0580

Chainer Documentation, Release 7.0.0b4

• ln_var (Variable or N-dimensional array) – Input variable representing the logarithm
of a variance log(𝜎2).

• eps (N-dimensional array or None) – The eps value to be used. You do not have to specify
this value, unless you need to make results deterministic. If eps is not specified or set to
None, an eps value will be generated randomly. The shape and dtype must be the same as
ln_var and should be on the same device.

• return_eps (bool) – If True, the eps value used in this function is returned together
with the output variable. The returned eps can later be reused by passing it to the eps
argument.

Returns When return_eps is False (default), returns the output variable with the shape of
mean and/or ln_var. When True, returns the tuple of the output variable and eps (N-
dimensional array). The eps will be on the same device as the input (ln_var).

Return type Variable or tuple

chainer.functions.gumbel_softmax

chainer.functions.gumbel_softmax(log_pi, tau=0.1, axis=1)
Gumbel-Softmax sampling function.

This function draws samples 𝑦𝑖 from Gumbel-Softmax distribution,

𝑦𝑖 =
exp((𝑔𝑖 + log 𝜋𝑖)/𝜏)∑︀
𝑗 exp((𝑔𝑗 + log 𝜋𝑗)/𝜏)

,

where 𝜏 is a temperature parameter and 𝑔𝑖 s are samples drawn from Gumbel distribution 𝐺𝑢𝑚𝑏𝑒𝑙(0, 1)

See Categorical Reparameterization with Gumbel-Softmax.

Parameters

• log_pi (Variable or N-dimensional array) – Input variable representing pre-
normalized log-probability log 𝜋.

• tau (float or Variable or N-dimensional array) – Input variable representing temper-
ature 𝜏 .

Returns Output variable.

Return type Variable

chainer.functions.simplified_dropconnect

chainer.functions.simplified_dropconnect(x, W, b=None, ratio=0.5, train=True,
mask=None, use_batchwise_mask=True)

Linear unit regularized by simplified dropconnect.

Simplified dropconnect drops weight matrix elements randomly with probability ratio and scales the remain-
ing elements by factor 1 / (1 - ratio). It accepts two or three arguments: an input minibatch x, a weight
matrix W, and optionally a bias vector b. It computes 𝑌 = 𝑥𝑊⊤ + 𝑏.

In testing mode, zero will be used as simplified dropconnect ratio instead of ratio.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the
current implementation and the original one. The original version uses sampling with gaussian distribution
before passing activation function, whereas the current implementation averages before activation.

Parameters

268 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://arxiv.org/abs/1611.01144
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

• x (Variable or N-dimensional array) – Input variable. Its first dimension n is assumed to
be the minibatch dimension. The other dimensions are treated as concatenated one dimen-
sion whose size must be N.

• W (Variable or N-dimensional array) – Weight variable of shape (M, N).

• b (Variable or N-dimensional array) – Bias variable (optional) of shape (M,).

• ratio (float) – Dropconnect ratio.

• train (bool) – If True, executes simplified dropconnect. Otherwise, simplified drop-
connect function works as a linear function.

• mask (None or Variable or N-dimensional array) – If None, randomized dropconnect
mask is generated. Otherwise, The mask must be (n, M, N) or (M, N) shaped array,
and use_batchwise_mask is ignored. Main purpose of this option is debugging. mask array
will be used as a dropconnect mask.

• use_batchwise_mask (bool) – If True, dropped connections depend on each sample
in mini-batch.

Returns Output variable.

Return type Variable

See also:

Dropconnect

See also:

Li, W., Matthew Z., Sixin Z., Yann L., Rob F. (2013). Regularization of Neural Network using DropConnect.
International Conference on Machine Learning. URL

chainer.functions.zoneout

chainer.functions.zoneout(h, x, ratio=.5)
Drops elements of input variable and sets to previous variable randomly.

This function drops input elements randomly with probability ratio and instead sets dropping element to their
previous variable. In testing mode , it does nothing and just returns x.

Parameters

• h (Variable or N-dimensional array) – Previous variable.

• x (Variable or N-dimensional array) – Input variable.

• ratio (float) – Zoneout ratio.

Returns Output variable.

Return type Variable

See the paper: Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations.

4.2.9 Normalization functions

chainer.functions.batch_normalization Batch normalization function.
chainer.functions.
batch_renormalization

Batch renormalization function.

Continued on next page

4.2. Functions 269

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://cs.nyu.edu/~wanli/dropc/
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1606.01305

Chainer Documentation, Release 7.0.0b4

Table 10 – continued from previous page
chainer.functions.
decorrelated_batch_normalization

Decorrelated batch normalization function.

chainer.functions.
fixed_batch_normalization

Batch normalization function with fixed statistics.

chainer.functions.
fixed_batch_renormalization
chainer.functions.
fixed_decorrelated_batch_normalization

Decorrelated batch normalization function with fixed
statistics.

chainer.functions.group_normalization Group normalization function.
chainer.functions.layer_normalization Layer normalization.
chainer.functions.
local_response_normalization

Local response normalization across neighboring chan-
nels.

chainer.functions.normalize Normalize input by L2 norm.

chainer.functions.batch_normalization

chainer.functions.batch_normalization(x, gamma, beta, eps=2e-5, running_mean=None, run-
ning_var=None, decay=0.9, axis=None)

Batch normalization function.

It takes the input variable x and two parameter variables gamma and beta. The parameter variables must both
have the same dimensionality, which is referred to as the channel shape. This channel shape corresponds to
the dimensions in the input which are not averaged over. Since the first dimension of the input corresponds
to the batch size, the second dimension of x will correspond to the first dimension of the channel shape, the
third dimension of x will correspond to the second channel dimension (if it exists) and so on. Therefore, the
dimensionality of the input must be at least one plus the number of channel dimensions. The total effective
“batch size” will then be considered to be the product of all dimensions in x except for the channel dimensions.

As an example, if the input is four dimensional and the parameter variables are one dimensional, then it is
assumed that the first dimension of the input is the batch size, the second dimension is the channel size, and
the remaining two dimensions are considered to be spatial dimensions that will be averaged over along with the
batch size in the batch normalization computations. That is, the total batch size will be considered to be the
product of all input dimensions except the second dimension.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• gamma (Variable or N-dimensional array) – Scaling parameter of normalized data.

• beta (Variable or N-dimensional array) – Shifting parameter of scaled normalized data.

• eps (float) – Epsilon value for numerical stability.

• running_mean (N-dimensional array) – Running average of the mean. This is a running
average of the mean over several mini-batches using the decay parameter. The function takes
a previous running average, and updates the array in-place by the new running average. If
None, the running average is not computed. If this is None, then runnng_var must also
be None.

• running_var (N-dimensional array) – Running average of the variance. This is a running
average of the variance over several mini-batches using the decay parameter. The function
takes a previous running average, and updates the array in-place by the new running average.
If None, the running average is not computed. If this is None, then running_mean must
also be None.

• decay (float) – Decay rate of moving average. It is used during training.

270 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

• axis (int, tuple of int or None) – Axis over which normalization is per-
formed. When axis is None, it is determined from input dimensions. For example, if
x.ndim is 4, axis becomes (0, 2, 3) and normalization is performed over 0th, 2nd and 3rd
axis of input. If it is 2, axis becomes (0) and normalization is performed over 0th axis of
input. When a tuple of int is given to this option, numbers in the tuple must be being sorted
in ascending order. For example, (0, 2) is OK, but (2, 0) is not.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

See also:

BatchNormalization to manage the model parameters (gamma, beta) and the statistics
(running_mean, running_var).

chainer.functions.batch_renormalization

chainer.functions.batch_renormalization(x, gamma, beta, rmax, dmax, eps=2e-05, run-
ning_mean=None, running_var=None, decay=0.9,
update_statistics=False)

Batch renormalization function.

This is an extension of batch normalization, which ensures that the training and inference models generate the
same outputs that depend on individual examples rather than the entire minibatch.

Note: This function does not perform in-place update to running_mean and running_var by de-
fault, contrary to batch_normalization(). If the function is called, it will not be possible to access
the updated running mean and variance statistics, because they are members of the function object, which
cannot be accessed by the caller. If it is desired to update the running statistics, call the function with
update_statistics=True option.

Note: For the consistency with Batch Normalization, this function intentionally ignores some of the theoretical
flaws in Algorithm 1 of the Batch Renormalization paper:

• F.batch_renormalization maintains the moving average of variances 𝜎2, while the original paper
maintains the moving average of standard deviations 𝜎.

• F.batch_renormalization applies Bessel’s correction to update the moving average of variances.

See: Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models

See also:

BatchRenormalization to manage the model parameters (gamma, beta) and the statistics
(running_mean, running_var).

chainer.functions.decorrelated_batch_normalization

chainer.functions.decorrelated_batch_normalization(x, *, groups=16, eps=2e-5,
running_mean=None, run-
ning_projection=None, de-
cay=0.9)

Decorrelated batch normalization function.

It takes the input variable x and normalizes it using batch statistics to make the output zero-mean and decorre-
lated.

4.2. Functions 271

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1702.03275

Chainer Documentation, Release 7.0.0b4

Parameters

• x (Variable) – Input variable.

• groups (int) – Number of groups to use for group whitening.

• eps (float) – Epsilon value for numerical stability.

• running_mean (N-dimensional array) – Expected value of the mean. This is a running
average of the mean over several mini-batches using the decay parameter. If None, the
expected mean is initialized to zero.

• running_projection (N-dimensional array) – Expected value of the project matrix.
This is a running average of the projection over several mini-batches using the decay param-
eter. If None, the expected projected is initialized to the identity matrix.

• decay (float) – Decay rate of moving average. It is used during training.

Returns The output variable which has the same shape as 𝑥.

Return type Variable

See: Decorrelated Batch Normalization

See also:

DecorrelatedBatchNormalization

chainer.functions.fixed_batch_normalization

chainer.functions.fixed_batch_normalization(x, gamma, beta, mean, var, eps=2e-05,
axis=None)

Batch normalization function with fixed statistics.

This is a variant of batch normalization, where the mean and variance statistics are given by the caller as fixed
variables. This is used on testing mode of the batch normalization layer, where batch statistics cannot be used
for prediction consistency.

Parameters

• x (Variable or N-dimensional array) – Input variable.

• gamma (Variable or N-dimensional array) – Scaling parameter of normalized data.

• beta (Variable or N-dimensional array) – Shifting parameter of scaled normalized data.

• mean (Variable or N-dimensional array) – Shifting parameter of input.

• var (Variable or N-dimensional array) – Square of scaling parameter of input.

• eps (float) – Epsilon value for numerical stability.

• axis (int, tuple of int or None) – Axis over which normalization is per-
formed. When axis is None, it is determined from input dimensions. For example, if
x.ndim is 4, axis becomes (0, 2, 3) and normalization is performed over 0th, 2nd and
3rd axis of input. If it is 2, axis becomes (0) and normalization is performed over 0th axis of
input. When a tuple of int is given to this option, numbers in the tuple must be being sorted
in ascending order. For example, (0, 2) is OK, but (2, 0) is not.

See also:

batch_normalization(), BatchNormalization

272 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1804.08450
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 7.0.0b4

chainer.functions.fixed_batch_renormalization

chainer.functions.fixed_batch_renormalization(x, gamma, beta, mean, var, eps=2e-05)

chainer.functions.fixed_decorrelated_batch_normalization

chainer.functions.fixed_decorrelated_batch_normalization(x, mean, projection,
groups=16)

Decorrelated batch normalization function with fixed statistics.

This is a variant of decorrelated batch normalization, where the mean and projection statistics are given by the
caller as fixed variables. This is used in testing mode of the decorrelated batch normalization layer, where batch
statistics cannot be used for prediction consistency.

Parameters

• x (Variable) – Input variable.

• mean (Variable or N-dimensional array) – Shifting parameter of input.

• projection (Variable or N-dimensional array) – Projection matrix for decorrelation
of input.

• groups (int) – Number of groups to use for group whitening.

Returns The output variable which has the same shape as 𝑥.

Return type Variable

See also:

decorrelated_batch_normalization(), DecorrelatedBatchNormalization

chainer.functions.group_normalization

chainer.functions.group_normalization(x, groups, gamma, beta, eps=1e-05)
Group normalization function.

This function implements a “group normalization” which divides the channels into groups and computes within
each group the mean and variance, then normalize by these statistics, scales and shifts them.

Parameters

• x (Variable or N-dimensional array) – Batch tensors. First dimension of this value must
be the size of minibatch and second dimension must be the number of channels. Moreover,
this value must have one or more following dimensions, such as height and width.

• groups (int) – The number of channel groups. This value must be a divisor of the number
of channels.

• gamma (Variable or N-dimensional array) – Scaling parameter.

• beta (Variable or N-dimensional array) – Shifting parameter.

• eps (float) – Epsilon value for numerical stability of normalization.

Returns The output variable which has the same shape as 𝑥.

Return type Variable

4.2. Functions 273

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

See: Group Normalization

See also:

GroupNormalization to manage the model parameters gamma and beta.

chainer.functions.layer_normalization

chainer.functions.layer_normalization(x, gamma, beta, eps=1e-05)
Layer normalization.

This function implements a “layer normalization” which normalizes the input units by statistics that are com-
puted along the second axis, scales and shifts them.

Parameters

• x (Variable or N-dimensional array) – Batch vectors. Shape of this value must be
(batch_size, unit_size), e.g., the output of linear().

• gamma (Variable or N-dimensional array) – Scaling vectors.

• beta (Variable or N-dimensional array) – Shifting vectors.

Returns The output variable which has the same shape as 𝑥.

Return type Variable

See: Layer Normalization

See also:

LayerNormalization to manage the model parameters gamma and beta.

chainer.functions.local_response_normalization

chainer.functions.local_response_normalization(x, n=5, k=2, alpha=0.0001, beta=0.75)
Local response normalization across neighboring channels.

This function implements normalization across channels. Let 𝑥 an input image with 𝑁 channels. Then, this
function computes an output image 𝑦 by following formula:

𝑦𝑖 =
𝑥𝑖(︁

𝑘 + 𝛼
∑︀min𝑁,𝑖+𝑛/2

𝑗=max 1,𝑖−𝑛/2 𝑥
2
𝑗

)︁𝛽 .
Parameters

• x (Variable or N-dimensional array) – Input variable.

• n (int) – Normalization window width.

• k (float) – Smoothing parameter.

• alpha (float) – Normalizer scaling parameter.

• beta (float) – Normalizer power parameter.

Returns Output variable.

Return type Variable

See: Section 3.3 of ImageNet Classification with Deep Convolutional Neural Networks

274 Chapter 4. API Reference

https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1607.06450
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Chainer Documentation, Release 7.0.0b4

chainer.functions.normalize

chainer.functions.normalize(x, eps=1e-05, axis=1)
Normalize input by L2 norm.

This function implements L2 normalization on a sample along the given axis/axes. No reduction is done along
the normalization axis.

In the case when axis=1 and x is a matrix of dimension (𝑁,𝐾), where 𝑁 and 𝐾 denote mini-batch size
and the dimension of the input vectors, this function computes an output matrix y of dimension (𝑁,𝐾) by the
following equation:

y𝑖 =
x𝑖

‖x𝑖‖2 + 𝜖

eps is used to avoid division by zero when norm of x along the given axis is zero.

The default value of axis is determined for backward compatibility.

Parameters

• x (Variable or N-dimensional array) – multi-dimensional output variable. The first di-
mension is assumed to be the mini-batch dimension.

• eps (float) – Epsilon value for numerical stability.

• axis (int or tuple of ints) – Axis along which to normalize.

Returns The output variable which has the same shape as 𝑥.

Return type Variable

4.2.10 Spatial pooling

chainer.functions.average_pooling_1d 1-dimensional spatial average pooling function.
chainer.functions.average_pooling_2d Spatial average pooling function.
chainer.functions.average_pooling_3d 3-dimensional spatial average pooling function.
chainer.functions.average_pooling_nd N-dimensionally spatial average pooling function.
chainer.functions.max_pooling_1d 1-dimensional spatial max pooling function.
chainer.functions.max_pooling_2d Spatial max pooling function.
chainer.functions.max_pooling_3d 3-dimensional spatial max pooling function.
chainer.functions.max_pooling_nd N-dimensionally spatial max pooling function.
chainer.functions.
roi_average_align_2d

Spatial Region of Interest (ROI) average align function.

chainer.functions.
roi_average_pooling_2d

Spatial Region of Interest (ROI) average pooling func-
tion.

chainer.functions.roi_max_align_2d Spatial Region of Interest (ROI) max align function.
chainer.functions.roi_max_pooling_2d Spatial Region of Interest (ROI) max pooling function.
chainer.functions.roi_pooling_2d Spatial Region of Interest (ROI) pooling function.
chainer.functions.
spatial_pyramid_pooling_2d

Spatial pyramid pooling function.

chainer.functions.unpooling_1d Inverse operation of 1-dimensional spatial pooling.
chainer.functions.unpooling_2d Inverse operation of pooling for 2d array.
chainer.functions.unpooling_3d Inverse operation of 3-dimensional spatial pooling.
chainer.functions.unpooling_nd Inverse operation of N-dimensional spatial pooling.
chainer.functions.upsampling_2d Upsampling using pooling indices.

4.2. Functions 275

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

chainer.functions.average_pooling_1d

chainer.functions.average_pooling_1d(x, ksize, stride=None, pad=0, pad_value=0)
1-dimensional spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls average_pooling_nd() internally, so see the details of the behavior in the
documentation of average_pooling_nd().

chainer.functions.average_pooling_2d

chainer.functions.average_pooling_2d(x, ksize, stride=None, pad=0)
Spatial average pooling function.

This function acts similarly to convolution_2d(), but it computes the average of input spatial patch for
each channel without any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same
stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

Returns Output variable.

Return type Variable

Note: This function currently does not support cover_all mode as max_pooling_2d(). Average pool-
ing runs in non-cover-all mode.

Note: The values in the padded region is treated as 0, leading the averages biased towards zero. To obtain
unbiased averages, use average_pooling_nd() with pad_value=None.

chainer.functions.average_pooling_3d

chainer.functions.average_pooling_3d(x, ksize, stride=None, pad=0, pad_value=0)
3-dimensional spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

276 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Note: This function calls average_pooling_nd() internally, so see the details of the behavior in the
documentation of average_pooling_nd().

chainer.functions.average_pooling_nd

chainer.functions.average_pooling_nd(x, ksize, stride=None, pad=0, pad_value=0)
N-dimensionally spatial average pooling function.

Warning: This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of average_pooling_2d(). This acts simi-
larly to convolution_nd(), but it computes the average of input spatial patch for each channel without any
parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or tuple of ints) – Size of pooling window. ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s, ..., s) are equivalent. If None is specified, then
it uses same stride as the pooling window size.

• pad (int or tuple of ints) – Spatial padding width for the input array. pad=p
and pad=(p, p, ..., p) are equivalent.

• pad_value (0 or None) – Value to fill the padded region when calculating average. If
None is specified, such region is ignored. The default value is 0, therefore the averages are
biased towards zero.

Returns Output variable.

Return type Variable

Note: This function currently does not support cover_all mode as max_pooling_nd(). Average pool-
ing runs in non-cover-all mode.

chainer.functions.max_pooling_1d

chainer.functions.max_pooling_1d(x, ksize, stride=None, pad=0, cover_all=True, re-
turn_indices=False)

1-dimensional spatial max pooling function.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls max_pooling_nd() internally, so see the details of the behavior in the documen-
tation of max_pooling_nd().

4.2. Functions 277

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 7.0.0b4

chainer.functions.max_pooling_2d

chainer.functions.max_pooling_2d(x, ksize, stride=None, pad=0, cover_all=True, re-
turn_indices=False)

Spatial max pooling function.

This function acts similarly to convolution_2d(), but it computes the maximum of input spatial patch for
each channel without any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same
stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

• cover_all (bool) – If True, all spatial locations are pooled into some output pixels. It
may make the output size larger.

• return_indices (bool) – If True, pooling indices array is returned together
with the output variable. The returned indices are expected for use by chainer.
functions.upsampling_2d(). Note that cuDNN will not be used for this function
if return_indices is set to True, as cuDNN does not return indices information.

Returns When return_indices is False (default), returns the output variable. When True,
returns the tuple of the output variable and pooling indices (N-dimensional array). Pooling
indices will be on the same device as the input.

Return type Variable or tuple

chainer.functions.max_pooling_3d

chainer.functions.max_pooling_3d(x, ksize, stride=None, pad=0, cover_all=True, re-
turn_indices=False)

3-dimensional spatial max pooling function.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls max_pooling_nd() internally, so see the details of the behavior in the documen-
tation of max_pooling_nd().

chainer.functions.max_pooling_nd

chainer.functions.max_pooling_nd(x, ksize, stride=None, pad=0, cover_all=True, re-
turn_indices=False)

N-dimensionally spatial max pooling function.

278 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

Warning: This feature is experimental. The interface can change in the future.

This function provides a N-dimensionally generalized version of max_pooling_2d(). This acts similarly
to convolution_nd(), but it computes the maximum of input spatial patch for each channel without any
parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or tuple of ints) – Size of pooling window. ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints or None) – Stride of pooling applications.
stride=s and stride=(s,s, ..., s) are equivalent. If None is specified, then
it uses same stride as the pooling window size.

• pad (int or tuple of ints) – Spatial padding width for the input array. pad=p
and pad=(p, p, ..., p) are equivalent.

• cover_all (bool) – If True, all spatial locations are pooled into some output pixels. It
may make the output size larger.

• return_indices (bool) – If True, pooling indices array is returned together
with the output variable. The returned indices are expected for use by chainer.
functions.upsampling_nd(). Note that cuDNN will not be used for this function
if return_indices is set to True, as cuDNN does not return indices information.

Returns When return_indices is False (default), returns the output variable. When True,
returns the tuple of the output variable and pooling indices (N-dimensional array). Pooling
indices will be on the same device as the input.

Return type Variable or tuple

chainer.functions.roi_average_align_2d

chainer.functions.roi_average_align_2d(x, rois, roi_indices, outsize, spatial_scale, sam-
pling_ratio=None)

Spatial Region of Interest (ROI) average align function.

This function acts similarly to roi_average_pooling_2d(), but it computes average of input spatial
patch with bilinear interpolation for each channel with the region of interest.

Parameters

• x (Variable) – Input variable. The shape is expected to be 4 dimentional: (n:
batch, c: channel, h, height, w: width).

• rois (Variable) – Input roi variable. The shape is expected to be (n: data size,
4), and each datum is set as below: (y_min, x_min, y_max, x_max).

• roi_indices (Variable) – Input roi variable. The shape is expected to be (n:
data size,).

• outsize ((int, int) or int) – Expected output size after pooled (height, width).
outsize=o and outsize=(o, o) are equivalent.

• spatial_scale (float) – Scale of the roi is resized.

4.2. Functions 279

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

• sampling_ratio ((int, int) or int) – Sampling step for the alignment. It
must be an integer over 1 or None, and the value is automatically decided when None
is passed. Use of different ratio in height and width axis is also supported by passing tu-
ple of int as (sampling_ratio_h, sampling_ratio_w). sampling_ratio=s
and sampling_ratio=(s, s) are equivalent.

Returns Output variable.

Return type Variable

See the original paper proposing ROIAlign: Mask R-CNN.

chainer.functions.roi_average_pooling_2d

chainer.functions.roi_average_pooling_2d(x, rois, roi_indices, outsize, spatial_scale)
Spatial Region of Interest (ROI) average pooling function.

This function acts similarly to average_pooling_2d(), but it computes the average of input spatial patch
for each channel with the region of interest.

Parameters

• x (Variable) – Input variable. The shape is expected to be 4 dimentional: (n: batch, c:
channel, h, height, w: width).

• rois (Variable) – Input roi variable. The shape is expected to be (n: data size, 4), and
each datum is set as below: (y_min, x_min, y_max, x_max).

• roi_indices (Variable) – Input roi variable. The shape is expected to be (n: data
size,).

• outsize ((int, int) or int) – Expected output size after pooled (height, width).
outsize=o and outsize=(o, o) are equivalent.

• spatial_scale (float) – Scale of the roi is resized.

Returns Output variable.

Return type Variable

See the original paper proposing ROIPooling: Fast R-CNN.

chainer.functions.roi_max_align_2d

chainer.functions.roi_max_align_2d(x, rois, roi_indices, outsize, spatial_scale, sam-
pling_ratio=None)

Spatial Region of Interest (ROI) max align function.

This function acts similarly to roi_max_pooling_2d(), but it computes maximum of input spatial patch
with bilinear interpolation for each channel with the region of interest.

Parameters

• x (Variable) – Input variable. The shape is expected to be 4 dimentional: (n:
batch, c: channel, h, height, w: width).

• rois (Variable) – Input roi variable. The shape is expected to be (n: data size,
4), and each datum is set as below: (y_min, x_min, y_max, x_max).

• roi_indices (Variable) – Input roi variable. The shape is expected to be (n:
data size,).

280 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1703.06870
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1504.08083

Chainer Documentation, Release 7.0.0b4

• outsize ((int, int) or int) – Expected output size after pooled (height, width).
outsize=o and outsize=(o, o) are equivalent.

• spatial_scale (float) – Scale of the roi is resized.

• sampling_ratio ((int, int) or int) – Sampling step for the alignment. It
must be an integer over 1 or None, and the value is automatically decided when None
is passed. Use of different ratio in height and width axis is also supported by passing tu-
ple of int as (sampling_ratio_h, sampling_ratio_w). sampling_ratio=s
and sampling_ratio=(s, s) are equivalent.

Returns Output variable.

Return type Variable

See the original paper proposing ROIAlign: Mask R-CNN.

chainer.functions.roi_max_pooling_2d

chainer.functions.roi_max_pooling_2d(x, rois, roi_indices, outsize, spatial_scale)
Spatial Region of Interest (ROI) max pooling function.

This function acts similarly to max_pooling_2d(), but it computes the maximum of input spatial patch for
each channel with the region of interest.

Parameters

• x (Variable) – Input variable. The shape is expected to be 4 dimentional: (n: batch, c:
channel, h, height, w: width).

• rois (Variable) – Input roi variable. The shape is expected to be (n: data size, 4), and
each datum is set as below: (y_min, x_min, y_max, x_max).

• roi_indices (Variable) – Input roi variable. The shape is expected to be (n: data
size,).

• outsize ((int, int) or int) – Expected output size after pooled (height, width).
outsize=o and outsize=(o, o) are equivalent.

• spatial_scale (float) – Scale of the roi is resized.

Returns Output variable.

Return type Variable

See the original paper proposing ROIPooling: Fast R-CNN.

chainer.functions.roi_pooling_2d

chainer.functions.roi_pooling_2d(x, rois, outh, outw, spatial_scale)
Spatial Region of Interest (ROI) pooling function.

This function acts similarly to max_pooling_2d(), but it computes the maximum of input spatial patch for
each channel with the region of interest.

Parameters

• x (Variable) – Input variable. The shape is expected to be 4 dimentional: (n: batch, c:
channel, h, height, w: width).

• rois (Variable) – Input roi variable. The shape is expected to be (n: data size, 5), and
each datum is set as below: (batch_index, x_min, y_min, x_max, y_max).

4.2. Functions 281

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://arxiv.org/abs/1703.06870
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1504.08083

Chainer Documentation, Release 7.0.0b4

• outh (int) – Height of output image after pooled.

• outw (int) – Width of output image after pooled.

• spatial_scale (float) – Scale of the roi is resized.

Returns Output variable.

Return type Variable

See the original paper proposing ROIPooling: Fast R-CNN.

chainer.functions.spatial_pyramid_pooling_2d

chainer.functions.spatial_pyramid_pooling_2d(x, pyramid_height, pooling=None)
Spatial pyramid pooling function.

It outputs a fixed-length vector regardless of input feature map size.

It performs pooling operation to the input 4D-array x with different kernel sizes and padding sizes, and then
flattens all dimensions except first dimension of all pooling results, and finally concatenates them along second
dimension.

At 𝑖-th pyramid level, the kernel size (𝑘
(𝑖)
ℎ , 𝑘

(𝑖)
𝑤) and padding size (𝑝

(𝑖)
ℎ , 𝑝

(𝑖)
𝑤) of pooling operation are calculated

as below:

𝑘
(𝑖)
ℎ = ⌈𝑏ℎ/2𝑖⌉,
𝑘(𝑖)𝑤 = ⌈𝑏𝑤/2𝑖⌉,

𝑝
(𝑖)
ℎ = (2𝑖𝑘

(𝑖)
ℎ − 𝑏ℎ)/2,

𝑝(𝑖)𝑤 = (2𝑖𝑘(𝑖)𝑤 − 𝑏𝑤)/2,

where ⌈·⌉ denotes the ceiling function, and 𝑏ℎ, 𝑏𝑤 are height and width of input variable x, respectively. Note
that index of pyramid level 𝑖 is zero-based.

See detail in paper: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.

Parameters

• x (Variable) – Input variable. The shape of x should be (batchsize, # of
channels, height, width).

• pyramid_height (int) – Number of pyramid levels

• pooling (str) – Currently, only max is supported, which performs a 2d max pooling
operation.

Returns Output variable. The shape of the output variable will be (𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒, 𝑐
∑︀𝐻−1

ℎ=0 22ℎ, 1, 1),
where 𝑐 is the number of channels of input variable x and 𝐻 is the number of pyramid levels.

Return type Variable

chainer.functions.unpooling_1d

chainer.functions.unpooling_1d(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of 1-dimensional spatial pooling.

Warning: This feature is experimental. The interface can change in the future.

282 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1406.4729
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Note: This function calls unpooling_nd() internally, so see the details of the behavior in the documentation
of unpooling_nd().

chainer.functions.unpooling_2d

chainer.functions.unpooling_2d(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of pooling for 2d array.

This function acts similarly to Deconvolution2DFunction, but it spreads input 2d array’s value without
any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

• stride (int, pair of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same
stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

• outsize (None or pair of ints) – Expected output size (height, width) of array
after the operation. If None, the size (height or width) is estimated from the size of input
array in first batch with get_deconv_outsize(). If outsize is not None, the result of
outsize applied to get_conv_outsize() must be equal to the shape of the 2d array in
the input batch x.

• cover_all (bool) – If True, the output size may be smaller than the size if
cover_all is False. This flag serves to align behavior to the pooling functions which
can cover all input locations, see max_pooling_2d() and convolution_2d().

Returns Output variable.

Return type Variable

chainer.functions.unpooling_3d

chainer.functions.unpooling_3d(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of 3-dimensional spatial pooling.

Warning: This feature is experimental. The interface can change in the future.

Note: This function calls unpooling_nd() internally, so see the details of the behavior in the documentation
of unpooling_nd().

4.2. Functions 283

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

chainer.functions.unpooling_nd

chainer.functions.unpooling_nd(x, ksize, stride=None, pad=0, outsize=None, cover_all=True)
Inverse operation of N-dimensional spatial pooling.

Warning: This feature is experimental. The interface can change in the future.

This function acts similarly to DeconvolutionND, but it spreads input N-dimensional array’s value without
any parameter instead of computing the inner products.

Parameters

• x (Variable) – Input variable.

• ksize (int or pair of ints) – Size of pooling window (𝑘1, 𝑘2, ..., 𝑘𝑁).
ksize=k is equivalent to (k, k, ..., k).

• stride (int, pair of ints or None) – Stride of pooling applications
(𝑠1, 𝑠2, ..., 𝑠𝑁). stride=s is equivalent to (s, s, ..., s). If None is speci-
fied, then it uses same stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array
(𝑝1, 𝑝2, ..., 𝑝𝑁). pad=p is equivalent to (p, p, ..., p).

• outsize (None or pair of ints) – Expected output size of unpooling operation
(𝑜𝑢𝑡1, 𝑜𝑢𝑡2, ..., 𝑜𝑢𝑡𝑁). If None, the size is estimated from input size, stride and padding.

• cover_all (bool) – If True, the pooling window is assumed to cover all of the output
array, eventually the output size may be smaller than that in the case cover_all is False.

Returns Output variable.

Return type Variable

chainer.functions.upsampling_2d

chainer.functions.upsampling_2d(x, indexes, ksize, stride=None, pad=0, outsize=None,
cover_all=True)

Upsampling using pooling indices.

This function produces an upsampled image using pooling indices.

Example

>>> x = np.arange(1, 37).reshape(1, 1, 6, 6).astype(np.float32)
>>> x = chainer.Variable(x)
>>> x.array
array([[[[1., 2., 3., 4., 5., 6.],

[7., 8., 9., 10., 11., 12.],
[13., 14., 15., 16., 17., 18.],
[19., 20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29., 30.],
[31., 32., 33., 34., 35., 36.]]]], dtype=float32)

This is the original x before max pooling.

284 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

>>> pooled_x, indexes = F.max_pooling_2d(
... x, ksize=2, stride=2, return_indices=True)
>>> pooled_x.array
array([[[[8., 10., 12.],

[20., 22., 24.],
[32., 34., 36.]]]], dtype=float32)

>>> indexes
array([[[[3, 3, 3],

[3, 3, 3],
[3, 3, 3]]]])

These are the outputs from the max pooling operation including the resulting indices that will be used to upsam-
ple pooled_x. Note that the indices all point to the largest, in the case the last, elements in each window.

>>> upsampled_x = F.upsampling_2d(
... pooled_x, indexes, ksize=2, stride=2, outsize=x.shape[2:])
>>> upsampled_x.shape
(1, 1, 6, 6)
>>> upsampled_x.array
array([[[[0., 0., 0., 0., 0., 0.],

[0., 8., 0., 10., 0., 12.],
[0., 0., 0., 0., 0., 0.],
[0., 20., 0., 22., 0., 24.],
[0., 0., 0., 0., 0., 0.],
[0., 32., 0., 34., 0., 36.]]]], dtype=float32)

Parameters

• x (Variable) – Input variable.

• indexes (N-dimensional array) – Index array returned from preceding call to
max_pooling_2d().

• ksize (int or pair of ints) – Size of pooling window. ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints or None) – Stride of pooling applications.
stride=s and stride=(s, s) are equivalent. If None is specified, then it uses same
stride as the pooling window size.

• pad (int or pair of ints) – Spatial padding width for the input array. pad=p and
pad=(p, p) are equivalent.

• outsize ((int, int)) – Expected output size (height, width).

• cover_all (bool) – Should be set to True if all spatial locations were pooled into
some output pixels during the preceding pooling operation. False otherwise. See
max_pooling_2d().

Returns Output variable.

Return type Variable

4.2.11 Utility functions

4.2. Functions 285

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

chainer.functions.forget Calls a function without storing intermediate results.

chainer.functions.forget

chainer.functions.forget(func, *xs)
Calls a function without storing intermediate results.

On a forward propagation, Chainer normally stores all intermediate results of VariableNodes on a computa-
tional graph as they are required on backward propagation. Sometimes these results consume too much memory.
F.forget forgets such intermediate results on forward propagation, and still supports backpropagation with
recalculation.

On a forward propagation, F.forget calls a given function with given variables without creating a computa-
tional graph. That means, no intermediate results are stored. On a backward propagation, F.forget calls the
given function again to create a computational graph for backpropagation.

F.forget reduces internal memory usage, whereas it requires more calculation time as it calls the function
twice.

Example

Let f be a function defined as:

>>> def f(a, b):
... return (a + b) * a

and, x and y be Variables:

>>> x = chainer.Variable(np.random.uniform(-1, 1, 5).astype(np.float32))
>>> y = chainer.Variable(np.random.uniform(-1, 1, 5).astype(np.float32))

When z is calculated as z = f(x, y), its intermediate result x + y is stored in memory. Instead, if you
call f with F.forget:

>>> z = F.forget(f, x, y)

intermediate x + y is forgotten.

Note: F.forget does not support functions which behave differently in multiple calls with the same inputs,
such as F.dropout() and F.negative_sampling().

Note: In case input argument variables are of N-dimensional array objects, arguments will automatically be
converted to Variables. This conversion takes place to ensure that this function is included in the computa-
tional graph to enable backward computations.

Note: F.forget does not support double backpropagation.

Note: If you want to use F.forget to a link which updates the link’s internal information every time the
forward computation is called, please ensure that the information is updated just once in a single iteration. You

286 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

may use the chainer.config.in_recomputing flag to check if the forward computation is the first call
in an iteration. Please see the implementation of BatchNormalization for detail.

Parameters

• func (callable) – A function to call. It needs to be called with Variable object(s)
and to return a Variable object or a tuple of Variable objects.

• xs (tuple of Variable or N-dimensional array) – Argument variables of the function.

Returns A variable func returns. If it returns a tuple, the method returns a tuple too.

Return type Variable

4.2.12 Function base

chainer.Function Old-style interface of a differentiable function.
chainer.FunctionAdapter Adapter class to wrap Function with FunctionNode.
chainer.FunctionNode Function node of the computational graph.
chainer.force_backprop_mode Make a context manager which enables back-

propagation.
chainer.no_backprop_mode Make a context manager which disables back-

propagation.
chainer.grad Computes the gradient of output variables w.r.t. the in-

put variables.

chainer.Function

class chainer.Function
Old-style interface of a differentiable function.

This class provides an interface to implement an old-style differentiable function (i.e., the function applica-
tion is recorded to the computational graph). The subclass of Function that implement forward() and
backward() can be used to run the forward computation and automatically induce the backpropagation pro-
cedure.

There is another way to implement such a function: subclassing FunctionNode. There are mainly two
differences between them.

1. The differentiable backprop is available for FunctionNode, while it is not for Function because the
backward() of the latter directly operates on the arrays instead of Variable objects so that it cannot
record the history of the computation.

2. The information passed to backward() is different. In FunctionNode, which inputs the function
node has to compute the gradients w.r.t. is passed so that it can omit unnecessary computations, while
Function always has to compute gradients w.r.t. all the input nodes. The FunctionNode also accepts
the current gradient values of the input nodes so that the accumulation work can be merged with the
gradient computation if an efficient kernel is available.

This class uses FunctionAdapter to convert the interface to that of FunctionNode and adds the
FunctionNode object to the computational graph.

See FunctionNode for the details of building the computational graph in Chainer.

4.2. Functions 287

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

Methods

__call__(*inputs)
Applies forward propagation with chaining backward references.

This method creates a new FunctionAdapter object and runs the forward propagation using it.

See FunctionNode for the detailed behavior of building the computational graph.

Parameters inputs – Tuple of input Variable or N-dimensional array objects. If the input
is N-dimensional array, it is automatically wrapped with Variable.

Returns One Variable object or a tuple of multiple Variable objects.

add_hook(hook, name=None)
Registers a function hook.

See FunctionNode.add_hook() for the detail.

Parameters

• hook (FunctionHook) – Function hook to be registered.

• name (str) – Name of the function hook. name must be unique among function hooks
registered to the function. If None, default name of the function hook is used.

backward(inputs, grad_outputs)
Applies backprop to output gradient arrays.

It delegates the procedure to backward_cpu() or backward_gpu() by default. Which it selects is
determined by the type of input arrays and output gradient arrays. Implementations of Function must
implement either CPU/GPU methods or this method, if the function is intended to be backprop-ed.

Parameters

• inputs – Tuple of input arrays.

• grad_outputs – Tuple of output gradient arrays.

Returns Tuple of input gradient arrays. Some or all of them can be None, if the function is not
differentiable on inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

backward_cpu(inputs, grad_outputs)
Applies backprop to output gradient arrays on CPU.

Parameters

• inputs – Tuple of input numpy.ndarray object(s).

• grad_outputs – Tuple of output gradient numpy.ndarray object(s).

Returns Tuple of input gradient numpy.ndarray object(s). Some or all of them can be None,
if the function is not differentiable on corresponding inputs.

Return type tuple

288 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

backward_gpu(inputs, grad_outputs)
Applies backprop to output gradient arrays on GPU.

Parameters

• inputs – Tuple of input cupy.ndarray object(s).

• grad_outputs – Tuple of output gradient cupy.ndarray object(s).

Returns Tuple of input gradient cupy.ndarray object(s). Some or all of them can be None,
if the function is not differentiable on corresponding inputs.

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

check_type_forward(in_types)
Checks types of input data before forward propagation.

Before forward() is called, this function is called. You need to validate types of input data in this
function using the type checking utilities.

Parameters in_types (TypeInfoTuple) – The type information of input data for
forward().

delete_hook(name)
Unregisters the specified function hook.

Parameters name (str) – the name of the function hook to be unregistered.

forward(inputs)
Applies forward propagation to input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which it selects is
determined by the type of input arrays. Implementations of Function must implement either CPU/GPU
methods or this method.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

forward_cpu(inputs)
Applies forward propagation to input arrays on CPU.

Parameters inputs – Tuple of numpy.ndarray object(s).

Returns Tuple of numpy.ndarray object(s).

Return type tuple

4.2. Functions 289

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

forward_gpu(inputs)
Applies forward propagation to input arrays on GPU.

Parameters inputs – Tuple of cupy.ndarray object(s).

Returns Tuple of cupy.ndarray object(s).

Return type tuple

Warning: Implementations of Function must take care that the return value must be a tuple even
if it returns only one array.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function can specify which inputs are required for backprop.

If this method is not called, the function keeps all input arrays. If you want to release all input ar-
rays, call this method by passing an empty sequence. Note that this behavior is different from that of
FunctionNode.retain_inputs().

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of input variables that the function
will require for backprop.

retain_outputs(indexes, retain_after_backward=False)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function can specify which outputs are required for back-
prop. If this method is not called, any output variables are not marked to keep the data array at the point of
returning from __call__(). The retained arrays are stored to output_data.

Note: It is STRONGLY RECOMMENDED that you use this method if the function requires some
or all output arrays in backprop. The function can also use output arrays just by keeping references to
them directly, whereas it might influence on the performance of later function applications to the output
variables.

Note that this method must not be called from the outside of forward().

Parameters

• indexes (iterable of int) – Indexes of input variables that the function will re-
quire for backprop.

• retain_after_backward (bool) – This option has no effect. It is left only for the
backward compatibility.

unchain()
Purges in/out nodes and this function itself from the graph.

See FunctionNode.unchain() for the detail.

__eq__()
Return self==value.

290 Chapter 4. API Reference

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

inputs
The input nodes of the function.

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

local_function_hooks
Ordered Dictionary of registered function hooks.

See FunctionNode.local_function_hooks for the detail.

node
The FunctionAdapter object that wraps this Function.

If the Function does not have a node object, this property automatically creates a new one.

output_data
A tuple of the retained output arrays.

It has the same length as the outputs. Elements that are not retained are set to None.

outputs
Weak references to the output nodes of the function.

rank
The topological ordinal of the corresponding function node.

stack

chainer.FunctionAdapter

class chainer.FunctionAdapter(function)
Adapter class to wrap Function with FunctionNode.

While FunctionNode provides the interface of new-style differentiable functions, the old-style Function
can still be used for the backward compatibility. This class provides an adapter of there interface; it adds
FunctionNode interface to any Function object by delegation.

4.2. Functions 291

Chainer Documentation, Release 7.0.0b4

Note: The ownership of FunctionAdapter and Function is a bit tricky. At the initialization,
FunctionAdapter is owned by the Function object. Once the function is applied to variables, the own-
ership is reversed; the adapter becomes the owner of the Function object and the Function object changes
the reference to a weak one.

Parameters function (Function) – The function object to wrap.

New in version 3.0.0.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a function hook.

Parameters

• hook (FunctionHook) – Function hook to be registered.

• name (str) – Name of the function hook. The name must be unique among function
hooks registered to this function. If None, the default name of the function hook is used.

apply(inputs)
Computes output variables and grows the computational graph.

Basic behavior is expressed in the documentation of FunctionNode.

Note: If the data attributes of the input variables exist on a GPU device, that device is made current
before calling forward(), so implementers do not need to take care of device selection in most cases.

Parameters inputs – Tuple of input variables. Each element can be either Variable or N-
dimensional array. If the element is an ndarray, it is automatically wrapped with Variable.

Returns A tuple of output Variable objects.

backward(target_input_indexes, grad_outputs)
Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation
of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t.
specified input variables. Note that this method does not need to compute any input gradients not specified
by target_input_indices.

Unlike Function.backward(), gradients are given as Variable objects and this method itself has
to return input gradients as Variable objects. It enables the function node to return the input gradients
with the full computational history, in which case it supports differentiable backpropagation or higher-
order differentiation.

The default implementation returns None s, which means the function is not differentiable.

Parameters

292 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• target_input_indexes (tuple of int) – Sorted indices of the input variables
w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one
element.

• grad_outputs (tuple of Variables) – Gradients w.r.t. the output variables. If the
gradient w.r.t. an output variable is not given, the corresponding element is None.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. The
length of the tuple can be same as either len(target_input_indexes) or the number
of inputs. In the latter case, the elements not specified by target_input_indexes will
be discarded.

See also:

backward_accumulate() provides an alternative interface that allows you to implement the back-
ward computation fused with the gradient accumulation.

backward_accumulate(target_input_indexes, grad_outputs, grad_inputs)
Computes gradients w.r.t. specified inputs and accumulates them.

This method provides a way to fuse the backward computation and the gradient accumulations in the case
that the multiple functions are applied to the same variable.

Users have to override either of this method or backward(). It is often simpler to implement
backward() and is recommended if you do not need to provide efficient gradient accumulation.

Parameters

• target_input_indexes (tuple of int) – Sorted indices of the input variables
w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one
element.

• grad_outputs (tuple of Variable) – Gradients w.r.t. the output variables. If
the gradient w.r.t. an output variable is not given, the corresponding element is None.

• grad_inputs (tuple of Variable) – Gradients w.r.t. the input variables speci-
fied by target_input_indexes. These values are computed by other computation
paths. If there is no gradient value existing for the variable, the corresponding element is
None. See also the note below.

Returns Tuple of variables that represent the gradients w.r.t. specified input vari-
ables. Unlike backward(), the length of the tuple must be same as that of
target_input_indices.

Note: Gradient variables in grad_outputs are distinct, even if a variable is passed to multiple in-
put arguments of the function. This is an implementation-detail convention to avoid the complication of
correctly accumulating gradients in such a case.

Usually, only the first position of grad_inputs corresponding to these input arguments may contain the
gradient variable corresponding to that input variable, and other entries are set to None. This is not the
case with the lazy_grad_sum feature. This behavior might be changed in a future version.

check_type_forward(in_types)
Checks types of input data before forward propagation.

This method is called before forward() and validates the types of input variables using the type checking
utilities.

Parameters in_types (TypeInfoTuple) – The type information of input variables for
forward().

4.2. Functions 293

Chainer Documentation, Release 7.0.0b4

delete_hook(name)
Unregisters the function hook.

Parameters name (str) – The name of the function hook to be unregistered.

forward(inputs)
Computes the output arrays from the input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which of them this
method selects is determined by the type of input arrays. Implementations of FunctionNode must
implement either CPU/GPU methods or this method.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_chainerx(inputs)
Computes the output arrays from the input ChainerX arrays.

This method may check the input arrays and other attributes to see if the computation can be done using
ChainerX implementation. If it’s not supported, chainer.Fallback should be returned instead of
output arrays. In that case, computation using conventional Python implementation will be performed.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s) or chainer.Fallback.

forward_cpu(inputs)
Computes the output arrays from the input NumPy arrays.

Parameters inputs – Tuple of input numpy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_gpu(inputs)
Computes the output arrays from the input CuPy arrays.

Parameters inputs – Tuple of input cupy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

get_retained_inputs()
Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in forward().

Returns A tuple of retained input variables, if available. Otherwise return None.

294 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

get_retained_outputs()
Returns a tuple of retained output variables.

This method is used to retrieve the output variables retained in forward().

Returns A tuple of retained output variables, if available. Otherwise return None.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this
method is called; in this case, this method creates a fresh variable node that acts as an output node of the
function node.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which inputs are re-
quired for backprop. The input variables with retained arrays can then be obtained by calling
get_retained_inputs() from inside backward().

Unlike Function, the function node DOES NOT keep input arrays by default. If you want to keep some
or all input arrays, do not forget to call this method.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of input variables that the function
will require for backprop.

retain_outputs(indexes)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which outputs are required for
backprop. If this method is not called, no output variables will be marked to keep their data array at the
point of returning from apply(). The output variables with retained arrays can then be obtained by
calling get_retained_outputs() from inside backward().

Note: It is recommended to use this method if the function requires some or all output arrays in backprop.
The function can also use output arrays just by keeping references to them directly, although it might affect
the performance of later function applications on the output variables.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of output variables that the function
will require for backprop.

unchain()
Purges in/out nodes and this function node itself from the graph.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

4.2. Functions 295

Chainer Documentation, Release 7.0.0b4

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

chainerx_device = None

function
The Function object that this adapter is wrapping.

inputs = None

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

lazy_grad_sum = False

local_function_hooks
Ordered dictionary of registered function hooks.

Contrary to chainer.thread_local.function_hooks, which registers its elements to all func-
tions, Function hooks in this property is specific to this function.

output_data
A tuple of the retained output arrays.

This property is mainly used by Function. Users basically do not have to use this property; use
get_retained_outputs() instead.

outputs = None

rank = 0

stack = None

chainer.FunctionNode

class chainer.FunctionNode
Function node of the computational graph.

FunctionNode is a class representing a node in a computational graph. The node corresponds to an application
of a differentiable function to input variables.

When a differentiable function is applied to Variable objects, it creates an instance of FunctionNode imple-
mentation and calls its apply() method. The apply() method basically does the following three things.

1. Adding an edge from the function node to the variable node corresponding to each input. The node of each
input is extracted by Variable.node.

2. Computing the output arrays of the function.

3. Creating a Variable object for each output array and adding an edge from the node of the variable to
the function node.

296 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

The output variables are then returned.

Example

Let x be an instance of Variable and f be an instance of FunctionNode taking only one argument. Then
the following code

>>> import numpy, chainer
>>> x = chainer.Variable(numpy.zeros(10))
>>> f = chainer.functions.math.identity.Identity()
>>> y = f.apply((x,))[0]

computes a new variable y and creates backward references. The backward references are actually set as per the
following diagram:

x.node <--- f <--- y.node

If an application of another function g occurs as

>>> g = chainer.functions.math.identity.Identity()
>>> z = g.apply((x,))[0]

then the graph grows with a branch:

|--- f <--- y.node
x.node <-+

|--- g <--- z.node

Note that the branching is correctly managed on backward computation, i.e. the gradients from f and g are
accumulated to the gradient of x.

Every function-node implementation should provide forward() and backward(). Instead of overriding
forward(), one can also implement forward_cpu() and forward_gpu() when the implementations
for CPU and GPU arrays are totally different.

Note that the input and output variables are inaccessible from backward() by default. If it needs accesses
to these variables, the forward() method (or its CPU/GPU variants) has to call retain_inputs() and
retain_outputs() appropriately. The retained input/output variables can be accessed from backward()
by calling get_retained_inputs() and get_retained_outputs().

Note: There are two types of differentiable functions in Chainer (since v3). The first type is of a function using
a subclass of Function, which is called old-style differentiable function. The second type is of a function
using a subclass of FunctionNode, which is called new-style differentiable function. There are several
advantages on using the new-style differentiable function.

• The new-style differentiable function supports differentiable backpropagation. The backpropagated gradi-
ents computed through the new-style differentiable functions themselves support further backpropagations
so that the automatic higher-order differentiation is available.

• The backpropagation of the new-style differentiable function can be more computationally efficient be-
cause the interface allows an implementation to omit the computation of unneeded input gradients.

Note that the new-style differentiable function is the standard way of defining a function node of the compu-
tational graph in Chainer; old- style differentiable functions are implemented as wrappers of the new- style
differentiable functions.

4.2. Functions 297

Chainer Documentation, Release 7.0.0b4

Variables

• inputs – A tuple of the input VariableNode objects.

• outputs – A tuple of weak references to the output VariableNode objects.

• rank (int) – An ordinal following the topological order of the computational graph.

• stack – Stack trace retrieved at the forward computation. The stack trace is available only
in the debug mode.

New in version 3.0.0.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a function hook.

Parameters

• hook (FunctionHook) – Function hook to be registered.

• name (str) – Name of the function hook. The name must be unique among function
hooks registered to this function. If None, the default name of the function hook is used.

apply(inputs)
Computes output variables and grows the computational graph.

Basic behavior is expressed in the documentation of FunctionNode.

Note: If the data attributes of the input variables exist on a GPU device, that device is made current
before calling forward(), so implementers do not need to take care of device selection in most cases.

Parameters inputs – Tuple of input variables. Each element can be either Variable or N-
dimensional array. If the element is an ndarray, it is automatically wrapped with Variable.

Returns A tuple of output Variable objects.

backward(target_input_indexes, grad_outputs)
Computes gradients w.r.t. specified inputs given output gradients.

This method is used to compute one step of the backpropagation corresponding to the forward computation
of this function node. Given the gradients w.r.t. output variables, this method computes the gradients w.r.t.
specified input variables. Note that this method does not need to compute any input gradients not specified
by target_input_indices.

Unlike Function.backward(), gradients are given as Variable objects and this method itself has
to return input gradients as Variable objects. It enables the function node to return the input gradients
with the full computational history, in which case it supports differentiable backpropagation or higher-
order differentiation.

The default implementation returns None s, which means the function is not differentiable.

Parameters

298 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• target_input_indexes (tuple of int) – Sorted indices of the input variables
w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one
element.

• grad_outputs (tuple of Variables) – Gradients w.r.t. the output variables. If the
gradient w.r.t. an output variable is not given, the corresponding element is None.

Returns Tuple of variables that represent the gradients w.r.t. specified input variables. The
length of the tuple can be same as either len(target_input_indexes) or the number
of inputs. In the latter case, the elements not specified by target_input_indexes will
be discarded.

See also:

backward_accumulate() provides an alternative interface that allows you to implement the back-
ward computation fused with the gradient accumulation.

backward_accumulate(target_input_indexes, grad_outputs, grad_inputs)
Computes gradients w.r.t. specified inputs and accumulates them.

This method provides a way to fuse the backward computation and the gradient accumulations in the case
that the multiple functions are applied to the same variable.

Users have to override either of this method or backward(). It is often simpler to implement
backward() and is recommended if you do not need to provide efficient gradient accumulation.

Parameters

• target_input_indexes (tuple of int) – Sorted indices of the input variables
w.r.t. which the gradients are required. It is guaranteed that this tuple contains at least one
element.

• grad_outputs (tuple of Variable) – Gradients w.r.t. the output variables. If
the gradient w.r.t. an output variable is not given, the corresponding element is None.

• grad_inputs (tuple of Variable) – Gradients w.r.t. the input variables speci-
fied by target_input_indexes. These values are computed by other computation
paths. If there is no gradient value existing for the variable, the corresponding element is
None. See also the note below.

Returns Tuple of variables that represent the gradients w.r.t. specified input vari-
ables. Unlike backward(), the length of the tuple must be same as that of
target_input_indices.

Note: Gradient variables in grad_outputs are distinct, even if a variable is passed to multiple in-
put arguments of the function. This is an implementation-detail convention to avoid the complication of
correctly accumulating gradients in such a case.

Usually, only the first position of grad_inputs corresponding to these input arguments may contain the
gradient variable corresponding to that input variable, and other entries are set to None. This is not the
case with the lazy_grad_sum feature. This behavior might be changed in a future version.

check_type_forward(in_types)
Checks types of input data before forward propagation.

This method is called before forward() and validates the types of input variables using the type checking
utilities.

Parameters in_types (TypeInfoTuple) – The type information of input variables for
forward().

4.2. Functions 299

Chainer Documentation, Release 7.0.0b4

delete_hook(name)
Unregisters the function hook.

Parameters name (str) – The name of the function hook to be unregistered.

forward(inputs)
Computes the output arrays from the input arrays.

It delegates the procedure to forward_cpu() or forward_gpu() by default. Which of them this
method selects is determined by the type of input arrays. Implementations of FunctionNode must
implement either CPU/GPU methods or this method.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s).

Warning: Implementations of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_chainerx(inputs)
Computes the output arrays from the input ChainerX arrays.

This method may check the input arrays and other attributes to see if the computation can be done using
ChainerX implementation. If it’s not supported, chainer.Fallback should be returned instead of
output arrays. In that case, computation using conventional Python implementation will be performed.

Parameters inputs – Tuple of input array(s).

Returns Tuple of output array(s) or chainer.Fallback.

forward_cpu(inputs)
Computes the output arrays from the input NumPy arrays.

Parameters inputs – Tuple of input numpy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

forward_gpu(inputs)
Computes the output arrays from the input CuPy arrays.

Parameters inputs – Tuple of input cupy.ndarray objects.

Returns Tuple of output arrays. Each element can be NumPy or CuPy arrays.

Warning: Implementation of FunctionNode must take care that the return value must be a tuple
even if it returns only one array.

get_retained_inputs()
Returns a tuple of retained input variables.

This method is used to retrieve the input variables retained in forward().

Returns A tuple of retained input variables, if available. Otherwise return None.

300 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

get_retained_outputs()
Returns a tuple of retained output variables.

This method is used to retrieve the output variables retained in forward().

Returns A tuple of retained output variables, if available. Otherwise return None.

Note: This method does a tricky thing to support the case of an output node garbage-collected before this
method is called; in this case, this method creates a fresh variable node that acts as an output node of the
function node.

retain_inputs(indexes)
Lets specified input variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which inputs are re-
quired for backprop. The input variables with retained arrays can then be obtained by calling
get_retained_inputs() from inside backward().

Unlike Function, the function node DOES NOT keep input arrays by default. If you want to keep some
or all input arrays, do not forget to call this method.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of input variables that the function
will require for backprop.

retain_outputs(indexes)
Lets specified output variable nodes keep data arrays.

By calling this method from forward(), the function node can specify which outputs are required for
backprop. If this method is not called, no output variables will be marked to keep their data array at the
point of returning from apply(). The output variables with retained arrays can then be obtained by
calling get_retained_outputs() from inside backward().

Note: It is recommended to use this method if the function requires some or all output arrays in backprop.
The function can also use output arrays just by keeping references to them directly, although it might affect
the performance of later function applications on the output variables.

Note that this method must not be called from the outside of forward().

Parameters indexes (iterable of int) – Indexes of output variables that the function
will require for backprop.

unchain()
Purges in/out nodes and this function node itself from the graph.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

4.2. Functions 301

Chainer Documentation, Release 7.0.0b4

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

chainerx_device = None

inputs = None

label
Short text that represents the function.

The default implementation returns its type name. Each function should override it to give more informa-
tion.

lazy_grad_sum = False

local_function_hooks
Ordered dictionary of registered function hooks.

Contrary to chainer.thread_local.function_hooks, which registers its elements to all func-
tions, Function hooks in this property is specific to this function.

output_data
A tuple of the retained output arrays.

This property is mainly used by Function. Users basically do not have to use this property; use
get_retained_outputs() instead.

outputs = None

rank = 0

stack = None

chainer.force_backprop_mode

chainer.force_backprop_mode()
Make a context manager which enables back-propagation.

When you want to enable back-propagation in no_backprop_mode(), call this method. A Variable
created in this context always has a computational graph unless overridden by deeper contexts. If you call this
method outside of no_backprop_mode() context, it changes nothing.

In the following example, y has a computational graph and calling backward() on y will compute and
accumulate the gradients of the variables in the graph, in this case only x.

>>> x = chainer.Variable(np.array([1,], np.float32))
>>> with chainer.no_backprop_mode():
... with chainer.force_backprop_mode():
... y = x + 1
>>> y.backward()
>>> x.grad
array([1.], dtype=float32)

302 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Note: chainer.force_backprop_mode() implicitly applies ChainerX’s counterpart chainerx.
force_backprop_mode(), but not vice versa. Also, setting enable_backprop configuration does not
affect ChainerX.

See also:

See chainer.no_backprop_mode() for details on disabled back-propagation mode.

chainer.no_backprop_mode

chainer.no_backprop_mode()
Make a context manager which disables back-propagation.

In this context, Chainer does not make a computational graph. It has the benefit of reducing memory consump-
tion. However, a Variable created in this context does not hold a reference to the FunctionNode that
created itself so no gradients are accumulated by backward().

In the following example, y is created in this context, which means that calling backward() on y has no
effect on the gradients of x.

>>> x = chainer.Variable(np.array([1,], np.float32))
>>> with chainer.no_backprop_mode():
... y = x + 1
>>> y.backward()
>>> x.grad is None
True

Note: chainer.no_backprop_mode() implicitly applies ChainerX’s counterpart chainerx.
no_backprop_mode(), but not vice versa. Also, setting enable_backprop configuration does not affect
ChainerX.

See also:

See chainer.force_backprop_mode() for details on how to override this context.

chainer.grad

chainer.grad(outputs, inputs, grad_outputs=None, grad_inputs=None, set_grad=False, re-
tain_grad=False, enable_double_backprop=False, loss_scale=None)

Computes the gradient of output variables w.r.t. the input variables.

This function implements the backpropagation algorithm. While Variable.backward() also implements
backprop, this function selects the smallest paths in the computational graph needed to compute the gradients
w.r.t. inputs. The error is backpropagated only through these selected paths, which may reduce the overall
computational cost.

This function also differs from Variable.backward() in the way to return the gradients; it directly returns
the gradient variables as a list instead of setting gradients to the Variable.grad_var attribute of the original
variable. It means users do not need to clear the gradient w.r.t. each variable before computing the gradient using
this function. If set_grad option is set to True, the computed gradient is also stored in the Variable.
grad_var attribute of each variable, in which case any original value of Variable.grad_var will be
updated even if it had already been set.

Parameters

4.2. Functions 303

Chainer Documentation, Release 7.0.0b4

• outputs (tuple or list of Variable) – A sequence of output variables from which back-
prop starts.

• inputs (tuple or list of Variable) – A sequence of input variables each of which this
function computes the gradient w.r.t.

• grad_outputs (tuple or list of Variable or None) – A sequence of variables that gives
the initial value of each output gradient. If an element is set to None, an array filled with 1
is used. If this argument itself is None, it is treated as a sequence of Nones.

• grad_inputs (tuple or list of Variable or None) – A sequence of variables that gives
the initial value of each input gradient. The gradients computed by the backprop algorithm
are accumulated to them (not in-place). If an element is set to None, the gradient is not
accumulated to this value. If this argument itself is None, it is treated as a sequence of
Nones.

• set_grad (bool) – If it is True, the Variable.grad_var attribute of each input
variable is set to the corresponding computed gradient variable.

• retain_grad (bool) – If it is True, the gradients w.r.t. all the intermediate variables
are stored in the Variable.grad_var attribute. In this case, the set_grad option is
ignored.

• enable_double_backprop (bool) – If it is True, the computed gradients can be
further backpropagated. Enabling it may increase the memory consumption (and possibly
the computational time) to remember the intermediate gradient values for the second back-
propagation.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to mitigate
vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be
multiplied by the factor before backprop starts. The factor is propagated to whole gradients
in a computational graph along the backprop. The gradients of parameters are divided by
the factor just before the parameters are to be updated.

Returns A list of gradient variables w.r.t. the inputs.

4.2.13 Function hooks

Chainer provides a function-hook mechanism that enriches the behavior of forward and backward propagation of
FunctionNode and Function.

chainer.function_hooks.
CUDAProfileHook
chainer.function_hooks.
CupyMemoryProfileHook

Function hook for measuring memory usage of func-
tions in cupy memory pool.

chainer.function_hooks.PrintHook Function hook that prints debug information.
chainer.function_hooks.TimerHook Function hook for measuring elapsed time of functions.

chainer.function_hooks.CUDAProfileHook

class chainer.function_hooks.CUDAProfileHook

304 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Methods

__enter__()

__exit__(*_)

added(function)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted(function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

__eq__()
Return self==value.

4.2. Functions 305

Chainer Documentation, Release 7.0.0b4

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'CUDAProfileHook'

chainer.function_hooks.CupyMemoryProfileHook

class chainer.function_hooks.CupyMemoryProfileHook
Function hook for measuring memory usage of functions in cupy memory pool.

Example

Code example:

from chainer.function_hooks import CupyMemoryProfileHook
hook = CupyMemoryProfileHook()
with hook:

trainer.run()
hook.print_report()

Output example:

FunctionName UsedBytes AcquiredBytes Occurrence
LinearFunction 5.16GB 179.98MB 3900

ReLU 0.99GB 458.97MB 2600
SoftmaxCrossEntropy 0.01GB 5.08MB 1300

Accuracy 0.00GB 0.35MB 700

where FunctionName is the name of function that calls the hook, and UsedBytes is the memory bytes the function
used from cupy memory pool, and AcquiredBytes is the actual memory bytes the cupy memory pool acquired
from GPU device on the function call, and Occurrence is the number of calls.

Variables call_history – List of measurement results. It consists of the name of the func-
tion that calls this hook, the memory bytes the function used from cupy memory pool, and the
memory bytes the cupy memory pool acquired from GPU device on the function call.

Methods

__enter__()

__exit__(*_)

306 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

added(function=None)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted(function=None)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

print_report(unit=’auto’, file=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-
8’>)

Prints a summary report of memory profiling in functions.

Parameters unit (str) – Supplementary units used for used memories. B, KB, MB, GB, TB,
PB, EB, ZB, auto‘(default) and ‘auto_foreach are supported. If auto, units of memories are
aligned to the largest values of ‘used_bytes’ and ‘acquired_bytes’. If auto_foreach, units of
memories are adjusted for each element.

4.2. Functions 307

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

summary()
Returns a summary of memory profiling in functions.

Returns A summarized dictionary whose keys are function names and values are dictionaries of
used_bytes, acquired_bytes, and occurrrence.

total_acquired_bytes()
Returns total bytes that cupy memory pool acquired from GPU.

total_used_bytes()
Returns total bytes that functions used from cupy memory pool.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'CupyMemoryProfileHook'

chainer.function_hooks.PrintHook

class chainer.function_hooks.PrintHook(sep=None, end=’n’, file=<_io.TextIOWrapper
name=’<stdout>’ mode=’w’ encoding=’UTF-8’>,
flush=True)

Function hook that prints debug information.

This function hook outputs the debug information of input arguments of forward and backward methods
involved in the hooked functions at preprocessing time (that is, just before each method is called).

Unlike simple “debug print” technique, where users insert print functions at every function to be inspected, we
can show the information of all functions involved with single with statement.

Further, this hook enables us to show the information of backward methods without inserting print functions
into Chainer’s library code.

Parameters

• sep – (deprecated since v4.0.0) Ignored.

• end – Character to be added at the end of print function.

• file – Output file_like object that that redirect to.

• flush – If True, this hook forcibly flushes the text stream at the end of preprocessing.

308 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Example

The basic usage is to use it with with statement.

>>> from chainer import function_hooks
>>> l = L.Linear(10, 10)
>>> x = chainer.Variable(np.zeros((1, 10), np.float32))
>>> with chainer.function_hooks.PrintHook():
... y = l(x)
... z = F.sum(y)
... z.backward()

In this example, PrintHook shows the debug information of forward propagation of LinearFunction
(which is implicitly called by l) and Sum (called by F.sum) and backward propagation of z and y.

Methods

__enter__()

__exit__(*_)

added(function)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted(function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

4.2. Functions 309

Chainer Documentation, Release 7.0.0b4

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'PrintHook'

chainer.function_hooks.TimerHook

class chainer.function_hooks.TimerHook
Function hook for measuring elapsed time of functions.

Example

Code example:

from chainer.function_hooks import TimerHook
hook = TimerHook()
with hook:

trainer.run()
hook.print_report()

Output example:

FunctionName ElapsedTime Occurrence
LinearFunction 1.24sec 3900

ReLU 0.59sec 2600

(continues on next page)

310 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

SoftmaxCrossEntropy 0.82sec 1300
Accuracy 0.18sec 700

where FunctionName is the name of function that calls the hook, and ElapsedTime is the elapsed time the
function consumed, and Occurrence is the number of calls.

Variables call_history – List of measurement results. It consists of pairs of the name of the
function that calls this hook and the elapsed time the function consumes.

Methods

__enter__()

__exit__(*_)

added(function)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted(function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

4.2. Functions 311

Chainer Documentation, Release 7.0.0b4

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

print_report(unit=’auto’, file=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-
8’>)

Prints a summary report of time profiling in functions.

Parameters unit (str) – Supplementary units used for computational times. sec, ms, us, ns,
auto‘(default) and ‘auto_foreach are supported. If auto, units of times are aligned to the
largest, and if auto_foreach, units of times are adjusted for each element.

summary()
Returns a summary of time profiling in functions.

Returns A summarized dictionary whose keys are function names and values are dictionaries of
elapsed_time and occurrence.

total_time()
Returns total elapsed time in seconds.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'TimerHook'

table = {'ms': 1000, 'ns': 1000000000, 'sec': 1, 'us': 1000000}

You can also implement your own function-hook to inject arbitrary code before/after the forward/backward propaga-
tion.

chainer.FunctionHook Base class of hooks for Functions.

chainer.FunctionHook

class chainer.FunctionHook
Base class of hooks for Functions.

FunctionHook is a callback object that is registered to FunctionNode. Registered function hooks are
invoked before and after forward and backward operations of each function.

312 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Function hooks that derive from FunctionHook may override the following methods:

• added()

• deleted()

• forward_preprocess()

• forward_postprocess()

• backward_preprocess()

• backward_postprocess()

By default, these methods do nothing.

Specifically, when the __call__() method of some function is invoked, forward_preprocess() (resp.
forward_postprocess()) of all function hooks registered to this function are called before (resp. after)
forward propagation.

Likewise, when backward() of some Variable is invoked, backward_preprocess() (resp.
backward_postprocess()) of all function hooks registered to the function which holds this variable as a
gradient are called before (resp. after) backward propagation.

added() and deleted() are called when the hook is registered or unregistered, respectively.

There are two ways to register FunctionHook objects to FunctionNode objects.

The first one is to use with statement. Function hooks hooked in this way are registered to all functions within
with statement and are unregistered at the end of with statement.

Example

The following code is a simple example in which we measure the elapsed time of a part of forward propagation
procedure with TimerHook, which is a subclass of FunctionHook.

>>> class Model(chainer.Chain):
... def __init__(self):
... super(Model, self).__init__()
... with self.init_scope():
... self.l = L.Linear(10, 10)
... def __call__(self, x1):
... return F.exp(self.l(x1))
>>> model1 = Model()
>>> model2 = Model()
>>> x = chainer.Variable(np.zeros((1, 10), np.float32))
>>> with chainer.function_hooks.TimerHook() as m:
... _ = model1(x)
... y = model2(x)
>>> model3 = Model()
>>> z = model3(y)
>>> print('Total time : {}'.format(m.total_time()))
...
Total time : ...

In this example, we measure the elapsed times for each forward propagation of all functions in model1 and
model2. Note that model3 is not a target of measurement as TimerHook is unregistered before forward
propagation of model3.

4.2. Functions 313

Chainer Documentation, Release 7.0.0b4

Note: Chainer stores the dictionary of registered function hooks as a thread local object. So, function hooks
registered are different depending on threads.

The other one is to register it directly to a FunctionNode object by calling its add_hook() method. Func-
tion hooks registered in this way can be removed by delete_hook() method. Contrary to the former regis-
tration method, function hooks are registered only to the function whose add_hook() method is called.

If the hook is registered globally using with statement, None is passed as the function argument of
added() and deleted().

If the hook is registered in a specific function using add_hook(), the FunctionNode instance is passed as
the function argument of added() and deleted().

Parameters name (str) – Name of this function hook.

Methods

__enter__()

__exit__(*_)

added(function)
Callback function invoked when the function hook is registered

Parameters function (FunctionNode) – Function object to which the function hook is
added. None if the function hook is registered globally.

backward_postprocess(function, in_data, out_grad)
Callback function invoked after backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

backward_preprocess(function, in_data, out_grad)
Callback function invoked before backward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

• out_grad (tuple of N-dimensional array) – Gradient data of backward propagation.

deleted(function)
Callback function invoked when the function hook is unregistered

Parameters function (FunctionNode) – Function object from which the function hook is
deleted. None if the function hook was registered globally.

forward_postprocess(function, in_data)
Callback function invoked after forward propagation.

Parameters

314 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

forward_preprocess(function, in_data)
Callback function invoked before forward propagation.

Parameters

• function (FunctionNode) – Function object to which the function hook is regis-
tered.

• in_data (tuple of N-dimensional array) – Input data of forward propagation.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'FunctionHook'

4.3 Link and Chains

Chainer provides many Link implementations in the chainer.links package.

Note: Some of the links are originally defined in the chainer.functions namespace. They are still left in
the namespace for backward compatibility, though it is strongly recommended that you use them via the chainer.
links package.

4.3.1 Learnable connections

chainer.links.Bias Broadcasted elementwise summation with learnable pa-
rameters.

chainer.links.Bilinear Bilinear layer that performs tensor multiplication.
chainer.links.ChildSumTreeLSTM Child-Sum TreeLSTM unit.
chainer.links.Convolution1D 1-dimensional convolution layer.
chainer.links.Convolution2D Two-dimensional convolutional layer.

Continued on next page

4.3. Link and Chains 315

Chainer Documentation, Release 7.0.0b4

Table 16 – continued from previous page
chainer.links.Convolution3D 3-dimensional convolution layer.
chainer.links.ConvolutionND N-dimensional convolution layer.
chainer.links.Deconvolution1D 1-dimensional deconvolution layer.
chainer.links.Deconvolution2D Two dimensional deconvolution function.
chainer.links.Deconvolution3D 3-dimensional deconvolution layer.
chainer.links.DeconvolutionND N-dimensional deconvolution function.
chainer.links.DeformableConvolution2D Two-dimensional deformable convolutional layer.
chainer.links.DepthwiseConvolution2D Two-dimensional depthwise convolutional layer.
chainer.links.DilatedConvolution2D Two-dimensional dilated convolutional layer.
chainer.links.EmbedID Efficient linear layer for one-hot input.
chainer.links.GRU Stateful Gated Recurrent Unit function (GRU)
chainer.links.Highway Highway module.
chainer.links.Inception Inception module of GoogLeNet.
chainer.links.InceptionBN Inception module of the new GoogLeNet with Batch-

Normalization.
chainer.links.Linear Linear layer (a.k.a. fully-connected layer).
chainer.links.LocalConvolution2D Two-dimensional local convolutional layer.
chainer.links.LSTM Fully-connected LSTM layer.
chainer.links.MLPConvolution2D Two-dimensional MLP convolution layer of Network in

Network.
chainer.links.NaryTreeLSTM N-ary TreeLSTM unit.
chainer.links.NStepBiGRU Stacked Bi-directional GRU for sequences.
chainer.links.NStepBiLSTM Stacked Bi-directional LSTM for sequences.
chainer.links.NStepBiRNNReLU Stacked Bi-directional RNN for sequences.
chainer.links.NStepBiRNNTanh Stacked Bi-directional RNN for sequences.
chainer.links.NStepGRU Stacked Uni-directional GRU for sequences.
chainer.links.NStepLSTM Stacked Uni-directional LSTM for sequences.
chainer.links.NStepRNNReLU Stacked Uni-directional RNN for sequences.
chainer.links.NStepRNNTanh Stacked Uni-directional RNN for sequences.
chainer.links.Parameter Link that just holds a parameter and returns it.
chainer.links.Scale Broadcasted elementwise product with learnable param-

eters.
chainer.links.StatefulGRU Stateful Gated Recurrent Unit function (GRU).
chainer.links.StatelessGRU Stateless Gated Recurrent Unit function (GRU).
chainer.links.StatefulMGU
chainer.links.StatelessMGU
chainer.links.StatefulPeepholeLSTM Fully-connected LSTM layer with peephole connec-

tions.
chainer.links.StatefulZoneoutLSTM
chainer.links.StatelessLSTM Stateless LSTM layer.

chainer.links.Bias

class chainer.links.Bias(axis=1, shape=None)
Broadcasted elementwise summation with learnable parameters.

Computes a elementwise summation as bias() function does except that its second input is a learnable bias
parameter 𝑏 the link has.

Parameters

• axis (int) – The first axis of the first input of bias() function along which its second
input is applied.

316 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• shape (tuple of ints) – Shape of the learnable bias parameter. If None, this link
does not have learnable parameters so an explicit bias needs to be given to its forward
method’s second input.

See also:

See bias() for details.

Variables b (Variable) – Bias parameter if shape is given. Otherwise, no attributes.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

4.3. Link and Chains 317

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

318 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*xs)
Applies broadcasted elementwise summation.

Parameters xs (list of Variables) – Input variables whose length should be one if the
link has a learnable bias parameter, otherwise should be two.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

4.3. Link and Chains 319

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all

320 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

4.3. Link and Chains 321

Chainer Documentation, Release 7.0.0b4

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Bilinear

class chainer.links.Bilinear(left_size, right_size, out_size, nobias=False, initialW=None, ini-
tial_bias=None)

Bilinear layer that performs tensor multiplication.

Bilinear is a primitive link that wraps the bilinear() functions. It holds parameters W, V1, V2, and b
corresponding to the arguments of bilinear().

Parameters

322 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

• left_size (int) – Dimension of input vector 𝑒1 (𝐽)

• right_size (int) – Dimension of input vector 𝑒2 (𝐾)

• out_size (int) – Dimension of output vector 𝑦 (𝐿)

• nobias (bool) – If True, parameters V1, V2, and b are omitted.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 3.

• initial_bias (tuple of initializer) – Initial values of 𝑉 1, 𝑉 2 and 𝑏. The length of this
argument must be 3. Each element of this tuple must have the shapes of (left_size,
out_size), (right_size, out_size), and (out_size,), respectively if they
are numpy.ndarray. If None, 𝑉 1 and 𝑉 2 are initialized by the default initializer and 𝑏
is set to 0.

See also:

See chainer.functions.bilinear() for details.

Variables

• W (Variable) – Bilinear weight parameter.

• V1 (Variable) – Linear weight parameter for the first argument.

• V2 (Variable) – Linear weight parameter for the second argument.

• b (Variable) – Bias parameter.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a

4.3. Link and Chains 323

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,

324 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(e1, e2)
Applies the bilinear function to inputs and the internal parameters.

Parameters

• e1 (Variable) – Left input.

• e2 (Variable) – Right input.

Returns Output variable.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

4.3. Link and Chains 325

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

326 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

4.3. Link and Chains 327

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zero_grads()

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

328 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.ChildSumTreeLSTM

class chainer.links.ChildSumTreeLSTM(in_size, out_size)
Child-Sum TreeLSTM unit.

Warning: This feature is experimental. The interface can change in the future.

This is a Child-Sum TreeLSTM unit as a chain. This link is a variable arguments function, which compounds
the states of all children nodes into the new states of a current (parent) node. states denotes the cell state, 𝑐, and
the output, ℎ, which are produced by this link. This link doesn’t keep cell and hidden states internally.

For example, this link is called such as func(c1, c2, h1, h2, x) if the number of children nodes is
2, while func(c1, c2, c3, h1, h2, h3, x) if that is 3. This function is independent from an order
of children nodes. Thus, the returns of func(c1, c2, h1, h2, x) equal to those of func(c2, c1,
h2, h1, x).

Parameters

• in_size (int) – Dimension of input vectors.

• out_size (int) – Dimensionality of cell and output vectors.

Variables

• W_x (chainer.links.Linear) – Linear layer of connections from input vectors.

• W_h_aio (chainer.links.Linear) – Linear layer of connections between (𝑎, 𝑖, 𝑜)
and summation of children’s output vectors. 𝑎, 𝑖 and 𝑜 denotes input compound, input gate
and output gate, respectively. 𝑎, input compound, equals to 𝑢 in the paper by Tai et al.

• W_h_f (chainer.links.Linear) – Linear layer of connections between forget gate
𝑓 and the output of each child.

See the paper for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks.

4.3. Link and Chains 329

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150

Chainer Documentation, Release 7.0.0b4

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

330 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

4.3. Link and Chains 331

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*cshsx)
Returns new cell state and output of Child-Sum TreeLSTM.

Parameters cshsx (list of Variable) – Variable arguments which include all cell vectors
and all output vectors of variable children, and an input vector.

Returns Returns (𝑐𝑛𝑒𝑤, ℎ𝑛𝑒𝑤), where 𝑐𝑛𝑒𝑤 represents new cell state vector, and ℎ𝑛𝑒𝑤 is new
output vector.

Return type tuple of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

332 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

4.3. Link and Chains 333

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

334 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3. Link and Chains 335

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.links.Convolution1D

class chainer.links.Convolution1D(in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, initialW=None, initial_bias=None,
cover_all=False, dilate=1, groups=1)

1-dimensional convolution layer.

Note: This link wraps ConvolutionND by giving 1 to the first argument ndim, so see the details of the
behavior in the documentation of ConvolutionND.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

336 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

4.3. Link and Chains 337

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies N-dimensional convolution layer.

Parameters x (Variable) – Input image.

Returns Output of convolution.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

338 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

4.3. Link and Chains 339

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

340 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3. Link and Chains 341

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.links.Convolution2D

class chainer.links.Convolution2D(self, in_channels, out_channels, ksize=None, stride=1,
pad=0, nobias=False, initialW=None, initial_bias=None, *,
dilate=1, groups=1)

Two-dimensional convolutional layer.

This link wraps the convolution_2d() function and holds the filter weight and bias vector as parameters.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deterministic
algorithm.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• in_channels (int or None) – Number of channels of input arrays. If None, param-
eter initialization will be deferred until the first forward data pass at which time the size will
be determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 4.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

• groups (int) – Number of groups of channels. If the number is greater than 1, input
tensor 𝑊 is divided into some blocks by this value channel-wise. For each tensor blocks,
convolution operation will be executed independently. Input channel size in_channels
and output channel size out_channels must be exactly divisible by this value.

See also:

See chainer.functions.convolution_2d() for the definition of two-dimensional convolution.

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

Example

There are several ways to make a Convolution2D link.

342 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Let an input vector x be:

>>> x = np.arange(1 * 3 * 10 * 10, dtype=np.float32).reshape(
... 1, 3, 10, 10)

1. Give the first three arguments explicitly:

>>> l = L.Convolution2D(3, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.Convolution2D(7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

>>> l = L.Convolution2D(None, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

When you omit the first argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> l = L.Convolution2D(7, 5, stride=1, pad=0)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

>>> l = L.Convolution2D(None, 7, 5, 1, 0)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

4.3. Link and Chains 343

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

344 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the convolution layer.

Parameters x (Variable) – Input image.

Returns Output of the convolution.

Return type Variable

4.3. Link and Chains 345

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

346 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

4.3. Link and Chains 347

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

348 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Convolution3D

class chainer.links.Convolution3D(in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, initialW=None, initial_bias=None,
cover_all=False, dilate=1, groups=1)

3-dimensional convolution layer.

Note: This link wraps ConvolutionND by giving 3 to the first argument ndim, so see the details of the
behavior in the documentation of ConvolutionND.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

4.3. Link and Chains 349

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

350 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies N-dimensional convolution layer.

Parameters x (Variable) – Input image.

Returns Output of convolution.

Return type Variable

4.3. Link and Chains 351

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

352 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

4.3. Link and Chains 353

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

354 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.ConvolutionND

class chainer.links.ConvolutionND(ndim, in_channels, out_channels, ksize=None, stride=1,
pad=0, nobias=False, initialW=None, initial_bias=None,
cover_all=False, dilate=1, groups=1)

N-dimensional convolution layer.

This link wraps the convolution_nd() function and holds the filter weight and bias vector as parameters.

Convolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algorithm
for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• ndim (int) – Number of spatial dimensions.

• in_channels (int) – Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or tuple of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints) – Stride of filter application. stride=s and
stride=(s, s, ..., s) are equivalent.

• pad (int or tuple of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p, ..., p) are equivalent.

4.3. Link and Chains 355

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• nobias (bool) – If True, then this function does not use the bias.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 𝑛+ 2 where 𝑛 is the number of spatial dimensions.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should 1.

• cover_all (bool) – If True, all spatial locations are convoluted into some output pixels.
It may make the output size larger. cover_all needs to be False if you want to use
cuDNN.

• dilate (int or tuple of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d, ..., d) are equivalent.

• groups (int) – The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

See also:

See convolution_nd() for the definition of N-dimensional convolution. See convolution_2d() for
the definition of two-dimensional convolution.

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter. If initial_bias is None, set to None.

Example

There are several ways to make a ConvolutionND link.

Let an input vector x be:

>>> x = np.arange(2 * 5 * 5 * 5, dtype=np.float32).reshape(
... 1, 2, 5, 5, 5)

1. Give the first four arguments explicitly:

>>> l = L.ConvolutionND(3, 2, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.ConvolutionND(3, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)

>>> l = L.ConvolutionND(3, None, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)

356 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

When you omit the second argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> l = L.ConvolutionND(3, 7, 4, stride=1, pad=0)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)

>>> l = L.ConvolutionND(3, None, 7, 4, 1, 0)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2, 2)

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

4.3. Link and Chains 357

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

358 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies N-dimensional convolution layer.

Parameters x (Variable) – Input image.

Returns Output of convolution.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

4.3. Link and Chains 359

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to

360 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

4.3. Link and Chains 361

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

362 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.links.Deconvolution1D

class chainer.links.Deconvolution1D(in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, outsize=None, initialW=None, ini-
tial_bias=None, dilate=1, groups=1)

1-dimensional deconvolution layer.

Note: This link wraps DeconvolutionND by giving 1 to the first argument ndim, so see the details of the
behavior in the documentation of DeconvolutionND.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

4.3. Link and Chains 363

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

364 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

4.3. Link and Chains 365

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all

366 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

4.3. Link and Chains 367

Chainer Documentation, Release 7.0.0b4

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Deconvolution2D

class chainer.links.Deconvolution2D(self, in_channels, out_channels, ksize=None, stride=1,
pad=0, nobias=False, outsize=None, initialW=None,
initial_bias=None, *, dilate=1, groups=1)

Two dimensional deconvolution function.

This link wraps the deconvolution_2d() function and holds the filter weight and bias vector as parameters.

368 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• in_channels (int or None) – Number of channels of input arrays. If None, param-
eter initialization will be deferred until the first forward data pass at which time the size will
be determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• nobias (bool) – If True, then this function does not use the bias term.

• outsize (tuple) – Expected output size of deconvolutional operation. It should be pair
of height and width (𝑜𝑢𝑡𝐻 , 𝑜𝑢𝑡𝑊). Default value is None and the outsize is estimated by
input size, stride and pad.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 4.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

• dilate (int or tuple of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d) are equivalent.

• groups (int) – The number of groups to use grouped deconvolution. The default is one,
where grouped deconvolution is not used.

The filter weight has four dimensions (𝑐𝐼 , 𝑐𝑂, 𝑘𝐻 , 𝑘𝑊) which indicate the number of input channels, output
channels, height and width of the kernels, respectively. The filter weight is initialized with i.i.d. Gaussian
random samples, each of which has zero mean and deviation

√︀
1/(𝑐𝐼𝑘𝐻𝑘𝑊) by default.

The bias vector is of size 𝑐𝑂. Its elements are initialized by bias argument. If nobias argument is set to
True, then this function does not hold the bias parameter.

The output of this function can be non-deterministic when it uses cuDNN. If chainer.configuration.
config.cudnn_deterministic is True and cuDNN version is >= v3, it forces cuDNN to use a deter-
ministic algorithm.

See also:

See chainer.functions.deconvolution_2d() for the definition of two-dimensional convolution.

See also:

See chainer.links.Convolution2D() for the examples of ways to give arguments to this link.

Example

There are several ways to make a Deconvolution2D link.

Let an input vector x be:

4.3. Link and Chains 369

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

>>> x = np.arange(1 * 3 * 10 * 10, dtype=np.float32).reshape(
... 1, 3, 10, 10)

1. Give the first three arguments explicitly:

In this case, all the other arguments are set to the default values.

>>> l = L.Deconvolution2D(3, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.Deconvolution2D(7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)

>>> l = L.Deconvolution2D(None, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 13, 13)

When you omit the first argument, you need to specify the other subsequent arguments from
stride as keyword arguments. So the below two cases are the same.

>>> l = L.Deconvolution2D(None, 7, 4, 2, 1)
>>> y = l(x)
>>> y.shape
(1, 7, 20, 20)

>>> l = L.Deconvolution2D(7, 4, stride=2, pad=1)
>>> y = l(x)
>>> y.shape
(1, 7, 20, 20)

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

370 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

4.3. Link and Chains 371

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

372 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 373

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

374 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

4.3. Link and Chains 375

Chainer Documentation, Release 7.0.0b4

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Deconvolution3D

class chainer.links.Deconvolution3D(in_channels, out_channels, ksize, stride=1, pad=0,
nobias=False, outsize=None, initialW=None, ini-
tial_bias=None, dilate=1, groups=1)

3-dimensional deconvolution layer.

Note: This link wraps DeconvolutionND by giving 3 to the first argument ndim, so see the details of the
behavior in the documentation of DeconvolutionND.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

376 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

4.3. Link and Chains 377

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

378 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 379

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

380 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

4.3. Link and Chains 381

Chainer Documentation, Release 7.0.0b4

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DeconvolutionND

class chainer.links.DeconvolutionND(ndim, in_channels, out_channels, ksize=None, stride=1,
pad=0, nobias=False, outsize=None, initialW=None,
initial_bias=None, dilate=1, groups=1)

N-dimensional deconvolution function.

This link wraps deconvolution_nd() function and holds the filter weight and bias vector as its parameters.

Deconvolution links can use a feature of cuDNN called autotuning, which selects the most efficient CNN algo-
rithm for images of fixed-size, can provide a significant performance boost for fixed neural nets. To enable, set
chainer.using_config(‘autotune’, True)

Parameters

• ndim (int) – Number of spatial dimensions.

• in_channels (int) – Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or tuple of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k, ..., k) are equivalent.

• stride (int or tuple of ints) – Stride of filter application. stride=s and
stride=(s, s, ..., s) are equivalent.

• pad (int or tuple of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p, ..., p) are equivalent.

• nobias (bool) – If True, then this function does not use the bias.

• outsize (tuple of ints) – Expected output size of deconvolutional operation. It
should be a tuple of ints that represents the output size of each dimension. Default value is
None and the outsize is estimated with input size, stride and pad.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 𝑛+ 2 where 𝑛 is the number of spatial dimensions.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should 1.

382 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

• dilate (int or tuple of int s) – Dilation factor of filter applications. dilate=d and
dilate=(d, d, ..., d) are equivalent.

• groups (int) – The number of groups to use grouped convolution. The default is one,
where grouped convolution is not used.

See also:

deconvolution_nd()

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter. If initial_bias is None, set to None.

Example

There are several ways to make a DeconvolutionND link.

Let an input vector x be:

>>> x = np.arange(2 * 5 * 5 * 5, dtype=np.float32).reshape(
... 1, 2, 5, 5, 5)

1. Give the first four arguments explicitly:

>>> l = L.DeconvolutionND(3, 2, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 8, 8, 8)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.DeconvolutionND(3, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 8, 8, 8)

>>> l = L.DeconvolutionND(3, None, 7, 4)
>>> y = l(x)
>>> y.shape
(1, 7, 8, 8, 8)

When you omit the second argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> l = L.DeconvolutionND(3, 7, 4, stride=2, pad=1)
>>> y = l(x)
>>> y.shape
(1, 7, 10, 10, 10)

>>> l = L.DeconvolutionND(3, None, 7, 4, 2, 1)
>>> y = l(x)
>>> y.shape
(1, 7, 10, 10, 10)

4.3. Link and Chains 383

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

384 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

4.3. Link and Chains 385

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

386 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

4.3. Link and Chains 387

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

388 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DeformableConvolution2D

class chainer.links.DeformableConvolution2D(in_channels, out_channels,
ksize, stride=1, pad=0, off-
set_nobias=False, offset_initialW=None,
offset_initial_bias=None, de-
form_nobias=False, deform_initialW=None,
deform_initial_bias=None)

Two-dimensional deformable convolutional layer.

This link wraps the convolution layer for offset prediction and the
deformable_convolution_2d_sampler() function. This also holds the filter weights and bias
vectors of two convolution layers as parameters.

Parameters

4.3. Link and Chains 389

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

• in_channels (int) – Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• offset_nobias (bool) – If True, then this link does not use the bias term for the first
convolution layer.

• offset_initialW (initializer) – Initializer to initialize the weight of the first convolu-
tion layer. When it is numpy.ndarray, its ndim should be 4.

• offset_initial_bias (initializer) – Initializer to initialize the bias of the first convo-
lution layer. If None, the bias will be initialized to zero. When it is numpy.ndarray, its
ndim should be 1.

• deform_nobias (bool) – If True, then this link does not use the bias term for the
second convolution layer.

• deform_initialW (initializer) – Initializer to initialize the weight for the second con-
volution layer. When it is numpy.ndarray, its ndim should be 4.

• deform_initial_bias (initializer) – Initializer to initialize the bias for the second
convolution layer. If None, the bias will be initialized to zero. When it is numpy.
ndarray, its ndim should be 1.

See also:

See chainer.functions.deformable_convolution_2d_sampler().

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

390 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized

4.3. Link and Chains 391

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the deformable convolution.

Parameters x (Variable) – Input image.

Returns Output of the deformable convolution.

392 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

4.3. Link and Chains 393

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

394 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.3. Link and Chains 395

Chainer Documentation, Release 7.0.0b4

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DepthwiseConvolution2D

class chainer.links.DepthwiseConvolution2D(in_channels, channel_multiplier, ksize,
stride=1, pad=0, nobias=False, ini-
tialW=None, initial_bias=None)

Two-dimensional depthwise convolutional layer.

This link wraps the depthwise_convolution_2d() function and holds the filter weight and bias vector
as parameters.

Parameters

• in_channels (int) – Number of channels of input arrays. If None, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

• channel_multiplier (int) – Channel multiplier number. Number of output arrays
equal in_channels * channel_multiplier.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• nobias (bool) – If True, then this link does not use the bias term.

396 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 4.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

See also:

See chainer.functions.depthwise_convolution_2d().

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

4.3. Link and Chains 397

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

398 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the depthwise convolution layer.

Parameters x (chainer.Variable or numpy.ndarray or cupy.ndarray) – Input image.

Returns Output of the depthwise convolution.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

4.3. Link and Chains 399

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to

400 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

4.3. Link and Chains 401

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

402 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.links.DilatedConvolution2D

class chainer.links.DilatedConvolution2D(in_channels, out_channels, ksize=None,
stride=1, pad=0, dilate=1, nobias=False,
initialW=None, initial_bias=None)

Two-dimensional dilated convolutional layer.

This link wraps the dilated_convolution_2d() function and holds the filter weight and bias vector as
parameters.

Note: You can also define a dilated convolutional layer by passing dilate argument to chainer.links.
Convolution2D. The functionality is the same.

Parameters

• in_channels (int or None) – Number of channels of input arrays. If None, param-
eter initialization will be deferred until the first forward data pass at which time the size will
be determined.

• out_channels (int) – Number of channels of output arrays.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays. pad=p and
pad=(p, p) are equivalent.

• dilate (int or pair of ints) – Dilation factor of filter applications. dilate=d
and dilate=(d, d) are equivalent.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 4.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 1.

See also:

See chainer.functions.dilated_convolution_2d() for the definition of two-dimensional dilated
convolution.

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

Example

There are several ways to make a DilatedConvolution2D link.

Let an input vector x be:

4.3. Link and Chains 403

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

>>> x = np.arange(1 * 3 * 10 * 10, dtype=np.float32).reshape(1, 3, 10, 10)

1. Give the first three arguments explicitly:

>>> l = L.DilatedConvolution2D(3, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

2. Omit in_channels or fill it with None:

The below two cases are the same.

>>> l = L.DilatedConvolution2D(7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

>>> l = L.DilatedConvolution2D(None, 7, 5)
>>> y = l(x)
>>> y.shape
(1, 7, 6, 6)

When you omit the first argument, you need to specify the other subsequent arguments from
stride as keyword auguments. So the below two cases are the same.

>>> l = L.DilatedConvolution2D(None, 7, 5, 1, 0, 2)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2)

>>> l = L.DilatedConvolution2D(7, 5, stride=1, pad=0, dilate=2)
>>> y = l(x)
>>> y.shape
(1, 7, 2, 2)

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

404 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

4.3. Link and Chains 405

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the convolution layer.

Parameters x (Variable) – Input image.

Returns Output of the convolution.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

406 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

4.3. Link and Chains 407

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

408 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

4.3. Link and Chains 409

Chainer Documentation, Release 7.0.0b4

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.EmbedID

class chainer.links.EmbedID(in_size, out_size, initialW=None, ignore_label=None)
Efficient linear layer for one-hot input.

This is a link that wraps the embed_id() function. This link holds the ID (word) embedding matrix W as a
parameter.

Parameters

• in_size (int) – Number of different identifiers (a.k.a. vocabulary size).

• out_size (int) – Size of embedding vector.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 2.

• ignore_label (int or None) – If ignore_label is an int value, i-th row of re-
turn value is filled with 0.

See also:

embed_id()

Variables W (Variable) – Embedding parameter matrix.

Example

>>> W = np.array([[0, 0, 0],
... [1, 1, 1],
... [2, 2, 2]]).astype(np.float32)
>>> W
array([[0., 0., 0.],

[1., 1., 1.],

(continues on next page)

410 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

[2., 2., 2.]], dtype=float32)
>>> l = L.EmbedID(W.shape[0], W.shape[1], initialW=W)
>>> x = np.array([2, 1]).astype(np.int32)
>>> x
array([2, 1], dtype=int32)
>>> y = l(x)
>>> y.array
array([[2., 2., 2.],

[1., 1., 1.]], dtype=float32)

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

4.3. Link and Chains 411

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

412 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Extracts the word embedding of given IDs.

Parameters x (Variable) – Batch vectors of IDs.

Returns Batch of corresponding embeddings.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

4.3. Link and Chains 413

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

414 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

4.3. Link and Chains 415

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

ignore_label = None

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

416 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.links.GRU

class chainer.links.GRU(in_size, out_size, init=None, inner_init=None, bias_init=0)
Stateful Gated Recurrent Unit function (GRU)

This is an alias of StatefulGRU .

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

4.3. Link and Chains 417

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

418 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(self, x)
Does forward propagation.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

4.3. Link and Chains 419

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

420 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(h)

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

4.3. Link and Chains 421

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

422 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.links.Highway

class chainer.links.Highway(in_out_size, nobias=False, activate=<function relu>,
init_Wh=None, init_Wt=None, init_bh=None, init_bt=-1)

Highway module.

In highway network, two gates are added to the ordinal non-linear transformation (𝐻(𝑥) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑊ℎ𝑥 +
𝑏ℎ)). One gate is the transform gate 𝑇 (𝑥) = 𝜎(𝑊𝑡𝑥+ 𝑏𝑡), and the other is the carry gate 𝐶(𝑥). For simplicity,
the author defined 𝐶 = 1− 𝑇 . Highway module returns 𝑦 defined as

𝑦 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑊ℎ𝑥+ 𝑏ℎ)⊙ 𝜎(𝑊𝑡𝑥+ 𝑏𝑡) + 𝑥⊙ (1− 𝜎(𝑊𝑡𝑥+ 𝑏𝑡))

The output array has the same spatial size as the input. In order to satisfy this, 𝑊ℎ and 𝑊𝑡 must be square
matrices.

Parameters

• in_out_size (int) – Dimension of input and output vectors.

• nobias (bool) – If True, then this function does not use the bias.

• activate – Activation function of plain array. 𝑡𝑎𝑛ℎ is also available.

• init_Wh (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 2.

• init_bh (initializer) – Initializer to initialize the bias. If None, the bias will be initialized
to zero. When it is numpy.ndarray, its ndim should be 1.

• init_Wt (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 2.

• init_bt (initializer) – Initializer to initialize the bias. If None, the bias will be initialized
to zero. When it is numpy.ndarray, its ndim should be 1. Negative value is recom-
mended by the author of the paper. (e.g. -1, -3, . . .).

See: Highway Networks.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

4.3. Link and Chains 423

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://arxiv.org/abs/1505.00387
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized

424 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Computes the output of the Highway module.

Parameters x (Variable) – Input variable.

Returns Output variable. Its array has the same spatial size and the same minibatch size as the
input array.

4.3. Link and Chains 425

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

426 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

4.3. Link and Chains 427

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

428 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Inception

class chainer.links.Inception(in_channels, out1, proj3, out3, proj5, out5, proj_pool,
conv_init=None, bias_init=None)

Inception module of GoogLeNet.

It applies four different functions to the input array and concatenates their outputs along the channel dimension.
Three of them are 2D convolutions of sizes 1x1, 3x3 and 5x5. Convolution paths of 3x3 and 5x5 sizes have 1x1
convolutions (called projections) ahead of them. The other path consists of 1x1 convolution (projection) and
3x3 max pooling.

The output array has the same spatial size as the input. In order to satisfy this, Inception module uses appropriate
padding for each convolution and pooling.

See: Going Deeper with Convolutions.

Parameters

• in_channels (int or None) – Number of channels of input arrays.

• out1 (int) – Output size of 1x1 convolution path.

• proj3 (int) – Projection size of 3x3 convolution path.

• out3 (int) – Output size of 3x3 convolution path.

• proj5 (int) – Projection size of 5x5 convolution path.

• out5 (int) – Output size of 5x5 convolution path.

• proj_pool (int) – Projection size of max pooling path.

4.3. Link and Chains 429

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://arxiv.org/abs/1409.4842
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• conv_init (initializer) – Initializer to initialize the convolution matrix weights. When it
is numpy.ndarray, its ndim should be 4.

• bias_init (initializer) – Initializer to initialize the convolution matrix weights. When it
is numpy.ndarray, its ndim should be 1.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

430 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

4.3. Link and Chains 431

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Computes the output of the Inception module.

Parameters x (Variable) – Input variable.

Returns Output variable. Its array has the same spatial size and the same minibatch size as the
input array. The channel dimension has size out1 + out3 + out5 + proj_pool.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

432 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same

4.3. Link and Chains 433

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

434 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3. Link and Chains 435

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.links.InceptionBN

class chainer.links.InceptionBN(in_channels, out1, proj3, out3, proj33, out33, pooltype,
proj_pool=None, stride=1, conv_init=None, dtype=None)

Inception module of the new GoogLeNet with BatchNormalization.

This chain acts like Inception, while InceptionBN uses the BatchNormalization on top of each con-
volution, the 5x5 convolution path is replaced by two consecutive 3x3 convolution applications, and the pooling
method is configurable.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

Parameters

• in_channels (int or None) – Number of channels of input arrays.

• out1 (int) – Output size of the 1x1 convolution path.

• proj3 (int) – Projection size of the single 3x3 convolution path.

• out3 (int) – Output size of the single 3x3 convolution path.

• proj33 (int) – Projection size of the double 3x3 convolutions path.

• out33 (int) – Output size of the double 3x3 convolutions path.

• pooltype (str) – Pooling type. It must be either 'max' or 'avg'.

• proj_pool (int or None) – Projection size in the pooling path. If None, no projec-
tion is done.

• stride (int) – Stride parameter of the last convolution of each path.

• conv_init (initializer) – Initializer to initialize the convolution matrix weights. When it
is numpy.ndarray, its ndim should be 4.

• dtype (numpy.dtype) – Type to use in BatchNormalization.

See also:

Inception

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

436 Chapter 4. API Reference

https://arxiv.org/abs/1502.03167
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.

4.3. Link and Chains 437

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

438 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

4.3. Link and Chains 439

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

440 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

4.3. Link and Chains 441

Chainer Documentation, Release 7.0.0b4

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Linear

class chainer.links.Linear(in_size, out_size=None, nobias=False, initialW=None, ini-
tial_bias=None)

Linear layer (a.k.a. fully-connected layer).

This is a link that wraps the linear() function, and holds a weight matrix W and optionally a bias vector b as
parameters.

If initialW is left to the default value of None, the weight matrix W is initialized with i.i.d. Gaussian samples,
each of which has zero mean and deviation

√︀
1/

Parameters
• in_size (int or None) – Dimension of input vectors. If unspecified or None, parameter initialization

will be deferred until the first forward data pass at which time the size will be determined.
• out_size (int) – Dimension of output vectors. If only one value is passed for in_size and
out_size, that value will be used for the out_size dimension.

• nobias (bool) – If True, then this function does not use the bias.
• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray, its ndim should be

2. If initialW is None, then the weights are initialized with i.i.d. Gaussian samples, each of which has zero
mean and deviation

√︀
1/

See also:

linear()

• Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

Example

There are several ways to make a Linear link.

442 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

Define an input vector x as:

>>> x = np.array([[0, 1, 2, 3, 4]], np.float32)

1. Give the first two arguments explicitly:

Those numbers are considered as the input size and the output size.

>>> l = L.Linear(5, 10)
>>> y = l(x)
>>> y.shape
(1, 10)

2. Omit in_size (give the output size only as the first argument) or fill it with None:

In this case, the size of second axis of x is used as the input size. So the below two cases are the same.

>>> l = L.Linear(10)
>>> y = l(x)
>>> y.shape
(1, 10)

>>> l = L.Linear(None, 10)
>>> y = l(x)
>>> y.shape
(1, 10)

When you omit the first argument, you need to specify the other subsequent arguments from nobias
as keyword arguments. So the below two cases are the same.

>>> l = L.Linear(None, 10, False, None, 0)
>>> y = l(x)
>>> y.shape
(1, 10)

>>> l = L.Linear(10, nobias=False, initialW=None, initial_bias=0)
>>> y = l(x)
>>> y.shape
(1, 10)

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks registered
to this link. If None, the default name of the link hook is used.

Returns self

4.3. Link and Chains 443

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted, the
parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given initializer. If
it is an array, the data is directly initialized by it. If it is callable, it is used as a weight initializer.
Note that in these cases, dtype argument is ignored. It can also be a scalar, in which case the
data array will be filled by this scalar. Note that float32 is used in this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute of
the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The accumu-
lation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent chain
(even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize() method,
so that all the parameters may have different initial values from the original link. copy means
that the link object is deeply copied, so that its parameters are not re-initialized but are also deeply
copied. Thus, all parameters have same initial values but can be changed independently. share
means that the link is shallowly copied, so that its parameters’ arrays are shared with the original
one. Thus, their values are changed synchronously. The default mode is share.

Returns Copied link object.

444 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host and
devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise, it is
copied using copy.deepcopy(). The old behavior (not copying persistent values) can be reproduced with
copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link and its
descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x, n_batch_axes=1)
Applies the linear layer.

Parameters

• x (Variable) – Batch of input vectors.

• n_batch_axes (int) – The number of batch axes. The default is 1. The input variable is
reshaped into (n_batch_axes + 1)-dimensional tensor. This should be greater than 0.

Returns Output of the linear layer.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any copy.

4.3. Link and Chains 445

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain) by
an assignment. A Parameter object can be automatically registered by assigning it to an attribute under this
context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope method, we
can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first
child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the first
child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from this
link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a persistent
value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

446 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method returns a Sequential object which has the same Link multiple times repeatedly. The mode
argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each block
is re-initialized with different parameters. If you give copy to this argument, each block has same values for
its parameters but its object ID is different from others. If it is share, each block is same to others in terms of
not only parameters but also the object IDs because they are shallow-copied, so that when the parameter of one
block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters of each
repeated element in the returned Sequential will be re-initialized, so that all elements have
different initial parameters. copy means that the parameters will not be re-initialized but object
itself will be deep-copied, so that all elements have same initial parameters but can be changed
independently. share means all the elements which consist the resulting Sequential object
are same object because they are shallow-copied, so that all parameters of elements are shared
with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to ChainerX,
the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU, the
link implementation should override device_resident_accept() to do so.

4.3. Link and Chains 447

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the device,
the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU, the
link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device to
perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

448 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions, link
hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword and value)
that are passed to the __init__(). This pair of key and value is used for representing this class
or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.LocalConvolution2D

class chainer.links.LocalConvolution2D(in_channels, out_channels, in_size=None,
ksize=None, stride=1, nobias=False, ini-
tialW=None, initial_bias=None, **kwargs)

Two-dimensional local convolutional layer.

This link wraps the local_convolution_2d() function and holds the filter weight and bias array as pa-
rameters.

Parameters

• in_channels (int) – Number of channels of input arrays. If either in_channels or
in_size is None, parameter initialization will be deferred until the first forward data pass
at which time the size will be determined.

• out_channels (int) – Number of channels of output arrays

• in_size (int or pair of ints) – Size of each image channel in_size=k and
in_size=(k,k) are equivalent. If either in_channels or in_size is None, parameter ini-
tialization will be deferred until the first forward data pass when the size will be determined.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels). ksize=k and
ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications. stride=s and
stride=(s, s) are equivalent.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 6.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 3.

4.3. Link and Chains 449

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

See also:

See chainer.functions.local_convolution_2d().

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

450 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

4.3. Link and Chains 451

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the local convolution layer.

Parameters x (Variable) – Input image.

Returns Output of the convolution.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

452 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

4.3. Link and Chains 453

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

454 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.LSTM

class chainer.links.LSTM(in_size, out_size=None, lateral_init=None, upward_init=None,
bias_init=None, forget_bias_init=None)

Fully-connected LSTM layer.

4.3. Link and Chains 455

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

This is a fully-connected LSTM layer as a chain. Unlike the lstm() function, which is defined as a stateless
activation function, this chain holds upward and lateral connections as child links.

It also maintains states, including the cell state and the output at the previous time step. Therefore, it can be
used as a stateful LSTM.

This link supports variable length inputs. The mini-batch size of the current input must be equal to or smaller
than that of the previous one. The mini-batch size of c and h is determined as that of the first input x. When
mini-batch size of i-th input is smaller than that of the previous input, this link only updates c[0:len(x)]
and h[0:len(x)] and doesn’t change the rest of c and h. So, please sort input sequences in descending order
of lengths before applying the function.

Parameters

• in_size (int) – Dimension of input vectors. If it is None or omitted, parameter ini-
tialization will be deferred until the first forward data pass at which time the size will be
determined.

• out_size (int) – Dimensionality of output vectors.

• lateral_init – A callable that takes N-dimensional array and edits its value. It is used
for initialization of the lateral connections. May be None to use default initialization.

• upward_init – A callable that takes N-dimensional array and edits its value. It is used
for initialization of the upward connections. May be None to use default initialization.

• bias_init – A callable that takes N-dimensional array and edits its value It is used for
initialization of the biases of cell input, input gate and output gate.and gates of the upward
connection. May be a scalar, in that case, the bias is initialized by this value. If it is None,
the cell-input bias is initialized to zero.

• forget_bias_init – A callable that takes N-dimensional array and edits its value. It
is used for initialization of the biases of the forget gate of the upward connection. May be
a scalar, in that case, the bias is initialized by this value. If it is None, the forget bias is
initialized to one.

Variables

• upward (Linear) – Linear layer of upward connections.

• lateral (Linear) – Linear layer of lateral connections.

• c (Variable) – Cell states of LSTM units.

• h (Variable) – Output at the previous time step.

Example

There are several ways to make a LSTM link.

Let a two-dimensional input array 𝑥 be:

>>> x = np.zeros((1, 10), dtype=np.float32)

1. Give both in_size and out_size arguments:

>>> l = L.LSTM(10, 20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

2. Omit in_size argument or fill it with None:

456 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

The below two cases are the same.

>>> l = L.LSTM(20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

>>> l = L.LSTM(None, 20)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

4.3. Link and Chains 457

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

458 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy

Chainer Documentation, Release 7.0.0b4

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Updates the internal state and returns the LSTM outputs.

Parameters x (Variable) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

4.3. Link and Chains 459

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

460 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()
Resets the internal state.

It sets None to the c and h attributes.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(c, h)
Sets the internal state.

It sets the c and h attributes.

Parameters

• c (Variable) – A new cell states of LSTM units.

• h (Variable) – A new output at the previous time step.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

4.3. Link and Chains 461

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

462 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.MLPConvolution2D

class chainer.links.MLPConvolution2D(self, in_channels, out_channels, ksize=None, stride=1,
pad=0, activation=relu.relu, conv_init=None,
bias_init=None)

Two-dimensional MLP convolution layer of Network in Network.

This is an “mlpconv” layer from the Network in Network paper. This layer is a two-dimensional convolution
layer followed by 1x1 convolution layers and interleaved activation functions.

Note that it does not apply the activation function to the output of the last 1x1 convolution layer.

Parameters

• in_channels (int or None) – Number of channels of input arrays. If it is None or
omitted, parameter initialization will be deferred until the first forward data pass at which
time the size will be determined.

• out_channels (tuple of ints) – Tuple of number of channels. The i-th integer
indicates the number of filters of the i-th convolution.

• ksize (int or pair of ints) – Size of filters (a.k.a. kernels) of the first convolu-
tion layer. ksize=k and ksize=(k, k) are equivalent.

• stride (int or pair of ints) – Stride of filter applications at the first convolution
layer. stride=s and stride=(s, s) are equivalent.

• pad (int or pair of ints) – Spatial padding width for input arrays at the first con-
volution layer. pad=p and pad=(p, p) are equivalent.

4.3. Link and Chains 463

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• activation (callable) – Activation function for internal hidden units. You can spec-
ify one of activation functions from built-in activation functions or your own function. It
should not be an activation functions with parameters (i.e., Link instance). The function
must accept one argument (the output from each child link), and return a value. Returned
value must be a Variable derived from the input Variable to perform backpropagation on the
variable. Note that this function is not applied to the output of this link.

• conv_init – An initializer of weight matrices passed to the convolution layers. This
option must be specified as a keyword argument.

• bias_init – An initializer of bias vectors passed to the convolution layers. This option
must be specified as a keyword argument.

See: Network in Network.

Variables activation (callable) – Activation function. See the description in the arguments
for details.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

464 Chapter 4. API Reference

https://arxiv.org/abs/1312.4400v3
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

4.3. Link and Chains 465

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy

Chainer Documentation, Release 7.0.0b4

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(x)
Computes the output of the mlpconv layer.

Parameters x (Variable) – Input image.

Returns Output of the mlpconv layer.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

466 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

4.3. Link and Chains 467

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

468 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

4.3. Link and Chains 469

Chainer Documentation, Release 7.0.0b4

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NaryTreeLSTM

class chainer.links.NaryTreeLSTM(in_size, out_size, n_ary=2)
N-ary TreeLSTM unit.

Warning: This feature is experimental. The interface can change in the future.

This is a N-ary TreeLSTM unit as a chain. This link is a fixed-length arguments function, which compounds the
states of all children nodes into the new states of a current (parent) node. states denotes the cell state, 𝑐, and the
output, ℎ, which are produced by this link. This link doesn’t keep cell and hidden states internally.

For example, this link is called such as func(c1, c2, h1, h2, x) if the number of children nodes
was set 2 (n_ary = 2), while func(c1, c2, c3, h1, h2, h3, x) if that was 3 (n_ary = 3).
This function is dependent from an order of children nodes unlike Child-Sum TreeLSTM. Thus, the returns of
func(c1, c2, h1, h2, x) are different from those of func(c2, c1, h2, h1, x).

Parameters

• in_size (int) – Dimension of input vectors.

• out_size (int) – Dimensionality of cell and output vectors.

• n_ary (int) – The number of children nodes in a tree structure.

Variables

470 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• W_x (chainer.links.Linear) – Linear layer of connections from input vectors.

• W_h (chainer.links.Linear) – Linear layer of connections between (𝑎, 𝑖, 𝑜, all 𝑓)
and the output of each child. 𝑎, 𝑖, 𝑜 and 𝑓 denotes input compound, input gate, output gate
and forget gate, respectively. 𝑎, input compound, equals to 𝑢 in the paper by Tai et al.

See the papers for details: Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks, and A Fast Unified Model for Parsing and Sentence Understanding.

Tai et al.’s N-Ary TreeLSTM is little extended in Bowman et al., and this link is based on the variant by Bowman
et al. Specifically, eq. 10 in Tai et al. has only one 𝑊 matrix to be applied to 𝑥, consistently for all children.
On the other hand, Bowman et al.’s model has multiple matrices, each of which affects the forget gate for each
child’s cell individually.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

4.3. Link and Chains 471

https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://arxiv.org/pdf/1603.06021.pdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

472 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy

Chainer Documentation, Release 7.0.0b4

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*cshsx)
Returns new cell state and output of N-ary TreeLSTM.

Parameters cshsx (list of Variable) – Arguments which include all cell vectors and all
output vectors of fixed-length children, and an input vector. The number of arguments must
be same as n_ary * 2 + 1.

Returns Returns (𝑐𝑛𝑒𝑤, ℎ𝑛𝑒𝑤), where 𝑐𝑛𝑒𝑤 represents new cell state vector, and ℎ𝑛𝑒𝑤 is new
output vector.

Return type tuple of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

4.3. Link and Chains 473

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

474 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

4.3. Link and Chains 475

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

476 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiGRU

class chainer.links.NStepBiGRU(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional GRU for sequences.

This link is stacked version of Bi-directional GRU for sequences. It calculates hidden and cell states of all layer
at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_bigru(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_bigru()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

4.3. Link and Chains 477

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

478 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, xs)
Calculates all of the hidden states and the cell states.

4.3. Link and Chains 479

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional
RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

480 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

(continues on next page)

4.3. Link and Chains 481

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

482 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

4.3. Link and Chains 483

Chainer Documentation, Release 7.0.0b4

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 6

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiLSTM

class chainer.links.NStepBiLSTM(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional LSTM for sequences.

This link is stacked version of Bi-directional LSTM for sequences. It calculates hidden and cell states of all
layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_bilstm(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_bilstm()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

484 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

4.3. Link and Chains 485

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

486 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, cx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional LSTM and (2S, B, N) for bi-directional
LSTM where S is the number of layers and is equal to n_layers, B is the mini-batch
size, and N is the dimension of the hidden units.

• cx (Variable or None) – Initial cell states. If None is specified zero-vector is used. It
has the same shape as hx.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_i is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing three elements, hy, cy and ys.

• hy is an updated hidden states whose shape is the same as hx.

• cy is an updated cell states whose shape is the same as cx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional LSTM and
(L_i, 2N) for bi-directional LSTM where L_i is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

4.3. Link and Chains 487

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

488 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

4.3. Link and Chains 489

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

490 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 8

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiRNNReLU

class chainer.links.NStepBiRNNReLU(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional RNN for sequences.

This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is relu. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_birnn(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

4.3. Link and Chains 491

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_birnn()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

492 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

4.3. Link and Chains 493

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional
RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

494 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

4.3. Link and Chains 495

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

496 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

4.3. Link and Chains 497

Chainer Documentation, Release 7.0.0b4

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepBiRNNTanh

class chainer.links.NStepBiRNNTanh(self, n_layers, in_size, out_size, dropout)
Stacked Bi-directional RNN for sequences.

498 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

This link is stacked version of Bi-directional RNN for sequences. Note that the activation function is tanh. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_birnn(), this function automatically sort inputs in descending
order by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_birnn()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

4.3. Link and Chains 499

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

500 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy

Chainer Documentation, Release 7.0.0b4

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional
RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

4.3. Link and Chains 501

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

502 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial

4.3. Link and Chains 503

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

504 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = True

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

4.3. Link and Chains 505

Chainer Documentation, Release 7.0.0b4

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepGRU

class chainer.links.NStepGRU(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional GRU for sequences.

This link is stacked version of Uni-directional GRU for sequences. It calculates hidden and cell states of all
layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_gru(), this function automatically sort inputs in descending order
by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_gru()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

506 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

4.3. Link and Chains 507

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional
RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

508 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

4.3. Link and Chains 509

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

510 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

4.3. Link and Chains 511

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 6

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

512 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepLSTM

class chainer.links.NStepLSTM(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional LSTM for sequences.

This link is stacked version of Uni-directional LSTM for sequences. It calculates hidden and cell states of all
layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_lstm(), this function automatically sort inputs in descending or-
der by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_lstm()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

4.3. Link and Chains 513

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

514 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, cx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional LSTM and (2S, B, N) for bi-directional

4.3. Link and Chains 515

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

LSTM where S is the number of layers and is equal to n_layers, B is the mini-batch
size, and N is the dimension of the hidden units.

• cx (Variable or None) – Initial cell states. If None is specified zero-vector is used. It
has the same shape as hx.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_i is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing three elements, hy, cy and ys.

• hy is an updated hidden states whose shape is the same as hx.

• cy is an updated cell states whose shape is the same as cx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional LSTM and
(L_i, 2N) for bi-directional LSTM where L_i is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

516 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

(continues on next page)

4.3. Link and Chains 517

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

518 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

4.3. Link and Chains 519

Chainer Documentation, Release 7.0.0b4

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 8

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepRNNReLU

class chainer.links.NStepRNNReLU(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional RNN for sequences.

This link is stacked version of Uni-directional RNN for sequences. Note that the activation function is relu. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_rnn(), this function automatically sort inputs in descending order
by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_rnn()

520 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

4.3. Link and Chains 521

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

522 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional
RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

4.3. Link and Chains 523

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

524 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

4.3. Link and Chains 525

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

526 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.NStepRNNTanh

class chainer.links.NStepRNNTanh(self, n_layers, in_size, out_size, dropout)
Stacked Uni-directional RNN for sequences.

This link is stacked version of Uni-directional RNN for sequences. Note that the activation function is tanh. It
calculates hidden and cell states of all layer at end-of-string, and all hidden states of the last layer for each time.

Unlike chainer.functions.n_step_rnn(), this function automatically sort inputs in descending order
by length, and transpose the sequence. Users just need to call the link with a list of chainer.Variable
holding sequences.

Parameters

• n_layers (int) – Number of layers.

4.3. Link and Chains 527

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• in_size (int) – Dimensionality of input vectors.

• out_size (int) – Dimensionality of hidden states and output vectors.

• dropout (float) – Dropout ratio.

See also:

chainer.functions.n_step_rnn()

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

528 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

4.3. Link and Chains 529

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

forward(self, hx, xs)
Calculates all of the hidden states and the cell states.

Parameters

• hx (Variable or None) – Initial hidden states. If None is specified zero-vector is used.
Its shape is (S, B, N) for uni-directional RNN and (2S, B, N) for bi-directional
RNN where S is the number of layers and is equal to n_layers, B is the mini-batch size,
and N is the dimension of the hidden units.

• xs (list of Variable) – List of input sequences. Each element xs[i] is a chainer.
Variable holding a sequence. Its shape is (L_i, I), where L_t is the length of a
sequence for batch i, and I is the size of the input and is equal to in_size.

Returns

This function returns a tuple containing two elements, hy and ys.

• hy is an updated hidden states whose shape is same as hx.

• ys is a list of Variable . Each element ys[i] holds hidden states of the last layer
corresponding to an input xs[i]. Its shape is (L_i, N) for uni-directional RNN and
(L_i, 2N) for bi-directional RNN where L_t is the length of a sequence for batch i,
and N is size of hidden units.

Return type tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_hx(xs)

init_scope()
Creates an initialization scope.

530 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

4.3. Link and Chains 531

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

532 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

rnn(*args)
Calls RNN function.

This function must be implemented in a child class.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

4.3. Link and Chains 533

Chainer Documentation, Release 7.0.0b4

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

n_cells
Returns the number of cells.

This function must be implemented in a child class.

n_weights = 2

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

use_bi_direction = False

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Parameter

class chainer.links.Parameter(array)
Link that just holds a parameter and returns it.

534 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Deprecated since version v1.5: The parameters are stored as variables since v1.5. Use them directly instead.

Parameters array – Initial parameter array.

Variables W (Variable) – Parameter variable.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

4.3. Link and Chains 535

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

536 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(volatile=’off’)
Returns the parameter variable.

Parameters volatile (Flag) – The volatility of the returned variable.

Returns A copy of the parameter variable with given volatility.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

4.3. Link and Chains 537

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial

538 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

4.3. Link and Chains 539

Chainer Documentation, Release 7.0.0b4

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Scale

class chainer.links.Scale(axis=1, W_shape=None, bias_term=False, bias_shape=None)
Broadcasted elementwise product with learnable parameters.

Computes a elementwise product as scale() function does except that its second input is a learnable weight
parameter 𝑊 the link has.

Parameters

• axis (int) – The first axis of the first input of scale() function along which its second
input is applied.

540 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• W_shape (tuple of ints) – Shape of learnable weight parameter. If None, this link
does not have learnable weight parameter so an explicit weight needs to be given to its
forward method’s second input.

• bias_term (bool) – Whether to also learn a bias (equivalent to Scale link + Bias link).

• bias_shape (tuple of ints) – Shape of learnable bias. If W_shape is None, this
should be given to determine the shape. Otherwise, the bias has the same shape W_shape
with the weight parameter and bias_shape is ignored.

See also:

See scale() for details.

Variables

• W (Parameter) – Weight parameter if W_shape is given. Otherwise, no W attribute.

• bias (Bias) – Bias term if bias_term is True. Otherwise, no bias attribute.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a

4.3. Link and Chains 541

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,

542 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*xs)
Applies broadcasted elementwise product.

Parameters xs (list of Variables) – Input variables whose length should be one if the
link has a learnable weight parameter, otherwise should be two.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

4.3. Link and Chains 543

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

544 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

4.3. Link and Chains 545

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

546 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatefulGRU

class chainer.links.StatefulGRU(in_size, out_size, init=None, inner_init=None, bias_init=0)
Stateful Gated Recurrent Unit function (GRU).

Stateful GRU function has six parameters 𝑊𝑟, 𝑊𝑧 , 𝑊 , 𝑈𝑟, 𝑈𝑧 , and 𝑈 . The three parameters 𝑊𝑟, 𝑊𝑧 , and 𝑊
are 𝑛 ×𝑚 matrices, and the others 𝑈𝑟, 𝑈𝑧 , and 𝑈 are 𝑛 × 𝑛 matrices, where 𝑚 is the length of input vectors
and 𝑛 is the length of hidden vectors.

Given input vector 𝑥, Stateful GRU returns the next hidden vector ℎ′ defined as

𝑟 =

𝜎(𝑊𝑟𝑥+ 𝑈𝑟ℎ),

𝑧 =

𝜎(𝑊𝑧𝑥+ 𝑈𝑧ℎ),

ℎ̄ =

tanh(𝑊𝑥+ 𝑈(𝑟 ⊙ ℎ)),

ℎ′ =

(1− 𝑧)⊙ ℎ+ 𝑧 ⊙ ℎ̄,

where ℎ is current hidden vector.

As the name indicates, StatefulGRU is stateful, meaning that it also holds the next hidden vector h’ as a
state. For a stateless GRU, use StatelessGRU .

Parameters

• in_size (int) – Dimension of input vector 𝑥.

• out_size (int) – Dimension of hidden vector ℎ.

• init – Initializer for GRU’s input units (𝑊). It is a callable that takes N-dimensional array
and edits its value. If it is None, the default initializer is used.

• inner_init – Initializer for the GRU’s inner recurrent units (𝑈). It is a callable that takes
N-dimensional array and edits its value. If it is None, the default initializer is used.

• bias_init – Bias initializer. It is a callable that takes N-dimensional array and edits its
value. If None, the bias is set to zero.

Variables h (Variable) – Hidden vector that indicates the state of StatefulGRU .

See also:

4.3. Link and Chains 547

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• StatelessGRU

• GRU : an alias of StatefulGRU

Example

There are several ways to make a StatefulGRU link. Let x be a two-dimensional input array:

>>> in_size = 10
>>> out_size = 20
>>> x = np.zeros((1, in_size), dtype=np.float32)

1. Give only in_size and out_size arguments:

>>> l = L.StatefulGRU(in_size, out_size)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

2. Give all optional arguments:

>>> init = np.zeros((out_size, in_size), dtype=np.float32)
>>> inner_init = np.zeros((out_size, out_size), dtype=np.float32)
>>> bias = np.zeros((1, out_size), dtype=np.float32)
>>> l = L.StatefulGRU(in_size, out_size, init=init,
... inner_init=inner_init, bias_init=bias)
>>> h_new = l(x)
>>> h_new.shape
(1, 20)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

548 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

4.3. Link and Chains 549

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

550 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 551

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(h)

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

552 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.3. Link and Chains 553

Chainer Documentation, Release 7.0.0b4

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatelessGRU

class chainer.links.StatelessGRU(in_size, out_size, init=None, inner_init=None,
bias_init=None)

Stateless Gated Recurrent Unit function (GRU).

GRU function has six parameters 𝑊𝑟, 𝑊𝑧 , 𝑊 , 𝑈𝑟, 𝑈𝑧 , and 𝑈 . The three parameters 𝑊𝑟, 𝑊𝑧 , and 𝑊 are 𝑛×𝑚
matrices, and the others 𝑈𝑟, 𝑈𝑧 , and 𝑈 are 𝑛 × 𝑛 matrices, where 𝑚 is the length of input vectors and 𝑛 is the
length of hidden vectors.

Given two inputs a previous hidden vector ℎ and an input vector 𝑥, GRU returns the next hidden vector ℎ′

defined as

𝑟 =

𝜎(𝑊𝑟𝑥+ 𝑈𝑟ℎ),

𝑧 =

𝜎(𝑊𝑧𝑥+ 𝑈𝑧ℎ),

ℎ̄ =

tanh(𝑊𝑥+ 𝑈(𝑟 ⊙ ℎ)),

ℎ′ =

(1− 𝑧)⊙ ℎ+ 𝑧 ⊙ ℎ̄,

where 𝜎 is the sigmoid function, and ⊙ is the element-wise product.

As the name indicates, StatelessGRU is stateless, meaning that it does not hold the value of hidden vector
ℎ. For a stateful GRU, use StatefulGRU .

Parameters

554 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

• in_size (int) – Dimension of input vector 𝑥. If None, parameter initialization will be
deferred until the first forward data pass at which time the size will be determined.

• out_size (int) – Dimension of hidden vector ℎ, ℎ̄ and ℎ′.

See:

• On the Properties of Neural Machine Translation: Encoder-Decoder Approaches [Cho+, SSST2014].

• Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling [Chung+NIPS2014
DLWorkshop].

See also:

StatefulGRU

Example

There are several ways to make a StatelessGRU link. Let x be a two-dimensional input array:

>>> in_size = 10
>>> out_size = 20
>>> x = np.zeros((1, in_size), dtype=np.float32)
>>> h = np.zeros((1, out_size), dtype=np.float32)

1. Give both in_size and out_size arguments:

>>> l = L.StatelessGRU(in_size, out_size)
>>> h_new = l(h, x)
>>> h_new.shape
(1, 20)

2. Omit in_size argument or fill it with None:

>>> l = L.StatelessGRU(None, out_size)
>>> h_new = l(h, x)
>>> h_new.shape
(1, 20)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

4.3. Link and Chains 555

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.aclweb.org/anthology/W14-4012
https://arxiv.org/abs/1412.3555
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

556 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

4.3. Link and Chains 557

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

forward(h, x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

558 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

4.3. Link and Chains 559

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

560 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatefulMGU

class chainer.links.StatefulMGU(in_size, out_size)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

4.3. Link and Chains 561

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

562 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

4.3. Link and Chains 563

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

564 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(h)

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

4.3. Link and Chains 565

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

566 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatelessMGU

class chainer.links.StatelessMGU(n_inputs, n_units)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

4.3. Link and Chains 567

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

568 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(h, x)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

4.3. Link and Chains 569

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

570 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

4.3. Link and Chains 571

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

572 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatefulPeepholeLSTM

class chainer.links.StatefulPeepholeLSTM(in_size, out_size)
Fully-connected LSTM layer with peephole connections.

This is a fully-connected LSTM layer with peephole connections as a chain. Unlike the LSTM link, this chain
holds peep_i, peep_f and peep_o as child links besides upward and lateral.

Given a input vector 𝑥, Peephole returns the next hidden vector ℎ′ defined as

𝑎 =

tanh(𝑢𝑝𝑤𝑎𝑟𝑑𝑥+ 𝑙𝑎𝑡𝑒𝑟𝑎𝑙ℎ),

𝑖 =

𝜎(𝑢𝑝𝑤𝑎𝑟𝑑𝑥+ 𝑙𝑎𝑡𝑒𝑟𝑎𝑙ℎ+ 𝑝𝑒𝑒𝑝𝑖𝑐),

𝑓 =

𝜎(𝑢𝑝𝑤𝑎𝑟𝑑𝑥+ 𝑙𝑎𝑡𝑒𝑟𝑎𝑙ℎ+ 𝑝𝑒𝑒𝑝𝑓𝑐),

𝑐′ =

𝑎⊙ 𝑖+ 𝑓 ⊙ 𝑐,
𝑜 =

𝜎(𝑢𝑝𝑤𝑎𝑟𝑑𝑥+ 𝑙𝑎𝑡𝑒𝑟𝑎𝑙ℎ+ 𝑝𝑒𝑒𝑝𝑜𝑐
′),

ℎ′ =

𝑜 tanh(𝑐′),

where 𝜎 is the sigmoid function, ⊙ is the element-wise product, 𝑐 is the current cell state, 𝑐′ is the next cell state
and ℎ is the current hidden vector.

Parameters

• in_size (int) – Dimension of the input vector 𝑥.

• out_size (int) – Dimension of the hidden vector ℎ.

4.3. Link and Chains 573

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Variables

• upward (Linear) – Linear layer of upward connections.

• lateral (Linear) – Linear layer of lateral connections.

• peep_i (Linear) – Linear layer of peephole connections to the input gate.

• peep_f (Linear) – Linear layer of peephole connections to the forget gate.

• peep_o (Linear) – Linear layer of peephole connections to the output gate.

• c (Variable) – Cell states of LSTM units.

• h (Variable) – Output at the current time step.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

574 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

4.3. Link and Chains 575

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy

Chainer Documentation, Release 7.0.0b4

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Updates the internal state and returns the LSTM outputs.

Parameters x (Variable) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

576 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

4.3. Link and Chains 577

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()
Resets the internal states.

It sets None to the c and h attributes.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

578 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

4.3. Link and Chains 579

Chainer Documentation, Release 7.0.0b4

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatefulZoneoutLSTM

class chainer.links.StatefulZoneoutLSTM(in_size, out_size, c_ratio=0.5, h_ratio=0.5,
**kwargs)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

580 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

4.3. Link and Chains 581

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Updates the internal state and returns the LSTM outputs.

Parameters x (Variable) – A new batch from the input sequence.

Returns Outputs of updated LSTM units.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

582 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 583

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reset_state()
Resets the internal state.

It sets None to the c and h attributes.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

set_state(c, h)
Sets the internal state.

It sets the c and h attributes.

Parameters

• c (Variable) – A new cell states of LSTM units.

• h (Variable) – A new output at the previous time step.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

584 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.3. Link and Chains 585

Chainer Documentation, Release 7.0.0b4

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.StatelessLSTM

class chainer.links.StatelessLSTM(in_size, out_size=None, lateral_init=None, up-
ward_init=None, bias_init=None, forget_bias_init=None)

Stateless LSTM layer.

This is a fully-connected LSTM layer as a chain. Unlike the lstm() function, this chain holds upward and
lateral connections as child links. This link doesn’t keep cell and hidden states.

Parameters

• in_size (int or None) – Dimension of input vectors. If None, parameter initializa-
tion will be deferred until the first forward data pass at which time the size will be deter-
mined.

• out_size (int) – Dimensionality of output vectors.

Variables

• upward (chainer.links.Linear) – Linear layer of upward connections.

• lateral (chainer.links.Linear) – Linear layer of lateral connections.

Example

There are several ways to make a StatelessLSTM link.

Let a two-dimensional input array 𝑥, a cell state array ℎ, and the output array of the previous step ℎ be:

586 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

>>> x = np.zeros((1, 10), dtype=np.float32)
>>> c = np.zeros((1, 20), dtype=np.float32)
>>> h = np.zeros((1, 20), dtype=np.float32)

1. Give both in_size and out_size arguments:

>>> l = L.StatelessLSTM(10, 20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)

2. Omit in_size argument or fill it with None:

The below two cases are the same.

>>> l = L.StatelessLSTM(20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)

>>> l = L.StatelessLSTM(None, 20)
>>> c_new, h_new = l(c, h, x)
>>> c_new.shape
(1, 20)
>>> h_new.shape
(1, 20)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

4.3. Link and Chains 587

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

588 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(c, h, x)
Returns new cell state and updated output of LSTM.

Parameters

• c (Variable) – Cell states of LSTM units.

• h (Variable) – Output at the previous time step.

• x (Variable) – A new batch from the input sequence.

4.3. Link and Chains 589

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns Returns (c_new, h_new), where c_new represents new cell state, and h_new is
updated output of LSTM units.

Return type tuple of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

590 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

4.3. Link and Chains 591

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

592 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3.2 Activation/loss/normalization functions with parameters

chainer.links.BatchNormalization Batch normalization layer on outputs of linear or convo-
lution functions.

chainer.links.BatchRenormalization Batch renormalization layer on outputs of linear or con-
volution functions.

chainer.links.DecorrelatedBatchNormalizationDecorrelated batch normalization layer.
chainer.links.GroupNormalization Group normalization layer on outputs of convolution

functions.
chainer.links.LayerNormalization Layer normalization layer on outputs of linear func-

tions.
chainer.links.BinaryHierarchicalSoftmaxHierarchical softmax layer over binary tree.
chainer.links.BlackOut BlackOut loss layer.
chainer.links.CRF1d Linear-chain conditional random field loss layer.
chainer.links.SimplifiedDropconnect Fully-connected layer with simplified dropconnect reg-

ularization.
chainer.links.PReLU Parametric ReLU function as a link.
chainer.links.Swish Swish activation function as a link.
chainer.links.Maxout Fully-connected maxout layer.
chainer.links.NegativeSampling Negative sampling loss layer.

4.3. Link and Chains 593

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.links.BatchNormalization

class chainer.links.BatchNormalization(size=None, decay=0.9, eps=2e-05, dtype=None,
use_gamma=True, use_beta=True, ini-
tial_gamma=None, initial_beta=None, axis=None,
initial_avg_mean=None, initial_avg_var=None)

Batch normalization layer on outputs of linear or convolution functions.

This link wraps the batch_normalization() and fixed_batch_normalization() functions.

It runs in three modes: training mode, fine-tuning mode, and testing mode.

In training mode, it normalizes the input by batch statistics. It also maintains approximated population statis-
tics by moving averages, which can be used for instant evaluation in testing mode. Training mode is enabled
when chainer.config.train is set to True and __call__() is invoked with finetune=False
(the default is False).

In fine-tuning mode, it accumulates the input to compute population statistics. In order to correctly compute
the population statistics, a user must use this mode to feed mini-batches running through whole training dataset.
Finetuning mode is enabled when chainer.config.train is set to True and __call__() is invoked
with finetune=True.

In testing mode, it uses pre-computed population statistics to normalize the input variable. The population
statistics is approximated if it is computed by training mode, or accurate if it is correctly computed by fine-
tuning mode. Testing mode is enabled when chainer.config.train is set to False.

Parameters

• size (int, tuple of ints, or None) – Size (or shape) of channel dimensions.
If None, the size will be determined from dimension(s) of the input batch during the first
forward pass.

• decay (float) – Decay rate of moving average. It is used on training.

• eps (float) – Epsilon value for numerical stability.

• dtype (numpy.dtype) – Type to use in computing.

• use_gamma (bool) – If True, use scaling parameter. Otherwise, use unit(1) which makes
no effect.

• use_beta (bool) – If True, use shifting parameter. Otherwise, use unit(0) which makes
no effect.

• axis (int or tuple of int) – Axis over which normalization is performed. When
axis is None, it is determined from input dimensions. For example, if x.ndim is 4, axis
becomes (0, 2, 3) and normalization is performed over 0th, 2nd and 3rd axis of input. If it
is 2, axis becomes (0) and normalization is performed over 0th axis of input. When a tuple
of int is given to this option, numbers in the tuple must be being sorted in ascending order.
For example, (0, 2) is OK, but (2, 0) is not.

• initial_gamma – Initializer of the scaling parameter. The default value is 1.

• initial_beta – Initializer of the shifting parameter. The default value is 0.

• initial_avg_mean – Initializer of the moving average of population mean. The default
value is 0.

• initial_avg_var – Initializer of the moving average of population variance. The de-
fault value is 1.

594 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Note: From v5.0.0, the initial value of the population variance is changed to 1. It does not change the behavior
of training, but the resulting model may have a slightly different behavior on inference. To emulate the old
behavior, pass initial_avg_var=0 for training.

See: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

See also:

batch_normalization(), fixed_batch_normalization()

Variables

• gamma (Variable) – Scaling parameter. In mixed16 mode, it is initialized as float32
variable.

• beta (Variable) – Shifting parameter. In mixed16 mode, it is initialized as float32
variable.

• avg_mean (N-dimensional array) – Population mean. In mixed16 mode, it is initialized as
float32 array.

• avg_var (N-dimensional array) – Population variance. In mixed16 mode, it is initialized
as float32 array.

• N (int) – Count of batches given for fine-tuning.

• decay (float) – Decay rate of moving average. It is used on training.

• eps (float) – Epsilon value for numerical stability. This value is added to the batch
variances.

Example

>>> x = np.arange(12).reshape(4, 3).astype(np.float32) ** 2
>>> x
array([[0., 1., 4.],

[9., 16., 25.],
[36., 49., 64.],
[81., 100., 121.]], dtype=float32)

>>> bn = chainer.links.BatchNormalization(3)
>>> bn(x)
variable([[-1. , -1.0664359 , -1.1117983],

[-0.71428573, -0.6714596 , -0.6401263],
[0.14285715, 0.19748813, 0.23583598],
[1.5714287 , 1.5404074 , 1.5160885]])

>>> (x - x.mean(axis=0)) / np.sqrt(x.var(axis=0) + 2e-5)
array([[-1. , -1.0664359 , -1.1117983],

[-0.71428573, -0.6714596 , -0.6401263],
[0.14285715, 0.19748813, 0.235836],
[1.5714285 , 1.5404074 , 1.5160886]], dtype=float32)

There are several ways to make a BatchNormalization link. Consider an input of batched 10 images of 32x32
with 3 channels.

>>> x = np.random.randn(10, 3, 32, 32).astype(np.float32)

1. Give the parameter size:

4.3. Link and Chains 595

https://arxiv.org/abs/1502.03167
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

To normalize for each channel, give the number of channels to size.

>>> bn = chainer.links.BatchNormalization(3)
>>> bn.avg_mean.shape
(3,)
>>> bn.beta += 2.0
>>> bn.gamma *= 5.0
>>> list(sorted(bn.namedparams()))
[('/beta', variable([2., ...])), ('/gamma', variable([5., ...]))]
>>> y = bn(x)
>>> y.shape
(10, 3, 32, 32)
>>> np.testing.assert_allclose(
... y.array.mean(axis=(0, 2, 3)), bn.beta.array, atol=1e-6)
>>> np.testing.assert_allclose(
... y.array.std(axis=(0, 2, 3)),
... bn.gamma.array, atol=1e-3)

To normalize for each channel for each pixel, size should be the tuple of the dimensions.

>>> bn = chainer.links.BatchNormalization((3, 32, 32))
>>> bn.avg_mean.shape
(3, 32, 32)
>>> y = bn(x)
>>> y.shape
(10, 3, 32, 32)
>>> np.testing.assert_allclose(
... y.array.mean(axis=0), bn.beta.array, atol=1e-6)
>>> np.testing.assert_allclose(
... y.array.std(axis=0),
... bn.gamma.array, atol=1e-3)

By default, channel axis is (or starts from) the 1st axis of the input shape.

2. Give the aggregate axes:

from Chainer v5

With axis option, similarly to NumPy, you may specify the aggregate axes, which are treated
as the “batch” axes for the batch statistics.

You can omit size if axis is given. In this case, creation of persistent values avg_mean,
avg_var and parameters beta, gamma is deferred until first forward propagation.

The examples in 1. corresponds to the following, respectively.

>>> bn = chainer.links.BatchNormalization(axis=(0, 2, 3))
>>> print(bn.avg_mean)
None
>>> y = bn(x)
>>> bn.avg_mean.shape
(3,)

>>> bn = chainer.links.BatchNormalization(axis=0)
>>> print(bn.avg_mean)
None
>>> y = bn(x)
>>> bn.avg_mean.shape
(3, 32, 32)

596 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

4.3. Link and Chains 597

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

598 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(self, x, finetune=False)
Invokes the forward propagation of BatchNormalization.

In training mode, the BatchNormalization computes moving averages of mean and variance for evaluation
during training, and normalizes the input using batch statistics.

Parameters

• x (Variable) – Input variable.

• finetune (bool) – If it is in the training mode and finetune is True, BatchNor-
malization runs in fine-tuning mode; it accumulates the input array to compute population
statistics for normalization, and normalizes the input using batch statistics.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

4.3. Link and Chains 599

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

600 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

start_finetuning()
Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method
should be called before starting the fine-tuning mode again.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

4.3. Link and Chains 601

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

avg_mean = None

avg_var = None

beta = None

device
Device instance.

gamma = None

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

602 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.BatchRenormalization

class chainer.links.BatchRenormalization(size, rmax=1, dmax=0, decay=0.9, eps=2e-05,
dtype=None, use_gamma=True, use_beta=True,
initial_gamma=None, initial_beta=None, ini-
tial_avg_mean=None, initial_avg_var=None)

Batch renormalization layer on outputs of linear or convolution functions.

This link wraps the batch_renormalization() and fixed_batch_renormalization() func-
tions.

This is an extension of batch normalization, which ensures that the training and inference models generate the
same outputs that depend on individual examples rather than the entire minibatch.

See: Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models

See also:

batch_renormalization(), fixed_batch_renormalization()
batch_normalization(),

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

4.3. Link and Chains 603

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://arxiv.org/abs/1702.03275
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

604 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy

Chainer Documentation, Release 7.0.0b4

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(self, x, finetune=False)
Invokes the forward propagation of BatchNormalization.

In training mode, the BatchNormalization computes moving averages of mean and variance for evaluation
during training, and normalizes the input using batch statistics.

Parameters

• x (Variable) – Input variable.

• finetune (bool) – If it is in the training mode and finetune is True, BatchNor-
malization runs in fine-tuning mode; it accumulates the input array to compute population
statistics for normalization, and normalizes the input using batch statistics.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

4.3. Link and Chains 605

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

606 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

start_finetuning()
Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method
should be called before starting the fine-tuning mode again.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

4.3. Link and Chains 607

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

avg_mean = None

avg_var = None

608 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

beta = None

device
Device instance.

gamma = None

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.DecorrelatedBatchNormalization

class chainer.links.DecorrelatedBatchNormalization(size, groups=16, decay=0.9,
eps=2e-05, dtype=<class
’numpy.float32’>)

Decorrelated batch normalization layer.

This link wraps the decorrelated_batch_normalization() and
fixed_decorrelated_batch_normalization() functions. It works on outputs of linear or
convolution functions.

It runs in three modes: training mode, fine-tuning mode, and testing mode.

In training mode, it normalizes the input by batch statistics. It also maintains approximated population statistics
by moving averages, which can be used for instant evaluation in testing mode.

In fine-tuning mode, it accumulates the input to compute population statistics. In order to correctly compute the
population statistics, a user must use this mode to feed mini-batches running through whole training dataset.

In testing mode, it uses pre-computed population statistics to normalize the input variable. The population
statistics is approximated if it is computed by training mode, or accurate if it is correctly computed by fine-
tuning mode.

Parameters

• size (int or tuple of ints) – Size (or shape) of channel dimensions.

• groups (int) – Number of groups to use for group whitening.

• decay (float) – Decay rate of moving average which is used during training.

4.3. Link and Chains 609

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

• eps (float) – Epsilon value for numerical stability.

• dtype (numpy.dtype) – Type to use in computing.

See: Decorrelated Batch Normalization

See also:

decorrelated_batch_normalization(), fixed_decorrelated_batch_normalization()

Variables

• avg_mean (N-dimensional array) – Population mean.

• avg_projection (N-dimensional array) – Population projection.

• groups (int) – Number of groups to use for group whitening.

• N (int) – Count of batches given for fine-tuning.

• decay (float) – Decay rate of moving average which is used during training.

• eps (float) – Epsilon value for numerical stability. This value is added to the batch
variances.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

610 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://arxiv.org/abs/1804.08450
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

4.3. Link and Chains 611

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(self, x, *, finetune=False)
Invokes the forward propagation of DecorrelatedBatchNormalization.

In training mode, the DecorrelatedBatchNormalization computes moving averages of the mean and pro-
jection for evaluation during training, and normalizes the input using batch statistics.

Parameters

• x (Variable) – Input variable.

• finetune (bool) – If it is in the training mode and finetune is True, Decorrelated-
BatchNormalization runs in fine-tuning mode; it accumulates the input array to compute
population statistics for normalization, and normalizes the input using batch statistics.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

612 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

4.3. Link and Chains 613

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

start_finetuning()
Resets the population count for collecting population statistics.

This method can be skipped if it is the first time to use the fine-tuning mode. Otherwise, this method
should be called before starting the fine-tuning mode again.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

614 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

4.3. Link and Chains 615

Chainer Documentation, Release 7.0.0b4

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.GroupNormalization

class chainer.links.GroupNormalization(groups, size=None, eps=1e-05, ini-
tial_gamma=None, initial_beta=None)

Group normalization layer on outputs of convolution functions.

This link implements a “group normalization” which divides the channels into groups and computes within each
group the mean and variance, then normalize by these statistics, scales and shifts them. Parameter initialization
will be deferred until the first forward data pass at which time the size will be determined.

Parameters

• groups (int) – The number of channel groups. This value must be a divisor of the number
of channels.

• size (int) – Size of input units. If None, parameter initialization will be deferred until
the first forward data pass at which time the size will be determined.

• eps (float) – Epsilon value for numerical stability of normalization.

• initial_gamma (Initializer) – Initializer for scaling parameter. If None, then the
vector is filled by 1. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is
set by it.

• initial_beta (Initializer) – Initializer for shifting parameter. If None, then the
vector is filled by 0. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is
set by it.

Variables

• groups (int) – The number of channel groups.

• gamma (Parameter) – Scaling parameter.

• beta (Parameter) – Shifting parameter.

• eps (float) – Epsilon value for numerical stability.

See: Group Normalization

616 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1803.08494

Chainer Documentation, Release 7.0.0b4

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

4.3. Link and Chains 617

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

618 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Apply group normalization to given input.

Parameters x (Variable) – Batch tensors. First dimension of this value must be the size of
minibatch and second dimension must be the number of channels. Moreover, this value must
have one or more following dimensions, such as height and width.

Returns Output of the group normalization.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

4.3. Link and Chains 619

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial

620 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

4.3. Link and Chains 621

Chainer Documentation, Release 7.0.0b4

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.LayerNormalization

class chainer.links.LayerNormalization(size=None, eps=1e-06, initial_gamma=None, ini-
tial_beta=None)

Layer normalization layer on outputs of linear functions.

Warning: This feature is experimental. The interface can change in the future.

622 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

This link implements a “layer normalization” layer which normalizes the input units by statistics that are com-
puted along the second axis, scales and shifts them. Parameter initialization will be deferred until the first
forward data pass at which time the size will be determined.

Parameters

• size (int) – Size of input units. If None, parameter initialization will be deferred until
the first forward data pass at which time the size will be determined.

• eps (float) – Epsilon value for numerical stability of normalization.

• initial_gamma (Initializer) – Initializer for scaling vector. If None, then the
vector is filled by 1. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is
set by it.

• initial_beta (Initializer) – Initializer for shifting vector. If None, then the vec-
tor is filled by 0. If a scalar, the vector is filled by it. If numpy.ndarray, the vector is set
by it.

Variables

• gamma (Parameter) – Scaling parameter.

• beta (Parameter) – Shifting parameter.

• eps (float) – Epsilon value for numerical stability.

See: Layer Normalization

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

4.3. Link and Chains 623

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1607.06450
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

624 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy

Chainer Documentation, Release 7.0.0b4

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Apply layer normalization to given input.

Parameters x (Variable) – Batch vectors. Shape of this value must be (batch_size, unit_size),
e.g., the output of linear().

Returns Output of the layer normalization.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

4.3. Link and Chains 625

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()

(continues on next page)

626 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

with self.init_scope():
self.conv = L.Convolution2D(

None, 64, 3, 1, 1, nobias=True)
self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

4.3. Link and Chains 627

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

628 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.BinaryHierarchicalSoftmax

class chainer.links.BinaryHierarchicalSoftmax(in_size, tree, dtype=None)
Hierarchical softmax layer over binary tree.

In natural language applications, vocabulary size is too large to use softmax loss. Instead, the hierarchical
softmax uses product of sigmoid functions. It costs only 𝑂(log(𝑛)) time where 𝑛 is the vocabulary size in
average.

At first a user needs to prepare a binary tree whose each leaf is corresponding to a word in a vocabulary. When
a word 𝑥 is given, exactly one path from the root of the tree to the leaf of the word exists. Let path(𝑥) =
((𝑒1, 𝑏1), . . . , (𝑒𝑚, 𝑏𝑚)) be the path of 𝑥, where 𝑒𝑖 is an index of 𝑖-th internal node, and 𝑏𝑖 ∈ {−1, 1} indicates
direction to move at 𝑖-th internal node (-1 is left, and 1 is right). Then, the probability of 𝑥 is given as below:

𝑃 (𝑥) =
∏︁

(𝑒𝑖,𝑏𝑖)∈path(𝑥)
𝑃 (𝑏𝑖|𝑒𝑖)

=
∏︁

(𝑒𝑖,𝑏𝑖)∈path(𝑥)
𝜎(𝑏𝑖𝑥

⊤𝑤𝑒𝑖),

where 𝜎(·) is a sigmoid function, and 𝑤 is a weight matrix.

This function costs𝑂(log(𝑛)) time as an average length of paths is𝑂(log(𝑛)), and𝑂(𝑛) memory as the number
of internal nodes equals 𝑛− 1.

Parameters

• in_size (int) – Dimension of input vectors.

• tree – A binary tree made with tuples like ((1, 2), 3).

• dtype (numpy.dtype) – Type to use in computing.

Variables W (Variable) – Weight parameter matrix.

See: Hierarchical Probabilistic Neural Network Language Model [Morin+, AISTAT2005].

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

4.3. Link and Chains 629

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

Chainer Documentation, Release 7.0.0b4

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

630 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

static create_huffman_tree(word_counts)
Makes a Huffman tree from a dictionary containing word counts.

This method creates a binary Huffman tree, that is required for BinaryHierarchicalSoftmax. For
example, {0: 8, 1: 5, 2: 6, 3: 4} is converted to ((3, 1), (2, 0)).

Parameters word_counts (dict of int key and int or float values) –
Dictionary representing counts of words.

Returns Binary Huffman tree with tuples and keys of word_coutns.

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

4.3. Link and Chains 631

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x, t)
Computes the loss value for given input and ground truth labels.

Parameters

• x (Variable) – Input to the classifier at each node.

• t (Variable) – Batch of ground truth labels.

Returns Loss value.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

632 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all

4.3. Link and Chains 633

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

634 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.BlackOut

class chainer.links.BlackOut(in_size, counts, sample_size)
BlackOut loss layer.

See also:

black_out() for more detail.

Parameters

4.3. Link and Chains 635

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

• in_size (int) – Dimension of input vectors.

• counts (int list) – Number of each identifiers.

• sample_size (int) – Number of negative samples.

Variables W (Parameter) – Weight parameter matrix.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

636 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

4.3. Link and Chains 637

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x, t)
Computes the loss value for given input and ground truth labels.

Parameters

• x (Variable) – Input of the weight matrix multiplication.

• t (Variable) – Batch of ground truth labels.

Returns Loss value.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

638 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

4.3. Link and Chains 639

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

640 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

sample_data = None

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.CRF1d

class chainer.links.CRF1d(n_label, initial_cost=None)
Linear-chain conditional random field loss layer.

This link wraps the crf1d() function. It holds a transition cost matrix as a parameter.

4.3. Link and Chains 641

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Parameters

• n_label (int) – Number of labels.

• initial_cost (initializer) – Initializer to initialize the transition cost matrix. If this
attribute is not specified, the transition cost matrix is initialized with zeros.

See also:

crf1d() for more detail.

Variables cost (Variable) – Transition cost parameter.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

642 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

argmax(xs, transpose=False)
Computes a state that maximizes a joint probability.

Parameters

• xs (list of Variable) – Input vector for each label.

• transpose (bool) – If True, input/output sequences

• be sorted in descending order of length. (will) –

Returns A tuple of Variable representing each log-likelihood and a list representing the
argmax path.

Return type tuple

See also:

See crf1d_argmax() for more detail.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,

4.3. Link and Chains 643

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(xs, ys, reduce=’mean’, transpose=False)
Computes negative log-likelihood of linear-chain CRF

Parameters

• xs (list of Variable) – Input vector for each label

• ys (list of Variable) – Expected output labels.

• transpose (bool) – If True, input/output sequences

• be sorted in descending order of length. (will) –

Returns A variable holding the average negative log-likelihood of the input sequences.

Return type Variable

See also:

See crf1d() for more detail.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

644 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

4.3. Link and Chains 645

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

646 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

4.3. Link and Chains 647

Chainer Documentation, Release 7.0.0b4

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.SimplifiedDropconnect

class chainer.links.SimplifiedDropconnect(in_size, out_size, ratio=0.5, nobias=False, ini-
tialW=None, initial_bias=None)

Fully-connected layer with simplified dropconnect regularization.

Notice: This implementation cannot be used for reproduction of the paper. There is a difference between the
current implementation and the original one. The original version uses sampling with gaussian distribution
before passing activation function, whereas the current implementation averages before activation.

Parameters

• in_size (int) – Dimension of input vectors. If None, parameter initialization will be
deferred until the first forward data pass at which time the size will be determined.

• out_size (int) – Dimension of output vectors.

• nobias (bool) – If True, then this link does not use the bias term.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 3.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias will be
initialized to zero. When it is numpy.ndarray, its ndim should be 2.

Variables

• W (Variable) – Weight parameter.

• b (Variable) – Bias parameter.

See also:

simplified_dropconnect()

See also:

648 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

Li, W., Matthew Z., Sixin Z., Yann L., Rob F. (2013). Regularization of Neural Network using DropConnect.
International Conference on Machine Learning. URL

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

4.3. Link and Chains 649

https://cs.nyu.edu/~wanli/dropc/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

650 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x, train=True, mask=None, use_batchwise_mask=True)
Applies the simplified dropconnect layer.

Parameters

• x (chainer.Variable or N-dimensional array) – Batch of input vectors. Its first dimension
n is assumed to be the minibatch dimension.

• train (bool) – If True, executes simplified dropconnect. Otherwise, simplified drop-
connect link works as a linear unit.

• mask (None or chainer.Variable or N-dimensional array) – If None, randomized sim-
plified dropconnect mask is generated. Otherwise, The mask must be (n, M, N) or
(M, N) shaped array, and use_batchwise_mask is ignored. Main purpose of this option
is debugging. mask array will be used as a dropconnect mask.

• use_batchwise_mask (bool) – If True, dropped connections depend on each sam-
ple in mini-batch.

Returns Output of the simplified dropconnect layer.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

4.3. Link and Chains 651

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same

652 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

4.3. Link and Chains 653

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

654 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.links.PReLU

class chainer.links.PReLU(shape=(), init=0.25)
Parametric ReLU function as a link.

Parameters

• shape (tuple of ints) – Shape of the parameter array.

• init (float) – Initial parameter value.

See the paper for details: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification.

To try PReLU instead of ReLU, replace F.relu with individual PReLU links registered to the model. For
example, the model defined in the MNIST example can be rewritten as follows.

ReLU version (original):

class MLP(chainer.Chain):

def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_units)
self.l2 = L.Linear(None, n_units)
self.l3 = L.Linear(None, n_out)

def forward(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)

PReLU version:

class MLP(chainer.Chain):

def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_units)
self.a1 = L.PReLU()
self.l2 = L.Linear(None, n_units)
self.a2 = L.PReLU()
self.l3 = L.Linear(None, n_out)

def forward(self, x):
h1 = self.a1(self.l1(x))
h2 = self.a2(self.l2(h1))
return self.l3(h2)

See also:

chainer.functions.prelu()

Variables W (Parameter) – Coefficient of parametric ReLU.

4.3. Link and Chains 655

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://github.com/chainer/chainer/tree/master/examples/mnist/train_mnist.py

Chainer Documentation, Release 7.0.0b4

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

656 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

4.3. Link and Chains 657

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the parametric ReLU activation function.

Parameters x (Variable) – Input variable.

Returns Output of the parametric ReLU function.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

658 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

4.3. Link and Chains 659

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

660 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Swish

class chainer.links.Swish(beta_shape, beta_init=1.0)
Swish activation function as a link.

Parameters

• beta_shape (tuple of ints or None) – Shape of the parameter variable 𝛽. If
None, parameter initialization will be deferred until the first forward data pass at which
time the shape will be determined.

• beta_init (float) – Initial value of the parameter variable 𝛽.

See the paper for details: Searching for Activation Functions

To try Swish instead of ReLU, replace F.relu with individual Swish links registered to the model. For
example, the model defined in the MNIST example can be rewritten as follows.

ReLU version (original):

4.3. Link and Chains 661

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1710.05941
https://github.com/chainer/chainer/tree/master/examples/mnist/train_mnist.py

Chainer Documentation, Release 7.0.0b4

class MLP(chainer.Chain):

def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_units)
self.l2 = L.Linear(None, n_units)
self.l3 = L.Linear(None, n_out)

def forward(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)

Swish version:

class MLP(chainer.Chain):

def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():

self.l1 = L.Linear(None, n_units)
self.s1 = L.Swish(None)
self.l2 = L.Linear(None, n_units)
self.s2 = L.Swish(None)
self.l3 = L.Linear(None, n_out)

def forward(self, x):
h1 = self.s1(self.l1(x))
h2 = self.s2(self.l2(h1))
return self.l3(h2)

See also:

See chainer.functions.swish() for the definition of Swish activation function.

Variables beta (Parameter) – Parameter variable 𝛽.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

662 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

4.3. Link and Chains 663

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the Swish activation function.

Parameters x (Variable) – Input variable.

Returns Output of the Swish activation function.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

664 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

4.3. Link and Chains 665

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

666 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

4.3. Link and Chains 667

Chainer Documentation, Release 7.0.0b4

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.Maxout

class chainer.links.Maxout(in_size, out_size, pool_size, initialW=None, initial_bias=0)
Fully-connected maxout layer.

Let M, P and N be an input dimension, a pool size, and an output dimension, respectively. For an input vector 𝑥
of size M, it computes

𝑌𝑖 = max𝑗(𝑊𝑖𝑗·𝑥+ 𝑏𝑖𝑗).

Here 𝑊 is a weight tensor of shape (M, P, N), 𝑏 an optional bias vector of shape (M, P) and 𝑊𝑖𝑗· is a sub-
vector extracted from 𝑊 by fixing first and second dimensions to 𝑖 and 𝑗, respectively. Minibatch dimension is
omitted in the above equation.

As for the actual implementation, this chain has a Linear link with a (M * P, N) weight matrix and an
optional M * P dimensional bias vector.

Parameters

• in_size (int) – Dimension of input vectors.

• out_size (int) – Dimension of output vectors.

• pool_size (int) – Number of channels.

• initialW (initializer) – Initializer to initialize the weight. When it is numpy.ndarray,
its ndim should be 3.

• initial_bias (initializer) – Initializer to initialize the bias. If None, the bias is omitted.
When it is numpy.ndarray, its ndim should be 2.

Variables linear (Link) – The Linear link that performs affine transformation.

See also:

maxout()

See also:

668 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

Goodfellow, I., Warde-farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013). Maxout Networks. In Pro-
ceedings of the 30th International Conference on Machine Learning (ICML-13) (pp. 1319-1327). URL

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

4.3. Link and Chains 669

http://jmlr.org/proceedings/papers/v28/goodfellow13.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

670 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x)
Applies the maxout layer.

Parameters x (Variable) – Batch of input vectors.

Returns Output of the maxout layer.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

4.3. Link and Chains 671

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to

672 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

4.3. Link and Chains 673

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

674 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.links.NegativeSampling

class chainer.links.NegativeSampling(in_size, counts, sample_size, power=0.75,
dtype=None)

Negative sampling loss layer.

This link wraps the negative_sampling() function. It holds the weight matrix as a parameter. It also
builds a sampler internally given a list of word counts.

Parameters

• in_size (int) – Dimension of input vectors.

• counts (int list) – Number of each identifiers.

• sample_size (int) – Number of negative samples.

• power (float) – Power factor 𝛼.

• dtype (numpy.dtype) – Type to use in computing.

See also:

negative_sampling() for more detail.

Variables W (Variable) – Weight parameter matrix.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

4.3. Link and Chains 675

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

676 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy

Chainer Documentation, Release 7.0.0b4

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(x, t, reduce=’sum’, *, return_samples=False)
Computes the loss value for given input and ground truth labels.

Parameters

• x (Variable) – Input of the weight matrix multiplication.

• t (Variable) – Batch of ground truth labels.

• reduce (str) – Reduction option. Its value must be either 'sum' or 'no'. Otherwise,
ValueError is raised.

• return_samples (bool) – If True, the sample array is also returned. The sample array
is a (

Returns

If return_samples is False (default), loss value is returned.

Otherwise, a tuple of the loss value and the sample array is returned.

Return type Variable or tuple

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

4.3. Link and Chains 677

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

678 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

4.3. Link and Chains 679

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

680 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3.3 Machine learning models

chainer.links.Classifier A simple classifier model.

chainer.links.Classifier

class chainer.links.Classifier(predictor, lossfun=<function softmax_cross_entropy>, acc-
fun=<function accuracy>, label_key=-1)

A simple classifier model.

This is an example of chain that wraps another chain. It computes the loss and accuracy based on a given
input/label pair.

Parameters

• predictor (Link) – Predictor network.

• lossfun (callable) – Loss function. You can specify one of loss functions from built-
in loss functions, or your own loss function (see the example below). It should not be an loss
functions with parameters (i.e., Link instance). The function must accept two argument (an
output from predictor and its ground truth labels), and return a loss. Returned value must be
a Variable derived from the input Variable to perform backpropagation on the variable.

• accfun (callable) – Function that computes accuracy. You can specify one of eval-
uation functions from built-in evaluation functions, or your own evaluation function. The
signature of the function is the same as lossfun.

• label_key (int or str) – Key to specify label variable from arguments. When it is
int, a variable in positional arguments is used. And when it is str, a variable in keyword
arguments is used.

Variables

• predictor (Link) – Predictor network.

4.3. Link and Chains 681

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• lossfun (callable) – Loss function. See the description in the arguments for details.

• accfun (callable) – Function that computes accuracy. See the description in the argu-
ments for details.

• y (Variable) – Prediction for the last minibatch.

• loss (Variable) – Loss value for the last minibatch.

• accuracy (Variable) – Accuracy for the last minibatch.

• compute_accuracy (bool) – If True, compute accuracy on the forward computation.
The default value is True.

Note: This link uses chainer.softmax_cross_entropy() with default arguments as a loss function
(specified by lossfun), if users do not explicitly change it. In particular, the loss function does not sup-
port double backpropagation. If you need second or higher order differentiation, you need to turn it on with
enable_double_backprop=True:

>>> import chainer.functions as F
>>> import chainer.links as L
>>>
>>> def lossfun(x, t):
... return F.softmax_cross_entropy(
... x, t, enable_double_backprop=True)
>>>
>>> predictor = L.Linear(10)
>>> model = L.Classifier(predictor, lossfun=lossfun)

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

682 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

4.3. Link and Chains 683

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*args, **kwargs)
Computes the loss value for an input and label pair.

It also computes accuracy and stores it to the attribute.

Parameters

• args (list of ~chainer.Variable) – Input minibatch.

• kwargs (dict of ~chainer.Variable) – Input minibatch.

When label_key is int, the corresponding element in args is treated as ground truth labels. And
when it is str, the element in kwargs is used. The all elements of args and kwargs except the ground
truth labels are features. It feeds features to the predictor and compare the result with ground truth labels.

684 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Note: We set None to the attributes y, loss and accuracy each time before running the predictor,
to avoid unnecessary memory consumption. Note that the variables set on those attributes hold the whole
computation graph when they are computed. The graph stores interim values on memory required for
back-propagation. We need to clear the attributes to free those values.

Returns Loss value.

Return type Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

4.3. Link and Chains 685

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

686 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

4.3. Link and Chains 687

Chainer Documentation, Release 7.0.0b4

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

compute_accuracy = True

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3.4 Pre-trained models

Pre-trained models are mainly used to achieve a good performance with a small dataset, or extract a semantic feature
vector. Although CaffeFunction automatically loads a pre-trained model released as a caffemodel, the following
link models provide an interface for automatically converting caffemodels, and easily extracting semantic feature
vectors.

For example, to extract the feature vectors with VGG16Layers, which is a common pre-trained model in the field of
image recognition, users need to write the following few lines:

from chainer.links import VGG16Layers
from PIL import Image

model = VGG16Layers()
img = Image.open("path/to/image.jpg")
feature = model.extract([img], layers=["fc7"])["fc7"]

688 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

where fc7 denotes a layer before the last fully-connected layer. Unlike the usual links, these classes automatically
load all the parameters from the pre-trained models during initialization.

VGG Networks

chainer.links.VGG16Layers A pre-trained CNN model with 16 layers provided by
VGG team.

chainer.links.VGG19Layers A pre-trained CNN model with 19 layers provided by
VGG team.

chainer.links.model.vision.vgg.
prepare

Converts the given image to the numpy array for VGG
models.

chainer.links.VGG16Layers

class chainer.links.VGG16Layers(pretrained_model=’auto’)
A pre-trained CNN model with 16 layers provided by VGG team.

During initialization, this chain model automatically downloads the pre-trained caffemodel, convert to another
chainer model, stores it on your local directory, and initializes all the parameters with it. This model would
be useful when you want to extract a semantic feature vector from a given image, or fine-tune the model on a
different dataset. Note that this pre-trained model is released under Creative Commons Attribution License.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

See: K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition

Parameters pretrained_model (str) – the destination of the pre-trained chainer model se-
rialized as a .npz file. If this argument is specified as auto, it automatically down-
loads the caffemodel from the internet. Note that in this case the converted chainer model
is stored on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory, where
$CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify an-
other value as a environment variable. The converted chainer model is automatically used from
the second time. If the argument is specified as None, all the parameters are not initialized
by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.
initializers.Normal(scale=0.01).

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

4.3. Link and Chains 689

https://arxiv.org/abs/1409.1556
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz)
Converts a pre-trained caffemodel to a chainer model.

Parameters

690 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

4.3. Link and Chains 691

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’fc7’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

model is an instance of VGGLayers (16 or 19 layers)
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract. If None, ‘prob’
will be used as layers.

Returns A dictionary in which the key contains the layer and the value contains the correspond-
ing feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

692 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

4.3. Link and Chains 693

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

694 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

4.3. Link and Chains 695

Chainer Documentation, Release 7.0.0b4

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.VGG19Layers

class chainer.links.VGG19Layers(pretrained_model=’auto’)
A pre-trained CNN model with 19 layers provided by VGG team.

During initialization, this chain model automatically downloads the pre-trained caffemodel, convert to another
chainer model, stores it on your local directory, and initializes all the parameters with it. This model would
be useful when you want to extract a semantic feature vector from a given image, or fine-tune the model on a
different dataset. Note that this pre-trained model is released under Creative Commons Attribution License.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

See: K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition

Parameters pretrained_model (str) – the destination of the pre-trained chainer model se-
rialized as a .npz file. If this argument is specified as auto, it automatically down-
loads the caffemodel from the internet. Note that in this case the converted chainer model
is stored on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory, where

696 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://arxiv.org/abs/1409.1556
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

$CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify an-
other value as a environment variable. The converted chainer model is automatically used from
the second time. If the argument is specified as None, all the parameters are not initialized
by the pre-trained model, but the default initializer used in the original paper, i.e., chainer.
initializers.Normal(scale=0.01).

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

4.3. Link and Chains 697

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

698 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy

Chainer Documentation, Release 7.0.0b4

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’fc7’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

model is an instance of VGGLayers (16 or 19 layers)
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

4.3. Link and Chains 699

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract. If None, ‘prob’
will be used as layers.

Returns A dictionary in which the key contains the layer and the value contains the correspond-
ing feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

700 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same

4.3. Link and Chains 701

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

702 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

4.3. Link and Chains 703

Chainer Documentation, Release 7.0.0b4

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.model.vision.vgg.prepare

chainer.links.model.vision.vgg.prepare(image, size=(224, 224))
Converts the given image to the numpy array for VGG models.

Note that you have to call this method before forward because the pre-trained vgg model requires to resize
the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before calling.

Parameters

• image (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.
ndarray, its shape must be (height, width), (height, width, channels),
or (channels, height, width), and the order of the channels must be RGB.

• size (pair of ints) – Size of converted images. If None, the given image is not
resized.

Returns The converted output array.

Return type numpy.ndarray

Note: ChainerCV contains implementation of VGG networks as well (i.e., chainercv.links.model.vgg.
VGG16). Unlike the Chainer’s implementation, the ChainerCV’s implementation assumes the color channel of the
input image to be ordered in RGB instead of BGR.

GoogLeNet

chainer.links.GoogLeNet A pre-trained GoogLeNet model provided by BVLC.
chainer.links.model.vision.googlenet.
prepare

Converts the given image to the numpy array for
GoogLeNet.

chainer.links.GoogLeNet

class chainer.links.GoogLeNet(pretrained_model=’auto’)
A pre-trained GoogLeNet model provided by BVLC.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want to
extract a semantic feature vector per image, or fine-tune the model on a different dataset.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

GoogLeNet, which is also called Inception-v1, is an architecture of convolutional neural network proposed in
2014. This model is relatively lightweight and requires small memory footprint during training compared with
modern architectures such as ResNet. Therefore, if you fine-tune your network based on a model pre-trained
by Imagenet and need to train it with large batch size, GoogLeNet may be useful. On the other hand, if you
just want an off-the-shelf classifier, we recommend that you use ResNet50 or other models since they are more
accurate than GoogLeNet.

704 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://chainercv.readthedocs.io/en/latest/reference/links/vgg.html#chainercv.links.model.vgg.VGG16
https://chainercv.readthedocs.io/en/latest/reference/links/vgg.html#chainercv.links.model.vgg.VGG16

Chainer Documentation, Release 7.0.0b4

The original model is provided here: https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

Parameters pretrained_model (str) – the destination of the pre-trained chainer model se-
rialized as a .npz file. If this argument is specified as auto, it automatically down-
loads the caffemodel from the internet. Note that in this case the converted chainer model
is stored on $CHAINER_DATASET_ROOT/pfnet/chainer/models directory, where
$CHAINER_DATASET_ROOT is set as $HOME/.chainer/dataset unless you specify
another value as a environment variable. The converted chainer model is automatically used
from the second time. If the argument is specified as None, all the parameters are not ini-
tialized by the pre-trained model, but the default initializer used in BVLC, i.e., chainer.
initializers.LeCunUniform(scale=1.0). Note that, in Caffe, when weight_filler
is specified as “xavier” type without variance_norm parameter, the weights are initialized by
Uniform(-s, s), where 𝑠 =

√︁
3

𝑓𝑎𝑛𝑖𝑛
and 𝑓𝑎𝑛𝑖𝑛 is the number of input units. This corresponds to

LeCunUniform in Chainer but not GlorotUniform.

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a

4.3. Link and Chains 705

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

706 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

model is an instance of `GoogLeNet`
with chainer.using_config('train', False):

(continues on next page)

4.3. Link and Chains 707

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

708 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

4.3. Link and Chains 709

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

710 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

4.3. Link and Chains 711

Chainer Documentation, Release 7.0.0b4

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.model.vision.googlenet.prepare

chainer.links.model.vision.googlenet.prepare(image, size=(224, 224))
Converts the given image to the numpy array for GoogLeNet.

Note that you have to call this method before forward because the pre-trained GoogLeNet model requires
to resize the given image, covert the RGB to the BGR, subtract the mean, and permute the dimensions before
calling.

Parameters

• image (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.
ndarray, its shape must be (height, width), (height, width, channels),
or (channels, height, width), and the order of the channels must be RGB.

• size (pair of ints) – Size of converted images. If None, the given image is not
resized.

Returns The converted output array.

Return type numpy.ndarray

Residual Networks

chainer.links.model.vision.resnet.
ResNetLayers

A pre-trained CNN model provided by MSRA.

chainer.links.ResNet50Layers A pre-trained CNN model with 50 layers provided by
MSRA.

chainer.links.ResNet101Layers A pre-trained CNN model with 101 layers provided by
MSRA.

Continued on next page

712 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

Table 21 – continued from previous page
chainer.links.ResNet152Layers A pre-trained CNN model with 152 layers provided by

MSRA.
chainer.links.model.vision.resnet.
prepare

Converts the given image to a numpy array for ResNet.

chainer.links.model.vision.resnet.ResNetLayers

class chainer.links.model.vision.resnet.ResNetLayers(pretrained_model, n_layers,
downsample_fb=False)

A pre-trained CNN model provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

• pretrained_model (str) – the destination of the pre-trained chainer model serialized
as a .npz file. If this argument is specified as auto, it automatically loads and con-
verts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/models/
ResNet-{n-layers}-model.caffemodel, where $CHAINER_DATASET_ROOT
is set as $HOME/.chainer/dataset unless you specify another value by modifying
the environment variable and {n_layers} is replaced with the specified number of layers
given as the first argument to this constructor. Note that in this case the converted chainer
model is stored on the same directory and automatically used from the next time. If this ar-
gument is specified as None, all the parameters are not initialized by the pre-trained model,
but the default initializer used in the original paper, i.e., chainer.initializers.
HeNormal(scale=1.0).

• n_layers (int) – The number of layers of this model. It should be either 50, 101, or 152.

• downsample_fb (bool) – If this argument is specified as False, it performs downsam-
pling by placing stride 2 on the 1x1 convolutional layers (the original MSRA ResNet). If
this argument is specified as True, it performs downsampling by placing stride 2 on the
3x3 convolutional layers (Facebook ResNet).

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

4.3. Link and Chains 713

https://github.com/KaimingHe/deep-residual-networks
https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

714 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

4.3. Link and Chains 715

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

model is an instance of ResNetLayers (50 or 101 or 152 layers)
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

716 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

4.3. Link and Chains 717

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

718 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

4.3. Link and Chains 719

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.ResNet50Layers

class chainer.links.ResNet50Layers(pretrained_model=’auto’, downsample_fb=False)
A pre-trained CNN model with 50 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

720 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://github.com/KaimingHe/deep-residual-networks

Chainer Documentation, Release 7.0.0b4

ResNet50 has 25,557,096 trainable parameters, and it’s 58% and 43% fewer than ResNet101 and ResNet152,
respectively. On the other hand, the top-5 classification accuracy on ImageNet dataset drops only 0.7% and
1.1% from ResNet101 and ResNet152, respectively. Therefore, ResNet50 may have the best balance between
the accuracy and the model size. It would be basically just enough for many cases, but some advanced models
for object detection or semantic segmentation use deeper ones as their building blocks, so these deeper ResNets
are here for making reproduction work easier.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

• pretrained_model (str) – the destination of the pre-trained chainer model seri-
alized as a .npz file. If this argument is specified as auto, it automatically loads
and converts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/
models/ResNet-50-model.caffemodel, where $CHAINER_DATASET_ROOT is
set as $HOME/.chainer/dataset unless you specify another value by modifying the
environment variable. Note that in this case the converted chainer model is stored on the
same directory and automatically used from the next time. If this argument is specified as
None, all the parameters are not initialized by the pre-trained model, but the default initial-
izer used in the original paper, i.e., chainer.initializers.HeNormal(scale=1.
0).

• downsample_fb (bool) – If this argument is specified as False, it performs downsam-
pling by placing stride 2 on the 1x1 convolutional layers (the original MSRA ResNet). If
this argument is specified as True, it performs downsampling by placing stride 2 on the
3x3 convolutional layers (Facebook ResNet).

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

4.3. Link and Chains 721

https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.

722 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

4.3. Link and Chains 723

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

model is an instance of ResNetLayers (50 or 101 or 152 layers)
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
(continues on next page)

724 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

with self.init_scope():
self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

4.3. Link and Chains 725

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

726 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

4.3. Link and Chains 727

Chainer Documentation, Release 7.0.0b4

functions

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.ResNet101Layers

class chainer.links.ResNet101Layers(pretrained_model=’auto’, downsample_fb=False)
A pre-trained CNN model with 101 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

ResNet101 has 44,549,224 trainable parameters, and it’s 43% fewer than ResNet152 model, while the top-5
classification accuracy on ImageNet dataset drops 1.1% from ResNet152. For many cases, ResNet50 may have
the best balance between the accuracy and the model size.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

• pretrained_model (str) – the destination of the pre-trained chainer model serialized
as a .npz file. If this argument is specified as auto, it automatically loads and con-
verts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/models/
ResNet-101-model.caffemodel, where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value by modifying the envi-
ronment variable. Note that in this case the converted chainer model is stored on the same
directory and automatically used from the next time. If this argument is specified as None,
all the parameters are not initialized by the pre-trained model, but the default initializer used
in the original paper, i.e., chainer.initializers.HeNormal(scale=1.0).

728 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://github.com/KaimingHe/deep-residual-networks
https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• downsample_fb (bool) – If this argument is specified as False, it performs downsam-
pling by placing stride 2 on the 1x1 convolutional layers (the original MSRA ResNet). If
this argument is specified as True, it performs downsampling by placing stride 2 on the
3x3 convolutional layers (Facebook ResNet).

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

4.3. Link and Chains 729

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

730 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy

Chainer Documentation, Release 7.0.0b4

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

model is an instance of ResNetLayers (50 or 101 or 152 layers)
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

4.3. Link and Chains 731

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

732 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

4.3. Link and Chains 733

https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

734 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3. Link and Chains 735

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.links.ResNet152Layers

class chainer.links.ResNet152Layers(pretrained_model=’auto’, downsample_fb=False)
A pre-trained CNN model with 152 layers provided by MSRA.

When you specify the path of the pre-trained chainer model serialized as a .npz file in the constructor, this
chain model automatically initializes all the parameters with it. This model would be useful when you want
to extract a semantic feature vector per image, or fine-tune the model on a different dataset. Note that unlike
VGG16Layers, it does not automatically download a pre-trained caffemodel. This caffemodel can be down-
loaded at GitHub.

If you want to manually convert the pre-trained caffemodel to a chainer model that can be specified in the
constructor, please use convert_caffemodel_to_npz classmethod instead.

ResNet152 has 60,192,872 trainable parameters, and it’s the deepest ResNet model and it achieves the best
result on ImageNet classification task in ILSVRC 2015.

See: K. He et. al., Deep Residual Learning for Image Recognition

Parameters

• pretrained_model (str) – the destination of the pre-trained chainer model serialized
as a .npz file. If this argument is specified as auto, it automatically loads and con-
verts the caffemodel from $CHAINER_DATASET_ROOT/pfnet/chainer/models/
ResNet-152-model.caffemodel, where $CHAINER_DATASET_ROOT is set as
$HOME/.chainer/dataset unless you specify another value by modifying the envi-
ronment variable. Note that in this case the converted chainer model is stored on the same
directory and automatically used from the next time. If this argument is specified as None,
all the parameters are not initialized by the pre-trained model, but the default initializer used
in the original paper, i.e., chainer.initializers.HeNormal(scale=1.0).

• downsample_fb (bool) – If this argument is specified as False, it performs downsam-
pling by placing stride 2 on the 1x1 convolutional layers (the original MSRA ResNet). If
this argument is specified as True, it performs downsampling by placing stride 2 on the
3x3 convolutional layers (Facebook ResNet).

Variables available_layers (list of str) – The list of available layer names used by
forward and extract methods.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

736 Chapter 4. API Reference

https://github.com/KaimingHe/deep-residual-networks
http://image-net.org/challenges/LSVRC/2015/results#loc
https://arxiv.org/abs/1512.03385
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

classmethod convert_caffemodel_to_npz(path_caffemodel, path_npz, n_layers=50)
Converts a pre-trained caffemodel to a chainer model.

Parameters

• path_caffemodel (str) – Path of the pre-trained caffemodel.

• path_npz (str) – Path of the converted chainer model.

4.3. Link and Chains 737

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

738 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extract(self, images, layers=[’pool5’], size=(224, 224))
Extracts all the feature maps of given images.

The difference of directly executing forward is that it directly accepts images as an input and automati-
cally transforms them to a proper variable. That is, it is also interpreted as a shortcut method that implicitly
calls prepare and forward functions.

Unlike predict method, this method does not override chainer.config.train and chainer.
config.enable_backprop configuration. If you want to extract features without updating model
parameters, you need to manually set configuration when calling this method as follows:

model is an instance of ResNetLayers (50 or 101 or 152 layers)
with chainer.using_config('train', False):

with chainer.using_config('enable_backprop', False):
feature = model.extract([image])

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.

• layers (list of str) – The list of layer names you want to extract.

• size (pair of ints) – The resolution of resized images used as an input of CNN.
All the given images are not resized if this argument is None, but the resolutions of all the
images should be the same.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

forward(self, x, layers=[’prob’])
Computes all the feature maps specified by layers.

Parameters

• x (Variable) – Input variable. It should be prepared by prepare function.

• layers (list of str) – The list of layer names you want to extract.

Returns A directory in which the key contains the layer name and the value contains the corre-
sponding feature map variable.

Return type Dictionary of ~chainer.Variable

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

4.3. Link and Chains 739

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

predict(images, oversample=True)
Computes all the probabilities of given images.

Parameters

• images (iterable of PIL.Image or numpy.ndarray) – Input images.
When you specify a color image as a numpy.ndarray, make sure that color order is
RGB.

• oversample (bool) – If True, it averages results across center, corners, and mirrors.
Otherwise, it uses only the center.

Returns Output that contains the class probabilities of given images.

Return type Variable

register_persistent(name)
Registers an attribute of a given name as a persistent value.

740 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

4.3. Link and Chains 741

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

742 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__ge__()
Return self>=value.

Attributes

available_layers

device
Device instance.

functions

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.model.vision.resnet.prepare

chainer.links.model.vision.resnet.prepare(image, size=(224, 224))
Converts the given image to a numpy array for ResNet.

Note that this method must be called before calling forward, because the pre-trained resnet model will resize
the given image, convert from RGB to BGR, subtract the mean, and permute the dimensions before calling.

Parameters

• image (PIL.Image or numpy.ndarray) – Input image. If an input is numpy.
ndarray, its shape must be (height, width), (height, width, channels),
or (channels, height, width), and the order of the channels must be RGB.

• size (pair of ints) – Size of converted images. If None, the given image is not
resized.

Returns The converted output array.

Return type numpy.ndarray

4.3. Link and Chains 743

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

Note: ChainerCV contains implementation of ResNet as well (i.e., chainercv.links.model.resnet.
ResNet50, chainercv.links.model.resnet.ResNet101, chainercv.links.model.resnet.
ResNet152). Unlike the Chainer’s implementation, the ChainerCV’s implementation assumes the color channel
of the input image to be ordered in RGB instead of BGR.

ChainerCV models

Note: ChainerCV supports implementations of links that are useful for computer vision problems, such as object
detection, semantic segmentation, and instance segmentation. The documentation can be found in chainercv.
links. Here is a subset of models with pre-trained weights supported by ChainerCV:

• Detection

– chainercv.links.model.faster_rcnn.FasterRCNNVGG16

– chainercv.links.model.ssd.SSD300

– chainercv.links.model.ssd.SSD512

– chainercv.links.model.yolo.YOLOv2

– chainercv.links.model.yolo.YOLOv3

• Semantic Segmentation

– chainercv.links.model.segnet.SegNetBasic

– chainercv.experimental.links.model.pspnet.PSPNetResNet101

• Instance Segmentation

– chainercv.experimental.links.model.fcis.FCISResNet101

• Classification

– chainercv.links.model.resnet.ResNet101

– chainercv.links.model.resnet.ResNet152

– chainercv.links.model.resnet.ResNet50

– chainercv.links.model.senet.SEResNet101

– chainercv.links.model.senet.SEResNet152

– chainercv.links.model.senet.SEResNet50

– chainercv.links.model.senet.SEResNeXt101

– chainercv.links.model.senet.SEResNeXt50

– chainercv.links.model.vgg.VGG16

Compatibility with other frameworks

chainer.links.TheanoFunction Theano function wrapper.
chainer.links.caffe.CaffeFunction Caffe emulator based on the model file of Caffe.

744 Chapter 4. API Reference

https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet50
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet50
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet101
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet152
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet152
https://chainercv.readthedocs.io/en/latest/reference/links/general_chain.html#module-chainercv.links
https://chainercv.readthedocs.io/en/latest/reference/links/general_chain.html#module-chainercv.links
https://chainercv.readthedocs.io/en/latest/reference/links/faster_rcnn.html#chainercv.links.model.faster_rcnn.FasterRCNNVGG16
https://chainercv.readthedocs.io/en/latest/reference/links/ssd.html#chainercv.links.model.ssd.SSD300
https://chainercv.readthedocs.io/en/latest/reference/links/ssd.html#chainercv.links.model.ssd.SSD512
https://chainercv.readthedocs.io/en/latest/reference/links/yolo.html#chainercv.links.model.yolo.YOLOv2
https://chainercv.readthedocs.io/en/latest/reference/links/yolo.html#chainercv.links.model.yolo.YOLOv3
https://chainercv.readthedocs.io/en/latest/reference/links/segnet.html#chainercv.links.model.segnet.SegNetBasic
https://chainercv.readthedocs.io/en/latest/reference/experimental/pspnet.html#chainercv.experimental.links.model.pspnet.PSPNetResNet101
https://chainercv.readthedocs.io/en/latest/reference/experimental/fcis.html#chainercv.experimental.links.model.fcis.FCISResNet101
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet101
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet152
https://chainercv.readthedocs.io/en/latest/reference/links/resnet.html#chainercv.links.model.resnet.ResNet50
https://chainercv.readthedocs.io/en/latest/reference/links/senet.html#chainercv.links.model.senet.SEResNet101
https://chainercv.readthedocs.io/en/latest/reference/links/senet.html#chainercv.links.model.senet.SEResNet152
https://chainercv.readthedocs.io/en/latest/reference/links/senet.html#chainercv.links.model.senet.SEResNet50
https://chainercv.readthedocs.io/en/latest/reference/links/senet.html#chainercv.links.model.senet.SEResNeXt101
https://chainercv.readthedocs.io/en/latest/reference/links/senet.html#chainercv.links.model.senet.SEResNeXt50
https://chainercv.readthedocs.io/en/latest/reference/links/vgg.html#chainercv.links.model.vgg.VGG16

Chainer Documentation, Release 7.0.0b4

chainer.links.TheanoFunction

class chainer.links.TheanoFunction(inputs, outputs)
Theano function wrapper.

Warning: This feature is experimental. The interface can change in the future.

This function wraps Theano function as a chainer.Link. A user needs to make input Theano variables
and output Theano variables. This function automatically creates Theano function for forward calculation and
backward calculation from inputs and ouptuts. And then, it sends data in chainer.Variable to the function
and gets results from Theano.

Example

>>> import theano
>>> x = theano.tensor.fvector()
>>> y = theano.tensor.fvector()
>>> z = x + y
>>> w = x - y
>>> f = L.TheanoFunction(inputs=[x, y], outputs=[z, w])
>>> a = chainer.Variable(np.array([1, 2], dtype=np.float32))
>>> b = chainer.Variable(np.array([2, 3], dtype=np.float32))
>>> c, d = f(a, b)
>>> c.array
array([3., 5.], dtype=float32)
>>> d.array
array([-1., -1.], dtype=float32)

Note: The current implementation always copies cupy.ndarray to CPU.

Parameters

• inputs (tuple of theano.tensor.TensorVariable) – Input variables of Theano.
This function accepts the same number of Variables in forward computation.

• outputs (tuple of theano.tensor.TensorVariable) – Output variables of
Theano. The function returns the same number of Variables as outputs.

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

4.3. Link and Chains 745

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays

746 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(*args)

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

4.3. Link and Chains 747

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

748 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

4.3. Link and Chains 749

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

750 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.links.caffe.CaffeFunction

class chainer.links.caffe.CaffeFunction(model_path)
Caffe emulator based on the model file of Caffe.

Given a protocol buffers file of a Caffe model, this class loads and emulates it on Variable objects. It supports
the official reference models provided by BVLC.

Note: CaffeFunction ignores the following layers:

• Layers that CaffeFunction does not support (including data layers)

• Layers that have no top blobs

• Layers whose bottom blobs are incomplete (i.e., some or all of them are not given nor computed)

Warning: It does not support full compatibility against Caffe. Some layers and configurations are not
implemented in Chainer yet, though the reference models provided by the BVLC team are supported except
data layers.

Example

Consider we want to extract the (unnormalized) log class probability of given images using BVLC reference
CaffeNet. The model can be downloaded from:

http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel

We want to compute the fc8 blob from the data blob. It is simply written as follows:

4.3. Link and Chains 751

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel

Chainer Documentation, Release 7.0.0b4

Load the model
func = CaffeFunction('path/to/bvlc_reference_caffenet.caffemodel')

Minibatch of size 10
x_data = numpy.ndarray((10, 3, 227, 227), dtype=numpy.float32)
... # (Fill the minibatch here)

Forward the pre-trained net
x = Variable(x_data)
y, = func(inputs={'data': x}, outputs=['fc8'])

The result y contains the Variable corresponding to the fc8 blob. The computational graph is memorized as a
usual forward computation in Chainer, so we can run backprop through this pre-trained net.

Parameters model_path (str) – Path to the binary-proto model file of Caffe.

Variables forwards (dict) – A mapping from layer names to corresponding functions.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

752 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

4.3. Link and Chains 753

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

forward(self, inputs, outputs, disable=())
Executes a sub-network of the network.

This function acts as an interpreter of the network definition for Caffe. On execution, it interprets each
layer one by one, and if the bottom blobs are already computed, then emulates the layer and stores output
blobs as Variable objects.

Parameters

• inputs (dict) – A dictionary whose key-value pairs indicate initial correspondences
between blob names and Variable objects.

• outputs (Iterable) – A list of blob names whose corresponding Variable objects
are returned.

• disable (Iterable) – A list of layer names that will be ignored during the forward
computation.

Returns A tuple of output Variable objects corresponding to elements of the outputs argu-
ment.

Return type tuple

754 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

4.3. Link and Chains 755

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

756 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.3. Link and Chains 757

Chainer Documentation, Release 7.0.0b4

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3.5 Link and Chain base classes

chainer.Link Building block of model definitions.
chainer.Chain Composable link with object-like interface.
chainer.ChainList Composable link with list-like interface.
chainer.Sequential Sequential model which has a single-stream forward

pass.

chainer.Link

class chainer.Link(**params)
Building block of model definitions.

Link is a building block of neural network models that support various features like handling parameters, defin-
ing network fragments, serialization, etc.

Link is the primitive structure for the model definitions. It supports management of parameter variables and
persistent values that should be incorporated to serialization.

Parameter is an instance of Parameter registered to a link. A Parameter object can be registered as a
parameter of the link by assigning it to an attribute within an initialization scope, which is a code surrounded
by a init_scope() context manager using the with statement.

Persistent values are arrays, scalars, or any other serializable values registered via
register_persistent() or add_persistent().

Note: Whereas arbitrary serializable objects can be registered as persistent values, it is strongly recommended

758 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

that you just register values that should be treated as results of learning. A typical example of persistent values
is ones computed during training and required for testing, e.g. running statistics for batch normalization.

Parameters and persistent values are referred by their names. They can be accessed as attributes of the links.
Link class itself manages the lists of names of parameters and persistent values to distinguish parameters and
persistent values from other attributes.

Link can be composed into more complex models. This composition feature is supported by child classes like
Chain and ChainList. One can create a chain by combining one or more links. See the documents for these
classes for details.

As noted above, Link supports the serialization protocol of the Serializer class. Note that only parameters
and persistent values are saved and loaded. Other attributes are considered as a part of user program (i.e. a
part of network definition). In order to construct a link from saved file, other attributes must be identically
reconstructed by user codes.

Example

This is a simple example of custom link definition. Chainer itself also provides many links defined under the
links module. They might serve as examples, too.

Consider we want to define a simple primitive link that implements a fully-connected layer based on the
linear() function. Note that this function takes input units, a weight variable, and a bias variable as ar-
guments. Then, the fully-connected layer can be defined as follows:

import chainer
import chainer.functions as F
from chainer import initializers
import numpy as np

class LinearLayer(chainer.Link):

def __init__(self, n_in, n_out):
super(LinearLayer, self).__init__()
with self.init_scope():

self.W = chainer.Parameter(
initializers.Normal(), (n_out, n_in))

self.b = chainer.Parameter(
initializers.Zero(), (n_out,))

def forward(self, x):
return F.linear(x, self.W, self.b)

This example shows that a user can define arbitrary parameters and use them in any methods. Links typically
implement the forward operator, although they can also provide other methods to implement the forward
propagation.

Parameters params – Names, shapes, and optional dtypes of initial parameters. The keywords are
used as the parameter names and the corresponding values consist either of the shape or a tuple
of shape and a dtype (shape, dtype). If only the shape is supplied, the default dtype will
be used.

Variables name (str) – Name of this link, given by the parent chain (if exists).

4.3. Link and Chains 759

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Methods

__call__(*args, **kwargs)
Call self as a function.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

760 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

4.3. Link and Chains 761

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

762 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

4.3. Link and Chains 763

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

764 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.Chain

class chainer.Chain(**links)
Composable link with object-like interface.

Composability is one of the most important features of neural nets. Neural net models consist of many reusable
fragments, and each model itself might be embedded into a larger learnable system. Chain enables us to write a
neural net based on composition, without bothering about routine works like collecting parameters, serialization,
copying the structure with parameters shared, etc.

This class actually provides a way to compose one or more links into one structure. A chain can contain one or
more child links. Child link is a link registered to the chain with its own name. The child link is stored to an
attribute of the chain with the name. User can write a whole model or a fragment of neural nets as a child class
of Chain.

Each chain itself is also a link. Therefore, one can combine chains into higher-level chains. In this way, links
and chains construct a link hierarchy. Link hierarchy forms a tree structure, where each node is identified by the
path from the root. The path is represented by a string like a file path in UNIX, consisting of names of nodes on
the path, joined by slashes /.

A child link can be added just by assigning it to an attribute of the chain within init_scope().

4.3. Link and Chains 765

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

The registered child link is saved and loaded on serialization and deserialization, and involved in the optimiza-
tion. The registered link is called a child. The child link is accessible via children() generator, which
returns a generator running through the children in lexical order.

On registration of a child link, its name attribute is also set (or overwritten if the link has already been registered
to another chain).

Example

This is a simple example of custom chain definition. Chainer itself also provides some chains defined under the
links module. They might serve as examples, too.

Consider we want to define a multi-layer perceptron consisting of two hidden layers with rectifiers as activation
functions. We can use the Linear link as a building block:

import chainer
import chainer.functions as F
import chainer.links as L

class MultiLayerPerceptron(chainer.Chain):

def __init__(self, n_in, n_hidden, n_out):
super(MultiLayerPerceptron, self).__init__()
with self.init_scope():

self.layer1 = L.Linear(n_in, n_hidden)
self.layer2 = L.Linear(n_hidden, n_hidden)
self.layer3 = L.Linear(n_hidden, n_out)

def forward(self, x):
Forward propagation
h1 = F.relu(self.layer1(x))
h2 = F.relu(self.layer2(h1))
return self.layer3(h2)

Child links are registered via the assignment within a with self.init_scope(): block. The forward
propagation is often implemented as the forward operator as the above example, though it is not mandatory.

Parameters links – Child links. The keywords are used as their names. The names are also set to
the links.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(name)
Equivalent to getattr.

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

766 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns self

add_link(name, link)
Registers a child link to this chain.

Parameters

• name (str) – Name of the child link. This name is also used as the attribute name.

• link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Copies the link hierarchy to new one.

The whole hierarchy rooted by this link is copied. There are three modes to perform copy. Please see the
documentation for the argument mode below.

4.3. Link and Chains 767

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

The name of the link is reset on the copy, since the copied instance does not belong to the original parent
chain (even if exists).

Parameters mode (str) – It should be either init, copy, or share. init means parameter
variables under the returned link object is re-initialized by calling their initialize()
method, so that all the parameters may have different initial values from the original link.
copy means that the link object is deeply copied, so that its parameters are not re-initialized
but are also deeply copied. Thus, all parameters have same initial values but can be changed
independently. share means that the link is shallowly copied, so that its parameters’ arrays
are shared with the original one. Thus, their values are changed synchronously. The default
mode is share.

Returns Copied link object.

Return type Link

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

768 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

4.3. Link and Chains 769

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

770 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.3. Link and Chains 771

Chainer Documentation, Release 7.0.0b4

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.ChainList

class chainer.ChainList(*links)
Composable link with list-like interface.

This is another example of compositional link. Unlike Chain, this class can be used like a list of child links.
Each child link is indexed by a non-negative integer, and it maintains the current number of registered child
links. The add_link() method inserts a new link at the end of the list. It is useful to write a chain with
arbitrary number of child links, e.g. an arbitrarily deep multi-layer perceptron.

This class inherits the methods index, count, append, reverse, extend, pop, remove from collec-
tions.abc.MutableSequence and can be accessed and assigned by index or slice.

Parameters links – Initial child links.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(index)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(index, value)

772 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__len__()
Returns the number of children.

__iter__()

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(value)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

4.3. Link and Chains 773

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

774 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(index, link)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

4.3. Link and Chains 775

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

Parameters name (str) – Name of the attribute to be registered.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial

776 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

reverse()
S.reverse() – reverse IN PLACE

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

4.3. Link and Chains 777

Chainer Documentation, Release 7.0.0b4

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.Sequential

class chainer.Sequential(*layers)
Sequential model which has a single-stream forward pass.

778 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Warning: This feature is experimental. The interface can change in the future.

This class enables to construct a network which has sequential structure easily. While Chain and ChainList
can only take Link object as input to their constructor, this Sequential can take arbitrary number of any
callable objects for the forward pass computation. A Sequential calls the given callable objects sequentially
inside of the forward() method in the same order as the given arguments. Therefore, you do not need to
write the forward pass computation explicitly.

Example

The below example code shows how to use this class to construct a simple sequential network:

import chainer
import chainer.functions as F
import chainer.links as L
from chainer import Sequential

Model definition without writing forward function
model = Sequential(

L.Linear(n_in, n_hidden),
F.relu,
L.Linear(n_hidden, n_hidden),
F.relu,
L.Linear(n_hidden, n_out)

)

Compute the forward pass
y = model(x)

where x denotes a mini-batch of n_in-dimensional input vectors.

Furthermore, Sequential supports built-in list APIs, so you can concatenate Sequential objects to create
a longer Sequential model easily with the same ways as Python lists:

>>> from chainer import Sequential
>>> model_A = Sequential(L.Linear(10, 10), F.relu)
>>> model_B = Sequential(L.Linear(10, 10), F.sigmoid)
>>> model_C = model_A + model_B

To repeat a Sequential object multiple times, you can use repeat() method.

>>> model_D = model_A.repeat(3)

You can also add your own functions or any callable objects to a Sequential object:

from chainer.links.model.vision.vgg import VGG16Layers

model = Sequential()
model.append(L.Linear(n_out, n_hidden))
model.append(F.relu)
model.append(lambda x: F.reshape(x, (1, 3, 224, 224)))
model.append(VGG16Layers())
model.append(lambda x: x['prob'])

y = model(x)

4.3. Link and Chains 779

Chainer Documentation, Release 7.0.0b4

The above code example shows how to add some layers to the model using append() method and then add
a large network (VGG16Layers) and finally add a lambda function to extract the prob output.

You can check the structure of your model briefly using print as following:

>>> print(model_C)
Sequential(
(0): Linear(in_size=10, out_size=10, nobias=False),
(1): <function relu at 0x...>,
(2): Linear(in_size=10, out_size=10, nobias=False),
(3): <function sigmoid at 0x...>,

)

Note: Note that a Sequential link which has at least one lambda function as its member cannot be pickled.
So, please use partial method from functools package instead:

from functools import partial

This is not pickable
model = Sequential(

L.Convolution2D(None, 64, 3, 1, 1),
lambda x: F.max_pooling_2d(x, 2)

)

This is pickable
model = Sequential(

L.Convolution2D(None, 64, 3, 1, 1),
partial(F.max_pooling_2d, ksize=2)

)

Parameters layers – The layers which are called in its order. Each component should be a
callable object including Link object and functions defined under the chainer.functions,
e.g., relu(), etc.

Methods

__call__(*args, **kwargs)
Call self as a function.

__getitem__(i)
Returns the child at given index.

Parameters index (int) – Index of the child in the list.

Returns The index-th child link.

Return type Link

__setitem__(i, layer)

__len__()
Returns the number of children.

__iter__()

780 Chapter 4. API Reference

https://docs.python.org/3/library/functools.html#module-functools
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

add_hook(hook, name=None)
Registers a link hook.

Parameters

• hook (LinkHook) – Link hook to be registered.

• name (str) – Name of the link hook. The name must be unique among link hooks
registered to this link. If None, the default name of the link hook is used.

Returns self

add_link(link)
Registers a child link and adds it to the tail of the list.

Parameters link (Link) – The link object to be registered.

add_param(name, shape=None, dtype=<class ’numpy.float32’>, initializer=None)
Registers a parameter to the link.

Parameters

• name (str) – Name of the parameter. This name is also used as the attribute name.

• shape (int or tuple of ints) – Shape of the parameter array. If it is omitted,
the parameter variable is left uninitialized.

• dtype – Data type of the parameter array.

• initializer (initializer) – If it is not None, the data is initialized with the given
initializer. If it is an array, the data is directly initialized by it. If it is callable, it is used as
a weight initializer. Note that in these cases, dtype argument is ignored. It can also be a
scalar, in which case the data array will be filled by this scalar. Note that float32 is used in
this case.

add_persistent(name, value)
Registers a persistent value to the link.

The registered value is saved and loaded on serialization and deserialization. The value is set to an attribute
of the link.

Parameters

• name (str) – Name of the persistent value. This name is also used for the attribute name.

• value – Value to be registered.

addgrads(link)
Accumulates gradient values from given link.

This method adds each gradient array of the given link to corresponding gradient array of this link. The
accumulation is even done across host and different devices.

Parameters link (Link) – Source link object.

append(layer)
S.append(value) – append value to the end of the sequence

children()
Returns a generator of all child links.

Returns A generator object that generates all child links.

clear()→ None – remove all items from S

4.3. Link and Chains 781

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

cleargrads()
Clears all gradient arrays.

This method should be called before the backward computation at every iteration of the optimization.

copy(mode=’share’)
Returns a deep copy of the chainlist.

copyparams(link, copy_persistent=True)
Copies all parameters from given link.

This method copies data arrays of all parameters in the hierarchy. The copy is even done across the host
and devices. Note that this method does not copy the gradient arrays.

From v5.0.0: this method also copies the persistent values (e.g. the moving statistics of
BatchNormalization). If the persistent value is an ndarray, the elements are copied. Otherwise,
it is copied using copy.deepcopy(). The old behavior (not copying persistent values) can be repro-
duced with copy_persistent=False.

Parameters

• link (Link) – Source link object.

• copy_persistent (bool) – If True, persistent values are also copied. True by
default.

count(value)→ integer – return number of occurrences of value

count_by_layer_type(type_name)
Count the number of layers by layer type.

This method counts the number of layers which have the name given by the argument type_name. For
example, if you want to know the number of Linear layers included in this model, type_name should
be Linear. If you want to know the number of Function classes or user-defined functions which have
a specific name, type_name should be the function name, e.g., relu or reshape, etc.

Parameters type_name (str) – The class or function name of a layer you want to enumerate.

count_params()
Counts the total number of parameters.

This method counts the total number of scalar values included in all the Parameters held by this link
and its descendants.

If the link containts uninitialized parameters, this method raises a warning.

Returns The total size of parameters (int)

delete_hook(name)
Unregisters the link hook.

Parameters name (str) – The name of the link hook to be unregistered.

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

disable_update()
Disables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to False.

782 Chapter 4. API Reference

https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

enable_update()
Enables update rules of all parameters under the link hierarchy.

This method sets the enabled flag of the update rule of each parameter variable to True.

extend(sequential)
S.extend(iterable) – extend sequence by appending elements from the iterable

flatten()
Flatten nested Sequential links.

This method flattens all the nested Sequential links inside this Sequential link.

Returns A flattened Sequential object.

Example

>>> import chainer
>>> import chainer.functions as F
>>> import chainer.links as L
>>> a = chainer.Sequential(L.Linear(None, 10), F.relu)
>>> b = chainer.Sequential(L.Linear(None, 10), F.relu)
>>> a.append(b)
>>> print(a) # Without flatten
0 Linear W(None) b(10,)
1 relu
2 Sequential which has 2 layers
>>> print(a.flatten()) # With flatten
0 Linear W(None) b(10,)
1 relu
2 Linear W(None) b(10,)
3 relu

forward(*x)
Forward pass computation.

This method performs the forward pass computation by giving the input variable x to the layers registered
in the constructor in the same order as the order in which the arguments are given to the constructor.

It should be noted that the input variable is given directly to the first layer and all intermediate outputs
generated during the forward pass are also directly fed to the next layer. Therefore, the number of outputs
at a layer should be the same as the number of inputs at the next layer.

Parameters x – Input variables.

Returns The output of the final layer in the given layers.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

init_scope()
Creates an initialization scope.

This method returns a context manager object that enables registration of parameters (and links for Chain)
by an assignment. A Parameter object can be automatically registered by assigning it to an attribute
under this context manager.

4.3. Link and Chains 783

Chainer Documentation, Release 7.0.0b4

Example

In most cases, the parameter registration is done in the initializer method. Using the init_scope
method, we can simply assign a Parameter object to register it to the link.

class MyLink(chainer.Link):
def __init__(self):

super().__init__()
with self.init_scope():

self.W = chainer.Parameter(0, (10, 5))
self.b = chainer.Parameter(0, (5,))

insert(i, layer)
Insert a child link at the given index.

Parameters

• index (int) – The position of the list where the new

• is inserted. (link) –

• link (Link) – The link to be inserted.

links(skipself=False)
Returns a generator of all links under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all links.

namedlinks(skipself=False)
Returns a generator of all (path, link) pairs under the hierarchy.

Parameters skipself (bool) – If True, then the generator skips this link and starts with the
first child link.

Returns A generator object that generates all (path, link) pairs.

namedparams(include_uninit=True)
Returns a generator of all (path, param) pairs under the hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all (path, parameter) pairs. The paths are relative from
this link.

params(include_uninit=True)
Returns a generator of all parameters under the link hierarchy.

Parameters include_uninit (bool) – If True, it also generates uninitialized parameters.

Returns A generator object that generates all parameters.

pop([index])→ item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

register_persistent(name)
Registers an attribute of a given name as a persistent value.

This is a convenient method to register an existing attribute as a persistent value. If name has been already
registered as a parameter, this method removes it from the list of parameter names and re-registers it as a
persistent value.

784 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters name (str) – Name of the attribute to be registered.

remove(layer)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

remove_by_layer_type(type_name)
Remove layers by layer type.

This method removes layers from the Sequential object by the layer’s class name or function name.
If you want to remove a Link, the argument type_name should be its class name, e.g., Linear
or Convolution2D, etc. If you want to remove a Function class or any other callable objects,
type_name should be the function name, e.g., relu or reshape, etc.

Parameters type_name (str) – The name of a layer you want to remove.

repeat(n_repeat, mode=’init’)
Repeats this link multiple times to make a Sequential.

This method returns a Sequential object which has the same Link multiple times repeatedly. The
mode argument means how to copy this link to repeat.

Example

You can repeat the same link multiple times to create a longer Sequential block like this:

class ConvBNReLU(chainer.Chain):

def __init__(self):
super(ConvBNReLU, self).__init__()
with self.init_scope():

self.conv = L.Convolution2D(
None, 64, 3, 1, 1, nobias=True)

self.bn = L.BatchNormalization(64)

def forward(self, x):
return F.relu(self.bn(self.conv(x)))

net = ConvBNReLU().repeat(16, mode='init')

The net object contains 16 blocks, each of which is ConvBNReLU. And the mode was init, so each
block is re-initialized with different parameters. If you give copy to this argument, each block has same
values for its parameters but its object ID is different from others. If it is share, each block is same to
others in terms of not only parameters but also the object IDs because they are shallow-copied, so that
when the parameter of one block is changed, all the parameters in the others also change.

Parameters

• n_repeat (int) – Number of times to repeat.

• mode (str) – It should be either init, copy, or share. init means parameters
of each repeated element in the returned Sequential will be re-initialized, so that all
elements have different initial parameters. copy means that the parameters will not be
re-initialized but object itself will be deep-copied, so that all elements have same initial
parameters but can be changed independently. share means all the elements which con-
sist the resulting Sequential object are same object because they are shallow-copied,
so that all parameters of elements are shared with each other.

4.3. Link and Chains 785

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

reverse()
S.reverse() – reverse IN PLACE

serialize(serializer)
Serializes the link object.

Parameters serializer (AbstractSerializer) – Serializer object.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

zerograds()
Initializes all gradient arrays by zero.

Deprecated since version v1.15: Use the more efficient cleargrads() instead.

__eq__()
Return self==value.

786 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

__add__(other)

Attributes

device
Device instance.

local_link_hooks
Ordered dictionary of registered link hooks.

Contrary to chainer.thread_local.link_hooks, which registers its elements to all functions,
link hooks in this property are specific to this link.

printable_specs
Generator of printable specs of this link.

Yields specs (tuple of str and object) – Basically, it returns the arguments (pair of keyword
and value) that are passed to the __init__(). This pair of key and value is used for
representing this class or subclass with __str__().

update_enabled
True if at least one parameter has an update rule enabled.

within_init_scope
True if the current code is inside of an initialization scope.

See init_scope() for the details of the initialization scope.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.3.6 Link hooks

Chainer provides a link-hook mechanism that enriches the behavior of Link.

chainer.link_hooks.
SpectralNormalization

Spectral Normalization link hook implementation.

chainer.link_hooks.TimerHook Link hook for measuring elapsed time of Link.
forward().

chainer.link_hooks.
WeightStandardization

Weight Standardization (WS) link hook implementa-
tion.

4.3. Link and Chains 787

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.link_hooks.SpectralNormalization

class chainer.link_hooks.SpectralNormalization(n_power_iteration=1, eps=1e-06,
use_gamma=False, factor=None,
weight_name=’W’, name=None)

Spectral Normalization link hook implementation.

This hook normalizes a weight using max singular value and this value is computed via power iteration
method. Currently, this hook is supposed to be added to chainer.links.Linear, chainer.links.
EmbedID, chainer.links.Convolution2D, chainer.links.ConvolutionND, chainer.
links.Deconvolution2D, and chainer.links.DeconvolutionND. However, you can use this to
other links like RNNs by specifying weight_name. It is highly recommended to add this hook before opti-
mizer setup because this hook add a scaling parameter gamma if use_gamma is True. Otherwise, the registered
gamma will not be updated.

W̄ =

W

𝜎(W)

, where 𝜎(W) :=

max
h:h̸=0

‖Wh‖2
‖h‖2

= max
‖h‖2≤1

‖Wh‖2

See: T. Miyato et. al., Spectral Normalization for Generative Adversarial Networks

Parameters

• n_power_iteration (int) – Number of power iteration. The default value is 1.

• eps (float) – Numerical stability in norm calculation. The default value is 1e-6 for the
compatibility with mixed precision training. The value used in the author’s implementation
is 1e-12.

• use_gamma (bool) – If True, weight scaling parameter gamma which is initialized by
initial weight’s max singular value is introduced.

• factor (float, None) – Scaling parameter to divide maximum singular value. The
default value is 1.0.

• weight_name (str) – Link’s weight name to apply this hook. The default value is 'W'.

• name (str or None) – Name of this hook. The default value is
'SpectralNormalization'.

Variables

• vector_name (str) – Name of the approximate first left singular vector registered in the
target link. the target link.

• axis (int) – Axis of weight represents the number of output feature maps or output units
(out_channels and out_size, respectively).

Example

There are almost the same but 2 ways to apply spectral normalization (SN) hook to links.

1. Initialize link and SN separately. This makes it easy to handle buffer and parameter of links registered by SN
hook.

788 Chapter 4. API Reference

https://arxiv.org/abs/1802.05957
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

>>> l = L.Convolution2D(3, 5, 3)
>>> hook = chainer.link_hooks.SpectralNormalization()
>>> _ = l.add_hook(hook)
>>> # Check the shape of the first left singular vector.
>>> getattr(l, hook.vector_name).shape
(5,)
>>> # Delete SN hook from this link.
>>> l.delete_hook(hook.name)

2. Initialize both link and SN hook at one time. This makes it easy to define your original Chain.

>>> # SN hook handles lazy initialization!
>>> layer = L.Convolution2D(
... 5, 3, stride=1, pad=1).add_hook(
... chainer.link_hooks.SpectralNormalization())

Methods

__enter__()

__exit__()

added(link)
Callback function invoked when the link hook is registered

Parameters link (Link) – Link object to which the link hook is registered. None if the link
hook is registered globally.

deleted(link)
Callback function invoked when the link hook is unregistered

Parameters link (Link) – Link object to which the link hook is unregistered. None if the
link hook had been registered globally.

forward_postprocess(cb_args)
Callback function invoked after a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

• out Return value of the forward method.

forward_preprocess(cb_args)
Callback function invoked before a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

4.3. Link and Chains 789

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

normalize_weight(link)
Normalize target weight before every single forward computation.

reshape_W(W)
Reshape & transpose weight into 2D if necessary.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'SpectralNormalization'

chainer.link_hooks.TimerHook

class chainer.link_hooks.TimerHook
Link hook for measuring elapsed time of Link.forward().

Example

Code example:

from chainer.link_hooks import TimerHook
hook = TimerHook()
with hook:

trainer.run()
hook.print_report()

Output example:

LinkName ElapsedTime Occurrence
Linear 41.42sec 2100

MLP 42.09sec 700
Classifier 42.39sec 700

where LinkName is the name of link that calls the hook, and ElapsedTime is the elapsed time the link consumed,
and Occurrence is the number of calls.

Warning: Call graph of links are hierarchical. That means reported elapsed times may be overlapping with
each other and the sum may exceed the total time.

790 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Variables call_history – List of measurement results. It consists of pairs of the name of the
link that calls this hook and the elapsed time the forward() method of link consumes.

Methods

__enter__()

__exit__(*_)

added(link)
Callback function invoked when the link hook is registered

Parameters link (Link) – Link object to which the link hook is registered. None if the link
hook is registered globally.

deleted(link)
Callback function invoked when the link hook is unregistered

Parameters link (Link) – Link object to which the link hook is unregistered. None if the
link hook had been registered globally.

forward_postprocess(args)
Callback function invoked after a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

• out Return value of the forward method.

forward_preprocess(args)
Callback function invoked before a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

print_report(unit=’auto’, file=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-
8’>)

Prints a summary report of time profiling in links.

Parameters unit (str) – Supplementary units used for computational times. sec, ms, us, ns,
auto‘(default) and ‘auto_foreach are supported. If auto, units of times are aligned to the
largest, and if auto_foreach, units of times are adjusted for each element.

summary()
Returns a summary of time profiling in links.

Returns A summarized dictionary whose keys are link names and values are dictionaries of
elapsed_time and occurrence.

total_time()
Returns total elapsed time in seconds.

4.3. Link and Chains 791

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'TimerHook'

table = {'ms': 1000, 'ns': 1000000000, 'sec': 1, 'us': 1000000}

chainer.link_hooks.WeightStandardization

class chainer.link_hooks.WeightStandardization(eps=1e-05, weight_name=’W’,
name=None)

Weight Standardization (WS) link hook implementation.

This hook standardizes a weight by weight statistics.

This link hook implements a WS which computes the mean and variance along axis “output channels”, then
normalizes by these statistics. WS improves training by reducing the Lipschitz constants of the loss and the
gradients like batch normalization (BN) but without relying on large batch sizes during training. Specifically,
the performance of WS with group normalization (GN) trained with small-batch is able to match or outperforms
that of BN trained with large-batch. WS is originally proposed for 2D convolution layers followed by mainly
GN and sometimes BN. Note that this hook is able to handle layers such as N-dimensional convolutional, linear
and embedding layers but there is no guarantee that this hook helps training.

See: Siyuan Qiao et. al., Weight Standardization

Parameters

• eps (float) – Numerical stability in standard deviation calculation. The default value is
1e-5.

• weight_name (str) – Link’s weight name to appky this hook. The default value is 'W'.

• name (str or None) – Name of this hook. The default value is
'WeightStandardization'.

Methods

__enter__()

__exit__()

added(link)
Callback function invoked when the link hook is registered

792 Chapter 4. API Reference

https://arxiv.org/abs/1903.10520
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 7.0.0b4

Parameters link (Link) – Link object to which the link hook is registered. None if the link
hook is registered globally.

deleted(link)
Callback function invoked when the link hook is unregistered

Parameters link (Link) – Link object to which the link hook is unregistered. None if the
link hook had been registered globally.

forward_postprocess(cb_args)
Callback function invoked after a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

• out Return value of the forward method.

forward_preprocess(cb_args)
Callback function invoked before a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'WeightStandardization'

You can also implement your own link-hook to inject arbitrary code before/after the forward propagation.

chainer.LinkHook Base class of hooks for links.

4.3. Link and Chains 793

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

chainer.LinkHook

class chainer.LinkHook
Base class of hooks for links.

LinkHook is a callback object that is registered to a Link. Registered link hooks are invoked before and after
calling Link.forward() method of each link.

Link hooks that derive from LinkHook may override the following method:

• added()

• deleted()

• forward_preprocess()

• forward_postprocess()

By default, these methods do nothing.

Specifically, when the __call__() method of some link is invoked, forward_preprocess() (resp.
forward_postprocess()) of all link hooks registered to this link are called before (resp. after) Link.
forward() method of the link.

There are two ways to register LinkHook objects to Link objects.

The first one is to use with statement. Link hooks hooked in this way are registered to all links within with
statement and are unregistered at the end of with statement.

Example

The following code is a simple example in which we measure the elapsed time of a part of forward propagation
procedure with TimerHook, which is a subclass of LinkHook.

>>> class Model(chainer.Chain):
... def __init__(self):
... super(Model, self).__init__()
... with self.init_scope():
... self.l = L.Linear(10, 10)
... def forward(self, x1):
... return F.exp(self.l(x1))
>>> model1 = Model()
>>> model2 = Model()
>>> x = chainer.Variable(np.zeros((1, 10), np.float32))
>>> with chainer.link_hooks.TimerHook() as m:
... _ = model1(x)
... y = model2(x)
>>> model3 = Model()
>>> z = model3(y)
>>> print('Total time : {}'.format(m.total_time()))
...
Total time : ...

In this example, we measure the elapsed times for each forward propagation of all functions in model1 and
model2. Note that model3 is not a target measurement as TimerHook is unregistered before forward prop-
agation of model3.

Note: Chainer stores the dictionary of registered link hooks as a thread local object. So, link hooks registered

794 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

are different depending on threads.

The other one is to register directly to a Link object by calling its add_hook()method. Link hooks registered
in this way can be removed by delete_hook() method. Contrary to former registration method, link hooks
are registered only to the link which add_hook() is called.

Parameters name (str) – Name of this link hook.

Methods

__enter__()

__exit__(*_)

added(link)
Callback function invoked when the link hook is registered

Parameters link (Link) – Link object to which the link hook is registered. None if the link
hook is registered globally.

deleted(link)
Callback function invoked when the link hook is unregistered

Parameters link (Link) – Link object to which the link hook is unregistered. None if the
link hook had been registered globally.

forward_postprocess(args)
Callback function invoked after a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

• out Return value of the forward method.

forward_preprocess(args)
Callback function invoked before a forward call of a link.

Parameters args – Callback data. It has the following attributes:

• link (Link) Link object.

• forward_name (str) Name of the forward method.

• args (tuple) Non-keyword arguments given to the forward method.

• kwargs (dict) Keyword arguments given to the forward method.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

4.3. Link and Chains 795

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'LinkHook'

4.4 Probability Distributions

Chainer provides many Distribution implementations in the chainer.distributions package.

4.4.1 Distributions

chainer.distributions.Bernoulli Bernoulli Distribution.
chainer.distributions.Beta Beta Distribution.
chainer.distributions.Categorical Categorical Distribution.
chainer.distributions.Cauchy Cauchy Distribution.
chainer.distributions.Chisquare Chi-Square Distribution.
chainer.distributions.Dirichlet Dirichlet Distribution.
chainer.distributions.Exponential Exponential Distribution.
chainer.distributions.Gamma Gamma Distribution.
chainer.distributions.Geometric Geometric Distribution.
chainer.distributions.Gumbel Gumbel Distribution.
chainer.distributions.Independent Independent distribution.
chainer.distributions.Laplace Laplace Distribution.
chainer.distributions.LogNormal Logatithm Normal Distribution.
chainer.distributions.
MultivariateNormal

MultivariateNormal Distribution.

chainer.distributions.Normal Normal Distribution.
chainer.distributions.
OneHotCategorical

OneHotCategorical Distribution.

chainer.distributions.Pareto Pareto Distribution.
chainer.distributions.Poisson Poisson Distribution.
chainer.distributions.Uniform Uniform Distribution.

chainer.distributions.Bernoulli

class chainer.distributions.Bernoulli(p=None, logit=None, binary_check=False)
Bernoulli Distribution.

The probability mass function of the distribution is expressed as

𝑃 (𝑥 = 1; 𝑝) = 𝑝

𝑃 (𝑥 = 0; 𝑝) = 1− 𝑝

796 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Parameters

• p (Variable or N-dimensional array) – Parameter of distribution representing 𝑝. Either p
or logit (not both) must have a value.

• logit (Variable or N-dimensional array) – distribution representing log{𝑝/(1 − 𝑝)}.
Either p or logit (not both) must have a value.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

4.4. Probability Distributions 797

Chainer Documentation, Release 7.0.0b4

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

798 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

logit

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

p

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

4.4. Probability Distributions 799

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.distributions.Beta

class chainer.distributions.Beta(a, b)
Beta Distribution.

The probability density function of the distribution is expressed as

𝑓(𝑥) =
𝑥𝛼−1(1− 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
,

for 0 < 𝑥 < 1, 𝛼 > 0, 𝛽 > 0.

Parameters

• a (Variable or N-dimensional array) – Parameter of distribution representing 𝛼.

• b (Variable or N-dimensional array) – Parameter of distribution representing 𝛽.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

800 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

4.4. Probability Distributions 801

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

a

b

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

802 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Categorical

class chainer.distributions.Categorical(p=None, **kwargs)
Categorical Distribution.

The probability mass function of the distribution is expressed as

𝑃 (𝑥 = 𝑖; 𝑝) = 𝑝𝑖

Parameters

• p (Variable or N-dimensional array) – Parameter of distribution.

• logit (Variable or N-dimensional array) – Parameter of distribution representing
log{𝑝}+ 𝐶. Either p or logit (not both) must have a value.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

4.4. Probability Distributions 803

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

804 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

log_p

mean
Returns the mean of the distribution.

Returns The mean of the distribution.

Return type Variable

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

p

4.4. Probability Distributions 805

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance
Returns the variance of the distribution.

Returns The variance of the distribution.

Return type Variable

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Cauchy

class chainer.distributions.Cauchy(loc, scale)
Cauchy Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥;𝑥0, 𝛾) =
1

𝜋

𝛾

(𝑥− 𝑥0)2 + 𝛾2

Parameters

• loc (Variable or N-dimensional array) – Parameter of distribution representing the lo-
cation 𝑥0.

• scale (Variable or N-dimensional array) – Parameter of distribution representing the
scale 𝛾.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

806 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

4.4. Probability Distributions 807

Chainer Documentation, Release 7.0.0b4

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

808 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

loc

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Chisquare

class chainer.distributions.Chisquare(k)
Chi-Square Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥; 𝑘) =
1

2𝑘/2Γ(𝑘/2)
𝑥𝑘/2−1𝑒−𝑥/2

Parameters k (Variable or N-dimensional array) – Parameter of distribution.

4.4. Probability Distributions 809

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

810 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

4.4. Probability Distributions 811

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

k

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Dirichlet

class chainer.distributions.Dirichlet(alpha)
Dirichlet Distribution.

812 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

The probability density function of the distribution is expressed as

𝑝(𝑥) =
Γ(
∑︀𝐾

𝑖=1 𝛼𝑖)∏︀𝐾
𝑖=1 Γ(𝛼𝑖)

𝐾∏︁
𝑖=1

𝑥𝑖
𝛼𝑖−1

Parameters alpha (Variable or N-dimensional array) – Parameter of distribution.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

4.4. Probability Distributions 813

Chainer Documentation, Release 7.0.0b4

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

814 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Attributes

alpha

alpha0

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

4.4. Probability Distributions 815

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.distributions.Exponential

class chainer.distributions.Exponential(lam)
Exponential Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥;𝜆) = 𝜆𝑒−𝜆𝑥

Parameters lam (Variable or N-dimensional array) – Parameter of distribution 𝜆.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

816 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

4.4. Probability Distributions 817

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

lam

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

818 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Gamma

class chainer.distributions.Gamma(k, theta)
Gamma Distribution.

Parameters

• k (Variable or N-dimensional array) – Parameter of distribution.

• theta (Variable or N-dimensional array) – Parameter of distribution.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

4.4. Probability Distributions 819

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

820 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

k

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

4.4. Probability Distributions 821

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

theta

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Geometric

class chainer.distributions.Geometric(p)
Geometric Distribution.

The probability mass function of the distribution is expressed as

𝑃𝑟(𝑥 = 𝑘) = 𝑝(1− 𝑝)𝑘−1, 𝑓𝑜𝑟𝑘 = 1, 2, 3, ...,

Parameters p (Variable or N-dimensional array) – Parameter of distribution.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

822 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

4.4. Probability Distributions 823

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

p

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

824 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Gumbel

class chainer.distributions.Gumbel(loc, scale)
Gumbel Distribution.

The probability density function of the distribution is expressed as

𝑓(𝑥) =
1

𝜂
exp

{︂
−𝑥− 𝜇

𝜂

}︂
exp

[︂
− exp

{︂
−𝑥− 𝜇

𝜂

}︂]︂
,

Parameters

• loc (Variable or N-dimensional array) – Parameter of distribution 𝜇.

• scale (Variable or N-dimensional array) – Parameter of distribution 𝜂.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

4.4. Probability Distributions 825

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

826 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

loc

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

4.4. Probability Distributions 827

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Independent

class chainer.distributions.Independent(distribution, reinterpreted_batch_ndims=None)
Independent distribution.

Parameters

• distribution (Distribution) – The base distribution instance to transform.

• reinterpreted_batch_ndims (int) – Integer number of rightmost batch dims
which will be regarded as event dims. When None all but the first batch axis (batch axis 0)
will be transferred to event dimensions.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
The inverse cumulative distribution function for multivariate variable.

Cumulative distribution function for multivariate variable is not invertible. This function always raises
RuntimeError.

Parameters x (Variable or N-dimensional array) – Data points in the codomain of the dis-
tribution

828 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError

Chainer Documentation, Release 7.0.0b4

Raises RuntimeError –

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

4.4. Probability Distributions 829

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
The covariance of the independent distribution.

By definition, the covariance of the new distribution becomes block diagonal matrix. Let Σx be the co-
variance matrix of the original random variable x ∈ R𝑑, and x(1),x(2), · · ·x(𝑚) be the 𝑚 i.i.d. random
variables, new covariance matrix Σy of y = [x(1),x(2), · · · ,x(𝑚)] ∈ R𝑚𝑑 can be written as⎡⎢⎣ Σx1 0

. . .
0 Σx𝑚

⎤⎥⎦ .
Note that this relationship holds only if the covariance matrix of the original distribution is given analyti-
cally.

830 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

Returns The covariance of the distribution.

Return type Variable

distribution

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean
Returns the mean of the distribution.

Returns The mean of the distribution.

Return type Variable

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

reinterpreted_batch_ndims

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance
Returns the variance of the distribution.

Returns The variance of the distribution.

Return type Variable

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

4.4. Probability Distributions 831

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.distributions.Laplace

class chainer.distributions.Laplace(loc, scale)
Laplace Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥;𝜇, 𝑏) =
1

2𝑏
exp

(︂
−|𝑥− 𝜇|

𝑏

)︂
Parameters

• loc (Variable or N-dimensional array) – Parameter of distribution representing the lo-
cation 𝜇.

• scale (Variable or N-dimensional array) – Parameter of distribution representing the
scale 𝑏.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

832 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

4.4. Probability Distributions 833

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

loc

mean

mode

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

stddev

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

834 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.LogNormal

class chainer.distributions.LogNormal(mu, sigma)
Logatithm Normal Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥;𝜇, 𝜎) =
1√

2𝜋𝜎2𝑥
exp

(︂
− (log 𝑥− 𝜇)2

2𝜎2

)︂
Parameters

• mu (Variable or N-dimensional array) – Parameter of distribution 𝜇.

• sigma (Variable or N-dimensional array) – Parameter of distribution 𝜎.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

4.4. Probability Distributions 835

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

836 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

mu

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

sigma

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

4.4. Probability Distributions 837

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.MultivariateNormal

class chainer.distributions.MultivariateNormal(loc, **kwargs)
MultivariateNormal Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥;𝜇, 𝑉) =
1√︀

det(2𝜋𝑉)
exp

(︂
−1

2
(𝑥− 𝜇)𝑉 −1(𝑥− 𝜇)

)︂
Parameters

• loc (Variable or N-dimensional array) – Parameter of distribution representing the lo-
cation 𝜇.

• scale_tril (Variable or N-dimensional array) – Parameter of distribution represent-
ing the scale 𝐿 such that 𝑉 = 𝐿𝐿𝑇 .

Methods

__copy__()

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

838 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

4.4. Probability Distributions 839

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

d

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

loc

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

840 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale_tril

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance
Returns the variance of the distribution.

Returns The variance of the distribution.

Return type Variable

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Normal

class chainer.distributions.Normal(loc, scale=None, **kwargs)
Normal Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥;𝜇, 𝜎) =
1√

2𝜋𝜎2
exp

(︂
− (𝑥− 𝜇)2

2𝜎2

)︂
Parameters

• loc (Variable or N-dimensional array) – Parameter of distribution representing the lo-
cation 𝜇. This is the mean parameter.

• scale (Variable or N-dimensional array) – Parameter of distribution representing the
scale 𝜎. Either scale or log_scale (not both) must have a value.

• log_scale (Variable or N-dimensional array) – Parameter of distribution representing
the scale log(𝜎). Either scale or log_scale (not both) must have a value.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

4.4. Probability Distributions 841

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

842 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

4.4. Probability Distributions 843

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

loc

log_scale

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

stddev

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.OneHotCategorical

class chainer.distributions.OneHotCategorical(p)
OneHotCategorical Distribution.

Parameters p (Variable or N-dimensional array) – Parameter of distribution.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

844 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

4.4. Probability Distributions 845

Chainer Documentation, Release 7.0.0b4

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy
Returns the entropy of the distribution.

846 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

log_p

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

p

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Pareto

class chainer.distributions.Pareto(scale, alpha)
Pareto Distribution.

𝑓(𝑥) = 𝛼𝑥𝛼𝑚(𝑥)−(𝛼+1),

Parameters

• scale (Variable or N-dimensional array) – Parameter of distribution 𝑥𝑚.

• alpha (Variable or N-dimensional array) – Parameter of distribution 𝛼.

4.4. Probability Distributions 847

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

848 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

alpha

4.4. Probability Distributions 849

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

scale

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

850 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.distributions.Poisson

class chainer.distributions.Poisson(lam)
Poisson Distribution.

The probability mass function of the distribution is expressed as

𝑃 (𝑥;𝜆) =
𝜆𝑥𝑒−𝜆

𝑥!

Parameters lam (Variable or N-dimensional array) – Parameter of distribution. 𝜆

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

4.4. Probability Distributions 851

Chainer Documentation, Release 7.0.0b4

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

852 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

lam

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

4.4. Probability Distributions 853

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

chainer.distributions.Uniform

class chainer.distributions.Uniform(**kwargs)
Uniform Distribution.

The probability density function of the distribution is expressed as

𝑝(𝑥; 𝑙, ℎ) =

{︃
1

ℎ−𝑙 if 𝑙 ≤ 𝑥 ≤ ℎ
0 otherwise

Parameters

• low (Variable or N-dimensional array) – Parameter of distribution representing the
lower bound 𝑙.

• high (Variable or N-dimensional array) – Parameter of distribution representing the
higher bound ℎ.

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

854 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

4.4. Probability Distributions 855

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

high

loc

low

mean

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

856 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

Return type dict

scale

stddev

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

4.4.2 Functionals of distribution

chainer.cross_entropy Computes Cross entropy.
chainer.kl_divergence Computes Kullback-Leibler divergence.
chainer.register_kl Decorator to register KL divergence function.

chainer.cross_entropy

chainer.cross_entropy(dist1, dist2)
Computes Cross entropy.

For two continuous distributions 𝑝(𝑥), 𝑞(𝑥), it is expressed as

𝐻(𝑝, 𝑞) = −
∫︁
𝑝(𝑥) log 𝑞(𝑥)𝑑𝑥

For two discrete distributions 𝑝(𝑥), 𝑞(𝑥), it is expressed as

𝐻(𝑝, 𝑞) = −
∑︁
𝑥

𝑝(𝑥) log 𝑞(𝑥)

This function call kl_divergence() and entropy() of dist1. Therefore, it is necessary to register KL
divergence function with register_kl() decoartor and define entropy() in dist1.

Parameters

• dist1 (Distribution) – Distribution to calculate cross entropy 𝑝. This is the first (left)
operand of the cross entropy.

• dist2 (Distribution) – Distribution to calculate cross entropy 𝑞. This is the second
(right) operand of the cross entropy.

Returns Output variable representing cross entropy 𝐻(𝑝, 𝑞).

Return type Variable

chainer.kl_divergence

chainer.kl_divergence(dist1, dist2)
Computes Kullback-Leibler divergence.

4.4. Probability Distributions 857

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

For two continuous distributions 𝑝(𝑥), 𝑞(𝑥), it is expressed as

𝐷𝐾𝐿(𝑝||𝑞) =

∫︁
𝑝(𝑥) log

𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥

For two discrete distributions 𝑝(𝑥), 𝑞(𝑥), it is expressed as

𝐷𝐾𝐿(𝑝||𝑞) =
∑︁
𝑥

𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)

Parameters

• dist1 (Distribution) – Distribution to calculate KL divergence 𝑝. This is the first
(left) operand of the KL divergence.

• dist2 (Distribution) – Distribution to calculate KL divergence 𝑞. This is the second
(right) operand of the KL divergence.

Returns Output variable representing kl divergence 𝐷𝐾𝐿(𝑝||𝑞).

Return type Variable

Using register_kl(), we can define behavior of kl_divergence() for any two distributions.

chainer.register_kl

chainer.register_kl(Dist1, Dist2)
Decorator to register KL divergence function.

This decorator registers a function which computes Kullback-Leibler divergence. This function will be called
by kl_divergence() based on the argument types.

Parameters

• Dist1 (type) – type of a class inherit from Distribution to calculate KL divergence.

• Dist2 (type) – type of a class inherit from Distribution to calculate KL divergence.

The decorated functoion takes an instance of Dist1 and Dist2 and returns KL divergence value.

Example

This is a simple example to register KL divergence. A function to calculate a KL divergence value between an
instance of Dist1 and an instance of Dist2 is registered.

from chainer import distributions
@distributions.register_kl(Dist1, Dist2)
def _kl_dist1_dist2(dist1, dist2):

return KL

4.4.3 Base classes

chainer.Distribution Interface of Distribution

858 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

chainer.Distribution

class chainer.Distribution
Interface of Distribution

Distribution is a bass class for dealing with probability distributions.

This class provides the following capabilities.

1. Sampling random points.

2. Evaluating a probability-related function at a given realization value. (e.g., probability density function,
probability mass function)

3. Obtaining properties of distributions. (e.g., mean, variance)

Note that every method and property that computes them from chainer.Variable can basically be differ-
entiated.

In this class, sampled random points and realization values given in probability-related function is called sample.
Sample consists of batches, and each batch consists of independent events. Each event consists of values, and
each value in an event cannot be sampled independently in general. Each event in a batch is independent while it
is not sampled from an identical distribution. And each batch in sample is sampled from an identical distribution.

Each part of the sample-batch-event hierarchy has its own shape, which is called sample_shape,
batch_shape, and event_shape, respectively.

On initialization, it takes distribution-specific parameters as inputs. batch_shape and event_shape is
decided by the shape of the parameter when generating an instance of a class.

Example

The following code is an example of sample-batch-event hierarchy on using MultivariateNormal distri-
bution. This makes 2d normal distributions. dist consists of 12(4 * 3) independent 2d normal distributions.
And on initialization, batch_shape and event_shape is decided.

>>> import chainer
>>> import chainer.distributions as D
>>> import numpy as np
>>> d = 2
>>> shape = (4, 3)
>>> loc = np.random.normal(
... size=shape + (d,)).astype(np.float32)
>>> cov = np.random.normal(size=shape + (d, d)).astype(np.float32)
>>> cov = np.matmul(cov, np.rollaxis(cov, -1, -2))
>>> l = np.linalg.cholesky(cov)
>>> dist = D.MultivariateNormal(loc, scale_tril=l)
>>> dist.event_shape
(2,)
>>> dist.batch_shape
(4, 3)
>>> sample = dist.sample(sample_shape=(6, 5))
>>> sample.shape
(6, 5, 4, 3, 2)

Every probability-related function takes realization value whose shape is the concatenation of sample_shape,
batch_shape, and event_shape and returns an evaluated value whose shape is the concatenation of
sample_shape, and batch_shape.

4.4. Probability Distributions 859

Chainer Documentation, Release 7.0.0b4

Methods

cdf(x)
Evaluates the cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Cumulative distribution function value evaluated at x.

Return type Variable

icdf(x)
Evaluates the inverse cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Inverse cumulative distribution function value evaluated at x.

Return type Variable

log_cdf(x)
Evaluates the log of cumulative distribution function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of cumulative distribution function value evaluated at x.

Return type Variable

log_prob(x)
Evaluates the logarithm of probability at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of probability evaluated at x.

Return type Variable

log_survival_function(x)
Evaluates the logarithm of survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Logarithm of survival function value evaluated at x.

Return type Variable

perplexity(x)
Evaluates the perplexity function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Perplexity function value evaluated at x.

Return type Variable

prob(x)
Evaluates probability at the given points.

860 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Probability evaluated at x.

Return type Variable

sample(sample_shape=())
Samples random points from the distribution.

This function calls sample_n and reshapes a result of sample_n to sample_shape + batch_shape +
event_shape. On implementing sampling code in an inherited distribution class, it is not recommended
that you override this function. Instead of doing this, it is preferable to override sample_n.

Parameters sample_shape (tuple of int) – Sampling shape.

Returns Sampled random points.

Return type Variable

sample_n(n)
Samples n random points from the distribution.

This function returns sampled points whose shape is (n,) + batch_shape + event_shape. When implement-
ing sampling code in a subclass, it is recommended that you override this method.

Parameters n (int) – Sampling size.

Returns sampled random points.

Return type Variable

survival_function(x)
Evaluates the survival function at the given points.

Parameters x (Variable or N-dimensional array) – Data points in the domain of the distri-
bution

Returns Survival function value evaluated at x.

Return type Variable

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_shape
Returns the shape of a batch.

4.4. Probability Distributions 861

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Returns The shape of a sample that is not identical and independent.

Return type tuple

covariance
Returns the covariance of the distribution.

Returns The covariance of the distribution.

Return type Variable

entropy
Returns the entropy of the distribution.

Returns The entropy of the distribution.

Return type Variable

event_shape
Returns the shape of an event.

Returns The shape of a sample that is not identical and independent.

Return type tuple

mean
Returns the mean of the distribution.

Returns The mean of the distribution.

Return type Variable

mode
Returns the mode of the distribution.

Returns The mode of the distribution.

Return type Variable

params
Returns the parameters of the distribution.

Returns The parameters of the distribution.

Return type dict

stddev
Returns the standard deviation of the distribution.

Returns The standard deviation of the distribution.

Return type Variable

support
Returns the support of the distribution.

Returns String that means support of this distribution.

Return type str

variance
Returns the variance of the distribution.

Returns The variance of the distribution.

Return type Variable

862 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

xp
Array module for the distribution.

Depending on which of CPU/GPU this distribution is on, this property returns numpy or cupy.

4.5 Optimizers

chainer.optimizers.AdaDelta Zeiler’s ADADELTA.
chainer.optimizers.AdaGrad AdaGrad optimizer.
chainer.optimizers.Adam Adam optimizer.
chainer.optimizers.AdamW AdamW optimizer.
chainer.optimizers.AMSGrad AMSGrad optimizer.
chainer.optimizers.AdaBound AdaBound optimizer.
chainer.optimizers.AMSBound AMSBound optimizer.
chainer.optimizers.
CorrectedMomentumSGD

Momentum SGD optimizer.

chainer.optimizers.MomentumSGD Momentum SGD optimizer.
chainer.optimizers.NesterovAG Nesterov’s Accelerated Gradient.
chainer.optimizers.MSVAG M-SVAG optimizer.
chainer.optimizers.RMSprop RMSprop optimizer.
chainer.optimizers.RMSpropGraves Alex Graves’s RMSprop.
chainer.optimizers.SGD Vanilla Stochastic Gradient Descent.
chainer.optimizers.SMORMS3 Simon Funk’s SMORMS3.

4.5.1 chainer.optimizers.AdaDelta

class chainer.optimizers.AdaDelta(rho=0.95, eps=1e-06)
Zeiler’s ADADELTA.

See: http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf

Parameters

• rho (float) – Exponential decay rate of the first and second order moments.

• eps (float) – Small value for the numerical stability.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

4.5. Optimizers 863

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

864 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

4.5. Optimizers 865

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

__ge__()
Return self>=value.

Attributes

epoch = 0

eps
Alias to self.hyperparam.eps

rho
Alias to self.hyperparam.rho

t = 0

target = None

use_auto_new_epoch = False

4.5.2 chainer.optimizers.AdaGrad

class chainer.optimizers.AdaGrad(lr=0.001, eps=1e-08)
AdaGrad optimizer.

See: http://jmlr.org/papers/v12/duchi11a.html

Parameters

• lr (float) – Learning rate.

• eps (float) – Small value for the numerical stability.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

866 Chapter 4. API Reference

http://jmlr.org/papers/v12/duchi11a.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

4.5. Optimizers 867

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

eps
Alias to self.hyperparam.eps

lr
Alias to self.hyperparam.lr

868 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

t = 0

target = None

use_auto_new_epoch = False

4.5.3 chainer.optimizers.Adam

class chainer.optimizers.Adam(alpha=0.001, beta1=0.9, beta2=0.999, eps=1e-08, eta=1.0,
weight_decay_rate=0, amsgrad=False, adabound=False, fi-
nal_lr=0.1, gamma=0.001)

Adam optimizer.

See: Adam: A Method for Stochastic Optimization

Modified for proper weight decay (also called AdamW). AdamW introduces the additional parameters eta and
weight_decay_rate, which can be used to properly scale the learning rate, and decouple the weight decay
rate from alpha, as shown in the below paper.

Note that with the default values eta = 1 and weight_decay_rate = 0, this implementation is identical
to the standard Adam method.

See: Fixing Weight Decay Regularization in Adam

A flag amsgrad to use the AMSGrad variant of Adam from the paper: On the Convergence of Adam and
Beyond

A flag adabound to use the AdaBound variant of Adam from the paper: Adaptive Gradient Methods with
Dynamic Bound of Learning Rate

If both amsgrad and adabound are True, the optimizer is equivalent to AMSBound proposed in the Ad-
aBound paper.

Parameters

• alpha (float) – Coefficient of learning rate.

• beta1 (float) – Exponential decay rate of the first order moment.

• beta2 (float) – Exponential decay rate of the second order moment.

• eps (float) – Small value for the numerical stability.

• eta (float) – Schedule multiplier, can be used for warm restarts.

• weight_decay_rate (float) – Weight decay rate.

• amsgrad (bool) – Whether to use AMSGrad variant of Adam.

• adabound (bool) – Whether to use the AdaBound variant of Adam.

• final_lr (float) – Final (SGD) learning rate in AdaBound.

• gamma (float) – Convergence speed of the bound functions in AdaBound.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

4.5. Optimizers 869

https://arxiv.org/abs/1412.6980v8
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=Bkg3g2R9FX
https://openreview.net/forum?id=Bkg3g2R9FX
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

870 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

4.5. Optimizers 871

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

adabound
Alias to self.hyperparam.adabound

alpha
Alias to self.hyperparam.alpha

alpha_t

amsgrad
Alias to self.hyperparam.amsgrad

beta1
Alias to self.hyperparam.beta1

beta2
Alias to self.hyperparam.beta2

epoch = 0

eps
Alias to self.hyperparam.eps

eta
Alias to self.hyperparam.eta

final_lr
Alias to self.hyperparam.final_lr

gamma
Alias to self.hyperparam.gamma

lr

t = 0

target = None

use_auto_new_epoch = False

weight_decay_rate
Alias to self.hyperparam.weight_decay_rate

4.5.4 chainer.optimizers.AdamW

class chainer.optimizers.AdamW(alpha=0.001, beta1=0.9, beta2=0.999, eps=1e-08, eta=1.0,
weight_decay_rate=0)

AdamW optimizer.

This class is a special case of Adam.

See: Fixing Weight Decay Regularization in Adam

872 Chapter 4. API Reference

https://openreview.net/forum?id=rk6qdGgCZ

Chainer Documentation, Release 7.0.0b4

Parameters

• alpha (float) – Coefficient of learning rate.

• beta1 (float) – Exponential decay rate of the first order moment.

• beta2 (float) – Exponential decay rate of the second order moment.

• eps (float) – Small value for the numerical stability.

• eta (float) – Schedule multiplier, can be used for warm restarts. The default value is 1.0.

• weight_decay_rate (float) – Weight decay rate. The default value is 0.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

4.5. Optimizers 873

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

874 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

adabound
Alias to self.hyperparam.adabound

alpha
Alias to self.hyperparam.alpha

alpha_t

amsgrad
Alias to self.hyperparam.amsgrad

beta1
Alias to self.hyperparam.beta1

beta2
Alias to self.hyperparam.beta2

epoch = 0

eps
Alias to self.hyperparam.eps

eta
Alias to self.hyperparam.eta

final_lr
Alias to self.hyperparam.final_lr

gamma
Alias to self.hyperparam.gamma

4.5. Optimizers 875

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

lr

t = 0

target = None

use_auto_new_epoch = False

weight_decay_rate
Alias to self.hyperparam.weight_decay_rate

4.5.5 chainer.optimizers.AMSGrad

class chainer.optimizers.AMSGrad(alpha=0.001, beta1=0.9, beta2=0.999, eps=1e-08, eta=1.0)
AMSGrad optimizer.

This class is a special case of Adam.

See: On the Convergence of Adam and Beyond

Parameters

• alpha (float) – Coefficient of learning rate.

• beta1 (float) – Exponential decay rate of the first order moment.

• beta2 (float) – Exponential decay rate of the second order moment.

• eps (float) – Small value for the numerical stability.

• eta (float) – Schedule multiplier, can be used for warm restarts.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

876 Chapter 4. API Reference

https://openreview.net/forum?id=ryQu7f-RZ
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

4.5. Optimizers 877

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

adabound
Alias to self.hyperparam.adabound

alpha
Alias to self.hyperparam.alpha

alpha_t

878 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

amsgrad
Alias to self.hyperparam.amsgrad

beta1
Alias to self.hyperparam.beta1

beta2
Alias to self.hyperparam.beta2

epoch = 0

eps
Alias to self.hyperparam.eps

eta
Alias to self.hyperparam.eta

final_lr
Alias to self.hyperparam.final_lr

gamma
Alias to self.hyperparam.gamma

lr

t = 0

target = None

use_auto_new_epoch = False

weight_decay_rate
Alias to self.hyperparam.weight_decay_rate

4.5.6 chainer.optimizers.AdaBound

class chainer.optimizers.AdaBound(alpha=0.001, beta1=0.9, beta2=0.999, final_lr=0.1,
gamma=0.001, eps=1e-08, eta=1.0)

AdaBound optimizer.

This class is a special case of Adam.

See: Adaptive Gradient Methods with Dynamic Bound of Learning Rate

Parameters

• alpha (float) – Coefficient of learning rate.

• beta1 (float) – Exponential decay rate of the first order moment.

• beta2 (float) – Exponential decay rate of the second order moment.

• final_lr (float) – Final (SGD) learning rate in AdaBound.

• gamma (float) – Convergence speed of the bound functions in AdaBound.

• eps (float) – Small value for the numerical stability.

• eta (float) – Schedule multiplier, can be used for warm restarts.

4.5. Optimizers 879

https://openreview.net/forum?id=Bkg3g2R9FX
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

880 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

4.5. Optimizers 881

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

adabound
Alias to self.hyperparam.adabound

alpha
Alias to self.hyperparam.alpha

alpha_t

amsgrad
Alias to self.hyperparam.amsgrad

beta1
Alias to self.hyperparam.beta1

beta2
Alias to self.hyperparam.beta2

epoch = 0

eps
Alias to self.hyperparam.eps

eta
Alias to self.hyperparam.eta

final_lr
Alias to self.hyperparam.final_lr

gamma
Alias to self.hyperparam.gamma

lr

t = 0

target = None

use_auto_new_epoch = False

weight_decay_rate
Alias to self.hyperparam.weight_decay_rate

882 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

4.5.7 chainer.optimizers.AMSBound

class chainer.optimizers.AMSBound(alpha=0.001, beta1=0.9, beta2=0.999, final_lr=0.1,
gamma=0.001, eps=1e-08, eta=1.0)

AMSBound optimizer.

This class is a special case of Adam.

See: Adaptive Gradient Methods with Dynamic Bound of Learning Rate

Parameters

• alpha (float) – Coefficient of learning rate.

• beta1 (float) – Exponential decay rate of the first order moment.

• beta2 (float) – Exponential decay rate of the second order moment.

• final_lr (float) – Final (SGD) learning rate in AdaBound.

• gamma (float) – Convergence speed of the bound functions in AdaBound.

• eps (float) – Small value for the numerical stability.

• eta (float) – Schedule multiplier, can be used for warm restarts.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

4.5. Optimizers 883

https://openreview.net/forum?id=Bkg3g2R9FX
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

884 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

adabound
Alias to self.hyperparam.adabound

alpha
Alias to self.hyperparam.alpha

alpha_t

amsgrad
Alias to self.hyperparam.amsgrad

beta1
Alias to self.hyperparam.beta1

beta2
Alias to self.hyperparam.beta2

4.5. Optimizers 885

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

epoch = 0

eps
Alias to self.hyperparam.eps

eta
Alias to self.hyperparam.eta

final_lr
Alias to self.hyperparam.final_lr

gamma
Alias to self.hyperparam.gamma

lr

t = 0

target = None

use_auto_new_epoch = False

weight_decay_rate
Alias to self.hyperparam.weight_decay_rate

4.5.8 chainer.optimizers.CorrectedMomentumSGD

class chainer.optimizers.CorrectedMomentumSGD(lr=0.01, momentum=0.9)
Momentum SGD optimizer.

This implements momentum correction discussed in the third section of Accurate, Large Minibatch SGD: Train-
ing ImageNet in 1 Hour.

MomentumSGD implements the equation (10) of the paper. This optimizer implements the equation (9).

To get better understanding between the two methods, we show the equivalence between the equation (9) and
modification of the equation (10) that takes momentum correction into account. First, we set 𝑣𝑡 = 𝜂𝑡𝑢𝑡. We
substitute this relation to the equation (10).

𝑣𝑡+1 = 𝑚
𝜂𝑡+1

𝜂𝑡
𝑣𝑡 + 𝜂𝑡+1𝑔𝑡

= 𝑚
𝜂𝑡+1

𝜂𝑡
𝜂𝑡𝑢𝑡 + 𝜂𝑡+1𝑔𝑡

= 𝜂𝑡+1(𝑚𝑢𝑡 + 𝑔𝑡)

From this result, we derive 𝑢𝑡+1 = 𝑚𝑢𝑡 + 𝑔𝑡, which is how update tensors are calculated by
CorrectedMomentumSGD. Thus, the equivalence is shown.

Parameters

• lr (float) – Learning rate.

• momentum (float) – Exponential decay rate of the first order moment.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

886 Chapter 4. API Reference

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

4.5. Optimizers 887

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

888 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

lr
Alias to self.hyperparam.lr

momentum
Alias to self.hyperparam.momentum

t = 0

target = None

use_auto_new_epoch = False

4.5.9 chainer.optimizers.MomentumSGD

class chainer.optimizers.MomentumSGD(lr=0.01, momentum=0.9)
Momentum SGD optimizer.

Parameters

• lr (float) – Learning rate.

• momentum (float) – Exponential decay rate of the first order moment.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

4.5. Optimizers 889

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

890 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

4.5. Optimizers 891

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

lr
Alias to self.hyperparam.lr

momentum
Alias to self.hyperparam.momentum

t = 0

target = None

use_auto_new_epoch = False

4.5.10 chainer.optimizers.NesterovAG

class chainer.optimizers.NesterovAG(lr=0.01, momentum=0.9)
Nesterov’s Accelerated Gradient.

See: https://arxiv.org/abs/1212.0901

Parameters

• lr (float) – Learning rate.

• momentum (float) – Exponential decay rate of the first order moment.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

892 Chapter 4. API Reference

https://arxiv.org/abs/1212.0901
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

4.5. Optimizers 893

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

lr
Alias to self.hyperparam.lr

momentum
Alias to self.hyperparam.momentum

t = 0

target = None

use_auto_new_epoch = False

894 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

4.5.11 chainer.optimizers.MSVAG

class chainer.optimizers.MSVAG(lr=0.1, beta=0.9, eta=1.0, weight_decay_rate=0)
M-SVAG optimizer.

See: Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients

Modified for proper weight decay (also called AdamW). AdamW introduces the additional parameters eta and
weight_decay_rate, which can be used to properly scale the learning rate, and decouple the weight decay
rate from alpha, as shown in the below paper.

See: Fixing Weight Decay Regularization in Adam

Parameters

• lr (float) – Learning rate.

• beta (float) – Exponential decay rate of the first and second order moment.

• eta (float) – Schedule multiplier, can be used for warm restarts.

• weight_decay_rate (float) – Weight decay rate.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

4.5. Optimizers 895

https://arxiv.org/abs/1705.07774
https://openreview.net/forum?id=rk6qdGgCZ
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

896 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

beta
Alias to self.hyperparam.beta

epoch = 0

eta
Alias to self.hyperparam.eta

lr
Alias to self.hyperparam.lr

t = 0

target = None

use_auto_new_epoch = False

weight_decay_rate
Alias to self.hyperparam.weight_decay_rate

4.5. Optimizers 897

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

4.5.12 chainer.optimizers.RMSprop

class chainer.optimizers.RMSprop(lr=0.01, alpha=0.99, eps=1e-08, eps_inside_sqrt=False)
RMSprop optimizer.

See: T. Tieleman and G. Hinton (2012). Lecture 6.5 - rmsprop, COURSERA: Neural Networks for Machine
Learning.

Parameters

• lr (float) – Learning rate.

• alpha (float) – Exponential decay rate of the second order moment.

• eps (float) – Small value for the numerical stability.

• eps_inside_sqrt (bool) – When True, gradient will be divided by
√
𝑚𝑠+ 𝑒𝑝𝑠

where ms is the mean square. When False (default), gradient will be divided by√
𝑚𝑠 + 𝑒𝑝𝑠 instead. This option may be convenient for users porting code from other

frameworks; see #4754 for details.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

898 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://github.com/chainer/chainer/issues/4754
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

4.5. Optimizers 899

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

alpha
Alias to self.hyperparam.alpha

epoch = 0

eps
Alias to self.hyperparam.eps

eps_inside_sqrt
Alias to self.hyperparam.eps_inside_sqrt

lr
Alias to self.hyperparam.lr

t = 0

target = None

use_auto_new_epoch = False

900 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

4.5.13 chainer.optimizers.RMSpropGraves

class chainer.optimizers.RMSpropGraves(lr=0.0001, alpha=0.95, momentum=0.9,
eps=0.0001)

Alex Graves’s RMSprop.

See: https://arxiv.org/abs/1308.0850

Parameters

• lr (float) – Learning rate.

• alpha (float) – Exponential decay rate of the first and second order moments of the raw
gradient.

• momentum (float) – Exponential decay rate of the first order moment of the adjusted
gradient.

• eps (float) – Small value for the numerical stability.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

4.5. Optimizers 901

https://arxiv.org/abs/1308.0850
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

902 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

alpha
Alias to self.hyperparam.alpha

epoch = 0

eps
Alias to self.hyperparam.eps

lr
Alias to self.hyperparam.lr

momentum
Alias to self.hyperparam.momentum

t = 0

target = None

use_auto_new_epoch = False

4.5. Optimizers 903

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

4.5.14 chainer.optimizers.SGD

class chainer.optimizers.SGD(lr=0.01)
Vanilla Stochastic Gradient Descent.

Parameters lr (float) – Learning rate.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

904 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

4.5. Optimizers 905

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

lr
Alias to self.hyperparam.lr

t = 0

target = None

use_auto_new_epoch = False

4.5.15 chainer.optimizers.SMORMS3

class chainer.optimizers.SMORMS3(lr=0.001, eps=1e-16)
Simon Funk’s SMORMS3.

See http://sifter.org/~simon/journal/20150420.html.

Parameters

• lr (float) – Learning rate.

• eps (float) – Small value for the numerical stability.

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

906 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
http://sifter.org/~simon/journal/20150420.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

4.5. Optimizers 907

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 7.0.0b4

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

908 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

eps
Alias to self.hyperparam.eps

lr
Alias to self.hyperparam.lr

t = 0

target = None

use_auto_new_epoch = False

4.5.16 Optimizer base classes

chainer.Optimizer Base class of all numerical optimizers.
chainer.UpdateRule Base class of all update rules.
chainer.optimizer.Hyperparameter Set of hyperparameter entries of an optimizer.
chainer.GradientMethod Base class of all single gradient-based optimizers.

chainer.Optimizer

class chainer.Optimizer
Base class of all numerical optimizers.

This class provides basic features for all optimization methods. It optimizes parameters of a target link. The
target link is registered via the setup()method, and then the update()method updates its parameters based
on a given loss function.

Each optimizer implementation must be defined as a child class of Optimizer. It must override update()
method.

If the optimizer is based on single gradient computation (like most first-order methods), then it should inherit
GradientMethod, which adds some features dedicated for the first order methods, including the support of
UpdateRule.

Optimizer instance also supports hook functions. Hook function is registered by the add_hook() method.
Each hook function is called in registration order before of after the actual parameter update (configurable). If
the hook function has an attribute call_for_each_param and its value is True, the hook function is used
as a hook function of all update rules (i.e., it is invoked for every parameter by passing the corresponding update
rule and the parameter).

Variables

4.5. Optimizers 909

Chainer Documentation, Release 7.0.0b4

• target – Target link object. It is set by the setup() method.

• t – Number of update steps. It must be incremented by the update() method.

• epoch – Current epoch. It is incremented by the new_epoch() method.

• use_auto_new_epoch – Boolean flag to indicate if new_epoch() will be called by
the updater. Updater should set this flag to True if it automatically calls new_epoch().

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

910 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates the parameters.

This method updates the parameters of the target link. The behavior of this method is different for the
cases either lossfun is given or not.

If lossfun is given, this method typically clears the gradients, calls the loss function with given ex-
tra arguments, and calls the backward() method of its output to compute the gradients. The actual
implementation might call lossfun more than once.

If lossfun is not given, then this method assumes that the gradients of all parameters are already com-
puted. An implementation that requires multiple gradient computations might raise an error on this case.

In both cases, this method invokes the update procedure for all parameters.

Parameters

• lossfun (callable) – Loss function. You can specify one of loss functions from
built-in loss functions, or your own loss function. It should not be an loss functions with
parameters (i.e., Link instance). The function must accept arbitrary arguments and return
one Variable object that represents the loss (or objective) value. Returned value must
be a Variable derived from the input Variable object. lossfun can be omitted for single
gradient-based methods. In this case, this method assumes gradient arrays computed.

• kwds (args,) – Arguments for the loss function.

update_loss_scale()

__eq__()
Return self==value.

__ne__()
Return self!=value.

4.5. Optimizers 911

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

t = 0

target = None

use_auto_new_epoch = False

chainer.UpdateRule

class chainer.UpdateRule(parent_hyperparam=None)
Base class of all update rules.

Update rule is an object that implements how to update one parameter variable using the gradient of a loss
function. This class provides the interface and the common features of any update rules.

An update rule can be set to a Variable object that represents a parameter array of a model. An Optimizer
instance defines which parameters to update, and the update rule instance of each parameter defines how to
update it.

Hook functions can be set to any update rule instance. The hook function is called just before or after any
updates (configurable) in the order of registrations.

An implementation of update rule should override update_core() or its device-dependent variants (i.e.,
update_core_cpu() and update_core_gpu()).

The state (e.g. a moving average of the gradient) of the update rule is stored into the state dictionary. An
implementation of update rule using state should also override init_state() to initialize the state at the first
update. The values of the state dictionary are automatically copied to the appropriate device before the update
based on the data and grad arrays.

Parameters parent_hyperparam (Hyperparameter) – Hyperparameter that provides the
default values.

Variables

• enabled (bool) – Flag to configure if this update rule is active. If the update rule is not
active (i.e., enabled = False), the update() method does not update the parameter.

• hyperparam (Hyperparameter) – Hyperparameter of the update rule.

• t (int) – Number of updates made by this update rule.

912 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Methods

add_hook(hook, name=None, timing=’auto’)
Adds a hook function.

The hook function is called before or after any updates (see the timing attribute).

Parameters

• hook (callable) – Hook function to be added. It takes two arguments: the update rule
object and the parameter variable.

• name (str) – Name of the hook function. The name attribute of the hook function is
used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates. If ‘auto’ and the timing property of the hook is
not available, timing will default to ‘pre’.

init_state(param)
Initializes the state.

Any implementations that use the state should override this mehtod. This method is called at the first
update.

Parameters param (Variable) – Parameter variable. It can be used to extract the shape and
the data type of the parameter.

remove_hook(name)
Removes the specified hook function.

Parameters name (str) – Name of the hook function to be removed. The hook function reg-
istered with this name will be removed.

serialize(serializer)
Serializes the update rule state.

Be careful that this method only saves/loads the state of the update rule. The parameters of the target link
is not saved/loaded by this method, and so you need to serialize the target link separately if you want to
fully recover the training state including parameters.

Parameters serializer (AbstractSerializer) – Serializer object.

update(param)
Invokes hook functions and updates the parameter.

Parameters param (Variable) – Variable to be updated.

update_core(param)
Updates the parameter.

Implementation of UpdateRule should override this method or both of update_core_cpu() and
update_core_gpu().

Parameters param (Variable) – Variable to be updated.

update_core_chainerx(param)
Updates the ChainerX parameter.

This method can be overridden to implement custom update logic. The default implementation is to convert
the parameter to a memory-shared NumPy/CuPy parameter and call the corresponding update method.

See update_core() for details.

4.5. Optimizers 913

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters param (Variable) – Variable to be updated.

update_core_cpu(param)
Updates the parameter on CPU.

See update_core() for details.

Parameters param (Variable) – Variable to be updated.

update_core_gpu(param)
Updates the parameter on GPU.

See update_core() for details.

Parameters param (Variable) – Variable to be updated.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

This method enables use of parameter update in fp32. When it is enabled and data type of original
parameter variable is fp16, fp32 copy of parameter variable is automatically created and retained at
self.fp32_param. And the parameter is update in fp32 in the following way.

1. copies the grad of original parameter variable to the grad of fp32 parameter variable, converting its
data type from fp16 to fp32.

2. updates the parameter in fp32.

3. copies the data of fp32 parameter variable to the data of original parameter variable, converting its
data type from fp32 to fp16.

See update() for details.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

state
State dictionary.

chainer.optimizer.Hyperparameter

class chainer.optimizer.Hyperparameter(parent=None)
Set of hyperparameter entries of an optimizer.

914 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

This is a utility class to provide a set of hyperparameter entries for update rules and an optimizer. Each entry
can be set as an attribute of a hyperparameter object.

A hyperparameter object can hold a reference to its parent hyperparameter object. When an attribute does not
exist in the child hyperparameter, it automatically refers to the parent. We typically set the hyperparameter of
the gradient method as the parent of the hyperparameter of each update rule. It enables us to centralize the
management of hyperparameters (e.g. we can change the learning rate of all update rules just by modifying the
hyperparameter of the central optimizer object), while users can freely customize the hyperparameter of each
update rule if needed.

Parameters parent (Hyperparameter) – Parent hyperparameter.

Methods

get_dict()
Converts the hyperparameter into a dictionary.

Returns Dictionary containing all entries that can be referred by this hyperparameter object.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

parent
Parent hyperparameter object.

chainer.GradientMethod

class chainer.GradientMethod
Base class of all single gradient-based optimizers.

This is an extension of the Optimizer class. Typical gradient methods that just require the gradient at the
current parameter vector on an update can be implemented as its child class.

This class uses UpdateRule to manage the update rule of each parameter. A child class of GradientMethod
should override create_update_rule() to create the default update rule of each parameter.

This class also provides hyperparam, which is the hyperparameter used as the default configuration of each
update rule. All built-in gradient method implementations also provide proxy properties that act as aliases to the
attributes of hyperparam. It is recommended that you provide such an alias to each attribute. It can be done
by only adding one line for each attribute using HyperparameterProxy.

4.5. Optimizers 915

Chainer Documentation, Release 7.0.0b4

Variables hyperparam (Hyperparameter) – The hyperparameter of the gradient method. It
is used as the default configuration of each update rule (i.e., the hyperparameter of each update
rule refers this hyperparameter as its parent).

Methods

add_hook(hook, name=None, timing=’auto’)
Registers a hook function.

Hook function is typically called right after the gradient computation, though the timing depends on the
optimization method, and the timing attribute.

Parameters

• hook (callable) – Hook function. If hook.call_for_each_param is true, this
hook function is called for each parameter by passing the update rule and the parameter.
Otherwise, this hook function is called only once each iteration by passing the optimizer.

• name (str) – Name of the registration. If omitted, hook.name is used by default.

• timing (str) – Specifies when the hook is called. If ‘auto’, the timimg property of the
hook will decide the timing. If ‘pre’, the hook will be called before any updates. If ‘post’,
the hook will be called after any updates.

call_hook(hook)

call_hooks(timing=’pre’)
Invokes hook functions in registration order.

check_nan_in_grads()
Checks if there is NaN in grads when dynamic loss scaling used.

create_update_rule()
Creates a new update rule object.

This method creates an update rule object. It is called by setup() to set up an update rule of each
parameter. Each implementation of the gradient method should override this method to provide the default
update rule implementation.

Returns Update rule object.

Return type UpdateRule

is_safe_to_update()

loss_scaling(interval=1000, scale=None)
Configures the loss scaling algorithm.

Parameters

• interval (int) – Number of iterations until scaling factor gets doubled. This is effec-
tive when “dynamic” loss scaling is used.

• scale (float) – Loss scaling factor. If None, “dynamic” loss scaling is used, otherwise
“static” loss scaling is used.

new_epoch(auto=False)
Starts a new epoch.

This method increments the epoch count. Note that if the optimizer depends on the epoch count, then
user should call this method appropriately at the beginning of each epoch.

916 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Parameters auto (bool) – Should be True if this method is called by an updater. In this
case, use_auto_new_epoch should be set to True by the updater.

reallocate_cleared_grads()
Reallocate gradients cleared by cleargrad().

This method allocates arrays for all gradients which have None. This method is called before and after
every optimizer hook. If an inheriting optimizer does not require this allocation, the optimizer can override
this method with a blank function.

remove_hook(name)
Removes a hook function.

Parameters name (str) – Registered name of the hook function to remove.

serialize(serializer)
Serializes or deserializes the optimizer.

It only saves or loads the following things:

• Optimizer states

• Global states (t and epoch)

It does not saves nor loads the parameters of the target link. They should be separately saved or loaded.

Parameters serializer (AbstractSerializer) – Serializer or deserializer object.

set_loss_scale(loss_scale)
Sets loss scaling factor.

setup(link)
Sets a target link and initializes the optimizer states.

Given link is set to the target attribute. It also prepares the optimizer state dictionaries corresponding
to all parameters in the link hierarchy. The existing states are discarded.

Parameters link (Link) – Target link object.

Returns The optimizer instance.

Note: As of v4.0.0, this function returns the optimizer instance itself so that you can instantiate and setup
the optimizer in one line, e.g., optimizer = SomeOptimizer().setup(link).

update(lossfun=None, *args, **kwds)
Updates parameters based on a loss function or computed gradients.

This method runs in two ways.

• If lossfun is given, then it is used as a loss function to compute gradients.

• Otherwise, this method assumes that the gradients are already computed.

In both cases, the computed gradients are used to update parameters. The actual update routines are defined
by the update rule of each parameter.

update_loss_scale()

use_cleargrads(use=True)
Enables or disables use of cleargrads() in update.

Parameters use (bool) – If True, this function enables use of cleargrads. If False, disables
use of cleargrads (zerograds is used).

4.5. Optimizers 917

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Deprecated since version v2.0: Note that update() calls cleargrads() by default.
cleargrads() is more efficient than zerograds(), so one does not have to call
use_cleargrads(). This method remains for backward compatibility.

use_fp32_update(flag=True)
Enables use of parameter update in fp32.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

epoch = 0

t = 0

target = None

use_auto_new_epoch = False

4.5.17 Hook functions

chainer.optimizer_hooks.WeightDecay Optimizer/UpdateRule hook function for weight decay
regularization.

chainer.optimizer_hooks.Lasso Optimizer/UpdateRule hook function for Lasso regular-
ization.

chainer.optimizer_hooks.
GradientClipping

Optimizer hook function for gradient clipping.

chainer.optimizer_hooks.
GradientHardClipping

Optimizer/UpdateRule hook function for gradient clip-
ping.

chainer.optimizer_hooks.GradientNoise Optimizer/UpdateRule hook function for adding gradi-
ent noise.

chainer.optimizer_hooks.GradientLARS Optimizer/UpdateRule hook function for layer wise
adaptive rate scaling.

chainer.optimizer_hooks.WeightDecay

class chainer.optimizer_hooks.WeightDecay(rate)
Optimizer/UpdateRule hook function for weight decay regularization.

This hook function adds a scaled parameter to the corresponding gradient. It can be used as a regularization.

918 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Parameters rate (float) – Coefficient for the weight decay.

Variables

• rate (float) – Coefficient for the weight decay.

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

• call_for_each_param (bool) – Specifies if this hook is called for each parameter
(True) or only once (False) by an optimizer to which this hook is registered. This func-
tion does not expect users to switch the value from default one, which is True.

New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)
Call self as a function.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

call_for_each_param = True

name = 'WeightDecay'

timing = 'pre'

chainer.optimizer_hooks.Lasso

class chainer.optimizer_hooks.Lasso(rate)
Optimizer/UpdateRule hook function for Lasso regularization.

This hook function adds a scaled parameter to the sign of each weight. It can be used as a regularization.

Parameters rate (float) – Coefficient for the weight decay.

Variables

• rate (float) – Coefficient for the weight decay.

4.5. Optimizers 919

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

• call_for_each_param (bool) – Specifies if this hook is called for each parameter
(True) or only once (False) by an optimizer to which this hook is registered. This func-
tion does not expect users to switch the value from default one, which is True.

New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)
Call self as a function.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

call_for_each_param = True

name = 'Lasso'

timing = 'pre'

chainer.optimizer_hooks.GradientClipping

class chainer.optimizer_hooks.GradientClipping(threshold)
Optimizer hook function for gradient clipping.

This hook function scales all gradient arrays to fit to the defined L2 norm threshold.

Parameters threshold (float) – L2 norm threshold.

Variables

• threshold (float) – L2 norm threshold of gradient norm.

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

New in version 4.0.0: The timing parameter.

920 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Methods

__call__(opt)
Call self as a function.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = 'GradientClipping'

timing = 'pre'

chainer.optimizer_hooks.GradientHardClipping

class chainer.optimizer_hooks.GradientHardClipping(lower_bound, upper_bound)
Optimizer/UpdateRule hook function for gradient clipping.

This hook function clips all gradient arrays to be within a lower and upper bound.

Parameters

• lower_bound (float) – The lower bound of the gradient value.

• upper_bound (float) – The upper bound of the gradient value.

Variables

• lower_bound (float) – The lower bound of the gradient value.

• upper_bound (float) – The upper bound of the gradient value.

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

• call_for_each_param (bool) – Specifies if this hook is called for each parameter
(True) or only once (False) by an optimizer to which this hook is registered. This func-
tion does not expect users to switch the value from default one, which is True.

New in version 4.0.0: The timing parameter.

4.5. Optimizers 921

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Methods

__call__(rule, param)
Call self as a function.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

call_for_each_param = True

name = 'GradientHardClipping'

timing = 'pre'

chainer.optimizer_hooks.GradientNoise

class chainer.optimizer_hooks.GradientNoise(eta, noise_func=<function exponen-
tial_decay_noise>)

Optimizer/UpdateRule hook function for adding gradient noise.

This hook function simply adds noise generated by the noise_func to the gradient. By default it adds time-
dependent annealed Gaussian noise to the gradient at every training step:

𝑔𝑡 ← 𝑔𝑡 +𝑁(0, 𝜎2
𝑡)

where

𝜎2
𝑡 =

𝜂

(1 + 𝑡)𝛾

with 𝜂 selected from {0.01, 0.3, 1.0} and 𝛾 = 0.55.

Parameters

• eta (float) – Parameter that defines the scale of the noise. For the default noise function,
it is recommended that it be either 0.01, 0.3 or 1.0.

• noise_func (function) – Noise generating function which by default is given by
Adding Gradient Noise Improves Learning for Very Deep Networks.

Variables

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

922 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/pdf/1511.06807

Chainer Documentation, Release 7.0.0b4

• call_for_each_param (bool) – Specifies if this hook is called for each parameter
(True) or only once (False) by an optimizer to which this hook is registered. This func-
tion does not expect users to switch the value from default one, which is True.

New in version 4.0.0: The timing parameter.

Methods

__call__(rule, param)
Call self as a function.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

call_for_each_param = True

name = 'GradientNoise'

timing = 'pre'

chainer.optimizer_hooks.GradientLARS

class chainer.optimizer_hooks.GradientLARS(threshold=0.01, weight_decay=0.0, eps=1e-
09)

Optimizer/UpdateRule hook function for layer wise adaptive rate scaling.

See: Large Batch Training of Convolutional Networks.

See: Convergence Analysis of Gradient Descent Algorithms with Proportional Updates.

This hook function scales all gradient arrays to fit to the weight norm.

In <https://arxiv.org/abs/1708.03888>,

𝑣𝑡+1 = 𝑚 * 𝑣𝑡 + 𝛾 * 𝜆 * (∇𝐿(𝑤𝑡) + 𝛽𝑤𝑡),

𝑤𝑡+1 = 𝑤𝑡 − 𝑣𝑡+1,

where

• 𝛾 : learning_rate

• 𝑚 : momentum

4.5. Optimizers 923

https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1801.03137
https://arxiv.org/abs/1708.03888

Chainer Documentation, Release 7.0.0b4

• 𝛽 : weight_decay

• 𝜂 : lars_coeeficient

• 𝜆: local_lr = 𝜂 * ‖𝑤𝑡‖
‖∇𝐿(𝑤𝑡)‖+𝛽*‖𝑤𝑡‖ .

As 𝑙𝑟 in chainer.optimizers.SGD or chainer.optimizers.MomentumSGD corresponds to 𝛾 * 𝜂, we define
𝑐𝑙𝑖𝑝_𝑟𝑎𝑡𝑒 as ‖𝑤𝑡‖

‖∇𝐿(𝑤𝑡)‖+𝛽*‖𝑤𝑡‖ and reformulate the aforementioned formula as: 𝑣𝑡+1 = 𝑚*𝑣𝑡 + 𝑙𝑟*𝑐𝑙𝑖𝑝_𝑟𝑎𝑡𝑒*
(∇𝐿(𝑤𝑡) + 𝛽𝑤𝑡) and implement in this way. So you do not set lars_coeeficient.

Parameters

• threashold (float) – If weight norm is more than threshold, this function scales all
gradient arrays to fit weight norm. (See <https://arxiv.org/abs/1801.03137>)

• weight_decay (float) – Coefficient for the weight decay.

• eps (float) – Small value for the numerical stability. (See <https://arxiv.org/abs/1801.
03137>)

Variables

• threashold (float) – If weight norm is more than threshold, this function scales all
gradient arrays to fit weight norm. (See <https://arxiv.org/abs/1801.03137>)

• weight_decay (float) – Coefficient for the weight decay.

• eps (float) – Small value for the numerical stability. (See <https://arxiv.org/abs/1801.
03137>)

• timing (string) – Specifies when this hook should be called by the Opti-
mizer/UpdateRule. Valid values are ‘pre’ (before any updates) and ‘post’ (after any up-
dates).

• call_for_each_param (bool) – Specifies if this hook is called for each parameter
(True) or only once (False) by an optimizer to which this hook is registered. This func-
tion does not expect users to switch the value from default one, which is True.

Methods

__call__(rule, param)
Call self as a function.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

924 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1801.03137
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1801.03137
https://arxiv.org/abs/1801.03137
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1801.03137
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://arxiv.org/abs/1801.03137
https://arxiv.org/abs/1801.03137
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Attributes

call_for_each_param = True

name = 'GradientLARS'

timing = 'pre'

4.6 Weight Initializers

Weight initializers are used to initialize arrays. They destructively modify the content of numpy.ndarray or cupy.
ndarray. Typically, weight initializers are passed to Links to initialize their weights and biases.

A weight initializer can be any of the following objects.

• chainer.Initializer class instance.

• Python or NumPy scalar or numpy.ndarray.

• A callable that takes an array (numpy.ndarray or cupy.ndarray) and feeds the initial data into it.

• None, in which case the default initializer is used. Unless explicitly documented, it is LeCunNormal with
scale value 1.

If an initializer object has the dtype attribute, the initializer can assume that the array to feed the data into has
that dtype. If the required dtype, depending on the context where the initializer is used, does not match the dtype
attribute, Chainer will report an error.

4.6.1 Base class

chainer.Initializer Initializes array.

chainer.Initializer

class chainer.Initializer(dtype=None)
Initializes array.

It initializes the given array.

Variables dtype – Data type specifier. It is for type check in __call__ function.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

4.6. Weight Initializers 925

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.6.2 Concrete initializers

chainer.initializers.Identity Initializes array with the identity matrix.
chainer.initializers.Constant Initializes array with constant value.
chainer.initializers.Zero Initializes array to all-zero.
chainer.initializers.One Initializes array to all-one.
chainer.initializers.NaN Initializes array to all-NaN.
chainer.initializers.Normal Initializes array with a normal distribution.
chainer.initializers.LeCunNormal Initializes array with scaled Gaussian distribution.
chainer.initializers.GlorotNormal Initializes array with scaled Gaussian distribution.
chainer.initializers.HeNormal Initializes array with scaled Gaussian distribution.
chainer.initializers.Orthogonal Initializes array with an orthogonal system.
chainer.initializers.Uniform Initializes array with a scaled uniform distribution.
chainer.initializers.LeCunUniform Initializes array with a scaled uniform distribution.
chainer.initializers.GlorotUniform Initializes array with a scaled uniform distribution.
chainer.initializers.HeUniform Initializes array with scaled uniform distribution.
chainer.initializers.
UpsamplingDeconvFilter

Initializes array with upsampling filter.

chainer.initializers.
DownsamplingConvFilter

Initializes array with downsampling filter.

chainer.initializers.Identity

class chainer.initializers.Identity(scale=1.0, dtype=None)
Initializes array with the identity matrix.

It initializes the given array with the constant multiple of the identity matrix. Note that arrays to be passed must
be 2D squared matrices.

Variables scale (scalar) – A constant to be multiplied to identity matrices.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

926 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.Constant

class chainer.initializers.Constant(fill_value, dtype=None)
Initializes array with constant value.

Variables

• fill_value (scalar or N-dimensional array) – A constant to be assigned to the initialized
array. Broadcast is allowed on this assignment.

• dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

fill_value = None

4.6. Weight Initializers 927

Chainer Documentation, Release 7.0.0b4

chainer.initializers.Zero

class chainer.initializers.Zero(dtype=None)
Initializes array to all-zero.

Variables dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

fill_value = 0.0

chainer.initializers.One

class chainer.initializers.One(dtype=None)
Initializes array to all-one.

Variables dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

928 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

fill_value = 1.0

chainer.initializers.NaN

class chainer.initializers.NaN(dtype=None)
Initializes array to all-NaN.

Variables dtype – Data type specifier.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

fill_value = nan

4.6. Weight Initializers 929

Chainer Documentation, Release 7.0.0b4

chainer.initializers.Normal

class chainer.initializers.Normal(scale=0.05, dtype=None, **kwargs)
Initializes array with a normal distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is scale.

Parameters

• scale (float) – Standard deviation of Gaussian distribution.

• dtype – Data type specifier.

• rng (xp.random.RandomState) – Pseudo-random number generator.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.LeCunNormal

class chainer.initializers.LeCunNormal(scale=1.0, dtype=None, **kwargs)
Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is 𝑠𝑐𝑎𝑙𝑒×

√︁
1

𝑓𝑎𝑛𝑖𝑛
, where 𝑓𝑎𝑛𝑖𝑛 is the number of input units.

Reference: LeCun 98, Efficient Backprop http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

Parameters

• scale (float) – A constant that determines the scale of the standard deviation.

• dtype – Data type specifier.

• rng (xp.random.RandomState) – Pseudo-random number generator.

930 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.GlorotNormal

class chainer.initializers.GlorotNormal(scale=1.0, dtype=None, **kwargs)
Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is 𝑠𝑐𝑎𝑙𝑒×

√︁
2

𝑓𝑎𝑛𝑖𝑛+𝑓𝑎𝑛𝑜𝑢𝑡
, where 𝑓𝑎𝑛𝑖𝑛 and 𝑓𝑎𝑛𝑜𝑢𝑡 are the number of input

and output units, respectively.

Reference: Glorot & Bengio, AISTATS 2010

Parameters

• scale (float) – A constant that determines the scale of the standard deviation.

• dtype – Data type specifier.

• rng (xp.random.RandomState) – Pseudo-random number generator.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

4.6. Weight Initializers 931

https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.HeNormal

class chainer.initializers.HeNormal(scale=1.0, dtype=None, fan_option=’fan_in’,
**kwargs)

Initializes array with scaled Gaussian distribution.

Each element of the array is initialized by the value drawn independently from Gaussian distribution whose
mean is 0, and standard deviation is 𝑠𝑐𝑎𝑙𝑒×

√︁
2

𝑓𝑎𝑛 . If fan_option == 'fan_in', 𝑓𝑎𝑛 is the number of
input units. If fan_option == 'fan_out', 𝑓𝑎𝑛 is the number of output units.

Reference: He et al., https://arxiv.org/abs/1502.01852

Parameters

• scale (float) – A constant that determines the scale of the standard deviation.

• dtype – Data type specifier.

• fan_option ({'fan_in', 'fan_out'}) – Decides how to compute the standard
deviation. The default value is 'fan_in'.

• rng (xp.random.RandomState) – Pseudo-random number generator.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

932 Chapter 4. API Reference

https://arxiv.org/abs/1502.01852
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.Orthogonal

class chainer.initializers.Orthogonal(scale=1.1, dtype=None, mode=’auto’, **kwargs)
Initializes array with an orthogonal system.

This initializer first makes a matrix of the same shape as the array to be initialized whose elements are drawn
independently from standard Gaussian distribution. Next, it applies QR decomposition to (the transpose of) the
matrix. To make the decomposition (almost surely) unique, we require the diagonal of the triangular matrix
R to be non-negative (see e.g. Edelman & Rao, https://web.eecs.umich.edu/~rajnrao/Acta05rmt.pdf). Then, it
initializes the array with the (semi-)orthogonal matrix Q. Finally, the array is multiplied by the constant scale.

If the ndim of the input array is more than 2, we consider the array to be a matrix by concatenating all axes
except the first one.

The number of vectors consisting of the orthogonal system (i.e. first element of the shape of the array) must be
equal to or smaller than the dimension of each vector (i.e. second element of the shape of the array).

Variables

• scale (float) – A constant to be multiplied by.

• dtype – Data type specifier.

• mode (str) – Assertion on the initialized shape. 'auto' (default), 'projection'
(before v7), 'embedding', or 'basis'.

• rng (xp.random.RandomState) – Pseudo-random number generator.

Reference: Saxe et al., https://arxiv.org/abs/1312.6120

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

4.6. Weight Initializers 933

https://web.eecs.umich.edu/~rajnrao/Acta05rmt.pdf
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/abs/1312.6120

Chainer Documentation, Release 7.0.0b4

__ge__()
Return self>=value.

chainer.initializers.Uniform

class chainer.initializers.Uniform(scale=0.05, dtype=None, **kwargs)
Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution
[−𝑠𝑐𝑎𝑙𝑒, 𝑠𝑐𝑎𝑙𝑒].

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

• dtype – Data type specifier.

• rng (xp.random.RandomState) – Pseudo-random number generator.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.LeCunUniform

class chainer.initializers.LeCunUniform(scale=1.0, dtype=None, **kwargs)
Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution [−𝑠, 𝑠]
where 𝑠 = 𝑠𝑐𝑎𝑙𝑒×

√︁
3

𝑓𝑎𝑛𝑖𝑛
. Here 𝑓𝑎𝑛𝑖𝑛 is the number of input units.

Reference: LeCun 98, Efficient Backprop http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

934 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

• dtype – Data type specifier.

• rng (xp.random.RandomState) – Pseudo-random number generator.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.GlorotUniform

class chainer.initializers.GlorotUniform(scale=1.0, dtype=None, **kwargs)
Initializes array with a scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution [−𝑠, 𝑠] where

𝑠 = 𝑠𝑐𝑎𝑙𝑒×
√︁

6
𝑓𝑎𝑛𝑖𝑛+𝑓𝑎𝑛𝑜𝑢𝑡

. Here, 𝑓𝑎𝑛𝑖𝑛 and 𝑓𝑎𝑛𝑜𝑢𝑡 are the number of input and output units, respectively.

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

• dtype – Data type specifier.

• rng (xp.random.RandomState) – Pseudo-random number generator.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

4.6. Weight Initializers 935

https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.HeUniform

class chainer.initializers.HeUniform(scale=1.0, dtype=None, **kwargs)
Initializes array with scaled uniform distribution.

Each element of the array is initialized by the value drawn independently from uniform distribution [−𝑠, 𝑠]
where 𝑠 = 𝑠𝑐𝑎𝑙𝑒×

√︁
6

𝑓𝑎𝑛𝑖𝑛
. Here, 𝑓𝑎𝑛𝑖𝑛 is the number of input units.

Variables

• scale (float) – A constant that determines the scale of the uniform distribution.

• dtype – Data type specifier.

• rng (xp.random.RandomState) – Pseudo-random number generator.

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

936 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

chainer.initializers.UpsamplingDeconvFilter

class chainer.initializers.UpsamplingDeconvFilter(interpolation=’linear’,
dtype=None)

Initializes array with upsampling filter.

The array is initialized with a standard image upsampling weight. This initializer is often used as inital weight
for DeconvolutionND(). DeconvolutionND() is expected that its stride is equal to (ksize + 1) // 2.

Reference: Long et al., https://arxiv.org/abs/1411.4038

Variables

• interpolation (str) – Upsampling interpolation method.

• is 'linear'. (Default) –

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.initializers.DownsamplingConvFilter

class chainer.initializers.DownsamplingConvFilter(interpolation=’linear’,
dtype=None)

Initializes array with downsampling filter.

The array is initialized with a standard image downsampling weight. This initializer is often used as inital weight
for ConvolutionND(). ConvolutionND() is expected that its stride is equal to (ksize + 1) // 2.

Reference: Long et al., https://arxiv.org/abs/1411.4038

Variables

• interpolation (str) – Downsampling interpolation method.

• is 'linear'. (Default) –

4.6. Weight Initializers 937

https://arxiv.org/abs/1411.4038
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/abs/1411.4038
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Methods

__call__(array)
Initializes given array.

This method destructively changes the value of array. The derived class is required to implement this
method. The algorithms used to make the new values depend on the concrete derived classes.

Parameters array (N-dimensional array) – An array to be initialized by this initializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.6.3 Helper function

chainer.initializers.generate_array Return initialized array.

chainer.initializers.generate_array

chainer.initializers.generate_array(initializer, shape, xp, dtype=None, device=None)
Return initialized array.

The algorithms used to make the new values depend on the concrete derived classes. If the initializer has the
dtype attribute, it is used to construct the array. Otherwise, chainer.config.dtype is used instead. See
Configuring Chainer for the dtype config.

Parameters

• initializer – A callable object that takes N-dimensional array and edits its value.

• shape (int or tuple of int) – Shape of the initialized array.

• xp (module) – cupy, numpy, or chainerx.

• dtype – Dtype specifier. If omitted, initializer.dtype is used.

• device – Target device specifier. If omitted, the current device is used for cupy, and the
default device is used for chainerx.

Returns An initialized array.

Return type N-dimensional array

938 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

4.7 Snapshot Writers

chainer.training.extensions.
snapshot_writers.Writer

Base class of snapshot writers.

chainer.training.extensions.
snapshot_writers.SimpleWriter

The most simple snapshot writer.

chainer.training.extensions.
snapshot_writers.ThreadWriter

Snapshot writer that uses a separate thread.

chainer.training.extensions.
snapshot_writers.ProcessWriter

Snapshot writer that uses a separate process.

chainer.training.extensions.
snapshot_writers.QueueWriter

Base class of queue snapshot writers.

chainer.training.extensions.
snapshot_writers.ThreadQueueWriter

Snapshot writer that uses a thread queue.

chainer.training.extensions.
snapshot_writers.ProcessQueueWriter

Snapshot writer that uses process queue.

4.7.1 chainer.training.extensions.snapshot_writers.Writer

class chainer.training.extensions.snapshot_writers.Writer
Base class of snapshot writers.

Snapshot invokes __call__ of this class everytime when taking a snapshot. This class determines how the
actual saving function will be invoked.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

4.7. Snapshot Writers 939

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.2 chainer.training.extensions.snapshot_writers.SimpleWriter

class chainer.training.extensions.snapshot_writers.SimpleWriter(savefun=<function
save_npz>,
**kwds)

The most simple snapshot writer.

This class just passes the arguments to the actual saving function.

Parameters

• savefun – Callable object. It takes three arguments: the output file path, the serialized
dictionary object, and the optional keyword arguments.

• kwds – Keyword arguments for the savefun.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

940 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.3 chainer.training.extensions.snapshot_writers.ThreadWriter

class chainer.training.extensions.snapshot_writers.ThreadWriter(savefun=<function
save_npz>,
**kwds)

Snapshot writer that uses a separate thread.

This class creates a new thread that invokes the actual saving function.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

create_worker(filename, outdir, target, **kwds)
Creates a worker for the snapshot.

This method creates a thread or a process to take a snapshot. The created worker must have start() and
join() methods.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is already
formated string.

• outdir (str) – Output directory. Passed by trainer.out.

• target (dict) – Serialized object which will be saved.

• kwds – Keyword arguments for the savefun.

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

4.7. Snapshot Writers 941

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.4 chainer.training.extensions.snapshot_writers.ProcessWriter

class chainer.training.extensions.snapshot_writers.ProcessWriter(savefun=<function
save_npz>,
**kwds)

Snapshot writer that uses a separate process.

This class creates a new process that invokes the actual saving function.

Note: Forking a new process from a MPI process might be danger. Consider using ThreadWriter instead
of ProcessWriter if you are using MPI.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

create_worker(filename, outdir, target, **kwds)
Creates a worker for the snapshot.

This method creates a thread or a process to take a snapshot. The created worker must have start() and
join() methods.

Parameters

942 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

• filename (str) – Name of the file into which the serialized target is saved. It is already
formated string.

• outdir (str) – Output directory. Passed by trainer.out.

• target (dict) – Serialized object which will be saved.

• kwds – Keyword arguments for the savefun.

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.5 chainer.training.extensions.snapshot_writers.QueueWriter

class chainer.training.extensions.snapshot_writers.QueueWriter(savefun=<function
save_npz>,
task=None)

Base class of queue snapshot writers.

This class is a base class of snapshot writers that use a queue. A Queue is created when this class is constructed,
and every time when __call__ is invoked, a snapshot task is put into the queue.

Parameters

• savefun – Callable object which is passed to the create_task() if the task is None. It
takes three arguments: the output file path, the serialized dictionary object, and the optional
keyword arguments.

• task – Callable object. Its __call__ must have a same interface to Writer.
__call__. This object is directly put into the queue.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

4.7. Snapshot Writers 943

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

consume(q)

create_consumer(q)

create_queue()

create_task(savefun)

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.6 chainer.training.extensions.snapshot_writers.ThreadQueueWriter

class chainer.training.extensions.snapshot_writers.ThreadQueueWriter(savefun=<function
save_npz>,
task=None)

Snapshot writer that uses a thread queue.

This class creates a thread and a queue by threading and queue modules respectively. The thread will be a
consumer of the queue, and the main thread will be a producer of the queue.

See also:

• chainer.training.extensions.snapshot()

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

944 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/queue.html#module-queue

Chainer Documentation, Release 7.0.0b4

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

consume(q)

create_consumer(q)

create_queue()

create_task(savefun)

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.7.7 chainer.training.extensions.snapshot_writers.ProcessQueueWriter

class chainer.training.extensions.snapshot_writers.ProcessQueueWriter(savefun=<function
save_npz>,
task=None)

Snapshot writer that uses process queue.

This class creates a process and a queue by multiprocessing module. The process will be a consumer of
this queue, and the main process will be a producer of this queue.

Note: Forking a new process from MPI process might be danger. Consider using ThreadQueueWriter
instead of ProcessQueueWriter if you are using MPI.

See also:

• chainer.training.extensions.snapshot()

4.7. Snapshot Writers 945

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

Chainer Documentation, Release 7.0.0b4

Methods

__call__(filename, outdir, target)
Invokes the actual snapshot function.

This method is invoked by a Snapshot object every time it takes a snapshot.

Parameters

• filename (str) – Name of the file into which the serialized target is saved. It is a
concrete file name, i.e. not a pre-formatted template string.

• outdir (str) – Output directory. Corresponds to Trainer.out.

• target (dict) – Serialized object which will be saved.

consume(q)

create_consumer(q)

create_queue()

create_task(savefun)

finalize()
Finalizes the wirter.

Like extensions in Trainer, this method is invoked at the end of the training.

save(filename, outdir, target, savefun, **kwds)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.8 Training Tools

Chainer provides a standard implementation of the training loops under the chainer.training module. It is
built on top of many other core features of Chainer, including Variable and Function, Link/Chain/ChainList, Opti-
mizer, Dataset, and Reporter/Summary. Compared to the training loop abstraction of other machine learning tool
kits, Chainer’s training framework aims at maximal flexibility, while keeps the simplicity for the typical usages. Most
components are pluggable, and users can overwrite the definition.

The core of the training loop abstraction is Trainer, which implements the training loop itself. The training loop
consists of two parts: one is Updater, which actually updates the parameters to train, and the other is Extension
for arbitrary functionalities other than the parameter update.

946 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

Updater and some extensions use chainer.dataset and Iterator to scan the datasets and load mini-batches.
The trainer also uses Reporter to collect the observed values, and some extensions use DictSummary to accu-
mulate them and computes the statistics.

You can find many examples for the usage of this training utilities from the official examples. You can also search the
extension implementations from Extensions.

4.8.1 Trainer

chainer.training.Trainer The standard training loop in Chainer.

chainer.training.Trainer

class chainer.training.Trainer(updater, stop_trigger=None, out=’result’, extensions=None)
The standard training loop in Chainer.

Trainer is an implementation of a training loop. Users can invoke the training by calling the run() method.

Each iteration of the training loop proceeds as follows.

• Update of the parameters. It includes the mini-batch loading, forward and backward computations, and an
execution of the update formula. These are all done by the update object held by the trainer.

• Invocation of trainer extensions in the descending order of their priorities. A trigger object is attached to
each extension, and it decides at each iteration whether the extension should be executed. Trigger objects
are callable objects that take the trainer object as the argument and return a boolean value indicating
whether the extension should be called or not.

Extensions are callable objects that take the trainer object as the argument. There are three ways to define
custom extensions: inheriting the Extension class, decorating functions by make_extension(), and
defining any callable including lambda functions. See Extension for more details on custom extensions and
how to configure them.

Users can register extensions to the trainer by calling the extend() method, where some configurations can
be added.

• Trigger object, which is also explained above. In most cases, IntervalTrigger is used, in which case
users can simply specify a tuple of the interval length and its unit, like (1000, 'iteration') or (1,
'epoch').

• The order of execution of extensions is determined by their priorities. Extensions of higher priorities are
invoked earlier. There are three standard values for the priorities:

– PRIORITY_WRITER. This is the priority for extensions that write some records to the
observation dictionary. It includes cases that the extension directly adds values to the obser-
vation dictionary, or the extension uses the chainer.report() function to report values to the
observation dictionary.

– PRIORITY_EDITOR. This is the priority for extensions that edit the observation dictionary
based on already reported values.

– PRIORITY_READER. This is the priority for extensions that only read records from the
observation dictionary. This is also suitable for extensions that do not use the observation
dictionary at all.

The current state of the trainer object and objects handled by the trainer can be serialized through the standard
serialization protocol of Chainer. It enables us to easily suspend and resume the training loop.

4.8. Training Tools 947

Chainer Documentation, Release 7.0.0b4

>>> serializers.save_npz('my.trainer', trainer) # To suspend and save
>>> serializers.load_npz('my.trainer', trainer) # To load and resume

The snapshot() method makes regular snapshots of the Trainer object during training.

Note: The serialization does not recover everything of the training loop. It only recovers the states which
change over the training (e.g. parameters, optimizer states, the batch iterator state, extension states, etc.). You
must initialize the objects correctly before deserializing the states.

On the other hand, it means that users can change the settings on deserialization. For example, the exit condition
can be changed on the deserialization, so users can train the model for some iterations, suspend it, and then
resume it with larger number of total iterations.

During the training, it also creates a Reporter object to store observed values on each update. For each
iteration, it creates a fresh observation dictionary and stores it in the observation attribute.

Links of the target model of each optimizer are registered to the reporter object as observers, where the name of
each observer is constructed as the format <optimizer name><link name>. The link name is given by
the chainer.Link.namedlink() method, which represents the path to each link in the hierarchy. Other
observers can be registered by accessing the reporter object via the reporter attribute.

The default trainer is plain, i.e., it does not contain any extensions.

Parameters

• updater (Updater) – Updater object. It defines how to update the models.

• stop_trigger – Trigger that determines when to stop the training loop. If it is not
callable, it is passed to IntervalTrigger.

• out – Output directory.

• extensions – Extensions registered to the trainer.

Variables

• updater – The updater object for this trainer.

• stop_trigger – Trigger that determines when to stop the training loop. The training
loop stops at the iteration on which this trigger returns True.

• observation – Observation of values made at the last update. See the Reporter class
for details.

• out – Output directory.

• reporter – Reporter object to report observed values.

Methods

extend(extension, name=None, trigger=None, priority=None, call_before_training=False, **kwargs)
Registers an extension to the trainer.

Extension is a callable object which is called after each update unless the corresponding trigger object
decides to skip the iteration. The order of execution is determined by priorities: extensions with higher
priorities are called earlier in each iteration. Extensions with the same priority are invoked in the order of
registrations.

If two or more extensions with the same name are registered, suffixes are added to the names of the second
to last extensions. The suffix is _N where N is the ordinal of the extensions.

948 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

See Extension for the interface of extensions.

Parameters

• extension – Extension to register.

• name (str) – Name of the extension. If it is omitted, the Extension.name attribute
of the extension is used or the Extension.default_name attribute of the extension
if name is is set to None or is undefined. Note that the name would be suffixed by an
ordinal in case of duplicated names as explained above.

• trigger (tuple or Trigger) – Trigger object that determines when to invoke the
extension. If it is None, extension.trigger is used instead. If it is None and the
extension does not have the trigger attribute, the extension is triggered at every iteration
by default. If the trigger is not callable, it is passed to IntervalTrigger to build an
interval trigger.

• call_before_training (bool) – Flag to call extension before training. Default is
False.

• priority (int) – Invocation priority of the extension. Extensions are invoked in the
descending order of priorities in each iteration. If this is None, extension.priority
is used instead.

get_extension(name)
Returns the extension of a given name.

Parameters name (str) – Name of the extension.

Returns Extension.

run(show_loop_exception_msg=True)
Executes the training loop.

This method is the core of Trainer. It executes the whole loop of training the models.

Note that this method cannot run multiple times for one trainer object.

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

elapsed_time
Total time used for the training.

4.8. Training Tools 949

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

The time is in seconds. If the training is resumed from snapshot, it includes the time of all the previous
training to get the current state of the trainer.

is_before_training
Flag that represents if training has started or not.

True represents ‘before training’ and False represents ‘during/after training’.

This flag is supposed to be used in Extension.__call__() (e.g., PlotReport.__call__())
to decide to execute its operation or not. This additional condition is necessary since Extension.
_trigger(trainer) is always False before training and cannot be used.

4.8.2 Updaters

chainer.training.Updater Interface of updater objects for trainers.
chainer.training.updaters.
StandardUpdater

Standard implementation of Updater.

chainer.training.updaters.
ParallelUpdater

Implementation of a parallel GPU Updater.

chainer.training.updaters.
MultiprocessParallelUpdater

Implementation of a multiprocess parallel GPU Up-
dater.

chainer.training.Updater

class chainer.training.Updater
Interface of updater objects for trainers.

Updater implements a training iteration as update(). Typically, the updating iteration proceeds as follows.

• Fetch a minibatch from dataset via Iterator.

• Run forward and backward process of Chain.

• Update parameters according to their UpdateRule.

The first line is processed by Iterator.__next__. The second and third are processed by Optimizer.
update. Users can also implement their original updating iteration by overriding Updater.update.

Methods

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is
called at the end of the initialization of Trainer. The default implementation does nothing.

Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.

This method is called at the end of training loops. It should finalize each dataset iterator used in this
updater.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.

Returns Dictionary that maps names to optimizers.

950 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Return type dict

get_optimizer(name)
Gets the optimizer of given name.

Updater holds one or more optimizers with names. They can be retrieved by this method.

Parameters name (str) – Name of the optimizer.

Returns Optimizer of the name.

Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward
computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.training.updaters.StandardUpdater

class chainer.training.updaters.StandardUpdater(iterator, optimizer, con-
verter=convert.concat_examples,
device=None, loss_func=None,
loss_scale=None,
auto_new_epoch=True, *, in-
put_device=None)

Standard implementation of Updater.

This is the standard implementation of Updater. It accepts one or more training datasets and one or more
optimizers. The default update routine assumes that there is only one training dataset and one optimizer. Users
can override this update routine by inheriting this class and overriding the update_core() method. Each
batch is converted to input arrays by chainer.dataset.concat_examples() by default, which can
also be manually set by converter argument.

Parameters

4.8. Training Tools 951

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• iterator – Dataset iterator for the training dataset. It can also be a dictionary that maps
strings to iterators. If this is just an iterator, then the iterator is registered by the name
'main'.

• optimizer – Optimizer to update parameters. It can also be a dictionary that maps strings
to optimizers. If this is just an optimizer, then the optimizer is registered by the name
'main'.

• converter – Converter function to build input arrays. Each batch extracted by the
main iterator and the device option are passed to this function. chainer.dataset.
concat_examples() is used by default.

• device (device specifier) – Device to which the model is sent. If None, the device
of the model will stay unchanged.

• loss_func – Loss function. The target link of the main optimizer is used by default.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to mitigate
vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be
multiplied by the factor before backprop starts. The factor is propagated to whole gradients
in a computational graph along the backprop. The gradients of parameters are divided by
the factor just before the parameters are to be updated.

• auto_new_epoch (bool) – If True, new_epoch() of the main optimizer is automat-
ically called when the is_new_epoch attribute of the main iterator is True.

• input_device (device specifier) – Device to which the training data is sent. If
input_device is omitted, it will match the device argument.

Variables

• converter – Converter function.

• loss_func – Loss function. If it is None, the target link of the main optimizer is used
instead.

• device – Device to which the model is sent.

• input_device – Device to which the training data is sent.

• iteration – Current number of completed updates.

• auto_new_epoch – If True, new_epoch() is automatically called by
update_core(). In this case, the use_auto_new_epoch attribute of each op-
timizer is also set to True. If update_core() is overridden, the implementation should
correctly call new_epoch() of each optimizer.

Methods

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is
called at the end of the initialization of Trainer. The default implementation does nothing.

Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.

952 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

This method calls the finalize method of each iterator that this updater has. It is called at the end of training
loops.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.

Returns Dictionary that maps names to optimizers.

Return type dict

get_iterator(name)
Gets the dataset iterator of given name.

Parameters name (str) – Name of the dataset iterator.

Returns Corresponding dataset iterator.

Return type Iterator

get_optimizer(name)
Gets the optimizer of given name.

Parameters name (str) – Name of the optimizer.

Returns Corresponding optimizer.

Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward
computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device

epoch

4.8. Training Tools 953

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

epoch_detail

input_device

is_new_epoch

previous_epoch_detail

chainer.training.updaters.ParallelUpdater

class chainer.training.updaters.ParallelUpdater(iterator, optimizer, con-
verter=<chainer.dataset.convert._ArbitraryCallableConverter
object>, models=None, devices=None,
loss_func=None, loss_scale=None,
auto_new_epoch=True)

Implementation of a parallel GPU Updater.

This is an implementation of Updater that uses multiple GPUs. It behaves similarly to StandardUpdater.
The update routine is modified to support data-parallel computation on multiple GPUs in one machine. It is
based on synchronous parallel SGD: it parallelizes the gradient computation over a mini-batch, and updates the
parameters only in the main device.

Parameters

• iterator – Dataset iterator for the training dataset. It can also be a dictionary that maps
strings to iterators. If this is just an iterator, then the iterator is registered by the name
'main'.

• optimizer – Optimizer to update parameters. It can also be a dictionary that maps strings
to optimizers. If this is just an optimizer, then the optimizer is registered by the name
'main'.

• converter – Converter function to build input arrays. Each batch extracted by the main
iterator is split equally between the devices and then passed with corresponding device
option to this function. concat_examples() is used by default.

• models – Dictionary of models. The main model should be the same model attached to
the 'main' optimizer.

• devices – Dictionary of devices to which the training data is sent. The devices should be
arranged in a dictionary with the same structure as models.

• loss_func – Loss function. The model is used as a loss function by default.

• loss_scale (float) – Loss scaling factor. Loss scaling is a usefull technique to mitigate
vanishing gradient issue that tends to happen when low precision data type like float16
is used during training. If you set loss scaling factor, gradients of loss values are to be
multiplied by the factor before backprop starts. The factor is propagated to whole gradients
in a computational graph along the backprop. The gradients of parameters are divided by
the factor just before the parameters are to be updated.

• auto_new_epoch (bool) – If True, new_epoch() of the main optimizer is automat-
ically called when the is_new_epoch attribute of the main iterator is True.

Methods

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

954 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

The typical usage of this method is to register additional links to the reporter of the trainer. This method is
called at the end of the initialization of Trainer. The default implementation does nothing.

Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.

This method calls the finalize method of each iterator that this updater has. It is called at the end of training
loops.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.

Returns Dictionary that maps names to optimizers.

Return type dict

get_iterator(name)
Gets the dataset iterator of given name.

Parameters name (str) – Name of the dataset iterator.

Returns Corresponding dataset iterator.

Return type Iterator

get_optimizer(name)
Gets the optimizer of given name.

Parameters name (str) – Name of the optimizer.

Returns Corresponding optimizer.

Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward
computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.8. Training Tools 955

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Attributes

device

epoch

epoch_detail

input_device

is_new_epoch

previous_epoch_detail

chainer.training.updaters.MultiprocessParallelUpdater

class chainer.training.updaters.MultiprocessParallelUpdater(iterators, op-
timizer, con-
verter=<chainer.dataset.convert._ArbitraryCallableConverter
object>, de-
vices=None,
auto_new_epoch=True)

Implementation of a multiprocess parallel GPU Updater.

This is an implementation of Updater that uses multiple GPUs with multi-process data parallelism. It uses
Nvidia NCCL for communication between multiple GPUs.

It behaves similarly to StandardUpdater. The update routine is modified to support data-parallel compu-
tation on multiple GPUs in one machine. It is based on synchronous parallel SGD: it parallelizes the gradient
computation over a mini-batch, and updates the parameters only in the main device.

It does not transfer the values collected by Reporter in the sub devices to the main device. So you can only
see the reported values in the main device.

Parameters

• iterators – List of dataset iterator for the training dataset. The number of the iterators
must be same to the number of GPUs you use.

• optimizer – Optimizer to update parameters. The model should be attached to the opti-
mizer.

• converter – Converter function to build input arrays. Each batch extracted by the iterator
is split equally between the devices and then passed with corresponding device option to
this function. concat_examples() is used by default.

• devices – Dictionary or list of devices to which the training data is sent. The master
device will be the first one in the list or the value attached to the key 'main'.

• auto_new_epoch (bool) – If True, new_epoch() of the main optimizer is automat-
ically called when the is_new_epoch attribute of the main iterator is True.

Methods

static available()

connect_trainer(trainer)
Connects the updater to the trainer that will call it.

The typical usage of this method is to register additional links to the reporter of the trainer. This method is
called at the end of the initialization of Trainer. The default implementation does nothing.

956 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters trainer (Trainer) – Trainer object to which the updater is registered.

finalize()
Finalizes the updater object.

This method calls the finalize method of each iterator that this updater has. It is called at the end of training
loops.

get_all_optimizers()
Gets a dictionary of all optimizers for this updater.

Returns Dictionary that maps names to optimizers.

Return type dict

get_iterator(name)
Gets the dataset iterator of given name.

Parameters name (str) – Name of the dataset iterator.

Returns Corresponding dataset iterator.

Return type Iterator

get_optimizer(name)
Gets the optimizer of given name.

Parameters name (str) – Name of the optimizer.

Returns Corresponding optimizer.

Return type Optimizer

serialize(serializer)
Serializes the current state of the updater object.

setup_workers()

update()
Updates the parameters of the target model.

This method implements an update formula for the training task, including data loading, forward/backward
computations, and actual updates of parameters.

This method is called once at each iteration of the training loop.

update_core()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.8. Training Tools 957

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Attributes

device

epoch

epoch_detail

input_device

is_new_epoch

previous_epoch_detail

We have two kinds of updaters for multi-gpus training. The pros/cons for the updaters are as follows:

ParallelUpdater:

• (+) Can use the same iterator for any number of GPUs

• (-) No parallelism at CPU side

• (-) GPUs used later may be blocked due to the limit of kernel-launch queue size

MultiprocessParallelUpdater:

• (+) Parallelism at CPU side

• (+) No degrade due to kernel launch queue size

• (-) Need per-process data iterator

• (-) Reporter cannot collect data except for one of the devices

4.8.3 Extensions

An extension is a callable object that can perform arbitrary actions during the training loop. Extensions can be reg-
istered to Trainer by using Trainer.extend() method, and they are invoked when the Trigger condition is
satisfied.

In addition to the built-in extensions listed below, you can define your own extension by implementing Extension
or using the make_extension() decorator. See Trainer Extensions for details.

Common

chainer.training.Extension Base class of trainer extensions.
chainer.training.make_extension Decorator to make given functions into trainer exten-

sions.

chainer.training.Extension

class chainer.training.Extension
Base class of trainer extensions.

Extension of Trainer is a callable object that takes the trainer object as the argument. It also provides some
default configurations as its attributes, e.g. the default trigger and the default priority. This class provides a set
of typical default values for these attributes.

There are three ways to define users’ own extensions: inheriting this class, decorating closures by
make_extension(), or using any callable including lambda functions as extensions. Decorator can slightly

958 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

reduce the overhead and is much easier to use, while this class provides more flexibility (for example, it can
have methods to configure the behavior). Using a lambda function allows one-line coding for simple purposes,
but users have to specify the configurations as arguments to Trainer.extend(). For a callable not in-
heriting this class, the default configurations of this class are used unless the user explicitly specifies them in
Trainer.extend() method.

Variables

• trigger – Default value of trigger for this extension. It is set to (1, 'iteration')
by default.

• priority – Default priority of the extension. It is set to PRIORITY_READER by default.

• name – Name of the extension. It is set to None by default. This value will be overwrit-
ten when registering an extension to a trainer. See chainer.training.Trainer.
extend() for details.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

4.8. Training Tools 959

https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.make_extension

chainer.training.make_extension(trigger=None, default_name=None, priority=None, final-
izer=None, initializer=None, on_error=None, **kwargs)

Decorator to make given functions into trainer extensions.

This decorator just adds some attributes to a given function. The value of the attributes are given by the argu-
ments of this decorator.

See Extension for details of trainer extensions. Most of the default values of arguments also follow those for
this class.

Parameters

• trigger – Default trigger of the extension.

• default_name – Default name of the extension. The name of a given function is used by
default.

• priority (int) – Default priority of the extension.

• finalizer – Finalizer function of this extension. It is called at the end of the training
loop.

960 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• initializer – Initializer function of this extension. It is called at the beginning of the
training loop.

• on_error – Error handler callback function of this extension. It is called after an error is
raised during the trainer loop.

Evaluation and Metrics Collection

These extensions provide features to collect additional metrics. The typical use case is to use Evaluator to perform
evaluation with a validation dataset to compute validation loss/accuracy.

chainer.training.extensions.
Evaluator

Trainer extension to evaluate models on a validation set.

chainer.training.extensions.
MicroAverage

Calculates micro-average ratio.

chainer.training.extensions.
FailOnNonNumber

Trainer extension to raise RuntimeError if parameters
contain NaN or Inf.

chainer.training.extensions.
ParameterStatistics

Trainer extension to report parameter statistics.

chainer.training.extensions.
observe_lr

Returns a trainer extension to record the learning rate.

chainer.training.extensions.
observe_value

Returns a trainer extension to continuously record a
value.

chainer.training.extensions.Evaluator

class chainer.training.extensions.Evaluator(self, iterator, target, con-
verter=convert.concat_examples,
device=None, eval_hook=None,
eval_func=None, *, progress_bar=False)

Trainer extension to evaluate models on a validation set.

This extension evaluates the current models by a given evaluation function. It creates a Reporter object to
store values observed in the evaluation function on each iteration. The report for all iterations are aggregated to
DictSummary . The collected mean values are further reported to the reporter object of the trainer, where the
name of each observation is prefixed by the evaluator name. See Reporter for details in naming rules of the
reports.

Evaluator has a structure to customize similar to that of StandardUpdater. The main differences are:

• There are no optimizers in an evaluator. Instead, it holds links to evaluate.

• An evaluation loop function is used instead of an update function.

• Preparation routine can be customized, which is called before each evaluation. It can be used, e.g., to
initialize the state of stateful recurrent networks.

There are two ways to modify the evaluation behavior besides setting a custom evaluation function. One is
by setting a custom evaluation loop via the eval_func argument. The other is by inheriting this class and
overriding the evaluate() method. In latter case, users have to create and handle a reporter object manually.
Users also have to copy the iterators before using them, in order to reuse them at the next time of evaluation. In
both cases, the functions are called in testing mode (i.e., chainer.config.train is set to False).

This extension is called at the end of each epoch by default.

Parameters

4.8. Training Tools 961

Chainer Documentation, Release 7.0.0b4

• iterator – Dataset iterator for the validation dataset. It can also be a dictionary of itera-
tors. If this is just an iterator, the iterator is registered by the name 'main'.

• target – Link object or a dictionary of links to evaluate. If this is just a link object, the
link is registered by the name 'main'.

• converter – Converter function to build input arrays. concat_examples() is used
by default.

• device – Device to which the validation data is sent. Negative value indicates the host
memory (CPU).

• eval_hook – Function to prepare for each evaluation process. It is called at the beginning
of the evaluation. The evaluator extension object is passed at each call.

• eval_func – Evaluation function called at each iteration. The target link to evaluate as a
callable is used by default.

• progress_bar – Boolean flag to show a progress bar while training, which is similar to
ProgressBar. (default: False)

Warning: The argument progress_bar is experimental. The interface can change in the future.

Variables

• converter – Converter function.

• device – Device to which the validation data is sent.

• eval_hook – Function to prepare for each evaluation process.

• eval_func – Evaluation function called at each iteration.

Methods

__call__(trainer=None)
Executes the evaluator extension.

Unlike usual extensions, this extension can be executed without passing a trainer object. This extension
reports the performance on validation dataset using the report() function. Thus, users can use this
extension independently from any trainer by manually configuring a Reporter object.

Parameters trainer (Trainer) – Trainer object that invokes this extension. It can be omit-
ted in case of calling this extension manually.

Returns Result dictionary that contains mean statistics of values reported by the evaluation func-
tion.

Return type dict

evaluate()
Evaluates the model and returns a result dictionary.

This method runs the evaluation loop over the validation dataset. It accumulates the reported values to
DictSummary and returns a dictionary whose values are means computed by the summary.

Note that this function assumes that the main iterator raises StopIteration or code in the evaluation
loop raises an exception. So, if this assumption is not held, the function could be caught in an infinite loop.

Users can override this method to customize the evaluation routine.

962 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

Note: This method encloses eval_func calls with function.no_backprop_mode() context, so
all calculations using FunctionNodes inside eval_func do not make computational graphs. It is for
reducing the memory consumption.

Returns Result dictionary. This dictionary is further reported via report()without specifying
any observer.

Return type dict

finalize()
Finalizes the evaluator object.

This method calls the finalize method of each iterator that this evaluator has. It is called at the end of
training loops.

get_all_iterators()
Returns a dictionary of all iterators.

get_all_targets()
Returns a dictionary of all target links.

get_iterator(name)
Returns the iterator of the given name.

get_target(name)
Returns the target link of the given name.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

4.8. Training Tools 963

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name = 'validation'

name = None

priority = 300

trigger = (1, 'epoch')

chainer.training.extensions.MicroAverage

class chainer.training.extensions.MicroAverage(numerator_key, denominator_key, re-
sult_key, trigger=(1, ’epoch’))

Calculates micro-average ratio.

Give 𝑁 batches and values {𝑛1, . . . , 𝑛𝑁} and {𝑑1, . . . , 𝑑𝑁}, this extension calculates micro-average of these
ratio defined as: ∑︀𝑁

𝑖 𝑛𝑖∑︀𝑁
𝑖 𝑑𝑖

.

A user usually uses the number of examples which a system correctly predict as 𝑛𝑖 and the number of total
examples in 𝑖-th batch as 𝑑𝑖. This value is called macro-average of precision.

Note that macro-average is defined as:

1

𝑁

𝑁∑︁
𝑖

(𝑛𝑖/𝑑𝑖),

It is same to the micro-average when each mini-batch has the same 𝑑𝑖.

You need to report numerator value (the number of correct examples) and denominator value (the number of
examples) in your model.

>>> class MyModel(chainer.Link):
... def __call__(self, x, y):
... loss = F.softmax_cross_entropy(x, y)
... correct = (x.data.argmax(axis=1) == y.data).sum()
... total = len(y.data)
... reporter.report({'correct': correct, 'total': total}, self)
... return loss

964 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

And then, make an extension with corresponding reporting keys and register it.

>>> ext = extensions.MicroAverage(
... 'main/correct', 'main/total', 'main/accuracy')

Parameters

• numerator_key (str) – Key string of obserbation storing a numerator value.

• denominator_key (str) – Key string of obserbation storing a denominator value.

• result_key (str) – Key string of obserbation to store a result.

• trigger – Trigger that decides when to calcurate average. This is distinct from the trig-
ger of this extension itself. If it is a tuple in the form <int>, 'epoch' or <int>,
'iteration', it is passed to IntervalTrigger.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

4.8. Training Tools 965

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 200

trigger = (1, 'iteration')

chainer.training.extensions.FailOnNonNumber

class chainer.training.extensions.FailOnNonNumber
Trainer extension to raise RuntimeError if parameters contain NaN or Inf.

Although parameters including non-number such as NaN and Inf are unnecessary in most cases, Trainer will
continue to compute even if the parameters in a given optimizer diverge. This extension is aimed to reduce
unnecessary computations by throwing RuntimeError if the parameters contain NaN or Inf.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

966 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

4.8. Training Tools 967

https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

trigger = (1, 'iteration')

chainer.training.extensions.ParameterStatistics

class chainer.training.extensions.ParameterStatistics(links, statistics=’default’,
report_params=True,
report_grads=True,
prefix=None, trig-
ger=(1, ’epoch’),
skip_nan_params=False)

Trainer extension to report parameter statistics.

Statistics are collected and reported for a given Link or an iterable of Links. If a link contains child links, the
statistics are reported separately for each child.

Any function that takes a one-dimensional numpy.ndarray or a cupy.ndarray and outputs a single or
multiple real numbers can be registered to handle the collection of statistics, e.g. numpy.ndarray.mean().

The keys of reported statistics follow the convention of link name followed by parameter name, attribute name
and function name, e.g. VGG16Layers/conv1_1/W/data/mean. They are prepended with an optional
prefix and appended with integer indices if the statistics generating function return multiple values.

Parameters

• links (Link or iterable of ~chainer.Link) – Link(s) containing the param-
eters to observe. The link is expected to have a name attribute which is used as a part of the
report key.

• statistics (dict or 'default') – Dictionary with function name to function
mappings. The name is a string and is used as a part of the report key. The function is
responsible for generating the statistics. If the special value 'default' is specified, the
default statistics functions will be used.

• report_params (bool) – If True, report statistics for parameter values such as weights
and biases.

• report_grads (bool) – If True, report statistics for parameter gradients.

• prefix (str) – Optional prefix to prepend to the report keys.

• trigger – Trigger that decides when to aggregate the results and report the values.

• skip_nan_params (bool) – If True, statistics are not computed for parameters includ-
ing NaNs and a single NaN value is immediately reported instead. Otherwise, this extension
will simply try to compute the statistics without performing any checks for NaNs.

Note: The default statistic functions are as follows:

• 'mean' (xp.mean(x))

• 'std' (xp.std(x))

• 'min' (xp.min(x))

• 'max' (xp.max(x))

• 'zeros' (xp.count_nonzero(x == 0))

• 'percentile' (xp.percentile(x, (0.13, 2.28, 15.87, 50, 84.13, 97.72,
99.87)))

968 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.mean.html#numpy.ndarray.mean
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Methods

__call__(trainer)
Execute the statistics extension.

Collect statistics for the current state of parameters.

Note that this method will merely update its statistic summary, unless the internal trigger is fired. If the
trigger is fired, the summary will also be reported and then reset for the next accumulation.

Parameters trainer (Trainer) – Associated trainer that invoked this extension.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

register_statistics(name, function)
Register a function to compute a certain statistic.

The registered function will be called each time the extension runs and the results will be included in the
report.

Parameters

• name (str) – Name of the statistic.

• function – Function to generate the statistic. Any function that takes a one-dimensional
numpy.ndarray or a cupy.ndarray and outputs a single or multiple real numbers
is allowed.

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

4.8. Training Tools 969

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name = 'parameter_statistics'

default_statistics = {'max': <function <lambda>>, 'mean': <function <lambda>>, 'min': <function <lambda>>, 'percentile': <function <lambda>>, 'std': <function <lambda>>, 'zeros': <function <lambda>>}

name = None

priority = 300

report_key_template = '{prefix}{link_name}{param_name}/{attr_name}/{function_name}'

trigger = (1, 'iteration')

chainer.training.extensions.observe_lr

chainer.training.extensions.observe_lr(optimizer_name=’main’, observation_key=’lr’)
Returns a trainer extension to record the learning rate.

Parameters

• optimizer_name (str) – Name of optimizer whose learning rate is recorded.

• observation_key (str) – Key of observation to record.

Returns The extension function.

This extension is triggered each epoch by default. To change this, use the trigger argument with the
Trainer.extend() method.

chainer.training.extensions.observe_value

chainer.training.extensions.observe_value(observation_key, target_func)
Returns a trainer extension to continuously record a value.

Parameters

• observation_key (str) – Key of observation to record.

• target_func (function) – Function that returns the value to record. It must take one
argument: :class:~chainer.training.Trainer object.

Returns The extension function.

970 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This extension is triggered each epoch by default. To change this, use the trigger argument with the
Trainer.extend() method.

Optimizer Behavior Control

These extensions provide features to adjust optimizer behavior. The typical use case is to change the learning rate of
the optimizer over time.

chainer.training.extensions.
ExponentialShift

Trainer extension to exponentially shift an optimizer at-
tribute.

chainer.training.extensions.
InverseShift

Trainer extension to shift an optimizer attribute.

chainer.training.extensions.
LinearShift

Trainer extension to change an optimizer attribute lin-
early.

chainer.training.extensions.
MultistepShift

Trainer extension to shift an optimizer attribute in sev-
eral steps.

chainer.training.extensions.
PolynomialShift

Trainer extension to polynomially shift an optimizer at-
tribute.

chainer.training.extensions.
WarmupShift

Trainer extension to gradually initialize an optimizer at-
tribute.

chainer.training.extensions.StepShift Trainer extension to shift an optimizer attribute in
“steps”.

chainer.training.extensions.ExponentialShift

class chainer.training.extensions.ExponentialShift(attr, rate, init=None, tar-
get=None, optimizer=None)

Trainer extension to exponentially shift an optimizer attribute.

This extension exponentially increases or decreases the specified attribute of the optimizer. The typical use case
is an exponential decay of the learning rate.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the attribute to shift.

• rate (float) – Rate of the exponential shift. This value is multiplied to the attribute at
each call.

• init (float) – Initial value of the attribute. If it is None, the extension extracts the
attribute at the first call and uses it as the initial value.

• target (float) – Target value of the attribute. If the attribute reaches this value, the shift
stops.

• optimizer (Optimizer) – Target optimizer to adjust the attribute. If it is None, the
main optimizer of the updater is used.

Methods

__call__(trainer)
Invokes the extension.

4.8. Training Tools 971

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

972 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.InverseShift

class chainer.training.extensions.InverseShift(attr, gamma, power, init=None, tar-
get=None, optimizer=None)

Trainer extension to shift an optimizer attribute.

The new value is computed according to the fomula below: new_attr = init_attr * (1 + gamma * iter) ^ (- power),
which is compatible to the inv learning rate policy in Caffe.

The typical use is to decrease the learning rate during the training.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the attribute to shift.

• gamma (float) – Parameter used to compute the new value. Refer to the fomula above.
Note that gamma is assumed to be nonegative.

• power (float) – Parameter used to compute the new value. Refer to the fomula above.

• init (float) – Initial value of the attribute. If it is None, the extension extracts the
attribute at the first call and uses it as the initial value.

• target (float) – Target value of the attribute. If the attribute reaches this value, the shift
stops.

• optimizer (Optimizer) – Target optimizer to adjust the attribute. If it is None, the
main optimizer of the updater is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

4.8. Training Tools 973

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

974 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

trigger = (1, 'iteration')

chainer.training.extensions.LinearShift

class chainer.training.extensions.LinearShift(attr, value_range, time_range, opti-
mizer=None)

Trainer extension to change an optimizer attribute linearly.

This extension changes an optimizer attribute from the first value to the last value linearly within a specified
duration. The typical use case is warming up of the momentum coefficient.

For example, suppose that this extension is called at every iteration, and value_range == (x, y) and
time_range == (i, j). Then, this extension keeps the attribute to be x up to the i-th iteration, linearly
shifts the value to y by the j-th iteration, and then keeps the value to be y after the j-th iteration.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the optimizer attribute to adjust.

• value_range (tuple of float) – The first and the last values of the attribute.

• time_range (tuple of ints) – The first and last counts of calls in which the attribute
is adjusted.

• optimizer (Optimizer) – Target optimizer object. If it is None, the main optimizer of
the trainer is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

4.8. Training Tools 975

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.MultistepShift

class chainer.training.extensions.MultistepShift(attr, gamma, step_value, init, opti-
mizer=None)

Trainer extension to shift an optimizer attribute in several steps.

This extension changes an optimizer attribute in several steps, every step the attribute will multiply a factor
gamma.

976 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

For example, suppose that this extension is called at every iteration, and init = x, gamma = y,
step_value = [s1, s2, s3]. Then during the iterations from 0 to (s1 - 1), the attr will be x. Dur-
ing the iterations from s1 to (s2 - 1), the attr will be x * y. During the iterations from s2 to (s3 - 1), the attr
will be x * y * y. During the iterations after s3, the attr will be x * y * y * y.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the attribute to shift.

• init (float) – Initial value of the attribute. If it is None, the extension extracts the
attribute at the first call and uses it as the initial value.

• gamma (float) – The factor which the attr will mutiply at the beginning of each step.

• step_value (tuple) – The first iterations of each step.

• optimizer (Optimizer) – Target optimizer to adjust the attribute. If it is None, the
main optimizer of the updater is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

4.8. Training Tools 977

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.PolynomialShift

class chainer.training.extensions.PolynomialShift(attr, rate, max_count, init=None,
target=None, optimizer=None)

Trainer extension to polynomially shift an optimizer attribute.

This extension polynomially decreases the specified attribute of the optimizer. The typical use case is a polyno-
mial decay of the learning rate at each iteration.

For example, suppose that this extension is invoke at every iteration. Then this extension will set the corre-
sponding attribute to init_value * (1 - i / max_iter) ^ rate at the i-th iteration, where the
max_iter is the number of iterations to be running.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the attribute to shift.

• rate (float) – Exponent of polynomial shift.

• max_count (int) – Number of this extension to be invoked.

978 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• init (float) – Initial value of the attribute. If it is None, the extension extracts the
attribute at the first call and uses it as the initial value.

• target (float) – Target value of the attribute. If the attribute reaches this value, the shift
stops.

• optimizer (Optimizer) – Target optimizer to adjust the attribute. If it is None, the
main optimizer of the updater is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

4.8. Training Tools 979

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

invoke_before_training = True

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.WarmupShift

class chainer.training.extensions.WarmupShift(attr, warmup_start, warmup_iter, init, op-
timizer=None)

Trainer extension to gradually initialize an optimizer attribute.

This extension changes an optimizer attribute evenly at the begining of one training.

For example, suppose that this extension is called at every iteration, and warmup_start = x , init = y, warmup_iter
= t. Then this extension will set the corresponding attribute to from x to y evenly in first t iterations.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the optimizer attribute to adjust.

• warmup_start (float) – the value of the attr at the begining of one training.

• init (float) – the value of the attr after warm up iterations.

• warmup_iter (int) – the number of the iterations in which the attr changes from
warmup_start to init.

• optimizer (Optimizer) – Target optimizer object. If it is None, the main optimizer of
the trainer is used.

Methods

__call__(trainer)
Invokes the extension.

980 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.8. Training Tools 981

https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.StepShift

class chainer.training.extensions.StepShift(attr, gamma, step, init=None, target=None,
optimizer=None)

Trainer extension to shift an optimizer attribute in “steps”.

This extension multiplies the specified attribute of the optimizer in “steps”. The typical use case is to scale the
attribute at every kth iteration.

For example, suppose that this extension is invoked at every iteration, then given k, a multiplier gamma and
an initial value init, the optimizer attribute is set to init * gamma ^ (floor(i / k)), where i
represents the index of the current iteration.

This extension is also called before the training loop starts by default.

Parameters

• attr (str) – Name of the optimizer attribute to adjust.

• gamma (float) – The multiplier.

• step (int) – The interval for the multiplication, i.e., k.

• init (float) – Initial value of the attribute. If it is None, the extension extracts the
attribute at the first call and uses it as the initial value.

• target (float) – Target value of the attribute. If the attribute reaches this value, the shift
stops.

• optimizer (Optimizer) – Target optimizer object. If it is None, the main optimizer of
the trainer is used.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

982 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

4.8. Training Tools 983

https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

trigger = (1, 'iteration')

Reporting

These extensions provide features to perform reporting of metrics and various statistics to the console or files.

chainer.training.extensions.
PrintReport

Trainer extension to print the accumulated results.

chainer.training.extensions.
ProgressBar

Trainer extension to print a progress bar and recent
training status.

chainer.training.extensions.LogReport Trainer extension to output the accumulated results to a
log file.

chainer.training.extensions.
PlotReport

Trainer extension to output plots.

chainer.training.extensions.
VariableStatisticsPlot

Trainer extension to plot statistics for Variables.

chainer.training.extensions.DumpGraph Trainer extension to dump a computational graph.

chainer.training.extensions.PrintReport

class chainer.training.extensions.PrintReport(entries, log_report=’LogReport’,
out=<_io.TextIOWrapper
name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Trainer extension to print the accumulated results.

This extension uses the log accumulated by a LogReport extension to print specified entries of the log in a
human-readable format.

Parameters

• entries (list of str) – List of keys of observations to print.

• log_report (str or LogReport) – Log report to accumulate the observations. This
is either the name of a LogReport extensions registered to the trainer, or a LogReport in-
stance to use internally.

• out – Stream to print the bar. Standard output is used by default.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

984 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

4.8. Training Tools 985

https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

chainer.training.extensions.ProgressBar

class chainer.training.extensions.ProgressBar(training_length=None, up-
date_interval=100, bar_length=50,
out=<_io.TextIOWrapper
name=’<stdout>’ mode=’w’
encoding=’UTF-8’>)

Trainer extension to print a progress bar and recent training status.

This extension prints a progress bar at every call. It watches the current iteration and epoch to print the bar.

Parameters

• training_length (tuple) – Length of whole training. It consists of an integer and
either 'epoch' or 'iteration'. If this value is omitted and the stop trigger of the
trainer is IntervalTrigger, this extension uses its attributes to determine the length of
the training.

• update_interval (int) – Number of iterations to skip printing the progress bar.

• bar_length (int) – Length of the progress bar in characters.

• out – Stream to print the bar. Standard output is used by default.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

986 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.LogReport

class chainer.training.extensions.LogReport(keys=None, trigger=(1, ’epoch’), postpro-
cess=None, filename=’log’)

Trainer extension to output the accumulated results to a log file.

This extension accumulates the observations of the trainer to DictSummary at a regular interval specified by
a supplied trigger, and writes them into a log file in JSON format.

There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used
to handle the timing of accumulating the results. It is set to 1, 'iteration' by default. The other is the
trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary
of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes
a new fresh summary object which is used until the next time that the trigger fires.

It also adds some entries to each result dictionary.

• 'epoch' and 'iteration' are the epoch and iteration counts at the output, respectively.

4.8. Training Tools 987

https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

• 'elapsed_time' is the elapsed time in seconds since the training begins. The value is taken from
Trainer.elapsed_time.

Parameters

• keys (iterable of strs) – Keys of values to accumulate. If this is None, all the
values are accumulated and output to the log file.

• trigger – Trigger that decides when to aggregate the result and output the values. This
is distinct from the trigger of this extension itself. If it is a tuple in the form <int>,
'epoch' or <int>, 'iteration', it is passed to IntervalTrigger.

• postprocess – Callback to postprocess the result dictionaries. Each result dictionary is
passed to this callback on the output. This callback can modify the result dictionaries, which
are used to output to the log file.

• filename (str) – Name of the log file under the output directory. It can be a format
string: the last result dictionary is passed for the formatting. For example, users can use
‘{iteration}’ to separate the log files for different iterations. If the log name is None, it does
not output the log to any file. For historical reasons log_name is also accepted as an alias
of this argument.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

988 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

log
The current list of observation dictionaries.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.PlotReport

class chainer.training.extensions.PlotReport(y_keys, x_key=’iteration’, trigger=(1,
’epoch’), postprocess=None, file-
name=’plot.png’, marker=’x’, grid=True)

Trainer extension to output plots.

This extension accumulates the observations of the trainer to DictSummary at a regular interval specified by
a supplied trigger, and plot a graph with using them.

There are two triggers to handle this extension. One is the trigger to invoke this extension, which is used
to handle the timing of accumulating the results. It is set to 1, 'iteration' by default. The other is the
trigger to determine when to emit the result. When this trigger returns True, this extension appends the summary
of accumulated values to the list of past summaries, and writes the list to the log file. Then, this extension makes
a new fresh summary object which is used until the next time that the trigger fires.

4.8. Training Tools 989

https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

It also adds 'epoch' and 'iteration' entries to each result dictionary, which are the epoch and iteration
counts at the output.

Warning: If your environment needs to specify a backend of matplotlib explicitly, please call
matplotlib.use before calling trainer.run. For example:

import matplotlib
matplotlib.use('Agg')

trainer.extend(
extensions.PlotReport(['main/loss', 'validation/main/loss'],

'epoch', filename='loss.png'))
trainer.run()

Then, once one of instances of this extension is called, matplotlib.use will have no effect.

For the details, please see here: https://matplotlib.org/faq/usage_faq.html#what-is-a-backend

Parameters

• y_keys (iterable of strs) – Keys of values regarded as y. If this is None, nothing
is output to the graph.

• x_key (str) – Keys of values regarded as x. The default value is ‘iteration’.

• trigger – Trigger that decides when to aggregate the result and output the values. This
is distinct from the trigger of this extension itself. If it is a tuple in the form <int>,
'epoch' or <int>, 'iteration', it is passed to IntervalTrigger.

• postprocess – Callback to postprocess the result dictionaries. Figure object, Axes ob-
ject, and all plot data are passed to this callback in this order. This callback can modify the
figure.

• filename (str) – Name of the figure file under the output directory. It can be a format
string. For historical reasons file_name is also accepted as an alias of this argument.

• marker (str) – The marker used to plot the graph. Default is 'x'. If None is given, it
draws with no markers.

• grid (bool) – If True, set the axis grid on. The default value is True.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

static available()

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

990 Chapter 4. API Reference

https://matplotlib.org/faq/usage_faq.html#what-is-a-backend
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

4.8. Training Tools 991

https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

chainer.training.extensions.VariableStatisticsPlot

class chainer.training.extensions.VariableStatisticsPlot(targets,
max_sample_size=1000,
report_data=True,
report_grad=True,
plot_mean=True,
plot_std=True, per-
centile_sigmas=(0, 0.13,
2.28, 15.87, 50, 84.13,
97.72, 99.87, 100),
trigger=(1, ’epoch’),
filename=’statistics.png’,
figsize=None,
marker=None,
grid=True)

Trainer extension to plot statistics for Variables.

This extension collects statistics for a single Variable, a list of Variables or similarly a single or a list of
Links containing one or more Variables. In case multiple Variables are found, the means are computed.
The collected statistics are plotted and saved as an image in the directory specified by the Trainer.

Statistics include mean, standard deviation and percentiles.

This extension uses reservoir sampling to preserve memory, using a fixed size running sample. This means that
collected items in the sample are discarded uniformly at random when the number of items becomes larger than
the maximum sample size, but each item is expected to occur in the sample with equal probability.

Parameters

• targets (Variable, Link or list of either) – Parameters for which statistics are col-
lected.

• max_sample_size (int) – Maximum number of running samples.

• report_data (bool) – If True, data (e.g. weights) statistics are plotted. If False,
they are neither computed nor plotted.

• report_grad (bool) – If True, gradient statistics are plotted. If False, they are
neither computed nor plotted.

• plot_mean (bool) – If True, means are plotted. If False, they are neither computed
nor plotted.

• plot_std (bool) – If True, standard deviations are plotted. If False, they are neither
computed nor plotted.

• percentile_sigmas (float or tuple of floats) – Percentiles to plot in the
range [0, 100].

• trigger – Trigger that decides when to save the plots as an image. This is distinct from the
trigger of this extension itself. If it is a tuple in the form <int>, 'epoch' or <int>,
'iteration', it is passed to IntervalTrigger.

• filename (str) – Name of the output image file under the output directory. For historical
reasons file_name is also accepted as an alias of this argument.

• figsize (tuple of int) – Matlotlib figsize argument that specifies the size of the
output image.

• marker (str) – Matplotlib marker argument that specified the marker style of the plots.

992 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• grid (bool) – Matplotlib grid argument that specifies whether grids are rendered in in
the plots or not.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

static available()

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

save_plot_using_module(file_path, plt)

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

__eq__()
Return self==value.

__ne__()
Return self!=value.

4.8. Training Tools 993

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 100

trigger = (1, 'iteration')

chainer.training.extensions.DumpGraph

class chainer.training.extensions.DumpGraph(root_name, filename=’cg.dot’, vari-
able_style=None, function_style=None)

Trainer extension to dump a computational graph.

This extension dumps a computational graph. The graph is output in DOT language. If graphviz is available,
this also renders and saves the image of the computational graph.

It only dumps a graph at the first invocation.

Note: The computational graph is not kept by default. This extension changes this behavior until the first
invocation. It is strongly recommended that you use it with the default trigger setting.

The detailed behavior of this extension is as follows.

1. In its initializer, it turns on the chainer.config.keep_graph_on_report flag.

2. At the first iteration, it dumps the graph using the graph held by the reported variable.

3. After dumping the graph, it turns off the flag (if it was originally turned off) so that any variable reported
afterward does not hold a computational graph.

When the keep_graph_on_report flag is turned on, the computational graph created by the updater is
kept during the invocation of extensions. It will cause an unnecessarily large memory consumption when an
extension also uses a large amount of memory, e.g. Evaluator.

With the default setting, the DumpGraph extension is called at the first iteration. Since Evaluator is not
called at the first iteration in most cases, it does not cause any memory problem.

Parameters

994 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

• root_name (str) – Name of the root of the computational graph. The root variable is
retrieved by this name from the observation dictionary of the trainer.

• filename (str) – Output file name. For historical reasons out_name is also accepted
as an alias of this argument.

• variable_style (dict) – Dot node style for variables. Each variable is rendered by
an octagon by default.

• function_style (dict) – Dot node style for functions. Each function is rendered by a
rectangular by default.

See also:

See build_computational_graph() for the variable_style and function_style arguments.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(trainer)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

4.8. Training Tools 995

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

trigger(trainer)
tuple() -> empty tuple tuple(iterable) -> tuple initialized from iterable’s items

If the argument is a tuple, the return value is the same object.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name = 'dump_graph'

name = None

priority = 100

Snapshot

These extensions provide features to take snapshots of models.

chainer.training.extensions.snapshot Returns a trainer extension to take snapshots of the
trainer.

chainer.training.extensions.
snapshot_object

Returns a trainer extension to take snapshots of a given
object.

chainer.training.extensions.snapshot

chainer.training.extensions.snapshot(savefun=None, filename=’snapshot_iter_{.updater.iteration}’,
*, target=None, condition=None, writer=None,
snapshot_on_error=False, num_retain=-1, au-
toload=False)

Returns a trainer extension to take snapshots of the trainer.

This extension serializes the trainer object and saves it to the output directory. It is used to support resuming the
training loop from the saved state.

This extension is called once per epoch by default. To take a snapshot at a different interval, a trigger object
specifying the required interval can be passed along with this extension to the extend() method of the trainer.

996 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

The default priority is -100, which is lower than that of most built-in extensions.

Note: This extension first writes the serialized object to a temporary file and then rename it to the target file
name. Thus, if the program stops right before the renaming, the temporary file might be left in the output
directory.

Parameters

• savefun – Function to save the trainer. It takes two arguments: the output file path and
the trainer object. It is chainer.serializers.save_npz() by default. If writer
is specified, this argument must be None.

• filename (str) – Name of the file into which the trainer is serialized. It can be a format
string, where the trainer object is passed to the str.format() method.

• target – Object to serialize. If it is not specified, it will be the trainer object.

• condition – Condition object. It must be a callable object that returns boolean without
any arguments. If it returns True, the snapshot will be done. If not, it will be skipped. The
default is a function that always returns True.

• writer – Writer object. It must be a callable object. See below for the list of built-in
writers. If savefun is other than None, this argument must be None. In that case, a
SimpleWriter object instantiated with specified savefun argument will be used.

• snapshot_on_error (bool) – Whether to take a snapshot in case trainer loop has been
failed.

• num_retain (int) – Number of snapshot files to retain through the cleanup. Must be
a positive integer for any cleanup to take place. Automatic deletion of old snapshots only
works when the filename is string.

• autoload (bool) – With this enabled, the extension automatically finds the latest snap-
shot and loads the data to the target. Automatic loading only works when the filename
is a string. It is assumed that snapshots are generated by chainer.serializers.
save_npz() .

Returns Snapshot extension object.

Using asynchronous writers

By specifying writer argument, writing operations can be made asynchronous, hiding I/O overhead of snap-
shots.

>>> from chainer.training import extensions
>>> writer = extensions.snapshot_writers.ProcessWriter()
>>> trainer.extend(extensions.snapshot(writer=writer), trigger=(1, 'epoch'))

To change the format, such as npz or hdf5, you can pass a saving function as savefun argument of the writer.

>>> from chainer.training import extensions
>>> from chainer import serializers
>>> writer = extensions.snapshot_writers.ProcessWriter(
... savefun=serializers.save_npz)
>>> trainer.extend(extensions.snapshot(writer=writer), trigger=(1, 'epoch'))

This is the list of built-in snapshot writers.

4.8. Training Tools 997

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

• chainer.training.extensions.snapshot_writers.SimpleWriter

• chainer.training.extensions.snapshot_writers.ThreadWriter

• chainer.training.extensions.snapshot_writers.ProcessWriter

• chainer.training.extensions.snapshot_writers.ThreadQueueWriter

• chainer.training.extensions.snapshot_writers.ProcessQueueWriter

See also:

• chainer.training.extensions.snapshot_object()

chainer.training.extensions.snapshot_object

chainer.training.extensions.snapshot_object(target, filename, savefun=None, *,
condition=None, writer=None, snap-
shot_on_error=False, num_retain=-1,
autoload=False)

Returns a trainer extension to take snapshots of a given object.

This extension serializes the given object and saves it to the output directory.

This extension is called once per epoch by default. To take a snapshot at a different interval, a trigger object
specifying the required interval can be passed along with this extension to the extend() method of the trainer.

The default priority is -100, which is lower than that of most built-in extensions.

Parameters

• target – Object to serialize.

• filename (str) – Name of the file into which the object is serialized. It can be a for-
mat string, where the trainer object is passed to the str.format() method. For exam-
ple, 'snapshot_{.updater.iteration}' is converted to 'snapshot_10000'
at the 10,000th iteration.

• savefun – Function to save the object. It takes two arguments: the output file path and the
object to serialize.

• condition – Condition object. It must be a callable object that returns boolean without
any arguments. If it returns True, the snapshot will be done. If not, it will be skipped. The
default is a function that always returns True.

• writer – Writer object. It must be a callable object. See below for the list of built-in
writers. If savefun is other than None, this argument must be None. In that case, a
SimpleWriter object instantiated with specified savefun argument will be used.

• snapshot_on_error (bool) – Whether to take a snapshot in case trainer loop has been
failed.

• num_retain (int) – Number of snapshot files to retain through the cleanup. Must be
a positive integer for any cleanup to take place. Automatic deletion of old snapshots only
works when the filename is string.

• autoload (bool) – With this enabled, the extension automatically finds the latest snap-
shot and loads the data to the target. Automatic loading only works when the filename is a
string.

Returns Snapshot extension object.

See also:

998 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

• chainer.training.extensions.snapshot()

Memory Release

These extensions provide features to release memories.

chainer.training.extensions.
unchain_variables

Trainer extension to unchain all comptational graphs.

chainer.training.extensions.unchain_variables

class chainer.training.extensions.unchain_variables
Trainer extension to unchain all comptational graphs.

This extenstion unchains all comptational graphs after all extensions are run to release memory and to avoid
memory leak. This extension can be used as a last resort when there is an extension that use a variable graph and
cannot release the graph in itself. It observes the previous chainer.config.keep_graph_on_report
flag. The extension is triggered when the flag is turned on.

Methods

__call__(trainer)
Invokes the extension.

Implementations should override this operator. This method is called at iterations which the corresponding
trigger accepts.

Parameters trainer (Trainer) – Trainer object that calls this operator.

finalize()
Finalizes the extension.

This method is called at the end of the training loop.

initialize(_)
Initializes up the trainer state.

This method is called before entering the training loop. An extension that modifies the state of Trainer
can override this method to initialize it.

When the trainer has been restored from a snapshot, this method has to recover an appropriate part of the
state of the trainer.

For example, ExponentialShift extension changes the optimizer’s hyperparameter at each invoca-
tion. Note that the hyperparameter is not saved to the snapshot; it is the responsibility of the extension
to recover the hyperparameter. The ExponentialShift extension recovers it in its initialize
method if it has been loaded from a snapshot, or just setting the initial value otherwise.

Parameters trainer (Trainer) – Trainer object that runs the training loop.

on_error(trainer, exc, tb)
Handles the error raised during training before finalization.

This method is called when an exception is thrown during the training loop, before finalize. An extension
that needs different error handling from finalize, can override this method to handle errors.

Parameters

4.8. Training Tools 999

Chainer Documentation, Release 7.0.0b4

• trainer (Trainer) – Trainer object that runs the training loop.

• exc (Exception) – arbitrary exception thrown during update loop.

• tb (traceback) – traceback object of the exception

serialize(serializer)
Serializes the extension state.

It is called when a trainer that owns this extension is serialized. It serializes nothing by default.

trigger(_)
tuple() -> empty tuple tuple(iterable) -> tuple initialized from iterable’s items

If the argument is a tuple, the return value is the same object.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

default_name
Default name of the extension.

It is the name of the class by default. Implementation can override this property, or provide a class attribute
to hide it.

name = None

priority = 0

4.8.4 Triggers

A trigger is a callable object to decide when to process some specific event within the training loop. It takes a Trainer
object as the argument, and returns True if some event should be fired.

It is mainly used to determine when to call an extension. It is also used to determine when to quit the training loop.

chainer.training.get_trigger Gets a trigger object.
chainer.training.triggers.
BestValueTrigger

Trigger invoked when specific value becomes best.

chainer.training.triggers.
EarlyStoppingTrigger

Trigger for Early Stopping

Continued on next page

1000 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#Exception

Chainer Documentation, Release 7.0.0b4

Table 44 – continued from previous page
chainer.training.triggers.
IntervalTrigger

Trigger based on a fixed interval.

chainer.training.triggers.
ManualScheduleTrigger

Trigger invoked at specified point(s) of iterations or
epochs.

chainer.training.triggers.
MaxValueTrigger

Trigger invoked when specific value becomes maxi-
mum.

chainer.training.triggers.
MinValueTrigger

Trigger invoked when specific value becomes mini-
mum.

chainer.training.triggers.
OnceTrigger

Trigger based on the starting point of the iteration.

chainer.training.triggers.
TimeTrigger

Trigger based on a fixed time interval.

chainer.training.get_trigger

chainer.training.get_trigger(trigger)
Gets a trigger object.

Trigger object is a callable that accepts a Trainer object as an argument and returns a boolean value. When
it returns True, various kinds of events can occur depending on the context in which the trigger is used. For
example, if the trigger is passed to the Trainer as the stop trigger, the training loop breaks when the trigger
returns True. If the trigger is passed to the extend() method of a trainer, then the registered extension is
invoked only when the trigger returns True.

This function returns a trigger object based on the argument. If trigger is already a callable, it just re-
turns the trigger. If trigger is None, it returns a trigger that never fires. Otherwise, it passes the value to
IntervalTrigger.

Parameters trigger – Trigger object. It can be either an already built trigger object (i.e., a
callable object that accepts a trainer object and returns a bool value), or a tuple. In latter case,
the tuple is passed to IntervalTrigger.

Returns trigger if it is a callable, otherwise a IntervalTrigger object made from
trigger.

chainer.training.triggers.BestValueTrigger

class chainer.training.triggers.BestValueTrigger(key, compare, trigger=(1, ’epoch’))
Trigger invoked when specific value becomes best.

Parameters

• key (str) – Key of value.

• compare (callable) – Compare function which takes current best value and new value
and returns whether new value is better than current best.

• trigger – Trigger that decides the comparison interval between current best value
and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

4.8. Training Tools 1001

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.training.triggers.EarlyStoppingTrigger

class chainer.training.triggers.EarlyStoppingTrigger(self, check_trigger=(1,
’epoch’), moni-
tor=’main/loss’, patience=3,
mode=’auto’, verbose=False,
max_trigger=(100, ’epoch’))

Trigger for Early Stopping

It can be used as a stop trigger of Trainer to realize early stopping technique.

This trigger works as follows. Within each check interval defined by the check_trigger argument, it mon-
itors and accumulates the reported value at each iteration. At the end of each interval, it computes the mean of
the accumulated values and compares it to the previous ones to maintain the best value. When it finds that the
best value is not updated for some periods (defined by patience), this trigger fires.

Parameters

• monitor (str) – The metric you want to monitor

• check_trigger – Trigger that decides the comparison interval between current best
value and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

• patience (int) – Counts to let the trigger be patient. The trigger will not fire until the
condition is met for successive patience checks.

• mode (str) – 'max', 'min', or 'auto'. It is used to determine how to compare the
monitored values.

• verbose (bool) – Enable verbose output. If verbose is true, you can get more information

• max_trigger – Upper bound of the number of training loops

1002 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Note: patients is also available as an alias of patience for historical reason.

Methods

__call__(trainer)
Decides whether the training loop should be stopped.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

Returns True if the training loop should be stopped.

Return type bool

get_training_length()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.training.triggers.IntervalTrigger

class chainer.training.triggers.IntervalTrigger(period, unit)
Trigger based on a fixed interval.

This trigger accepts iterations divided by a given interval. There are two ways to specify the interval: per
iterations and epochs. Iteration means the number of updates, while epoch means the number of sweeps over
the training dataset. Fractional values are allowed if the interval is a number of epochs; the trigger uses the
iteration and epoch_detail attributes defined by the updater.

For the description of triggers, see get_trigger().

Parameters

• period (int or float) – Length of the interval. Must be an integer if unit is
'iteration'.

• unit (str) – Unit of the length specified by period. It must be either 'iteration'
or 'epoch'.

4.8. Training Tools 1003

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
updater associated with this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

get_training_length()

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.training.triggers.ManualScheduleTrigger

class chainer.training.triggers.ManualScheduleTrigger(points, unit)
Trigger invoked at specified point(s) of iterations or epochs.

This trigger accepts iterations or epochs indicated by given point(s). There are two ways to specify the point(s):
iteration and epoch. iteration means the number of updates, while epoch means the number of sweeps
over the training dataset. Fractional values are allowed if the point is a number of epochs; the trigger uses the
iteration and epoch_detail attributes defined by the updater.

Parameters

• points (int, float, or list of int or float) – time of the trigger. Must
be an integer or list of integer if unit is 'iteration'.

• unit (str) – Unit of the time specified by points. It must be either 'iteration' or
'epoch'.

Variables

• finished (bool) – Flag that indicates whether or not this trigger will

• in the future. This flag is used to determine if the
extension (fire) –

• be initialized after resume. (should) –

1004 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
updater associated with this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.training.triggers.MaxValueTrigger

class chainer.training.triggers.MaxValueTrigger(key, trigger=(1, ’epoch’))
Trigger invoked when specific value becomes maximum.

For example you can use this trigger to take snapshot on the epoch the validation accuracy is maximum.

Parameters

• key (str) – Key of value. The trigger fires when the value associated with this key be-
comes maximum.

• trigger – Trigger that decides the comparison interval between current best value
and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

serialize(serializer)

4.8. Training Tools 1005

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.training.triggers.MinValueTrigger

class chainer.training.triggers.MinValueTrigger(key, trigger=(1, ’epoch’))
Trigger invoked when specific value becomes minimum.

For example you can use this trigger to take snapshot on the epoch the validation loss is minimum.

Parameters

• key (str) – Key of value. The trigger fires when the value associated with this key be-
comes minimum.

• trigger – Trigger that decides the comparison interval between current best value
and new value. This must be a tuple in the form of <int>, 'epoch' or <int>,
'iteration' which is passed to IntervalTrigger.

Methods

__call__(trainer)
Decides whether the extension should be called on this iteration.

Parameters trainer (Trainer) – Trainer object that this trigger is associated with. The
observation of this trainer is used to determine if the trigger should fire.

Returns True if the corresponding extension should be invoked in this iteration.

Return type bool

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

1006 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

__ge__()
Return self>=value.

chainer.training.triggers.OnceTrigger

class chainer.training.triggers.OnceTrigger(call_on_resume=False)
Trigger based on the starting point of the iteration.

This trigger accepts only once at starting point of the iteration. There are two ways to specify the starting point:
only starting point in whole iteration or called again when training resumed.

Parameters call_on_resume (bool) – Whether the extension is called again or not when re-
stored from a snapshot. It is set to False by default.

Variables

• finished (bool) – Flag that indicates whether or not this trigger will

• in the future. This flag is used to determine if the
extension (fire) –

• be initialized after resume. (should) –

Methods

__call__(trainer)
Call self as a function.

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

finished

chainer.training.triggers.TimeTrigger

class chainer.training.triggers.TimeTrigger(period)
Trigger based on a fixed time interval.

This trigger accepts iterations with a given interval time.

4.8. Training Tools 1007

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Parameters period (float) – Interval time. It is given in seconds.

Methods

__call__(trainer)
Call self as a function.

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.9 Datasets

4.9.1 Dataset Abstraction (chainer.dataset)

Chainer supports a common interface for training and validation of datasets. The dataset support consists of three
components: datasets, iterators, and batch conversion functions.

Dataset represents a set of examples. The interface is only determined by combination with iterators you want to
use on it. The built-in iterators of Chainer require the dataset to support __getitem__ and __len__ methods. In
particular, the __getitem__ method should support indexing by both an integer and a slice. We can easily support
slice indexing by inheriting DatasetMixin, in which case users only have to implement get_example()method
for indexing. Basically, datasets are considered as stateless objects, so that we do not need to save the dataset as a
checkpoint of the training procedure.

Iterator iterates over the dataset, and at each iteration, it yields a mini-batch of examples as a list. Iterators should
support the Iterator interface, which includes the standard iterator protocol of Python. Iterators manage where to
read next, which means they are stateful.

Batch conversion function converts the mini-batch into arrays to feed to the neural nets. They are also responsible to
send each array to an appropriate device. Chainer currently provides two implementations:

• concat_examples() is a plain implementation which is used as the default choice.

• ConcatWithAsyncTransfer is a variant which is basically same as concat_examples() except that
it overlaps other GPU computations and data transfer for the next iteration.

These components are all customizable, and designed to have a minimum interface to restrict the types of datasets
and ways to handle them. In most cases, though, implementations provided by Chainer itself are enough to cover the
usages.

1008 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

Chainer also has a light system to download, manage, and cache concrete examples of datasets. All
datasets managed through the system are saved under the dataset root directory, which is determined by the
CHAINER_DATASET_ROOT environment variable, and can also be set by the set_dataset_root() function.

Dataset Representation

See Dataset Examples (chainer.datasets) for dataset implementations.

chainer.dataset.DatasetMixin Default implementation of dataset indexing.

chainer.dataset.DatasetMixin

class chainer.dataset.DatasetMixin
Default implementation of dataset indexing.

DatasetMixin provides the __getitem__() operator. The default implementation uses get_example()
to extract each example, and combines the results into a list. This mixin makes it easy to implement a new
dataset that does not support efficient slicing.

Dataset implementation using DatasetMixin still has to provide the __len__() operator explicitly.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list

(continues on next page)

4.9. Datasets 1009

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Tabular Dataset Representation

chainer.dataset.TabularDataset An abstract class that represents tabular dataset.

chainer.dataset.TabularDataset

class chainer.dataset.TabularDataset
An abstract class that represents tabular dataset.

This class represents a tabular dataset. In a tabular dataset, all examples have the same number of elements. For
example, all examples of the dataset below have three elements (a[i], b[i], and c[i]).

a b c
0 a[0] b[0] c[0]
1 a[1] b[1] c[1]
2 a[2] b[2] c[2]
3 a[3] b[3] c[3]

Since an example can be represented by both tuple and dict ((a[i], b[i], c[i]) and {'a': a[i],
'b': b[i], 'c': c[i]}), this class uses mode to indicate which representation will be used. If there

1010 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

is only one column, an example also can be represented by a value (a[i]). In this case, mode is None.

An inheritance should implement __len__(), keys, mode and get_examples().

>>> import numpy as np
>>>
>>> from chainer import dataset
>>>
>>> class MyDataset(dataset.TabularDataset):
...
... def __len__(self):
... return 4
...
... @property
... def keys(self):
... return ('a', 'b', 'c')
...
... @property
... def mode(self):
... return tuple
...
... def get_examples(self, indices, key_indices):
... data = np.arange(12).reshape((4, 3))
... if indices is not None:
... data = data[indices]
... if key_indices is not None:
... data = data[:, list(key_indices)]
... return tuple(data.transpose())
...
>>> dataset = MyDataset()
>>> len(dataset)
4
>>> dataset.keys
('a', 'b', 'c')
>>> dataset.as_tuple()[0]
(0, 1, 2)
>>> sorted(dataset.as_dict()[0].items())
[('a', 0), ('b', 1), ('c', 2)]
>>>
>>> view = dataset.slice[[3, 2], ('c', 0)]
>>> len(view)
2
>>> view.keys
('c', 'a')
>>> view.as_tuple()[1]
(8, 6)
>>> sorted(view.as_dict()[1].items())
[('a', 6), ('c', 8)]

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

4.9. Datasets 1011

https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 7.0.0b4

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

__iter__()

as_dict()
Return a view with dict mode.

Returns A view whose mode is dict.

as_tuple()
Return a view with tuple mode.

Returns A view whose mode is tuple.

concat(*datasets)
Stack datasets along rows.

Parameters datasets (iterable of TabularDataset) – Datasets to be concatenated. All
datasets must have the same keys.

Returns A concatenated dataset.

convert(data)
Convert fetched data.

This method takes data fetched by fetch() and pre-process them before passing them to models.
The default behaviour is converting each column into an ndarray. This behaviour can be overridden by
with_converter(). If the dataset is constructed by concat() or join(), the converter of the first
dataset is used.

1012 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

Parameters data (tuple or dict) – Data from fetch().

Returns A tuple or dict. Each value is an ndarray.

fetch()
Fetch data.

This method fetches all data of the dataset/view. Note that this method returns a column-major data (i.e.
([a[0], ..., a[3]], ..., [c[0], ... c[3]]), {'a': [a[0], ..., a[3]], .
.., 'c': [c[0], ..., c[3]]}, or [a[0], ..., a[3]]).

Returns If mode is tuple, this method returns a tuple of lists/arrays. If mode is dict, this
method returns a dict of lists/arrays.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

get_examples(indices, key_indices)
Return a part of data.

Parameters

• indices (list of ints or slice) – Indices of requested rows. If this argument
is None, it indicates all rows.

• key_indices (tuple of ints) – Indices of requested columns. If this argument is
None, it indicates all columns.

Returns tuple of lists/arrays

join(*datasets)
Stack datasets along columns.

Parameters datasets (iterable of TabularDataset) – Datasets to be concatenated. All
datasets must have the same length

Returns A joined dataset.

transform(keys, transform)
Apply a transform to each example.

Parameters

• keys (tuple of strs) – The keys of transformed examples.

• transform (callable) – A callable that takes an example and returns transformed
example. mode of transformed dataset is determined by the transformed examples.

Returns A transfromed dataset.

transform_batch(keys, transform_batch)
Apply a transform to examples.

Parameters

• keys (tuple of strs) – The keys of transformed examples.

• transform_batch (callable) – A callable that takes examples and returns trans-
formed examples. mode of transformed dataset is determined by the transformed exam-
ples.

4.9. Datasets 1013

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 7.0.0b4

Returns A transfromed dataset.

with_converter(converter)
Override the behaviour of convert().

This method overrides convert().

Parameters converter (callable) – A new converter.

Returns A dataset with the new converter.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

keys
Names of columns.

A tuple of strings that indicate the names of columns.

mode
Mode of representation.

This indicates the type of value returned by fetch() and __getitem__(). tuple, dict, and None
are supported.

slice
Get a slice of dataset.

Parameters

• indices (list/array of ints/bools or slice) – Requested rows.

• keys (tuple of ints/strs or int or str) – Requested columns.

Returns A view of specified range.

Tabular Dataset Helpers

chainer.dataset.tabular.
DelegateDataset

A helper class to implement a TabularDataset.

chainer.dataset.tabular.from_data Create a TabularDataset from lists/arrays/callables.

1014 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

chainer.dataset.tabular.DelegateDataset

class chainer.dataset.tabular.DelegateDataset(dataset)
A helper class to implement a TabularDataset.

This class wraps an instance of TabularDataset and provides methods of TabularDataset. This class
is useful to create a custom dataset class by inheriting it.

>>> import numpy as np
>>>
>>> from chainer.dataset import tabular
>>>
>>> class MyDataset(tabular.DelegateDataset):
...
... def __init__(self):
... super().__init__(tabular.from_data((
... ('a', np.arange(10)),
... ('b', self.get_b),
... ('c', [3, 1, 4, 5, 9, 2, 6, 8, 7, 0]),
... (('d', 'e'), self.get_de))))
...
... def get_b(self, i):
... return 'b[{}]'.format(i)
...
... def get_de(self, i):
... return {'d': 'd[{}]'.format(i), 'e': 'e[{}]'.format(i)}
...
>>> dataset = MyDataset()
>>> len(dataset)
10
>>> dataset.keys
('a', 'b', 'c', 'd', 'e')
>>> dataset[0]
(0, 'b[0]', 3, 'd[0]', 'e[0]')

Parameters dataset (chainer.dataset.TabularDataset) – An underlying dataset.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset

(continues on next page)

4.9. Datasets 1015

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

__iter__()

as_dict()
Return a view with dict mode.

Returns A view whose mode is dict.

as_tuple()
Return a view with tuple mode.

Returns A view whose mode is tuple.

concat(*datasets)
Stack datasets along rows.

Parameters datasets (iterable of TabularDataset) – Datasets to be concatenated. All
datasets must have the same keys.

Returns A concatenated dataset.

convert(data)
Convert fetched data.

This method takes data fetched by fetch() and pre-process them before passing them to models.
The default behaviour is converting each column into an ndarray. This behaviour can be overridden by
with_converter(). If the dataset is constructed by concat() or join(), the converter of the first
dataset is used.

Parameters data (tuple or dict) – Data from fetch().

Returns A tuple or dict. Each value is an ndarray.

fetch()
Fetch data.

This method fetches all data of the dataset/view. Note that this method returns a column-major data (i.e.
([a[0], ..., a[3]], ..., [c[0], ... c[3]]), {'a': [a[0], ..., a[3]], .
.., 'c': [c[0], ..., c[3]]}, or [a[0], ..., a[3]]).

1016 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

Returns If mode is tuple, this method returns a tuple of lists/arrays. If mode is dict, this
method returns a dict of lists/arrays.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

get_examples(indices, key_indices)
Return a part of data.

Parameters

• indices (list of ints or slice) – Indices of requested rows. If this argument
is None, it indicates all rows.

• key_indices (tuple of ints) – Indices of requested columns. If this argument is
None, it indicates all columns.

Returns tuple of lists/arrays

join(*datasets)
Stack datasets along columns.

Parameters datasets (iterable of TabularDataset) – Datasets to be concatenated. All
datasets must have the same length

Returns A joined dataset.

transform(keys, transform)
Apply a transform to each example.

Parameters

• keys (tuple of strs) – The keys of transformed examples.

• transform (callable) – A callable that takes an example and returns transformed
example. mode of transformed dataset is determined by the transformed examples.

Returns A transfromed dataset.

transform_batch(keys, transform_batch)
Apply a transform to examples.

Parameters

• keys (tuple of strs) – The keys of transformed examples.

• transform_batch (callable) – A callable that takes examples and returns trans-
formed examples. mode of transformed dataset is determined by the transformed exam-
ples.

Returns A transfromed dataset.

with_converter(converter)
Override the behaviour of convert().

This method overrides convert().

Parameters converter (callable) – A new converter.

Returns A dataset with the new converter.

4.9. Datasets 1017

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Chainer Documentation, Release 7.0.0b4

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

keys
Names of columns.

A tuple of strings that indicate the names of columns.

mode
Mode of representation.

This indicates the type of value returned by fetch() and __getitem__(). tuple, dict, and None
are supported.

slice
Get a slice of dataset.

Parameters

• indices (list/array of ints/bools or slice) – Requested rows.

• keys (tuple of ints/strs or int or str) – Requested columns.

Returns A view of specified range.

chainer.dataset.tabular.from_data

chainer.dataset.tabular.from_data(data, size=None)
Create a TabularDataset from lists/arrays/callables.

>>> from chainer.dataset import tabular
>>>
>>> dataset = tabular.from_data([0, 1, 2])
>>> dataset[0]
0
>>> dataset = tabular.from_data(([0, 1, 2], [3, 4, 5]))
>>> dataset[0]
(0, 3)
>>> dataset = tabular.from_data((('a', [0, 1, 2]), ('b', [3, 4, 5])))
>>> dataset.keys
('a', 'b')
>>> dataset[0]

(continues on next page)

1018 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

(0, 3)
>>> dataset = tabular.from_data({'a': [0, 1, 2], 'b': [3, 4, 5]})
>>> sorted(dataset[0].items())
[('a', 0), ('b', 3)]
>>> dataset = tabular.from_data(('a', lambda i: i * i), size=10)
>>> dataset[5]
25

Parameters

• data (list, array, tuple, or dict) – Data in following format.

– list/array

– (str, list/array/callable)

– ((str, . . .), callable)

– ((list/array)/(str, list/array/callable) /((key, . . .), callable), . . .)

– {str: (list/array/callable)/(str, . . .): callable, . . . }

• size (int) – The length of the dataset. This argument is required when no lists/arrays
exist in data.

Returns A TabularDataset.

Iterator Interface

See Iterator for dataset iterator implementations.

chainer.dataset.Iterator Base class of all dataset iterators.

chainer.dataset.Iterator

class chainer.dataset.Iterator
Base class of all dataset iterators.

Iterator iterates over the dataset, yielding a minibatch at each iteration. Minibatch is a list of examples. Each
implementation should implement an iterator protocol (e.g., the __next__() method).

Note that, even if the iterator supports setting the batch size, it does not guarantee that each batch always contains
the same number of examples. For example, if you let the iterator to stop at the end of the sweep, the last batch
may contain a fewer number of examples.

The interface between the iterator and the underlying dataset is not fixed, and up to the implementation.

Each implementation should provide the following attributes (not needed to be writable).

• batch_size: Number of examples within each minibatch.

• epoch: Number of completed sweeps over the dataset.

• epoch_detail: Floating point number version of the epoch. For example, if the iterator is at the middle
of the dataset at the third epoch, then this value is 2.5.

• previous_epoch_detail: The value of epoch_detail at the previous iteration. This value is
None before the first iteration.

4.9. Datasets 1019

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

• is_new_epoch: True if the epoch count was incremented at the last update.

Each implementation should also support serialization to resume/suspend the iteration.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

This method can be called multiple times.

next()
Python2 alternative of __next__.

It calls __next__() by default.

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what
is set manually by users such as the batch size.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

1020 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#StopIteration

Chainer Documentation, Release 7.0.0b4

Batch Conversion Function

chainer.dataset.Converter Base class of converters.
chainer.dataset.converter Decorator to make a converter.
chainer.dataset.concat_examples Converter to wrap a callable with arbitrary arguments.
chainer.dataset.
ConcatWithAsyncTransfer

Interface to concatenate data and transfer them to GPU
asynchronously.

chainer.dataset.to_device Send an array to a given device.

chainer.dataset.Converter

class chainer.dataset.Converter
Base class of converters.

Converters receive batched data retrieved from iterators and perform arbitrary transforms as well as device
transfer.

Implementation should override the __call__ method.

See also:

chainer.dataset.converter() — a decorator to turn a converter function into a Converter in-
stance.

Methods

__call__(batch, device)
Performs conversion.

Parameters

• batch – A batch. The type and value are arbitrary, depending on usage.

• device (Device) – Device to which the converter is expected to send the batch.

Returns: A converted batch.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.9. Datasets 1021

Chainer Documentation, Release 7.0.0b4

chainer.dataset.converter

chainer.dataset.converter()
Decorator to make a converter.

This decorator turns a converter function into a chainer.dataset.Converter class instance, which also
is a callable. This is required to use the converter function from an old module that does not support chainer.
backend.Device instances (See the Device argument conversion section below).

Requirements of the target function

The target converter function must accept two positional arguments: a batch and a device, and return a converted
batch.

The type of the device argument is chainer.backend.Device.

The types and values of the batches (the first argument and the return value) are not specified: they depend on
how the converter is used (e.g. by updaters).

Example

>>> @chainer.dataset.converter()
... def custom_converter(batch, device):
... assert isinstance(device, chainer.backend.Device)
... # do something with batch...
... return device.send(batch)

Device argument conversion

For backward compatibility, the decorator wraps the function so that if the converter is called with the device
argument with int type, it is converted to a chainer.backend.Device instance before calling the original
function. The int value indicates the CUDA device of the cupy backend.

Without the decorator, the converter cannot support ChainerX devices. If the batch were requested to be con-
verted to ChainerX with such converters, RuntimeError will be raised.

chainer.dataset.concat_examples

chainer.dataset.concat_examples = <chainer.dataset.convert._ArbitraryCallableConverter object>
Converter to wrap a callable with arbitrary arguments.

This class accepts arbitrary arguments and pass-through to the underlying callable, with device argument re-
placed.

chainer.dataset.ConcatWithAsyncTransfer

class chainer.dataset.ConcatWithAsyncTransfer(stream=None, compute_stream=None)
Interface to concatenate data and transfer them to GPU asynchronously.

It enables to transfer next batch of input data to GPU while GPU is running kernels for training using current
batch of input data.

An instance of this class is mainly intended to be used as a converter function of an updater like below.

1022 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#RuntimeError

Chainer Documentation, Release 7.0.0b4

from chainer.dataset import convert
...
updater = chainer.training.updaters.StandardUpdater(

...,
converter=convert.ConcatWithAsyncTransfer(),
...)

Parameters

• stream (cupy.cuda.Stream) – CUDA stream. If None, a stream is automatically cre-
ated on the first call. Data transfer operation is launched asynchronously using the stream.

• compute_stream (cupy.cuda.Stream) – CUDA stream used for compute kernels.
If not None, CUDA events are created/used to avoid global synchronization and overlap
execution of compute kernels and data transfers as much as possible. If None, global syn-
chronization is used instead.

Methods

__call__(batch, device=None, padding=None)
Concatenate data and transfer them to GPU asynchronously.

See also chainer.dataset.concat_examples().

Parameters

• batch (list) – A list of examples.

• device (int) – Device ID to which each array is sent.

• padding – Scalar value for extra elements.

Returns Array, a tuple of arrays, or a dictionary of arrays. The type depends on the type of each
example in the batch.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.dataset.to_device

chainer.dataset.to_device(device, x)
Send an array to a given device.

4.9. Datasets 1023

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

This method sends a given array to a given device. This method is used in concat_examples().
You can also use this method in a custom converter method used in Updater and Extension such as
StandardUpdater and Evaluator.

See also chainer.dataset.concat_examples().

Parameters

• device (None or int or device specifier) – A device to which an array is
sent. If it is a negative integer, an array is sent to CPU. If it is a positive integer, an array is
sent to GPU with the given ID. If it is‘‘None‘‘, an array is left in the original device. Also,
any of device specifiers described at DeviceId is accepted.

• x (N-dimensional array) – An array to send.

Returns Converted array.

Dataset Management

chainer.dataset.get_dataset_root Gets the path to the root directory to download and
cache datasets.

chainer.dataset.set_dataset_root Sets the root directory to download and cache datasets.
chainer.dataset.cached_download Downloads a file and caches it.
chainer.dataset.cache_or_load_file Caches a file if it does not exist, or loads it otherwise.

chainer.dataset.get_dataset_root

chainer.dataset.get_dataset_root()
Gets the path to the root directory to download and cache datasets.

Returns The path to the dataset root directory.

Return type str

chainer.dataset.set_dataset_root

chainer.dataset.set_dataset_root(path)
Sets the root directory to download and cache datasets.

There are two ways to set the dataset root directory. One is by setting the environment variable
CHAINER_DATASET_ROOT. The other is by using this function. If both are specified, one specified via this
function is used. The default dataset root is $HOME/.chainer/dataset.

Parameters path (str) – Path to the new dataset root directory.

chainer.dataset.cached_download

chainer.dataset.cached_download(url)
Downloads a file and caches it.

It downloads a file from the URL if there is no corresponding cache. After the download, this function stores a
cache to the directory under the dataset root (see set_dataset_root()). If there is already a cache for the
given URL, it just returns the path to the cache without downloading the same file.

1024 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Note: This function raises OSError when it fails to create the cache directory. In older version, it raised
RuntimeError.

Parameters url (str) – URL to download from.

Returns Path to the downloaded file.

Return type str

chainer.dataset.cache_or_load_file

chainer.dataset.cache_or_load_file(path, creator, loader)
Caches a file if it does not exist, or loads it otherwise.

This is a utility function used in dataset loading routines. The creator creates the file to given path, and
returns the content. If the file already exists, the loader is called instead, and it loads the file and returns the
content.

Note that the path passed to the creator is temporary one, and not same as the path given to this function.
This function safely renames the file created by the creator to a given path, even if this function is called
simultaneously by multiple threads or processes.

Parameters

• path (str) – Path to save the cached file.

• creator – Function to create the file and returns the content. It takes a path to temporary
place as the argument. Before calling the creator, there is no file at the temporary path.

• loader – Function to load the cached file and returns the content.

Returns It returns the returned values by the creator or the loader.

4.9.2 Dataset Examples (chainer.datasets)

The most basic dataset implementation is an array. Both NumPy and CuPy arrays can be used directly as datasets.

In many cases, though, the simple arrays are not enough to write the training procedure. In order to cover most of such
cases, Chainer provides many built-in implementations of datasets.

These built-in datasets are divided into two groups. One is a group of general datasets. Most of them are wrapper of
other datasets to introduce some structures (e.g., tuple or dict) to each data point. The other one is a group of concrete,
popular datasets. These concrete examples use the downloading utilities in the chainer.dataset module to cache
downloaded and converted datasets.

4.9.3 General Datasets

General datasets are further divided into four types.

The first one is DictDataset and TupleDataset, both of which combine other datasets and introduce some
structures on them.

The second one is ConcatenatedDataset and SubDataset. ConcatenatedDataset represents a con-
catenation of existing datasets. It can be used to merge datasets and make a larger dataset. SubDataset represents a
subset of an existing dataset. It can be used to separate a dataset for hold-out validation or cross validation. Convenient
functions to make random splits are also provided.

4.9. Datasets 1025

https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

The third one is TransformDataset, which wraps around a dataset by applying a function to data indexed from
the underlying dataset. It can be used to modify behavior of a dataset that is already prepared.

The last one is a group of domain-specific datasets. Currently, implementations for datasets of images
(ImageDataset, LabeledImageDataset, etc.) and text (TextDataset) are provided.

DictDataset

chainer.datasets.DictDataset Dataset of a dictionary of datasets.

chainer.datasets.DictDataset

class chainer.datasets.DictDataset(**datasets)
Dataset of a dictionary of datasets.

It combines multiple datasets into one dataset. Each example is represented by a dictionary mapping a key to an
example of the corresponding dataset.

Parameters datasets – Underlying datasets. The keys are used as the keys of each example. All
datasets must have the same length.

Methods

__getitem__(index)

__len__()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

TupleDataset

chainer.datasets.TupleDataset Dataset of tuples from multiple equal-length datasets.

chainer.datasets.TupleDataset

class chainer.datasets.TupleDataset(*datasets)
Dataset of tuples from multiple equal-length datasets.

1026 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

A TupleDataset combines multiple equal-length datasets into a single dataset of tuples. The i-th tuple
contains the i-th example from each of the argument datasets, in the same order that they were supplied.

Recall that in Chainer, a dataset is defined as an iterable that supports both __getitem__ and __len__. The
__getitem__ method should support indexing by both an integer and a slice.

As an example, consider creating a TupleDataset from two argument datasets d1 = [8, 0, 5, 1] and
d2 = [3, 1, 7, 4] as tuple_dataset = TupleDataset(d1, d2). The tuple_dataset
will then contain the examples (8, 3), (0, 1), (5, 7), (1, 4). Note that this behavior is simi-
lar to that of the built-in zip() function.

Parameters datasets – Underlying datasets that will be aggregated. Each dataset must be an
iterable that implements __getitem__ and __len__. The j-th dataset will be used for the
j-th item of each example tuple. All datasets must have the same length.

Methods

__getitem__(index)

__len__()

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

ConcatenatedDataset

chainer.datasets.ConcatenatedDataset Dataset which concatenates some base datasets.

chainer.datasets.ConcatenatedDataset

class chainer.datasets.ConcatenatedDataset(*datasets)
Dataset which concatenates some base datasets.

This dataset wraps some base datasets and works as a concatenated dataset. For example, if a base dataset with
10 samples and another base dataset with 20 samples are given, this dataset works as a dataset which has 30
samples.

Parameters datasets – The underlying datasets. Each dataset has to support __len__() and
__getitem__().

4.9. Datasets 1027

https://docs.python.org/3/library/functions.html#zip

Chainer Documentation, Release 7.0.0b4

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

1028 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

SubDataset

chainer.datasets.SubDataset Subset of a base dataset.
chainer.datasets.split_dataset Splits a dataset into two subsets.
chainer.datasets.split_dataset_random Splits a dataset into two subsets randomly.
chainer.datasets.
get_cross_validation_datasets

Creates a set of training/test splits for cross validation.

chainer.datasets.
get_cross_validation_datasets_random

Creates a set of training/test splits for cross validation
randomly.

chainer.datasets.SubDataset

class chainer.datasets.SubDataset(dataset, start, finish, order=None)
Subset of a base dataset.

SubDataset defines a subset of a given base dataset. The subset is defined as an interval of indexes, optionally
with a given permutation.

If order is given, then the i-th example of this dataset is the order[start + i]-th example of the base
dataset, where i is a non-negative integer. If order is not given, then the i-th example of this dataset is the
start + i-th example of the base dataset. Negative indexing is also allowed: in this case, the term start
+ i is replaced by finish + i.

SubDataset is often used to split a dataset into training and validation subsets. The training set is used for
training, while the validation set is used to track the generalization performance, i.e. how the learned model
works well on unseen data. We can tune hyperparameters (e.g. number of hidden units, weight initializers,
learning rate, etc.) by comparing the validation performance. Note that we often use another set called test set
to measure the quality of the tuned hyperparameter, which can be made by nesting multiple SubDatasets.

There are two ways to make training-validation splits. One is a single split, where the dataset is split just
into two subsets. It can be done by split_dataset() or split_dataset_random(). The other
one is a 𝑘-fold cross validation, in which the dataset is divided into 𝑘 subsets, and 𝑘 different splits are
generated using each of the 𝑘 subsets as a validation set and the rest as a training set. It can be done by
get_cross_validation_datasets().

Parameters

• dataset – Base dataset.

• start (int) – The first index in the interval.

• finish (int) – The next-to-the-last index in the interval.

• order (sequence of ints) – Permutation of indexes in the base dataset. If this is
None, then the ascending order of indexes is used.

4.9. Datasets 1029

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

1030 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.datasets.split_dataset

chainer.datasets.split_dataset(dataset, split_at, order=None)
Splits a dataset into two subsets.

This function creates two instances of SubDataset. These instances do not share any examples, and they
together cover all examples of the original dataset.

Parameters

• dataset – Dataset to split.

• split_at (int) – Position at which the base dataset is split.

• order (sequence of ints) – Permutation of indexes in the base dataset. See the
documentation of SubDataset for details.

Returns Two SubDataset objects. The first subset represents the examples of in-
dexes order[:split_at] while the second subset represents the examples of indexes
order[split_at:].

Return type tuple

chainer.datasets.split_dataset_random

chainer.datasets.split_dataset_random(dataset, first_size, seed=None)
Splits a dataset into two subsets randomly.

This function creates two instances of SubDataset. These instances do not share any examples, and they
together cover all examples of the original dataset. The split is automatically done randomly.

Parameters

• dataset – Dataset to split.

• first_size (int) – Size of the first subset.

• seed (int) – Seed the generator used for the permutation of indexes. If an integer being
convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the
given dataset always belongs to a specific subset. If None, the permutation is changed
randomly.

Returns Two SubDataset objects. The first subset contains first_size examples randomly
chosen from the dataset without replacement, and the second subset contains the rest of the
dataset.

Return type tuple

4.9. Datasets 1031

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

chainer.datasets.get_cross_validation_datasets

chainer.datasets.get_cross_validation_datasets(dataset, n_fold, order=None)
Creates a set of training/test splits for cross validation.

This function generates n_fold splits of the given dataset. The first part of each split corresponds to the
training dataset, while the second part to the test dataset. No pairs of test datasets share any examples, and all
test datasets together cover the whole base dataset. Each test dataset contains almost same number of examples
(the numbers may differ up to 1).

Parameters

• dataset – Dataset to split.

• n_fold (int) – Number of splits for cross validation.

• order (sequence of ints) – Order of indexes with which each split is determined.
If it is None, then no permutation is used.

Returns List of dataset splits.

Return type list of tuples

chainer.datasets.get_cross_validation_datasets_random

chainer.datasets.get_cross_validation_datasets_random(dataset, n_fold, seed=None)
Creates a set of training/test splits for cross validation randomly.

This function acts almost same as get_cross_validation_dataset(), except automatically generating
random permutation.

Parameters

• dataset – Dataset to split.

• n_fold (int) – Number of splits for cross validation.

• seed (int) – Seed the generator used for the permutation of indexes. If an integer beging
convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the
given dataset always belongs to a specific subset. If None, the permutation is changed
randomly.

Returns List of dataset splits.

Return type list of tuples

TransformDataset

chainer.datasets.TransformDataset Dataset that indexes the base dataset and transforms the
data.

chainer.datasets.TransformDataset

class chainer.datasets.TransformDataset(dataset, transform)
Dataset that indexes the base dataset and transforms the data.

This dataset wraps the base dataset by modifying the behavior of the base dataset’s __getitem__(). Arrays
returned by __getitem__() of the base dataset with an integer as an argument are transformed by the given

1032 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

function transform. Also, __len__() returns the integer returned by the base dataset’s __len__().

The function transform takes, as an argument, in_data, which is the output of the base dataset’s
__getitem__(), and returns the transformed arrays as output. Please see the following example. Since
in_data directly refers to the item in the dataset, take care that transform not modify it. For example, note
that the line img = img - 0.5 bellow is correct since it makes a copy of img. However, it would be incorrect to
use img -= 0.5 since that would update the contents of the item in the dataset in place, corrupting it.

>>> from chainer.datasets import get_mnist
>>> from chainer.datasets import TransformDataset
>>> dataset, _ = get_mnist()
>>> def transform(in_data):
... img, label = in_data
... img = img - 0.5 # scale to [-0.5, 0.5]
... return img, label
>>> dataset = TransformDataset(dataset, transform)

Parameters

• dataset – The underlying dataset. The index of this dataset corresponds to the index of the
base dataset. This object needs to support functions __getitem__() and __len__()
as described above.

• transform (callable) – A function that is called to transform values returned by the
underlying dataset’s __getitem__().

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice

(continues on next page)

4.9. Datasets 1033

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

ImageDataset

chainer.datasets.ImageDataset Dataset of images built from a list of paths to image
files.

chainer.datasets.ZippedImageDataset Dataset of images built from a zip file.
chainer.datasets.
MultiZippedImageDataset

Dataset of images built from a list of paths to zip files.

chainer.datasets.ImageDataset

class chainer.datasets.ImageDataset(paths, root=’.’, dtype=None)
Dataset of images built from a list of paths to image files.

This dataset reads an external image file on every call of the __getitem__() operator. The paths to the
image to retrieve is given as either a list of strings or a text file that contains paths in distinct lines.

Each image is automatically converted to arrays of shape channels, height, width, where channels
represents the number of channels in each pixel (e.g., 1 for grey-scale images, and 3 for RGB-color images).

1034 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Note: This dataset requires the Pillow package being installed. In order to use this dataset, install Pillow
(e.g. by using the command pip install Pillow). Be careful to prepare appropriate libraries for image
formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG images).

Warning: You are responsible for preprocessing the images before feeding them to a model. For
example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the
same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale
images.

Parameters

• paths (str or list of strs) – If it is a string, it is a path to a text file that contains
paths to images in distinct lines. If it is a list of paths, the i-th element represents the path to
the i-th image. In both cases, each path is a relative one from the root path given by another
argument.

• root (str) – Root directory to retrieve images from.

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]

(continues on next page)

4.9. Datasets 1035

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.datasets.ZippedImageDataset

class chainer.datasets.ZippedImageDataset(zipfilename, dtype=None)
Dataset of images built from a zip file.

This dataset reads an external image file in the given zipfile. The zipfile shall contain only image files. This shall
be able to replace ImageDataset and works better on NFS and other networked file systems. If zipfile becomes
too large you may consider MultiZippedImageDataset as a handy alternative.

Known issue: pickle and unpickle on same process may cause race condition on ZipFile. Pickle of this class is
expected to be sent to different processess via ChainerMN.

Parameters

• zipfilename (str) – a string to point zipfile path

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

1036 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i_or_filename)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

4.9. Datasets 1037

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.datasets.MultiZippedImageDataset

class chainer.datasets.MultiZippedImageDataset(zipfilenames, dtype=None)
Dataset of images built from a list of paths to zip files.

This dataset reads an external image file in given zipfiles. The zipfiles shall contain only image files. This shall
be able to replace ImageDataset and works better on NFS and other networked file systems. The user shall find
good balance between zipfile size and number of zipfiles (e.g. granularity)

Parameters

• zipfilenames (list of strings) – List of zipped archive filename.

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]

(continues on next page)

1038 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

LabeledImageDataset

chainer.datasets.LabeledImageDataset Dataset of image and label pairs built from a list of paths
and labels.

chainer.datasets.
LabeledZippedImageDataset

Dataset of zipped image and label pairs.

chainer.datasets.LabeledImageDataset

class chainer.datasets.LabeledImageDataset(pairs, root=’.’, dtype=None, la-
bel_dtype=<class ’numpy.int32’>)

Dataset of image and label pairs built from a list of paths and labels.

This dataset reads an external image file like ImageDataset. The difference from ImageDataset is that
this dataset also returns a label integer. The paths and labels are given as either a list of pairs or a text file
contains paths/labels pairs in distinct lines. In the latter case, each path and corresponding label are separated
by white spaces. This format is same as one used in Caffe.

Note: This dataset requires the Pillow package being installed. In order to use this dataset, install Pillow

4.9. Datasets 1039

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

(e.g. by using the command pip install Pillow). Be careful to prepare appropriate libraries for image
formats you want to use (e.g. libpng for PNG images, and libjpeg for JPG images).

Warning: You are responsible for preprocessing the images before feeding them to a model. For
example, if your dataset contains both RGB and grayscale images, make sure that you convert them to the
same format. Otherwise you will get errors because the input dimensions are different for RGB and grayscale
images.

Parameters

• pairs (str or list of tuples) – If it is a string, it is a path to a text file that
contains paths to images in distinct lines. If it is a list of pairs, the i-th element represents a
pair of the path to the i-th image and the corresponding label. In both cases, each path is a
relative one from the root path given by another argument.

• root (str) – Root directory to retrieve images from.

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

• label_dtype – Data type of the labels.

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]

(continues on next page)

1040 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.datasets.LabeledZippedImageDataset

class chainer.datasets.LabeledZippedImageDataset(zipfilename, labelfilename,
dtype=None, label_dtype=<class
’numpy.int32’>)

Dataset of zipped image and label pairs.

This dataset is zip version of LabeledImageDataset. It takes a zipfile like ZippedImageDataset. The
label file shall contain lines like text file used in LabeledImageDataset, but a filename in each line of the
label file shall match with a file in the zip archive.

Parameters

• zipfilename (str) – Path to a zipfile with images

• labelfilename (str) – Path to a label file. i-th line shall contain a filename and an
integer label that corresponds to the i-th sample. A filename in the label file shall match
with a filename in the zip file given with zipfilename.

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

• label_dtype – Data type of the labels.

4.9. Datasets 1041

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

get_example(i)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

1042 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

TextDataset

chainer.datasets.TextDataset Dataset of a line-oriented text file.

chainer.datasets.TextDataset

class chainer.datasets.TextDataset(paths, encoding=None, errors=None, newline=None, fil-
ter_func=None)

Dataset of a line-oriented text file.

This dataset reads each line of text file(s) on every call of the __getitem__() operator. Positions of line
boundaries are cached so that you can quickliy random access the text file by the line number.

Note: Cache will be built in the constructor. You can pickle and unpickle the dataset to reuse the cache, but in
that case you are responsible to guarantee that files are not modified after the cache has built.

Parameters

• paths (str or list of str) – Path to the text file(s). If it is a string, this dataset
reads a line from the text file and emits it as str. If it is a list of string, this dataset reads
lines from each text file and emits it as a tuple of str. In this case, number of lines in all
files must be the same.

• encoding (str or list of str) – Name of the encoding used to decode the file.
See the description in open() for the supported options and how it works. When reading
from multiple text files, you can also pass a list of str to use different encoding for each
file.

• errors (str or list of str) – String that specifies how decoding errors are to
be handled. See the description in open() for the supported options and how it works.
When reading from multiple text files, you can also pass a list of str to use different error
handling policy for each file.

• newline (str or list of str) – Controls how universal newlines mode works.
See the description in open() for the supported options and how it works. When reading
from multiple text files, you can also pass a list of str to use different mode for each file.

• filter_func (callable) – Function to filter each line of the text file. It should be a
function that takes number of arguments equals to the number of files. Arguments are lines
loaded from each file. The filter function must return True to accept the line, or return False
to skip the line.

4.9. Datasets 1043

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Methods

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

close()
Manually closes all text files.

In most cases, you do not have to call this method, because files will automatically be closed after Text-
Dataset instance goes out of scope.

get_example(idx)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

1044 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

PickleDataset

chainer.datasets.PickleDataset Dataset stored in a storage using pickle.
chainer.datasets.PickleDatasetWriter Writer class that makes PickleDataset.
chainer.datasets.open_pickle_dataset Opens a dataset stored in a given path.
chainer.datasets.
open_pickle_dataset_writer

Opens a writer to make a PickleDataset.

chainer.datasets.PickleDataset

class chainer.datasets.PickleDataset(reader)
Dataset stored in a storage using pickle.

pickle is the default serialization library of Python. This dataset stores any objects in a storage using pickle.
Even when a user wants to use a large dataset, this dataset can stores all data in a large storage like HDD and
each data can be randomly accessible.

>>> with chainer.datasets.open_pickle_dataset_writer(path_to_data) as w:
... w.write((1, 2.0, 'hello'))
... w.write((2, 3.0, 'good-bye'))
...
>>> with chainer.datasets.open_pickle_dataset(path_to_data) as dataset:
... print(dataset[1])
...
(2, 3.0, 'good-bye')

Parameters reader – File like object. reader must support random access.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

__getitem__(index)
Returns an example or a sequence of examples.

It implements the standard Python indexing and one-dimensional integer array indexing. It uses the
get_example() method by default, but it may be overridden by the implementation to, for example,
improve the slicing performance.

4.9. Datasets 1045

https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#module-pickle

Chainer Documentation, Release 7.0.0b4

Parameters index (int, slice, list or numpy.ndarray) – An index of an ex-
ample or indexes of examples.

Returns If index is int, returns an example created by get_example. If index is either slice or
one-dimensional list or numpy.ndarray, returns a list of examples created by get_example.

Example

>>> import numpy
>>> from chainer import dataset
>>> class SimpleDataset(dataset.DatasetMixin):
... def __init__(self, values):
... self.values = values
... def __len__(self):
... return len(self.values)
... def get_example(self, i):
... return self.values[i]
...
>>> ds = SimpleDataset([0, 1, 2, 3, 4, 5])
>>> ds[1] # Access by int
1
>>> ds[1:3] # Access by slice
[1, 2]
>>> ds[[4, 0]] # Access by one-dimensional integer list
[4, 0]
>>> index = numpy.arange(3)
>>> ds[index] # Access by one-dimensional integer numpy.ndarray
[0, 1, 2]

__len__()
Returns the number of data points.

close()
Closes a file reader.

After a user calls this method, the dataset will no longer be accessible..

get_example(index)
Returns the i-th example.

Implementations should override it. It should raise IndexError if the index is invalid.

Parameters i (int) – The index of the example.

Returns The i-th example.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

1046 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__ge__()
Return self>=value.

chainer.datasets.PickleDatasetWriter

class chainer.datasets.PickleDatasetWriter(writer, protocol=4)
Writer class that makes PickleDataset.

To make PickleDataset, a user needs to prepare data using PickleDatasetWriter.

Parameters

• writer – File like object that supports write and tell methods.

• protocol (int) – Valid protocol for pickle.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

close()

flush()

write(x)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.datasets.open_pickle_dataset

chainer.datasets.open_pickle_dataset(path)
Opens a dataset stored in a given path.

This is a helper function to open PickleDataset. It opens a given file in binary mode, and creates a
PickleDataset instance.

This method does not close the opened file. A user needs to call PickleDataset.close() or use with:

with chainer.datasets.open_pickle_dataset('path') as dataset:
pass # use dataset

4.9. Datasets 1047

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pickle.html#module-pickle

Chainer Documentation, Release 7.0.0b4

Parameters path (str) – Path to a dataset.

Returns Opened dataset.

Return type chainer.datasets.PickleDataset

chainer.datasets.open_pickle_dataset_writer

chainer.datasets.open_pickle_dataset_writer(path, protocol=4)
Opens a writer to make a PickleDataset.

This is a helper function to open PickleDatasetWriter. It opens a given file in binary mode and creates
a PickleDatasetWriter instance.

This method does not close the opened file. A user needs to call PickleDatasetWriter.close() or use
with:

with chainer.datasets.open_pickle_dataset_writer('path') as writer:
pass # use writer

Parameters

• path (str) – Path to a dataset.

• protocol (int) – Valid protocol for pickle.

Returns Opened writer.

Return type chainer.datasets.PickleDatasetWriter

4.9.4 Concrete Datasets

chainer.datasets.get_mnist Gets the MNIST dataset.
chainer.datasets.get_kuzushiji_mnist Gets the Kuzushiji-MNIST dataset.
chainer.datasets.
get_kuzushiji_mnist_labels

Provides a list of labels for the Kuzushiji-MNIST
dataset.

chainer.datasets.
get_fashion_mnist_labels

Provide a list of the string value names of the labels.

chainer.datasets.get_fashion_mnist Gets the Fashion-MNIST dataset.
chainer.datasets.get_cifar10 Gets the CIFAR-10 dataset.
chainer.datasets.get_cifar100 Gets the CIFAR-100 dataset.
chainer.datasets.get_ptb_words Gets the Penn Tree Bank dataset as long word se-

quences.
chainer.datasets.
get_ptb_words_vocabulary

Gets the Penn Tree Bank word vocabulary.

chainer.datasets.get_svhn Gets the SVHN dataset.

chainer.datasets.get_mnist

chainer.datasets.get_mnist(withlabel=True, ndim=1, scale=1.0, dtype=None, label_dtype=<class
’numpy.int32’>, rgb_format=False)

Gets the MNIST dataset.

MNIST is a set of hand-written digits represented by grey-scale 28x28 images. In the original images, each
pixel is represented by one-byte unsigned integer. This function scales the pixels to floating point values in the

1048 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/pickle.html#module-pickle
http://yann.lecun.com/exdb/mnist/

Chainer Documentation, Release 7.0.0b4

interval [0, scale].

This function returns the training set and the test set of the official MNIST dataset. If withlabel is True,
each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

– ndim == 1: the shape is (784,)

– ndim == 2: the shape is (28, 28)

– ndim == 3: the shape is (1, 28, 28)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

• label_dtype – Data type of the labels.

• rgb_format (bool) – if ndim == 3 and rgb_format is True, the image will be
converted to rgb format by duplicating the channels so the image shape is (3, 28, 28). Default
is False.

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_kuzushiji_mnist

chainer.datasets.get_kuzushiji_mnist(withlabel=True, ndim=1, scale=1.0, dtype=None, la-
bel_dtype=<class ’numpy.int32’>, rgb_format=False)

Gets the Kuzushiji-MNIST dataset.

Kuzushiji-MNIST (KMNIST) is a set of hand-written Japanese characters represented by grey-scale 28x28
images. In the original images, each pixel is represented by one-byte unsigned integer. This function scales the
pixels to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official KMNIST dataset. If withlabel is True,
each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

– ndim == 1: the shape is (784,)

– ndim == 2: the shape is (28, 28)

– ndim == 3: the shape is (1, 28, 28)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

4.9. Datasets 1049

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
http://codh.rois.ac.jp/kmnist/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

• label_dtype – Data type of the labels.

• rgb_format (bool) – if ndim == 3 and rgb_format is True, the image will be
converted to rgb format by duplicating the channels so the image shape is (3, 28, 28). Default
is False.

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_kuzushiji_mnist_labels

chainer.datasets.get_kuzushiji_mnist_labels()
Provides a list of labels for the Kuzushiji-MNIST dataset.

Returns List of labels in the form of tuples. Each tuple contains the character name in romaji as a
string value and the unicode codepoint for the character.

chainer.datasets.get_fashion_mnist_labels

chainer.datasets.get_fashion_mnist_labels()
Provide a list of the string value names of the labels.

Returns List of string values of the image labels.

chainer.datasets.get_fashion_mnist

chainer.datasets.get_fashion_mnist(withlabel=True, ndim=1, scale=1.0, dtype=None, la-
bel_dtype=<class ’numpy.int32’>, rgb_format=False)

Gets the Fashion-MNIST dataset.

Fashion-MNIST is a set of fashion articles represented by grey-scale 28x28 images. In the original images, each
pixel is represented by one-byte unsigned integer. This function scales the pixels to floating point values in the
interval [0, scale].

This function returns the training set and the test set of the official Fashion-MNIST dataset. If withlabel is
True, each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

– ndim == 1: the shape is (784,)

– ndim == 2: the shape is (28, 28)

– ndim == 3: the shape is (1, 28, 28)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

1050 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://github.com/zalandoresearch/fashion-mnist/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Chainer Documentation, Release 7.0.0b4

• label_dtype – Data type of the labels.

• rgb_format (bool) – if ndim == 3 and rgb_format is True, the image will be
converted to rgb format by duplicating the channels so the image shape is (3, 28, 28). Default
is False.

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_cifar10

chainer.datasets.get_cifar10(withlabel=True, ndim=3, scale=1.0, dtype=None)
Gets the CIFAR-10 dataset.

CIFAR-10 is a set of small natural images. Each example is an RGB color image of size 32x32, classified into
10 groups. In the original images, each component of pixels is represented by one-byte unsigned integer. This
function scales the components to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official CIFAR-10 dataset. If withlabel is True,
each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

– ndim == 1: the shape is (3072,)

– ndim == 3: the shape is (3, 32, 32)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

Returns A tuple of two datasets. If withlabel is True, both datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

chainer.datasets.get_cifar100

chainer.datasets.get_cifar100(withlabel=True, ndim=3, scale=1.0, dtype=None)
Gets the CIFAR-100 dataset.

CIFAR-100 is a set of small natural images. Each example is an RGB color image of size 32x32, classified into
100 groups. In the original images, each component pixels is represented by one-byte unsigned integer. This
function scales the components to floating point values in the interval [0, scale].

This function returns the training set and the test set of the official CIFAR-100 dataset. If withlabel is True,
each dataset consists of tuples of images and labels, otherwise it only consists of images.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• ndim (int) – Number of dimensions of each image. The shape of each image is determined
depending on ndim as follows:

4.9. Datasets 1051

https://docs.python.org/3/library/functions.html#bool
https://www.cs.toronto.edu/~kriz/cifar.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://www.cs.toronto.edu/~kriz/cifar.html
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

– ndim == 1: the shape is (3072,)

– ndim == 3: the shape is (3, 32, 32)

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

Returns A tuple of two datasets. If withlabel is True, both are TupleDataset instances.
Otherwise, both datasets are arrays of images.

chainer.datasets.get_ptb_words

chainer.datasets.get_ptb_words()
Gets the Penn Tree Bank dataset as long word sequences.

Penn Tree Bank is originally a corpus of English sentences with linguistic structure annotations. This func-
tion uses a variant distributed at https://github.com/wojzaremba/lstm, which omits the annotation and splits the
dataset into three parts: training, validation, and test.

This function returns the training, validation, and test sets, each of which is represented as a long array of word
IDs. All sentences in the dataset are concatenated by End-of-Sentence mark ‘<eos>’, which is treated as one of
the vocabulary.

Returns Int32 vectors of word IDs.

Return type tuple of numpy.ndarray

See also:

Use get_ptb_words_vocabulary() to get the mapping between the words and word IDs.

chainer.datasets.get_ptb_words_vocabulary

chainer.datasets.get_ptb_words_vocabulary()
Gets the Penn Tree Bank word vocabulary.

Returns Dictionary that maps words to corresponding word IDs. The IDs are used in the Penn Tree
Bank long sequence datasets.

Return type dict

See also:

See get_ptb_words() for the actual datasets.

chainer.datasets.get_svhn

chainer.datasets.get_svhn(withlabel=True, scale=1.0, dtype=None, label_dtype=<class
’numpy.int32’>, add_extra=False)

Gets the SVHN dataset.

The Street View House Numbers (SVHN) dataset is a dataset similar to MNIST but composed of cropped
images of house numbers. The functionality of this function is identical to the counterpart for the MNIST
dataset (get_mnist()), with the exception that there is no ndim argument.

1052 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#float
https://catalog.ldc.upenn.edu/LDC99T42
https://github.com/wojzaremba/lstm
https://docs.python.org/3/library/stdtypes.html#dict
http://ufldl.stanford.edu/housenumbers/

Chainer Documentation, Release 7.0.0b4

Note: SciPy is required to use this feature.

Parameters

• withlabel (bool) – If True, it returns datasets with labels. In this case, each example
is a tuple of an image and a label. Otherwise, the datasets only contain images.

• scale (float) – Pixel value scale. If it is 1 (default), pixels are scaled to the interval [0,
1].

• dtype – Data type of resulting image arrays. chainer.config.dtype is used by
default (see Configuring Chainer).

• label_dtype – Data type of the labels.

• add_extra – Use extra training set.

Returns If add_extra is False, a tuple of two datasets (train and test). Otherwise, a tuple of
three datasets (train, test, and extra). If withlabel is True, all datasets are TupleDataset
instances. Otherwise, both datasets are arrays of images.

Note: ChainerCV supports implementations of datasets that are useful for computer vision problems, which can be
found in chainercv.datasets. Here is a subset of data loaders supported by ChainerCV:

• Bounding Box Datasets

– chainercv.datasets.VOCBboxDataset

– chainercv.datasets.COCOBboxDataset

• Semantic Segmentation Datasets

– chainercv.datasets.ADE20KSemanticSegmentationDataset

– chainercv.datasets.CamVidDataset

– chainercv.datasets.CityscapesSemanticSegmentationDataset

– chainercv.datasets.VOCSemanticSegmentationDataset

• Instance Segmentation Datasets

– chainercv.datasets.COCOInstanceSegmentationDataset

– chainercv.datasets.VOCInstanceSegmentationDataset

• Classification Datasets

– chainercv.datasets.CUBLabelDataset

– chainercv.datasets.OnlineProductsDataset

4.10 Iterator

Chainer provides some iterators that implement typical strategies to create mini-batches by iterating over
datasets. SerialIterator is the simplest one, which extracts mini-batches in the main thread.
MultiprocessIterator and MultithreadIterator are parallelized versions of SerialIterator.
They maintain worker subprocesses and subthreads, respectively, to load the next mini-batch in parallel.

4.10. Iterator 1053

https://www.scipy.org/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#module-chainercv.datasets
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.VOCBboxDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.COCOBboxDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.ADE20KSemanticSegmentationDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.CamVidDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.CityscapesSemanticSegmentationDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.VOCSemanticSegmentationDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.COCOInstanceSegmentationDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.VOCInstanceSegmentationDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.CUBLabelDataset
https://chainercv.readthedocs.io/en/latest/reference/datasets.html#chainercv.datasets.OnlineProductsDataset

Chainer Documentation, Release 7.0.0b4

chainer.iterators.SerialIterator Dataset iterator that serially reads the examples.
chainer.iterators.
MultiprocessIterator

Dataset iterator that loads examples in parallel.

chainer.iterators.
MultithreadIterator

Dataset iterator that loads examples in parallel.

chainer.iterators.DaliIterator (Experimental) Iterator for DALI pipeline.

4.10.1 chainer.iterators.SerialIterator

class chainer.iterators.SerialIterator(dataset, batch_size, repeat=True, shuffle=None, or-
der_sampler=None)

Dataset iterator that serially reads the examples.

This is a simple implementation of Iterator that just visits each example in either the order of indexes or a
shuffled order.

To avoid unintentional performance degradation, the shuffle option is set to True by default. For validation,
it is better to set it to False when the underlying dataset supports fast slicing. If the order of examples has an
important meaning and the updater depends on the original order, this option should be set to False.

This iterator saves -1 instead of None in snapshots since some serializers do not support None.

Parameters

• dataset – Dataset to iterate.

• batch_size (int) – Number of examples within each batch.

• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration
at the end of the first epoch.

• shuffle (bool) – If True, the order of examples is shuffled at the beginning of each
epoch. Otherwise, examples are extracted in the order of indexes. If None and no
order_sampler is given, the behavior is the same as the case with shuffle=True.

• order_sampler (callable) – A callable that generates the order of the indices to
sample in the next epoch when a epoch finishes. This function should take two arguments:
the current order and the current position of the iterator. This should return the next order.
The size of the order should remain constant. This option cannot be used when shuffle
is not None.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

1054 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#StopIteration

Chainer Documentation, Release 7.0.0b4

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

This method can be called multiple times.

next()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

reset()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what
is set manually by users such as the batch size.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

current_position

epoch

epoch_detail

is_new_epoch

previous_epoch_detail

repeat

4.10. Iterator 1055

https://docs.python.org/3/library/exceptions.html#StopIteration

Chainer Documentation, Release 7.0.0b4

4.10.2 chainer.iterators.MultiprocessIterator

class chainer.iterators.MultiprocessIterator(dataset, batch_size, repeat=True,
shuffle=None, n_processes=None,
n_prefetch=1, shared_mem=None, or-
der_sampler=None, dataset_timeout=30.0,
maxtasksperchild=None)

Dataset iterator that loads examples in parallel.

This is an implementation of Iterator that loads examples with worker processes. It uses the standard
multiprocessing module to parallelize the loading. The dataset is sent to the worker processes in the
standard way using pickle.

Note that this iterator effectively prefetches the examples for the next batch asynchronously after the current
batch is returned.

This iterator saves -1 instead of None in snapshots since some serializers do not support None.

Note: When you are using OpenCV somewhere in your code and the MultiprocessIterator is used in
the training code, the training loop may get stuck at some point. In such situation, there are several workarounds
to prevent the process got stuck.

1. Set the environment variable as follows: OMP_NUM_THREADS=1

2. Add cv2.setNumThreads(0) right after import cv2 in your training script.

3. Use MultithreadIterator instead of MultiprocessIterator.

Parameters

• dataset (Dataset) – Dataset to iterate.

• batch_size (int) – Number of examples within each batch.

• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration
at the end of the first epoch.

• shuffle (bool) – If True, the order of examples is shuffled at the beginning of each
epoch. Otherwise, examples are extracted in the order of indexes. If None and no
order_sampler is given, the behavior is the same as the case with shuffle=True.

• n_processes (int) – Number of worker processes. The number of CPUs is used by
default.

• n_prefetch (int) – Number of prefetch batches.

• shared_mem (int) – The size of using shared memory per data. If None, size is adjusted
automatically.

• dataset_timeout (float) – MultiprocessIterator.TimeoutWarningwill
be issued after this time in seconds elapsed in each dataset realization. None to dis-
able the warning. You can turn this warning into an error by using warnings.
simplefilter():

warnings.simplefilter(
'error',
chainer.iterators.MultiprocessIterator.TimeoutWarning)

• order_sampler (callable) – A callable that generates the order of the indices to
sample in the next epoch when a epoch finishes. This function should take two arguments:

1056 Chapter 4. API Reference

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/warnings.html#warnings.simplefilter
https://docs.python.org/3/library/warnings.html#warnings.simplefilter

Chainer Documentation, Release 7.0.0b4

the current order and the current position of the iterator. This should return the next order.
The size of the order should remain constant. This option cannot be used when shuffle
is not None.

• maxtasksperchild (int) – Number of tasks a worker of prefetch process can complete
before it will exit and be replaced with a fresh worker process, to enable unused resources
to be freed. If None, worker processes will live as long as the pool.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

__copy__()

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

This method can be called multiple times.

next()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

reset()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what
is set manually by users such as the batch size.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

4.10. Iterator 1057

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#StopIteration

Chainer Documentation, Release 7.0.0b4

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

current_position

epoch

epoch_detail

is_new_epoch

previous_epoch_detail

4.10.3 chainer.iterators.MultithreadIterator

class chainer.iterators.MultithreadIterator(dataset, batch_size, repeat=True,
shuffle=None, n_threads=1, or-
der_sampler=None)

Dataset iterator that loads examples in parallel.

This is an implementation of Iterator that loads examples with worker threads. It uses the standard
threading module to parallelize the loading.

Note that this iterator effectively prefetches the examples for the next batch asynchronously after the current
batch is returned.

This iterator saves -1 instead of None in snapshots since some serializers do not support None.

Parameters

• dataset (Dataset) – Dataset to iterate.

• batch_size (int) – Number of examples within each batch.

• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration
at the end of the first epoch.

• shuffle (bool) – If True, the order of examples is shuffled at the beginning of each
epoch. Otherwise, examples are extracted in the order of indexes. If None and no
order_sampler is given, the behavior is the same as the case with shuffle=True.

• n_threads (int) – Number of worker threads.

• order_sampler (callable) – A callable that generates the order of the indices to
sample in the next epoch when a epoch finishes. This function should take two arguments:
the current order and the current position of the iterator. This should return the next order.
The size of the order should remain constant. This option cannot be used when shuffle
is not None.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

1058 Chapter 4. API Reference

https://docs.python.org/3/library/threading.html#module-threading
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

This method can be called multiple times.

next()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

reset()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what
is set manually by users such as the batch size.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

current_position

epoch

epoch_detail

is_new_epoch

previous_epoch_detail

4.10. Iterator 1059

https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#StopIteration

Chainer Documentation, Release 7.0.0b4

repeat

4.10.4 chainer.iterators.DaliIterator

class chainer.iterators.DaliIterator(pipeline, repeat=True)
(Experimental) Iterator for DALI pipeline.

Parameters

• pipeline – DALI pipeline.

• repeat (bool) – If True, it infinitely loops over the dataset. Otherwise, it stops iteration
at the end of the first epoch.

Methods

__enter__()

__exit__(exc_type, exc_value, traceback)

__next__()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

__iter__()
Returns self.

finalize()
Finalizes the iterator and possibly releases the resources.

This method does nothing by default. Implementation may override it to better handle the internal re-
sources.

This method can be called multiple times.

next()
Returns the next batch.

This is a part of the iterator protocol of Python. It may raise the StopIteration exception when it
stops the iteration.

reset()

serialize(serializer)
Serializes the internal state of the iterator.

This is a method to support the serializer protocol of Chainer.

Note: It should only serialize the internal state that changes over the iteration. It should not serialize what
is set manually by users such as the batch size.

__eq__()
Return self==value.

__ne__()
Return self!=value.

1060 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#StopIteration

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

batch_size

epoch_detail

previous_epoch_detail

repeat

4.10.5 Order sampler examples

An Iterator iterates over a dataset according to an order represented by a 1-D array of indices. Order samplers are
callables that are used by those iterators to generate this array.

chainer.iterators.OrderSampler Base class of all order samplers.
chainer.iterators.
ShuffleOrderSampler

Sampler that generates random orders.

chainer.iterators.OrderSampler

class chainer.iterators.OrderSampler
Base class of all order samplers.

Every order sampler subclass has to provide a method __call__(). This method is called by an iterator
before a new epoch, and it should return a new index order for the next epoch.

Methods

__call__(current_order, current_position)
Sample the next order.

Parameters

• current_order (numpy.ndarray) – 1-D array of indices. The length should be the
same as the dataset to sample data from.

• current_position (int) – The current position of an iterator.

Returns 1-D array of indices. This is the order in which examples are sampled from a dataset in
the next epoch.

Return type numpy.ndarray

4.10. Iterator 1061

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.iterators.ShuffleOrderSampler

class chainer.iterators.ShuffleOrderSampler(random_state=None)
Sampler that generates random orders.

This is expected to be used together with Chainer’s iterators. An order sampler is called by an iterator every
epoch.

The two initializations below create basically the same objects.

>>> dataset = [(1, 2), (3, 4)]
>>> it = chainer.iterators.MultiprocessIterator(dataset, 1, shuffle=True)
>>> it = chainer.iterators.MultiprocessIterator(
... dataset, 1, order_sampler=chainer.iterators.ShuffleOrderSampler())

Parameters random_state (numpy.random.RandomState) – Pseudo-random number
generator.

Methods

__call__(current_order, current_position)
Sample the next order.

Parameters

• current_order (numpy.ndarray) – 1-D array of indices. The length should be the
same as the dataset to sample data from.

• current_position (int) – The current position of an iterator.

Returns 1-D array of indices. This is the order in which examples are sampled from a dataset in
the next epoch.

Return type numpy.ndarray

__eq__()
Return self==value.

__ne__()
Return self!=value.

1062 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.11 Serializers

4.11.1 Serialization in NumPy NPZ format

NumPy serializers can be used in arbitrary environments that Chainer runs with. It consists of asymmetric serial-
izer/deserializer due to the fact that numpy.savez() does not support online serialization. Therefore, serialization
requires two-step manipulation: first packing the objects into a flat dictionary, and then serializing it into npz format.

chainer.serializers.
DictionarySerializer

Serializer for dictionary.

chainer.serializers.NpzDeserializer Deserializer for NPZ format.
chainer.serializers.save_npz Saves an object to the file in NPZ format.
chainer.serializers.load_npz Loads an object from the file in NPZ format.

chainer.serializers.DictionarySerializer

class chainer.serializers.DictionarySerializer(target=None, path=”)
Serializer for dictionary.

This is the standard serializer in Chainer. The hierarchy of objects are simply mapped to a flat dictionary with
keys representing the paths to objects in the hierarchy.

Note: Despite of its name, this serializer DOES NOT serialize the object into external files. It just build a
flat dictionary of arrays that can be fed into numpy.savez() and numpy.savez_compressed(). If you
want to use this serializer directly, you have to manually send a resulting dictionary to one of these functions.

Parameters

• target (dict) – The dictionary that this serializer saves the objects to. If target is None,
then a new dictionary is created.

• path (str) – The base path in the hierarchy that this serializer indicates.

Variables target (dict) – The target dictionary. Once the serialization completes, this dictionary
can be fed into numpy.savez() or numpy.savez_compressed() to serialize it in the
NPZ format.

4.11. Serializers 1063

https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez
https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez_compressed.html#numpy.savez_compressed

Chainer Documentation, Release 7.0.0b4

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

save(obj)
Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

1064 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

chainer.serializers.NpzDeserializer

class chainer.serializers.NpzDeserializer(npz, path=”, strict=True, ig-
nore_names=None)

Deserializer for NPZ format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by
save_npz().

Parameters

• npz – npz file object.

• path – The base path that the deserialization starts from.

• strict (bool) – If True, the deserializer raises an error when an expected value is not
found in the given NPZ file. Otherwise, it ignores the value and skip deserialization.

• ignore_names (string, callable or list of them) – If callable, it is a
function that takes a name of a parameter and a persistent and returns True when it needs to
be skipped. If string, this is a name of a parameter or persistent that are going to be skipped.
This can also be a list of callables and strings that behave as described above.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

4.11. Serializers 1065

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

load(obj)
Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.serializers.save_npz

chainer.serializers.save_npz(file, obj, compression=True)
Saves an object to the file in NPZ format.

This is a short-cut function to save only one object into an NPZ file.

Parameters

• file (str or file-like) – Target file to write to.

• obj – Object to be serialized. It must support serialization protocol. If it is a dictionary
object, the serialization will be skipped.

• compression (bool) – If True, compression in the resulting zip file is enabled.

See also:

chainer.serializers.load_npz()

chainer.serializers.load_npz

chainer.serializers.load_npz(file, obj, path=”, strict=True, ignore_names=None)
Loads an object from the file in NPZ format.

This is a short-cut function to load from an .npz file that contains only one object.

Parameters

• file (str or file-like) – File to be loaded.

• obj – Object to be deserialized. It must support serialization protocol.

• path (str) – The path in the hierarchy of the serialized data under which the data is to be
loaded. The default behavior (blank) will load all data under the root path.

• strict (bool) – If True, the deserializer raises an error when an expected value is not
found in the given NPZ file. Otherwise, it ignores the value and skip deserialization.

1066 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

• ignore_names (string, callable or list of them) – If callable, it is a
function that takes a name of a parameter and a persistent and returns True when it needs to
be skipped. If string, this is a name of a parameter or persistent that are going to be skipped.
This can also be a list of callables and strings that behave as described above.

See also:

chainer.serializers.save_npz()

4.11.2 Serialization in HDF5 format

chainer.serializers.HDF5Serializer Serializer for HDF5 format.
chainer.serializers.HDF5Deserializer Deserializer for HDF5 format.
chainer.serializers.save_hdf5 Saves an object to the file in HDF5 format.
chainer.serializers.load_hdf5 Loads an object from the file in HDF5 format.

chainer.serializers.HDF5Serializer

class chainer.serializers.HDF5Serializer(group, compression=4)
Serializer for HDF5 format.

This is the standard serializer in Chainer. The chain hierarchy is simply mapped to HDF5 hierarchical groups.

Parameters

• group (h5py.Group) – The group that this serializer represents.

• compression (int) – Gzip compression level.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

4.11. Serializers 1067

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

save(obj)
Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.serializers.HDF5Deserializer

class chainer.serializers.HDF5Deserializer(group, strict=True)
Deserializer for HDF5 format.

This is the standard deserializer in Chainer. This deserializer can be used to read an object serialized by
HDF5Serializer.

Parameters

• group (h5py.Group) – The group that the deserialization starts from.

• strict (bool) – If True, the deserializer raises an error when an expected value is not
found in the given HDF5 file. Otherwise, it ignores the value and skip deserialization.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be

1068 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

load(obj)
Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.serializers.save_hdf5

chainer.serializers.save_hdf5(filename, obj, compression=4)
Saves an object to the file in HDF5 format.

This is a short-cut function to save only one object into an HDF5 file. If you want to save multiple objects to
one HDF5 file, use HDF5Serializer directly by passing appropriate h5py.Group objects.

Parameters

• filename (str) – Target file name.

4.11. Serializers 1069

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• obj – Object to be serialized. It must support serialization protocol. If it is a dictionary
object, the serialization will be skipped.

• compression (int) – Gzip compression level.

Note: Currently save_hdf5() only supports writing to an actual file on file system due to a limitation of
HD5F library. See h5py/h5py#687 for details.

See also:

chainer.serializers.load_hdf5()

chainer.serializers.load_hdf5

chainer.serializers.load_hdf5(filename, obj)
Loads an object from the file in HDF5 format.

This is a short-cut function to load from an HDF5 file that contains only one object. If you want to load multiple
objects from one HDF5 file, use HDF5Deserializer directly by passing appropriate h5py.Group objects.

Parameters

• filename (str) – Name of the file to be loaded.

• obj – Object to be deserialized. It must support serialization protocol.

Note: Currently load_hdf5() only supports loading an actual file on file system due to a limitation of HD5F
library. See h5py/h5py#687 for details.

See also:

chainer.serializers.save_hdf5()

4.11.3 Serializers base classes

chainer.Serializer Base class of all serializers.
chainer.AbstractSerializer Abstract base class of all serializers and deserializers.
chainer.Deserializer Base class of all deserializers.

chainer.Serializer

class chainer.Serializer
Base class of all serializers.

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

1070 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://github.com/h5py/h5py/issues/687
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/h5py/h5py/issues/687

Chainer Documentation, Release 7.0.0b4

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

save(obj)
Saves an object by this serializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.AbstractSerializer

class chainer.AbstractSerializer
Abstract base class of all serializers and deserializers.

4.11. Serializers 1071

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.Deserializer

class chainer.Deserializer
Base class of all deserializers.

1072 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Methods

__call__(key, value)
Serializes or deserializes a value by given name.

This operator saves or loads a value by given name.

If this is a serializer, then the value is simply saved at the key. Note that some type information might be
missed depending on the implementation (and the target file format).

If this is a deserializer, then the value is loaded by the key. The deserialization differently works on scalars
and arrays. For scalars, the value argument is used just for determining the type of restored value to be
converted, and the converted value is returned. For arrays, the restored elements are directly copied into
the value argument. String values are treated like scalars.

Note: Serializers and deserializers are required to correctly handle the None value. When value is
None, serializers save it in format-dependent ways, and deserializers just return the loaded value. When
the saved None value is loaded by a deserializer, it should quietly return the None value without modifying
the value object.

Parameters

• key (str) – Name of the serialization entry.

• value (scalar, numpy.ndarray, cupy.ndarray, None, or str) –
Object to be (de)serialized. None is only supported by deserializers.

Returns Serialized or deserialized value.

__getitem__(key)
Gets a child serializer.

This operator creates a _child_ serializer represented by the given key.

Parameters key (str) – Name of the child serializer.

load(obj)
Loads an object from this deserializer.

This is equivalent to obj.serialize(self).

Parameters obj – Target object to be serialized.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.11. Serializers 1073

https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

4.12 Backends and Devices

4.12.1 Common Classes and Utilities

chainer.backend.Device A base class of unified devices.
chainer.get_device Returns a device object.
chainer.using_device Context manager to apply the thread-local device state.
chainer.backend.
get_device_from_array

Gets the device from arrays.

chainer.backend.get_array_module Gets an appropriate NumPy-compatible module to pro-
cess arguments

chainer.DeviceResident A base class of objects with multi-device hierarchy.
chainer.device_resident.
DeviceResidentsVisitor

Base class of visitors that visits device resident objects
recursively.

chainer.backend.copyto Copies the elements of an ndarray to those of another
one.

chainer.backend.Device

class chainer.backend.Device
A base class of unified devices.

Chainer has the following concrete implementations:

• chainer.backend.CpuDevice

• chainer.backend.GpuDevice

• chainer.backend.Intel64Device

• chainer.backend.ChainerxDevice

Methods

__enter__()
A dummy definition that simply raises RuntimeError.

chainer.using_device() should be used instead.

__exit__(exc_type, exc_value, traceback)
A dummy definition that should never be called.

create_context()
Returns a context manager in which the device is made current.

See also:

chainer.using_device() calls this method internally.

is_array_supported(array)
Returns if the specified array is compatible with the device. :param array: An array to be checked :type
array: N-dimensional array

Returns True if the array is compatible with the device. Otherwise False is returned.

send(arrays)
Transfers given arrays to the device.

1074 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.

Returns Transferred arrays.

use()
Makes the device current in the current thread.

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name
A unique name of the device.

supported_array_types
Array types supported by the device.

Returns tuple of array types which the device’s module functions can handle.

xp
Array module corresponding to the device.

chainer.get_device

chainer.get_device(device_spec)
Returns a device object.

Parameters device_spec (object) – Device specifier. If a chainer.backend.Device
instance is given, it is returned intact. Otherwise the following values are supported:

• ChainerX devices

– A string representing a device. (ex. 'native:0', 'native')

– A chainerx.Device object.

• CuPy

– A string starts with '@cupy:'. (ex. '@cupy:0')

– A cupy.cuda.Device object.

• NumPy

– The string '@numpy'.

• NumPy with Intel Architecture

4.12. Backends and Devices 1075

https://docs.python.org/3/library/functions.html#object
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device

Chainer Documentation, Release 7.0.0b4

– The string '@intel64'.

chainer.using_device

chainer.using_device(device_spec)
Context manager to apply the thread-local device state.

Parameters device_spec (object) – Device specifier. See chainer.get_device() for
details.

Example

with chainer.using_device('@cupy:1'):
a = cupy.empty((3, 2))

assert a.device.id == 1

chainer.backend.get_device_from_array

chainer.backend.get_device_from_array(*arrays)
Gets the device from arrays.

The device on which the given array reside is returned.

Note: Unlike get_array_module(), this method does not recognize Variable objects. If you need to
get device from the Variable instance v, you need to use get_device_from_array(v.array).

Parameters arrays (array or list of arrays) – Arrays to determine the device. If mul-
tiple arrays are given, the device correspoinding to the first array which is not NumPy array is
returned.

Returns Device instance.

Return type chainer.backend.Device

chainer.backend.get_array_module

chainer.backend.get_array_module(*args)
Gets an appropriate NumPy-compatible module to process arguments

This function will return their data arrays’ array module for Variable arguments.

Parameters args – Values to determine whether NumPy, CuPy, or ChainerX should be used.

Returns numpy, cupy, or chainerx is returned based on the types of the arguments.

Return type module

chainer.DeviceResident

class chainer.DeviceResident
A base class of objects with multi-device hierarchy.

1076 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

Methods

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

4.12. Backends and Devices 1077

Chainer Documentation, Release 7.0.0b4

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

chainer.device_resident.DeviceResidentsVisitor

class chainer.device_resident.DeviceResidentsVisitor
Base class of visitors that visits device resident objects recursively.

See also:

chainer.DeviceResident

Methods

visit_array(arr)
Processes an array and returns a new one.

If the visitor does not create a new array, it can simply return the original array.

visit_device_resident(device_resident)
Processes a DeviceResident instance.

visit_variable(param)
Processes a Variable or a Parameter.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

1078 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.backend.copyto

chainer.backend.copyto(dst, src)
Copies the elements of an ndarray to those of another one.

This function can copy the CPU/GPU arrays to the destination arrays on another device.

Parameters

• dst (numpy.ndarray, cupy.ndarray, ideep4py.mdarray or chainerx.
ndarray) – Destination array.

• src (numpy.ndarray, cupy.ndarray, ideep4py.mdarray or chainerx.
ndarray) – Source array.

4.12.2 Concrete Device Classes

chainer.backend.CpuDevice Device for CPU (NumPy) backend
chainer.backend.GpuDevice Device for GPU (CuPy) backend
chainer.backend.Intel64Device Device for Intel64 (Intel Architecture) backend with

iDeep
chainer.backend.ChainerxDevice Device for ChainerX backend

chainer.backend.CpuDevice

class chainer.backend.CpuDevice
Device for CPU (NumPy) backend

Methods

__enter__()
A dummy definition that simply raises RuntimeError.

chainer.using_device() should be used instead.

__exit__(exc_type, exc_value, traceback)
A dummy definition that should never be called.

create_context()
Returns a context manager in which the device is made current.

See also:

chainer.using_device() calls this method internally.

static from_array(array)

4.12. Backends and Devices 1079

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

is_array_supported(array)
Returns if the specified array is compatible with the device. :param array: An array to be checked :type
array: N-dimensional array

Returns True if the array is compatible with the device. Otherwise False is returned.

send(arrays)
Transfers given arrays to the device.

Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.

Returns Transferred arrays.

send_array(array)

use()
Makes the device current in the current thread.

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = '@numpy'

supported_array_types = (<class 'numpy.ndarray'>,)

chainer.backend.GpuDevice

class chainer.backend.GpuDevice(device)
Device for GPU (CuPy) backend

Methods

__enter__()
A dummy definition that simply raises RuntimeError.

chainer.using_device() should be used instead.

__exit__(exc_type, exc_value, traceback)
A dummy definition that should never be called.

1080 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

create_context()
Returns a context manager in which the device is made current.

See also:

chainer.using_device() calls this method internally.

static from_array(array)

static from_device_id(device_id)
Returns a GpuDevice corresponding to the CUDA device ID.

is_array_supported(array)
Returns if the specified array is compatible with the device. :param array: An array to be checked :type
array: N-dimensional array

Returns True if the array is compatible with the device. Otherwise False is returned.

send(arrays)
Transfers given arrays to the device.

Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.

Returns Transferred arrays.

send_array(array)

use()
Makes the device current in the current thread.

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name
A unique name of the device.

supported_array_types = (<class 'chainer.backends.cuda.ndarray'>,)

xp = <object object>

chainer.backend.Intel64Device

class chainer.backend.Intel64Device
Device for Intel64 (Intel Architecture) backend with iDeep

4.12. Backends and Devices 1081

Chainer Documentation, Release 7.0.0b4

Methods

__enter__()
A dummy definition that simply raises RuntimeError.

chainer.using_device() should be used instead.

__exit__(exc_type, exc_value, traceback)
A dummy definition that should never be called.

create_context()
Returns a context manager in which the device is made current.

See also:

chainer.using_device() calls this method internally.

static from_array(array)

is_array_supported(array)
Returns if the specified array is compatible with the device. :param array: An array to be checked :type
array: N-dimensional array

Returns True if the array is compatible with the device. Otherwise False is returned.

send(arrays)
Transfers given arrays to the device.

Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.

Returns Transferred arrays.

send_array(array)

use()
Makes the device current in the current thread.

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

name = '@intel64'

supported_array_types = (<class 'numpy.ndarray'>, <class 'chainer.backends.intel64.mdarray'>)

1082 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

chainer.backend.ChainerxDevice

class chainer.backend.ChainerxDevice(device)
Device for ChainerX backend

Methods

__enter__()
A dummy definition that simply raises RuntimeError.

chainer.using_device() should be used instead.

__exit__(exc_type, exc_value, traceback)
A dummy definition that should never be called.

create_context()
Returns a context manager in which the device is made current.

See also:

chainer.using_device() calls this method internally.

static from_array(array)

static from_fallback_device(device)
Returns a ChainerxDevice corresponding to the fallback device.

See also:

fallback_device

is_array_supported(array)
Returns if the specified array is compatible with the device. :param array: An array to be checked :type
array: N-dimensional array

Returns True if the array is compatible with the device. Otherwise False is returned.

send(arrays)
Transfers given arrays to the device.

Parameters arrays – Array or arrays of NumPy, CuPy, or ChainerX.

Returns Transferred arrays.

send_array(array)

use()
Makes the device current in the current thread.

__eq__(other)
Return self==value.

__ne__(other)
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

4.12. Backends and Devices 1083

Chainer Documentation, Release 7.0.0b4

__ge__()
Return self>=value.

Attributes

fallback_device
Fallback device.

A fallback device is either a CpuDevice or a GpuDevice which shares the same physical device with
the original ChainerX device.

For example, the fallback device of native:0 ChainerX device is CpuDevice. The fallback device of
cuda:1 ChainerX device is GpuDevice with device ID 1.

name
A unique name of the device.

supported_array_types = (<class 'chainerx.ndarray'>,)

4.12.3 GPU (CuPy)

Device, context and memory management on CuPy.

Note: The package chainer.cuda has been renamed to chainer.backends.cuda as of v4.0.0, but the
previous module path chainer.cuda is also available.

Chainer uses CuPy (with very thin wrapper) to exploit the speed of GPU computation. Following modules and classes
defined in CuPy are imported to chainer.backends.cuda module for convenience (refer to this table when
reading chainer’s source codes).

imported name original name
chainer.backends.cuda.cupy cupy
chainer.backends.cuda.cupyx cupyx
chainer.backends.cuda.ndarray cupy.ndarray
chainer.backends.cuda.cupy.cuda cupy.cuda
chainer.backends.cuda.Device cupy.cuda.Device
chainer.backends.cuda.Event cupy.cuda.Event
chainer.backends.cuda.Stream cupy.cuda.Stream

Chainer replaces the default allocator of CuPy by its memory pool implementation. It enables us to reuse the device
memory over multiple forward/backward computations, and temporary arrays for consecutive elementwise operations.

Devices

chainer.backends.cuda.get_device Gets the device from a device object, an ID integer or
an array object.

chainer.backends.cuda.
get_device_from_id

Gets the device from an ID integer.

chainer.backends.cuda.
get_device_from_array

Gets the device from a list of CuPy array or a single
CuPy array.

1084 Chapter 4. API Reference

https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs-cupy.chainer.org/en/latest/reference/ext.html#module-cupyx
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Event.html#cupy.cuda.Event
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream

Chainer Documentation, Release 7.0.0b4

chainer.backends.cuda.get_device

chainer.backends.cuda.get_device(*args)
Gets the device from a device object, an ID integer or an array object.

Note: This API is deprecated since v3.0.0. Please use get_device_from_id() or
get_device_from_array() instead.

This is a convenient utility to select a correct device if the type of arg is unknown (i.e., one can use this function
on arrays that may be on CPU or GPU). The returned device object supports the context management protocol
of Python for the with statement.

Parameters args – Values to specify a GPU device. The first device object, integer or cupy.
ndarray object is used to select a device. If it is a device object, it is returned. If it is an
integer, the corresponding device is returned. If it is a CuPy array, the device on which this array
reside is returned. If any arguments are neither integers nor CuPy arrays, a dummy device object
representing CPU is returned.

Returns Device object specified by given args.

See also:

See cupy.cuda.Device for the device selection not by arrays.

chainer.backends.cuda.get_device_from_id

chainer.backends.cuda.get_device_from_id(device_id)
Gets the device from an ID integer.

Parameters device_id (int or None) – The ID of the device which this function returns.

chainer.backends.cuda.get_device_from_array

chainer.backends.cuda.get_device_from_array(*arrays)
Gets the device from a list of CuPy array or a single CuPy array.

Deprecated since version v6.0.0: This API is deprecated. Please use chainer.backend.
get_device_from_array() instead.

The device on which the given CuPy array reside is returned.

Note: This method only recognizes cupy.ndarrays in arguments. Especially note that, unlike
get_array_module(), this method does not recognize Variable objects. If you need to get device
from the Variable instance v, you need to use get_device_from_array(v.array).

Parameters arrays (cupy.ndarray or list of cupy.ndarray) – A CuPy array which this
function returns the device corresponding to. If a list of cupy.ndarrays are given, it returns
the first device object of an array in the list.

CuPy array allocation and copy

4.12. Backends and Devices 1085

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

chainer.backends.cuda.copy Copies a cupy.ndarray object using the default
stream.

chainer.backends.cuda.to_cpu Copies the given GPU array to host CPU.
chainer.backends.cuda.to_gpu Copies the given CPU array to the specified device.

chainer.backends.cuda.copy

chainer.backends.cuda.copy(array, out=None, out_device=None, stream=None)
Copies a cupy.ndarray object using the default stream.

This function can copy the device array to the destination array on another device.

Parameters

• array (cupy.ndarray) – Array to be copied.

• out (cupy.ndarray) – Destination array. If it is not None, then out_device argu-
ment is ignored.

• out_device – Destination device specifier. Actual device object is obtained by passing
this value to get_device().

• stream (cupy.cuda.Stream) – CUDA stream.

Returns

Copied array.

If out is not specified, then the array is allocated on the device specified by out_device
argument.

Return type cupy.ndarray

chainer.backends.cuda.to_cpu

chainer.backends.cuda.to_cpu(array, stream=None)
Copies the given GPU array to host CPU.

Parameters

• array (array, None, list or tuple) – Array or arrays to be sent to CPU.

• stream (cupy.cuda.Stream) – CUDA stream.

Returns

Array on CPU.

If some of the arrays are already on CPU, then this function just returns those arrays without
performing any copy.

If input arrays include None, it is returned as None as is.

Return type numpy.ndarray, list or tuple

chainer.backends.cuda.to_gpu

chainer.backends.cuda.to_gpu(array, device=None, stream=None)
Copies the given CPU array to the specified device.

1086 Chapter 4. API Reference

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

Parameters

• array (array, None, list or tuple) – Array or arrays to be sent to GPU.

• device – CUDA device specifier. If None or cuda.DummyDevice, the arrays will be
copied to the current CUDA device.

• stream (Stream) – (deprecated since v3.0.0) CUDA stream. If not None, the copy runs
asynchronously.

Returns

Array or arrays on GPU.

If some of the arrays are already on GPU, then this function just returns those arrays without
performing any copy.

If input arrays include None, it is returned as None as is.

Return type cupy.ndarray, list or tuple

Kernel definition utilities

chainer.backends.cuda.memoize Makes a function memoizing the result for each argu-
ment and device.

chainer.backends.cuda.clear_memo Clears the memoized results for all functions decorated
by memoize.

chainer.backends.cuda.elementwise Creates an elementwise kernel function.
chainer.backends.cuda.raw Creates a raw kernel function.
chainer.backends.cuda.reduce Creates a global reduction kernel function.

chainer.backends.cuda.memoize

chainer.backends.cuda.memoize(for_each_device=False)
Makes a function memoizing the result for each argument and device.

This is a similar version of cupy.memoize(). The difference is that this function can be used in the global
scope even if CUDA is not available. In such case, this function does nothing.

Note: This decorator acts as a dummy if CUDA is not available. It cannot be used for general purpose
memoization even if for_each_device is set to False.

chainer.backends.cuda.clear_memo

chainer.backends.cuda.clear_memo()
Clears the memoized results for all functions decorated by memoize.

This function works like cupy.clear_memo() as a counterpart for chainer.backends.cuda.
memoize(). It can be used even if CUDA is not available. In such a case, this function does nothing.

4.12. Backends and Devices 1087

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Stream.html#cupy.cuda.Stream
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.memoize.html#cupy.memoize
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.clear_memo.html#cupy.clear_memo

Chainer Documentation, Release 7.0.0b4

chainer.backends.cuda.elementwise

chainer.backends.cuda.elementwise(in_params, out_params, operation, name, **kwargs)
Creates an elementwise kernel function.

This function uses memoize() to cache the kernel object, i.e. the resulting kernel object is cached for each
argument combination and CUDA device.

The arguments are the same as those for cupy.ElementwiseKernel, except that the name argument is
mandatory.

chainer.backends.cuda.raw

chainer.backends.cuda.raw(code, name, *args, **kwargs)
Creates a raw kernel function.

This function uses memoize() to cache the resulting kernel object, i.e. the resulting kernel object is cached
for each argument combination and CUDA device.

The arguments are the same as those for cupy.RawKernel.

chainer.backends.cuda.reduce

chainer.backends.cuda.reduce(in_params, out_params, map_expr, reduce_expr, post_map_expr,
identity, name, **kwargs)

Creates a global reduction kernel function.

This function uses memoize() to cache the resulting kernel object, i.e. the resulting kernel object is cached
for each argument combination and CUDA device.

The arguments are the same as those for cupy.ReductionKernel, except that the name argument is
mandatory.

CPU/GPU generic code support

chainer.backends.cuda.
get_array_module

Gets an appropriate one from numpy or cupy.

chainer.backends.cuda.get_array_module

chainer.backends.cuda.get_array_module(*args)
Gets an appropriate one from numpy or cupy.

This is almost equivalent to cupy.get_array_module(). The differences are that this function can be used
even if CUDA is not available and that it will return their data arrays’ array module for Variable arguments.

Deprecated since version v5.0.0: This API is deprecated. Please use get_array_module() instead.

Parameters args – Values to determine whether NumPy or CuPy should be used.

Returns cupy or numpy is returned based on the types of the arguments.

Return type module

1088 Chapter 4. API Reference

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ElementwiseKernel.html#cupy.ElementwiseKernel
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.RawKernel.html#cupy.RawKernel
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ReductionKernel.html#cupy.ReductionKernel
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.get_array_module.html#cupy.get_array_module
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

Chainer Documentation, Release 7.0.0b4

cuDNN support

chainer.backends.cuda.
set_max_workspace_size

Sets the workspace size for cuDNN.

chainer.backends.cuda.
get_max_workspace_size

Gets the workspace size for cuDNN.

chainer.backends.cuda.set_max_workspace_size

chainer.backends.cuda.set_max_workspace_size(size)
Sets the workspace size for cuDNN.

Check “cuDNN Library User Guide” for detail.

Parameters size – The workspace size for cuDNN.

chainer.backends.cuda.get_max_workspace_size

chainer.backends.cuda.get_max_workspace_size()
Gets the workspace size for cuDNN.

Check “cuDNN Library User Guide” for detail.

Returns The workspace size for cuDNN.

Return type int

4.12.4 Intel64 (iDeep)

iDeep is a module that provides NumPy-like API and DNN acceleration using MKL-DNN for Intel CPUs. See Tips
and FAQs and Performance Best Practices for details.

chainer.backends.intel64.
is_ideep_available

Returns if iDeep is available.

chainer.backends.intel64.is_ideep_available

chainer.backends.intel64.is_ideep_available()
Returns if iDeep is available.

Returns True if the supported version of iDeep is installed.

Return type bool

4.12.5 ChainerX

chainer.backend.from_chx Converts an array or arrays from ChainerX to NumPy
or CuPy ones.

chainer.backend.to_chx Converts an array or arrays to ChainerX.

4.12. Backends and Devices 1089

https://docs.python.org/3/library/functions.html#int
https://github.com/intel/ideep
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

chainer.backend.from_chx

chainer.backend.from_chx(array)
Converts an array or arrays from ChainerX to NumPy or CuPy ones.

Destination array types are chosen such that no copies occur.

chainer.backend.to_chx

chainer.backend.to_chx(array)
Converts an array or arrays to ChainerX.

Destination ChainerX devices are chosen according to the types of input arrays.

4.13 Utilities

4.13.1 Convolution/Deconvolution utilities

chainer.utils.get_conv_outsize Calculates output size of convolution.
chainer.utils.get_deconv_outsize Calculates output size of deconvolution.

chainer.utils.get_conv_outsize

chainer.utils.get_conv_outsize(size, k, s, p, cover_all=False, d=1)
Calculates output size of convolution.

This function takes the size of input feature map, kernel, stride, and pooling of one particular dimension, then
calculates the output feature map size of that dimension.

See also:

get_deconv_outsize()

Parameters

• size (int) – The size of input feature map. It usually is the length of a side of feature
map.

• k (int) – The size of convolution kernel.

• s (int) – The size of stride.

• p (int) – The size of padding.

• cover_all (bool) – Use cover_all option or not.

• d (int) – The size of dilation.

Returns The expected output size of the convolution operation.

Return type int

chainer.utils.get_deconv_outsize

chainer.utils.get_deconv_outsize(size, k, s, p, cover_all=False, d=1)
Calculates output size of deconvolution.

1090 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

This function takes the size of input feature map, kernel, stride, and pooling of one particular dimension, then
calculates the output feature map size of that dimension.

See also:

get_conv_outsize()

Parameters

• size (int) – The size of input feature map. It usually is the length of a side of feature
map.

• k (int) – The size of deconvolution kernel.

• s (int) – The size of stride.

• p (int) – The size of padding.

• cover_all (bool) – Use cover_all option or not.

• d (int) – The size of dilation.

Returns The expected output size of the deconvolution operation.

Return type int

4.13.2 Common algorithms

chainer.utils.WalkerAlias Implementation of Walker’s alias method.

chainer.utils.WalkerAlias

class chainer.utils.WalkerAlias(probs)
Implementation of Walker’s alias method.

This method generates a random sample from given probabilities 𝑝1, . . . , 𝑝𝑛 in 𝑂(1) time. It is more efficient
than choice(). This class works on both CPU and GPU.

Parameters probs (float list) – Probabilities of entries. They are normalized with
sum(probs).

See: Wikipedia article

Methods

device_resident_accept(visitor)
Applies the visitor to all the device objects in this instance.

Parameters visitor (DeviceResidentsVisitor) – Visitor.

This method should be overridden if the concrete class has custom sub-hierarchy of device resident objects.

from_chx()
Converts parameter variables and persistent values from ChainerX to NumPy/CuPy devices without any
copy.

sample(shape)
Generates a random sample based on given probabilities.

Parameters shape (tuple of int) – Shape of a return value.

4.13. Utilities 1091

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Alias_method

Chainer Documentation, Release 7.0.0b4

Returns Returns a generated array with the given shape. If a sampler is in CPU mode the return
value is a numpy.ndarray object, and if it is in GPU mode the return value is a cupy.
ndarray object.

sample_gpu(shape)

sample_xp(xp, shape)

to_chx()
Converts parameter variables and persistent values to ChainerX without any copy.

This method does not handle non-registered attributes. If some of such attributes must be copied to Chain-
erX, the link implementation must override this method to do so.

Returns: self

to_cpu()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to CPU,
the link implementation should override device_resident_accept() to do so.

Returns: self

to_device(device)
Copies parameter variables and persistent values to the specified device.

This method does not handle non-registered attributes. If some of such attributes must be copied to the
device, the link implementation must override this method to do so.

Parameters device – Target device specifier. See get_device() for available values.

Returns: self

to_gpu(device=None)
Copies parameter variables and persistent values to GPU.

Deprecated since version v7.0.0: Use to_device() instead.

This method does not handle non-registered attributes. If some of such attributes must be copied to GPU,
the link implementation must override device_resident_accept() to do so.

Warning: This method does not transfer the parameters if they are already on GPU. Use to_device
to perform inter-GPU transfer.

Parameters device – Target device specifier. If omitted, the current device is used.

Returns: self

to_intel64()
Copies parameter variables and persistent values to CPU.

Deprecated since version v7.0.0: Use to_device() instead.

__eq__()
Return self==value.

__ne__()
Return self!=value.

1092 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

device
Device instance.

use_gpu

xp
Array module corresponding to the device.

Depending on the device in which this object resides, this property returns numpy, cupy or chainerx.

4.13.3 Common utilities

chainer.print_runtime_info Shows Chainer runtime information.

chainer.print_runtime_info

chainer.print_runtime_info(out=None)
Shows Chainer runtime information.

Runtime information includes:

• OS platform

• Chainer version

• ChainerX version

• NumPy version

• CuPy version

– CUDA information

– cuDNN information

– NCCL information

• iDeep version

Parameters out – Output destination. If it is None, runtime information will be shown in sys.
stdout.

4.13.4 Reporter

4.13. Utilities 1093

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

chainer.Reporter Object to which observed values are reported.
chainer.get_current_reporter Returns the current reporter object.
chainer.report Reports observed values with the current reporter ob-

ject.
chainer.report_scope Returns a report scope with the current reporter.

chainer.Reporter

class chainer.Reporter
Object to which observed values are reported.

Reporter is used to collect values that users want to watch. The reporter object holds a mapping from value
names to the actually observed values. We call this mapping observations.

When a value is passed to the reporter, an object called observer can be optionally attached. In this case,
the name of the observer is added as the prefix of the value name. The observer name should be registered
beforehand.

See the following example:

>>> from chainer import Reporter, report, report_scope
>>>
>>> reporter = Reporter()
>>> observer = object() # it can be an arbitrary (reference) object
>>> reporter.add_observer('my_observer', observer)
>>> observation = {}
>>> with reporter.scope(observation):
... reporter.report({'x': 1}, observer)
...
>>> observation
{'my_observer/x': 1}

There are also a global API to add values:

>>> observation = {}
>>> with report_scope(observation):
... report({'x': 1}, observer)
...
>>> observation
{'my_observer/x': 1}

The most important application of Reporter is to report observed values from each link or chain in the training
and validation procedures. Trainer and some extensions prepare their own Reporter object with the hierarchy
of the target link registered as observers. We can use report() function inside any links and chains to report
the observed values (e.g., training loss, accuracy, activation statistics, etc.).

Variables observation – Dictionary of observed values.

Methods

__enter__()
Makes this reporter object current.

__exit__(exc_type, exc_value, traceback)
Recovers the previous reporter object to the current.

1094 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

add_observer(name, observer)
Registers an observer of values.

Observer defines a scope of names for observed values. Values observed with the observer are registered
with names prefixed by the observer name.

Parameters

• name (str) – Name of the observer.

• observer – The observer object. Note that the reporter distinguishes the observers by
their object ids (i.e., id(owner)), rather than the object equality.

add_observers(prefix, observers)
Registers multiple observers at once.

This is a convenient method to register multiple objects at once.

Parameters

• prefix (str) – Prefix of each name of observers.

• observers – Iterator of name and observer pairs.

report(values, observer=None)
Reports observed values.

The values are written with the key, prefixed by the name of the observer object if given.

Note: If a value is of type Variable, the variable is copied without preserving the computational graph
and the new variable object purged from the graph is stored to the observer. This behavior can be changed
by setting chainer.config.keep_graph_on_report to True.

Parameters

• values (dict) – Dictionary of observed values.

• observer – Observer object. Its object ID is used to retrieve the observer name, which
is used as the prefix of the registration name of the observed value.

scope(observation)
Creates a scope to report observed values to observation.

This is a context manager to be passed to with statements. In this scope, the observation dictionary is
changed to the given one.

It also makes this reporter object current.

Parameters observation (dict) – Observation dictionary. All observations reported inside
of the with statement are written to this dictionary.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

4.13. Utilities 1095

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.get_current_reporter

chainer.get_current_reporter()
Returns the current reporter object.

chainer.report

chainer.report(values, observer=None)
Reports observed values with the current reporter object.

Any reporter object can be set current by the with statement. This function calls the Reporter.report()
method of the current reporter. If no reporter object is current, this function does nothing.

Example

The most typical example is a use within links and chains. Suppose that a link is registered to the current
reporter as an observer (for example, the target link of the optimizer is automatically registered to the reporter
of the Trainer). We can report some values from the link as follows:

class MyRegressor(chainer.Chain):
def __init__(self, predictor):

super(MyRegressor, self).__init__(predictor=predictor)

def __call__(self, x, y):
This chain just computes the mean absolute and squared
errors between the prediction and y.
pred = self.predictor(x)
abs_error = F.sum(abs(pred - y)) / len(x)
loss = F.mean_squared_error(pred, y)

Report the mean absolute and squared errors.
chainer.report({

'abs_error': abs_error,
'squared_error': loss,

}, self)

return loss

If the link is named 'main' in the hierarchy (which is the default name of the target link
in the StandardUpdater), these reported values are named 'main/abs_error' and 'main/
squared_error'. If these values are reported inside the Evaluator extension, 'validation/' is
added at the head of the link name, thus the item names are changed to 'validation/main/abs_error'
and 'validation/main/squared_error' ('validation' is the default name of the Evaluator ex-
tension).

Parameters

• values (dict) – Dictionary of observed values.

1096 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

• observer – Observer object. Its object ID is used to retrieve the observer name, which is
used as the prefix of the registration name of the observed value.

chainer.report_scope

chainer.report_scope(observation)
Returns a report scope with the current reporter.

This is equivalent to get_current_reporter().scope(observation), except that it does not make
the reporter current redundantly.

4.13.5 Summary and DictSummary

chainer.Summary Online summarization of a sequence of scalars.
chainer.DictSummary Online summarization of a sequence of dictionaries.

chainer.Summary

class chainer.Summary
Online summarization of a sequence of scalars.

Summary computes the statistics of given scalars online.

Methods

add(value, weight=1)
Adds a scalar value.

Parameters

• value – Scalar value to accumulate. It is either a NumPy scalar or a zero-dimensional
array (on CPU or GPU).

• weight – An optional weight for the value. It is a NumPy scalar or a zero-dimensional
array (on CPU or GPU). Default is 1 (integer).

compute_mean()
Computes the mean.

make_statistics()
Computes and returns the mean and standard deviation values.

Returns Mean and standard deviation values.

Return type tuple

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

4.13. Utilities 1097

https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.DictSummary

class chainer.DictSummary
Online summarization of a sequence of dictionaries.

DictSummary computes the statistics of a given set of scalars online. It only computes the statistics for scalar
values and variables of scalar values in the dictionaries.

Methods

add(d)
Adds a dictionary of scalars.

Parameters d (dict) – Dictionary of scalars to accumulate. Only elements of scalars, zero-
dimensional arrays, and variables of zero-dimensional arrays are accumulated. When the
value is a tuple, the second element is interpreted as a weight.

compute_mean()
Creates a dictionary of mean values.

It returns a single dictionary that holds a mean value for each entry added to the summary.

Returns Dictionary of mean values.

Return type dict

make_statistics()
Creates a dictionary of statistics.

It returns a single dictionary that holds mean and standard deviation values for every entry added to the
summary. For an entry of name 'key', these values are added to the dictionary by names 'key' and
'key.std', respectively.

Returns Dictionary of statistics of all entries.

Return type dict

serialize(serializer)

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

1098 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

__ge__()
Return self>=value.

4.13.6 Sparse utilities

A chainer.Variable can be converted into a sparse matrix in e.g. COO (Coordinate list) format. A sparse matrix
stores the same data as the original object but with a different internal representation, optimized for efficient operations
on sparse data, i.e. data with many zero elements.

Following are a list of supported sparse matrix formats and utilities for converting between a chainer.Variable
and these representations.

Note: Please be aware that only certain functions accept sparse matrices as inputs, such as chainer.functions.
sparse_matmul().

chainer.utils.CooMatrix A sparse matrix in COO format.
chainer.utils.to_coo Returns a single or a batch of matrices in COO format.

chainer.utils.CooMatrix

class chainer.utils.CooMatrix(data, row, col, shape, order=None, requires_grad=False)
A sparse matrix in COO format.

Parameters

• data (N-dimensional array) – The entries of the matrix. The entries are usually non-zero-
elements in the matrix.

• row (N-dimensional array) – The row indices of the matrix entries.

• col (N-dimensional array) – The column indices of the matrix entries.

• shape (tuple of int) – The shape of the matrix in dense format.

• order ('C', 'F', 'other' or None) – If 'C', the maxtix is assumed that its row
indices are sorted. If 'F', the matrix is assumed that its column indices are sorted. If
'other', the matrix is assumed as neither ‘C’ order nor ‘F’ order. If None (this is the
default), the matrix is automatically checked if it is ‘C’ order, ‘F’ order or another. This
information will be used by some functions like sparse_matmul() as a hint to improve
performance.

• requires_grad (bool) – If True, gradient of this sparse matrix will be computed in
back-propagation.

See also:

See to_coo() for how to construct a COO matrix from an array.

Methods

to_dense()
Returns a dense matrix format of this sparse matrix.

__eq__()
Return self==value.

4.13. Utilities 1099

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

chainer.utils.to_coo

chainer.utils.to_coo(x, ldnz=None, requires_grad=False)
Returns a single or a batch of matrices in COO format.

Parameters

• x (N-dimensional array) – Input dense matrix. The ndim of x must be two or three. If ndim
is two, it is treated as a single matrix. If three, it is treated as batched matrices.

• ldnz (int) – Size of arrays for data, row index and column index to be created. The Actual
size becomes max(nnz, ldnz) where nnz is number of non-zero elements in a input dense
matrix.

• requires_grad (bool) – If True, gradient of sparse matrix will be computed in back-
propagation.

Returns A sparse matrix or batched sparse matrices in COO format of a given dense matrix or
batched dense matrices.

Return type CooMatrix

Example

Create a CooMatrix from an array with 2 non-zero elements and 4 zeros and access its attributes. No batch
dimension is involved.

>>> data = np.array([[0, 2, 0], [-1, 0, 0]], np.float32)
>>> x = chainer.utils.to_coo(data)
>>> x.data
variable([2., -1.])
>>> x.row
array([0, 1], dtype=int32)
>>> x.col
array([1, 0], dtype=int32)
>>> x.shape
(2, 3)

4.13.7 Experimental feature annotation

1100 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

chainer.utils.experimental Declares that user is using an experimental feature.

chainer.utils.experimental

chainer.utils.experimental(api_name)
Declares that user is using an experimental feature.

The developer of an API can mark it as experimental by calling this function. When users call experimental
APIs, FutureWarning is issued. The presentation of FutureWarning is disabled by setting chainer.
disable_experimental_feature_warning to True, which is False by default.

The basic usage is to call it in the function or method we want to mark as experimental along with the API name.

from chainer import utils

def f(x):
utils.experimental('chainer.foo.bar.f')
concrete implementation of f follows

f(1)

... FutureWarning: chainer.foo.bar.f is experimental. The interface can change in
→˓the future. ...

We can also make a whole class experimental. In that case, we should call this function in its __init__
method.

class C():
def __init__(self):

utils.experimental('chainer.foo.C')

C()

... FutureWarning: chainer.foo.C is experimental. The interface can change in the
→˓future. ...

If we want to mark __init__ method only, rather than class itself, it is recommended that we explicitly feed
its API name.

class D():
def __init__(self):

utils.experimental('D.__init__')

D()

... FutureWarning: D.__init__ is experimental. The interface can change in the
→˓future. ...

Currently, we do not have any sophisticated way to mark some usage of non-experimental function as experi-
mental. But we can support such usage by explicitly branching it.

def g(x, experimental_arg=None):
if experimental_arg is not None:

utils.experimental('experimental_arg of chainer.foo.g')

Parameters api_name (str) – The name of an API marked as experimental.

4.13. Utilities 1101

https://docs.python.org/3/library/exceptions.html#FutureWarning
https://docs.python.org/3/library/exceptions.html#FutureWarning
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

4.14 Configuring Chainer

Chainer provides some global settings that affect the behavior of some functionalities. Such settings can be configured
using the unified configuration system. The system provides a transparent way to manage the configuration for each
process and for each thread.

The configuration is managed by two global objects: chainer.global_config and chainer.config.

• The global_config object maintains the configuration shared in the Python process. This is an instance of
the GlobalConfig class. It can be used just as a plain object, and users can freely set any attributes on it.

• The config object, on the other hand, maintains the configuration for the current thread. This is an instance of
the LocalConfig class. It behaves like a thread-local object, and any attribute modifications are only visible
to the current thread.

If no value is set to config for a given key, global_config is transparently referred. Thanks to this transparent
lookup, users can always use config to read any configuration so that the thread-local configuration is used if
available and otherwise the default global setting is used.

The following entries of the configuration are currently provided by Chainer. Some entries support environment
variables to set the default values. Note that the default values are set in the global config.

4.14.1 Configuration Keys

• cudnn_deterministic (default: False) Flag to configure deterministic computations in cuDNN APIs.

If it is True, convolution functions that use cuDNN use the deterministic mode (i.e, the computation is
reproducible). Otherwise, the results of convolution functions using cuDNN may be non-deterministic in
exchange for better performance.

• debug (default: False) Debug mode flag.

If it is True, Chainer runs in debug mode. Enabling debug mode may introduce some performance
overhead. See Debug Mode for more information of the debug mode.

You can change the default value to True by setting CHAINER_DEBUG environment variable to 1.

• dtype (default: numpy.float32) Default floating point data type.

Chainer uses this dtype to construct arrays when the dtype is not specified (e.g. initializers).

You can change the default value by setting CHAINER_DTYPE environment variable to mixed16,
float16, float32, float64.

Note: If you want to use float16 for better performance, it is recommended that you use mixed16 instead
of float16.

• enable_backprop (default: True) Flag to enable backpropagation support.

If it is True, computational graphs are created during forward passes by FunctionNodes, allowing
backpropagation to start from any Variable in the graph. Otherwise, computational graphs are not
created but memory consumptions are reduced. So calling backward() on the results of a function will
not compute any gradients of any input.

• keep_graph_on_report (default: False) Flag to configure whether or not to let report() keep the
computational graph.

If it is False, report() does not keep the computational graph when a Variable object is reported.
It means that report() stores a copy of the Variable object which is purged from the computational

1102 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

graph. If it is True, report() just stores the Variable object as is with the computational graph left
attached.

You can change the default value to True by setting CHAINER_KEEP_GRAPH_ON_REPORT environ-
ment variable to 1.

• warn_nondeterministic (default: False) Flag to give warning when a non-deterministic function is
used. This function is experimental.

If it is true, then functions that use non-deterministic functions and cannot be given a seed, such as
atomicAdd, will give a warning when executed. For functions that can take a seed argument, such as
split_dataset_random(), setting the seed should be done when the function is called and will not
be flagged by this setting.

Note that this feature is provided as best-effort. It cannot assure that every nondeterministic function can
be detected. For example, SSE computations in CPU mode may cause non-deterministic behavior that
would not raise a warning.

Also, determinisitic outputs may still result, even if this flag produces a non-deterministic warning. For
example, reduction on 1-dim axis should always be deterministic, but it may raise a warning.

• train (default: True) Training mode flag.

If it is True, Chainer runs in training mode. Otherwise, it runs in the testing (evaluation) mode.

This configuration is used by Functions and Links that need to behave differently between training phase
and evaluation (inference) phase. One example is chainer.links.BatchNormalization up-
dates statistics using input data only when train is set to True. The other example is chainer.
functions.dropout(), which does nothing when train is set to False.

Generally, you are responsible to change the configuration to False during evaluation. If you are using
Trainer with Evaluator extension, train configuration will automatically be switched to False
during evaluation in the training loop.

Note that this parameter does not reduce memory consumption or affect the creation of computational
graphs required in order to compute gradients.

• type_check (default: True) Type checking mode flag.

If it is True, Chainer checks the types (data types and shapes) of inputs on Function applications.
Otherwise, it skips type checking.

You can change the default value to False by setting CHAINER_TYPE_CHECK environment variable to
0.

• use_cudnn (default: 'auto') Flag to configure whether or not to use cuDNN.

This is a ternary flag with 'always', 'auto', and 'never' as its allowed values. The meaning of
each flag is as follows.

– If it is 'always', Chainer will try to use cuDNN everywhere if possible.

– If it is 'auto', Chainer will use cuDNN only if it is known that the usage does not degrade the
performance.

– If it is 'never', Chainer will never use cuDNN anywhere.

You can change the default value by setting CHAINER_USE_CUDNN environment variable to any of
'always', 'auto' or 'never'.

• use_ideep (default: 'never') Flag to configure whether or not to use iDeep.

This is a ternary flag with 'always', 'auto', and 'never' as its allowed values. The meaning of
each flag is as follows.

4.14. Configuring Chainer 1103

Chainer Documentation, Release 7.0.0b4

– If it is 'always', Chainer will try to use iDeep everywhere if possible.

– If it is 'auto', Chainer will use iDeep only if it is known that the usage does not degrade the
performance.

– If it is 'never', Chainer will never use iDeep anywhere.

You can change the default value by setting CHAINER_USE_IDEEP environment variable to any of
'always', 'auto' or 'never'.

Note that in spite of the configuration, optimizers will use iDeep if and only if the link is converted manu-
ally to iDeep (e.g., model.to_intel64()).

• lazy_grad_sum (default: False) Flag to control the behavior of gradient accumulation.

If it is True, gradients are accumulated in batch for performance. Otherwise gradients are accumulated
one by one.

You can change the default value to True by setting CHAINER_LAZY_GRAD_SUM environment variable
to 1.

• use_cudnn_tensor_core (default: 'auto') Flag to configure whether or not to enable Tensor Core
operatons in cuDNN.

This is a ternary flag with 'always', 'auto', and 'never' as its allowed values. The meaning of
each flag is as follows.

– If it is always, Chainer uses cuDNN’s Tensor Core operations.

– If it is never, Chainer does not use cuDNN’s Tensor Core operations.

– If it is auto, Chainer checks cuDNN version, the data type of input, the compute capability of the
GPU used, and configures whether or not to use cuDNN’s Tensor Core operations.

• autotune (default: False) Autotune for convolutional networks flag.

If it is True, Chainer uses the cuDNN autotune feature to find the fastest calculation
process for chainer.links.Convolution2D, ConvolutionND, Deconvolution2D, or
DeconvolutionND links.

• cudnn_fast_batch_normalization (default: False) Flag to configure whether or not to enable use
of fast implementation for batch normalization in cuDNN.

If True, Chainer will try to use the fast implementation for batch normalization in cuDNN by set-
ting cuDNN’s batch normalization mode to CUDNN_BATCHNORM_SPATIAL_PERSISTENT. You can
change the default value to True by setting CHAINER_CUDNN_FAST_BATCH_NORMALIZATION en-
vironment variable to 1.

• in_recomputing (default: False) This flag is automatically set by chainer.functions.
forget() and not intended to be changed by users. You can use this flag when implementing
your own Link to avoid updating the internal states during recomputation done by chainer.
functions.forget(). See the documentation of chainer.functions.forget() for
details.

• use_static_graph (default: True) Flag to configure whether or not to use the static subgraph optimiza-
tion feature. Where the static subgraph optimization decorator is used, we generally assume that the
feature should be used and the default value is thus True. However, if you would want to run the same
code without the feature, you can simply set the flag to False instead of removing the decorators. This is
useful when for instance running your model with ChainerX, since ChainerX is not supported by the static
subgraph optimization feature.

1104 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

4.14.2 User-defined Keys

Users can also define their own configurations. There are two ways:

1. Use Chainer’s configuration objects. In this case, it is strongly recommended that the name be prefixed by
“user_” to avoid name conflicts with configurations introduced to Chainer in the future.

2. Use your own configuration objects. Users can define their own configuration objects using chainer.
configuration.GlobalConfig and chainer.configuration.LocalConfig. In this case,
there is no need to take care of the name conflicts.

4.14.3 Changing Configuration

If you want to share a setting within the process, set an attribute to the global configuration. This value is automatically
extracted by referring to the local config.

>>> chainer.global_config.train
True
>>> chainer.config.train
True

>>> chainer.global_config.train = False

>>> chainer.global_config.train
False
>>> chainer.config.train
False

If you set an attribute to the local configuration, the value is only visible to the current thread.

>>> chainer.global_config.train
True
>>> chainer.config.train
True

>>> chainer.config.train = False

>>> chainer.global_config.train
True
>>> chainer.config.train
False

If you want to temporarily modify the configuration for the specific scope, you can use using_config(). For
example, if you only want to enable debug mode in a fragment of code, write as follows.

>>> with chainer.using_config('debug', True):
... pass # code running in debug mode

If you want to switch to the test mode for an evaluation, you can do that in the same way.

>>> # Do training here
>>> with chainer.using_config('train', False):
... pass # Perform evaluation here

Note that Evaluator automatically switches to the test mode, and thus you do not need to manually switch in the
loss function for the evaluation.

You can also make your own code behave differently in training and test modes as follows.

4.14. Configuring Chainer 1105

Chainer Documentation, Release 7.0.0b4

if chainer.config.train:
pass # code only running in the training mode

else:
pass # code only running in the test mode

chainer.global_config
chainer.config Thread-local configuration of Chainer.
chainer.using_config Context manager to temporarily change the thread-local

configuration.
chainer.configuration.GlobalConfig
chainer.configuration.LocalConfig Thread-local configuration of Chainer.

chainer.global_config

chainer.global_config = <chainer.configuration.GlobalConfig object>

chainer.config

chainer.config = <chainer.configuration.LocalConfig object>
Thread-local configuration of Chainer.

This class implements the local configuration. When a value is set to this object, the configuration is only
updated in the current thread. When a user tries to access an attribute and there is no local value, it automatically
retrieves a value from the global configuration.

chainer.using_config

chainer.using_config(name, value, config=chainer.config)
Context manager to temporarily change the thread-local configuration.

Parameters

• name (str) – Name of the configuration to change.

• value – Temporary value of the configuration entry.

• config (LocalConfig) – Configuration object. Chainer’s thread-local configuration is
used by default.

See also:

Configuring Chainer

chainer.configuration.GlobalConfig

class chainer.configuration.GlobalConfig

Methods

show(file=sys.stdout)
Prints the global config entries.

The entries are sorted in the lexicographical order of the entry name.

1106 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Parameters file – Output file-like object.

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

autotune = None

cudnn_deterministic = None

cudnn_fast_batch_normalization = None

debug = None

dtype = None

enable_backprop = None

in_recomputing = None

keep_graph_on_report = None

lazy_grad_sum = None

schedule_func = None

train = None

type_check = None

use_cudnn = None

use_cudnn_tensor_core = None

use_ideep = None

use_static_graph = None

warn_nondeterministic = None

chainer.configuration.LocalConfig

class chainer.configuration.LocalConfig(global_config)
Thread-local configuration of Chainer.

This class implements the local configuration. When a value is set to this object, the configuration is only
updated in the current thread. When a user tries to access an attribute and there is no local value, it automatically
retrieves a value from the global configuration.

4.14. Configuring Chainer 1107

Chainer Documentation, Release 7.0.0b4

Methods

show(file=sys.stdout)
Prints the config entries.

The entries are sorted in the lexicographical order of the entry names.

Parameters file – Output file-like object.

Example

You can easily print the list of configurations used in the current thread.

>>> chainer.config.show()
debug False
enable_backprop True
train True
type_check True

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Related functions

chainer.get_dtype Resolves Chainer’s default dtype.
chainer.mixed16 Dtype-like object that represents 16/32 bits mixed pre-

cision float.

chainer.get_dtype

chainer.get_dtype(dtype=None, map_mixed16=None)
Resolves Chainer’s default dtype.

Parameters

• dtype – Dtype specifier. If this value is specified (not None), this function returns the
dtype object corresponding to it.

• map_mixed16 – Dtype specifier. When chainer.config.dtype is mixed16, this
option is used. If this value is None, float16 is used.

Returns If dtype is not None, it returns the dtype normalized by numpy.dtype(). Otherwise,

1108 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

it returns chainer.config.dtype (see Configuring Chainer) normalized as well. When
chainer.config.dtype is mixed16 and map_mixed16 is specified, it returns the nor-
malized version of map_mixed16.

chainer.mixed16

chainer.mixed16 = dtype('mixed16')
Dtype-like object that represents 16/32 bits mixed precision float.

4.14.4 Environment Variables

Here are the environment variables Chainer uses.

CHAINER_SEED Default seed value of random number generators for CUDA. If it is not set, the seed value is
generated from Python random module. Set an integer value in decimal format.

CHAINER_DATASET_ROOTDefault directory path to store the downloaded datasets. See Datasets for details.
CHAINER_CUDNN Set 0 to completely disable cuDNN in Chainer. In this case, cuDNN will not be used re-

gardless of CHAINER_USE_CUDNN and chainer.config.use_cudnn configuration.
Otherwise cuDNN is enabled automatically.

CHAINER_USE_CUDNNUsed as the default value for chainer.config.use_cudnn configuration. The value
must be any of 'always', 'auto' or 'never'. If CHAINER_CUDNN is set to 0, this
environment variable has no effect. See Configuring Chainer for details.

CHAINER_CUDNN_FAST_BATCH_NORMALIZATIONUsed as the default value for chainer.config.
cudnn_fast_batch_normalization configuration. Set 1 to enable use of fast
implementation for batch normalization in cuDNN. See Configuring Chainer for details.

CHAINER_USE_IDEEPUsed as the default value for chainer.config.use_ideep configuration. The value
must be any of 'always', 'auto' or 'never'. See Configuring Chainer for details.

CHAINER_LAZY_GRAD_SUMUsed as the default value for chainer.config.lazy_grad_sum configuration. Set 1
to enable batch accumulation of gradients. See Configuring Chainer for details.

CHAINER_DTYPE Used as the default value for chainer.config.dtype configuration. The value must be
any of 'mixed16', 'float16', 'float32' or 'float64'. See Configuring Chainer
for details.

CHAINER_TYPE_CHECKUsed as the default value for chainer.config.type_check configuration. Set 0 to
disable type checking. Otherwise type checking is enabled automatically. See Configuring
Chainer and Type checking utilities for details.

CHAINER_DEBUG Used as the default value for chainer.config.debug configuration. Set 1 to enable
debug mode. It is disabled by default. In debug mode, Chainer performs various runtime
checks that can help debug user’s code at the cost of some overhead. See Configuring Chainer
and Debug Mode for details.

CHAINER_KEEP_GRAPH_ON_REPORTUsed as the default value for chainer.config.keep_graph_on_report configura-
tion. Set 1 to let report() keep the computational graph. See Configuring Chainer for
details.

CHAINER_PYTHON_350_FORCESet 1 to force using Chainer with Python 3.5.0. Note that Chainer does not work with Python
3.5.0. Use Python 3.5.1+ or other supported versions (see Installation).

The following environment variables are only effective when running unit tests.

4.14. Configuring Chainer 1109

Chainer Documentation, Release 7.0.0b4

CHAINER_TEST_GPU_LIMITNumber of GPUs available for unit tests. When running unit test, test cases that require
more GPUs than the specified value will be skipped. Set 0 to skip all test cases that
require GPU. See Unit Testing for details.

CHAINER_TEST_RANDOM_NONDETERMINISTICSet 1 to use non-fixed seed for random number generators, even for test cases annotated
with fix_random.

4.15 Debug Mode

In debug mode, Chainer checks values of variables on runtime and shows more detailed error messages. It helps you
to debug your programs. However, it requires some additional overhead time.

If you want to enable debug mode for the entire code, you can set CHAINER_DEBUG environment variable to 1.

You can also enable or disable debug mode for the specific scope of code with chainer.using_config() or by
changing chainer.config.debug configuration.

with chainer.using_config('debug', True):
...

See Configuring Chainer for the details of Chainer’s configuration mechanism.

In debug mode, Chainer checks all results of forward and backward computation, and if it finds a NaN value, it raises
a RuntimeError. Some functions and links also check validity of input values more strictly.

You can check if debug mode is enabled with chainer.is_debug() function.

chainer.is_debug Returns if the debug mode is enabled or not in the cur-
rent thread.

chainer.set_debug Enables or disables the debug mode in the current
thread.

4.15.1 chainer.is_debug

chainer.is_debug()
Returns if the debug mode is enabled or not in the current thread.

Returns True if the debug mode is enabled.

Return type bool

4.15.2 chainer.set_debug

chainer.set_debug(debug)
Enables or disables the debug mode in the current thread.

Note: chainer.set_debug(value) is equivalent to chainer.config.debug = value.

Parameters debug (bool) – New debug mode.

1110 Chapter 4. API Reference

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

4.16 Visualization of Computational Graph

As neural networks get larger and complicated, it gets much harder to confirm if their architectures are constructed
properly. Chainer supports visualization of computational graphs. Users can generate computational graphs by in-
voking build_computational_graph(). Generated computational graphs are dumped to specified format
(Currently Dot Language is supported).

Basic usage is as follows:

import chainer.computational_graph as c
...
g = c.build_computational_graph(vs)
with open('path/to/output/file', 'w') as o:

o.write(g.dump())

where vs is list of Variable instances and g is an instance of ComputationalGraph. This code generates the
computational graph that are backward-reachable (i.e. reachable by repetition of steps backward) from at least one of
vs.

Here is an example of (a part of) the generated graph (inception(3a) in GoogLeNet). This example is from example/
imagenet.

chainer.computational_graph.
build_computational_graph

Builds a graph of functions and variables backward-
reachable from outputs.

chainer.computational_graph.
ComputationalGraph

Class that represents computational graph.

4.16.1 chainer.computational_graph.build_computational_graph

chainer.computational_graph.build_computational_graph(outputs, remove_split=True,
variable_style=’default’,
function_style=’default’,
rankdir=’TB’, re-
move_variable=False,
show_name=True)

Builds a graph of functions and variables backward-reachable from outputs.

Parameters

4.16. Visualization of Computational Graph 1111

https://en.wikipedia.org/wiki/DOT_(graph_description_language)
https://arxiv.org/abs/1409.4842

Chainer Documentation, Release 7.0.0b4

• outputs (Variable, VariableNode, FunctionNode, or list) – node(s) from
which the graph is constructed. Each element of outputs must be either Variable object,
VariableNode object, or FunctionNode object.

• remove_split (bool) – It must be True. This argument is left for backward compati-
bility.

• variable_style (dict or 'default') – Dot node style for variable. Possible
keys are ‘shape’, ‘color’, ‘fillcolor’, ‘style’ etc. If the special value 'default' is speci-
fied, the default configuration will be used.

• function_style (dict or 'default') – Dot node style for function. Possible
keys are ‘shape’, ‘color’, ‘fillcolor’, ‘style’ etc. If the special value 'default' is speci-
fied, the default configuration will be used.

• rankdir (str) – Direction of the graph that must be TB (top to bottom), BT (bottom to
top), LR (left to right) or RL (right to left).

• remove_variable (bool) – If True, VariableNodes are removed from the result-
ing computational graph. Only FunctionNodes are shown in the output.

• show_name (bool) – If True, the name attribute of each node is added to the label of
the node. Default is True.

Returns

A graph consisting of nodes and edges that are backward-reachable from at least one of
outputs.

If unchain_backward was called in some variable in the computational graph before this
function, backward step is stopped at this variable.

For example, suppose that computational graph is as follows:

|--> f ---> y
x --+

|--> g ---> z

Let outputs = [y, z]. Then the full graph is emitted.

Next, let outputs = [y]. Note that z and g are not backward-reachable from y. The result-
ing graph would be following:

x ---> f ---> y

See TestGraphBuilder for details.

Return type ComputationalGraph

Note: The default configuration for variable_style is {'shape': 'octagon', 'fillcolor':
'#E0E0E0', 'style': 'filled'} and the default configuration for function_style is
{'shape': 'record', 'fillcolor': '#6495ED', 'style': 'filled'}.

Note: The default behavior of ComputationalGraph has been changed from v1.23.0, so that it ouputs
the richest representation of a graph as default, namely, styles are set and names of functions and variables are
shown. To reproduce the same result as previous versions (<= v1.22.0), please specify variable_style=None,
function_style=None, and show_name=False explicitly.

1112 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

4.16.2 chainer.computational_graph.ComputationalGraph

class chainer.computational_graph.ComputationalGraph(nodes, edges, vari-
able_style=’default’,
function_style=’default’,
rankdir=’TB’, re-
move_variable=False,
show_name=True)

Class that represents computational graph.

Note: We assume that the computational graph is directed and acyclic.

Parameters

• nodes (list) – List of nodes. Each node is either VariableNode object or
FunctionNode object.

• edges (list) – List of edges. Each edge consists of pair of nodes.

• variable_style (dict or ‘default’) – Dot node style for variable. If the special value
'default' is specified, the default configuration will be used.

• function_style (dict or default) – Dot node style for function. If the special value
'default' is specified, the default configuration will be used.

• rankdir (str) – Direction of the graph that must be TB (top to bottom), BT (bottom to
top), LR (left to right) or RL (right to left).

• remove_variable (bool) – If True, VariableNodes are removed from the result-
ing computational graph. Only FunctionNodes are shown in the output.

• show_name (bool) – If True, the name attribute of each node is added to the label of
the node. Default is True.

Note: The default configuration for variable_style is {'shape': 'octagon', 'fillcolor':
'#E0E0E0', 'style': 'filled'} and the default configuration for function_style is
{'shape': 'record', 'fillcolor': '#6495ED', 'style': 'filled'}.

Note: The default behavior of ComputationalGraph has been changed from v1.23.0, so that it ouputs
the richest representation of a graph as default, namely, styles are set and names of functions and variables are
shown. To reproduce the same result as previous versions (<= v1.22.0), please specify variable_style=None,
function_style=None, and show_name=False explicitly.

Methods

dump(format=’dot’)
Dumps graph as a text.

Parameters

• format (str) – The graph language name of the output.

• it must be 'dot'. (Currently,) –

4.16. Visualization of Computational Graph 1113

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

Returns The graph in specified format.

Return type str

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

4.17 Static Subgraph Optimizations: Usage

Note: This is an experimental feature and so the API might change in the future as it is developed.

This feature intends to improve runtime performance by optimizing the execution of the static subgraphs in a model.
When this feature is enabled, the first iteration runs as normal except that an execution trace is also collected. The
trace is then used to generate optimized code that is will be called instead of the define-by-run code starting from the
second iteration.

chainer.static_graph Decorator to mark a Chain’s __call__() as a static
sub-graph.

4.17.1 chainer.static_graph

chainer.static_graph(*args, **kwargs)
Decorator to mark a Chain’s __call__() as a static sub-graph.

This decorator marks the define-by-run code inside the __call__() method of a Chain instance as corresponding
to a static computation graph or sub-graph. Such a chain will be referred to as a ‘static chain’. This allows
various “static graph” optimizations to be performed, which can result in significant speedups for some models.

When this decorator is used, the chain’s define-by-run code executes during the first iteration as usual. However,
while the define-by-run code is executing, a trace is also performed to incrementally create a corresponding static
schedule. This static schedule will only contain the subset of the computations inside the define-by-run code
that actually needs to run every iteration. Specifically, this will contain the code inside any functions called that
were annotated with the @static_code decorator, which will include all Chainer built-in functions, as well as
any user-defined functions that use @static_code. Then, starting from the second iteration, when the static chain
is called, its static schedule code will be executed instead of its define-by-run code.

However, the user must also be careful of the following: - The user is responsible for applying this decorator
correctly. The framework does not check that the define-by-run code corresponds to a static graph. The graph
can be different between training and evaluation mode (such as when dropout and/or batch normalization are

1114 Chapter 4. API Reference

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

used), but should otherwise be static. - When chainer.config.enable_backprop is enabled, if a backward pass is
not performed each iteration, then the user code must call a method chain.schedule_manager.end_forward()‘on
the static chain each iteration. - Static graphs allow tradeoffs between computation and memory usage. For
example, the ‘minimize_cache_size argument will typically result in higher memory useage when set to False
because all cached schedules are retained. - When this feature is enabled, only the Chainer function and/or
link calls inside the chain’s __call__() method will be included in the static schedule by default. An other code
that the user puts in __call__(), such as a print statement or code to increment a counter for example, will
not automatically get added. We will refer to such code other than Chainer function/link calls as “side-effect”
code. Since side-effect code does not get included in the static schedule by default, this means that it will only
every execute once, during the first iteration. There is a way to force side-effect code to be included in the
static schedule, however: the user can wrapp such code inside a function that is decorated with @static_code
to ensure that it gets added to the static schedule. For an example of this, refer to the documentation. - This
feature is experimental and advanced optimizations such as kernel fusion and various memory optimizations are
not implemented yet.

Usage:

This decorator should only be applied to define-by-run code that actually corresponds to a static subgraph. Refer
to the documenation for additional details and examples of correct usage. This decorator should be applied to
each of the largest static subgraphs in the model; it can also be applied to a static subgraph that is not the largest
subgraph, but that could result in reduced performance. It is not currently allowed to mark a chain as static if
it is contained within another chain that is also marked as being static. For example, suppose a static graph A
contains a static sub-graph B. Then, only the chain corresponding to A should be marked as static and the chain
corresponding to B should not be marked as static.

The behavior of a static chain depends on the training mode flag, chainer.config.train. If it is True, then a static
chain that is called multiple times will try to use a distinct static schedule object (that is, call a distinct instance of
a FunctionNode that implements that static schedule) on each call. The same schedule instance cannot be reused
until the forward pass has completed, which is signaled by performing a backward pass through the model. It
is therefore important that the backward pass be performed after each forward pass during training. Since this
is usually the case, most usages of static chain will not required any modifications to existing code other than
applying this decorator. However, if you would like to perform multiple forward passes during training before
performing a backward pass, then you must call chain.schedule_manager.end_forward() after the end of each
forward pass.

If test mode is active (chainer.config.train is False) then it is not necessary to inform the chain at the end of
each forward pass because in test mode, a static chain always attempts to reuse existing static schedule objects.
The same static schedule can be reused during a single forward pass, because it is not necessary to compute
gradients. It is also possible to disable static optimzations while in test mode by setting the decorator argument
force_test_define_by_run=True.

Note: If either ‘chainer.config.enable_backprop’ or ‘chainer.config.train’ is set to ‘False’, then cached static
schedules will be reused when possible to reduce memory usage.

Double-backprop: Double-backpropagation is not enabled by default. It can be enabled by supplying the
keyword argument enable_double_backprop=True to this decorator. Note: this feature has not
been tested yet.

Restrictions on input arguments and return values of a static chain: Recall that unlike a function, there is
no restrictions on the arguments to a chain. However, there currently are some restrictions when a static
chain is used. Specifically, the arguments to a static chain must consist of a variable, list or tuple. In the
case of a list or tuple, the elements are required to be an instance of variable, list, or tuple. There can be an
arbitrary number of nested lists/ tuples. No other object types are allowed. In addition, keyword arguments
are not allowed. The return value of a static chain must be a variable, list, or tuple in which each element
of the list or tuple is also a variable, list, or tuple.

This decorator can be supplied with the following optional keyword arguments. This is an experimental feature,
and the API and arguments might change

4.17. Static Subgraph Optimizations: Usage 1115

Chainer Documentation, Release 7.0.0b4

Parameters

• force_test_define_by_run (bool) – If True, disable static graph optimizations
during test mode (that is, when chainer.config.train is False). This may be needed in order
for some existing RNN links such as LSTM to work correctly, since some existing links do
not correspond to a static graph in some cases. The default is False.

• minimize_cache_size (bool) – If True, minimize the number of cached static sched-
ules in order to reduce memory usage. For example, if the mini-batch size changes or the
training mode changes, the schedules will need to be recomputed, but memory is also saved
by not retaining all cached schedules. The default value is True.

• verbosity_level (int) – Depending on the value, print additional information: 0:
Warnings only. (the default value) 1: Show only information that is collected during the
first iteration and when a new static schedule is created. 2: Detailed debugging information,
possibly showing new information every iteration.

• enable_double_backprop (bool) – If True, enable double-backprop. The default
value is False (not enabled).

Returns Wrapped __call__() method with static chain support.

4.17.2 Basic usage

To enable static graph optimizations, it is only necessary to add the chainer.static_graph() decorator to a
chain’s __call__() method. We will now show how the Chainer MNIST example can be modified to use this fea-
ture. The modified version with static subgraph optimizations is located at examples/static_graph_optimizations/mnist.

The first step is to import the necessary packages:

Listing 1: train_mnist.py

24 from chainer import static_code
25 from chainer import static_graph

Since the neural network model MLP corresponds to a static graph, we can annotate it as a static graph by using the
chainer.static_graph() decorator on the chain’s __call__() method. This lets the framework know that
that the define-by-run code of the chain always creates the same graph (that is, it always performs the same sequence
of computations) each time it is called. We will refer to such a chain as a static chain in the documentation.

Listing 2: train_mnist.py

34 # Network definition
35 class MLP(chainer.Chain):
36

37 """A fully-connected neural network for digit classification.
38

39 """
40

41 def __init__(self, n_units, n_out):
42 super(MLP, self).__init__()
43 with self.init_scope():
44 # the size of the inputs to each layer will be inferred
45 self.l1 = L.Linear(None, n_units) # n_in -> n_units
46 self.l2 = L.Linear(None, n_units) # n_units -> n_units
47 self.l3 = L.Linear(None, n_out) # n_units -> n_out
48

49 @static_graph
(continues on next page)

1116 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://github.com/chainer/chainer/tree/master/examples/static_graph_optimizations/mnist

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

50 def __call__(self, x):
51 h1 = F.relu(self.l1(x))
52 h2 = F.relu(self.l2(h1))
53 return self.l3(h2)

Note: If your model’s define-by-run code has any control flow operations that could cause it to potentially call
different Chainer functions/links each time it is called, then you cannot use this decorator.

Note: There are currently some restrictions on how variables can be passed into a static chain’s __call__()
method. Refer to the documentation of chainer.static_graph() for details.

Recall that the define-by-run code of a static chain’s __call__() method only actually runs during the first iteration
and is then replaced by optimized static schedule code. The current implementation only knows how to do this auto-
replacement for calls to Chainer functions and links. Any other code that the user puts in __call__() (which we
refer to as “side-effect code”) will only ever get called once by default, since the define-by-run code is only executed
during the first iteration. In order to make sure such “side effect” code actually gets called each iteration, we need
to put it inside a function or method decorated by static_code(). We expect there will rarely be a need to use
side-effect code but for completeness, an example of a model that uses it is available in the MLPSideEffect Chain
of the static graph MNIST example.

In this example, we only need to use chainer.static_graph() on the model chain, since the whole model is
static. However, in more general dynamic models, each of the largest static subgraphs (which should each be written
as a chain) should also use chainer.static_graph().

Note: Nested application of chainer.static_graph() is not allowed. That is, if a chainer.
static_graph()-decorated chain calls another chains, only the outermost chain should use the decorator.

4.17.3 Calling a static chain multiple times in the same iteration

In a general dynamic graph network, it is not possible to know in advance how many times a static chain will be
called in any particular iteration. Note that during training, it is necessary to maintain separate internal state (such
as intermediate activations) for each of these calls so that the gradients can be computed in the backward pass. So,
although the layer functions of the static schedule will be identical each time the same static chain is called, any
internal state must be distinct. It is also possible that a static chain could be called multiple times with inputs of
different shapes and/or types during the same iteration. To avoid confuction, “static schedule” will refer to both the
functions and any corresponding internal state such as activations.

If backpropagation mode is disabled (chainer.config.enable_backprop is False), it is safe for the im-
plementation to simply compute a static schedule for the first call and reuse it for subsequent calls, provided that
the cached schedule is compatible with the input shapes/types. However, during training, it is necessary to maintain
distinct internal state for each call in order to compute the gradients for the backward pass, which prevents us from
reusing the same static schedule for each of the multiple calls of a static chain in an iteration.

The current implementation handles this issues as follows. A cache of static schedules, which is intially empty, is
associated with each static chain. The size of this cache will be equal to the maximum number of times that the
static chain has been called in any previous iteration, and the cache is reset whenever certain chain configuration flags
change, such as training mode and backpropagation model. At the start of a given iteration, all cached schedules are
available for use and the number of available schedules is decremented each time the static chain is called. If the chain
is called when the cache is size zero, then its define-by-run code will execute to create a new schedule cache.

4.17. Static Subgraph Optimizations: Usage 1117

Chainer Documentation, Release 7.0.0b4

In order for such an implementation to work, each static chain must be notified when the forward pass has ended (or
when the forward pass is started) so that all cached schedules can be made available for use again. In the current
implementation, this is accomplished by calling the backward() method on a loss variable in the model. This is
expected to handle the typical use cases. However, in some models it may be necessary to perform multiple forward
passes before calling backward(). In such a case, to signel to a static chain that the forward pass (and the iteration)
has ended, call my_chain.schedule_manager.end_forward(). The schedule_manager attribute of a static
chain is an instance of a class called StaticScheduleFunction that will be available after the chain has been
called.

4.17.4 Effects on model debugging

Note that since the code in the static chain’s __call__() only runs during the first iteration, you will only be able
to debug this code as define-by-run during the first iteration. It is assumed that if the chain is actually is static, any
problems in its define-by-run code should be apparent during the first iteration and it should not be (as) necessary to
debug this code in later iterations. However, this feature does provide some functionality to help with debugging. For
example, it is possible to obtain and inspect the current static schedules. It is also possible to directly step through the
code of the static schedule if you wish (by debugging the forward() method of StaticScheduleFunction in
static_graph).

4.17.5 Disabling the static subgraph optimization

It is possible to turn off the static subgraph optimization feature by setting the chainer.config.
use_static_graph to False. If set to False, the chainer.static_graph() decorator will simply call
the wrapped function without any further side effects.

4.17.6 Limitations and future work

• Optimization switches to let the user select the trade-off between runtime performance and memory usage: The
current implementation achieves its speedups mainly by reducing the amount of Python code that needs to run,
but does not yet implement advanced optimizations for memory usage or runtime performance. Ideally, the user
should be able to adjust performance tuning parameters to control the trade-off between memory consumption
and runtime performance.

• Incompatibility with GRU and LSTM links: This feature requires that all input variables to a chain need to
explicitly appear in the arguments to the chain’s __call__() method. However, the GRU and LSTM links
with state maintain variable attributes of the chain for the RNN state variables. Design changes to support such
links and/or modifications to these links are being considered. These links may still be used with the current
implementation, as long as the corresponding RNN is unrolled inside of a static chain. For an example of this,
see the modified ptb example at examples/static_graph_optimizations/ptb

• Memory usage: The current implementation caches all static schedules which can lead to high memory usage
in some cases. For example, separate schedules are created when the training mode or mini-batch size changes.

• Advanced graph optimizations: Advanced optimizations such as fusion of operations is not yet implemented.

• Constraints on arguments to a static chain: The current version requires that all input variables used inside
__call__() of a static chain must either appear in the arguments of this method or be defined in the define-
by-run code. Furthermore, any variables that appear in the arguments list must appear by themselves or be
contained inside a list or tuple. Arbitrary levels of nesting are allowed.

• Model export: In the case where the complete computation graph for the model is static, it should be possible
in principle to export the static schedule in a format that can be run on other platforms and languages. One of
the other original motivations for this feature was to support exporting static Chainer models to run on C/C++
and/or optimize the static schedule execution code in Cython/C/C++. However, it seems that ONNX is now

1118 Chapter 4. API Reference

https://github.com/chainer/chainer/tree/master/examples/static_graph_optimizations/ptb

Chainer Documentation, Release 7.0.0b4

fulfilling this purpose and there is a separate ONNX exporter already in development for Chainer. Perhaps these
two features can be merged at some point in the future.

• Double-backward support: This feature was designed to support double-backward (gradient of gradient) but it
has not been tested.

• ChainerX is not supported. If you have code written using this feature but would like to run the model with
ChainerX, please set the chainer.config.use_static_graph configuration to False. The code
should then work without any additional changes.

4.17.7 Examples

For additional examples that use this feature, refer to the examples in examples/static_graph_optimizations.

4.18 Static Subgraph Optimizations: Design Notes

This documentation is intended provide information on the architecture and design of the static subgraph optimizations
feature for those who are interested in contributing to its development. This documentation also describes how existing
Chainer functions can be modified to run more efficiently when static subgraph optimizations are enabled.

4.18.1 Overview of dynamic and static graph frameworks

Existing deep learning frameworks can roughly be classified as either a “static graph” or “dynamic graph” framework.
In a static graph framework, which we also call “define-and-run”, the computation graph is defined before the model
is run. This implies that the same neural network model will be used each iteration without modifications, hence the
name “static.” This allows various graph optimizations to potentially be performed to improve the runtime performance
and/or reduce memory usage. The optimized code for the computation graph is then used when the model is run.

However, in a “dynamic graph” (also called “define-by-run”) framework such as Chainer, the computation graph is
not defined before the model is run. Rather, it is constructed incrementally and automatically by the framework as
the computations of the forward pass are executed. In Chainer, the user writes code to perform the computations of
the forward pass in terms of Chainer functions, which have an API similar to an array library like NumPy. As these
functions execute, the computation graph is incrementally built so that it will be available after the last function in the
forward pass has been called. This has some advantages, such as allowing easier debugging compared to a static graph
framework, since the user can step through the computations of the forward pass in a debugger. Define-by-run also
provides the flexibility to include control flow operations so that a modified or even completely different graph can be
constructed each iteration. Unfortunately, this flexibility also tends to make dynamic graph frameworks slower than
static graph frameworks. For example, in Chainer there is a performance penalty involved in dynamically constructing
the graph each iteration, since it involves creating many objects; each function call creates a new FunctionNode object
as well as creating new VariableNode and array memory allocation for each output of the function. There are also
various dynamic type checks and graph traversal that need to be performed, adding to the runtime overhead. Further,
we cannot perform some optimizations such as function/kernel fusion and in-place operations.

4.18.2 Static subgraph optimizations feature

This feature is motivated by the observation that typical deep neural networks correspond to a static computation
graph and that even those that correspond to a dynamic graph are typically mostly static. By “mostly static”, we mean
that the largest static subgraphs each tend to contain many function nodes (that is, layers) so that the total number of
function nodes in the graph tends to be much larger than the total number of largest static subgraphs. If the graph
is at least mostly static, then a naive implementation of define-by-run will result in a large amount of redundant

4.18. Static Subgraph Optimizations: Design Notes 1119

https://github.com/chainer/chainer/tree/master/examples/static_graph_optimizations

Chainer Documentation, Release 7.0.0b4

operations being performed each iteration to rebuild exactly the same subgraphs, perform the same dynamic type-
checking operations, etc., which can sometimes be slow in Python; it will also result in lost opportunities to perform
potential graph optimizations. A key assumption motivating this feature is that the main performance bottlenecks tend
to occur inside the largest static subgraphs. So, if we can optimize these static subgraphs, it might be fine for any
remaining framework code to remain implemented in pure Python. Although such Python code would be slow, it
could have negligible runtime overhead.

The solution proposed by this feature is to retain the existing define-by-run style for specifying the model, but to
also optionally allow the user to annotate the largest static subgraphs in a model. These “static graph” annotations
will then allow the framework to automatically replace the define-by-run code of the static subgraphs with more
performance-optimized code. The define-by-run code will still execute during the first iteration, to retain ease of
debugging. However, as this code executes, a trace of the needed computations is also collected so that optimized
static schedules can be generated for the annotated static subgraphs. Then, starting from the second iteration, this
optimized code will automatically be run in place of the original define-by-run code. Note that in the common case in
which the whole model is static, the user only needs to add a single “static graph” annotation and their code will then
run with the performance of a static graph framework, while still supporting the define-by-run coding style.

The benefit of annotating the static subgraphs in the model is that it allows the define-by-run code to be replaced
with an optimized static schedule, which can then potentially support a user-controllable trade-off between runtime
performance and memory usage. This is possible because having the full computation graph available enables various
optimizations that cannot safely or automatically be performed in define-by-run. Examples (which we have not yet
implemented; contributions from the open source community are welcomed) include sub-linear memory usage [1],
exploiting graph parallelism, operator fusion, and in-place optimizations.

The current implementation achieves its speedup by retaining only the code that is actually needed to compute the
forward pass, backward pass, and so on. This allows us to remove most of the Python interpreter overhead because the
Python code that performs dynamic operations such as allocating FunctionNode and Variable objects, checking types,
and traversing the backward graph is not included in the optimized static schedule code.

4.18.3 Adding support to existing functions

Most functions and links will not need to be modified at all in order to support this feature, since the framework
code will attempt to auto-wrap them inside a @static_code-decorated function. However, some functions might see a
performance benefit if static graph support is added manually, since it may result in less redundant code being included
in the static schedule. For example, any dynamic checking code that will return the same result every iteration does
not need to be included in the static schedule.

An existing function (that is, a subclass of FunctionNode) can be modified to support static graph optimizations as
follows. The basic idea is to wrap any code that needs to be called each iteration inside a method that is decorated with
@static_code. Note that code that should only run once, such as initializing parameters, should not be wrapped.

It is also necessary to set the _supports_static_optimizations = True class attribute. Note that this
attribute is False by default in FunctionNode.

Since the function is part of a static graph, any parameters and output arrays should ideally be statically allocated
during the first iteration (while the define-by-run code is executing) and then reused starting from the second iteration.
The @static_code-decorated functions that are called each iteration will perform the various deep learning com-
putations, writing results in-place into these static arrays. Since the results are written in-place, there is no need for
an @static_code-decorated function to explicitly return a result. Rather, any results arrays should be passed as inputs
along with any other input arguments to the function. However, it also is allowed to return dynamically allocated
arrays so that existing Chainer functions can be easily supported. The following code shows the typical pattern for
performing the forward computations in a FunctionNode:

@static_code
def static_forward(self, inputs, outputs):

This function will get
(continues on next page)

1120 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

included in the static
schedule and called each iteration.
Any input arrays must be passed in a list
to the `inputs` keyword argument.
x = inputs[0]
Any output arrays must be passed in a list
to the `outputs` keyword argument, and must
have already been initialized to the required
shape. Results are written in-place into output
arrays.
y = outputs[0]

Read from x, write results into y in-place.
Don't forget to zero y if necessary.
y *= 0.0 # (if necessary)
y[:] = 3.0*x # for example

def forward(self, inputs):
Initialization/type checking code.
(only gets called once, during first iteration)
type_check_blah(inputs)

Allocate output array. Note that since this line
is not wrapped using @static_code, it
will only ever get called once, during the first
iteration.
y = xp.empty(y_shape).astype(x.dtype)

Call static function
(it will get called every iteration from optimized schedule)
self.static_forward(inputs=[x], outputs=[y])
return y,

It should not be necessary to modify the backward() implementation. As of Chainer v3 when double-backward (i.e.,
grad of grad) support was added, the backward() method of FunctionNode actually calls the forward() method
of other FunctionNode‘s, and so it is only necessary that the ‘forward() functions be wrapped.

For an example of how to add support to an existing function, see the Linear function.

4.18.4 Adding support to existing links

Most existing links will work as-is and do not need to be modified. However, if a link needs to perform computations
each iteration that are performed in code other than calling chainer functions, this code will need to be manually placed
in a @static_code-decorated function or method of the link.

If a link performs different computations depending on the training mode but is otherwise static, then it does not need
to be modified.

4.18.5 Reference

[1] Training deep nets with sublinear memory cost

4.18. Static Subgraph Optimizations: Design Notes 1121

https://arxiv.org/abs/1604.06174

Chainer Documentation, Release 7.0.0b4

4.19 Caffe Model Support

Caffe is a popular framework maintained by BVLC at UC Berkeley. It is widely used by computer vision communities,
and aims at fast computation and easy usage without any programming. The BVLC team provides trained reference
models in their Model Zoo, which can reduce training time required for a new task.

4.19.1 Import

Chainer can import the reference models and emulate the network by Link implementations. This functionality is
provided by the chainer.links.caffe.CaffeFunction class.

chainer.links.caffe.CaffeFunction Caffe emulator based on the model file of Caffe.

4.19.2 Export

Chainer can export a model from Link.

chainer.exporters.caffe.export (Experimental) Export a computational graph as Caffe
format.

chainer.exporters.caffe.export

chainer.exporters.caffe.export(model, args, directory=None, export_params=True,
graph_name=’Graph’)

(Experimental) Export a computational graph as Caffe format.

Parameters

• model (Chain) – The model object you want to export in Caffe format. It should have
__call__() method because the second argument args is directly given to the model
by the () accessor.

• args (list of ~chainer.Variable) – The arguments which are given to the
model directly.

• directory (str) – The directory used for saving the resulting Caffe model. If None,
nothing is saved to the disk.

• export_params (bool) – If True, this function exports all the parameters included in
the given model at the same time. If False, the exported Caffe model doesn’t include any
parameter values.

• graph_name (str) – A string to be used for the name field of the graph in the exported
Caffe model.

Note: Currently, this function supports networks that created by following layer functions.

• linear()

• convolution_2d()

• deconvolution_2d()

• max_pooling_2d()

1122 Chapter 4. API Reference

http://caffe.berkeleyvision.org/
http://bvlc.eecs.berkeley.edu/
http://caffe.berkeleyvision.org/model_zoo.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

• average_pooling_2d()

• batch_normalization()

• local_response_normalization()

• relu()

• leaky_relu()

• concat()

• softmax()

• reshape()

• add()

This function can export at least following networks.

• GoogLeNet

• ResNet

• VGG

And, this function use testing (evaluation) mode.

Example

>>> from chainer.exporters import caffe
>>>
>>> class Model(chainer.Chain):
... def __init__(self):
... super(Model, self).__init__()
... with self.init_scope():
... self.l1 = L.Convolution2D(None, 1, 1, 1, 0)
... self.b2 = L.BatchNormalization(1)
... self.l3 = L.Linear(None, 1)
...
... def __call__(self, x):
... h = F.relu(self.l1(x))
... h = self.b2(h)
... return self.l3(h)
...
>>> x = chainer.Variable(np.zeros((1, 10, 10, 10), np.float32))
>>> caffe.export(Model(), [x], None, True, 'test')

4.20 Assertion and Testing

Chainer provides some facilities to make debugging easy.

4.20.1 Type checking utilities

FunctionNode uses a systematic type checking of the chainer.utils.type_check module. It enables
users to easily find bugs of forward and backward implementations. You can find examples of type checking in some
function implementations.

4.20. Assertion and Testing 1123

Chainer Documentation, Release 7.0.0b4

chainer.utils.type_check.Expr Abstract syntax tree of an expression.
chainer.utils.type_check.eval
chainer.utils.type_check.expect Evaluates and tests all given expressions.
chainer.utils.type_check.TypeInfo Type information of an input/gradient array.
chainer.utils.type_check.
TypeInfoTuple

Type information of input/gradient tuples.

chainer.utils.type_check.Variable

chainer.utils.type_check.Expr

class chainer.utils.type_check.Expr(priority)
Abstract syntax tree of an expression.

It represents an abstract syntax tree, and isn’t a value. You can get its actual value with eval() function, and
get syntax representation with the __str__() method. Each comparison operator (e.g. ==) generates a new
Expr object which represents the result of comparison between two expressions.

Example

Let x and y be instances of Expr, then

>>> x = Variable(1, 'x')
>>> y = Variable(1, 'y')
>>> c = (x == y)

is also an instance of Expr. To evaluate and get its value, call eval() method:

>>> c.eval()
True

Call str function to get a representation of the original equation:

>>> str(c)
'x == y'

You can actually compare an expression with a value:

>>> (x == 1).eval()
True

Note that you can’t use boolean operators such as and, as they try to cast expressions to boolean values:

>>> z = Variable(1, 'z')
>>> x == y and y == z # raises an error
Traceback (most recent call last):
RuntimeError: Don't convert Expr to bool. Please call Expr.eval method to
→˓evaluate expression.

Methods

__call__(*args)
Call self as a function.

1124 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__getitem__(key)

eval()
Evaluates the tree to get actual value.

Behavior of this function depends on an implementation class. For example, a binary operator + calls the
__add__ function with the two results of eval() function.

__eq__(y)

__ne__(y)

__lt__(y)

__le__(y)

__gt__(y)

__ge__(y)

__nonzero__()

__bool__()

__neg__()

__add__(y)

__radd__(y)

__sub__(y)

__rsub__(y)

__mul__(y)

__rmul__(y)

__truediv__(y)

__rtruediv__(y)

__floordiv__(y)

__rfloordiv__(y)

__pow__(y)

chainer.utils.type_check.eval

chainer.utils.type_check.eval(exp)

chainer.utils.type_check.expect

chainer.utils.type_check.expect(*bool_exprs)
Evaluates and tests all given expressions.

This function evaluates given boolean expressions in order. When at least one expression is evaluated as False,
that means the given condition is not satisfied. You can check conditions with this function.

Parameters bool_exprs (tuple of Bool expressions) – Bool expressions you want to
evaluate.

4.20. Assertion and Testing 1125

Chainer Documentation, Release 7.0.0b4

chainer.utils.type_check.TypeInfo

class chainer.utils.type_check.TypeInfo(shape, dtype)
Type information of an input/gradient array.

It contains type information of an array, such as the shape of array and the number of dimensions. This infor-
mation is independent of CPU or GPU array.

Methods

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

size

chainer.utils.type_check.TypeInfoTuple

class chainer.utils.type_check.TypeInfoTuple
Type information of input/gradient tuples.

It is a sub-class of tuple containing TypeInfo. The i-th element of this object contains type information of the
i-th input/gradient data. As each element is Expr, you can easily check its validity.

Methods

__getitem__()
Return self[key].

__len__()
Return len(self).

__iter__()
Implement iter(self).

count(value)→ integer – return number of occurrences of value

index(value[, start[, stop]])→ integer – return first index of value.
Raises ValueError if the value is not present.

1126 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

size()
Returns an expression representing its length.

Returns An expression object representing length of the tuple.

Return type Expr

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

__add__()
Return self+value.

__mul__()
Return self*value.n

__rmul__()
Return self*value.

chainer.utils.type_check.Variable

class chainer.utils.type_check.Variable(value, name)

Methods

__call__(*args)
Call self as a function.

__getitem__(key)

eval()
Evaluates the tree to get actual value.

Behavior of this function depends on an implementation class. For example, a binary operator + calls the
__add__ function with the two results of eval() function.

__eq__(y)

__ne__(y)

__lt__(y)

__le__(y)

__gt__(y)

__ge__(y)

4.20. Assertion and Testing 1127

Chainer Documentation, Release 7.0.0b4

__nonzero__()

__bool__()

__neg__()

__add__(y)

__radd__(y)

__sub__(y)

__rsub__(y)

__mul__(y)

__rmul__(y)

__truediv__(y)

__rtruediv__(y)

__floordiv__(y)

__rfloordiv__(y)

__pow__(y)

4.20.2 Gradient checking utilities

Most function implementations are numerically tested by gradient checking. This method computes numerical gradi-
ents of forward routines and compares their results with the corresponding backward routines. It enables us to make
the source of issues clear when we hit an error of gradient computations. The chainer.gradient_check module
makes it easy to implement the gradient checking.

chainer.gradient_check.
check_backward

Test backward procedure of a given function.

chainer.gradient_check.
check_double_backward

Test twice differentiation of a given procedure.

chainer.gradient_check.
numerical_grad

Computes numerical gradient by finite differences.

chainer.gradient_check.check_backward

chainer.gradient_check.check_backward(func, x_data, y_grad, params=(), eps=0.001, atol=1e-
05, rtol=0.0001, no_grads=None, dtype=None, de-
tect_nondifferentiable=False)

Test backward procedure of a given function.

This function automatically checks the backward-process of a given function to ensure that the computed gra-
dients are approximately correct. For example, assuming you’ve defined a FunctionNode class MyFunc,
that takes two arguments and returns one value, you can wrap it in a ordinary function and check its gradient
computations as follows:

def func(xs):
y, = MyFunc().apply(xs)
return y

x1_data = xp.array(...)
(continues on next page)

1128 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

x2_data = xp.array(...)
gy_data = xp.array(...)
check_backward(func, (x1_data, x2_data), gy_data)

This function creates Variable objects with x_data and calls func with the Variables to get its result
as Variable. Then, it sets y_grad array to grad attribute of the result and calls backward method to
get gradients of the inputs. To check correctness of the gradients, the function calls numerical_grad()
to calculate numerically the gradients and compares the types of gradients with chainer.testing.
assert_allclose().

To reduce computational time, it uses directional derivative along a random vector. A function 𝑔 : R → R𝑛 is
defined as 𝑔(𝛿) = 𝑓(𝑥 + 𝛿𝑟), where 𝛿 ∈ R, 𝑟 ∈ R𝑛 is a random vector and 𝑓 is a function which you want to
test. Its gradient is

𝑔′(𝛿) = 𝑓 ′(𝑥+ 𝛿𝑟) · 𝑟.

Therefore, 𝑔′(0) = 𝑓 ′(𝑥) · 𝑟. So we can check the correctness of back propagation of 𝑓 indirectly by comparing
this equation with the gradient of 𝑔 numerically calculated and that of 𝑓 computed by backprop. If 𝑟 is chosen
from uniform distribution, we can conclude with high probability that the gradient of 𝑓 itself is correct.

If the function is non-differentiable with respect to some input objects, we can check its backprop to such
objects by no_grads argument. gradient_check computes numerical backward to inputs that correspond
to False in no_grads. It also asserts that the backprop leaves gradients None for inputs that correspond to
True in no_grads. The default of no_grads argument is the tuple of truth values whether input objects
(x1_data or/and x2_data in this example) represent integer variables.

You can simplify a test when MyFunc gets only one argument:

check_backward(func, x1_data, gy_data)

If MyFunc is a loss function which returns a zero-dimensional array, pass None to gy_data. In this case, it
sets 1 to grad attribute of the result:

check_backward(my_loss_func,
(x1_data, x2_data), None)

If MyFunc returns multiple outputs, pass all gradients for outputs as a tuple:

gy1_data = xp.array(...)
gy2_data = xp.array(...)
check_backward(func, x1_data, (gy1_data, gy2_data))

You can also test a Link. To check gradients of parameters of the link, set a tuple of the parameters to params
arguments:

check_backward(my_link, (x1_data, x2_data), gy_data,
(my_link.W, my_link.b))

Note that params are not ndarrays, but Variabless.

Function objects are acceptable as func argument:

check_backward(lambda x1, x2: f(x1, x2),
(x1_data, x2_data), gy_data)

4.20. Assertion and Testing 1129

Chainer Documentation, Release 7.0.0b4

Note: func is called many times to get numerical gradients for all inputs. This function doesn’t work correctly
when func behaves randomly as it gets different gradients.

Parameters

• func (callable) – A function which gets Variables and returns Variables. func
must returns a tuple of Variables or one Variable. You can use a Function,
FunctionNode or a Link object or any other function satisfying the condition.

• x_data (ndarray or tuple of ndarrays) – A set of ndarrays to be passed to
func. If x_data is one ndarray object, it is treated as (x_data,).

• y_grad (ndarray or tuple of ndarrays or None) – A set of ndarrays
representing gradients of return-values of func. If y_grad is one ndarray object, it
is treated as (y_grad,). If func is a loss-function, y_grad should be set to None.

• params (Variable or tuple of ~chainder.Variable) – A set of
Variables whose gradients are checked. When func is a Link object, set its
parameters as params. If params is one Variable object, it is treated as (params,).

• eps (float) – Epsilon value to be passed to numerical_grad().

• atol (float) – Absolute tolerance to be passed to chainer.testing.
assert_allclose().

• rtol (float) – Relative tolerance to be passed to chainer.testing.
assert_allclose().

• no_grads (list of bool) – Flag to skip variable for gradient assertion. It should be
same length as x_data.

• dtype (dtype) – x_data, y_grad and params are casted to this dtype when calculat-
ing numerical gradients. Only float types and None are allowed.

• detect_nondifferentiable (bool) – If True, check for non-differentiable in-
puts is enabled. If func is non-differentiable at x_data, check_backward raises
NondifferentiableError.

See also:

numerical_grad()

chainer.gradient_check.check_double_backward

chainer.gradient_check.check_double_backward(func, x_data, y_grad, x_grad_grad,
params=(), params_grad_grad=(),
eps=0.001, atol=0.0001, rtol=0.001,
no_grads=None, dtype=None, de-
tect_nondifferentiable=False)

Test twice differentiation of a given procedure.

This function automatically checks if the backward procedure of func is correctly implemented for further dif-
ferentiation. It first computes the gradient of func w.r.t. its inputs in the same way as check_backward().
This function then further invokes the backward procedure against the gradient variables, starting from the initial
gradient given by x_grad_grad. It also computes the second gradient using numerical_grad(). The
resulting gradients are compared to confirm if the second-order gradients are approximately correct.

1130 Chapter 4. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

Note that this function DOES NOT check if the first-order differentiation is correct; the numerical gradient
assumes that the first-order gradient given by the usual chainer.Variable.backward() is correct. The
implementation of each differentiable function should be tested by check_backward() first, and then should
be tested by this function if neccessary.

For the details of the arguments, see check_backward(). The additional arguments x_grad_grad and
params_grad_grad are (tuples of) Variable (s) that include the initial gradient corresponding to the first-
order gradient of each input and parameter. Note that the default error tolerance atol and rtol are slightly
larger than those of check_backward() because the numerical gradients of the second order differentiation
are less accurate than those of the first order gradients.

chainer.gradient_check.numerical_grad

chainer.gradient_check.numerical_grad(f, inputs, grad_outputs, eps=0.001, de-
tect_nondifferentiable=False, diff_atol=0,
diff_rtol=0.01, center_outputs=None)

Computes numerical gradient by finite differences.

This function is used to implement gradient check. For usage example, see unit tests of chainer.
functions.

By default, numerical_grad computes the gradient to the first order of eps.

Parameters

• f (callable) – Python function with no arguments that runs forward computation and
returns the result.

• inputs (tuple of arrays) – Tuple of arrays that should be treated as inputs. Each
element of them is slightly modified to realize numerical gradient by finite differences.

• grad_outputs (tuple of arrays or scalars) – Tuple of arrays or scalars that
are treated as output gradients.

• eps (float) – Epsilon value of finite differences.

• detect_nondifferentiable (bool) – False by default. If True,
numerical_grad checks whether f is differentiable at inputs. It requires eval-
uation of f at 5 points instead of 2. As a side effect, the accuracy of numerical gradient will
be increased to the third order of eps. If it turns out that f is non-differentiable at input,
numerical_grad raises NondifferentiableError.

• diff_atol (float) – Absolute tolerance of fitting error of non-differentiable point de-
tection.

• diff_rtol (float) – Tolerance of fitting error of non-differentiable point detection rel-
ative to the output values of f.

• center_outputs (tuple of arrays or None) – Only used if
detect_nondifferentiable is True. If specified, these arrays are used as
the outputs of f at inputs. Otherwise, it is calculated. It can be used to reduce the
computation if these arrays are already calculated before calling numerical_grad.

Returns Numerical gradient arrays corresponding to inputs.

Return type tuple

4.20. Assertion and Testing 1131

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple

Chainer Documentation, Release 7.0.0b4

4.20.3 Standard Assertions

The assertions have same names as NumPy’s ones. The difference from NumPy is that they can accept both numpy.
ndarray and cupy.ndarray.

chainer.testing.assert_allclose Asserts if some corresponding element of x and y differs
too much.

chainer.testing.assert_warns

chainer.testing.assert_allclose

chainer.testing.assert_allclose(x, y, atol=1e-05, rtol=0.0001, verbose=True)
Asserts if some corresponding element of x and y differs too much.

This function can handle both CPU and GPU arrays simultaneously.

Parameters

• x – Left-hand-side array.

• y – Right-hand-side array.

• atol (float) – Absolute tolerance.

• rtol (float) – Relative tolerance.

• verbose (bool) – If True, it outputs verbose messages on error.

chainer.testing.assert_warns

chainer.testing.assert_warns(expected)

4.20.4 Function testing utilities

Utilities for testing functions.

chainer.testing.FunctionTestCase A base class for function test cases.
chainer.testing.
unary_math_function_unittest

Decorator for testing unary mathematical Chainer func-
tions.

chainer.testing.FunctionTestCase

class chainer.testing.FunctionTestCase(*args, **kwargs)
A base class for function test cases.

Function test cases can inherit from this class to define a set of function tests.

Required methods

Each concrete class must at least override the following three methods.

forward(self, inputs, device) Implements the target forward function. inputs is a tuple of
Variables. This method is expected to return the output Variables with the same array types as

1132 Chapter 4. API Reference

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

the inputs. device is the device corresponding to the input arrays.

forward_expected(self, inputs) Implements the expectation of the target forward function.
inputs is a tuple of numpy.ndarrays. This method is expected to return the output numpy.
ndarrays.

generate_inputs(self) Returns a tuple of input arrays of type numpy.ndarray.

Optional methods

Additionally the concrete class can override the following methods.

before_test(self, test_name) A callback method called before each test. Typically a skip
logic is implemented by conditionally raising unittest.SkipTest. test_name is one of
'test_forward', 'test_backward', and 'test_double_backward'.

generate_grad_outputs(self, outputs_template) Returns a tuple of output gradient arrays of
type numpy.ndarray or None for omitted the gradients. outputs_template is a tuple of template
arrays. The returned arrays are expected to have the same shapes and dtypes as the template arrays.

generate_grad_grad_inputs(self, inputs_template) Returns a tuple of the second order in-
put gradient arrays of type numpy.ndarray or None for omitted gradients. input_template is
a tuple of template arrays. The returned arrays are expected to have the same shapes and dtypes as the
template arrays.

check_forward_outputs(self, outputs, expected_outputs) Implements check
logic of forward outputs. Typically additional check can be done after calling super().
check_forward_outputs. outputs and expected_outputs are tuples of arrays. In
case the check fails, FunctionTestError should be raised.

Configurable attributes

The concrete class can override the following attributes to control the behavior of the tests.

skip_forward_test (bool): Whether to skip forward computation test. False by default.

skip_backward_test (bool): Whether to skip backward computation test. False by default.

skip_double_backward_test (bool): Whether to skip double-backward computation test. False by
default.

dodge_nondifferentiable (bool): Enable non-differentiable point detection in numerical gradient cal-
culation. If the inputs returned by generate_inputs turns out to be a non-differentiable point, the test
will repeatedly resample inputs until a differentiable point will be finally sampled. False by default.

numerical_grad_dtype (dtype): Input arrays are casted to this dtype when calculating the numerical
gradients. It is float64 by default, no matter what the original input dtypes were, to maximize precision.

contiguous (None or ‘C’): Specifies the contiguousness of incoming arrays (i.e. inputs, output gradients,
and the second order input gradients). If None, the arrays will be non-contiguous as long as possible. If
'C', the arrays will be C-contiguous. None by default.

Passive attributes

These attributes are automatically set.

test_name (str): The name of the test being run. It is one of 'test_forward', 'test_backward',
and 'test_double_backward'.

4.20. Assertion and Testing 1133

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/unittest.html#unittest.SkipTest
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

backend_config (BackendConfig): The backend configuration.

Note: This class assumes chainer.testing.inject_backend_tests() is used together. See the
example below.

Example

@chainer.testing.inject_backend_tests(
None,
[

{}, # CPU
{'use_cuda': True}, # GPU

])
class TestReLU(chainer.testing.FunctionTestCase):

ReLU function has a non-differentiable point around zero, so
dodge_nondifferentiable should be set to True.
dodge_nondifferentiable = True

def generate_inputs(self):
x = numpy.random.uniform(-1, 1, (2, 3)).astype(numpy.float32)
return x,

def forward(self, inputs, device):
x, = inputs
return F.relu(x),

def forward_expected(self, inputs):
x, = inputs
expected = x.copy()
expected[expected < 0] = 0
return expected,

See also:

LinkTestCase

Methods

__call__(*args, **kwds)
Call self as a function.

addCleanup(function, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a
LIFO basis and are called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register their own type equality functions to
provide nicer error messages.

Parameters

1134 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

• typeobj – The data type to call this function on when both values are of the same type
in assertEqual().

• function – The callable taking two arguments and an optional msg= argument that
raises self.failureException with a useful error message when the two arguments are not
equal.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertAlmostEquals(**kwargs)

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertDictEqual(d1, d2, msg=None)

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.

assertEquals(**kwargs)

assertFalse(expr, msg=None)
Check that the expression is false.

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

4.20. Assertion and Testing 1135

Chainer Documentation, Release 7.0.0b4

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

Objects that are equal automatically fail.

assertNotAlmostEquals(**kwargs)

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.

assertNotEquals(**kwargs)

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

1136 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

assertNotRegexpMatches(**kwargs)

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRaisesRegexp(**kwargs)

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertRegexpMatches(**kwargs)

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

4.20. Assertion and Testing 1137

Chainer Documentation, Release 7.0.0b4

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly,
the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

1138 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

assert_(**kwargs)

before_test(test_name)

check_forward_outputs(outputs, expected_outputs)

countTestCases()

debug()
Run the test without collecting errors in a TestResult

defaultTestResult()

doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.

fail(msg=None)
Fail immediately, with the given message.

failIf(**kwargs)

failIfAlmostEqual(**kwargs)

failIfEqual(**kwargs)

failUnless(**kwargs)

failUnlessAlmostEqual(**kwargs)

failUnlessEqual(**kwargs)

failUnlessRaises(**kwargs)

forward(inputs, device)

forward_expected(inputs)

generate_grad_grad_inputs(inputs_template)

generate_grad_outputs(outputs_template)

generate_inputs()

id()

run(result=None)

run_test_backward(backend_config)

run_test_double_backward(backend_config)

run_test_forward(backend_config)

setUp()
Hook method for setting up the test fixture before exercising it.

classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

4.20. Assertion and Testing 1139

Chainer Documentation, Release 7.0.0b4

subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the op-
tional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes
execution at the end of the enclosed block, allowing further test code to be executed.

tearDown()
Hook method for deconstructing the test fixture after testing it.

classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.

test_backward(backend_config)
Tests backward computation.

test_double_backward(backend_config)
Tests double-backward computation.

test_forward(backend_config)
Tests forward computation.

__eq__(other)
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

backend_config = None

check_backward_options = None

check_double_backward_options = None

check_forward_options = None

contiguous = None

dodge_nondifferentiable = False

longMessage = True

maxDiff = 640

skip_backward_test = False

skip_double_backward_test = False

skip_forward_test = False

1140 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

chainer.testing.unary_math_function_unittest

chainer.testing.unary_math_function_unittest(func, func_expected=None, la-
bel_expected=None, make_data=None,
is_linear=None, forward_options=None,
backward_options=None, dou-
ble_backward_options=None)

Decorator for testing unary mathematical Chainer functions.

This decorator makes test classes test unary mathematical Chainer functions. Tested are forward and backward,
including double backward, computations on CPU and GPU across parameterized shape and dtype.

Parameters

• func (function or Function) – Chainer function to be tested by the decorated test
class. Taking Function is for backward compatibility.

• func_expected – Function used to provide expected values for testing forward compu-
tation. If not given, a corresponsing numpy function for func is implicitly picked up by its
name.

• label_expected (string) – String used to test labels of Chainer functions. If not
given, the name of func is implicitly used.

• make_data – Function to customize input and gradient data used in the tests. It takes
shape and dtype as its arguments, and returns a tuple of input, gradient and double
gradient data. By default, uniform destribution ranged [-1, 1] is used for all of them.

• is_linear – Tells the decorator that func is a linear function so that it wraps func as
a non-linear function to perform double backward test. This argument is left for backward
compatibility. Linear functions can be tested by default without specifying is_linear in
Chainer v5 or later.

• forward_options (dict) – Options to be specified as an argument of chainer.
testing.assert_allclose() function. If not given, preset tolerance values are au-
tomatically selected.

• backward_options (dict) – Options to be specified as an argument of chainer.
gradient_check.check_backward() function. If not given, preset tolerance val-
ues are automatically selected depending on dtype.

• double_backward_options (dict) – Options to be specified as an argument of
chainer.gradient_check.check_double_backward() function. If not given,
preset tolerance values are automatically selected depending on dtype.

The decorated test class tests forward, backward and double backward computations on CPU and GPU across
the following parameterize() ed parameters:

• shape: rank of zero, and rank of more than zero

• dtype: numpy.float16, numpy.float32 and numpy.float64

Additionally, it tests the label of the Chainer function.

Chainer functions tested by the test class decorated with the decorator should have the following properties:

• Unary, taking one parameter and returning one value

• dtype of input and output are the same

• Elementwise operation for the supplied ndarray

4.20. Assertion and Testing 1141

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Chainer Documentation, Release 7.0.0b4

Example

The following code defines a test class that tests sin() Chainer function, which takes a parameter with dtype
of float and returns a value with the same dtype.

>>> import unittest
>>> from chainer import testing
>>> from chainer import functions as F
>>>
>>> @testing.unary_math_function_unittest(F.sin)
... class TestSin(unittest.TestCase):
... pass

Because the test methods are implicitly injected to TestSin class by the decorator, it is enough to place pass
in the class definition.

To customize test data, make_data optional parameter can be used. The following is an example of testing
sqrt Chainer function, which is tested in positive value domain here instead of the default input.

>>> import numpy
>>>
>>> def make_data(shape, dtype):
... x = numpy.random.uniform(0.1, 1, shape).astype(dtype)
... gy = numpy.random.uniform(-1, 1, shape).astype(dtype)
... ggx = numpy.random.uniform(-1, 1, shape).astype(dtype)
... return x, gy, ggx
...
>>> @testing.unary_math_function_unittest(F.sqrt,
... make_data=make_data)
... class TestSqrt(unittest.TestCase):
... pass

make_data function which returns input, gradient and double gradient data generated in proper value domains
with given shape and dtype parameters is defined, then passed to the decorator’s make_data parameter.

4.20.5 Link testing utilities

Utilities for testing links.

chainer.testing.
LinkInitializersTestCase

A base class for link parameter initializer test cases.

chainer.testing.LinkTestCase A base class for link forward and backward test cases.

chainer.testing.LinkInitializersTestCase

class chainer.testing.LinkInitializersTestCase(*args, **kwargs)
A base class for link parameter initializer test cases.

Link test cases can inherit from this class to define a set of link tests for parameter initialization.

1142 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Required methods

Each concrete class must at least override the following methods.

generate_params(self) Returns a tuple of initializers-likes. The tuple should contain an initializer-like
for each initializer-like argument, i.e. the parameters to the link constructor. These will be passed to
create_link.

create_link(self, initializers) Returns a link. The link should be initialized with the given
initializer-likes initializers. initializers is a tuple of same length as the number of parame-
ters.

generate_inputs(self) Returns a tuple of input arrays of type numpy.ndarray.

forward(self, link, inputs, device) Implements the target forward function. link is a link
created by create_link and inputs is a tuple of Variables. This method is expected to return
the output Variables with the same array types as the inputs. device is the device corresponding
to the input arrays. A default implementation is provided for links that only takes the inputs defined
in generate_inputs (wrapped in Variables) and returns nothing but output Variables in its
forward computation.

get_initializers(self) Returns a tuple with the same length as the number of initializers that the con-
structor of the link accepts. Each element in the tuple is a container itself, listing all initializers-likes that
should be tested. Each initializer-like in the tuple is tested one at a time by being passed to create_link.
When the length of the tuple is greater than one (i.e. if the link accepts multiple initializers), the ones not
being tested are replaced by the ones returned by generate_params. Initializer-likes returned here should
be deterministic since test will invoke them multiple times to test the correctness.

For testing initializer arguments that can be non-initializer values such as None, one can use the
InitializerArgument, defining a pair of the link constructor argument and actual initializer-like
used by the link. This method must be implemented if skip_initializers_test is False in
which case the initializers test is executed.

Optional methods

Each concrete class may override the following methods.

before_test(self, test_name) A callback method called before each test. Typically a skip
logic is implemented by conditionally raising unittest.SkipTest. test_name is always of
'test_initializers'.

Attributes

The concrete class can override the following attributes to control the behavior of the tests.

param_names (list of str): A list of strings with all the names of the parameters that should be tested. E.g.
['gamma', 'beta'] for the batch normalization link. [] by default.

contiguous (None or ‘C’): Specifies the contiguousness of incoming arrays (i.e. inputs, parameters and
gradients. If None, the arrays will be non-contiguous as long as possible. If 'C', the arrays will be
C-contiguous. None by default.

Note: This class assumes chainer.testing.inject_backend_tests() is used together. See the
example below.

4.20. Assertion and Testing 1143

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/unittest.html#unittest.SkipTest

Chainer Documentation, Release 7.0.0b4

Note: When implementing LinkTestCase and LinkInitializersTestCase to test both for-
ward/backward and initializers, it is often convenient to refactor out common logic in a separate class.

Example

@chainer.testing.inject_backend_tests(
None,
[

{}, # CPU
{'use_cuda': True}, # GPU

])
class TestLinear(chainer.testing.LinkInitializersTestCase):

param_names = ['W', 'b']

def generate_params(self):
initialW = numpy.random.uniform(

-1, 1, (3, 2)).astype(numpy.float32)
initial_bias = numpy.random.uniform(

-1, 1, (3,)).astype(numpy.float32)
return initialW, initial_bias

def generate_inputs(self):
x = numpy.random.uniform(

-1, 1, (1, 2)).astype(numpy.float32)
return x,

def create_link(self, initializers):
initialW, initial_bias = initializers
link = chainer.links.Linear(

2, 3, initialW=initialW, initial_bias=initial_bias)
return link

def forward(self, link, inputs, device):
x, = inputs
return link(x),

def get_initializers(self):
initialW = [initializers.Constant(1), 2]
initial_bias = [initializers.Constant(2), 3,

chainer.testing.link.InitializerArgument(None, 0)]
return initialW, initial_bias

See also:

LinkTestCase FunctionTestCase

Methods

__call__(*args, **kwds)
Call self as a function.

addCleanup(function, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a

1144 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

LIFO basis and are called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register their own type equality functions to
provide nicer error messages.

Parameters

• typeobj – The data type to call this function on when both values are of the same type
in assertEqual().

• function – The callable taking two arguments and an optional msg= argument that
raises self.failureException with a useful error message when the two arguments are not
equal.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertAlmostEquals(**kwargs)

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertDictEqual(d1, d2, msg=None)

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.

assertEquals(**kwargs)

assertFalse(expr, msg=None)
Check that the expression is false.

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

4.20. Assertion and Testing 1145

Chainer Documentation, Release 7.0.0b4

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

Objects that are equal automatically fail.

assertNotAlmostEquals(**kwargs)

1146 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.

assertNotEquals(**kwargs)

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertNotRegexpMatches(**kwargs)

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRaisesRegexp(**kwargs)

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertRegexpMatches(**kwargs)

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

4.20. Assertion and Testing 1147

Chainer Documentation, Release 7.0.0b4

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional
and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly,
the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

1148 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

assert_(**kwargs)

before_test(test_name)

check_forward_outputs(outputs, expected_outputs)

countTestCases()

create_link(initializers)

debug()
Run the test without collecting errors in a TestResult

defaultTestResult()

doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.

fail(msg=None)
Fail immediately, with the given message.

failIf(**kwargs)

failIfAlmostEqual(**kwargs)

failIfEqual(**kwargs)

failUnless(**kwargs)

failUnlessAlmostEqual(**kwargs)

failUnlessEqual(**kwargs)

failUnlessRaises(**kwargs)

forward(link, inputs, device)

generate_inputs()

generate_params()

get_initializers()

id()

run(result=None)

setUp()
Hook method for setting up the test fixture before exercising it.

4.20. Assertion and Testing 1149

Chainer Documentation, Release 7.0.0b4

classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the op-
tional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes
execution at the end of the enclosed block, allowing further test code to be executed.

tearDown()
Hook method for deconstructing the test fixture after testing it.

classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.

test_initializers(backend_config)
Tests that the parameters of a links are correctly initialized.

__eq__(other)
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

backend_config = None

check_initializers_options = None

contiguous = None

longMessage = True

maxDiff = 640

param_names = ()

chainer.testing.LinkTestCase

class chainer.testing.LinkTestCase(*args, **kwargs)
A base class for link forward and backward test cases.

1150 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

Link test cases can inherit from this class to define a set of link tests for forward and backward computations.

Required methods

Each concrete class must at least override the following methods.

generate_params(self) Returns a tuple of initializers-likes. The tuple should contain an initializer-like
for each initializer-like argument, i.e. the parameters to the link constructor. These will be passed to
create_link.

create_link(self, initializers) Returns a link. The link should be initialized with the given
initializer-likes initializers. initializers is a tuple of same length as the number of parame-
ters.

generate_inputs(self) Returns a tuple of input arrays of type numpy.ndarray.

forward(self, link, inputs, device) Implements the target forward function. link is a link
created by create_link and inputs is a tuple of Variables. This method is expected to return
the output Variables with the same array types as the inputs. device is the device corresponding
to the input arrays. A default implementation is provided for links that only takes the inputs defined
in generate_inputs (wrapped in Variables) and returns nothing but output Variables in its
forward computation.

Optional methods

Each concrete class may override the following methods depending on the skip flags skip_forward_test
and skip_backward_test.

before_test(self, test_name) A callback method called before each test. Typically a skip
logic is implemented by conditionally raising unittest.SkipTest. test_name is one of
'test_forward' and 'test_backward'.

forward_expected(self, link, inputs) Implements the expectation of the target forward func-
tion. link is the initialized link that was used to compute the actual forward which the results of this
method will be compared against. The link is guaranteed to reside on the CPU. inputs is a tuple of
numpy.ndarrays. This method is expected to return the output numpy.ndarrays. This method
must be implemented if either skip_forward_test or skip_backward_test is False in which
case forward or backward tests are executed.

generate_grad_outputs(self, outputs_template) Returns a tuple of output gradient arrays of
type numpy.ndarray. outputs_template is a tuple of template arrays. The returned arrays are
expected to have the same shapes and dtypes as the template arrays.

check_forward_outputs(self, outputs, expected_outputs) Implements check
logic of forward outputs. Typically additional check can be done after calling super().
check_forward_outputs. outputs and expected_outputs are tuples of arrays. In
case the check fails, LinkTestError should be raised.

Attributes

The concrete class can override the following attributes to control the behavior of the tests.

param_names (tuple of str): A tuple of strings with all the names of the parameters that should be tested.
E.g. ('gamma', 'beta') for the batch normalization link. () by default.

skip_forward_test (bool): Whether to skip forward computation test. False by default.

4.20. Assertion and Testing 1151

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/unittest.html#unittest.SkipTest
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Chainer Documentation, Release 7.0.0b4

skip_backward_test (bool): Whether to skip backward computation test. False by default.

dodge_nondifferentiable (bool): Enable non-differentiable point detection in numerical gradient cal-
culation. If the data returned by generate_params, create_link and generate_inputs turns
out to be a non-differentiable point, the test will repeatedly resample those until a differentiable point will
be finally sampled. False by default.

numerical_grad_dtype (dtype): Input arrays are casted to this dtype when calculating the numerical
gradients. It is float64 by default, no matter what the original input dtypes were, to maximize precision.

contiguous (None or ‘C’): Specifies the contiguousness of incoming arrays (i.e. inputs, parameters and
gradients. If None, the arrays will be non-contiguous as long as possible. If 'C', the arrays will be
C-contiguous. None by default.

Note: This class assumes chainer.testing.inject_backend_tests() is used together. See the
example below.

Note: When implementing LinkTestCase and LinkInitializersTestCase to test both for-
ward/backward and initializers, it is often convenient to refactor out common logic in a separate class.

Example

@chainer.testing.inject_backend_tests(
None,
[

{}, # CPU
{'use_cuda': True}, # GPU

])
class TestLinear(chainer.testing.LinkTestCase):

param_names = ('W', 'b')

def generate_params(self):
initialW = numpy.random.uniform(

-1, 1, (3, 2)).astype(numpy.float32)
initial_bias = numpy.random.uniform(

-1, 1, (3,)).astype(numpy.float32)
return initialW, initial_bias

def generate_inputs(self):
x = numpy.random.uniform(

-1, 1, (1, 2)).astype(numpy.float32)
return x,

def create_link(self, initializers):
initialW, initial_bias = initializers
link = chainer.links.Linear(

2, 3, initialW=initialW, initial_bias=initial_bias)
return link

def forward(self, link, inputs, device):
x, = inputs
return link(x),

(continues on next page)

1152 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

def forward_expected(self, link, inputs):
W = link.W.array
b = link.b.array
x, = inputs
expected = x.dot(W.T) + b
return expected,

See also:

LinkInitializersTestCase FunctionTestCase

Methods

__call__(*args, **kwds)
Call self as a function.

addCleanup(function, *args, **kwargs)
Add a function, with arguments, to be called when the test is completed. Functions added are called on a
LIFO basis and are called after tearDown on test failure or success.

Cleanup items are called even if setUp fails (unlike tearDown).

addTypeEqualityFunc(typeobj, function)
Add a type specific assertEqual style function to compare a type.

This method is for use by TestCase subclasses that need to register their own type equality functions to
provide nicer error messages.

Parameters

• typeobj – The data type to call this function on when both values are of the same type
in assertEqual().

• function – The callable taking two arguments and an optional msg= argument that
raises self.failureException with a useful error message when the two arguments are not
equal.

assertAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are unequal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is more than
the given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

If the two objects compare equal then they will automatically compare almost equal.

assertAlmostEquals(**kwargs)

assertCountEqual(first, second, msg=None)
An unordered sequence comparison asserting that the same elements, regardless of order. If the same
element occurs more than once, it verifies that the elements occur the same number of times.

self.assertEqual(Counter(list(first)), Counter(list(second)))

Example:

• [0, 1, 1] and [1, 0, 1] compare equal.

4.20. Assertion and Testing 1153

Chainer Documentation, Release 7.0.0b4

• [0, 0, 1] and [0, 1] compare unequal.

assertDictContainsSubset(subset, dictionary, msg=None)
Checks whether dictionary is a superset of subset.

assertDictEqual(d1, d2, msg=None)

assertEqual(first, second, msg=None)
Fail if the two objects are unequal as determined by the ‘==’ operator.

assertEquals(**kwargs)

assertFalse(expr, msg=None)
Check that the expression is false.

assertGreater(a, b, msg=None)
Just like self.assertTrue(a > b), but with a nicer default message.

assertGreaterEqual(a, b, msg=None)
Just like self.assertTrue(a >= b), but with a nicer default message.

assertIn(member, container, msg=None)
Just like self.assertTrue(a in b), but with a nicer default message.

assertIs(expr1, expr2, msg=None)
Just like self.assertTrue(a is b), but with a nicer default message.

assertIsInstance(obj, cls, msg=None)
Same as self.assertTrue(isinstance(obj, cls)), with a nicer default message.

assertIsNone(obj, msg=None)
Same as self.assertTrue(obj is None), with a nicer default message.

assertIsNot(expr1, expr2, msg=None)
Just like self.assertTrue(a is not b), but with a nicer default message.

assertIsNotNone(obj, msg=None)
Included for symmetry with assertIsNone.

assertLess(a, b, msg=None)
Just like self.assertTrue(a < b), but with a nicer default message.

assertLessEqual(a, b, msg=None)
Just like self.assertTrue(a <= b), but with a nicer default message.

assertListEqual(list1, list2, msg=None)
A list-specific equality assertion.

Parameters

• list1 – The first list to compare.

• list2 – The second list to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertLogs(logger=None, level=None)
Fail unless a log message of level level or higher is emitted on logger_name or its children. If omitted,
level defaults to INFO and logger defaults to the root logger.

This method must be used as a context manager, and will yield a recording object with two attributes:
output and records. At the end of the context manager, the output attribute will be a list of the matching
formatted log messages and the records attribute will be a list of the corresponding LogRecord objects.

Example:

1154 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

with self.assertLogs('foo', level='INFO') as cm:
logging.getLogger('foo').info('first message')
logging.getLogger('foo.bar').error('second message')

self.assertEqual(cm.output, ['INFO:foo:first message',
'ERROR:foo.bar:second message'])

assertMultiLineEqual(first, second, msg=None)
Assert that two multi-line strings are equal.

assertNotAlmostEqual(first, second, places=None, msg=None, delta=None)
Fail if the two objects are equal as determined by their difference rounded to the given number of decimal
places (default 7) and comparing to zero, or by comparing that the between the two objects is less than the
given delta.

Note that decimal places (from zero) are usually not the same as significant digits (measured from the most
significant digit).

Objects that are equal automatically fail.

assertNotAlmostEquals(**kwargs)

assertNotEqual(first, second, msg=None)
Fail if the two objects are equal as determined by the ‘!=’ operator.

assertNotEquals(**kwargs)

assertNotIn(member, container, msg=None)
Just like self.assertTrue(a not in b), but with a nicer default message.

assertNotIsInstance(obj, cls, msg=None)
Included for symmetry with assertIsInstance.

assertNotRegex(text, unexpected_regex, msg=None)
Fail the test if the text matches the regular expression.

assertNotRegexpMatches(**kwargs)

assertRaises(expected_exception, *args, **kwargs)
Fail unless an exception of class expected_exception is raised by the callable when invoked with specified
positional and keyword arguments. If a different type of exception is raised, it will not be caught, and the
test case will be deemed to have suffered an error, exactly as for an unexpected exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertRaises(SomeException):
do_something()

An optional keyword argument ‘msg’ can be provided when assertRaises is used as a context object.

The context manager keeps a reference to the exception as the ‘exception’ attribute. This allows you to
inspect the exception after the assertion:

with self.assertRaises(SomeException) as cm:
do_something()

the_exception = cm.exception
self.assertEqual(the_exception.error_code, 3)

assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs)
Asserts that the message in a raised exception matches a regex.

Parameters

4.20. Assertion and Testing 1155

Chainer Documentation, Release 7.0.0b4

• expected_exception – Exception class expected to be raised.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertRaisesRegex
is used as a context manager.

assertRaisesRegexp(**kwargs)

assertRegex(text, expected_regex, msg=None)
Fail the test unless the text matches the regular expression.

assertRegexpMatches(**kwargs)

assertSequenceEqual(seq1, seq2, msg=None, seq_type=None)
An equality assertion for ordered sequences (like lists and tuples).

For the purposes of this function, a valid ordered sequence type is one which can be indexed, has a length,
and has an equality operator.

Parameters

• seq1 – The first sequence to compare.

• seq2 – The second sequence to compare.

• seq_type – The expected datatype of the sequences, or None if no datatype should be
enforced.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual(set1, set2, msg=None)
A set-specific equality assertion.

Parameters

• set1 – The first set to compare.

• set2 – The second set to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertSetEqual uses ducktyping to support different types of sets, and is optimized for sets specifically
(parameters must support a difference method).

assertTrue(expr, msg=None)
Check that the expression is true.

assertTupleEqual(tuple1, tuple2, msg=None)
A tuple-specific equality assertion.

Parameters

• tuple1 – The first tuple to compare.

• tuple2 – The second tuple to compare.

• msg – Optional message to use on failure instead of a list of differences.

assertWarns(expected_warning, *args, **kwargs)
Fail unless a warning of class warnClass is triggered by the callable when invoked with specified positional

1156 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

and keyword arguments. If a different type of warning is triggered, it will not be handled: depending on
the other warning filtering rules in effect, it might be silenced, printed out, or raised as an exception.

If called with the callable and arguments omitted, will return a context object used like this:

with self.assertWarns(SomeWarning):
do_something()

An optional keyword argument ‘msg’ can be provided when assertWarns is used as a context object.

The context manager keeps a reference to the first matching warning as the ‘warning’ attribute; similarly,
the ‘filename’ and ‘lineno’ attributes give you information about the line of Python code from which the
warning was triggered. This allows you to inspect the warning after the assertion:

with self.assertWarns(SomeWarning) as cm:
do_something()

the_warning = cm.warning
self.assertEqual(the_warning.some_attribute, 147)

assertWarnsRegex(expected_warning, expected_regex, *args, **kwargs)
Asserts that the message in a triggered warning matches a regexp. Basic functioning is similar to as-
sertWarns() with the addition that only warnings whose messages also match the regular expression are
considered successful matches.

Parameters

• expected_warning – Warning class expected to be triggered.

• expected_regex – Regex (re pattern object or string) expected to be found in error
message.

• args – Function to be called and extra positional args.

• kwargs – Extra kwargs.

• msg – Optional message used in case of failure. Can only be used when assertWarnsRegex
is used as a context manager.

assert_(**kwargs)

before_test(test_name)

check_forward_outputs(outputs, expected_outputs)

countTestCases()

create_link(initializers)

debug()
Run the test without collecting errors in a TestResult

defaultTestResult()

doCleanups()
Execute all cleanup functions. Normally called for you after tearDown.

fail(msg=None)
Fail immediately, with the given message.

failIf(**kwargs)

failIfAlmostEqual(**kwargs)

failIfEqual(**kwargs)

4.20. Assertion and Testing 1157

Chainer Documentation, Release 7.0.0b4

failUnless(**kwargs)

failUnlessAlmostEqual(**kwargs)

failUnlessEqual(**kwargs)

failUnlessRaises(**kwargs)

forward(link, inputs, device)

forward_expected(link, inputs)

generate_grad_outputs(outputs_template)

generate_inputs()

generate_params()

id()

run(result=None)

setUp()
Hook method for setting up the test fixture before exercising it.

classmethod setUpClass()
Hook method for setting up class fixture before running tests in the class.

shortDescription()
Returns a one-line description of the test, or None if no description has been provided.

The default implementation of this method returns the first line of the specified test method’s docstring.

skipTest(reason)
Skip this test.

subTest(msg=<object object>, **params)
Return a context manager that will return the enclosed block of code in a subtest identified by the op-
tional message and keyword parameters. A failure in the subtest marks the test case as failed but resumes
execution at the end of the enclosed block, allowing further test code to be executed.

tearDown()
Hook method for deconstructing the test fixture after testing it.

classmethod tearDownClass()
Hook method for deconstructing the class fixture after running all tests in the class.

test_backward(backend_config)
Tests backward computation.

test_forward(backend_config)
Tests forward computation.

__eq__(other)
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

1158 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

__gt__()
Return self>value.

__ge__()
Return self>=value.

Attributes

backend_config = None

check_backward_options = None

check_forward_options = None

contiguous = None

dodge_nondifferentiable = False

longMessage = True

maxDiff = 640

param_names = ()

skip_backward_test = False

skip_forward_test = False

4.20.6 Serialization testing utilities

Utilities for testing serializable objects.

chainer.testing.save_and_load Saves src and loads it to dst using a de/serializer.
chainer.testing.save_and_load_hdf5 Saves src to an HDF5 file and loads it to dst.
chainer.testing.save_and_load_npz Saves src to an NPZ file and loads it to dst.

chainer.testing.save_and_load

chainer.testing.save_and_load(src, dst, filename, saver, loader)
Saves src and loads it to dst using a de/serializer.

This function simply runs a serialization and deserialization to check if the serialization code is correctly imple-
mented. The save and load are done within a temporary directory.

Parameters

• src – An object to save from.

• dst – An object to load into.

• filename (str) – File name used during the save/load.

• saver (callable) – Function that saves the source object.

• loader (callable) – Function that loads the file into the destination object.

4.20. Assertion and Testing 1159

https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

chainer.testing.save_and_load_hdf5

chainer.testing.save_and_load_hdf5(src, dst)
Saves src to an HDF5 file and loads it to dst.

This is a short cut of save_and_load() using HDF5 de/serializers.

Parameters

• src – An object to save.

• dst – An object to load to.

chainer.testing.save_and_load_npz

chainer.testing.save_and_load_npz(src, dst)
Saves src to an NPZ file and loads it to dst.

This is a short cut of save_and_load() using NPZ de/serializers.

Parameters

• src – An object to save.

• dst – An object to load to.

4.20.7 Trainer Extension Testing Utilities

Utilities for testing trainer extensions.

chainer.testing.
get_trainer_with_mock_updater

Returns a Trainer object with mock updater.

chainer.testing.get_trainer_with_mock_updater

chainer.testing.get_trainer_with_mock_updater(stop_trigger=(10, ’iteration’),
iter_per_epoch=10, extensions=None)

Returns a Trainer object with mock updater.

The returned trainer can be used for testing the trainer itself and the extensions. A mock object is used as its up-
dater. The update function set to the mock correctly increments the iteration counts (updater.iteration),
and thus you can write a test relying on it.

Parameters

• stop_trigger – Stop trigger of the trainer.

• iter_per_epoch – The number of iterations per epoch.

• extensions – Extensions registered to the trainer.

Returns Trainer object with a mock updater.

4.20.8 Repeat decorators

These decorators have a decorated test run multiple times in a single invocation. Criteria of passing / failing of the test
changes according to the type of decorators. See the documentation of each decorator for details.

1160 Chapter 4. API Reference

Chainer Documentation, Release 7.0.0b4

chainer.testing.condition.
repeat_with_success_at_least
chainer.testing.condition.repeat
chainer.testing.condition.retry

4.20.9 Unit test annotation

Decorators for annotating unit tests.

chainer.testing.attr.gpu Decorator to indicate that GPU is required to run the
test.

chainer.testing.attr.multi_gpu Decorator to indicate number of GPUs required to run
the test.

chainer.testing.with_requires Run a test case only when given requirements are satis-
fied.

chainer.testing.fix_random Decorator that fixes random numbers in a test.

chainer.testing.attr.gpu

chainer.testing.attr.gpu(f)
Decorator to indicate that GPU is required to run the test.

Tests can be annotated with this decorator (e.g., @gpu) to declare that one GPU is required to run.

chainer.testing.attr.multi_gpu

chainer.testing.attr.multi_gpu(gpu_num)
Decorator to indicate number of GPUs required to run the test.

Tests can be annotated with this decorator (e.g., @multi_gpu(2)) to declare number of GPUs required to
run. When running tests, if CHAINER_TEST_GPU_LIMIT environment variable is set to value greater than or
equals to 0, test cases that require GPUs more than the limit will be skipped.

chainer.testing.with_requires

chainer.testing.with_requires(*requirements)
Run a test case only when given requirements are satisfied.

Example

This test case runs only when numpy>=1.10 is installed.

>>> import unittest
>>> from chainer import testing
>>> class Test(unittest.TestCase):
... @testing.with_requires('numpy>=1.10')
... def test_for_numpy_1_10(self):
... pass

4.20. Assertion and Testing 1161

Chainer Documentation, Release 7.0.0b4

Parameters requirements – A list of string representing requirement condition to run a given
test case.

chainer.testing.fix_random

chainer.testing.fix_random()
Decorator that fixes random numbers in a test.

This decorator can be applied to either a test case class or a test method. It should not be applied within
condition.retry or condition.repeat.

4.20.10 Parameterized test

Decorators for making a unit test parameterized.

chainer.testing.parameterize
chainer.testing.product
chainer.testing.product_dict
chainer.testing.inject_backend_tests

chainer.testing.parameterize

chainer.testing.parameterize(*params)

chainer.testing.product

chainer.testing.product(parameter)

chainer.testing.product_dict

chainer.testing.product_dict(*parameters)

chainer.testing.inject_backend_tests

chainer.testing.inject_backend_tests(method_names, params)

1162 Chapter 4. API Reference

CHAPTER

FIVE

INSTALLATION

5.1 Recommended Environments

We recommend the following Linux distributions.

• Ubuntu 14.04 / 16.04 LTS (64-bit)

• CentOS 7 (64-bit)

Note: We are automatically testing Chainer on all the recommended environments above. We cannot guarantee
that Chainer works on other environments including Windows and macOS (especially with CUDA support), even if
Chainer may seem to be running correctly.

5.2 Requirements

You need to have the following components to use Chainer.

• Python

– Supported Versions: 3.5.1+, 3.6.0+ and 3.7.0+.

• NumPy

– Supported Versions: 1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16 and 1.17.

– NumPy will be installed automatically during the installation of Chainer.

Before installing Chainer, we recommend that you upgrade setuptools and pip:

$ pip install -U setuptools pip

Note: Python 2 is not supported in Chainer v7.x releases. Please consider migrating Python 3 or use Chainer v6.x,
which is the last version that supports Python 2.

5.2.1 Hardware Acceleration Support

You can accelerate performance of Chainer by installing the following optional components.

• NVIDIA CUDA / cuDNN

1163

https://www.ubuntu.com/
https://www.centos.org/
https://python.org/
http://www.numpy.org/

Chainer Documentation, Release 7.0.0b4

– CuPy 5.0+

– See CuPy Installation Guide for instructions.

• Intel CPU (experimental)

– iDeep 2.0.0.post3+

– See Tips and FAQs for instructions.

5.2.2 Optional Features

The following packages are optional dependencies. Chainer can be installed without them, in which case the corre-
sponding features are not available.

• Image dataset support

– pillow 2.3+

– Run pip install pillow to install.

• HDF5 serialization support

– h5py 2.5+

– Run pip install h5py to install.

• Distributed Deep Learning using ChainerMN

– CUDA-aware MPI

– mpi4py

– See ChainerMN installation guide for installation instructions.

5.3 Install Chainer

5.3.1 Using pip

We recommend to install Chainer via pip:

$ pip install chainer

Note: Any optional dependencies (including CuPy) can be added after installing Chainer. Chainer automatically
detects the available packages and enables/disables the optional features appropriately.

5.3.2 Using Tarball

The tarball of the source tree is available via pip download chainer or from the release notes page. You can
install Chainer from the tarball:

$ pip install chainer-x.x.x.tar.gz

You can also install the development version of Chainer from a cloned Git repository:

1164 Chapter 5. Installation

https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/latest/install.html
https://github.com/intel/ideep
https://pillow.readthedocs.io/
http://www.h5py.org/
https://mpi4py.readthedocs.io/en/stable/
https://github.com/chainer/chainer/releases

Chainer Documentation, Release 7.0.0b4

$ git clone https://github.com/chainer/chainer.git
$ cd chainer
$ pip install .

5.3.3 Enable CUDA/cuDNN support

In order to enable CUDA support, you have to install CuPy manually. If you also want to use cuDNN, you have
to install CuPy with cuDNN support. See CuPy’s installation guide to install CuPy. Once CuPy is correctly set up,
Chainer will automatically enable CUDA support.

You can refer to the following flags to confirm if CUDA/cuDNN support is actually available.

chainer.backends.cuda.available True if Chainer successfully imports cupy.

chainer.backends.cuda.cudnn_enabled True if cuDNN support is available.

5.3.4 Google Colaboratory

You can install Chainer and CuPy using the following snippet on Google Colaboratory:

!curl https://colab.chainer.org/install | sh -

See chainer/google-colaboratory for more details and examples.

5.4 Uninstall Chainer

Use pip to uninstall Chainer:

$ pip uninstall chainer

Note: When you upgrade Chainer, pip sometimes install the new version without removing the old one in
site-packages. In this case, pip uninstall only removes the latest one. To ensure that Chainer is com-
pletely removed, run the above command repeatedly until pip returns an error.

5.5 Upgrade Chainer

Just use pip with -U option:

$ pip install -U chainer

5.6 Reinstall Chainer

If you want to reinstall Chainer, please uninstall Chainer and then install it. We recommend to use --no-cache-dir
option as pip sometimes uses cache:

5.4. Uninstall Chainer 1165

https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/latest/install.html
https://docs-cupy.chainer.org/en/latest/index.html#module-cupy
https://colab.research.google.com/
https://github.com/chainer/google-colaboratory

Chainer Documentation, Release 7.0.0b4

$ pip uninstall chainer
$ pip install chainer --no-cache-dir

5.7 Run Chainer with Docker

We are providing the official Docker image. Use nvidia-docker command to run Chainer image with GPU. You can
login to the environment with bash, and run the Python interpreter:

$ nvidia-docker run -it chainer/chainer /bin/bash

Or run the interpreter directly:

$ nvidia-docker run -it chainer/chainer /usr/bin/python

5.8 FAQ

5.8.1 Warning message “cuDNN is not enabled” appears

You failed to build CuPy with cuDNN. If you don’t need cuDNN, ignore this message. Otherwise, retry to install
CuPy with cuDNN. pip install -vvvv option helps you. There is no need of re-installing Chainer itself. See
CuPy’s installation guide for more details.

5.8.2 CuPy always raises cupy.cuda.compiler.CompileException

See FAQ section of CuPy’s installation guide for details.

5.8.3 h5py installation failed

If the installation failed with error saying hdf5.h is not found, you need to install libhdf5 first. The way
to install it depends on your environment:

Ubuntu 14.04/16.04
$ apt-get install libhdf5-dev

CentOS 7
$ yum -y install epel-release
$ yum install hdf5-devel

Note that h5py is not required unless you need HDF5 serialization support.

1166 Chapter 5. Installation

https://github.com/NVIDIA/nvidia-docker
https://docs-cupy.chainer.org/en/latest/install.html
https://docs-cupy.chainer.org/en/latest/install.html

CHAPTER

SIX

CHAINERX DOCUMENTATION

Warning: This feature is still in the earliest stage of its development. The behavior and interface are subject to
change.

ChainerX is an ndarray implementation with Define-by-Run automatic differentiation capability. It roughly corre-
sponds to “NumPy/CuPy + Chainer Variable”, while some additional features follow:

• Speed: The whole ndarray and autograd implementation is written in C++, with a thin Python binding. It lowers
the overhead existing in the pure Python implementation of Chainer.

• Extensibility: The backend is pluggable so that it is much easier to add a support of new devices.

The speed is best achieved by directly using ChainerX APIs, while it also provides a compatibility layer through the
conventional chainer.Variable interface for easier adoption of ChainerX in existing projects. See ChainerX
Tutorial for more details.

6.1 Installation

ChainerX, or chainerx, can be installed as a top level Python package along with Chainer by configuring the
environment variables below.

Note: Chainer must currently be installed from source in order to include ChainerX, but this is expected to change in
the near future.

6.1.1 Installing from source

The following environment variables are available for building ChainerX from source.

1167

Chainer Documentation, Release 7.0.0b4

Environment
variable

Description

CHAINER_BUILD_CHAINERX1 to build the chainerx package along with chainer. 0 to skip. Default is 0.
CHAINERX_BUILD_CUDA1 to build chainerx with CUDA support. 0 to skip. Default is 0. See also CUDA support

section below.
CHAINERX_ENABLE_BLAS1 to enable BLAS, 0 to disable it. Default is 1. If BLAS is enabled, it is searched for and

used if found. If not found, ChainerX will behave as if BLAS was disabled and use a basic
implementation instead.

CHAINERX_ENABLE_LAPACK1 to enable LAPACK, 0 to disable it. Default is 1. If LAPACK is enabled, it is searched for and
used if found. If not found, ChainerX will behave as if LAPACK was disabled and may cause
runtime errors.

Simply run pip install --pre chainer after configuring the above environment variables. See Examples
below.

6.1.2 CUDA support

When installing with the CUDA support, you also need to specify the cuDNN installation path.

You can specify either of the following environment variables to specify where to look for cuDNN installation.

Envi-
ronment
variable

Description

CUDNN_ROOT_DIRPath to your cuDNN installation.
CHAINERX_CUDNN_USE_CUPY1 to search for cuDNN library and include files in existing CuPy installation. Only applicable for

CuPy installed via wheel (binary) distribution. Other variables related to cuDNN paths (such as
CUDNN_ROOT_DIR) are ignored. Be warned that the resulting executable will be invalidated if
CuPy is uninstalled, moved or replaced.

To support the NumPy/CuPy fallback mechanism, currently ChainerX with the CUDA support requires CuPy to be
installed together.

See also:

CuPy installation guide

6.1.3 Examples

Install ChainerX without CUDA support:

$ export CHAINER_BUILD_CHAINERX=1
$ export MAKEFLAGS=-j8 # Using 8 parallel jobs.
$ pip install --pre chainer

Install ChainerX depending on CuPy wheel distribution:

$ pip install --pre cupy_cuda101 # Note: Choose the proper CUDA SDK version number.
$ export CHAINER_BUILD_CHAINERX=1
$ export CHAINERX_BUILD_CUDA=1
$ export CHAINERX_CUDNN_USE_CUPY=1
$ export MAKEFLAGS=-j8 # Using 8 parallel jobs.
$ pip install --pre chainer

1168 Chapter 6. ChainerX Documentation

https://docs-cupy.chainer.org/
https://docs-cupy.chainer.org/en/stable/install.html

Chainer Documentation, Release 7.0.0b4

Install ChainerX with CuPy built from source:

$ export CHAINER_BUILD_CHAINERX=1
$ export CHAINERX_BUILD_CUDA=1
$ export CUDNN_ROOT_DIR=path/to/cudnn
$ export MAKEFLAGS=-j8 # Using 8 parallel jobs.
$ pip install --pre cupy
$ pip install --pre chainer

6.2 ChainerX Tutorial

ChainerX, or chainerx, is meant to be a drop-in replacement for NumPy and CuPy, with additional operations
specific to neural networks. As its core is implemented in C++, you can reduce the Python overhead for both the
forward and backward passes compared to Chainer, speeding up your training and inference. This section will guide
you through the essential APIs of Chainer to utilize ChainerX, but also how to use ChainerX on its own.

6.2.1 Introduction to ChainerX

The module chainerx aims to support a NumPy compatible interface with additional operations specific to neu-
ral networks. It for instance provides chainerx.conv() for N-dimensional convolutions and chainerx.
batch_norm() for batch normalization. Additionally, and most importantly, the array in ChainerX chainerx.
ndarray , distinguishes itself from NumPy and CuPy arrays in the following two aspects.

Automatic differentiation Graph construction and backpropagation is built into the array, meaning that any function,
including the NumPy-like functions, can be backpropagated through. In Chainer terms, it is a NumPy/CuPy
array with chainer.Variable properties.

Device agnostic Arrays can be allocated on any device belonging to any backend, in contrast to NumPy/CuPy arrays
which are implemented for specific computing platforms (i.e. CPUs/GPUs respectively).

These differences are explained more in details by the sections further down.

The array chainerx.ndarray

The following example demonstrates how you can create an array and access its most basic attributes. Note that
the APIs are identical to that of NumPy and CuPy. Other array creation routines including chainerx.ones(),
chainerx.ones_like() and chainerx.random.normal() are all listed in here.

import chainerx as chx

x = chx.array([[0, 1, 2], [3, 4, 5]], dtype=chx.float32)

x.shape # (2, 3)
x.dtype # dtype('float32')
x.size # 6
x.ndim # 2

Backends and devices

Chainer distinguishes between CPU and GPU arrays using NumPy and CuPy but ChainerX arrays may be allocated on
any device on any backend. You can specify the device during instantiation or transfer the array to a different device
after it has been created.

6.2. ChainerX Tutorial 1169

https://docs.scipy.org/doc/
https://docs-cupy.chainer.org/en/stable/

Chainer Documentation, Release 7.0.0b4

x = chx.array([1, 2, 3])
x.device # native:0

x = chx.array([1, 2, 3], device='cuda:0')
x.device # cuda:0

x = x.to_device('cuda:1')
x.device # cuda:1

The left-hand-side of the colon shows the name of the backend to which the device belongs. native in this case
refers to the CPU and cuda to CUDA GPUs. The integer on the right-hand-side shows the device index. Together,
they uniquely identify a physical device on which an array is allocated.

If you do not want to specify the device each time you create an array, it is possible to change the default device with
chainerx.using_device().

with chx.using_device('cuda:0')
x = chx.array([1, 2, 3])

x.device # cuda:0

Note: Currently, two backends are built into ChainerX.

1. The native backend, which is built by default.

2. The cuda backend which is optional (See installation).

This backend abstraction allows developers to implement their own backends and plug them into ChainerX to perform
computations on basically any other platform.

Array operations and backpropagation

Arrays support basic arithmetics and can be passed to functions just as you would expect. By marking an array to
require gradients with chainerx.ndarray.require_grad(), further computations involving that array will
construct a computational graph allowing backpropagation directly from the array. The following code shows how
you could implement an affine transformation and backpropgate through it to compute the gradient of the output w.r.t.
the input weight and bias.

x = chx.ones(784, dtype=chx.float32)
W = chx.random.normal(size=(784, 1000)).astype(chx.float32).require_grad()
b = chx.random.normal(size=(1000)).astype(chx.float32).require_grad()

y = x.dot(W) + b

y.grad = chx.ones_like(y) # Initial upstream gradients, i.e. `grad_outputs`.
y.backward()

assert type(W.grad) is chx.ndarray
assert type(b.grad) is chx.ndarray

Note: The code above is device agnostic, meaning that you can execute it on any backend by simply wrapping the
code with a chainerx.using_device().

1170 Chapter 6. ChainerX Documentation

Chainer Documentation, Release 7.0.0b4

6.2.2 Relation to Chainer

A chainerx.ndarray can be wrapped in a chainer.Variable and passed to any existing Chainer code.

var = ch.Variable(x) # x is a chainerx.ndarray.

Your Chainer code...

When further applying functions to the var, the computational graph is recorded in the underlying ndarray in
C++ implementation, not in the chainer.Variable or the chainer.FunctionNode, as in the conventional
Chainer. This eliminates the heavy Python overhead of the graph construction. Similarly, calling chainer.
Variable.backward() on any resulting variable will delegate the work to C++ by calling chainerx.
ndarray.backward() spending no time in the Python world.

NumPy/CuPy fallback

As the features above require ChainerX to provide an implementation corresponding to every chainer.
FunctionNode implementation in Chainer, ChainerX utilizes a fallback mechanism while gradually extending the
support. This approach is taken because the integration with Chainer takes time and we do not want existing Chainer
users to have to make severe changes to their code bases in order to try ChainerX. The fallback logic simply casts the
chainerx.ndarrays inside the chainer.Variable to numpy.ndarrays or cupy.ndarrays (without
copy) and calls the forward and backward methods respectively.

Run your Chainer code with ChainerX

In order to utilize chainerx, you first need to transfer your model to a ChainerX device using chainer.Link.
to_device(). This is a new method that has been introduced to replace chainer.Link.to_cpu() and
chainer.Link.to_gpu(), extending device transfer to arbitrary devices. Similarly, you have to transfer the
data (chainer.Variables) to the same device before feeding them to the model.

Will my FunctionNode work with ChainerX?

Our expectation is that it should work because of the fallback mechanism explained above, but in practice you may
need some occasional fixes, depending on how the function was implemented. Also, you will not see any performance
improvements from the fallback (but most likely a degradation because of the additional conversions).

To support ChainerX with your chainer.FunctionNode, you need to implement chainer.FunctionNode.
forward_chainerx() with the same signature as chainer.FunctionNode.forward(), but where given
inputs are of type chainerx.ndarray . It is expected to return a tuple just like chainer.FunctionNode.
forward().

The example below shows how chainer.functions.matmul() is extended to support ChainerX. Note that
chainer.Fallback can be returned in case the function cannot be implemented using ChainerX functions. This
is also the default behavior in case the method is not implemented at all.

class MatMul(function_node.FunctionNode):

def forward_chainerx(self, x):
a, b = x
if self.transa or self.transb or self.transc:

return chainer.Fallback
if a.dtype != b.dtype:

return chainer.Fallback

(continues on next page)

6.2. ChainerX Tutorial 1171

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ndarray.html#cupy.ndarray

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

if a.ndim != 2 or b.ndim != 2:
return chainer.Fallback

if self.dtype is not None and self.dtype != a.dtype:
return chainer.Fallback

return chainerx.dot(a, b), # Fast C++ implementation

6.3 Limitations

There are some non-obvious limitations in ChainerX:

• ChainerX only supports a limited set of dtypes: bool_ int8 int16 int32 int64 uint8 float32
float64.

• Operations with mixed dtypes are not supported. You need to explicitly convert dtypes using either chainerx.
astype() or F.cast().

• True division of Python, where 2/3 returns .66 rather than 0, is not supported yet. Given an ndarray a of the
dtype int32, a / a does not return an array of float64, but returns an array of int32.

• Only a limited set of Chainer functions are well tested with the ChainerX integration.

• ChainerX CUDA backend requires cuDNN. See installation for details.

• As ChainerX arrays have a computational graph in their own, some operations are prohibited for safety:

– Unless an array is free from the computational graph, in-place modification of its data is prohibited.

a = chainerx.zeros((2,), chainerx.float32)
a.require_grad() # install the computational graph on `a`.

a += 1 # ! error

The reason of this limitation is that, as backward operations may depend on the value of a, the backward
gradients might be unexpectedly affected if it would be altered.

You may circumvent this limitation by making a disconnected view:

A memory-shared view of `a` which is disconnected from the computational
→˓graph of `a`.
b = a.as_grad_stopped()

b += 1

Note however that this operation is inherently dangerous. You should be super careful to ensure that that
does not affect backward computations.

Note also that we may restrict further in the future so that even in-place modification on a disconnected
view is only allowed if it is actually safe.

– If an array is wrapped with a Variable with requires_grad=True (which is default), you won’t
be able to re-assign the array:

a = chainerx.zeros((2,), chainerx.float32)
b = chainerx.zeros((2,), chainerx.float32)
var = chainer.Variable(a)

var.array = b # ! error

1172 Chapter 6. ChainerX Documentation

Chainer Documentation, Release 7.0.0b4

You may circumvent this by using in-place assignment on var.array:

var.array[:] = b

This workaround may also be dangerous just as in the previous limitation.

6.4 Reference

6.4.1 Multi-Dimensional Array (ndarray)

chainerx.ndarray Dummy class for type testing.

chainerx.ndarray

class chainerx.ndarray(*args, **kwargs)
Dummy class for type testing.

Methods

__eq__()
Return self==value.

__ne__()
Return self!=value.

__lt__()
Return self<value.

__le__()
Return self<=value.

__gt__()
Return self>value.

__ge__()
Return self>=value.

Utility functions

chainerx.to_numpy

6.4.2 Array Operations

Array creation routines

chainerx.empty
chainerx.empty_like
chainerx.eye
chainerx.identity

Continued on next page

6.4. Reference 1173

Chainer Documentation, Release 7.0.0b4

Table 3 – continued from previous page
chainerx.ones
chainerx.ones_like
chainerx.zeros
chainerx.zeros_like
chainerx.full
chainerx.full_like
chainerx.array
chainerx.asarray
chainerx.asanyarray
chainerx.ascontiguousarray
chainerx.copy
chainerx.frombuffer
chainerx.fromfile
chainerx.fromfunction
chainerx.fromiter
chainerx.fromstring
chainerx.loadtxt
chainerx.arange
chainerx.linspace
chainerx.diag
chainerx.diagflat
chainerx.tri
chainerx.tril
chainerx.triu

Activation functions

chainerx.log_softmax
chainerx.tanh
chainerx.relu
chainerx.sigmoid
chainerx.slstm
chainerx.tree_lstm

Array manipulation routines

chainerx.reshape
chainerx.ravel
chainerx.transpose
chainerx.broadcast_to
chainerx.squeeze
chainerx.asarray
chainerx.ascontiguousarray
chainerx.concatenate
chainerx.stack
chainerx.hstack
chainerx.vstack
chainerx.dstack
chainerx.atleast_2d

Continued on next page

1174 Chapter 6. ChainerX Documentation

Chainer Documentation, Release 7.0.0b4

Table 5 – continued from previous page
chainerx.atleast_3d
chainerx.split
chainerx.dsplit
chainerx.vsplit
chainerx.swapaxes
chainerx.repeat
chainerx.expand_dims
chainerx.flip
chainerx.fliplr
chainerx.flipud
chainerx.moveaxis

Evaluation routines

chainerx.accuracy

Indexing routines

chainerx.take
chainerx.where
chainerx.nonzero

Linear algebra

chainerx.dot
chainerx.linalg.cholesky
chainerx.linalg.qr
chainerx.linalg.svd
chainerx.linalg.solve
chainerx.linalg.inv
chainerx.linalg.pinv

Logic functions

chainerx.all
chainerx.any
chainerx.isinf
chainerx.isnan
chainerx.logical_and
chainerx.logical_or
chainerx.logical_xor
chainerx.logical_not
chainerx.greater
chainerx.greater_equal
chainerx.less
chainerx.less_equal
chainerx.equal

Continued on next page

6.4. Reference 1175

Chainer Documentation, Release 7.0.0b4

Table 9 – continued from previous page
chainerx.not_equal

Loss functions

chainerx.absolute_error
chainerx.squared_error
chainerx.huber_loss
chainerx.gaussian_kl_divergence

Mathematical functions

chainerx.negative
chainerx.add
chainerx.subtract
chainerx.multiply
chainerx.divide
chainerx.mod
chainerx.remainder
chainerx.sum
chainerx.maximum
chainerx.minimum
chainerx.exp
chainerx.log
chainerx.log10
chainerx.log2
chainerx.log1p
chainerx.logsumexp
chainerx.log_softmax
chainerx.sqrt
chainerx.sin
chainerx.cos
chainerx.tan
chainerx.arcsin
chainerx.arccos
chainerx.arctan
chainerx.arctan2
chainerx.sinh
chainerx.cosh
chainerx.tanh
chainerx.arcsinh
chainerx.arccosh
chainerx.square
chainerx.clip
chainerx.fabs
chainerx.sign
chainerx.ceil
chainerx.floor
chainerx.bitwise_and
chainerx.bitwise_or

Continued on next page

1176 Chapter 6. ChainerX Documentation

Chainer Documentation, Release 7.0.0b4

Table 11 – continued from previous page
chainerx.bitwise_xor
chainerx.left_shift
chainerx.right_shift

Random sampling

chainerx.random.normal
chainerx.random.uniform

Sorting, searching, and counting

chainerx.argmax
chainerx.argmin

Statistics

chainerx.amax
chainerx.mean
chainerx.var

Connection

chainerx.conv
chainerx.conv_transpose
chainerx.linear
chainerx.lstm

Normalization

chainerx.batch_norm
chainerx.fixed_batch_norm

Pooling

chainerx.max_pool
chainerx.average_pool

RNN

chainerx.n_step_lstm
chainerx.n_step_bilstm
chainerx.n_step_gru
chainerx.n_step_bigru
chainerx.n_step_rnn

Continued on next page

6.4. Reference 1177

Chainer Documentation, Release 7.0.0b4

Table 18 – continued from previous page
chainerx.n_step_birnn

6.4.3 Context

chainerx.Context

6.4.4 Backend and Device

ChainerX adds a level of abstraction between the higher level array operations and the lower level computations and
resource management. This abstraction is managed by the Backend and the Device classes. Native (CPU) and
CUDA backends are two concrete implementations currently provided by ChainerX but the abstraction allows you to
plug any backend into the framework.

Backend

chainerx.Backend
chainerx.get_backend

Device

chainerx.Device
chainerx.get_device
chainerx.get_default_device
chainerx.set_default_device
chainerx.using_device

6.4.5 Utilities for Backpropagation

chainerx.backward
chainerx.no_backprop_mode
chainerx.force_backprop_mode
chainerx.is_backprop_required

6.5 Contribution Guide

This is a guide aimed towards contributors of ChainerX which is mostly implemented in C++. It describes how to
build the project and how to run the test suite so that you can get started contributing.

Note: Please refer to the Chainer Contribution Guide for the more general contribution guideline that is not specific
to ChainerX. E.g. how to download the source code, manage git branches, send pull requests or contribute to Chainer’s
Python code base.

Note: There is a public ChainerX Product Backlog.

1178 Chapter 6. ChainerX Documentation

https://docs.google.com/spreadsheets/d/1daitXlRhHu7eZENFUs1cHw8o12rmA8bvudUQ0Yof8Jc

Chainer Documentation, Release 7.0.0b4

6.5.1 Building the shared library

You can build the C++ ChainerX project to generate a shared library similar to any other cmake project. Run the
following command from the root of the project to generate chainerx_cc/build/chainerx/libchainerx.
so,

$ mkdir chainerx_cc/build
$ cd chainerx_cc/build
$ cmake ..
$ make

The CUDA support is enabled by, either setting CHAINERX_BUILD_CUDA=1 as an environment variable or
specifying -DCHAINERX_BUILD_CUDA=1 in cmake. When building with the CUDA support, either the
CUDNN_ROOT_DIR environment variable or -DCUDNN_ROOT_DIR is required to locate the cuDNN installation
path.

Note: CUDA without cuDNN is currently not supported.

Then, to install the headers and the library, run:

$ make install

You can specify the installation path using the prefix -DCMAKE_INSTALL_PREFIX=<...> in cmake.

6.5.2 Running the test suite

The test suite can be built by passing -DCHAINERX_BUILD_TEST=ON to cmake. It is not built by default. Once
built, run the suite with the following command from within the build directory.

$ cd chainerx_cc/build
$ ctest -V

6.5.3 Coding standards

The ChainerX C++ coding standard is mostly based on the Google C++ Style Guide and principles.

Formatting

ChainerX is formatted using clang-format. To fix the formatting in-place, run the following command from
chainerx_cc directory:

$ cd chainerx_cc
$ scripts/run-clang-format.sh --in-place

Lint checking

ChainerX uses the cpplint and clang-tidy for lint checking. Note that clang-tidy requires that you’ve finished running
cmake. To run cpplint, run scripts/run-cpplint.sh from chainerx_cc directory:

6.5. Contribution Guide 1179

https://google.github.io/styleguide/cppguide.html
https://clang.llvm.org/docs/ClangFormat.html
https://github.com/cpplint/cpplint
http://clang.llvm.org/extra/clang-tidy/

Chainer Documentation, Release 7.0.0b4

$ cd chainerx_cc
$ scripts/run-cpplint.sh

To run clang-tidy, run make clang-tidy from the build directory:

$ cd chainerx_cc/build
$ make clang-tidy

6.5.4 Thread sanitizer

The thread sanitizer can be used to detect thread-related bugs, such as data races. To enable the thread sanitizer, pass
-DCHAINERX_ENABLE_THREAD_SANITIZER=ON to cmake.

You can run the test with ctest -V as usual and you will get warnings if the thread sanitizer detects any issues.

CUDA runtime is known to cause a thread leak error as a false alarm. In such case, disable the thread leak detection
using environment variable TSAN_OPTIONS='report_thread_leaks=0'.

6.5.5 Python contributions and unit tests

To test the Python binding, run the following command at the repository root:

$ pytest

The above command runs all the tests in the repository, including Chainer and ChainerMN. To run only ChainerX
tests, specify the test directory:

$ pytest tests/chainerx_tests

Run tests with coverage:

$ pytest --cov --no-cov-on-fail --cov-fail-under=80 tests/chainerx_tests

Run tests without CUDA GPU:

$ pytest -m 'not cuda' tests/chainerx_tests

6.6 Tips and FAQs

6.6.1 Can I use ChainerX without Chainer?

Yes, it is possible. See the code samples below.

• Train an MLP with MNIST dataset (chainerx_cc/examples/mnist_py)

• Train a CNN with ImageNet dataset (chainerx_cc/examples/imagenet_py)

6.6.2 What does the C++ interface look like?

It is almost identical to the Python interface with a 1-to-1 mapping. The interface is still subject to change, but there is
an example code:

1180 Chapter 6. ChainerX Documentation

https://github.com/chainer/chainer/tree/master/chainerx_cc/examples/mnist_py
https://github.com/chainer/chainer/tree/master/chainerx_cc/examples/imagenet_py

Chainer Documentation, Release 7.0.0b4

• Train an MLP with MNIST dataset in C++ (chainerx_cc/examples/mnist)

6.6.3 GPU memory consumption is too high when used with CuPy

Both ChainerX and CuPy use their own GPU memory pools, meaning that GPU memory is not efficiently utilized
(unused memory is kept without being freed by both ChainerX and CuPy). You can run your script after setting the
environment variable CHAINERX_CUDA_CUPY_SHARE_ALLOCATOR to 1 to use the experimental feature which
makes sure that both ChainerX and CuPy share the same memory pool, hence reducing your peak GPU memory-usage.
You may also invoke chainerx._cuda.cupy_share_allocator instead of setting the environment variable
for the same effect. In this case, it is recommended that you call the function prior to any GPU memory allocation.

6.6. Tips and FAQs 1181

https://github.com/chainer/chainer/tree/master/chainerx_cc/examples/mnist

Chainer Documentation, Release 7.0.0b4

1182 Chapter 6. ChainerX Documentation

CHAPTER

SEVEN

DISTRIBUTED DEEP LEARNING WITH CHAINERMN

ChainerMN enables multi-node distributed deep learning with the following features:

• Scalable — it makes full use of the latest technologies such as NVIDIA NCCL and CUDA-Aware MPI,

• Flexible — even dynamic neural networks can be trained in parallel thanks to Chainer’s flexibility, and

• Easy — minimal changes to existing user code are required.

This blog post provides our benchmark results using up to 128 GPUs.

ChainerMN can be used for both inner-node (i.e., multiple GPUs inside a node) and inter-node settings. For inter-node
settings, we highly recommend to use high-speed interconnects such as InfiniBand.

ChainerMN examples are available on GitHub. These examples are based on the examples of Chainer and the differ-
ences are highlighted.

7.1 Installation

7.1.1 Installation Guide

Requirements

ChainerMN depends on the following software libraries: CUDA-Aware MPI, NVIDIA NCCL, and a few Python
packages including CuPy and MPI4py.

Note: In Chainer v5, ChainerMN became a part of Chainer package. Installing Chainer (pip install chainer)
automatically makes ChainerMN available. Note that you still need to separately install requirements described below
to actually run code using ChainerMN.

Before upgrading from Chainer v4 to v5 or later, make sure to remove existing chainermn package (pip
uninstall chainermn).

CUDA-Aware MPI

ChainerMN relies on MPI. In particular, for efficient communication between GPUs, it uses CUDA-aware MPI. For
details about CUDA-aware MPI, see this introduction article. (If you use only the CPU mode, MPI does not need to
be CUDA-Aware. See Installation on Non-GPU Environments for more details.)

The CUDA-aware features depend on several MPI packages, which need to be configured and built properly. The
following are examples of Open MPI and MVAPICH.

1183

http://chainer.org/general/2017/02/08/Performance-of-Distributed-Deep-Learning-Using-ChainerMN.html
https://github.com/chainer/chainer/tree/master/examples/chainermn/
https://github.com/chainer/chainer/tree/master/examples/
https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/

Chainer Documentation, Release 7.0.0b4

Open MPI (for details, see Open MPI’s official instructions):

$./configure --with-cuda
$ make -j4
$ sudo make install

MVAPICH (for details, see Mvapich’s official instructions):

$./configure --enable-cuda
$ make -j4
$ sudo make install
$ export MV2_USE_CUDA=1 # Should be set all the time when using ChainerMN

NCCL

Note: If you are installing CuPy using wheels (i.e., pip install cupy-cudaXX where XX is the CUDA
version), you don’t have to install NCCL manually. The latest NCCL 2.x library is bundled with CuPy wheels.

See CuPy Installation Guide for the detailed steps to install CuPy.

To enable efficient intra- and inter-node GPU-to-GPU communication, we use NVIDIA Collective Communications
Library (NCCL). See NCCL’s official instructions for installation.

ChainerMN requires NCCL even if you have only one GPU per node. The only exception is when you run ChainerMN
on CPU-only environments. See Installation on Non-GPU Environments for more details.

Note: We reccomend NCCL 2 but NCCL 1 can be used. However, for NCCL 1, PureNcclCommunicator is not
supported in ChainerMN. If you use NCCL 1, please properly configure environment variables to expose NCCL both
when you install and use ChainerMN. Typical configurations should look like the following:

export NCCL_ROOT=<path to NCCL directory>
export CPATH=$NCCL_ROOT/include:$CPATH
export LD_LIBRARY_PATH=$NCCL_ROOT/lib/:$LD_LIBRARY_PATH
export LIBRARY_PATH=$NCCL_ROOT/lib/:$LIBRARY_PATH

If you change the version of NCCL installed, you have to reinstall CuPy. Because, current ChainerMN applies CuPy
to use NCCL. See CuPy official instructions for reinstalltion.

MPI4py

You can install MPI4py by:

$ pip install mpi4py

Please make be sure to properly configure environment variables so that MPI is available at installation time, because
MPI4py links to MPI library at installation time. In particular, if you have multiple MPI implementations installed in
your environment, please expose the implementation that you want to use both when you install and use ChainerMN.

As of writing, MPI4py does not support Open MPI 4.x. Please use versions from the Tested Environments section
below.

1184 Chapter 7. Distributed Deep Learning with ChainerMN

https://www.open-mpi.org/faq/?category=building#build-cuda
http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.0-userguide.html#x1-120004.5
https://docs-cupy.chainer.org/en/stable/install.html
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
http://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/index.html#downloadnccl
https://docs-cupy.chainer.org/en/stable/install.html#reinstall-cupy
https://bitbucket.org/mpi4py/mpi4py/issues/123/mpi4py-does-not-build-with-openmpi4

Chainer Documentation, Release 7.0.0b4

CuPy

Chainer and ChainerMN rely on CuPy to use GPUs. Please refer to CuPy Installation Guide for the detailed steps to
install CuPy.

In most cases it is recommended that you install CuPy using wheel distribution (precompiled binary) rather than source
distribution. If you are installing from source, NCCL library must be installed before installing CuPy to enable NCCL
feature in CuPy. Refer to NCCL for the installation steps of NCCL library. See Check if NCCL is enabled in CuPy, if
you want to check whether NCCL is enabled in your CuPy.

Chainer and ChainerMN can be installed without CuPy, in which case the corresponding features are not available.
See Installation on Non-GPU Environments for more details.

Tested Environments

We tested ChainerMN on all the following environments.

• OS

– Ubuntu 14.04 LTS 64bit

– Ubuntu 16.04 LTS 64bit

• Python 2.7.13, 3.5.1, 3.6.1

• MPI

– Open MPI 2.1.6, 3.0.4, 3.1.4

• MPI4py 3.0.0

• NCCL 2.3.2 2.4.2

Note: Note that the following versions of Open MPI have some bugs that might cause ChainerMN programs to hang:
3.0.[0-2] and 3.1.[0-2]. For more details, see Open MPI Issue #3972 and Chainer Issue #5740 .

Also, mpi4py does not support Open MPI 4.0.x.

Installation on Non-GPU Environments

Users who want to try ChainerMN in CPU-only environment may skip installation of CuPy. Non-GPU set up may
not be performant as GPU-enabled set up, but would be useful for testing or debugging training program in non-GPU
environment such as laptops or CI jobs.

In this case, the MPI does not have to be CUDA-aware. Only naive communicator works with the CPU mode.

7.1.2 Step-by-Step Troubleshooting

This section is a step-by-step troubleshooting guide for ChainerMN. Please follow these steps to identify and fix your
problem.

We assume that you are using Linux or another Unix-like environment.

7.1. Installation 1185

https://docs-cupy.chainer.org/en/stable/install.html
https://github.com/open-mpi/ompi/issues/3972
https://github.com/chainer/chainer/issues/5740

Chainer Documentation, Release 7.0.0b4

Single-node environment

Basic MPI installation

Although ChainerMN stands for “Chainer MultiNode,” it is good to start from single-node execution. First of all, you
need MPI. If MPI is correctly installed, you will see the mpicc and mpiexec commands in your PATH.

Below is an example of the output from Mvapich on Linux.:

$ which mpicc
/usr/local/bin/mpicc

$ mpicc -show
gcc -I/usr/local/include ...(snip)... -lmpi

$ which mpiexec
/usr/local/bin/mpiexec

$ mpiexec --version
HYDRA build details:
Version: 3.1.4
Release Date: Wed Sep 7 14:33:43 EDT 2016
CC: gcc
CXX: g++
F77:
F90:
Configure options: (snip)
Process Manager: pmi
Launchers available: ssh rsh fork slurm ll lsf sge manual persist
Topology libraries available: hwloc
Resource management kernels available: user slurm ll lsf sge pbs cobalt
Checkpointing libraries available:
Demux engines available: poll select

If you see any error in above commands, please go back to the CUDA-Aware MPI and check your MPI installation.

Check what MPI you are using

In CUDA-Aware MPI, we mention both of Open MPI and Mvapich. If the MPI is provided by the system administrator
and you are not really sure which MPI you are using, check the output of mpiexec –version.

• If the output contains HYDRA, then it’s MVAPICH (or possibly MPICH).

• If the output contains OpenRTE, then it’s Open MPI.

However, in such a case, you should make sure that the MPI is CUDA-aware, as mentioned below. We recommend to
build your own MPI.

Check if MPI is CUDA-aware

Your MPI must be configured as CUDA-aware. You can use the following C program to check it.

/* check_cuda_aware.c */
#include <assert.h>
#include <stdio.h>

(continues on next page)

1186 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

#include <mpi.h>
#include <cuda_runtime.h>

#define CUDA_CALL(expr) do { \
cudaError_t err; \
err = expr; \
assert(err == cudaSuccess); \

} while(0)

int main(int argc, char **argv) {
int rank, size;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

int *sendbuf_d = NULL;
int *recvbuf_d = NULL;

CUDA_CALL(cudaMalloc((void**)&sendbuf_d, sizeof(int)));
CUDA_CALL(cudaMalloc((void**)&recvbuf_d, sizeof(int)));
CUDA_CALL(cudaMemcpy(sendbuf_d, &rank, sizeof(int), cudaMemcpyDefault));

MPI_Reduce(sendbuf_d, recvbuf_d, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

if (rank == 0) {
int sum = -1;
CUDA_CALL(cudaMemcpy(&sum, recvbuf_d, sizeof(int), cudaMemcpyDefault));
if (sum == (size-1) * size / 2) {
printf("OK.\n");

} else {
printf("Error.\n");

}
}

cudaFree(sendbuf_d);
cudaFree(recvbuf_d);

MPI_Finalize();
}

Save the code to a file named check_cuda_aware.c. You can compile and run it with the following command.:

$ export MPICH_CC=nvcc # if you use Mvapich
$ export OMPI_CC=nvcc # if you use Open MPI
$ $(mpicc -show check_cuda_aware.c -arch sm_53 | sed -e 's/-Wl,/-Xlinker /g' | sed -e
→˓'s/-pthread/-Xcompiler -pthread/')
$./a.out
OK.

If the proglam prints OK., your MPI is correctly configured.

Check mpi4py

Next, let’s check that mpi4py is correctly installed. You can use the following script to check it:

7.1. Installation 1187

Chainer Documentation, Release 7.0.0b4

coding: utf-8
import os
from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

for i in range(size):
if i == rank:
print("{} {}".format(os.uname()[1], i))

comm.Barrier()

Save the script into a file named check_mpi4py.py and run it. The output from the script should look like this.:

$ mpiexec -np 4 python check_mpi4py.py
host00 0
host00 1
host00 2
host00 3

The script prints hostnames and ranks (process id in MPI) from each MPI process in a sequential manner. host00 is
the host name of the machine your are running the process. If you get an output like below, it indicates something is
wrong with your installation.:

Wrong output !
$ mpiexec -n 4 python check_mpi4py.py
host00 0
host00 0
host00 0
host00 0

A common problem is that the mpicc used to build mpi4py and mpiexec used to run the script are from different
MPI installations.

Finally, run pytest to check the single-node configuration is ready.:

$ git clone git@github.com:chainer/chainer.git
Cloning into 'chainer'...
remote: Enumerating objects: 7, done.
remote: Counting objects: 100% (7/7), done.
remote: Compressing objects: 100% (7/7), done.
remote: Total 168242 (delta 1), reused 2 (delta 0), pack-reused 168235
Receiving objects: 100% (168242/168242), 41.15 MiB | 1.65 MiB/s, done.
Resolving deltas: 100% (123696/123696), done.
Checking connectivity... done.
$ cd chainer/
$ pytest tests/chainermn_tests/
......S.S...S.S...S.S...S.S.........SS
--
Ran 38 tests in 63.083s

OK (SKIP=10)

1188 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

Check if NCCL is enabled in CuPy

CuPy requires NCCL to be enabled. You can check it with the following command.:

$ python -c 'from cupy.cuda import nccl'

If you get an output like below, NCCL is not enabled in CuPy. Please check the installation guide of CuPy.:

Traceback (most recent call last):

File "<string>", line 1, in <module>

ImportError: cannot import name 'nccl'

Multi-node environment

Check SSH connection and environment variables

To use ChainerMN on multiple hosts, you need to connect to computing hosts, including the one you are currently
logged into, via ssh without password authentication (and preferably without username).:

$ ssh host00 'hostname'
host00 # without hitting the password

$ ssh host01 'hostname'
host01 # without hitting the password

...

You may get a message like this:

The authenticity of host 'host01 (xxx.xxx.xxx.xxx)' can't be established.
ECDSA key fingerprint is SHA256:haGUMcCeC5A8lGh1lpjpwL5dF4xCglZArhhxxxxxxxxx.
Are you sure you want to continue connecting (yes/no)?

This message appears when you log in a host for the first time. Just type yes and the message won’t appear again. You
need to repeat this process on all computing hosts.

Also, you need to pay attention to the environment variables on remote hosts. The MPI runtime connects to the remote
hosts in non-interactive mode, and environment variables may differ from your interactive login sessions.:

$ ssh host00 'env' | grep LD_LIBRARY_PATH
Check the values and compare it to the local value.

$ ssh host01 'env' | grep LD_LIBRARY_PATH
Check the values and compare it to the local value.

...

In particular, check the following variables, which are critical to executing MPI programs:

• PATH

• LD_LIBRARY_PATH

• MV2_USE_CUDA (if you use MVAPICH)

• MV2_SMP_USE_CMA (if you use MVAPICH)

7.1. Installation 1189

Chainer Documentation, Release 7.0.0b4

Besides, you need to make sure the same mpiexec binary is used to run MPI programs.:

$ ssh host00 'which mpiexec'
/usr/local/bin/mpiexec

$ ssh host01 'which mpiexec'
/usr/local/bin/mpiexec

All the commands should give the same mpiexec binary path.

Program files and data

When you run MPI programs, all hosts must have the same Python binary and script files in the same path. First, check
that the python binary and version are identical among hosts. Be careful if you are using pyenv or Anaconda.:

$ ssh host00 'which python; python --version'
/home/username/.pyenv/shims/python
Python 3.6.0 :: Anaconda 4.3.1 (64-bit)

$ ssh host01 'which python'
/home/username/.pyenv/shims/python
Python 3.6.0 :: Anaconda 4.3.1 (64-bit)

...

Also, the script file (and possibly data files) must be in the same path on each host.

$ ls yourscript.py # in the current directory
yourscript.py

$ ssh host00 "ls $PWD/yourscript.py"
/home/username/your/dir/yourscript.py

$ ssh host01 "ls $PWD/yourscript.py"
/home/username/your/dir/yourscript.py

...

If you are using NFS, everything should be okay. If not, you need to transfer all the necessary files manually.

In particular, when you run the ImageNet example in ChainerMN repository, all data files must be available on all
computing hosts.

hostfile

The next step is to create a hostfile. A hostfile is a list of hosts on which MPI processes run.:

$ vi hostfile
$ cat hostfile
host00
host01
host02
host03

Then, you can run your MPI program using the hostfile. To check if the MPI processes run over multiple hosts, save
the following script to a file and run it via mpiexec:

1190 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

print_rank.py
import os

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

for i in range(size):
if i == rank:
print("{} {}".format(os.uname()[1], i))

comm.Barrier()

If you get an output like below, it is working correctly.:

$ mpiexec -n 4 --hostfile hostfile python print_rank.py
host00 0
host01 1
host02 2
host03 3

If you have multiple GPUs, you may want to run multiple processes on each host. You can modify hostfile and specify
the number of processes to run on each host.:

If you are using Mvapich:
$ cat hostfile
host00:4
host01:4
host02:4
host03:4

If you are using Open MPI
$ cat hostfile
host00 cpu=4
host01 cpu=4
host02 cpu=4
host03 cpu=4

With this hostfile, try running mpiexec again.:

$ mpiexec -n 8 --hostfile hostfile python print_rank.py
host00 0
host00 1
host00 2
host00 3
host01 4
host01 5
host01 6
host01 7

You will find that the first 4 processes run on host00 and the latter 4 on host01.

You can also specify computing hosts and resource mapping/binding using command line options of mpiexec. Please
refer to the MPI manual for the more advanced use of mpiexec command.

7.1. Installation 1191

Chainer Documentation, Release 7.0.0b4

If you get runtime error:

If you get the following error messages, please check the specified section of the troubleshooting or installation guide.

[hostxxx:mpi_rank_0][MPIDI_CH3I_SMP_init] CMA is not available. Set MV2_SMP_USE_CMA=0
→˓to disable CMA.
[cli_0]: aborting job:
Fatal error in PMPI_Init_thread:
Other MPI error, error stack:
MPIR_Init_thread(514)....:
MPID_Init(365)...........: channel initialization failed
MPIDI_CH3_Init(404)......:
MPIDI_CH3I_SMP_Init(2132): process_vm_readv: Operation not permitted

===
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= PID 20327 RUNNING AT hostxxx
= EXIT CODE: 1
= CLEANING UP REMAINING PROCESSES
= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
===

-> Check the value of MV2_SMP_USE_CMA (see CUDA-Aware MPI and Check SSH connection and environment
variables).

[hostxx:mpi_rank_0][error_sighandler] Caught error: Segmentation fault (signal 11)

===
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= PID 20643 RUNNING AT hostxx
= EXIT CODE: 11
= CLEANING UP REMAINING PROCESSES
= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES
===
YOUR APPLICATION TERMINATED WITH THE EXIT STRING: Segmentation fault (signal 11)
This typically refers to a problem with your application.
Please see the FAQ page for debugging suggestions

-> Check the value of MV2_USE_CUDA (see CUDA-Aware MPI and Check SSH connection and environment vari-
ables)

7.2 Tutorial

7.2.1 Overview

Data Parallelism

ChainerMN employs the data parallel approach for distributed training. In the data parallel approach, each worker has
a model copy, and computes a gradient against a batch. Then, the workers collaborate to update the model using the
gradients of all workers.

1192 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

Training Iterations

What ChainerMN does for distributed training is actually quite simple. Let us look at what we do in each iteration.
The following figure illustrates an iteration of standard training using Chainer (without ChainerMN). It consists of
three steps: forward, backward and optimize.

When using ChainerMN, an additional step all-reduce is inserted after the backward step. In this step, workers commu-
nicate to obtain the averaged gradient over gradients of all workers. Then, the aggregated gradient is used to improve
the model in the optimization step.

MPI

ChainerMN is built on MPI. MPI invokes our training script in the SPMD (single program, multiple data) way.
ChainerMN is designed to create a process on each GPU. For example, let us suppose you have two nodes with

7.2. Tutorial 1193

Chainer Documentation, Release 7.0.0b4

four GPUs each, and want to run train_imagenet.py. Then, you will invoke eight Python processes running
train_imagenet.py by using mpiexec or mpirun.

7.2.2 Step 1: Communicators and Optimizers

In the following, we explain how to modify your code using Chainer to enable distributed training with ChainerMN.
We take Chainer’s MNIST example and modify it in a step-by-step manner to see the standard way of using Chain-
erMN.

Creating a Communicator

We first need to create a communicator. A communicator is in charge of communication between workers. A commu-
nicator can be created as follows:

comm = chainermn.create_communicator()

Workers in a node have to use different GPUs. For this purpose, intra_rank property of communicators is useful.
Each worker in a node is assigned a unique intra_rank starting from zero. Therefore, it is often convenient to use
the intra_rank-th GPU.

The following line of code is found in the original MNIST example:

chainer.cuda.get_device_from_id(args.gpu).use()

which we modify as follows:

device = comm.intra_rank
chainer.cuda.get_device_from_id(device).use()

Creating a Multi-Node Optimizer

This is the most important step. We need to insert the communication right after backprop and right before optimiza-
tion. In ChainerMN, it is done by creating a multi-node optimizer.

Method create_multi_node_optimizer receives a standard Chainer optimizer, and it returns a new optimizer.
The returned optimizer is called multi-node optimizer. It behaves exactly same as the supplied original standard
optimizer (e.g., you can add hooks such as WeightDecay), except that it communicates model parameters and
gradients properly in a multi-node setting.

The following is the code line found in the original MNIST example:

optimizer = chainer.optimizers.Adam()

To obtain a multi-node optimizer, we modify that part as follows:

optimizer = chainermn.create_multi_node_optimizer(
chainer.optimizers.Adam(), comm)

Run

With the above two changes, your script is ready for distributed training. Invoke your script with mpiexec or mpirun
(see your MPI’s manual for details). The following is an example of executing the training with four processes at
localhost:

1194 Chapter 7. Distributed Deep Learning with ChainerMN

https://github.com/pfnet/chainer/blob/master/examples/mnist/train_mnist.py

Chainer Documentation, Release 7.0.0b4

$ mpiexec -n 4 python train_mnist.py

In the non-GPU mode, you may see a warning like shown below, but this message is harmless, and you can ignore it
for now

Warning: using naive communicator because only naive supports CPU-only execution

If you have multiple GPUs on the localhost, 4 for example, you may also want to try:

$ mpiexec -n 4 python train_mnist.py --gpu

Multi-node execution

If you can successfully run the multi-process version of the MNIST example, you are almost ready for multi-node
execution. The simplest way is to specify the --host argument to the mpiexec command. Let’s suppose you have
two GPU-equipped computing nodes: host00 and host01, each of which has 4 GPUs, and so you have 8 GPUs in
total:

$ mpiexec -n 8 -host host00,host01 python train_mnist.py

The script should print similar results to the previous intra-node execution.

Copying datasets

In the MNIST example, the rank 0 process reads the entire portion of the dataset and scatters it to other processes. In
some applications, such as the ImageNet ChainerMN example, however, only the pathes to each data file are scattered
and each process reads the actual data files. In such cases, all datasets must be readable on all computing nodes in the
same location. You don’t need to worry about this if you use NFS (Network File System) or any other similar data
synchronizing system. Otherwise, you need to manually copy data files between nodes using scp or rsync.

If you have trouble

If you have any trouble running the sample programs in your environment, go to the Step-by-Step Troubleshooting
page and follow the steps to check your environment and configuration.

Next Steps

With only the above two changes distributed training is already performed. Thus, the model parameters are updated
by using gradients that are aggregated over all the workers. However, this MNIST example still has a few areas in
need of improvment. In the next page, we will see how to address the following problems:

• Training period is wrong; ‘one epoch’ is not one epoch.

• Evaluation is not parallelized.

• Status outputs to stdout are repeated and annoying.

7.2.3 Step 2: Datasets and Evaluators

Following from the previous step, we continue to explain general steps to modify your code for ChainerMN through
the MNIST example. All of the steps below are optional, although useful for many cases.

7.2. Tutorial 1195

Chainer Documentation, Release 7.0.0b4

Scattering Datasets

If you want to keep the definition of ‘one epoch’ correct, we need to scatter the dataset to all workers.

For this purpose, ChainerMN provides a method scatter_dataset. It scatters the dataset of worker 0 (i.e., the
worker whose comm.rank is 0) to all workers. The given dataset of other workers are ignored. The dataset is split
into sub datasets of almost equal sizes and scattered to the workers. To create a sub dataset, chainer.datasets.
SubDataset is used.

The following line of code from the original MNIST example loads the dataset:

train, test = chainer.datasets.get_mnist()

We modify it as follows. Only worker 0 loads the dataset, and then it is scattered to all the workers:

if comm.rank == 0:
train, test = chainer.datasets.get_mnist()

else:
train, test = None, None

train = chainermn.scatter_dataset(train, comm)
test = chainermn.scatter_dataset(test, comm)

Creating A Multi-Node Evaluator

This step is also an optional step, but useful when validation is taking a considerable amount of time. In this case, you
can also parallelize the validation by using multi-node evaluators.

Similarly to multi-node optimizers, you can create a multi-node evaluator from a standard evaluator by using method
create_multi_node_evaluator. It behaves exactly the same as the given original evaluator except that it
reports the average of results over all workers.

The following line from the original MNIST example adds an evaluator extension to the trainer::
trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu))

To create and use a multi-node evaluator, we modify that part as follows:

evaluator = extensions.Evaluator(test_iter, model, device=device)
evaluator = chainermn.create_multi_node_evaluator(evaluator, comm)
trainer.extend(evaluator)

Suppressing Unnecessary Extensions

Some of extensions should be invoked only by one of the workers. For example, if the PrintReport extension is
invoked by all of the workers, many redundant lines will appear in your console. Therefore, it is convenient to register
these extensions only at workers of rank zero as follows:

if comm.rank == 0:
trainer.extend(extensions.DumpGraph('main/loss'))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(

['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

trainer.extend(extensions.ProgressBar())

1196 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

7.2.4 Tips and FAQs

Using MultiprocessIterator

If you are using MultiprocessIterator and communication goes through InfiniBand, you would proba-
bly face crashing problems. This is because MultiprocessIterator creates child processes by the fork
system call, which has incompatibilities with the design of MPI and InfiniBand. To cope with this issue, use
multiprocessing.set_start_method to start child processes, with a process explicitly forked right after,
before communicator is created as follows:

multiprocessing.set_start_method('forkserver')
p = multiprocessing.Process()
p.start()
p.join()

communicator = chainermn.create_communicator(...)

Either forkserver mode or spawn mode should work. See our ImageNet example script for working sample code
of MultiprocessIterator and forkserver. Unfortunately, multiprocessing.set_start_method
is only available in Python 3.4+.

Using Your Own Evaluator

Method create_multi_node_evaluator can also be used for customized evaluator classes that inherit from
chainer.training.extensions.Evaluator. Specifically, it wraps the evaluate method and returns the
averaged values over all workers. Please also refer to our ImageNet example, where a customized evaluator is used.

Using MPI4py Communicator

ChainerMN is based on MPI4py. For advanced users (e.g., those who want to parallelize preprocessing, create custom
extension, etc.), we encourage you to make use of MPI4py communicators. Let comm be a ChainerMN communicator,
then you can obtain MPI4py communicator by comm.mpi_comm. Please refer to MPI4py API reference.

Using FP16

FP16 (16-bit half precision floating point values) is supported in pure_nccl of a ChainerMN communicator.

MPI process hangs after an unhandled Python exception.

An MPI runtime is expected to kill all of its child processes if one of them exits abnormally or without calling
MPI_Finalize(). However, when a Python program runs on mpi4py, the MPI runtime often fails to detect the process
failure, and the rest of the processes hang infinitely. It is especially problematic when you run your ChainerMN
program on a cloud environment, in which you are charged on time basis.

This tiny program demonstrates the issue (note that it is not specific to ChainerMN).:

test.py
def func():
import mpi4py.MPI
mpi_comm = mpi4py.MPI.COMM_WORLD
if mpi_comm.rank == 0:
raise ValueError('failure!')

(continues on next page)

7.2. Tutorial 1197

https://www.open-mpi.org/faq/?category=tuning#fork-warning
http://pythonhosted.org/mpi4py/apiref/mpi4py.MPI.Comm-class.html

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

mpi4py.MPI.COMM_WORLD.Barrier()

if __name__ == '__main__':
func()

mpiexec -n 2 python test.py

mpi4py offers a solution to force all processes to abort if an uncaught exception occurs..

$ mpiexec -n 2 python -m mpi4py yourscript.py ...

This also works well with ChainerMN. See here for more details.

If you cannot apply the solution (i.e. you don’t have a control of how Python interpreter is invoked), you can inject the
following code snippet into your script file

import sys

=== begin code snippet
_old_hook = sys.excepthook

Global error handler
def global_except_hook(exctype, value, traceback):

import sys
try:

import mpi4py.MPI

$ mpiexec -n 2 -x CHAINERMN_FORCE_ABORT_ON_EXCEPTION=1 python yourscript.py ...

Alternatively, you can explicitly call chainermn.global_except_hook.add_hook() from your code.:

import chainermn

chainermn.global_except_hook.add_hook()

The handler hooks uncaught exceptions and call MPI_Abort() to ensure that all process are terminated.

You can choose any of these solutions depending on your environment and restrictions.

NOTE: These techniques are effective only for unhandled Python exceptions. If your program crashes due to lower-
level issues such as SIGSEGV, the MPI process may still hang.

7.3 Model Parallel

7.3.1 Overview

Model Parallelism

Even though ChainerMN mainly supports the data parallel approach for distributed training, it also has experimental
APIs for the model parallel approach. The model parallel approach splits a given model into subcomponents loaded
on several processes. This approach is useful in cases where

• large mini-batch or high-resolusion is needed.

• the model is too huge to run on a single process.

1198 Chapter 7. Distributed Deep Learning with ChainerMN

http://mpi4py.readthedocs.io/en/stable/mpi4py.run.html

Chainer Documentation, Release 7.0.0b4

• the mixture of experts are trained.

Philosophy

ChainerMN takes the following three approaches to realize the model parallelism.

1. Communication as Function

ChainerMN provides several special functions for communications such as chainermn.functions.bcast and
chainermn.functions.alltoall, which wraps raw MPI communications. Users define communications be-
tween processes as Chainer function calls in the model definitions. This enables highly flexible communication pat-
terns. Moreover, parameter updates in backward propagation are automatically invoked through backward defined
in those functions for communications.

2. Synchronous Model Parallel

ChainerMN restricts itself to synchronous SGD. Though the asynchronous counterpart seems to be more compu-
tationally efficient, asynchronous SGD often suffer from the stale gradients problem and results in difficulty while
debugging. ChainerMN’s synchronous communication model makes SGD simpler.

3. Single-Program-Multiple-Data (SPMD)

In principle, ChainerMN supports single-program-multiple-data (SPMD), which means the same program is invoked
and different data are used on each process.

Synchronous model-parallelism suits well with MPI programming style and SPMD model.

7.3. Model Parallel 1199

Chainer Documentation, Release 7.0.0b4

1200 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

References

• More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server

• Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer

• AMPNet: Asynchronous Model-Parallel Training for Dynamic Neural Networks

• Deep Mixture of Experts via Shallow Embedding

• Mesh-TensorFlow: Deep Learning for Supercomputers

• GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

7.3.2 Model Parallel on ChainerMN

Step 1: Communicators

To perform multi-node communications, a communicator is needed. Basic usages are the same with the case of the
data parallel, see Step 1: Communicators and Optimizers:

comm = chainermn.create_communicator()

If you want to define collective communications among limited number of processes later, it is useful to split the
communicator:

subcomm = comm.split(comm.rank % 2, comm.rank)

For further detail about the communicator split, please refer to MPI tutorial.

7.3. Model Parallel 1201

https://papers.nips.cc/paper/4894-more-effective-distributed-ml-via-a-stale-synchronous-parallel-parameter-server.pdf
https://arxiv.org/pdf/1701.06538.pdf
https://arxiv.org/pdf/1705.09786.pdf
https://arxiv.org/pdf/1806.01531.pdf
https://papers.nips.cc/paper/8242-mesh-tensorflow-deep-learning-for-supercomputers.pdf
https://arxiv.org/pdf/1811.06965.pdf
http://mpitutorial.com/tutorials/introduction-to-groups-and-communicators/

Chainer Documentation, Release 7.0.0b4

Step 2: Datasets and Iterators

In model parallel training, all processes belong to at least one of the following dataset input patterns.

1. model inputs come from datasets, and each process takes different mini-batches

2. model inputs come from datasets, and several processes share the same mini-batches

3. model inputs come from other processes

1. scatter_dataset

For the first case, you may use scatter_dataset as is introduced in Step 2: Datasets and Evaluators.

2. multi node iterator

For the second case, iterator need to be modified, where create_multi_node_iterator is useful:

train, test = chainer.datasets.get_mnist()
train_iter = chainermn.iterators.create_multi_node_iterator(

chainer.iterators.SerialIterator(train, batchsize), comm)
test_iter = chainermn.iterators.create_multi_node_iterator(

chainer.iterators.SerialIterator(test, batchsize), comm)

The resulting iterators return the same mini-batches among processes specified by the communicator.

3. empty dataset

For the last case, you may use create_empty_dataset, which returns a dataset with the same number of empty
tuples as the original dataset:

train, test = chainer.datasets.get_mnist()
train = chainermn.datasets.create_empty_dataset(train)
test = chainermn.datasets.create_empty_dataset(test)

1202 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

This input pattern appears in the subsequent examples such as Example 1: Simple MLP. Note that datasets are required
in Chainer’s updater API. The empty dataset can be used as a dummy dataset.

Step 3: Define Communications

ChainerMN supports most of the MPI communications as Chainer functions, including point-to-point and collective
communications. To know usages of each communication, please refer to API Reference.

Example 1: Point-to-point Communication

This is an example to use point-to-point communications:

def __call__(self, x):
h = f(x)
h = chainermn.functions.send(x, comm, rank=1)
return h

The communication target is specified by rank parameter. Note that the return value of send is often not negligible.
Please refer to Note: Define-by-Run and Model Parallelism.

Example 2: Collective Communication

Here is another example to use collective communications:

def __call__(self, x):
h = f(x)
h = chainermn.functions.allgather(comm, h)
h = F.stack(h, axis=0)
h = F.average(h, axis=0)
return h

This pattern often appears in the averaging ensemble training.

7.3. Model Parallel 1203

Chainer Documentation, Release 7.0.0b4

Note: Define-by-Run and Model Parallelism

In model-parallel training, a model on each process may become non-connected computational graph. Let’s take a
look at an example.

Naive implementation of a model on process #0 could be:

class Model_0(chainer.Chain):
def __call__(self, x):

first component
z = f(x)
chainermn.functions.send(z, comm, rank=1)

second component
z = chainermn.functions.recv(comm, rank=1)
y = h(z)

return y

One may notice that there is no connection between the first and second components of computational graph. As we
rely on defined-by-run framework, we cannot build a backward path from the second component to the first component.
In order to build the backward path, a dummy variable, which we call delegate_variable, is needed.

The variable 𝜑 in the above figure is delegate_variable, which is a return value of send and passed to an
argument of recv:

class Model_0(chainer.Chain):
def __call__(self, x):

first component

(continues on next page)

1204 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

7.3. Model Parallel 1205

Chainer Documentation, Release 7.0.0b4

1206 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

z = f(x)
phi = chainermn.functions.send(z, comm, rank=1)

second component
z = chainermn.functions.recv(comm, rank=1, delegate_variable=phi)
y = h(z)

return y

class Model_1(chainer.Chain):
def __call__(self, _):

z = chainermn.functions.recv(comm, rank=0)
z = g(z)
phi = chainermn.functions.send(z, comm, rank=0)
return phi

Model_1 also need to return a delegate variable 𝜑 to backtrack its computational graph to compute gradients. Thus,
the backward computation is guaranteed. Otherwise, backward computation will cause deadlock.

Note: Delegate Variable and Pseudo Connect

As we just see above, delegate variables must be appropriately handled to avoid potential deadlock. However, there
are still some pathological cases. Let’s consider to send variables twice.

Here, we must guarantee that backward tracking can find two send, but we can only return one delegate variable from
each model. pseudo_connect is a special function to combine one delegate variable to another variable.

7.3. Model Parallel 1207

Chainer Documentation, Release 7.0.0b4

In the above case, the returned variable 𝜓 from pseudo_connect behaves as if it is 𝜑2, while its backward
backtracks both 𝜑1 and 𝜑2:

class Model_0(chainer.Chain):
def __call__(self, x):

z1, z2 = f(x)
phi1 = chainermn.functions.send(z1, comm, rank=1)
phi2 = chainermn.functions.send(z2, comm, rank=1)
psi = chainermn.functions.pseudo_connect(phi1, phi2)
return psi

class Model_1(chainer.Chain):
def __call__(self, _):

z1 = chainermn.functions.recv(comm, rank=0)
z2 = chainermn.functions.recv(comm, rank=0)
y = g(z1, z2)
return y

7.3.3 Example 1: Simple MLP

Here is the first example of model parallel, a simple MLP separated on two processes.

First, let’s create a ChainerMN communicator:

if args.gpu:
comm = chainermn.create_communicator('pure_nccl')

(continues on next page)

1208 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

7.3. Model Parallel 1209

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

device = comm.intra_rank
else:

comm = chainermn.create_communicator('naive')
device = -1

As we saw in Model Parallel on ChainerMN, one naive implementation would be to use the point-to-point communi-
cation such as send and recv:

class MLP0(chainer.Chain):
def __init__(self, comm, n_out):

super(MLP0SubA, self).__init__(
l1=L.Linear(784, n_out))

def __call__(self, x):
h0 = F.relu(self.l1(x))
phi = chainermn.functions.send(h0, self.comm, rank=1)
Note: do not forget to pass delegate variable
y = chainermn.functions.recv(self.comm, rank=1, delegate_variable=phi)
return y

class MLP1(chainer.Chain):
def __init__(self, n_units, n_out):

super(MLP1Sub, self).__init__(
l2=L.Linear(None, n_units),
l3=L.Linear(None, n_out))

def __call__(self, _):
h0 = chainermn.functions.recv(self.comm, rank=0)
h1 = F.relu(self.l2(h0))
return chainermn.functions.send(self.l3(h1), self.comm, rank=0)

One should note that

• MLP0: delegate variable is indispensable which is passed from send to recv.

• MLP1: the return value from send must be returned in __call__, which is used to track back the computa-
tional graph.

On each process, different models are trained:

if comm.rank == 0:
model = L.Classifier(MLP0(comm, 100))

elif comm.rank == 1:
model = MLP1(comm, 100, 10)

Since MLP1 receives its inputs from MLP0 over the point-to-point communication, let’s use empty_dataset instead
of the usual dataset:

Iterate dataset only on worker 0.
train, test = chainer.datasets.get_mnist()
if comm.rank == 1:

train = chainermn.datasets.create_empty_dataset(train)
test = chainermn.datasets.create_empty_dataset(test)

Now we can run a model parallel architecture.

There is an alternative API to define the same model without explicitly defining communication paths:

1210 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

class MLP0SubA(chainer.Chain):
def __init__(self, comm, n_out):

super(MLP0SubA, self).__init__(
l1=L.Linear(784, n_out))

def __call__(self, x):
return F.relu(self.l1(x))

class MLP0SubB(chainer.Chain):
def __init__(self, comm):

super(MLP0SubB, self).__init__()

def __call__(self, y):
return y

class MLP0(chainermn.MultiNodeChainList):
Model on worker 0.
def __init__(self, comm, n_out):

super(MLP0, self).__init__(comm=comm)
self.add_link(MLP0SubA(comm, n_out), rank_in=None, rank_out=1)
self.add_link(MLP0SubB(comm), rank_in=1, rank_out=None)

class MLP1Sub(chainer.Chain):
def __init__(self, n_units, n_out):

super(MLP1Sub, self).__init__(
l2=L.Linear(None, n_units),
l3=L.Linear(None, n_out))

def __call__(self, h0):
h1 = F.relu(self.l2(h0))
return self.l3(h1)

class MLP1(chainermn.MultiNodeChainList):
Model on worker 1.
def __init__(self, comm, n_units, n_out):

super(MLP1, self).__init__(comm=comm)
self.add_link(MLP1Sub(n_units, n_out), rank_in=0, rank_out=0)

MultiNodeChainList enables to define a multi model architecture, by adding non-connected component with
add_link. Two arguments rank_in and rank_out specifies from which process the added link receives their
inputs, and to which process it sends their outputs.

Although it may seems that there is no necessity to parallelize MLP with this size, it can be useful to train a MLP with
many layers and parameters so that the entire model cannot be loaded on a single GPU. The entire training code is
available here.

7.3.4 Example 2: seq2seq

This example shows how to parallelize models that involves RNN.

Above figure depicts a typical encoder-decoder model, where the model is split up to encoder and decoder, both
running respectively in two processes. When f or g are large models that consume huge memory such as CNN,
model parallelism like this would be useful. In the forward computation, the encoder invokes send function to send
its context vectors, and the decoder invokes recv to receive them. The backward computation must be built by
pseudo_connect. As this communication pattern is very popular in RNNs, MultiNodeNStepRNN is a ready-
made utility link for this pattern. It can replace this complicated communication pattern.

7.3. Model Parallel 1211

https://github.com/chainer/chainer/blob/master/examples/chainermn/mnist/train_mnist_model_parallel.py

Chainer Documentation, Release 7.0.0b4

1212 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

MultiNodeNStepRNN can be created by create_multi_node_n_step_rnn:

rnn = chainermn.links.create_multi_node_n_step_rnn(
L.NStepLSTM(n_layers, n_units, n_units, 0.1),
comm, rank_in=None, rank_out=1)

where comm is a ChainerMN communicator (see Step 1: Communicators).

The overall model definition can be written as follows:

class Encoder(chainer.Chain):

def __init__(self, comm, n_layers, n_units):
super(Encoder, self).__init__(

Corresponding decoder LSTM will be invoked on process 1.
mn_encoder=chainermn.links.create_multi_node_n_step_rnn(

L.NStepLSTM(n_layers, n_units, n_units, 0.1),
comm, rank_in=None, rank_out=1

),
)
self.comm = comm
self.n_layers = n_layers
self.n_units = n_units

def __call__(self, *xs):
exs = f(xs)
c, h, _, phi = self.mn_encoder(exs)
return phi

class Decoder(chainer.Chain):

def __init__(self, comm, n_layers, n_units):
super(Decoder, self).__init__(

Corresponding encoder LSTM will be invoked on process 0.
mn_decoder=chainermn.links.create_multi_node_n_step_rnn(

L.NStepLSTM(n_layers, n_units, n_units, 0.1),
comm, rank_in=0, rank_out=None),

)
self.comm = comm
self.n_layers = n_layers
self.n_units = n_units

def __call__(self, *ys):
c, h, os, _ = self.mn_decoder(ys)
compute loss (omitted)

An example code with a training script is available here.

7.3.5 Example 3: Channel-wise Parallel Convolution

This is an example to parallelize CNN in channel-wise manner. This parallelization is useful with large batch size, or
with high resolution images.

The basic strategy is

1. to pick channels that each process is responsible for

2. to apply convolution, and

7.3. Model Parallel 1213

https://github.com/chainer/chainer/blob/master/examples/chainermn/seq2seq/seq2seq_mp1.py

Chainer Documentation, Release 7.0.0b4

3. to use allgather to combine outputs of all channels into a single tensor

on each process. Parallel convolution model implementation could be like this:

class ParallelConvolution2D(chainer.links.Convolution2D):
def __init__(self, comm, in_channels, out_channels, *args, **kwargs):

self.comm = comm
self.in_channels = in_channels
self.out_channels = out_channels
super(ParallelConvolution2D, self).__init__(

self._in_channel_size, self._out_channel_size, *args, **kwargs)

def __call__(self, x):
x = x[:, self._channel_indices, :, :]
y = super(ParallelConvolution2D, self).__call__(x)
ys = chainermn.functions.allgather(self.comm, y)
return F.concat(ys, axis=1)

def _channel_size(self, n_channel):
Return the size of the corresponding channels.
n_proc = self.comm.size
i_proc = self.comm.rank
return n_channel // n_proc + (1 if i_proc < n_channel % n_proc else 0)

@property
def _in_channel_size(self):

return self._channel_size(self.in_channels)

@property
def _out_channel_size(self):

(continues on next page)

1214 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

return self._channel_size(self.out_channels)

@property
def _channel_indices(self):

Return the indices of the corresponding channel.
indices = np.arange(self.in_channels)
indices = indices[indices % self.comm.size == 0] + self.comm.rank
return [i for i in indices if i < self.in_channels]

where comm is a ChainerMN communicator (see Step 1: Communicators).

ParallelConvolution2D can simply replace with the original Convolution2D. For the first convolution
layer, all processes must input the same images to the model. MultiNodeIterator distributes the same batches
to all processes every iteration:

if comm.rank != 0:
train = chainermn.datasets.create_empty_dataset(train)
test = chainermn.datasets.create_empty_dataset(test)

train_iter = chainermn.iterators.create_multi_node_iterator(
chainer.iterators.SerialIterator(train, args.batchsize), comm)

test_iter = chainermn.iterators.create_multi_node_iterator(
chainer.iterators.SerialIterator(test, args.batchsize,

repeat=False, shuffle=False),
comm)

An example code with a training script for VGG16 parallelization is available here.

7.3.6 Example 4: Ensemble

Ensemble is a training technique to obtain better classification performance by combining multiple base classifiers.
Averaging ensemble is one of the simplest examples of ensemble, which takes average of all classifier outputs in the
test phase. Model parallelism and collective communications can effectively help to implement it.

The following wrapper makes model parallel averaging ensemble easier:

class Averaging(chainer.Chain):
def __init__(self, comm, block):

super(Averaging, self).__init__()
self.comm = comm
with self.init_scope():

self.block = block

def __call__(self, x):
y = self.block(x)

if not chainer.config.train:
y = chainermn.functions.allgather(self.comm, y)
y = F.stack(y, axis=0)
y = F.average(y, axis=0)

return y

Then, any links wrapped by Averaging are ready to be parallelized and averaged:

7.3. Model Parallel 1215

https://github.com/chainer/chainer/blob/master/examples/chainermn/parallel_convolution/

Chainer Documentation, Release 7.0.0b4

class Model(chainer.Chain):
def __init__(self, comm):

super(Model, self).__init__()
self.comm = comm
with self.init_scope():

self.l1 = L.Linear(d0, d1)
self.l2 = L.Linear(d1, d2)
self.l3 = Averaging(self.comm, L.Linear(d2, d3))

def __call__(self, x):
h = F.relu(self.l1(x))
h = F.relu(self.l2(h))
y = F.relu(self.l3(h))
return y

From the perspective of model inputs/outputs, the averaged model is compatible with the original model. Thus, we
only need to replace the last layer with the averaged layer.

In averaging ensemble, each base classifier is trained independently and ensembled in the test phase. This can be
implemented by using MultiNodeIterator only for the test iterator:

train = (training dataset)
test = (test dataset)

if comm.rank != 0:
train = chainermn.datasets.create_empty_dataset(train)
test = chainermn.datasets.create_empty_dataset(test)

(continues on next page)

1216 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

train_iter = chainer.iterators.SerialIterator(train, batchsize)
test_iter = chainermn.iterators.create_multi_node_iterator(

chainer.iterators.SerialIterator(test, batchsize,
repeat=False, shuffle=False),

comm)

7.4 API Reference

7.4.1 Communicators

chainermn.create_communicator(communicator_name=’pure_nccl’, mpi_comm=None, **kwargs)
Create a ChainerMN communicator.

Different communicators provide different approaches of communication, so they have different performance
charasteristics. The default communicator pure_nccl is expected to generally perform well on a variety of
environments, so one need not to change communicators in most cases. However, you may need to choose other
communicators depending on your computing platform and the availability of NCCL library. The following
communicators are available.

Name CPU GPU NCCL Recommended Use Cases
pure_nccl OK Required (>=

v2)
pure_nccl is recommended when NCCL2 is available in the
environment.

flat OK N/A
naive OK OK Testing on CPU mode

pure_nccl communicator supports multiple data types, FP32 and FP16, in gradient exchange. The commu-
nication data type is determined based on chainer.global_config.dtype and allreduce_grad_dtype. When allre-
duce_grad_dtype is the default value None, FP32 is used when chainer.global_config.dtype is numpy.float32 and
FP16 otherwise. allreduce_grad_dtype parameter, which is either numpy.float16 or numpy.float32, overwrites
the chainer.global_config.dtype.

The table blow summarizes the data type selection in gradient exchange.

allreduce_grad_dtype
global_config.dtype None numpy.float16 numpy.float32
chainer.mixed16 FP16 FP16 FP32
numpy.float16 FP16 FP16 FP32
numpy.float32 FP32 FP16 FP32

Other communicators, namely flat and naive, support only float32 communication, no matter what the
model is. This is due to MPI’s limited support of float16.

Parameters

• communicator_name – The name of communicator (naive, flat, or pure_nccl)

• mpi_comm – MPI4py communicator

• allreduce_grad_dtype – Data type of gradient used in All-Reduce. If None, the
dtype of a model is used.

7.4. API Reference 1217

Chainer Documentation, Release 7.0.0b4

Returns ChainerMN communicator that implements methods defined in chainermn.
CommunicatorBase

class chainermn.CommunicatorBase
Interface definition of all communicators.

All communicators that have compatible set of methods with this class is supposed to work in ChainerMN’s
parallel computation implementation. The methods are named after MPI functions, such as bcast() came
from MPI_Bcast().

There are two types of methods: one that treats Python objects have _obj suffix. The other has methods without
any suffix and it handles ndarray and arrays filled with scaler values. So the number of methods would be

[send, recv, bcast, gather, allreduce] * ['_obj', '']

(with single exception alltoall, multi_node_mean_grad, split and bcast_data so far). Also
methods are supposed to be written in this order. All those methods must be implemented in its implementation
class, or otherwise it cannot be instantiated in runtime.

Note: As most implementation of _obj-sufficed methods involves Python object pickling and unpickling,
there is an implicit size limit.

TODO(kuenishi): as of now no implementation class actually has allreduce method.

abstract allgather(x)
A primitive of inter-process all-gather communication.

This method tries to invoke all-gather communication within the communicator. All processes in the
communicator are expected to invoke allgather(). This method relies on mpi4py fast communication
optimized for numpy arrays, as well as send() and recv().

Note that this method can only handle the same shapes of data over all processes, and cannot handle tuple
data.

Parameters x (numpy/cupy array) – Array to be gathered.

Returns Received arrays.

Return type ys (tuple of numpy/cupy array)

abstract allreduce(data)
Allreduce operation among processes

Processes one of several aggregation operations using all data from all processes and returns the result of
the aggregation to all processes.

TODO(kuenishi): add op argument once we find a use case for operations other than ‘SUM’.

Parameters data (ndarray) – the data to aggregate among all nodes.

Returns Sum of all data from all processes.

allreduce_grad(model, zero_fill=False)
mean Chainer model gradients.

Deprecated since version v7.0.0: This API is deprecated. Please use multi_node_mean_grad()
instead.

Parameters

• link (Link) – Link object.

1218 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

• zero_fill – A knob to control whether to fill gradients of initialized and unused Link
(which is None internally) with zero-valued array, because the all gradients must be an
array among processes for performing all-reduce, which might be an array or None after
backward computation. Gradients of uninitialized Link are skipped. If it is False, gradients
of unused Link are just skipped.

abstract allreduce_obj(obj)
Apply a reduce operation to all objects and spread the result.

For example of integers and summation, equivalent local code is:

>>> from functools import reduce
>>> reduce(lambda x, y: x + y, [1, 2, 3, 4, 5])
15

The only operation currently supported is summation.

TODO(kuenishi): support other operations such as ‘MAX’, ‘MIN’ and ‘PROD’ with op argument once
we need any of them.

Parameters obj – An arbitrary object to apply reduce operation. Must have corresponding
operation method e.g. __plus__().

Returns The result of the operation applied to all objects.

abstract alltoall(xs)
All-to-all implementation for ndarray

Parameters xs (tuple of numpy/cupy array) –

Returns Received arrays. The length of tuple equals to the communicator size.

Return type ys (tuple of numpy/cupy array)

abstract bcast(data, max_buf_len=None, root=0)
Broadcasts an ndarray from root process to all processes

Parameters

• data (numpy/cupy array) – for root process, the data to broadcast. For non-root
processes, this argument is ignored.

• max_buf_len (int) – Length of send buffer.

• root (int) – the process who has the data to broadcast.

Returns The data sent from root process

Return type ys (numpy/cupy array)

abstract bcast_data(model)
Broadcast Chainer model parameter data

abstract bcast_obj(obj, max_buf_len=None, root=0)
Broadcasts an arbitrary object from root to all non-root processes.

Parameters

• obj – arbitrary object to broadcast to all other non-root processes. Will be ignored at all
non-root processes.

• max_buf_len (int) – max length of the send buffer

• root (int) – rank of the root processes who sends an object

Returns an object sent from the root process.

7.4. API Reference 1219

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

finalize()
Finalizes and cleans up internal resource.

The communicator SHALL NOT be used after calling this finalize(). The behaviour is undefined
when calling finalize on the same communicator multiple times.

abstract gather(data, root=0)
Gathers an ndarray from all processes to root process

Parameters

• data (ndarray, or scaler) – for root process this is ignored. For For non-root
processes, the data to send to root process.

• root (int) – rank of the process who receives the data.

Returns For root process, the ndarray sent from non-root processes. For non-root processes,
what?

abstract gather_obj(obj, root=0)
Gathers arbitrary objects from all non-root processes to the root.

Parameters

• obj – arbtrary object to send to root process. Root process will receive this argument
included in returned list.

• root (int) – rank of the root node who receives all objects.

Returns A list of objects sent from all processes.

TODO(kuenishi): make sure the ordering of objects in the returned list.

get_config(name=None)
Get configuration value(s)

Parameters name (str) – Name of the configuration to get. If it is None, all config names and
values are returned.

Returns Actual value of the configuration if it is on. None if it is off. If None is given as name,
None or dictionary of names and configuration values is returned.

property inter_rank
The rank of this node in the cluster.

property inter_size
Number of nodes that participates the cluster.

property intra_rank
Intra rank (process id in the machine) of this process.

abstract multi_node_mean_grad(model, zero_fill=False)
mean Chainer model gradients.

Parameters

• link (Link) – Link object.

• zero_fill – A knob to control whether to fill gradients of initialized and unused Link
(which is None internally) with zero-valued array, because the all gradients must be an
array among processes for performing all-reduce, which might be an array or None after
backward computation. Gradients of uninitialized Link are skipped. If it is False, gradients
of unused Link are just skipped.

1220 Chapter 7. Distributed Deep Learning with ChainerMN

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

property rank
Rank (process id in the cluster) of this process in integer.

abstract recv(source, tag)
Receives an ndarray from source.

To receive the message, sender must send the data.

Parameters

• source (int) – Rank of the source process

• tag (int) – The tag to specifically receive the message

Returns The data sent from source process

abstract recv_obj(source, tag)
Receives an arbitrary Python object from source process with a tag.

Parameters

• source (int) – Rank number of sender process, to selectively receive the object.

• tag – tag to identify the message.

Returns an object sent from the source by send_obj.

abstract scatter(xs, root=0)
A primitive of inter-process scatter communication.

This method tries to invoke scatter communication within the communicator. All processes in the commu-
nicator are expected to invoke scatter().

Parameters

• xs (tuple of numpy/cupy array) – Arrays to be scattered.

• root (int) – Rank of root process.

Returns Received arrays.

Return type ys (numpy/cupy array)

abstract send(data, dest, tag)
Sends an ndarray to destination

Receiver must invoke recv() to wait for the message.

Parameters

• data – data to be sent (tuple, list or raw numpy/cupy array)

• dest (int) – Rank of the destination process

• tag (int) – The tag to identify the message

abstract send_obj(obj, dest, tag)
Sends an arbitrary Python object to destination with a tag.

Parameters

• obj – Arbitrary object to send to receiver.

• dest (int) – Rank number of receiver process (destination).

• tag – tag to identify the message.

7.4. API Reference 1221

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

set_config(name, **kwargs)
Set configurations(s) on/off

The usage of configurations depends on each communicator. See create_communicator() for avail-
able configurations.

Parameters

• name (str) – Name of configuration to set.

• value – Give arbitrary object to set.

• kwargs – Arbitrary arguments depending on each configuration.

property size
Number of processes of the cluster.

abstract split(color, key)
A function anologous to MPI_Comm_Split .

This method splits the inter MPI commnicator and return a wrapped ChainerMN communicator.

Parameters

• color (int) – Index of new group. The process with the same color will be assigned to
the same group.

• key (int) – Control of rank assignment. The process will be assigned a rank in the new
group ordered by the value of key. If you do not care of the rank, you can just simply
specify the original rank.

Returns CommunicatorBase

7.4.2 Optimizers and Evaluators

chainermn.create_multi_node_optimizer(actual_optimizer, communicator, dou-
ble_buffering=False, zero_fill=True)

Create a multi node optimizer from a Chainer optimizer.

Parameters

• actual_optimizer – Chainer optimizer (e.g., chainer.optimizers.Adam).

• communicator – ChainerMN communicator.

• double_buffering – If True, all-reduce and other processing (such as forward and
backward) are overlapped using double buffering. There are cases where accuracy is af-
fected because the gradients of the previous iteration are used for update. This flag is sup-
ported by PureNcclCommunicator only.

• zero_fill – A knob to control whether to fill gradients of initialized and unused Link
(which is None internally) with zero-valued array, because the all gradients must be an array
among processes for performing all-reduce, which might be an array or None after backward
computation. Gradients of uninitialized Link are skipped. If it is False, gradients of unused
Link are just skipped.

Returns The multi node optimizer based on actual_optimizer.

chainermn.create_multi_node_evaluator(actual_evaluator, communicator)
Create a multi node evaluator from a normal evaluator.

Actually this method patches the evaluator to work in multi node environment. This method adds several hidden
attributes starting with _mn_ prefix.

1222 Chapter 7. Distributed Deep Learning with ChainerMN

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

Parameters

• actual_evaluator – evaluator to be patched (e.g., chainer.training.
extensions.Evaluator)

• communicator – ChainerMN communicator

Returns The multi-node patched actual_evaluator.

Note: After patched, original evaluator does not work correctly in non-MPI environment.

class chainermn.extensions.GenericMultiNodeEvaluator(comm, iterator, tar-
get, device=None, con-
verter=<chainer.dataset.convert._ArbitraryCallableConverter
object>, root=0, **kwargs)

Generic multi-node evaluator for non-allreducable evaluation.

This is to evaluate a Dataset that cannot evenly divided across all processes in the communicator, for evaluation
calculation that is not applicable to a simple add-and-devide style averaging among processes.

Users are recommeneded to implement its own local calculation calc_local() (e.g. at each distributed
GPU) and aggregation aggregate() of its results. Although it has built-in implementaiton of those two
methods.

It has several drawbacks; 1) Additional implementation of aggregation required to users, and 2) no compatibility
with Evaluator.

Note: No automatic support of Reporter is provided; Set it up at initialize() method

Parameters

• comm – ChainerMN communicator object

• iterator – An iterator for test dataset. Must be non-repeated.

• target (callable) – A model to evaluate with test dataset

• device (int or chainer.backend.Device) – A device indicator to send data
with converter. Not used when the converter is not using any devices.

• converter (callable) – A converter. Default value is chainer.dataset.
concat_examples() .

• root (int) – Rank number of root process to run bcast and gather with.

• progress_hook (callable) – A callable that receives single argument for indicators.
The callable is only callled at root process.

aggregate(results)
A generic aggregation method.

Override this method for original aggregation calculation. By default, it just does nothing but returns the
input. This method is called once and only once accross the cluster, at root process. Reporting can be run
here.

Parameters results (list) – List of return value of calc_local() obtained from all
nodes..

7.4. API Reference 1223

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

Chainer Documentation, Release 7.0.0b4

calc_local(*args, **kwargs)
A generic method for local calculation.

Override this method to run its local calculation. Otherwise, results are calculated with original target and
test dataset.

Parameters

• args – Result of converter when it is tuple.

• kwargs – Result of converter when it is dict.

Returns Arbrary value may be returned, but must not be None.

7.4.3 Dataset Utilities

chainermn.scatter_dataset(dataset, comm, root=0, shuffle=False, seed=None,
max_buf_len=268435456, force_equal_length=True)

Scatter the given dataset to the workers in the communicator.

The dataset of worker root (i.e., the worker whose comm.rank is root) is scattered to all workers. The given
dataset of other workers are ignored. The dataset is split to sub datasets of almost equal sizes and scattered to
workers. To create a sub dataset, chainer.datasets.SubDataset is used.

Note:: Make sure force_equal_length flag is not off for multinode evaluator or multinode updaters,
which assume that the iterator has the same lengths among processes to work correctly.

Parameters

• dataset – A dataset (e.g., list, numpy.ndarray, chainer.datasets.
TupleDataset, . . .).

• comm – ChainerMN communicator or MPI4py communicator.

• shuffle (bool) – If True, the order of examples is shuffled before being scattered.

• root (int) – The root process of the scatter operation.

• seed (int) – Seed the generator used for the permutation of indexes. If an integer being
convertible to 32 bit unsigned integers is specified, it is guaranteed that each sample in the
given dataset always belongs to a specific subset. If None, the permutation is changed
randomly.

• max_buf_len (int) – Max buffer size to be used at broadcasting binaries. Must not be
larger than 2147483647.

• force_equal_length (bool) – Force the scattered fragments of the dataset have equal
length. If True, number of scattered examples is guaranteed to be equal among processes
and scattered datasets may have duplication among processes. Otherwise, number of scat-
tered examples may not be equal among processes, but scattered examples are guaranteed to
have no duplication among processes, intended for strict evaluation of test dataset to avoid
duplicated examples.

Returns Scattered dataset.

chainermn.scatter_index(n_total_samples, comm, root=0, force_equal_length=True)
Scatters only index to avoid heavy dataset broadcast

This is core functionality of scatter_dataset, which is almost equal to following code snippet:

1224 Chapter 7. Distributed Deep Learning with ChainerMN

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

(b, e) = scatter_index(len(dataset), comm)
order = None
if shuffle:

order = numpy.random.RandomState(seed).permutation(
n_total_samples)

order = comm.bcast_obj(order)
dataset = SubDataset(dataset, b, e, order)

Note:: Make sure force_equal_length flag is not off for multinode evaluator or multinode updaters,
which assume that the iterator has the same lengths among processes to work correctly.

Parameters

• n_total_samples (int) – number of total samples to scatter

• comm – ChainerMN communicator object

• root (int) – root rank to coordinate the operation

• force_equal_length (bool) – Force the scattered fragments of the index have equal
length. If True, number of scattered indices is guaranteed to be equal among processes and
scattered datasets may have duplication among processes. Otherwise, number of scattered
indices may not be equal among processes, but scattered indices are guaranteed to have no
duplication among processes, intended for strict evaluation of test dataset to avoid duplicated
examples.

Returns Tuple of two integers, that stands for beginning and ending offsets of the assigned sub part
of samples. The ending offset is not border inclusive.

chainermn.datasets.create_empty_dataset(dataset)
Creates an empty dataset for models with no inputs and outputs.

This function generates an empty dataset, i.e., __getitem__() only returns None. Its dataset is compatible
with the original one. Such datasets used for models which do not take any inputs, neither return any outputs.
We expect models, e.g., whose forward() is starting with chainermn.functions.recv() and ending
with chainermn.functions.send().

Parameters dataset – Dataset to convert.

Returns Dataset consists of only patterns in the original one.

Return type TransformDataset

7.4.4 Links

class chainermn.MultiNodeChainList(comm)
Combining multiple non-connected components of computational graph.

This class combines each chainer.Chain, which represents one of the non-connected component in com-
puational graph. In __call__(), the returned object of chainer.Chain (which represents pointer) are
passed to the next chainer.Chain, in order to retain the computational graph connected and make backprop
work properly.

Users add each chainer.Chain by add_link() method. Each chain is invoked in forward computation
according to the order they are added, and in backward computation according to the reversed order.

Example (basic usage)

7.4. API Reference 1225

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

This is a simple example of the model which sends its outputs to rank=1 machine:

import chainer
import chainer.functions as F
import chainermn

class SimpleModelSub(chainer.Chain):

def __init__(self, n_in, n_hidden, n_out):
super(SimpleModelSub, self).__init__(

l1=L.Linear(n_in, n_hidden),
l2=L.Linear(n_hidden, n_out))

def __call__(self, x):
h1 = F.relu(self.l1(x))
return self.l2(h1)

class SimpleModel(chainermn.MultiNodeChainList):

def __init__(self, comm, n_in, n_hidden, n_out):
super(SimpleModel, self).__init__(comm)
self.add_link(

SimpleModelSub(n_in, n_hidden, n_out),
rank_in=None,
rank_out=1)

Example (split MLP on 2 processes)

This is the other example of two models interacting each other:

import chainer
import chainer.functions as F
import chainermn

class MLP(chainer.Chain):

def __init__(self, n_in, n_hidden, n_out):
super(MLP, self).__init__(

l1=L.Linear(n_in, n_hidden),
l2=L.Linear(n_hidden, n_hidden),
l3=L.Linear(n_hidden, n_out))

def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)

class Model0(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(Model0, self).__init__(comm)
self.add_link(

(continues on next page)

1226 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

MLP(10000, 5000, 2000),
rank_in=None,
rank_out=1)

self.add_link(
MLP(100, 50, 10),
rank_in=1,
rank_out=None)

class Model1(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(Model1, self).__init__(comm)
self.add_link(MLP(2000, 500, 100), rank_in=0, rank_out=0)

Model0 is expected to be on rank=0, and Model1 is expected to be on rank=1. The first MLP in Model0
will send its outputs to Model1, then MLP in Model1 will receive it and send its outputs to the second MLP in
Model0.

Example (sending tuples)

This is the example for sending a tuple:

import chainer
import chainer.functions as F
import chainermn

class NN0(chainer.Chain):
def __call__(self, x):

y0 = some_calculation_nn0_0(x)
y1 = some_calculation_nn1_1(x)
return y0, y1

class NN1(chainer.Chain):
def __call__(self, y):

y0, y1 = y # unpack tuple from NN0
return some_calculation_nn1(y0, y1)

class Model_on_Process_0(chainermn.MultiNodeChainList):
def __init__(self, comm):

super(Model_on_Process_0, self).__init__(comm=comm)
self.add_link(NN0(), rank_in=None, rank_out=1)

class Model_on_Process_1(chainermn.MultiNodeChainList):
def __init__(self, comm):

super(Model_on_Process_1, self).__init__(comm=comm)
self.add_link(NN1(), rank_in=0, rank_out=None)

In this example, Model_on_Process_0 sends two elemental tuple (y0, y1) (returned by NN0.
__call__) to Model_on_Process_1, which can be unpacked as shown in NN1.__call__.

Parameters comm (chainermn.communicators._base.CommunicatorBase) – Chain-
erMN communicator.

7.4. API Reference 1227

Chainer Documentation, Release 7.0.0b4

add_link(link, rank_in=None, rank_out=None)
Register one connected link with its inout rank.

Parameters

• link (chainer.Link) – The link object to be registered.

• rank_in (int, list, or None) – Ranks from which it receives data. If None is
specified, the model does not receive from any machines.

• rank_out (int, list, or None) – Ranks to which it sends data. If None is spec-
ified, the model will not send to any machine.

class chainermn.links.MultiNodeBatchNormalization(size, comm, decay=0.9,
eps=2e-05, dtype=None,
use_gamma=True, use_beta=True,
initial_gamma=None, ini-
tial_beta=None, communica-
tion_backend=’auto’)

Batch normalization layer that can use the whole batch stats.

When using chainer.link.BatchNormalization, batch mean and std are computed independently for the local
batch in each worker. When local batch size is too small, training is unstable due to unreliable batch stats.

In contrast, when using this MultiNodeBatchNormalization, workers communicate to conduct ‘correct’ batch
normalization (e.g., obtaining mean and std for the whole global batch).

This link works only with Chainer >= 2.0.0.

Parameters

• size (int or tuple of ints) – Size (or shape) of channel dimensions.

• comm (ChainerMN communicator) – communicator to share the batch stats.

• decay (float) – Decay rate of moving average. It is used on training.

• eps (float) – Epsilon value for numerical stability.

• dtype (numpy.dtype) – Type to use in computing.

• use_gamma (bool) – If True, use scaling parameter. Otherwise, use unit(1) which makes
no effect.

• use_beta (bool) – If True, use shifting parameter. Otherwise, use unit(0) which makes
no effect.

• communication_backend (str) – mpi, nccl or auto. It is used to determine com-
munication backend. If auto, use the best communication backend for each communicator.

chainermn.links.create_mnbn_model(link, comm, communication_backend=’auto’)
Create a link object with MultiNodeBatchNormalization.

Returns a copy of link, where BatchNormalization is replaced by MultiNodeBatchNormalization.

Parameters

• link – Link object

• comm – ChainerMN communicator

• communication_backend (str) – mpi, nccl or auto. It is used to determine com-
munication backend of MultiNodeBatchNormalization. If auto, use the best communica-
tion backend for each communicator.

Returns Link object where BatchNormalization is replaced by MultiNodeBatchNormalization.

1228 Chapter 7. Distributed Deep Learning with ChainerMN

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Chainer Documentation, Release 7.0.0b4

7.4.5 Functions

chainermn.functions.send(x, communicator, rank, tag=0)
Send elements to target process.

This function returns a dummy variable only holding the computational graph. If backward() is invoked by
this dummy variable, it will try to receive gradients from the target process and send them back to the parent
nodes.

Parameters

• x (Variable) – Variable holding a matrix which you would like to send.

• communicator (chainer.communicators.CommunicatorBase) – Chain-
erMN communicator.

• rank (int) – Target process specifier.

• tag (int) – Optional message ID (MPI feature).

Returns A dummy variable with no actual data, only holding the computational graph. Please refer
chainermn.functions.pseudo_connect for detail.

Return type Variable

chainermn.functions.recv(communicator, rank, delegate_variable=None, tag=0,
force_tuple=False)

Receive elements from target process.

This function returns data received from target process. If backward() is invoked, it will try to send gradients
to the target process. The received array will be on the current CUDA device if the corresponding send()
is invoked with arrays on GPU. Please be aware that the current CUDA device is intended one. (https://
docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device)

Note: If you define non-connected computational graph on one process, you have to use
delegate_variable to specify the output of previous computational graph component. Otherwise
backward() does not work well. Please refer chainermn.functions.pseudo_connect for detail.

Parameters

• communicator (chainer.communicators.CommunicatorBase) – Chain-
erMN communicator.

• rank (int) – Target process specifier.

• delegate_variable (chainer.Variable) – Pointer to the other non-connected
component.

• tag (int) – Optional message ID (MPI feature).

• force_tuple (bool) – If False (the default) a Variable will be returned when the
number of outputs is one. Otherwise, this method returns a tuple even when the number of
outputs is one.

Returns Data received from target process. If backward() is invoked by this variable, it will send
gradients to the target process.

Return type Variable

7.4. API Reference 1229

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

Chainer Documentation, Release 7.0.0b4

chainermn.functions.pseudo_connect(delegate_variable, *actual_variables)
Connect independent connected graph component.

This function is implemented to return received arguments directly, except the first delegate_variable.
In backward computation, it returns received gradients directly, adding a zero grad corresponding to
delegate_variable. The detail of delegate_variable is described in the following notes.

Note: In model-parallel framework, models on each process might have many non-connected components.
Here we call a given graph non-connected when multiple inter-process communications are needed for its com-
putation. For example, consider the following example:

class ConnectedGraph(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(ConnectedGraph, self).__init__(comm)
self.add_link(ConnectedGraphSub(), rank_in=3, rank_out=1)

This model receives inputs from rank=3 process and sends its outputs to rank=1 process. The entire graph
can be seen as one connected component ConnectedGraphSub. Please refer the documentation of
MultiNodeChainList for detail.

On the other hand, see the next example:

class NonConnectedGraph(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(NonConnectedGraph, self).__init__(comm)
self.add_link(NonConnectedGraphSubA(), rank_in=3, rank_out=1)
self.add_link(NonConnectedGraphSubB(), rank_in=1, rank_out=2)

This model consists of two components: at first, NonConnectedGraphSubA receives inputs from rank=3
process and sends its outputs to rank=1 process, and then NonConnectedGraphSubB receives inputs from
rank=1 process and sends its outputs to rank=2 process. Here multiple inter-process communications are in-
voked between NonConnectedGraphSubA and NonConnectedGraphSubB, so it is regarded as non-
connected.

Such kind of non-connected models can be problematic in backward computation. Chainer traces back the
computational graph from the output variable, however naive implementation of chainermn.functions.
recv does not take any inputs rather receives inputs by MPI_Recv, where backward path vanishes.

To prevent this, dummy variables what we call delegate_variable are used. In principle, chainermn.
functions.send does not return any outputs because it sends data to the other process by MPI_Send.
However, chainermn.functions.send returns a dummy / empty variable in our implementation, which
is called delegate_variable. This variable does not hold any data, just used for retaining backward
computation path. We can guarantee the backward computation just by putting delegate_variable to
the next chainermn.functions.recv (chainermn.functions.recv has an optional argument to
receive delegate_variable).

Note: In some cases the intermediate graph component returns model outputs. See the next example:

class NonConnectedGraph2(chainermn.MultiNodeChainList):

def __init__(self, comm):
super(NonConnectedGraph2, self).__init__(comm)
self.add_link(NonConnectedGraphSubA(), rank_in=1, rank_out=None)
self.add_link(NonConnectedGraphSubB(), rank_in=None, rank_out=1)

1230 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

This model first receives inputs from rank=1 process and make model outputs (specified by rank_out=None)
in NonConnectedGraphSubA. Then using model inputs (specified by rank_in=None),
NonConnectedGraphSubB sends its outputs to rank=1 process. Since MultiNodeChainList.
__call__ returns outputs of the last component (in this case, outputs of NonConnectedGraphSubB),
naive implementation cannot output the returned value of NonConnectedGraphSubA as the model outputs.
In this case, pseudo_connect should be used.

pseudo_connect takes two arguments. The first one delegate_variable is what we explained in above
note. In this case, returned value of NonConnectedGraphSubB corresponds to delegate_variable.
The second one actual_variables is “what we want delegate_variable to imitate”. In
NonConnectedGraph2, we obtain returned value of NonConnectedGraphSubB as the model outputs,
but what we actually want is returned value of NonConnectedGraphSubA. At the same time we want to
trace back this resulted variable in backward computation. Using pseudo_connect, we can make a vari-
able whose data is the same as the returned value of NonConnectedGraphSubA, and which traces back
NonConnectedGraphSubB first.

pseudo_connect should also be used in some pathological cases, for example, where multiple
chainermn.functions.send occurs sequentially.

Parameters

• delegate_variable (chainer.Variable) – Pointer to the previous non-connected
graph component.

• actual_variables (tuple of chainer.Variable) – Actual values which
delegate_variable imitate.

Returns A variable with the given values combined with delegating variable.

Return type tuple of chainer.Variable

chainermn.functions.bcast(comm, x, root=0)
Differentiable broadcast communication between workers.

This function invokes broadcast communications among processes specified by the communicator. Backward
will be invoked as well as the ordinary chainer functions, where gradients are gathered to the root process and
summed up.

The received array will be on the current CUDA device if x on the invoking process is on GPU. Please be aware
that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/
tutorial/basic.html#current-device)

Parameters

• comm – ChainerMN communicator.

• x (chainer.Variable) – Variable to be sent.

Returns Broadcasted variable.

Return type y (chainer.Variable)

chainermn.functions.gather(comm, x, root=0)
Differentiable gather communication between workers.

This function invokes gather communications among processes specified by the communicator. Backward will
be invoked as well as the ordinary chainer functions, where gradients are scattered from the root process to each
slave.

7.4. API Reference 1231

Chainer Documentation, Release 7.0.0b4

The received array will be on the current CUDA device if x on the root process is on GPU. Please be aware
that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/
tutorial/basic.html#current-device)

Parameters

• comm – ChainerMN communicator.

• x (chainer.Variable) – Variable to be sent.

Returns Gathered variables. None for slaves.

Return type ys (chainer.Variable)

chainermn.functions.scatter(comm, xs, root=0)
Differentiable scatter communication between workers.

This function invokes scatter communications among processes specified by the communicator. Backward will
be invoked as well as the ordinary chainer functions, where gradients are gathered to the root process.

The received array will be on the current CUDA device if xs on the root process is on GPU. Please be aware
that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/
tutorial/basic.html#current-device)

Parameters

• comm – ChainerMN communicator.

• xs (list of chainer.Variable) – Variables to be scattered for master process.
None for slave process.

Returns Scattered variable.

Return type y (chainer.Variable)

chainermn.functions.alltoall(comm, xs)
Differentiable all-to-all communication between workers.

This function invokes all-to-all communications among processes specified by the communicator. Backward
will be invoked as well as the ordinary chainer functions, just passing input gradients back. Unlike point-
to-point communication such as chainermn.functions.send and chainermn.functions.recv,
users need not to care about delegate variables, since backward() will not be invoked until all gradients from
output direction arrive. Please refer to chainermn.functions.pseudo_connect about the detail of
delegate variables.

The received array will be on the current CUDA device on the invoking process if xs is on GPU. Please be aware
that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/
tutorial/basic.html#current-device)

Parameters

• comm – ChainerMN communicator.

• xs (list of chainer.Variables) – Variables to send.

Returns Received variables.

Return type ys (list of chainer.Variables)

chainermn.functions.allgather(comm, x)
Differentiable all-gather communication between workers.

This function invokes gather communications among processes specified by the communicator. Backward will
be invoked as well as the ordinary chainer functions, where gradients are reduced to each process.

1232 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

The received array will be on the current CUDA device on the invoking process if x is on GPU. Please be aware
that the current CUDA device is intended one. (https://docs-cupy.chainer.org/en/stable/
tutorial/basic.html#current-device)

Parameters

• comm – ChainerMN communicator.

• x (chainer.Variables) – Variables to send.

Returns Received variables.

Return type ys (list of chainer.Variables)

7.4.6 Iterators

chainermn.iterators.create_multi_node_iterator(actual_iterator, communicator,
rank_master=0)

Create a multi node iterator from a Chainer iterator.

This iterator shares the same batches on multiple processes, simply broadcasting batches from master process
to slave processes in each iteration. Master process obtains batches from actual_iterator, which you can
specify any Chainer iterator (e.g. chainer.iterators.SerialIterator).

Here is an example situation. When we train a sequence-to-sequence model, where the encoder and the decoder
is located on two different processes, we want to share the same batches on each process, thus inputs for the
encoder and output teacher signals for the decoder become consistent.

In order to use the multi node iterator, first create the iterator from Chainer iterator and ChainerMN communi-
cator:

iterator = chainermn.iterators.create_multi_node_iterator(
chainer.iterators.SerialIterator(

dataset, batch_size, shuffle=True),
communicator)

Then you can use it as the ordinary Chainer iterator:

updater = chainer.training.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater)
trainer.run()

Since this iterator shares batches through network in each iteration, communication might be large. If you
train your model-parallel network on extremely large dataset, you can also consider to use chainermn.
iterators.create_synchronized_iterator.

Current multi node iterator supports numpy.float32 or tuple of numpy.float32 as the data type of the batch
element.

Note: create_multi_node_iterator and serialize of created iterators must be called at the same
time by master and slaves, unless it falls into deadlock because they synchronize internal states of iterators.

Parameters

• actual_iterator – Chainer iterator (chainer.iterators.SerialIterator
and chainer.iterators.MultiprocessIterator are supported).

• communicator – ChainerMN communicator.

7.4. API Reference 1233

Chainer Documentation, Release 7.0.0b4

• rank_master – process rank to be master.

Returns The master-slave iterator based on actual_iterator.

chainermn.iterators.create_synchronized_iterator(actual_iterator, communicator)
Create a synchronized iterator from a Chainer iterator.

This iterator shares the same batches on multiple processes, using the same random number generators to main-
tain the order of batch shuffling same.

Here is an example situation. When we train a sequence-to-sequence model, where the encoder and the decoder
is located on two different processes, we want to share the same batches on each process, thus inputs for the
encoder and output teacher signals for the decoder become consistent.

In order to use the synchronized iterator, first create the iterator from Chainer iterator and ChainerMN commu-
nicator:

iterator = chainermn.iterators.create_synchronized_iterator(
chainer.iterators.SerialIterator(

dataset, batch_size, shuffle=True),
communicator)

Then you can use it as the ordinary Chainer iterator:

updater = chainer.training.StandardUpdater(iterator, optimizer)
trainer = training.Trainer(updater)
trainer.run()

The resulting iterator shares the same shuffling order among processes in the specified communicator.

Parameters

• actual_iterator – Chainer iterator (e.g., chainer.iterators.
SerialIterator).

• communicator – ChainerMN communicator.

Returns The synchronized iterator based on actual_iterator.

7.4.7 Trainer extensions

class chainermn.extensions.AllreducePersistent(model, comm)
Chainer extension to averagize persistents over workers.

When called, this extension invokes all-reduce communication among workers to compute averages of persistent
variables in the model. Persistent variables are updated to the averages. Currently, we ignore integer persistent
variables, and only float persistent variables are handled.

This extension is mainly to improve the running mean and variance of BatchNormalization by increasing the
effective number of examples. We do not need to call this frequently; call just before storing or evaluating the
model.

Parameters

• model (chainer.link.Link) – Target link object.

• comm (ChainerMN communicator) – communicator to compute averages.

chainermn.extensions.multi_node_snapshot(comm, snapshot, replica_sets)
Create trainer extension for multi-node snapshots

1234 Chapter 7. Distributed Deep Learning with ChainerMN

Chainer Documentation, Release 7.0.0b4

Provides generis multi-node snapshot saving and auto-load feature at multi-node environment, leveraging power
of single-node snapshot.

In many cases snapshot target may differ, e.g. only trainer of rank 0 process often has extensions such as
LogReport and so on, to not confuse terminal output. Just loading at one process and broadcasting it to other
processes does not work in that case.

This wrapper addresses that issue by defining sets of replicas where within the set the target object is replicated
and supposed to be same among processes. For example, a trainer example, only the trainer at rank 0 has special
extensions and others doesn’t:

trainer = Trainer(updater)
if comm.rank == 0:

trainer.extend(extensions.DumpGraph('main/loss'))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(

['epoch', 'main/loss', 'validation/main/loss',
'main/accuracy', 'validation/main/accuracy', 'elapsed_time']))

trainer.extend(extensions.ProgressBar())

This case can be described with two replica sets, where each set can be represented as single integer that indicates
rank number, or iterable set/list/generator of integers like this:

replica_sets = [[0], range(1, comm.size)]

Here the first replica set is described as [0], or simply in short just 0, and the second replica set is range(1,
comm.size), representing rest of processes other than 0. The remaining list can be ommited. Thus in that
case, it can be simplified more:

replica_sets = [0,]

In this case, the snapshot will be saved at rank 0 process and at rank 1 process. The latter represents the replica
set of range(1, comm.size) . In this case autoloading at initialization of snapshot extension works after
the restart cleanly, even though the size of the communicator differs.

Once the replica sets are defined, it can be easily extended:

replica_sets = [0,]
snapshot = multi_node_snapshot(comm, extensions.snapshot(),

replica_sets)
trainer.extend(snapshot, trigger=(1, 'epoch'))

More example tuples of replica set representation follows:

code nproc actual sets
[0] 4 [{0}, {1, 2, 3}]
[0, 1] 4 [{0}, {1}, {2, 3}]
[0, 1], [2, 3]] 4 [{0, 1}, {2, 3}]
[] 4 [{0, 1, 2, 3}]
[range(0, 8, 2)] 8 [set(range(0, 8, 2)), set(range(1, 8, 2))]

Parameters

• comm (ChainerMN communicator) – communicater object

• snapshot – Snapshot extension object obtained via snapshot() .

7.4. API Reference 1235

Chainer Documentation, Release 7.0.0b4

• replica_sets – list of replica set definition, where a replica set can be defined by single
integer as rank number, or iterable integers.

Returns Trainer extension that wraps snapshot and properly controles number of snapshots.

chainermn.create_multi_node_checkpointer(name, comm, cp_interval=5, gc_interval=5,
path=None)

Create multi-node checkpointer object

Generational snapshot extension to allow fault tolerance; It keeps several old snapshots to rollback synchronized
snapshot at each MPI process. Snapshot files are identified as ‘<name>.<rank>.<iteration>’.

• <name> . . . identifier of the run where snapshot is kept for

• <rank> . . . which process owned the model

• <iteration> . . . number of iteration.

This extension keeps several files for each execution and allows users to resume the whole job at the latest
snapshots of each MPI process, and the iteration where all snapshots agrees.

As this object is a usual Chainer extension, users can just create this object and pass to the trainer as an extension:

checkpointer = create_multi_node_checkpointer(name=run_id, comm=comm)
trainer.extend(checkpointer, trigger=(25, 'iteration'))

To run recovery at startup, before first iteration, run

checkpointer.maybe_load(trainer, optimizer)

before trainer.run() . If nothing is recovered (i.e. no snapshot found), trainer.updater.
iteration will remain 0 . Otherwise it will have the value of snapshot and the training will resume from
that iteration. optimizer is optional but this will let multi node optimizer avoid initial broadcast when all
snapshot data among nodes are all in sync.

Note: Make sure that checkpointer.maybe_load is called after all extensions with states, such as
ExponentialShift, set to the trainer.

After training finished without errors all those temporary checkpoints will be cleaned up at all nodes.

Another example to use checkpointer without trainer would be:

checkpointer = create_multi_node_checkpointer(name=run_id, comm=comm)
checkpointer.maybe_load(obj_you_want_to_snap, optimizer)

while True: ## Training loop
...
updater.update()
...
checkpointer.save(obj_you_want_to_snap) # Make a checkpoint

Parameters

• name (str) – unique id of the run

• comm – communicater in ChainerMN

• cp_interval (int) – minimum number of checkpoints to preserve

• gc_interval (int) – interval to collect non-preserved checkpoints

1236 Chapter 7. Distributed Deep Learning with ChainerMN

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Chainer Documentation, Release 7.0.0b4

7.4.8 Configurations

Environmental Variables

CHAINERMN_FORCE_ABORT_ON_EXCEPTIONS If this variable is set to a non-empty value, ChainerMN installs a
global hook to Python’s sys.excepthook to call MPI_Abort() when an unhandled exception occurs. See MPI
process hangs after an unhandled Python exception.

ChainerMN issue #236 may also help to understand the problem.

Execution Control

chainermn.global_except_hook.add_hook()
Add a global hook function that captures all unhandled exceptions.

The function calls MPI_Abort() to force all processes abort. It is useful when you run your training script on a
cloud platform.

7.4. API Reference 1237

https://github.com/chainer/chainermn/issues/236

Chainer Documentation, Release 7.0.0b4

1238 Chapter 7. Distributed Deep Learning with ChainerMN

CHAPTER

EIGHT

EXPORT CHAINER TO ONNX

8.1 Introduction

ONNX-Chainer converts Chainer model to ONNX format, export it.

8.1.1 Installation

Install dependencies using pip via PyPI:

$ pip install packaging 'onnx<1.6.1'

8.1.2 Quick Start

First, install ChainerCV to get the pre-trained models.

import numpy as np

import chainer
import chainercv.links as C
import onnx_chainer

model = C.VGG16(pretrained_model='imagenet')

Pseudo input
x = np.zeros((1, 3, 224, 224), dtype=np.float32)

onnx_chainer.export(model, x, filename='vgg16.onnx')

vgg16.onnx file will be exported.

8.1.3 Supported Functions

Currently 82 Chainer Functions are supported to export in ONNX format.

Activation

• ClippedReLU

• ELU

• HardSigmoid

1239

https://github.com/chainer/chainercv

Chainer Documentation, Release 7.0.0b4

• LeakyReLU

• LogSoftmax

• PReLUFunction

• ReLU

• Sigmoid

• Softmax

• Softplus

• Tanh

Array

• Cast

• Concat

• Copy

• Depth2Space

• Dstack

• ExpandDims

• GetItem

• Hstack

• Pad12

• Repeat

• Reshape

• ResizeImages

• Separate

• Shape5

• Space2Depth

• SplitAxis

• Squeeze

• Stack

• Swapaxes

• Tile

• Transpose

• Vstack

• Where

Connection

• Convolution2DFunction
1 mode should be either ‘constant’, ‘reflect’, or ‘edge’
2 ONNX doesn’t support multiple constant values for Pad operation
5 Chainer doesn’t support Shape function

1240 Chapter 8. Export Chainer to ONNX

Chainer Documentation, Release 7.0.0b4

• ConvolutionND

• Deconvolution2DFunction

• DeconvolutionND

• EmbedIDFunction3

• LinearFunction

Loss

• SoftmaxCrossEntropy

Math

• Absolute

• Add

• AddConstant

• ArgMax

• ArgMin

• BroadcastTo

• Clip

• Div

• DivFromConstant

• Exp

• Identity

• LinearInterpolate

• LogSumExp

• MatMul

• Max

• Maximum

• Mean

• Min

• Minimum

• Mul

• MulConstant

• Neg

• PowConstVar

• PowVarConst

• PowVarVar

• Prod

• RsqrtGPU

3 Current ONNX doesn’t support ignore_label for EmbedID

8.1. Introduction 1241

Chainer Documentation, Release 7.0.0b4

• Sqrt

• Square

• Sub

• SubFromConstant

• Sum

Noise

• Dropout4

Normalization

• BatchNormalization

• FixedBatchNormalization

• LocalResponseNormalization

• NormalizeL2

Pooling

• AveragePooling2D

• AveragePoolingND

• MaxPooling2D

• MaxPoolingND

• ROIPooling2D

• Unpooling2D

8.1.4 Tested Environments

• OS

– Ubuntu 16.04, 18.04

– Windows 10

• Python 3.5.5, 3.6.7, 3.7.2

• ONNX 1.4.1, 1.5.0

– opset version 7, 8, 9, 10

• Chainer stable, preview

• ONNX-Runtime 0.5.0

8.1.5 Run Test

1. Install test modules

First, test modules for testing:
4 In test mode, all dropout layers aren’t included in the exported file

1242 Chapter 8. Export Chainer to ONNX

Chainer Documentation, Release 7.0.0b4

$ pip install -e .[test]
$ pip install onnxruntime

Test on GPU environment requires Cupy:

$ pip install cupy # or cupy-cudaXX is useful

2. Run tests

Next, run pytest:

$ pytest -m "not gpu" tests/onnx_chainer_tests

on GPU environment:

$ pytest tests/onnx_chainer_tests

8.1.6 Contribution

Any contribution to ONNX-Chainer is welcom!

• Python codes follow Chainer Coding Guidelines

8.2 Module Reference

8.2.1 Export

ONNX-Chainer exports Chainer model to ONNX graph with various options.

onnx_chainer.export
onnx_chainer.export_testcase

8.2.2 Export Utilities

ONNX-Chainer provides some utility functions to help exporting.

onnx_chainer.replace_func.
fake_as_funcnode
onnx_chainer.replace_func.as_funcnode

8.2.3 Convert Utilities

These utilities helps converting from Chainer model to ONNX format, mainly used them internally.

onnx_chainer.context.Context

8.2. Module Reference 1243

ttps://docs.chainer.org/en/stable/contribution.html#coding-guidelines

Chainer Documentation, Release 7.0.0b4

onnx_chainer.onnx_helper.GraphBuilder
onnx_chainer.onnx_helper.
set_func_name
onnx_chainer.onnx_helper.
get_func_name
onnx_chainer.onnx_helper.make_node
onnx_chainer.onnx_helper.
write_tensor_pb
onnx_chainer.onnx_helper.
cleanse_param_name

8.2.4 Testing Utilities

onnx_chainer.testing.input_generator.
increasing
onnx_chainer.testing.input_generator.
nonzero_increasing
onnx_chainer.testing.input_generator.
positive_increasing

8.3 Indices and tables

• genindex

• search

1244 Chapter 8. Export Chainer to ONNX

CHAPTER

NINE

API COMPATIBILITY POLICY

This documentation explains the design policy on compatibilities of Chainer APIs. Development team should follow
this policy on deciding to add, extend, and change APIs and their behaviors.

This documentation is written for both users and developers. Users can decide the level of dependencies on Chainer’s
implementations in their codes based on this document. Developers should read through this documentation before
creating pull requests that contain changes on the interface. Note that this documentation may contain ambiguities on
the level of supported compatibilities.

9.1 Versioning and Backward Compatibility

The versioning of Chainer follows the PEP 440 and a part of Semantic versioning. See Contribution Guide for details
of versioning.

The backward compatibility is kept for revision updates and minor updates, which are applied to the stable version.
A major update from the latest release candidate basically keeps the backward compatibility, although it is not
guaranteed. Any pre-releases may break the backward compatibility.

9.2 Breaking the Compatibility

We sometimes need to break the backward compatibility to improve the framework design and to support new kinds
of machine learning methods. Such a change is only made into pre-releases (alpha, beta, and release candidate) and
sometimes into the major update.

A change that breaks the compatibility affects user codes. We try to lower the cost of adapting your code to the newer
version. The following list shows an example of what we can do to reduce the cost (Note: this is not a promise; what
kind of actions we can take depends on the situation).

• When an argument is removed from an existing API, passing the argument to the updated API will emit an error
with a special error message. The error message tells you how to fix your code.

• When a function or a class is removed, we make the current stable version emit a deprecation warning. Note that
the deprecation warning is not printed by default in Python. You have to manually turn on the deprecation
warning by warnings.simplefilter('always', DeprecationWarning).

• When a definition of a link is changed, we try to enable it to deserialize a model dumped with an older version of
Chainer. In most cases, we cannot guarantee that a model serialized with a newer version of Chainer is loadable
by an older version of Chainer.

1245

https://www.python.org/dev/peps/pep-0440/
https://semver.org/

Chainer Documentation, Release 7.0.0b4

9.3 Experimental APIs

Thanks to many contributors, we have introduced many new features to Chainer.

However, we have sometimes released new features only to later notice that their APIs are not appropriate. In par-
ticular, we sometimes know that the API is likely to be modified in the near future because we do not have enough
knowledge about how well the current design fits to the real usages. The objective of experimental APIs is to declare
that the APIs are likely to be updated in the near future so that users can decide if they can(not) use them.

Any newly added API can be marked as experimental. Any API that is not experimental is called stable in this
document.

Note: Undocumented behaviors are not considered as APIs, so they can be changed at any time (even in a revision
update). The treatment of undocumented behaviors are described in Undocumented behaviors section.

When users use experimental APIs for the first time, warnings are raised once for each experimental API, unless users
explicitly disable the emission of the warnings in advance.

See the documentation of chainer.utils.experimental() to know how developers mark APIs as experi-
mental and how users enable or disable the warnings practically.

Note: It is up to developers if APIs should be annotated as experimental or not. We recommend to make the APIs
experimental if they implement large modules or make a decision from several design choices.

9.4 Supported Backward Compatibility

This section defines backward compatibilities that revision updates must maintain.

9.4.1 Documented Interface

Chainer has the official API documentation. Many applications can be written based on the documented features.
We support backward compatibilities of documented features. In other words, codes only based on the documented
features run correctly with revision-updated versions.

Developers are encouraged to use apparent names for objects of implementation details. For example, attributes
outside of the documented APIs should have one or more underscores at the prefix of their names.

Note: Although it is not stated as a rule, we also try to keep the compatibility for any interface that looks like a stable
feature. For example, if the name of a symbol (function, class, method, attribute, etc.) is not prefixed by an underscore
and the API is not experimental, the API should be kept over revision updates even if it is not documented.

9.4.2 Undocumented behaviors

Behaviors of Chainer implementation not stated in the documentation are undefined. Undocumented behaviors are not
guaranteed to be stable between different revision versions.

Even revision updates may contain changes to undefined behaviors. One of the typical examples is a bug fix. Another
example is an improvement on implementation, which may change the internal object structures not shown in the

1246 Chapter 9. API Compatibility Policy

Chainer Documentation, Release 7.0.0b4

documentation. As a consequence, even revision updates do not support compatibility of pickling, unless the full
layout of pickled objects is clearly documented.

9.4.3 Documentation Error

Compatibility is basically determined based on the documentation, although it sometimes contains errors. It may make
the APIs confusing to assume the documentation always stronger than the implementations. We therefore may fix the
documentation errors in any updates that may break the compatibility in regard to the documentation.

Note: Developers should not fix the documentation and implementation of the same functionality at the same time
in revision updates as a “bug fix” unless the bug is so critical that no users are expected to be using the old version
correctly.

9.4.4 Object Attributes and Properties

Object attributes and properties are sometimes replaced by each other. It does not break the user codes, except the
codes depend on how the attributes and properties are implemented.

9.4.5 Functions and Methods

Methods may be replaced by callable attributes keeping the compatibility of parameters and return values. It does not
break the user codes, except the codes depend on how the methods and callable attributes are implemented.

9.4.6 Exceptions and Warnings

The specifications of raising exceptions are considered as a part of standard backward compatibilities. No exception
is raised in the future revision versions with correct usages that the documentation allows.

On the other hand, warnings may be added at any revision updates for any APIs. It means revision updates do not keep
backward compatibility of warnings.

9.5 Model Format Compatibility

Links and chains serialized by official serializers that Chainer provides are correctly loaded with the future versions.
They might not be correctly loaded with Chainer of the lower versions.

Note: Current serialization APIs do not support versioning. It prevents us from introducing changes in the layout of
objects that support serialization. We are discussing versioning in serialization APIs.

9.6 Installation Compatibility

The installation process is another concern of compatibilities.

Any changes on the set of dependent libraries that force modifications on the existing environments should be done in
pre-releases and major updates. Such changes include following cases:

9.5. Model Format Compatibility 1247

Chainer Documentation, Release 7.0.0b4

• dropping supported versions of dependent libraries (e.g. dropping cuDNN v2)

• adding new mandatory dependencies (e.g. adding h5py to setup_requires)

Note: We sometimes have to narrow the supported versions due to bugs in the specific versions of libraries. In such
a case, we may drop the support of those versions even in revision updates unless a workaround is found for the issue.

1248 Chapter 9. API Compatibility Policy

CHAPTER

TEN

CONTRIBUTION GUIDE

Chainer is an open source software hosted on GitHub and welcomes contributors to take part in the development of
the framework. This is a document aimed towards such contributors. Anyone who for instance would like to file an
issue or send a pull request (PR) is encouraged to go through it.

10.1 Issues and Pull Requests

First steps in contributing to Chainer often involve filing an issue or creating a PR. This section describes how to do
so.

10.1.1 How to File an Issue

To file an issue on GitHub, you often only need to follow instructions given by the template. Write precise explanations
on how you want Chainer to behave or include necessary and sufficient conditions to reproduce the bugs. Feature
requests should include what you want to do and preferably why. You may additionally suggest how.

Warning: If you have a question regarding the usage of Chainer, it is recommended that you send a post to
StackOverflow or the Chainer User Group instead of the issue tracker. The issue tracker is not a place to share
knowledge on practices.

10.1.2 How to Send a Pull Request

If you can write code to fix an issue, it is encouraged to send a PR.

In that case, confirm the following points before starting to write any code.

• Read Coding Guidelines and Unit Testing.

• Check the appropriate branch to which you should send a PR, following Git Branches. If you are unsure about
which branch to target, choose the master branch. The current source tree of the chosen branch is the starting
point of your change.

After writing your code (including unit tests and hopefully documentations!), send a PR on GitHub. You have to
write a precise explanation of what and how in the description; this is the first documentation of your code and an
important part of your PR.

However, even if your code is not complete, you can send a PR as a work-in-progress (WIP) PR by prefixing the PR
title with [WIP]. If you just describe the PR, the core team and other contributors can join the discussion about how
to proceed with it. WIP PRs may occasionally be useful for discussing based on concrete code.

1249

https://github.com/chainer/chainer
https://stackoverflow.com/
https://groups.google.com/forum/#!forum/chainer

Chainer Documentation, Release 7.0.0b4

When a PR is created (or updated), it is automatically tested in one of our CI environments, namely Travis CI. There
are other CI environments as well often manually triggered by the reviewer. The various CIs are required to test for
instance different platforms or CUDA environments. Once the tests in all CI environments pass and/or the PR is
approved by the reviewer, the PR will be merged.

Note: If you are planning to add a new feature or modify existing APIs, it is recommended that you open an issue
and discuss the design first. Following the consequences of the discussions, you can send a PR that is smoothly
reviewed in a shorter time.

10.1.3 Issue/Pull Request Labels

Issues and PRs are labeled on GitHub so that they can be grouped, filtered and better maintained. For instance, a
label can indicate that a ticket needs response from the PR author, or that an issue needs immediate action in case of a
critical bug. Please refer to the list of lables on GitHub.

10.2 Coding Guidelines

We follow PEP 8 and partially OpenStack Style Guidelines as basic style guidelines. Any contributions in terms of
code are expected to follow these guidelines.

You can use the autopep8 and the flake8 commands to check whether or not your code follows the guidelines.
In order to avoid confusion from using different tool versions, we pin the versions of those tools. Install them with the
following command (from within the top directory of the Chainer repository):

$ pip install -e '.[stylecheck]'

And check your code with:

$ autopep8 path/to/your/code.py
$ flake8 path/to/your/code.py

autopep8 can automatically correct Python code to conform to the PEP 8 style guide:

$ autopep8 --in-place path/to/your/code.py

The flake8 command lets you know parts of your code that are not following the style guidelines.

Note that flake8 command is not perfect. It does not check some of the style guidelines. Here is a (not-exhaustive)
list of the rules that flake8 cannot check.

• Relative imports are prohibited. [H304]

• Importing non-module symbols is prohibited.

• Import statements must be organized into three parts: standard libraries, third-party libraries, and internal im-
ports. [H306]

In addition, we restrict the usage of shortcut aliases in any global-scope code. In particular, you cannot use shortcut
aliases to designate a parent class in global-scope class definitions. When you want to make a class inheriting another
class defined in another module, you have to spell out the full module name instead of importing a module that provides
an alias.

For example, the following code is not allowed.

1250 Chapter 10. Contribution Guide

https://github.com/chainer/chainer/labels
https://www.python.org/dev/peps/pep-0008/
https://docs.openstack.org/developer/hacking/

Chainer Documentation, Release 7.0.0b4

import chainer

class MyLink(chainer.Link): ...

Instead, import chainer.link and use that.

import chainer.link

class MyLink(chainer.link.Link): ...

If you feel the code too verbose, you can also use from import or import as.

from chainer import link

class MyLink(link.Link): ...

Note: From v3.0, we allow shortcut aliases used inside of functions and methods that are not called from any global
scope code. For example, you can write chainer.Variable instead of chainer.variable.Variable
inside of functions and methods. Use of such aliases was prohibited in the past for avoiding confusing errors related
to cyclic dependencies; we relaxed the rule so that the library code looks similar to user code.

When you use such shortcut aliases, please be careful of cyclic imports. One of the typical pitfalls is a way to
import chainer.functions. An import like import chainer.functions as F within modules under
chainer.functions does not work. An import like from chainer import functions works well with
Python 3, but does not with Python 2. We recommend that you use import chainer.functions and spell out
like chainer.functions.foo in your methods.

10.3 Unit Testing

Testing is one of the most important aspects of your PR. You should write test cases and verify your implementation
by following the testing guide above. If you modify code related to existing unit tests, you must run appropriate
commands and confirm that the tests still pass.

Note that we are using pytest and the mock package for testing. They are not included in Chainer and need to be
installed as follows:

$ pip install pytest mock

10.3.1 How to Run Tests

You can run all unit tests with the following command from the root directory of the Chainer:

$ python -m pytest

Or specify a test script that you want to run:

$ python -m pytest path/to/your/test.py

You can also run all unit tests under a specific directory:

10.3. Unit Testing 1251

Chainer Documentation, Release 7.0.0b4

$ python -m pytest tests/chainer_tests/<directory name>

Some tests require CUDA and cuDNN by default. In order to run unit tests that do not require CUDA and cuDNN, set
an environment variable and filter using test marks as follows:

$ export CHAINER_TEST_GPU_LIMIT=0
$ python -m pytest path/to/your/test.py -m='not cudnn'

Some GPU tests involve multiple GPUs. If you want to run GPU tests with insufficient number of GPUs, specify the
number of available GPUs to CHAINER_TEST_GPU_LIMIT. For example, if you only have a single GPU, launch
pytest with the following command to skip multi-GPU tests:

$ export CHAINER_TEST_GPU_LIMIT=1
$ python -m pytest path/to/gpu/test.py

Some tests spend too much time. If you want to skip such tests, pass -m='not slow' option to the command:

$ python -m pytest path/to/your/test.py -m='not slow'

10.3.2 Test File and Directory Naming Conventions

Tests are found in the tests/chainer_tests directory. In order to enable the test runner to find test scripts correctly, we
are using a special naming convention for the test subdirectories and the test scripts.

• The name of each subdirectory of tests must end with the _tests suffix.

• The name of each test script must start with the test_ prefix.

When we write a test for a module, we use the appropriate path and file name for the test script whose correspondence
to the tested module is clear. For example, if you want to write a test for a module chainer.x.y.z, the test script
must be located at tests/chainer_tests/x_tests/y_tests/test_z.py.

10.3.3 How to Write Tests

There are many examples of unit tests under the tests directory, so reading some of them is a good and recommended
way to learn how to write tests for Chainer. They use the unittest package of the standard library, while some tests
are additionally using utilities from chainer.testing.

In addition to the Coding Guidelines mentioned above, the following rules apply to the test code:

• All test classes must inherit from unittest.TestCase.

• Use unittest features to write tests, except for the following cases:

– Use assert statement instead of self.assert* methods (e.g., write assert x == 1 instead of
self.assertEqual(x, 1)).

– Use with pytest.raises(...): instead of with self.assertRaises(...):.

Note: We are incrementally applying the above style. Some existing tests may be using the old style (self.
assertRaises, etc.), but all newly written tests should follow the above style.

Even if your patch includes GPU-related code, your tests should not fail without GPU capability. Test functions that
require CUDA must be tagged with the chainer.testing.attr.gpu decorator:

1252 Chapter 10. Contribution Guide

https://github.com/chainer/chainer/tree/master/tests/chainer_tests
https://github.com/chainer/chainer/tree/master/tests
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#module-unittest

Chainer Documentation, Release 7.0.0b4

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
...

@attr.gpu
def test_my_gpu_func(self):

...

The functions tagged with the gpu decorator are skipped if CHAINER_TEST_GPU_LIMIT=0 environment variable
is set. We also have the chainer.testing.attr.cudnn decorator to let pytest know that the test depends
on cuDNN. The test functions decorated with cudnn are skipped if -m='not cudnn' is given.

The test functions decorated with gpu must not depend on multiple GPUs. In order to write tests for multiple GPUs,
use the chainer.testing.attr.multi_gpu() decorator instead:

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
...

@attr.multi_gpu(2) # specify the number of required GPUs here
def test_my_two_gpu_func(self):

...

If your test requires too much time, add the chainer.testing.attr.slow decorator. The test functions deco-
rated with slow are skipped if -m='not slow' is given:

import unittest
from chainer.testing import attr

class TestMyFunc(unittest.TestCase):
...

@attr.slow
def test_my_slow_func(self):

...

Note: If you want to specify more than two attributes, use and operator like -m='not cudnn and not slow'.
See detail in the documentation of pytest.

10.4 Documentation

When adding a new feature to the framework, you should also document it in the reference so that other users can
find it in the official documentation. For example, if you are adding a new function under chainer.functions,
Functions should be updated.

The documentation source is stored under docs directory and written in reStructuredText format.

To build the documentation, you need to install Sphinx:

10.4. Documentation 1253

https://docs.pytest.org/en/latest/example/markers.html
https://github.com/chainer/chainer/tree/master/docs
http://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
http://www.sphinx-doc.org/

Chainer Documentation, Release 7.0.0b4

$ pip install sphinx sphinx_rtd_theme

Note: Docstrings (documentation comments in the source code) are collected from the installed Chainer module. If
you have edited docstrings in checked-out source files and want to see those changes reflected in the generated html,
Chainer must be installed in develop mode to see those changes reflected in the generated documentation. To do this
use pip install -e . from the the top of the Chainer directory.

Then you can build the documentation in HTML format locally:

$ cd docs
$ make html

HTML files are generated under build/html directory. Open index.html with the browser and see if it is
rendered as expected.

Note: If you are unsure about how to write the documentation or failed to build it locally, you can submit a PR
without documentation. Reviewers will help you with it.

10.5 Other Forms of Contribution

There are several other ways in which you can contribute to Chainer without directly working with the code base.
Following are such contributions.

• Sending a question/reply to StackOverflow (with chainer tag) or Chainer User Group

• Open-sourcing an external example

• Writing a post about Chainer

10.6 Development Cycle

This section explains the development process of Chainer.

10.6.1 Versioning

The versioning of Chainer follows PEP 440 and a part of Semantic versioning. The version number consists of three
or four parts: X.Y.Zw where X denotes the major version, Y denotes the minor version, Z denotes the revision
number, and the optional w denotes the pre-release suffix. While the major, minor, and revision numbers follow the
rule of semantic versioning, the pre-release suffix follows PEP 440, the Python community standards.

Note that a major update basically does not contain compatibility-breaking changes from the last release can-
didate (RC). This is not a strict rule, though; if there is a critical bug in the API that need to be fixed for the major
version, breaking changes may be introduced.

For more on backward compatibility, please refer to the API Compatibility Policy.

1254 Chapter 10. Contribution Guide

https://stackoverflow.com/
https://groups.google.com/forum/#!forum/chainer
https://www.python.org/dev/peps/pep-0440/
https://semver.org/

Chainer Documentation, Release 7.0.0b4

10.6.2 Release Cycle

Two tracks with different versions are developed in parallel. The first track is the stable versions, which is a series
of minor (occasional revision) updates for the latest major version. The second track is the development versions,
which is a series of pre-releases for the upcoming major version.

If X.0.0 is the latest major version, followed by Y.0.0 and Z.0.0, a typical release cycle timeline would be as
follows.

Date ver X ver Y ver Z
0 weeks X.0.0rc1 – –
4 weeks X.0.0 Y.0.0a1 –
8 weeks X.1.0* Y.0.0b1 –
12 weeks X.2.0* Y.0.0rc1 –
16 weeks – Y.0.0 Z.0.0a1

(* These might be revision releases)

The dates shown in the left-most column are relative to the release of X.0.0rc1. In particular, each revision/minor
release is made around four weeks after the previous one of the same major version, and the pre-release of the upcom-
ing major version is made at the same time. Whether these releases are revision or minor is determined based on the
contents of each update.

Note that there are only three stable releases for the versions X.x.x in the example table above. The number of stable
releases may vary depending the development status of the following in this case Y and its number of required beta
versions (a b followed by a number). During the parallel development of Y.0.0 and Z.0.0a1, the version Y is
treated as an almost-stable version and Z is treated as a development version.

If there is a critical bug found in X.x.x after stopping the development of version X, we may release a hot-fix for this
version at any time.

A milestone for each upcoming release is published on GitHub. The GitHub milestones are used to group issues and
PRs belonging to a release.

10.6.3 Git Branches

The master branch is used to develop pre-release versions. It means that alpha, beta, and RC updates are devel-
oped at the master branch. This branch contains the most up-to-date source tree that includes features newly added
after the latest major version.

The stable version is developed on the vN branch where “N” reflects the version number (versioned branch). For
example, v3.0.0, v3.1.0, and v3.2.0 are developed on the v3 branch.

A PR from a contributor should in general be targeting the master branch. If the change can and should be applied
to the stable version in addition, a member from the core team will make sure it is backported to be included in the
next revision update.

If the change is only applicable to the stable version and not to the master branch, please send it to the versioned
branch. We basically only accept changes to the latest versioned branch (where the stable version is developed) unless
the fix is critical.

If you want to introduce a new feature in the master branch to the current stable version, please send a backport PR
to the stable version (the latest vN branch). See the next section for details.

Note: a change that can be applied to both branches should be sent to the master branch.

10.6. Development Cycle 1255

https://github.com/chainer/chainer/milestones

Chainer Documentation, Release 7.0.0b4

10.6.4 Feature Backport Pull Requests

In general, new features in the development branch are not backported to the stable versions. If such backports can
be motivated and are necessary however, they are welcomed. In such a case, a backport PR must be sent to the latest
vN branch. Note that we do not accept any feature backport PRs to older versions because we are not running
quality assurance workflows (e.g. CI) for older versions which means that we cannot ensure that the PR is
correctly ported.

There are some rules on sending backport PRs.

• Prefix the PR title with [backport].

• Include the original PR number in the PR description, e.g. “This is a backport of #XXXX”.

• (Optional) Write in the PR description, the motivation behind the backport.

There is a backport tool maintained by the core team that automates the process of creating backport PRs conforming
to the rules above.

Note: PRs that do not include any changes/additions to APIs (e.g. bug fixes, documentation improvements) are
backported by the core team, but contributors are also welcome to do so for faster development.

1256 Chapter 10. Contribution Guide

https://github.com/chainer/backport

CHAPTER

ELEVEN

TIPS AND FAQS

11.1 It takes too long time to compile a computational graph. Can I
skip it?

Chainer does not compile computational graphs, so you cannot skip it, or, I mean, you have already skipped it :).

It seems you have actually seen on-the-fly compilations of CUDA kernels. CuPy compiles kernels on demand to make
kernels optimized to the number of dimensions and element types of input arguments. Pre-compilation is not available,
because we have to compile an exponential number of kernels to support all CuPy functionalities. This restriction is
unavoidable because Python cannot call CUDA/C++ template functions in generic way. Note that every framework
using CUDA require compilation at some point; the difference between other statically-compiled frameworks (such as
cutorch) and Chainer is whether a kernel is compiled at installation or at the first use.

These compilations should run only at the first use of the kernels. The compiled binaries are cached to the $(HOME)/
.cupy/kernel_cache directory by default. If you see that compilations run every time you run the same script,
then the caching is failed. Please check that the directory is kept as is between multiple executions of the script. If your
home directory is not suited to caching the kernels (e.g. in case that it uses NFS), change the kernel caching directory
by setting the CUPY_CACHE_DIR environment variable to an appropriate path. See CuPy Overview for more details.

11.2 MNIST example does not converge in CPU mode on Mac OS X

Note: Mac OS X is not an officially supported OS.

Many users have reported that MNIST example does not work correctly when using vecLib as NumPy backend on
Mac OS X. vecLib is the default BLAS library installed on Mac OS X.

We recommend using other BLAS libraries such as OpenBLAS.

To use an alternative BLAS library, it is necessary to reinstall NumPy. Here are instructions to install NumPy with
OpenBLAS using Conda.

$ conda install -c conda-forge numpy

Otherwise, to install NumPy without Conda, you may need to install NumPy from source.

Use Homebrew to install OpenBLAS.

$ brew install openblas

Uninstall existing NumPy installation

1257

https://docs-cupy.chainer.org/en/stable/overview.html
http://www.openblas.net/
https://conda.io/docs/user-guide/install/index.html
https://brew.sh/

Chainer Documentation, Release 7.0.0b4

$ pip uninstall numpy

You’ll to create a file called .numpy-site.cfg in your home (~/) directory with the following:

[openblas]
libraries = openblas
library_dirs = /usr/local/opt/openblas/lib
include_dirs = /usr/local/opt/openblas/include

Install NumPy from the source code

pip install --no-binary :all: numpy

Confirm NumPy has been installed with OpenBLAS by running this command:

$ python -c "import numpy; print(numpy.show_config())"

You should see the following information:

blas_mkl_info:
NOT AVAILABLE

blis_info:
NOT AVAILABLE

openblas_info:
libraries = ['openblas', 'openblas']
library_dirs = ['/usr/local/opt/openblas/lib']
language = c
define_macros = [('HAVE_CBLAS', None)]
runtime_library_dirs = ['/usr/local/opt/openblas/lib']

...

Once this is done, you should be able to import chainer without OpenBLAS errors.

For details of this problem, see issue #704.

11.3 How do I fix InvalidType error?

Chainer raises an InvalidType exception when invalid inputs are given to Functions. If you got InvalidType,
generally you need to check if dtype and/or shape of inputs are valid for the function.

Here are some examples of InvalidType errors:

import chainer.functions as F
import numpy as np

x = np.arange(10) - 5
F.relu(x)

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType:
Invalid operation is performed in: ReLU (Forward)

Expect: in_types[0].dtype.kind == f
Actual: i != f

1258 Chapter 11. Tips and FAQs

https://github.com/chainer/chainer/issues/704

Chainer Documentation, Release 7.0.0b4

In this case, kind of in_types[0] (which means the first input to the function, x) is expected to be f (floating-
point), whereas the input was i (signed integer). You need to cast the input appropriately before passing to the function
(e.g., x.astype(np.float32)).

import chainer.functions as F
import numpy as np

x = np.ones((4, 4))
y = np.ones((3, 3))
F.concat([x, y])

Traceback (most recent call last):
...
chainer.utils.type_check.InvalidType:
Invalid operation is performed in: Concat (Forward)

Expect: in_types[0].shape[0] == in_types[1].shape[0]
Actual: 4 != 3

In this case, the function expects that x.shape[0] is equal to y.shape[0], but actually it was 4 and 3, respec-
tively.

See Type Checks for the detailed behavior of type checking system in Chainer.

11.4 How do I accelerate my model using Chainer Backend for Intel
Architecture?

Follow these steps to utilize Chainer Backend for Intel Architecture in your model.

11.4.1 Install Chainer Backend for Intel Architecture

The following environments are recommended by Chainer Backend for Intel Architecture.

• Ubuntu 14.04 / 16.04 LTS (64-bit) and CentOS 7 (64-bit)

• Python 2.7.6+, 3.5.2+, and 3.6.0+

On recommended systems, you can install Chainer Backend for Intel Architecture wheel (binary distribution) by:

$ pip install 'ideep4py<2.1'

Note: ideep4py v1.0.x is incompatible with v2.0.x, and is not supported in Chainer v5.0 or later.

11.4.2 Enable Chainer Backend for Intel Architecture Configuration

Currently Chainer Backend for Intel Architecture is disabled by default because it is an experimental feature. You need
to manually enable it by changing chainer.config.use_ideep configuration to 'auto'. See Configuring
Chainer for details.

The easiest way to change the configuration is to set environment variable as follows:

11.4. How do I accelerate my model using Chainer Backend for Intel Architecture? 1259

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.kind.html#numpy.dtype.kind
https://github.com/intel/ideep

Chainer Documentation, Release 7.0.0b4

export CHAINER_USE_IDEEP="auto"

You can also use chainer.using_config() to change the configuration.

x = np.ones((3, 3), dtype='f')
with chainer.using_config('use_ideep', 'auto'):

y = chainer.functions.relu(x)
print(type(y.data))

<class 'ideep4py.mdarray'>

11.4.3 Convert Your Model to Chainer Backend for Intel Architecture

You need to call model.to_intel64() (in the same way you call model.to_gpu() to transfer your link to
GPU) to convert the link to Chainer Backend for Intel Architecture.

11.4.4 Run Your Model

Now your model is accelerated by Chainer Backend for Intel Architecture!

Please note that not all functions and optimizers support Chainer Backend for Intel Architecture acceleration. Also
note that Chainer Backend for Intel Architecture will not be used depending on the shape and data type of the input
data.

11.5 My training process gets stuck when using MultiprocessIterator

When you are using OpenCV somewhere in your code and the MultiprocessIterator is used in the training
code, the training loop may get stuck at some point. In such situation, there are several workarounds to prevent the
process got stuck.

1. Set the environment variable as follows: OMP_NUM_THREADS=1

2. Add cv2.setNumThreads(0) right after import cv2 in your training script.

3. Use MultithreadIterator instead of MultiprocessIterator.

This problem is originally reported here: A training loop got stuck in a certain condition with multi-processing updater
and opencv for Chainer and the discussion on related problems is still going here: OpenCV + Python multiprocessing
breaks on OSX.

1260 Chapter 11. Tips and FAQs

https://github.com/chainer/chainer/issues/2903
https://github.com/chainer/chainer/issues/2903
https://github.com/opencv/opencv/issues/5150
https://github.com/opencv/opencv/issues/5150

CHAPTER

TWELVE

PERFORMANCE BEST PRACTICES

This guide explains some tips and advice for maximizing the performance of Chainer.

12.1 Use the Latest Version

It is generally recommended that you use the latest version of Chainer and its dependent libraries (CUDA, cuDNN,
iDeep, etc.). Some of the new features and performance optimizations introduced in newer versions of dependent
libraries may not be available in older versions of Chainer. Also, Chainer itself is incrementally being improved to
provide better performance.

If you are using Chainer v4 or later, you can check the version configuration by:

chainer.print_runtime_info()

Chainer: 4.0.0
NumPy: 1.14.3
CuPy:

CuPy Version : 4.0.0
CUDA Root : /usr/local/cuda
CUDA Build Version : 9000
CUDA Driver Version : 9000
CUDA Runtime Version : 9000
cuDNN Build Version : 7100
cuDNN Version : 7100
NCCL Build Version : 2102

Generally, the Chainer team is maintaining the API between minor updates (e.g., v4.0 to v4.1) so that users can upgrade
Chainer without modifying their code (see API Compatibility Policy for our policy). As for major updates, please refer
to the Upgrade Guide to understand what should be done for migration.

12.2 Enable Hardware Accelerations

12.2.1 Using GPU

In most cases, running on GPU will give you better performance than on CPU. When using GPU, also make sure to
install cuDNN, which is a library to accelerate deep neural network computations.

Note: You don’t have to manually install cuDNN if you are using CuPy wheels, which includes the latest version of
cuDNN. Check the output of chainer.print_runtime_info(); if you see the cuDNN version number, it is

1261

https://docs-cupy.chainer.org/en/latest/install.html#install-cupy-from-source

Chainer Documentation, Release 7.0.0b4

installed properly and will be used by Chainer automatically.

Note: If you wish, you can manually disable use of cuDNN using chainer.config.use_cudnn configuration
option. See Configuring Chainer for details.

12.2.2 Using CPU

If you are running Chainer on CPU, you can use iDeep to utilize vector instructions of CPU. See Tips and FAQs for
steps to run your model with iDeep.

You can also improve performance by building NumPy linked to Intel MKL. See Numpy/Scipy with Intel® MKL and
Intel® Compilers for the detailed instructions.

Note: If you installed numpy package using Anaconda, you may already have MKL-linked NumPy. Check the output
of numpy.show_config() to see what linear algebra library is linked.

Note: Use of iDeep and MKL-linked NumPy are orthogonal. You can use both of them at once to maximize the
performance.

12.3 Migrate Data Preprocessing Code from NumPy to CuPy

If you are preprocessing your dataset or running data augmentation using NumPy, you may be able to use CuPy as a
substitution to improve performance.

Note: It is not always efficient to use CuPy instead of NumPy, especially when the computation is not very heavy, or
it cannot be done in batch.

12.4 Avoid Data Transfer

If you are using GPU, be aware of data transfer between CPU and GPU. For example, printing chainer.
Variable on GPU (e.g., for debugging) will cause memory transfer from GPU to CPU, which will incur syn-
chronization overhead.

You can use NVIDIA Visual Profiler to diagnose this kind of issue.

12.5 Optimize cuDNN Convolution

12.5.1 Workspace Size

Some convolution algorithms in cuDNN use additional GPU memory as a temporary buffer. This is called
“workspace,” and users can adjust the upper limit of its size. By increasing the limit of workspace size, cuDNN
may be able to use better (i.e., memory consuming but faster) algorithm.

1262 Chapter 12. Performance Best Practices

https://github.com/intel/ideep
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/articles/numpyscipy-with-intel-mkl
https://software.intel.com/en-us/articles/numpyscipy-with-intel-mkl
https://anaconda.org/anaconda/numpy
https://docs.nvidia.com/cuda/profiler-users-guide/

Chainer Documentation, Release 7.0.0b4

The default size (in bytes) is:

>>> chainer.backends.cuda.get_max_workspace_size()
8388608

and can be adjusted using chainer.backends.cuda.set_max_workspace_size().

Maximum required workspace size may vary depending on various conditions such as GPU hardware and batch size
of inputs.

12.5.2 Auto-Tuner

Some convolution algorithms in cuDNN support the auto-tuner feature that finds the fastest convolution algorithm for
given inputs. You can turn on this feature by setting autotune configuration to True.

See Configuring Chainer for detailed descriptions.

Note: Auto-tuner tries to find the best algorithm for every first observation of the input shape combination. Therefore,
the first batch will become slower when auto-tuner is enabled. The result of auto-tuner is cached on memory so that
it can be reused for data with the same input shape combination. In other words, algorithm selected in the first batch
will be reused for the second and later batches, as long as the input shape combination is the same.

If you set autotune configuration to False, the default convolution algorithm will always be selected, regardless
of the previous auto-tuner results.

Note: Auto-tuner always use the maximum workspace size.

12.6 Fine-Tune Configuration

There are some Chainer configuration values that affect performance. Although the default values work well in most
cases, you can adjust the following configurations for better performance.

• enable_backprop

If you are running your model for inference (i.e., you don’t have to use back propagation because you are
not training the model), you can set this configuration to False to improve performance and reduce memory
consumption.

• type_check

By default, Chainer checks the integrity between input data and functions. This makes possible to display
friendly message when, for example, data with invalid dtype or shape is given to a function. By setting this
configuration to False, you can let Chainer skip such check to improve performance. It is recommended that
you turn off the check only for well-tested code and input data.

See Configuring Chainer for detailed descriptions.

12.7 Load Datasets Concurrently

If loading process of your dataset is I/O-bound or CPU-bound, consider using chainer.iterators.
MultithreadIterator or chainer.iterators.MultiprocessIterator to load dataset concurrently

12.6. Fine-Tune Configuration 1263

Chainer Documentation, Release 7.0.0b4

using multiple threads or processes, instead of chainer.iterators.SerialIterator which works in a sin-
gle thread in a single process.

12.8 Use Multiple GPUs

You can utilize multiple GPUs to make the training process faster.

For data parallelism, you can use chainer.training.updaters.ParallelUpdater or chainer.
training.updaters.MultiprocessParallelUpdater instead of chainer.training.updaters.
StandardUpdater. For model parallelism, you need to manually transfer each chainer.Link in your model
to each device.

See Using GPU(s) in Chainer for the working examples of each case.

12.9 Use Multiple Nodes

You can scale-out the training process of your Chainer model to multiple-node cluster by using ChainerMN module
which enables distributed deep learning.

1264 Chapter 12. Performance Best Practices

CHAPTER

THIRTEEN

UPGRADE GUIDE

This is a list of changes introduced in each release that users should be aware of when migrating from older versions.
Most changes are carefully designed not to break existing code; however changes that may possibly break them are
highlighted with a box.

13.1 Chainer v7

13.1.1 Dropping Support of Python 2.7

In Chainer v7, Python 2.7 is no longer supported as it reaches its end-of-life (EOL) in January 2020. Python 3.5.1 is
the minimum Python version supported by Chainer v7. Please upgrade the Python version if you are using Python 2.7
to any later versions listed under Installation.

13.1.2 CuPy v7

Chainer v7 requires CuPy v7 if you need GPU support. Please see the Upgrade Guide for CuPy v7 for details.

13.2 Chainer v6

13.2.1 Dropping Support of Python 3.4

In Chainer v6, Python 3.4 is no longer supported as it reaches its end-of-life (EOL) in March 2019. Python 3.5.1 is
the minimum Python 3 version supported by Chainer v6. Please upgrade the Python version if you are using Python
3.4 to any later versions listed under Installation.

13.2.2 CuPy Needs To Be Manually Updated

Prior to Chainer v6, CuPy is automatically updated to the appropriate version when updating Chainer (i.e., pip
install -U chainer updates CuPy package). In Chainer v6, Chainer does not perform this automatic update.
You need to manually update CuPy package when updating Chainer package.

This is because the automatic update made users difficult to switch between CuPy packages (e.g. cupy-cuda90 and
cupy-cuda92 etc). See #5425 for details.

1265

https://docs-cupy.chainer.org/en/latest/upgrade.html#cupy-v7
https://github.com/chainer/chainer/pull/5425

Chainer Documentation, Release 7.0.0b4

13.2.3 Deprecation Notice on Communicators and Old NCCL versions

Chainer v6 only supports NCCL 2.3 and newer versions. Old NCCL versions are to be deprecated and will be removed
in future versions. As of old NCCL deprecation, several communicators built for them are to be deprecated as well:

• hierarchical

• two_dimensional

• single_node

They will be removed in future versions. Also, default communicator changed to pure_nccl from hierarchical.

13.2.4 CuPy v6

Chainer v6 requires CuPy v6 if you need GPU support. Please see the Upgrade Guide for CuPy v6 for details.

13.3 Chainer v5

13.3.1 ChainerMN Became Part of Chainer

ChainerMN, which enables multi-node distributed deep learning using Chainer, has been merged to Chainer v5.

Prior to Chainer v4, ChainerMN was provided as a separate chainermn package. In Chainer v5, ChainerMN
now became a part of Chainer; ChainerMN will be installed just by installing chainer package. If you are using
chainermn package, make sure to remove it by pip uninstall chainermn before upgrading to Chainer v5
or later.

For documentation of ChainerMN, see Distributed Deep Learning with ChainerMN.

13.3.2 Use forward Instead of __call__ in Links

Prior to Chainer v5, __call__ method is used to define the behavior of Link. In Chainer v5, forward method
has been introduced, and is now recommended that you use it instead of __call__. The base class (Link) provides
__call__ method implementation that invokes forward method defined in the subclass; the only thing you need
to do is to rename the method name (replace def __call__(...) with def forward(...)).

For backward compatibility, you can still use __call__ to define your own link. However, new features introduced
in Chainer v5 (e.g., LinkHook) may not be available for such links.

13.3.3 FunctionNode Classes are Hidden from chainer.functions

Prior to Chainer v5, FunctionNode classes (e.g., chainer.functions.MaxPooling2D) are exposed under
chainer.functions. In Chainer v5, these classes are hidden from chainer.functions. Use the equivalent
wrapper functions listed in Functions (e.g., chainer.functions.max_pooling_2d()) instead.

Some wrapper functions now provide options to access internal states to avoid directly using FunctionNode classes.

• chainer.functions.max_pooling_2d(): return_indices

• chainer.functions.max_pooling_nd(): return_indices

• chainer.functions.dropout(): mask, return_mask

• chainer.functions.gaussian(): eps, return_eps

1266 Chapter 13. Upgrade Guide

https://docs-cupy.chainer.org/en/latest/upgrade.html#cupy-v6

Chainer Documentation, Release 7.0.0b4

For example, suppose your existing code needs to access MaxPooling2D.indexes to later perform upsampling:

p = F.MaxPooling2D(2, 2)
h = p.apply((x,))[0]
...
y = F.upsampling_2d(h, p.indexes, ksize=2)

The above code may raise this error in Chainer v5:

AttributeError: module 'chainer.functions' has no attribute 'MaxPooling2D'

You can rewrite the above code using return_indices option of chainer.functions.
max_pooling_2d():

h, indices = F.max_pooling_2d(x, 2, 2, return_indices=True)
...
y = F.upsampling_2d(h, indices, ksize=2)

13.3.4 Persistent Values are Copied in Link.copyparams

chainer.Link.copyparams() is a method to copy all parameters of the link to another link. This method can
be used, for example, to copy parameters between two chains that partially share the same network structure to reuse
pretrained weights.

Prior to Chainer v5, only parameters are copied between links. In Chainer v5, in addition to parameters, persistent
values (see Serializers – saving and loading for details) are also copied between links. This is especially beneficial
when copying parameters of BatchNormalization, as it uses persistent values to record running statistics.

You can skip copying persistent values by passing newly introduced copy_persistent=False option to
copyparams() so that it behaves as in Chainer v4.

13.3.5 Updaters Automatically Call Optimizer.new_epoch

This change should affect only a minority of users (who call new_epoch() while using a trainer, or who implement
their own Updater class).

Optimizers provide new_epoch() method, which can be used to change the behavior of optimizers depending on
the current epoch number. Prior to Chainer v5, this method was expected to be called by users. In Chainer v5, updaters
have been changed to call new_epoch() automatically. If you have been calling new_epoch() method manually
while using a trainer (or an updater), you may need any of the following fixes:

• Pass auto_new_epoch=False to the constructor of the updater (e.g., StandardUpdater) to stop
new_epoch() from being called automatically by the updater.

• Avoid calling new_epoch() method manually.

If you implement your own Updater class, you may need to update your code to automatically call new_epoch()
(you can refer to the changes introduced in #4608 to understand how to fix your updater).

13.3.6 Extending the Backend Namespace

In addition to chainer.backends, we introduced chainer.backend. This subpackage contains utility func-
tions that span several backends. For instance, it includes chainer.backend.get_array_module() which
used to be defined in chainer.backends.cuda.get_array_module(). Both can be used but the latter will
be deprecated.

13.3. Chainer v5 1267

https://github.com/chainer/chainer/pull/4608

Chainer Documentation, Release 7.0.0b4

13.3.7 get_device_from_array Returns Actual Device for Empty Arrays

Prior to Chainer v5, chainer.backends.cuda.get_device_from_array() returned chainer.
backends.cuda.DummyDeviceType if the array is empty. In Chainer v5, it has been changed to return the
actual cupy.cuda.Device object:

>>> x = cupy.array([])
>>> chainer.backends.cuda.get_device_from_array(x)
<CUDA Device 0>

13.3.8 Update of Docker Images

Chainer official Docker images (see Installation for details) are now updated to use CUDA 9.2 and cuDNN 7.

To use these images, you may need to upgrade the NVIDIA driver on your host. See Requirements of nvidia-docker
for details.

13.3.9 CuPy v5

Chainer v5 requires CuPy v5 if you need GPU support. Please see the Upgrade Guide for CuPy v5 for details.

13.4 Chainer v4

13.4.1 Introduction of Backend Namespace

We introduced chainer.backends subpackage for future support of various backend libraries other than NumPy
and CuPy. By this change, chainer.cuda module is now moved to chainer.backends.cuda.

This does not break the existing code; you can safely continue to use chainer.cuda (e.g., from chainer
import cuda) but it is now encouraged to use from chainer.backends import cuda instead.

13.4.2 Namespace Changes for Updaters

chainer.training.StandardUpdater and chainer.training.ParallelUpdater are now
moved to chainer.training.updaters.StandardUpdater and chainer.training.updaters.
ParallelUpdater respectively, to align with the namespace convention of other subpackages. See the discussion
in #2982 for more details.

This change does not break the existing code; you can safely continue to use updater classes directly under chainer.
training but it is now encouraged to use chainer.training.updaters instead.

13.4.3 Namespace Changes for Optimizer Hooks

Optimizer hook functions are moved from chainer.optimizer.* to chainer.optimizer_hooks.

*. For example, chainer.optimizer.WeightDecay is now located chainer.optimizer_hooks.
WeightDecay .

If the existing code is using hooks directly under chainer.optimizer, DeprecationWarning will be shown.
You are now encouraged to use chainer.optimizer_hooks instead.

1268 Chapter 13. Upgrade Guide

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.cuda.Device.html#cupy.cuda.Device
https://github.com/NVIDIA/nvidia-docker/wiki/CUDA#requirements
https://docs-cupy.chainer.org/en/latest/upgrade.html#cupy-v5
https://github.com/chainer/chainer/pull/2982

Chainer Documentation, Release 7.0.0b4

13.4.4 Prohibition of Mixed Use of Arrays on Different Devices in Function Argu-
ments

Argument validation of functions is now strictened to check device consistency of argument variables to provide better
error messages to users. Suppose the following code:

v1 = chainer.Variable(np.arange(10, dtype=np.float32)) # CPU
v2 = chainer.Variable(cupy.arange(10, dtype=cupy.float32)) # GPU

The line below raises an exception, because arguments are on different device.
F.maximum(v1, v2)

Prior to v4, the above code raises an exception like ValueError: object __array__ method not
producing an array, which was difficult to understand. In v4, the error message would become TypeError:
incompatible array types are mixed in the forward input (Maximum). This kind of error
usually occurs by mistake (for example, not performing to_gpu for some variables).

Attention: As the argument validation is strictened, call of functions intentionally mixing NumPy/CuPy arrays in
arguments will not work in Chainer v4. Please transfer all arrays to the same device before calling functions.

13.4.5 References to Function Nodes Not Retained in TimerHook and CupyMemo-
ryProfilerHook

To reduce memory consumption, references to the function nodes will no longer be retained in the chainer.
function_hooks.CupyMemoryProfileHook and chainer.function_hooks.TimerHook. See the
discussion in #4300 for more details.

Attention: The existing code using function nodes retained in call_history attribute of these hooks will
not work. The first element of call_history became the name of the function, instead of the function node
instance itself. You can define your own function hook if you need to access the function node instances.

13.4.6 Update of Docker Images

Chainer official Docker images (see Installation for details) are now updated to use CUDA 8.0 and cuDNN 6.0. This
change was introduced because CUDA 7.5 does not support NVIDIA Pascal GPUs.

To use these images, you may need to upgrade the NVIDIA driver on your host. See Requirements of nvidia-docker
for details.

13.4.7 CuPy v4

Chainer v4 requires CuPy v4 if you need GPU support. Please see the Upgrade Guide for CuPy v4 for details.

13.4. Chainer v4 1269

https://github.com/chainer/chainer/pull/4300
https://github.com/NVIDIA/nvidia-docker/wiki/CUDA#requirements
https://docs-cupy.chainer.org/en/latest/upgrade.html#cupy-v4

Chainer Documentation, Release 7.0.0b4

13.5 Chainer v3

13.5.1 Introduction of New-style Functions

This release introduces new-style functions (classes inheriting from FunctionNode) that support double backward
(gradient of gradient). See the Release Note for v3.0.0 for the usage of this feature.

Many of Functions are already migrated to new-style, although some of functions are still old-style (classes inheriting
from Function). We are going to migrate more old-style functions to new-style in upcoming minor releases.

This does not break the existing code. Old-style functions (classes inheriting from Function) are still supported in
v3 and future versions of Chainer.

If you are going to write new functions, it is encouraged to use FunctionNode to support double backward.

Attention: Users relying on undocumented function APIs (directly instantiating old-style classes) may experi-
ence an error like TypeError: 'SomeFunction' object is not callable after upgrading to v3.
Please use the function APIs documented in Functions.

13.5.2 Changed Behavior of matmul Function

The behavior of chainer.functions.matmul() has been changed to behave like the corresponding NumPy
function (numpy.matmul()). See the discussion in #2426 for more details.

Attention: The existing code using chainer.functions.matmul() may require modification to work
with Chainer v3.

Also note that chainer.functions.batch_matmul() is now deprecated by this change. You can rewrite it
using chainer.functions.matmul().

13.5.3 Removed use_cudnn Argument in spatial_transformer_grid and spa-
tial_transformer_sampler Functions

use_cudnn argument has been removed from chainer.functions.spatial_transformer_grid() and
chainer.functions.spatial_transformer_sampler(). See the discussion in #2955 for more details.

Attention: The existing code using use_cudnn argument of chainer.
functions.spatial_transformer_grid() and chainer.functions.
spatial_transformer_sampler() require modification to work with Chainer v3. Please use the
configuration context (e.g., with chainer.using_config('use_cudnn', 'auto'):) to enable or
disable use of cuDNN. See Configuring Chainer for details.

13.5.4 CuPy v2

Chainer v3 requires CuPy v2 if you need GPU support. Please see the Upgrade Guide for CuPy v2 for details.

1270 Chapter 13. Upgrade Guide

https://github.com/chainer/chainer/releases/tag/v3.0.0
https://github.com/chainer/chainer/pull/2426
https://github.com/chainer/chainer/pull/2955
https://docs-cupy.chainer.org/en/latest/upgrade.html#cupy-v2

Chainer Documentation, Release 7.0.0b4

13.6 Chainer v2

See Upgrade Guide from v1 to v2 for the changes introduced in Chainer v2.

13.6.1 Upgrade Guide from v1 to v2

This documentation provides detailed information of differences between Chainer v1 and v2. You will know by
reading it which part of your code is required (or recommended) to be fixed when you upgrade Chainer from v1 to v2.

• CuPy

– CuPy has been separated from Chainer into a separate package

• Global configurations

– Training mode is configured by a thread-local flag

– Configurations are added and replace some of existing global flags

• Variable

– Volatile flag is removed

– Variable is not a part of a computational graph anymore

– Parameter has to be an instance of Parameter class

– Small changes to Variable

• Function

– The force_tuple option of split_axis is True by default

– Type check APIs are updated to enable lazy building of the error messages

– Methods to release unneeded arrays are added

• Link/Chain/ChainList

– wscale option is removed from links

– bias option is removed from links

– The bias vector is enabled by default in N-dimensional convolution links

– init_weight function is removed

– The order of arguments of GRU is changed

– The default value of the forget bias for LSTM and StatelessLSTM is changed to 1

– The interfaces of GRU and LSTM are aligned

– Aliases of links in chainer.functions are removed

– Parameter link is removed

– New-style parameter registration APIs are added to Link

– New-style child link registration APIs are added to Chain

– The input-size placeholder of links are made optional

• Optimizer

13.6. Chainer v2 1271

Chainer Documentation, Release 7.0.0b4

– Deprecated methods of Optimizer are removed

– GradientMethod uses Link.cleargrads instead of Link.zerograds by default

– GradientMethod is redesigned to allow parameter-specific update rules

• Serializer

– None is serializable

• Trainer and Extension

– Updater and Evaluator pass raw data arrays to the loss function

– trigger option is removed from snapshot and snapshot_object

– Extension.invoke_before_training is removed

– The dump_graph extension dumps the valid graph only at its first invocation

• Reporter

– When a variable is reported, the variable is copied with the graph purged

• Other utilities

– Some obsolete classes and functions are removed

CuPy

CuPy has been separated from Chainer into a separate package

CuPy, which was originally a part of Chainer, has been separated into a different Python package since Chainer v2. It
changes the way to set up Chainer with CUDA support. In particular, you have to separately install cupy package to
enable CUDA support. See Installation for the recommended installation steps.

Fortunately, there is no need of updating your source code to catch up with this change.

Global configurations

Training mode is configured by a thread-local flag

In Chainer v2, the concept of training mode is added. It is represented by a thread-local flag chainer.config.
train, which is a part of the unified configuration. When chainer.config.train is True, functions of
Chainer run in the training mode, and otherwise they run in the test mode. For example, BatchNormalization
and dropout() behave differently in each mode.

In Chainer v1, such a behavior was configured by the train or test argument of each function. This train/test
argument has been removed in Chainer v2. If your code is using the train or test argument, you have to update
it. In most cases, what you have to do is just removing the train / test argument from any function calls.

Example

Consider the following model definition and the code to call it in test mode written for Chainer v1.

Chainer v1
import chainer.functions as F

(continues on next page)

1272 Chapter 13. Upgrade Guide

https://docs-cupy.chainer.org/en/latest/index.html#module-cupy

Chainer Documentation, Release 7.0.0b4

(continued from previous page)

class MyModel(chainer.Link):
...

def __call__(self, x, train=True):
return f(F.dropout(x, train=train))

m = MyModel(...)
y = m(x, train=False)

In Chainer v2, it should be updated into the following code:

Chainer v2
import chainer.functions as F

class MyModel(chainer.Link):
...

def __call__(self, x):
return f(F.dropout(x))

m = MyModel(...)
with chainer.using_config('train', False):

y = m(x)

Configurations are added and replace some of existing global flags

There are many global settings moved to the unified configuration other than the training mode. Following is the
complete list of the configuration entries that have corresponding features in Chainer v1.

chainer.config.cudnn_deterministic It is corresponding to the deterministic argument of some
convolution functions in Chainer v1. This argument has been removed since Chainer v2. If you are using this
argument, you have to use the chainer.config.cudnn_deterministic flag to change the behavior of
the convolution functions.

chainer.config.debug It is corresponding to the debug mode in Chainer v1, which was configured by
set_debug() and extracted by is_debug(). These functions are also available in Chainer v2, so you
basically do not need to update the code related to the debug mode.

chainer.config.enable_backprop It is corresponding to the backprop mode in Chainer v1. The functions
no_backprop_mode() and force_backprop_mode() are still available in Chainer v2, which auto-
matically turns on/off the enable_backprop flag. One important difference from Chainer v1 is that the
volatile flag is removed from Variable. Therefore, there are more situations that you need to modify
the enable_backprop flag.

chainer.config.keep_graph_on_report This flag configures whether or not to keep the computational
graph alive for a reported variable. In Chainer v2, when a Variable object is reported by report(), a copy
of the variable isolated from the computational graph is created and stored by default. Setting True to this flag,
you can change this behavior and then the original Variable object is stored as is. See When a variable is
reported, the variable is copied with the graph purged for the details.

chainer.config.train It is corresponding to the train or test argument of some functions in Chainer v1.
This argument has been removed since Chainer v2. If you are using this argument, you have to use the
chainer.config.train flag instead. See Training mode is configured by a thread-local flag for more
details.

13.6. Chainer v2 1273

Chainer Documentation, Release 7.0.0b4

chainer.config.type_check It is corresponding to the Function.type_check_enable flag. If your
code touches this flag, you have to use chainer.config.type_check instead. Note that the environment
variable CHAINER_TYPE_CHECK is still available in Chainer v2, so if you are only using the environment
variable, there is no need of updating your code.

chainer.config.use_cudnn It is corresponding to the use_cudnn argument of many functions that have
cuDNN implementations. This argument has been removed since Chainer v2. If you are using this argument,
you have to use the chainer.config.use_cudnn flag instead. Note that this flag is ternary, not binary.
See Configuring Chainer for more details.

These configurations can be modified in two ways.

• Simply substituting a new value to an entry, like chainer.config.train = False.

• Using the chainer.using_config context manager. It can be used with the with statement of Python as
follows:

with chainer.using_config('train', False):
do something # this code runs with chainer.config.train == False

It recovers the original configuration after quitting the with block.

The chainer.config manages the thread-local configuration. You can also set the global configuration by mod-
ifying chainer.global_config. Note that the global configuration is used only if the entry of the thread-local
configuration is not explicitly set up.

Variable

Volatile flag is removed

The Variable.volatile flag has been removed since Chainer v2.

Instead, the configuration chainer.config.enable_backprop can be used to enable/disable the automatic
differentiation feature. If it is True, Chainer always creates a computational graph on the forward propagation,
which corresponds to passing non-volatile variables in Chainer v1. Otherwise, Chainer does not create a graph, which
corresponds to passing volatile variables in Chainer v1. The biggest difference is that enable_backprop is a
thread-local flag, whereas volatile was a flag local to each Variable object. Note that enable_backprop
flag has already existed in Chainer v1, which took effect only if all the inputs to the function have volatile ==
'auto'.

The chainer.config.enable_backprop flag can be modified directly or by using using_config(). See
Configuring Chainer for details. There is also a convenience function, no_backprop_mode(), to turn off the flag.

If you are using the Variable.volatile flag, you have to stop setting this flag (it will not take effect), and set the
enable_backprop flag instead.

Example

Let model be your model, and consider the following code that calls it in volatile mode.

Chainer v1
x_data = ... # ndarray
x = chainer.Variable(x_data, volatile=True)
y = model(x)

In Chainer v2, it should be updated as follows.

1274 Chapter 13. Upgrade Guide

Chainer Documentation, Release 7.0.0b4

Chainer v2
x_data = ... # ndarray
x = chainer.Variable(x_data)
with chainer.no_backprop_mode():

y = model(x)

Variable is not a part of a computational graph anymore

The Variable class has been separated into two distinct classes, the Variable class and the VariableNode
class, since Chainer v2. Every Variable object owns its own VariableNode object. A computational graph
consists of Function objects and VariableNode objects. When one applies a Function to a Variable, the
VariableNode object of the variable is extracted and set to one of the inputs of the function.

Note that the underlying data array of the variable is still held by the Variable object. It allows each Function
implementation to release unneeded arrays from the computational graph, resulting in greatly reduced memory con-
sumption.

This change does not affect most users’ code. If you are directly traversing the computational graph by yourself or
modifying the graph ad-hoc, you may have to update your code. In most cases, it is enough to just change Variable
into VariableNode in the code traversing the computational graph.

Parameter has to be an instance of Parameter class

Chainer v2 has a subclass of Variable called Parameter. This class has an interface convenient on setting up a
parameter variable registered to Link.

You basically do not need to update your code because Link.add_param() creates a Parameter object in
Chainer v2. There is a new recommended way of registering parameters to a link in Chainer v2, though. See here for
the recommended way of parameter registration.

Small changes to Variable

There are some changes on the interface and specification of methods.

• len(variable) returns the length of the first axis of the underlying array in Chainer v2. This is equivalent
to len(variable.data). It is different from the behavior of Chainer v1, in which len returned the total
number of elements in the underlying array.

• repr(variable) returns a NumPy-like text representation of the underlying array in Chainer v2. In Chainer
v1, it just returns a string that shows the name of the variable.

Function

The force_tuple option of split_axis is True by default

In Chainer v2, the force_tuple argument of functions.split_axis() is set to True by default. Therefore,
it always returns a tuple regardless of the number of sections made after the split. It was False by default in Chainer
v1.

13.6. Chainer v2 1275

Chainer Documentation, Release 7.0.0b4

Type check APIs are updated to enable lazy building of the error messages

In Chainer v2, the type check APIs are updated so that the overhead of checking types is greatly reduced. In order to
achieve the overhead reduction, some APIs are changed.

If you have custom Function implementations that do type checking, you have to update your code. The follow-
ing list shows which part has to be updated.

• Use utils.type_check.eval() instead of Expr.eval.

• Use utils.type_check.make_variable() to create a utils.type_check.Variable object in-
stead of directly constructing it by yourself.

• Stop using .name attribute of any expression.

Background of this change: In Chainer v1, the type checking APIs build an abstract syntax tree (AST) based on each
expression that tests some condition. The AST is used to emit a kind error message. However, building an AST
requires constructions of many Python objects, which adds large Python overheads. In Chainer v2, the Function.
type_check_forward() method is called once or twice. At the first call, the type checking APIs run in light-
weight mode, where it does not build an AST and just checks the condition. The second call is made only if there is a
test that fails, where it builds an AST. This change makes the ordinary path of running the type checking much faster,
while keeping the kind error messages.

Methods to release unneeded arrays are added

As is written above, Chainer v2 introduced a new mechanism to reduce the memory consumption of each Function
implementation. In many cases, a Function implementation does not need some input arrays in its backward
computation. A new method called Function.retain_inputs() can be used to specify which input arrays are
actually needed. This method must not be called from the outside of Function.forward().

Example

For example, consider the following simple addition function.

class AddFunction(chainer.Function):
def forward(self, inputs):

return inputs[0] + inputs[1],

def backward(self, inputs, grad_outputs):
return grad_outputs[0], grad_outputs[0]

It can be seen that the backward computation of this function does not use any of the inputs. Then, specifying an
empty tuple of indexes to retain_inputs() will reduce the memory overhead.

class AddFunction(chainer.Function):
def forward(self, inputs):

self.retain_inputs(()) # does not retain both inputs
return inputs[0] + inputs[1],

def backward(self, inputs, grad_outputs):
return grad_outputs[0], grad_outputs[0]

In some cases, the function can (or have to) use the output arrays instead of the inputs in its backward computation.
In Chainer v1, we have written code that store the output arrays to attributes of the Function object and reuse them
in the backward() method. In Chainer v2, it is recommended that you use Function.retain_outputs()

1276 Chapter 13. Upgrade Guide

Chainer Documentation, Release 7.0.0b4

to declare which outputs are required in the backward computation. The retained output arrays can be accessed via
Function.output_data.

Note: The existing Function implementations that store the output arrays to its attributes will run correctly in
Chainer v2. There is no any memory overhead right now. It is recommended that you use retain_outputs(),
though, so that we can incorporate more memory optimization in the future.

Example

For example, consider the following simple implementation of the tanh function.

class TanhFunction(chainer.Function):
def forward(self, inputs):

xp = chainer.cuda.get_array_module(inputs[0])
self.y = xp.tanh(inputs[0])
return self.y,

def backward(self, inputs, grad_outputs):
one = self.y.dtype.type(1) # avoid type promotion
return grad_outputs[0] * (one - self.y * self.y),

We can use retain_outputs() instead of preserving the output array by ourselves as follows.

class TanhFunction(chainer.Function):
def forward(self, inputs):

self.retain_outputs((0,))
xp = chainer.cuda.get_array_module(inputs[0])
return xp.tanh(inputs[0]),

def backward(self, inputs, grad_outputs):
y = self.output_data[0]
one = y.dtype.type(1) # avoid type promotion
return grad_outputs[0] * (one - y * y)

Link/Chain/ChainList

wscale option is removed from links

The wscale option has been removed from links since Chainer v2. If you are using wscale option, you have to
update your code. The recommended way is to explicitly set the initializer.

Example

Consider the case of adding a Linear link with the weight initialized by 0.5x of the default initialization.

Chainer v1
linear = chainer.links.Linear(10, 5, wscale=0.5)

Note that the default initializer of the weight matrix of Linear is a normal distribution of the standard deviation
1/
√
𝑓𝑎𝑛𝑖𝑛. Therefore, it can be fixed as follows.

13.6. Chainer v2 1277

Chainer Documentation, Release 7.0.0b4

Chainer v2
linear = chainer.links.Linear(10, 5, initialW=chainer.initializers.Normal(0.5 / math.
→˓sqrt(10)))

Or, by using the fact that initializers.HeNormal provides the initialization with a normal distribution of the
standard deviation 𝑠𝑐𝑎𝑙𝑒 *

√︀
2/𝑓𝑎𝑛𝑖𝑛, the following code is also equivalent to the original.

Chainer v2, using HeNormal
linear = chainer.links.Linear(10, 5, initialW=chainer.initializers.HeNormal(0.5 /
→˓math.sqrt(2))

bias option is removed from links

In Chainer v2, the bias option is removed from the following links: Linear, Convolution2D,
Deconvolution2D, and DilatedConvolution2D. The effect of this argument was duplicated with the
initial_bias option. Use initial_bias instead.

The bias vector is enabled by default in N-dimensional convolution links

In Chainer v2, the bias parameter is enabled by default in ConvolutionND and DeconvolutionND. It was
unintentionally disabled by default in Chainer v1.

If you are using ConvolutionND or DeconvolutionND without specifying the initial_bias argument, you
have to fix your code. If you want to keep the old behavior (i.e., no bias vector is created by the link), pass
nobias=True to the link at the construction. Otherwise it will automatically create a bias vector.

init_weight function is removed

The chainer.initializers.init_weight function that was used on weight initialization has been removed
since Chainer v2.

You have to update your code if you are using init_weight. In most cases, the update is simple: pass an
initializer to Parameter.

Example

Consider the following code that initializes a weight matrix randomly and a bias vector by zero.

Chainer v1
class MyLink(chainer.Link):

def __init__(self):
super(MyLink, self).__init__(

W=(10, 5),
b=(5,),

)
chainer.initializers.init_weight(self.W, chainer.initializers.Normal(0.05))
self.b.data.fill(0)

...

This code should be fixed as follows (see the next topic for the use of Parameter).

1278 Chapter 13. Upgrade Guide

Chainer Documentation, Release 7.0.0b4

Chainer v2
class MyLink(chainer.Link):

def __init__(self):
super(MyLink, self).__init__()
self.W = chainer.Parameter(chainer.initializers.Normal(0.05), (10, 5))
self.b = chainer.Parameter(0, (5,))

...

The order of arguments of GRU is changed

In Chainer v2, the first two arguments of GRU is the input size and the output size. It was reversed in Chainer v1,
causing an inconsistent interface compared to other links including LSTM . If you are using GRU , you have to update
your code. The update is done by simply flipping the first two arguments.

Example

Consider the following code that creates a GRU link.

Chainer v1
gru = chainer.links.GRU(20, 10)

It should be fixed into the following code.

Chainer v2
gru = chainer.links.GRU(10, 20)

Note that if you were omitting the output size, the code works as is because GRU supports the omitted input size.

Chainer v1/v2
gru = chainer.links.GRU(20)

The default value of the forget bias for LSTM and StatelessLSTM is changed to 1

In Chainer v2, the default forget bias value of LSTM and StatelessLSTM links is changed to 1. This change is
based on the paper reporting that using a large forget bias improves the training performance. The new behavior is
also consistent with the implementation of BasicLSTMCell in TensorFlow.

It will improve the most use cases of LSTMs, although this change would break the reproducibility of the existing
experiments. If you want to keep the same initialization procedure, you have to update your code. The change is
simple: pass forget_bias_init=0 to LSTM and StatelessLSTM .

The interfaces of GRU and LSTM are aligned

In Chainer v1, GRU was stateless, as opposed to the current implementation. To align with the naming convention of
LSTM links, we have changed the naming convention from Chainer v2 so that the shorthand name points the stateful
links. If you are using StatelessGRU for stateless version, whose implementation is identical to chainer.
linksGRU in v1.

13.6. Chainer v2 1279

http://proceedings.mlr.press/v37/jozefowicz15.pdf
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/rnn/python/ops/core_rnn_cell_impl.py#L138

Chainer Documentation, Release 7.0.0b4

Aliases of links in chainer.functions are removed

For the compatibility reason, there were some links that have aliases in the chainer.functions module. These
aliases are removed in Chainer v2. Use chainer.links instead.

Parameter link is removed

The chainer.links.Parameter link is removed in Chainer v2. This link existed in Chainer v1 only for the
backward compatibility. Use chainer.Parameter instead (for the new Parameter class, see Parameter has to
be an instance of Parameter class).

New-style parameter registration APIs are added to Link

In Chainer v2, Link.init_scope()method returns a context manager that automatically registers a Parameter
object to the link at setting it to an attribute. If you are using IDE like PyCharm, it is recommended that you use this
new-style parameter registration so that IDEs can easily detect the existence of the parameter as an attribute. It is also
a good practice to use the new-style API even if you are not using IDEs, if you are planning to make the code public.

Note: The existing code that uses the conventional way of registering parameters are still valid.

Example

For example, the following link initialization code

Chainer v1
class MyLink(chainer.Link):

def __init__(self):
super(MyLink, self).__init__(

W=(10, 5),
b=(5,),

)
chainer.initializers.Normal(0.05)(self.W.data)
self.b.data.fill(0)

...

is recommended to be updated as follows.

Chainer v2
class MyLink(chainer.Link):

def __init__(self):
super(MyLink, self).__init__()
with self.init_scope():

self.W = chainer.Parameter(chainer.initializers.Normal(0.05), (10, 5))
self.b = chainer.Parameter(0, (5,)) # initialize by zero

...

Note: To keep a Parameter object as an attribute without registration, you can set the attribute without using the
with self.init_scope(): block.

1280 Chapter 13. Upgrade Guide

Chainer Documentation, Release 7.0.0b4

New-style child link registration APIs are added to Chain

Like Parameter, a Link object is also automatically registered to a Chain object by substitution to an attribute
within a init_scope() scope. If you are using IDE like PyCharm, it is recommended that you use the new-style
child link registration so that IDEs can easily detect the existence of the child link as an attribute. It is also a good
practice to use the new-style API even if you are not using IDEs, if you are planning to make the code public.

Note: The existing code that uses the conventional way of registering child links are still valid.

Example

For example, the following chain initialization code

Chainer v1
class MyMLP(chainer.Chain):

def __init__(self):
super(MyMLP, self).__init__(

layer1=L.Linear(None, 20),
layer2=L.Linear(None, 30),

)
...

is recommended to be updated as follows.

Chainer v2
class MyMLP(chainer.Chain):

def __init__(self):
super(MyMLP, self).__init__()
with self.init_scope():

self.layer1 = L.Linear(20)
self.layer2 = L.Linear(30)

Note that this example also demonstrates the use of new APIs with the omitted input size, explained below.

Note: To keep a Link object as an attribute without registration, you can set the attribute without using the with
self.init_scope(): block.

The input-size placeholder of links are made optional

In Chainer v2, the input size of many links, including Linear and Convolution2D, is made optional. In Chainer
v1, we had to use None as the placeholder to specify that the input size should be determined at the first iteration. The
placeholder can also be used in Chainer v2, although it is easier to just omit the input size.

See the previous item for the example of omitting the input size of Linear. The following links currently support
the omitted input size.

• Convolution2D

• Deconvolution2D

• DilatedConvolution2D

• Linear

13.6. Chainer v2 1281

Chainer Documentation, Release 7.0.0b4

• LSTM

• MLPConvolution2D

• StatelessLSTM

Optimizer

Deprecated methods of Optimizer are removed

The following methods are removed from Optimizer. These methods have been already deprecated in the past
versions. If you are using these methods, you have to update your code.

• zero_grads: use Link.zerograds() instead.

• compute_grads_norm: you can compute the gradient norm by iterating the list of parameters by Link.
params().

• clip_grads: use GradientClipping instead.

• weight_decay: use WeightDecay instead.

• accumulate_grads: use Link.addgrads() instead.

GradientMethod uses Link.cleargrads instead of Link.zerograds by default

In Chainer v2, GradientMethod clears the gradient before running backprop by Link.cleargrads(). It
means that the gradient of each parameter is initialized by None instead of a zero array. Note that all the optimizer
implementations provided by Chainer are subclasses of GradientMethod, and therefore this change affects all of
them.

In most cases, you do not need to update your code. If your code relies on the zeroing initialization, you
have to fix your code to explicitly initialize the gradient by zero, or to pass False to GradientMethod.
use_cleargrads().

GradientMethod is redesigned to allow parameter-specific update rules

In Chainer v2, the new class UpdateRule is used to define an update rule specific to each Parameter object. The
UpdateRule is set to each Parameter object, and is used at each update step. This object implements an update
formula using the data and gradient arrays.

Each UpdateRule object has enabled flag, which configures if the update rule should be applied to that parameter
on update. By setting the flag to False, you can freeze the parameter. There is also a convenient method Link.
enable_update() and Link.disable_update(), which configure the flag of each parameter under the link
hierarchy. In other frameworks, a similar feature is called layer freezing. In Chainer v2, this is officially supported by
these methods.

Each UpdateRule object can also hold its own hook functions similar to Optimizer. The built-in hook functions
except for GradientClipping can also be used as a hook function of UpdateRule.

In most cases, you do not have to update your code because each optimizer automatically sets up an appropriate
UpdaterRule object to each parameter.

If you are using a custom gradient-based optimizer implementation, you need to update the implementation.
The following list shows what you have to do.

• Write a subclass of UpdateRule that implements the update rule.

1282 Chapter 13. Upgrade Guide

Chainer Documentation, Release 7.0.0b4

• Rewrite your GradientMethod implementation. The new implementation only has to set up the update rule
for each parameter in the target link.

You can see live examples in the optimizer implementations provided by Chainer.

Serializer

None is serializable

In Chainer v2, all serializers start supporting None value to be serialized and deserialized. Users’ code can rely on
this feature, i.e., it can serialize and deserialize None value with any given serializer. This change only affects your
code if it provides its own serializer implementations.

Trainer and Extension

Updater and Evaluator pass raw data arrays to the loss function

In Chainer v2, Updater and Evaluator pass raw data arrays to the loss function without wrapping them with
Variable. You might need to update your code so that the loss function (in most cases, the model’s __call__
) accepts raw arrays.

Note that raw arrays can be directly passed to any Function; they are automatically wrapped by Variable. For
example, if the input is directly passed to a Function object (or any function under chainer.functions), you
do not need to update the code.

Example

Consider the following code that obtains the shape of the input via Variable.data.

Chainer v1
class MyLink(chainer.Link):

def __call__(self, x):
shape = x.data.shape # valid if x is Variable, invalid if x is ndarray
...

It should be updated so that the link also accepts a raw array as the input. In this case, we have Variable.shape
which is equivalent to data.shape, so you can simply write as follows.

Chainer v2
class MyLink(chainer.Link):

def __call__(self, x):
shape = x.shape # valid regardless of x being Variable or ndarray
...

trigger option is removed from snapshot and snapshot_object

In Chainer v2, the trigger option is removed from the snapshot() and snapshot_object() extensions.
The effect of the option was duplicated with the trigger option of Trainer.extend. If you are passing the
trigger argument to these extensions, you have to update your code. The update can be done by passing the
value to the corresponding Trainer.extend.

13.6. Chainer v2 1283

https://github.com/chainer/chainer/tree/master/chainer/optimizers

Chainer Documentation, Release 7.0.0b4

Example

Assume that trainer is an instance of Trainer, and consider that you were adding a snapshot() extension as
follows.

Chainer v1
trainer.extend(chainer.training.extensions.snapshot(trigger=(1000, 'iteration')))

It should be updated as follows (note that this code also works with Chainer v1).

Chainer v1/v2
trainer.extend(chainer.training.extensions.snapshot(), trigger=(1000, 'iteration'))

Extension.invoke_before_training is removed

In Chainer v2, The attribute invoke_before_training of Extension is removed. Instead, the Extension.
initialize method is added. This method is called by Trainer.run before entering the training loop.

In Chainer v1, the extension is just called before entering the training loop when invoke_before_training
is True. If you have a custom extension that has invoke_before_training=True , you have to update
the code. What you have to do is to remove the invoke_before_training flag and override initialize()
method. If you are using the make_extension() decorator, you can set the initialize function by passing
the initializer argument to make_extension().

The dump_graph extension dumps the valid graph only at its first invocation

In Chainer v2, the dump_graph() extension dumps the valid computational graph only at its first invocation. If
you want to dump the graph more than once, you have to fix the code. The easiest fix is setting the chainer.
config.keep_graph_on_report flag to True. Note that this fix will cancel the improvement on the memory
consumption made in Chainer v2. More memory-efficient fix is to dump the graph without using an extension, e.g. by
customizing the loss function or the updater.

Here is the background of this change. In Chainer v2, the Reporter copies reported variables with purging the com-
putational graph by default. On the other hand, the dump_graph() extension requires the computational graph
reachable from the reported variable. In order to make the graph available, the dump_graph() extension turns on
the chainer.config.keep_graph_on_report flag at its initializer (i.e., it turns on the graph before entering
the training loop). Since we also wanted to achieve the memory efficiency, the dump_graph() extension turns off
the flag after dumping the graph at its first invocation (strictly speaking, it recovers the original value). As a result,
the computational graph is not available from the second invocation.

Since the dump_graph() recovers the original flag value at its invocation, you can keep the graph dumped more
than once by changing the original flag value.

Reporter

When a variable is reported, the variable is copied with the graph purged

In Chainer v2, when a Variable object is reported using report() function (or directly using Reporter), a
copy of the variable is made without preserving the computational graph. If your code depends on the reachability
of the computational graph from the reported variable, you have to update your code. The easiest way to

1284 Chapter 13. Upgrade Guide

Chainer Documentation, Release 7.0.0b4

update your code is setting chainer.config.keep_graph_on_report to True, then Chainer will keep the
computational graph reachable from the reported variable.

The possible examples that are affected by this change are as follows (not exhaustive).

• A custom extension that runs backprop from a reported variable. It is definitely an example of assuming the
reachability of the computational graph from the reported variable.

• An extension that visualizes the computational graph from a reported variable. If you are writing such an exten-
sion by yourself, you have to turn on the keep_graph_on_report flag. The dump_graph() extension is
another example, for which see the above item for the details.

This change is made for the memory performance reason; with this change, the memory used by the computational
graph for training is immediately released before invoking extensions. Therefore, changing the behavior by over-
writing chainer.config.keep_graph_on_report may increase the memory consumption. It may cause an
out-of-memory error if the computational graph of the loss function consumes almost all the memory available in your
environment and there is an extension that uses a certain amount of memory (e.g. Evaluator).

Other utilities

Some obsolete classes and functions are removed

The following classes and functions are removed in Chainer v2.

• chainer.Flag

• chainer.FunctionSet (Use Chain or ChainList instead)

• chainer.cuda.init (It did nothing except for calling check_cuda_available())

• chainer.cuda.empty (Use cupy.empty())

• chainer.cuda.empty_like (Use cupy.empty_like())

• chainer.cuda.full (Use cupy.full())

• chainer.cuda.full_like (Use cupy.full_like())

• chainer.cuda.ones (Use cupy.ones())

• chainer.cuda.ones_like (Use cupy.ones_like())

• chainer.cuda.zeros (Use cupy.zeros())

• chainer.cuda.zeros_like (Use cupy.zeros_like())

13.6. Chainer v2 1285

https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.empty.html#cupy.empty
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.empty_like.html#cupy.empty_like
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.full.html#cupy.full
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.full_like.html#cupy.full_like
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ones.html#cupy.ones
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.ones_like.html#cupy.ones_like
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.zeros.html#cupy.zeros
https://docs-cupy.chainer.org/en/latest/reference/generated/cupy.zeros_like.html#cupy.zeros_like

Chainer Documentation, Release 7.0.0b4

1286 Chapter 13. Upgrade Guide

CHAPTER

FOURTEEN

LICENSE

Copyright (c) 2015 Preferred Infrastructure, Inc.

Copyright (c) 2015 Preferred Networks, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1287

Chainer Documentation, Release 7.0.0b4

1288 Chapter 14. License

CHAPTER

FIFTEEN

INDICES AND TABLES

• genindex

• modindex

• search

1289

Chainer Documentation, Release 7.0.0b4

1290 Chapter 15. Indices and tables

BIBLIOGRAPHY

[LeCun98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11), 2278–2324, 1998.

[Simonyan14] Simonyan, K. and Zisserman, A., Very Deep Convolutional Networks for Large-Scale Image Recog-
nition. arXiv preprint arXiv:1409.1556, 2014.

[He16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition.
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

[Graves2006] Alex Graves, Santiago Fernandez, Faustino Gomez, Jurgen Schmidhuber, Connectionist Temporal
Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks

[Graves2012] Alex Graves, Supervised Sequence Labelling with Recurrent Neural Networks

1291

ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
ftp://ftp.idsia.ch/pub/juergen/icml2006.pdf
https://www.cs.toronto.edu/~graves/preprint.pdf

Chainer Documentation, Release 7.0.0b4

1292 Bibliography

PYTHON MODULE INDEX

c
chainer, 1070
chainer.backend, 1074
chainer.backends.cuda, 1084
chainer.backends.intel64, 1089
chainer.computational_graph, 1111
chainer.dataset, 1008
chainer.datasets, 1025
chainer.distributions, 796
chainer.exporters, 1122
chainer.function_hooks, 304
chainer.functions, 151
chainer.gradient_check, 1128
chainer.initializers, 926
chainer.iterators, 1053
chainer.link_hooks, 787
chainer.links, 315
chainer.links.caffe, 1122
chainer.optimizers, 863
chainer.serializers, 1063
chainer.testing, 1132
chainer.training, 938
chainer.training.extensions.snapshot_writers,

939
chainer.utils, 1245
chainer.utils.type_check, 1123
chainermn, 1192
chainerx, 1173

o
onnx_chainer, 1243

1293

Chainer Documentation, Release 7.0.0b4

1294 Python Module Index

INDEX

Symbols
__abs__() (chainer.Parameter method), 145
__abs__() (chainer.Variable method), 136
__add__() (chainer.Parameter method), 145
__add__() (chainer.Sequential method), 787
__add__() (chainer.Variable method), 136
__add__() (chainer.utils.type_check.Expr method),

1125
__add__() (chainer.utils.type_check.TypeInfoTuple

method), 1127
__add__() (chainer.utils.type_check.Variable method),

1128
__bool__() (chainer.Parameter method), 145
__bool__() (chainer.Variable method), 136
__bool__() (chainer.utils.type_check.Expr method),

1125
__bool__() (chainer.utils.type_check.Variable

method), 1128
__call__() (chainer.AbstractSerializer method), 1072
__call__() (chainer.Chain method), 766
__call__() (chainer.ChainList method), 772
__call__() (chainer.Deserializer method), 1073
__call__() (chainer.Function method), 288
__call__() (chainer.FunctionAdapter method), 292
__call__() (chainer.FunctionNode method), 298
__call__() (chainer.Initializer method), 925
__call__() (chainer.Link method), 760
__call__() (chainer.Sequential method), 780
__call__() (chainer.Serializer method), 1070
__call__() (chainer.dataset.ConcatWithAsyncTransfer

method), 1023
__call__() (chainer.dataset.Converter method), 1021
__call__() (chainer.initializers.Constant method),

927
__call__() (chainer.initializers.DownsamplingConvFilter

method), 938
__call__() (chainer.initializers.GlorotNormal

method), 931
__call__() (chainer.initializers.GlorotUniform

method), 935
__call__() (chainer.initializers.HeNormal method),

932

__call__() (chainer.initializers.HeUniform method),
936

__call__() (chainer.initializers.Identity method), 926
__call__() (chainer.initializers.LeCunNormal

method), 931
__call__() (chainer.initializers.LeCunUniform

method), 935
__call__() (chainer.initializers.NaN method), 929
__call__() (chainer.initializers.Normal method), 930
__call__() (chainer.initializers.One method), 928
__call__() (chainer.initializers.Orthogonal method),

933
__call__() (chainer.initializers.Uniform method),

934
__call__() (chainer.initializers.UpsamplingDeconvFilter

method), 937
__call__() (chainer.initializers.Zero method), 928
__call__() (chainer.iterators.OrderSampler method),

1061
__call__() (chainer.iterators.ShuffleOrderSampler

method), 1062
__call__() (chainer.links.BatchNormalization

method), 597
__call__() (chainer.links.BatchRenormalization

method), 603
__call__() (chainer.links.Bias method), 317
__call__() (chainer.links.Bilinear method), 323
__call__() (chainer.links.BinaryHierarchicalSoftmax

method), 629
__call__() (chainer.links.BlackOut method), 636
__call__() (chainer.links.CRF1d method), 642
__call__() (chainer.links.ChildSumTreeLSTM

method), 330
__call__() (chainer.links.Classifier method), 682
__call__() (chainer.links.Convolution1D method),

336
__call__() (chainer.links.Convolution2D method),

343
__call__() (chainer.links.Convolution3D method),

349
__call__() (chainer.links.ConvolutionND method),

357

1295

Chainer Documentation, Release 7.0.0b4

__call__() (chainer.links.Deconvolution1D method),
363

__call__() (chainer.links.Deconvolution2D method),
370

__call__() (chainer.links.Deconvolution3D method),
376

__call__() (chainer.links.DeconvolutionND method),
384

__call__() (chainer.links.DecorrelatedBatchNormalization
method), 610

__call__() (chainer.links.DeformableConvolution2D
method), 390

__call__() (chainer.links.DepthwiseConvolution2D
method), 397

__call__() (chainer.links.DilatedConvolution2D
method), 404

__call__() (chainer.links.EmbedID method), 411
__call__() (chainer.links.GRU method), 417
__call__() (chainer.links.GoogLeNet method), 705
__call__() (chainer.links.GroupNormalization

method), 617
__call__() (chainer.links.Highway method), 423
__call__() (chainer.links.Inception method), 430
__call__() (chainer.links.InceptionBN method), 436
__call__() (chainer.links.LSTM method), 457
__call__() (chainer.links.LayerNormalization

method), 623
__call__() (chainer.links.Linear method), 443
__call__() (chainer.links.LocalConvolution2D

method), 450
__call__() (chainer.links.MLPConvolution2D

method), 464
__call__() (chainer.links.Maxout method), 669
__call__() (chainer.links.NStepBiGRU method), 477
__call__() (chainer.links.NStepBiLSTM method),

484
__call__() (chainer.links.NStepBiRNNReLU

method), 492
__call__() (chainer.links.NStepBiRNNTanh method),

499
__call__() (chainer.links.NStepGRU method), 506
__call__() (chainer.links.NStepLSTM method), 513
__call__() (chainer.links.NStepRNNReLU method),

521
__call__() (chainer.links.NStepRNNTanh method),

528
__call__() (chainer.links.NaryTreeLSTM method),

471
__call__() (chainer.links.NegativeSampling method),

675
__call__() (chainer.links.PReLU method), 656
__call__() (chainer.links.Parameter method), 535
__call__() (chainer.links.ResNet101Layers method),

729

__call__() (chainer.links.ResNet152Layers method),
736

__call__() (chainer.links.ResNet50Layers method),
721

__call__() (chainer.links.Scale method), 541
__call__() (chainer.links.SimplifiedDropconnect

method), 649
__call__() (chainer.links.StatefulGRU method), 548
__call__() (chainer.links.StatefulMGU method), 561
__call__() (chainer.links.StatefulPeepholeLSTM

method), 574
__call__() (chainer.links.StatefulZoneoutLSTM

method), 580
__call__() (chainer.links.StatelessGRU method), 555
__call__() (chainer.links.StatelessLSTM method),

587
__call__() (chainer.links.StatelessMGU method),

567
__call__() (chainer.links.Swish method), 662
__call__() (chainer.links.TheanoFunction method),

745
__call__() (chainer.links.VGG16Layers method),

689
__call__() (chainer.links.VGG19Layers method),

697
__call__() (chainer.links.caffe.CaffeFunction

method), 752
__call__() (chainer.links.model.vision.resnet.ResNetLayers

method), 713
__call__() (chainer.optimizer_hooks.GradientClipping

method), 921
__call__() (chainer.optimizer_hooks.GradientHardClipping

method), 922
__call__() (chainer.optimizer_hooks.GradientLARS

method), 924
__call__() (chainer.optimizer_hooks.GradientNoise

method), 923
__call__() (chainer.optimizer_hooks.Lasso method),

920
__call__() (chainer.optimizer_hooks.WeightDecay

method), 919
__call__() (chainer.serializers.DictionarySerializer

method), 1064
__call__() (chainer.serializers.HDF5Deserializer

method), 1068
__call__() (chainer.serializers.HDF5Serializer

method), 1067
__call__() (chainer.serializers.NpzDeserializer

method), 1065
__call__() (chainer.testing.FunctionTestCase

method), 1134
__call__() (chainer.testing.LinkInitializersTestCase

method), 1144
__call__() (chainer.testing.LinkTestCase method),

1296 Index

Chainer Documentation, Release 7.0.0b4

1153
__call__() (chainer.training.Extension method), 959
__call__() (chainer.training.extensions.DumpGraph

method), 995
__call__() (chainer.training.extensions.Evaluator

method), 962
__call__() (chainer.training.extensions.ExponentialShift

method), 971
__call__() (chainer.training.extensions.FailOnNonNumber

method), 966
__call__() (chainer.training.extensions.InverseShift

method), 973
__call__() (chainer.training.extensions.LinearShift

method), 975
__call__() (chainer.training.extensions.LogReport

method), 988
__call__() (chainer.training.extensions.MicroAverage

method), 965
__call__() (chainer.training.extensions.MultistepShift

method), 977
__call__() (chainer.training.extensions.ParameterStatistics

method), 969
__call__() (chainer.training.extensions.PlotReport

method), 990
__call__() (chainer.training.extensions.PolynomialShift

method), 979
__call__() (chainer.training.extensions.PrintReport

method), 984
__call__() (chainer.training.extensions.ProgressBar

method), 986
__call__() (chainer.training.extensions.StepShift

method), 982
__call__() (chainer.training.extensions.VariableStatisticsPlot

method), 993
__call__() (chainer.training.extensions.WarmupShift

method), 980
__call__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 946
__call__() (chainer.training.extensions.snapshot_writers.ProcessWriter

method), 942
__call__() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 943
__call__() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 940
__call__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 944
__call__() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 941
__call__() (chainer.training.extensions.snapshot_writers.Writer

method), 939
__call__() (chainer.training.extensions.unchain_variables

method), 999
__call__() (chainer.training.triggers.BestValueTrigger

method), 1001

__call__() (chainer.training.triggers.EarlyStoppingTrigger
method), 1003

__call__() (chainer.training.triggers.IntervalTrigger
method), 1004

__call__() (chainer.training.triggers.ManualScheduleTrigger
method), 1005

__call__() (chainer.training.triggers.MaxValueTrigger
method), 1005

__call__() (chainer.training.triggers.MinValueTrigger
method), 1006

__call__() (chainer.training.triggers.OnceTrigger
method), 1007

__call__() (chainer.training.triggers.TimeTrigger
method), 1008

__call__() (chainer.utils.type_check.Expr method),
1124

__call__() (chainer.utils.type_check.Variable
method), 1127

__copy__() (chainer.Parameter method), 142
__copy__() (chainer.Variable method), 133
__copy__() (chainer.distributions.MultivariateNormal

method), 838
__copy__() (chainer.iterators.MultiprocessIterator

method), 1057
__div__() (chainer.Parameter method), 146
__div__() (chainer.Variable method), 137
__enter__() (chainer.FunctionHook method), 314
__enter__() (chainer.LinkHook method), 795
__enter__() (chainer.Reporter method), 1094
__enter__() (chainer.backend.ChainerxDevice

method), 1083
__enter__() (chainer.backend.CpuDevice method),

1079
__enter__() (chainer.backend.Device method), 1074
__enter__() (chainer.backend.GpuDevice method),

1080
__enter__() (chainer.backend.Intel64Device

method), 1082
__enter__() (chainer.dataset.Iterator method), 1020
__enter__() (chainer.datasets.PickleDataset

method), 1045
__enter__() (chainer.datasets.PickleDatasetWriter

method), 1047
__enter__() (chainer.function_hooks.CUDAProfileHook

method), 305
__enter__() (chainer.function_hooks.CupyMemoryProfileHook

method), 306
__enter__() (chainer.function_hooks.PrintHook

method), 309
__enter__() (chainer.function_hooks.TimerHook

method), 311
__enter__() (chainer.iterators.DaliIterator method),

1060
__enter__() (chainer.iterators.MultiprocessIterator

Index 1297

Chainer Documentation, Release 7.0.0b4

method), 1057
__enter__() (chainer.iterators.MultithreadIterator

method), 1058
__enter__() (chainer.iterators.SerialIterator

method), 1054
__enter__() (chainer.link_hooks.SpectralNormalization

method), 789
__enter__() (chainer.link_hooks.TimerHook

method), 791
__enter__() (chainer.link_hooks.WeightStandardization

method), 792
__eq__() (chainer.AbstractSerializer method), 1072
__eq__() (chainer.Chain method), 771
__eq__() (chainer.ChainList method), 778
__eq__() (chainer.Deserializer method), 1073
__eq__() (chainer.DeviceResident method), 1077
__eq__() (chainer.DictSummary method), 1098
__eq__() (chainer.Distribution method), 861
__eq__() (chainer.Function method), 290
__eq__() (chainer.FunctionAdapter method), 295
__eq__() (chainer.FunctionHook method), 315
__eq__() (chainer.FunctionNode method), 301
__eq__() (chainer.GradientMethod method), 918
__eq__() (chainer.Initializer method), 925
__eq__() (chainer.Link method), 764
__eq__() (chainer.LinkHook method), 795
__eq__() (chainer.Optimizer method), 911
__eq__() (chainer.Parameter method), 145
__eq__() (chainer.Reporter method), 1095
__eq__() (chainer.Sequential method), 786
__eq__() (chainer.Serializer method), 1071
__eq__() (chainer.Summary method), 1097
__eq__() (chainer.UpdateRule method), 914
__eq__() (chainer.Variable method), 135
__eq__() (chainer.backend.ChainerxDevice method),

1083
__eq__() (chainer.backend.CpuDevice method), 1080
__eq__() (chainer.backend.Device method), 1075
__eq__() (chainer.backend.GpuDevice method), 1081
__eq__() (chainer.backend.Intel64Device method),

1082
__eq__() (chainer.computational_graph.ComputationalGraph

method), 1114
__eq__() (chainer.configuration.GlobalConfig

method), 1107
__eq__() (chainer.configuration.LocalConfig method),

1108
__eq__() (chainer.dataset.ConcatWithAsyncTransfer

method), 1023
__eq__() (chainer.dataset.Converter method), 1021
__eq__() (chainer.dataset.DatasetMixin method),

1010
__eq__() (chainer.dataset.Iterator method), 1020

__eq__() (chainer.dataset.TabularDataset method),
1014

__eq__() (chainer.dataset.tabular.DelegateDataset
method), 1017

__eq__() (chainer.datasets.ConcatenatedDataset
method), 1028

__eq__() (chainer.datasets.DictDataset method), 1026
__eq__() (chainer.datasets.ImageDataset method),

1036
__eq__() (chainer.datasets.LabeledImageDataset

method), 1041
__eq__() (chainer.datasets.LabeledZippedImageDataset

method), 1042
__eq__() (chainer.datasets.MultiZippedImageDataset

method), 1039
__eq__() (chainer.datasets.PickleDataset method),

1046
__eq__() (chainer.datasets.PickleDatasetWriter

method), 1047
__eq__() (chainer.datasets.SubDataset method), 1030
__eq__() (chainer.datasets.TextDataset method), 1044
__eq__() (chainer.datasets.TransformDataset

method), 1034
__eq__() (chainer.datasets.TupleDataset method),

1027
__eq__() (chainer.datasets.ZippedImageDataset

method), 1037
__eq__() (chainer.device_resident.DeviceResidentsVisitor

method), 1078
__eq__() (chainer.distributions.Bernoulli method),

798
__eq__() (chainer.distributions.Beta method), 801
__eq__() (chainer.distributions.Categorical method),

805
__eq__() (chainer.distributions.Cauchy method), 808
__eq__() (chainer.distributions.Chisquare method),

811
__eq__() (chainer.distributions.Dirichlet method), 814
__eq__() (chainer.distributions.Exponential method),

817
__eq__() (chainer.distributions.Gamma method), 820
__eq__() (chainer.distributions.Geometric method),

823
__eq__() (chainer.distributions.Gumbel method), 827
__eq__() (chainer.distributions.Independent method),

830
__eq__() (chainer.distributions.Laplace method), 833
__eq__() (chainer.distributions.LogNormal method),

836
__eq__() (chainer.distributions.MultivariateNormal

method), 840
__eq__() (chainer.distributions.Normal method), 843
__eq__() (chainer.distributions.OneHotCategorical

method), 846

1298 Index

Chainer Documentation, Release 7.0.0b4

__eq__() (chainer.distributions.Pareto method), 849
__eq__() (chainer.distributions.Poisson method), 852
__eq__() (chainer.distributions.Uniform method), 856
__eq__() (chainer.function_hooks.CUDAProfileHook

method), 305
__eq__() (chainer.function_hooks.CupyMemoryProfileHook

method), 308
__eq__() (chainer.function_hooks.PrintHook method),

310
__eq__() (chainer.function_hooks.TimerHook

method), 312
__eq__() (chainer.initializers.Constant method), 927
__eq__() (chainer.initializers.DownsamplingConvFilter

method), 938
__eq__() (chainer.initializers.GlorotNormal method),

931
__eq__() (chainer.initializers.GlorotUniform method),

935
__eq__() (chainer.initializers.HeNormal method), 932
__eq__() (chainer.initializers.HeUniform method),

936
__eq__() (chainer.initializers.Identity method), 926
__eq__() (chainer.initializers.LeCunNormal method),

931
__eq__() (chainer.initializers.LeCunUniform method),

935
__eq__() (chainer.initializers.NaN method), 929
__eq__() (chainer.initializers.Normal method), 930
__eq__() (chainer.initializers.One method), 928
__eq__() (chainer.initializers.Orthogonal method),

933
__eq__() (chainer.initializers.Uniform method), 934
__eq__() (chainer.initializers.UpsamplingDeconvFilter

method), 937
__eq__() (chainer.initializers.Zero method), 928
__eq__() (chainer.iterators.DaliIterator method),

1060
__eq__() (chainer.iterators.MultiprocessIterator

method), 1057
__eq__() (chainer.iterators.MultithreadIterator

method), 1059
__eq__() (chainer.iterators.OrderSampler method),

1061
__eq__() (chainer.iterators.SerialIterator method),

1055
__eq__() (chainer.iterators.ShuffleOrderSampler

method), 1062
__eq__() (chainer.link_hooks.SpectralNormalization

method), 790
__eq__() (chainer.link_hooks.TimerHook method),

791
__eq__() (chainer.link_hooks.WeightStandardization

method), 793
__eq__() (chainer.links.BatchNormalization method),

602
__eq__() (chainer.links.BatchRenormalization

method), 608
__eq__() (chainer.links.Bias method), 322
__eq__() (chainer.links.Bilinear method), 328
__eq__() (chainer.links.BinaryHierarchicalSoftmax

method), 635
__eq__() (chainer.links.BlackOut method), 641
__eq__() (chainer.links.CRF1d method), 647
__eq__() (chainer.links.ChildSumTreeLSTM method),

335
__eq__() (chainer.links.Classifier method), 687
__eq__() (chainer.links.Convolution1D method), 341
__eq__() (chainer.links.Convolution2D method), 348
__eq__() (chainer.links.Convolution3D method), 354
__eq__() (chainer.links.ConvolutionND method), 362
__eq__() (chainer.links.Deconvolution1D method),

368
__eq__() (chainer.links.Deconvolution2D method),

375
__eq__() (chainer.links.Deconvolution3D method),

381
__eq__() (chainer.links.DeconvolutionND method),

388
__eq__() (chainer.links.DecorrelatedBatchNormalization

method), 615
__eq__() (chainer.links.DeformableConvolution2D

method), 395
__eq__() (chainer.links.DepthwiseConvolution2D

method), 402
__eq__() (chainer.links.DilatedConvolution2D

method), 409
__eq__() (chainer.links.EmbedID method), 416
__eq__() (chainer.links.GRU method), 422
__eq__() (chainer.links.GoogLeNet method), 711
__eq__() (chainer.links.GroupNormalization method),

621
__eq__() (chainer.links.Highway method), 428
__eq__() (chainer.links.Inception method), 435
__eq__() (chainer.links.InceptionBN method), 441
__eq__() (chainer.links.LSTM method), 462
__eq__() (chainer.links.LayerNormalization method),

628
__eq__() (chainer.links.Linear method), 448
__eq__() (chainer.links.LocalConvolution2D method),

455
__eq__() (chainer.links.MLPConvolution2D method),

469
__eq__() (chainer.links.Maxout method), 674
__eq__() (chainer.links.NStepBiGRU method), 483
__eq__() (chainer.links.NStepBiLSTM method), 490
__eq__() (chainer.links.NStepBiRNNReLU method),

497
__eq__() (chainer.links.NStepBiRNNTanh method),

Index 1299

Chainer Documentation, Release 7.0.0b4

505
__eq__() (chainer.links.NStepGRU method), 512
__eq__() (chainer.links.NStepLSTM method), 519
__eq__() (chainer.links.NStepRNNReLU method), 526
__eq__() (chainer.links.NStepRNNTanh method), 533
__eq__() (chainer.links.NaryTreeLSTM method), 476
__eq__() (chainer.links.NegativeSampling method),

680
__eq__() (chainer.links.PReLU method), 660
__eq__() (chainer.links.Parameter method), 539
__eq__() (chainer.links.ResNet101Layers method),

735
__eq__() (chainer.links.ResNet152Layers method),

742
__eq__() (chainer.links.ResNet50Layers method), 727
__eq__() (chainer.links.Scale method), 546
__eq__() (chainer.links.SimplifiedDropconnect

method), 654
__eq__() (chainer.links.StatefulGRU method), 553
__eq__() (chainer.links.StatefulMGU method), 566
__eq__() (chainer.links.StatefulPeepholeLSTM

method), 579
__eq__() (chainer.links.StatefulZoneoutLSTM

method), 585
__eq__() (chainer.links.StatelessGRU method), 560
__eq__() (chainer.links.StatelessLSTM method), 592
__eq__() (chainer.links.StatelessMGU method), 572
__eq__() (chainer.links.Swish method), 667
__eq__() (chainer.links.TheanoFunction method), 750
__eq__() (chainer.links.VGG16Layers method), 695
__eq__() (chainer.links.VGG19Layers method), 703
__eq__() (chainer.links.caffe.CaffeFunction method),

757
__eq__() (chainer.links.model.vision.resnet.ResNetLayers

method), 719
__eq__() (chainer.optimizer.Hyperparameter method),

915
__eq__() (chainer.optimizer_hooks.GradientClipping

method), 921
__eq__() (chainer.optimizer_hooks.GradientHardClipping

method), 922
__eq__() (chainer.optimizer_hooks.GradientLARS

method), 924
__eq__() (chainer.optimizer_hooks.GradientNoise

method), 923
__eq__() (chainer.optimizer_hooks.Lasso method),

920
__eq__() (chainer.optimizer_hooks.WeightDecay

method), 919
__eq__() (chainer.optimizers.AMSBound method), 885
__eq__() (chainer.optimizers.AMSGrad method), 878
__eq__() (chainer.optimizers.AdaBound method), 881
__eq__() (chainer.optimizers.AdaDelta method), 865
__eq__() (chainer.optimizers.AdaGrad method), 868

__eq__() (chainer.optimizers.Adam method), 871
__eq__() (chainer.optimizers.AdamW method), 875
__eq__() (chainer.optimizers.CorrectedMomentumSGD

method), 888
__eq__() (chainer.optimizers.MSVAG method), 897
__eq__() (chainer.optimizers.MomentumSGD

method), 891
__eq__() (chainer.optimizers.NesterovAG method),

894
__eq__() (chainer.optimizers.RMSprop method), 900
__eq__() (chainer.optimizers.RMSpropGraves

method), 903
__eq__() (chainer.optimizers.SGD method), 906
__eq__() (chainer.optimizers.SMORMS3 method), 908
__eq__() (chainer.serializers.DictionarySerializer

method), 1064
__eq__() (chainer.serializers.HDF5Deserializer

method), 1069
__eq__() (chainer.serializers.HDF5Serializer

method), 1068
__eq__() (chainer.serializers.NpzDeserializer

method), 1066
__eq__() (chainer.testing.FunctionTestCase method),

1140
__eq__() (chainer.testing.LinkInitializersTestCase

method), 1150
__eq__() (chainer.testing.LinkTestCase method), 1158
__eq__() (chainer.training.Extension method), 960
__eq__() (chainer.training.Trainer method), 949
__eq__() (chainer.training.Updater method), 951
__eq__() (chainer.training.extensions.DumpGraph

method), 996
__eq__() (chainer.training.extensions.Evaluator

method), 963
__eq__() (chainer.training.extensions.ExponentialShift

method), 972
__eq__() (chainer.training.extensions.FailOnNonNumber

method), 967
__eq__() (chainer.training.extensions.InverseShift

method), 974
__eq__() (chainer.training.extensions.LinearShift

method), 976
__eq__() (chainer.training.extensions.LogReport

method), 989
__eq__() (chainer.training.extensions.MicroAverage

method), 966
__eq__() (chainer.training.extensions.MultistepShift

method), 978
__eq__() (chainer.training.extensions.ParameterStatistics

method), 969
__eq__() (chainer.training.extensions.PlotReport

method), 991
__eq__() (chainer.training.extensions.PolynomialShift

method), 979

1300 Index

Chainer Documentation, Release 7.0.0b4

__eq__() (chainer.training.extensions.PrintReport
method), 985

__eq__() (chainer.training.extensions.ProgressBar
method), 987

__eq__() (chainer.training.extensions.StepShift
method), 983

__eq__() (chainer.training.extensions.VariableStatisticsPlot
method), 993

__eq__() (chainer.training.extensions.WarmupShift
method), 981

__eq__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter
method), 946

__eq__() (chainer.training.extensions.snapshot_writers.ProcessWriter
method), 943

__eq__() (chainer.training.extensions.snapshot_writers.QueueWriter
method), 944

__eq__() (chainer.training.extensions.snapshot_writers.SimpleWriter
method), 940

__eq__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter
method), 945

__eq__() (chainer.training.extensions.snapshot_writers.ThreadWriter
method), 942

__eq__() (chainer.training.extensions.snapshot_writers.Writer
method), 939

__eq__() (chainer.training.extensions.unchain_variables
method), 1000

__eq__() (chainer.training.triggers.BestValueTrigger
method), 1002

__eq__() (chainer.training.triggers.EarlyStoppingTrigger
method), 1003

__eq__() (chainer.training.triggers.IntervalTrigger
method), 1004

__eq__() (chainer.training.triggers.ManualScheduleTrigger
method), 1005

__eq__() (chainer.training.triggers.MaxValueTrigger
method), 1005

__eq__() (chainer.training.triggers.MinValueTrigger
method), 1006

__eq__() (chainer.training.triggers.OnceTrigger
method), 1007

__eq__() (chainer.training.triggers.TimeTrigger
method), 1008

__eq__() (chainer.training.updaters.MultiprocessParallelUpdater
method), 957

__eq__() (chainer.training.updaters.ParallelUpdater
method), 955

__eq__() (chainer.training.updaters.StandardUpdater
method), 953

__eq__() (chainer.utils.CooMatrix method), 1099
__eq__() (chainer.utils.WalkerAlias method), 1092
__eq__() (chainer.utils.type_check.Expr method),

1125
__eq__() (chainer.utils.type_check.TypeInfo method),

1126

__eq__() (chainer.utils.type_check.TypeInfoTuple
method), 1127

__eq__() (chainer.utils.type_check.Variable method),
1127

__eq__() (chainer.variable.VariableNode method),
150

__eq__() (chainerx.ndarray method), 1173
__exit__() (chainer.FunctionHook method), 314
__exit__() (chainer.LinkHook method), 795
__exit__() (chainer.Reporter method), 1094
__exit__() (chainer.backend.ChainerxDevice

method), 1083
__exit__() (chainer.backend.CpuDevice method),

1079
__exit__() (chainer.backend.Device method), 1074
__exit__() (chainer.backend.GpuDevice method),

1080
__exit__() (chainer.backend.Intel64Device method),

1082
__exit__() (chainer.dataset.Iterator method), 1020
__exit__() (chainer.datasets.PickleDataset method),

1045
__exit__() (chainer.datasets.PickleDatasetWriter

method), 1047
__exit__() (chainer.function_hooks.CUDAProfileHook

method), 305
__exit__() (chainer.function_hooks.CupyMemoryProfileHook

method), 306
__exit__() (chainer.function_hooks.PrintHook

method), 309
__exit__() (chainer.function_hooks.TimerHook

method), 311
__exit__() (chainer.iterators.DaliIterator method),

1060
__exit__() (chainer.iterators.MultiprocessIterator

method), 1057
__exit__() (chainer.iterators.MultithreadIterator

method), 1058
__exit__() (chainer.iterators.SerialIterator method),

1054
__exit__() (chainer.link_hooks.SpectralNormalization

method), 789
__exit__() (chainer.link_hooks.TimerHook method),

791
__exit__() (chainer.link_hooks.WeightStandardization

method), 792
__floordiv__() (chainer.Parameter method), 146
__floordiv__() (chainer.Variable method), 137
__floordiv__() (chainer.utils.type_check.Expr

method), 1125
__floordiv__() (chainer.utils.type_check.Variable

method), 1128
__ge__() (chainer.AbstractSerializer method), 1072
__ge__() (chainer.Chain method), 771

Index 1301

Chainer Documentation, Release 7.0.0b4

__ge__() (chainer.ChainList method), 778
__ge__() (chainer.Deserializer method), 1073
__ge__() (chainer.DeviceResident method), 1078
__ge__() (chainer.DictSummary method), 1099
__ge__() (chainer.Distribution method), 861
__ge__() (chainer.Function method), 291
__ge__() (chainer.FunctionAdapter method), 296
__ge__() (chainer.FunctionHook method), 315
__ge__() (chainer.FunctionNode method), 302
__ge__() (chainer.GradientMethod method), 918
__ge__() (chainer.Initializer method), 926
__ge__() (chainer.Link method), 765
__ge__() (chainer.LinkHook method), 796
__ge__() (chainer.Optimizer method), 912
__ge__() (chainer.Parameter method), 145
__ge__() (chainer.Reporter method), 1096
__ge__() (chainer.Sequential method), 787
__ge__() (chainer.Serializer method), 1071
__ge__() (chainer.Summary method), 1098
__ge__() (chainer.UpdateRule method), 914
__ge__() (chainer.Variable method), 136
__ge__() (chainer.backend.ChainerxDevice method),

1083
__ge__() (chainer.backend.CpuDevice method), 1080
__ge__() (chainer.backend.Device method), 1075
__ge__() (chainer.backend.GpuDevice method), 1081
__ge__() (chainer.backend.Intel64Device method),

1082
__ge__() (chainer.computational_graph.ComputationalGraph

method), 1114
__ge__() (chainer.configuration.GlobalConfig

method), 1107
__ge__() (chainer.configuration.LocalConfig method),

1108
__ge__() (chainer.dataset.ConcatWithAsyncTransfer

method), 1023
__ge__() (chainer.dataset.Converter method), 1021
__ge__() (chainer.dataset.DatasetMixin method),

1010
__ge__() (chainer.dataset.Iterator method), 1020
__ge__() (chainer.dataset.TabularDataset method),

1014
__ge__() (chainer.dataset.tabular.DelegateDataset

method), 1018
__ge__() (chainer.datasets.ConcatenatedDataset

method), 1029
__ge__() (chainer.datasets.DictDataset method), 1026
__ge__() (chainer.datasets.ImageDataset method),

1036
__ge__() (chainer.datasets.LabeledImageDataset

method), 1041
__ge__() (chainer.datasets.LabeledZippedImageDataset

method), 1043

__ge__() (chainer.datasets.MultiZippedImageDataset
method), 1039

__ge__() (chainer.datasets.PickleDataset method),
1046

__ge__() (chainer.datasets.PickleDatasetWriter
method), 1047

__ge__() (chainer.datasets.SubDataset method), 1031
__ge__() (chainer.datasets.TextDataset method), 1045
__ge__() (chainer.datasets.TransformDataset

method), 1034
__ge__() (chainer.datasets.TupleDataset method),

1027
__ge__() (chainer.datasets.ZippedImageDataset

method), 1038
__ge__() (chainer.device_resident.DeviceResidentsVisitor

method), 1079
__ge__() (chainer.distributions.Bernoulli method),

798
__ge__() (chainer.distributions.Beta method), 802
__ge__() (chainer.distributions.Categorical method),

805
__ge__() (chainer.distributions.Cauchy method), 808
__ge__() (chainer.distributions.Chisquare method),

811
__ge__() (chainer.distributions.Dirichlet method), 814
__ge__() (chainer.distributions.Exponential method),

818
__ge__() (chainer.distributions.Gamma method), 821
__ge__() (chainer.distributions.Geometric method),

824
__ge__() (chainer.distributions.Gumbel method), 827
__ge__() (chainer.distributions.Independent method),

830
__ge__() (chainer.distributions.Laplace method), 834
__ge__() (chainer.distributions.LogNormal method),

837
__ge__() (chainer.distributions.MultivariateNormal

method), 840
__ge__() (chainer.distributions.Normal method), 843
__ge__() (chainer.distributions.OneHotCategorical

method), 846
__ge__() (chainer.distributions.Pareto method), 849
__ge__() (chainer.distributions.Poisson method), 853
__ge__() (chainer.distributions.Uniform method), 856
__ge__() (chainer.function_hooks.CUDAProfileHook

method), 306
__ge__() (chainer.function_hooks.CupyMemoryProfileHook

method), 308
__ge__() (chainer.function_hooks.PrintHook method),

310
__ge__() (chainer.function_hooks.TimerHook

method), 312
__ge__() (chainer.initializers.Constant method), 927
__ge__() (chainer.initializers.DownsamplingConvFilter

1302 Index

Chainer Documentation, Release 7.0.0b4

method), 938
__ge__() (chainer.initializers.GlorotNormal method),

932
__ge__() (chainer.initializers.GlorotUniform method),

936
__ge__() (chainer.initializers.HeNormal method), 933
__ge__() (chainer.initializers.HeUniform method),

936
__ge__() (chainer.initializers.Identity method), 927
__ge__() (chainer.initializers.LeCunNormal method),

931
__ge__() (chainer.initializers.LeCunUniform method),

935
__ge__() (chainer.initializers.NaN method), 929
__ge__() (chainer.initializers.Normal method), 930
__ge__() (chainer.initializers.One method), 929
__ge__() (chainer.initializers.Orthogonal method),

933
__ge__() (chainer.initializers.Uniform method), 934
__ge__() (chainer.initializers.UpsamplingDeconvFilter

method), 937
__ge__() (chainer.initializers.Zero method), 928
__ge__() (chainer.iterators.DaliIterator method),

1061
__ge__() (chainer.iterators.MultiprocessIterator

method), 1058
__ge__() (chainer.iterators.MultithreadIterator

method), 1059
__ge__() (chainer.iterators.OrderSampler method),

1062
__ge__() (chainer.iterators.SerialIterator method),

1055
__ge__() (chainer.iterators.ShuffleOrderSampler

method), 1063
__ge__() (chainer.link_hooks.SpectralNormalization

method), 790
__ge__() (chainer.link_hooks.TimerHook method),

792
__ge__() (chainer.link_hooks.WeightStandardization

method), 793
__ge__() (chainer.links.BatchNormalization method),

602
__ge__() (chainer.links.BatchRenormalization

method), 608
__ge__() (chainer.links.Bias method), 322
__ge__() (chainer.links.Bilinear method), 328
__ge__() (chainer.links.BinaryHierarchicalSoftmax

method), 635
__ge__() (chainer.links.BlackOut method), 641
__ge__() (chainer.links.CRF1d method), 647
__ge__() (chainer.links.ChildSumTreeLSTM method),

335
__ge__() (chainer.links.Classifier method), 688
__ge__() (chainer.links.Convolution1D method), 341

__ge__() (chainer.links.Convolution2D method), 348
__ge__() (chainer.links.Convolution3D method), 354
__ge__() (chainer.links.ConvolutionND method), 362
__ge__() (chainer.links.Deconvolution1D method),

368
__ge__() (chainer.links.Deconvolution2D method),

375
__ge__() (chainer.links.Deconvolution3D method),

381
__ge__() (chainer.links.DeconvolutionND method),

389
__ge__() (chainer.links.DecorrelatedBatchNormalization

method), 615
__ge__() (chainer.links.DeformableConvolution2D

method), 395
__ge__() (chainer.links.DepthwiseConvolution2D

method), 402
__ge__() (chainer.links.DilatedConvolution2D

method), 409
__ge__() (chainer.links.EmbedID method), 416
__ge__() (chainer.links.GRU method), 422
__ge__() (chainer.links.GoogLeNet method), 711
__ge__() (chainer.links.GroupNormalization method),

622
__ge__() (chainer.links.Highway method), 428
__ge__() (chainer.links.Inception method), 435
__ge__() (chainer.links.InceptionBN method), 441
__ge__() (chainer.links.LSTM method), 462
__ge__() (chainer.links.LayerNormalization method),

628
__ge__() (chainer.links.Linear method), 448
__ge__() (chainer.links.LocalConvolution2D method),

455
__ge__() (chainer.links.MLPConvolution2D method),

469
__ge__() (chainer.links.Maxout method), 674
__ge__() (chainer.links.NStepBiGRU method), 483
__ge__() (chainer.links.NStepBiLSTM method), 491
__ge__() (chainer.links.NStepBiRNNReLU method),

498
__ge__() (chainer.links.NStepBiRNNTanh method),

505
__ge__() (chainer.links.NStepGRU method), 512
__ge__() (chainer.links.NStepLSTM method), 519
__ge__() (chainer.links.NStepRNNReLU method), 527
__ge__() (chainer.links.NStepRNNTanh method), 534
__ge__() (chainer.links.NaryTreeLSTM method), 476
__ge__() (chainer.links.NegativeSampling method),

680
__ge__() (chainer.links.PReLU method), 661
__ge__() (chainer.links.Parameter method), 540
__ge__() (chainer.links.ResNet101Layers method),

735
__ge__() (chainer.links.ResNet152Layers method),

Index 1303

Chainer Documentation, Release 7.0.0b4

742
__ge__() (chainer.links.ResNet50Layers method), 727
__ge__() (chainer.links.Scale method), 546
__ge__() (chainer.links.SimplifiedDropconnect

method), 654
__ge__() (chainer.links.StatefulGRU method), 553
__ge__() (chainer.links.StatefulMGU method), 566
__ge__() (chainer.links.StatefulPeepholeLSTM

method), 579
__ge__() (chainer.links.StatefulZoneoutLSTM

method), 585
__ge__() (chainer.links.StatelessGRU method), 560
__ge__() (chainer.links.StatelessLSTM method), 592
__ge__() (chainer.links.StatelessMGU method), 572
__ge__() (chainer.links.Swish method), 667
__ge__() (chainer.links.TheanoFunction method), 750
__ge__() (chainer.links.VGG16Layers method), 696
__ge__() (chainer.links.VGG19Layers method), 703
__ge__() (chainer.links.caffe.CaffeFunction method),

757
__ge__() (chainer.links.model.vision.resnet.ResNetLayers

method), 720
__ge__() (chainer.optimizer.Hyperparameter method),

915
__ge__() (chainer.optimizer_hooks.GradientClipping

method), 921
__ge__() (chainer.optimizer_hooks.GradientHardClipping

method), 922
__ge__() (chainer.optimizer_hooks.GradientLARS

method), 924
__ge__() (chainer.optimizer_hooks.GradientNoise

method), 923
__ge__() (chainer.optimizer_hooks.Lasso method),

920
__ge__() (chainer.optimizer_hooks.WeightDecay

method), 919
__ge__() (chainer.optimizers.AMSBound method), 885
__ge__() (chainer.optimizers.AMSGrad method), 878
__ge__() (chainer.optimizers.AdaBound method), 882
__ge__() (chainer.optimizers.AdaDelta method), 865
__ge__() (chainer.optimizers.AdaGrad method), 868
__ge__() (chainer.optimizers.Adam method), 872
__ge__() (chainer.optimizers.AdamW method), 875
__ge__() (chainer.optimizers.CorrectedMomentumSGD

method), 889
__ge__() (chainer.optimizers.MSVAG method), 897
__ge__() (chainer.optimizers.MomentumSGD

method), 891
__ge__() (chainer.optimizers.NesterovAG method),

894
__ge__() (chainer.optimizers.RMSprop method), 900
__ge__() (chainer.optimizers.RMSpropGraves

method), 903
__ge__() (chainer.optimizers.SGD method), 906

__ge__() (chainer.optimizers.SMORMS3 method), 909
__ge__() (chainer.serializers.DictionarySerializer

method), 1064
__ge__() (chainer.serializers.HDF5Deserializer

method), 1069
__ge__() (chainer.serializers.HDF5Serializer

method), 1068
__ge__() (chainer.serializers.NpzDeserializer

method), 1066
__ge__() (chainer.testing.FunctionTestCase method),

1140
__ge__() (chainer.testing.LinkInitializersTestCase

method), 1150
__ge__() (chainer.testing.LinkTestCase method), 1159
__ge__() (chainer.training.Extension method), 960
__ge__() (chainer.training.Trainer method), 949
__ge__() (chainer.training.Updater method), 951
__ge__() (chainer.training.extensions.DumpGraph

method), 996
__ge__() (chainer.training.extensions.Evaluator

method), 964
__ge__() (chainer.training.extensions.ExponentialShift

method), 972
__ge__() (chainer.training.extensions.FailOnNonNumber

method), 967
__ge__() (chainer.training.extensions.InverseShift

method), 974
__ge__() (chainer.training.extensions.LinearShift

method), 976
__ge__() (chainer.training.extensions.LogReport

method), 989
__ge__() (chainer.training.extensions.MicroAverage

method), 966
__ge__() (chainer.training.extensions.MultistepShift

method), 978
__ge__() (chainer.training.extensions.ParameterStatistics

method), 970
__ge__() (chainer.training.extensions.PlotReport

method), 991
__ge__() (chainer.training.extensions.PolynomialShift

method), 980
__ge__() (chainer.training.extensions.PrintReport

method), 985
__ge__() (chainer.training.extensions.ProgressBar

method), 987
__ge__() (chainer.training.extensions.StepShift

method), 983
__ge__() (chainer.training.extensions.VariableStatisticsPlot

method), 994
__ge__() (chainer.training.extensions.WarmupShift

method), 981
__ge__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 946
__ge__() (chainer.training.extensions.snapshot_writers.ProcessWriter

1304 Index

Chainer Documentation, Release 7.0.0b4

method), 943
__ge__() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 944
__ge__() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 941
__ge__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 945
__ge__() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 942
__ge__() (chainer.training.extensions.snapshot_writers.Writer

method), 940
__ge__() (chainer.training.extensions.unchain_variables

method), 1000
__ge__() (chainer.training.triggers.BestValueTrigger

method), 1002
__ge__() (chainer.training.triggers.EarlyStoppingTrigger

method), 1003
__ge__() (chainer.training.triggers.IntervalTrigger

method), 1004
__ge__() (chainer.training.triggers.ManualScheduleTrigger

method), 1005
__ge__() (chainer.training.triggers.MaxValueTrigger

method), 1006
__ge__() (chainer.training.triggers.MinValueTrigger

method), 1007
__ge__() (chainer.training.triggers.OnceTrigger

method), 1007
__ge__() (chainer.training.triggers.TimeTrigger

method), 1008
__ge__() (chainer.training.updaters.MultiprocessParallelUpdater

method), 957
__ge__() (chainer.training.updaters.ParallelUpdater

method), 955
__ge__() (chainer.training.updaters.StandardUpdater

method), 953
__ge__() (chainer.utils.CooMatrix method), 1100
__ge__() (chainer.utils.WalkerAlias method), 1093
__ge__() (chainer.utils.type_check.Expr method),

1125
__ge__() (chainer.utils.type_check.TypeInfo method),

1126
__ge__() (chainer.utils.type_check.TypeInfoTuple

method), 1127
__ge__() (chainer.utils.type_check.Variable method),

1127
__ge__() (chainer.variable.VariableNode method),

150
__ge__() (chainerx.ndarray method), 1173
__getitem__() (chainer.AbstractSerializer method),

1072
__getitem__() (chainer.Chain method), 766
__getitem__() (chainer.ChainList method), 772
__getitem__() (chainer.Deserializer method), 1073
__getitem__() (chainer.Parameter method), 141

__getitem__() (chainer.Sequential method), 780
__getitem__() (chainer.Serializer method), 1071
__getitem__() (chainer.Variable method), 132
__getitem__() (chainer.dataset.DatasetMixin

method), 1009
__getitem__() (chainer.dataset.TabularDataset

method), 1011
__getitem__() (chainer.dataset.tabular.DelegateDataset

method), 1015
__getitem__() (chainer.datasets.ConcatenatedDataset

method), 1028
__getitem__() (chainer.datasets.DictDataset

method), 1026
__getitem__() (chainer.datasets.ImageDataset

method), 1035
__getitem__() (chainer.datasets.LabeledImageDataset

method), 1040
__getitem__() (chainer.datasets.LabeledZippedImageDataset

method), 1042
__getitem__() (chainer.datasets.MultiZippedImageDataset

method), 1038
__getitem__() (chainer.datasets.PickleDataset

method), 1045
__getitem__() (chainer.datasets.SubDataset

method), 1030
__getitem__() (chainer.datasets.TextDataset

method), 1044
__getitem__() (chainer.datasets.TransformDataset

method), 1033
__getitem__() (chainer.datasets.TupleDataset

method), 1027
__getitem__() (chainer.datasets.ZippedImageDataset

method), 1037
__getitem__() (chainer.links.ChildSumTreeLSTM

method), 330
__getitem__() (chainer.links.Classifier method), 682
__getitem__() (chainer.links.DeformableConvolution2D

method), 390
__getitem__() (chainer.links.GRU method), 417
__getitem__() (chainer.links.GoogLeNet method),

705
__getitem__() (chainer.links.Highway method), 423
__getitem__() (chainer.links.Inception method), 430
__getitem__() (chainer.links.InceptionBN method),

436
__getitem__() (chainer.links.LSTM method), 457
__getitem__() (chainer.links.MLPConvolution2D

method), 464
__getitem__() (chainer.links.Maxout method), 669
__getitem__() (chainer.links.NStepBiGRU method),

477
__getitem__() (chainer.links.NStepBiLSTM

method), 484
__getitem__() (chainer.links.NStepBiRNNReLU

Index 1305

Chainer Documentation, Release 7.0.0b4

method), 492
__getitem__() (chainer.links.NStepBiRNNTanh

method), 499
__getitem__() (chainer.links.NStepGRU method),

506
__getitem__() (chainer.links.NStepLSTM method),

513
__getitem__() (chainer.links.NStepRNNReLU

method), 521
__getitem__() (chainer.links.NStepRNNTanh

method), 528
__getitem__() (chainer.links.NaryTreeLSTM

method), 471
__getitem__() (chainer.links.ResNet101Layers

method), 729
__getitem__() (chainer.links.ResNet152Layers

method), 736
__getitem__() (chainer.links.ResNet50Layers

method), 721
__getitem__() (chainer.links.Scale method), 541
__getitem__() (chainer.links.StatefulGRU method),

548
__getitem__() (chainer.links.StatefulMGU method),

561
__getitem__() (chainer.links.StatefulPeepholeLSTM

method), 574
__getitem__() (chainer.links.StatefulZoneoutLSTM

method), 580
__getitem__() (chainer.links.StatelessGRU method),

555
__getitem__() (chainer.links.StatelessLSTM

method), 587
__getitem__() (chainer.links.StatelessMGU

method), 567
__getitem__() (chainer.links.VGG16Layers

method), 689
__getitem__() (chainer.links.VGG19Layers

method), 697
__getitem__() (chainer.links.caffe.CaffeFunction

method), 752
__getitem__() (chainer.links.model.vision.resnet.ResNetLayers

method), 713
__getitem__() (chainer.serializers.DictionarySerializer

method), 1064
__getitem__() (chainer.serializers.HDF5Deserializer

method), 1069
__getitem__() (chainer.serializers.HDF5Serializer

method), 1068
__getitem__() (chainer.serializers.NpzDeserializer

method), 1065
__getitem__() (chainer.utils.type_check.Expr

method), 1124
__getitem__() (chainer.utils.type_check.TypeInfoTuple

method), 1126

__getitem__() (chainer.utils.type_check.Variable
method), 1127

__gt__() (chainer.AbstractSerializer method), 1072
__gt__() (chainer.Chain method), 771
__gt__() (chainer.ChainList method), 778
__gt__() (chainer.Deserializer method), 1073
__gt__() (chainer.DeviceResident method), 1078
__gt__() (chainer.DictSummary method), 1098
__gt__() (chainer.Distribution method), 861
__gt__() (chainer.Function method), 291
__gt__() (chainer.FunctionAdapter method), 295
__gt__() (chainer.FunctionHook method), 315
__gt__() (chainer.FunctionNode method), 301
__gt__() (chainer.GradientMethod method), 918
__gt__() (chainer.Initializer method), 926
__gt__() (chainer.Link method), 764
__gt__() (chainer.LinkHook method), 796
__gt__() (chainer.Optimizer method), 912
__gt__() (chainer.Parameter method), 145
__gt__() (chainer.Reporter method), 1095
__gt__() (chainer.Sequential method), 787
__gt__() (chainer.Serializer method), 1071
__gt__() (chainer.Summary method), 1098
__gt__() (chainer.UpdateRule method), 914
__gt__() (chainer.Variable method), 136
__gt__() (chainer.backend.ChainerxDevice method),

1083
__gt__() (chainer.backend.CpuDevice method), 1080
__gt__() (chainer.backend.Device method), 1075
__gt__() (chainer.backend.GpuDevice method), 1081
__gt__() (chainer.backend.Intel64Device method),

1082
__gt__() (chainer.computational_graph.ComputationalGraph

method), 1114
__gt__() (chainer.configuration.GlobalConfig

method), 1107
__gt__() (chainer.configuration.LocalConfig method),

1108
__gt__() (chainer.dataset.ConcatWithAsyncTransfer

method), 1023
__gt__() (chainer.dataset.Converter method), 1021
__gt__() (chainer.dataset.DatasetMixin method),

1010
__gt__() (chainer.dataset.Iterator method), 1020
__gt__() (chainer.dataset.TabularDataset method),

1014
__gt__() (chainer.dataset.tabular.DelegateDataset

method), 1018
__gt__() (chainer.datasets.ConcatenatedDataset

method), 1029
__gt__() (chainer.datasets.DictDataset method), 1026
__gt__() (chainer.datasets.ImageDataset method),

1036

1306 Index

Chainer Documentation, Release 7.0.0b4

__gt__() (chainer.datasets.LabeledImageDataset
method), 1041

__gt__() (chainer.datasets.LabeledZippedImageDataset
method), 1043

__gt__() (chainer.datasets.MultiZippedImageDataset
method), 1039

__gt__() (chainer.datasets.PickleDataset method),
1046

__gt__() (chainer.datasets.PickleDatasetWriter
method), 1047

__gt__() (chainer.datasets.SubDataset method), 1031
__gt__() (chainer.datasets.TextDataset method), 1045
__gt__() (chainer.datasets.TransformDataset

method), 1034
__gt__() (chainer.datasets.TupleDataset method),

1027
__gt__() (chainer.datasets.ZippedImageDataset

method), 1038
__gt__() (chainer.device_resident.DeviceResidentsVisitor

method), 1079
__gt__() (chainer.distributions.Bernoulli method),

798
__gt__() (chainer.distributions.Beta method), 802
__gt__() (chainer.distributions.Categorical method),

805
__gt__() (chainer.distributions.Cauchy method), 808
__gt__() (chainer.distributions.Chisquare method),

811
__gt__() (chainer.distributions.Dirichlet method), 814
__gt__() (chainer.distributions.Exponential method),

817
__gt__() (chainer.distributions.Gamma method), 821
__gt__() (chainer.distributions.Geometric method),

824
__gt__() (chainer.distributions.Gumbel method), 827
__gt__() (chainer.distributions.Independent method),

830
__gt__() (chainer.distributions.Laplace method), 834
__gt__() (chainer.distributions.LogNormal method),

837
__gt__() (chainer.distributions.MultivariateNormal

method), 840
__gt__() (chainer.distributions.Normal method), 843
__gt__() (chainer.distributions.OneHotCategorical

method), 846
__gt__() (chainer.distributions.Pareto method), 849
__gt__() (chainer.distributions.Poisson method), 852
__gt__() (chainer.distributions.Uniform method), 856
__gt__() (chainer.function_hooks.CUDAProfileHook

method), 306
__gt__() (chainer.function_hooks.CupyMemoryProfileHook

method), 308
__gt__() (chainer.function_hooks.PrintHook method),

310

__gt__() (chainer.function_hooks.TimerHook
method), 312

__gt__() (chainer.initializers.Constant method), 927
__gt__() (chainer.initializers.DownsamplingConvFilter

method), 938
__gt__() (chainer.initializers.GlorotNormal method),

932
__gt__() (chainer.initializers.GlorotUniform method),

936
__gt__() (chainer.initializers.HeNormal method), 932
__gt__() (chainer.initializers.HeUniform method),

936
__gt__() (chainer.initializers.Identity method), 927
__gt__() (chainer.initializers.LeCunNormal method),

931
__gt__() (chainer.initializers.LeCunUniform method),

935
__gt__() (chainer.initializers.NaN method), 929
__gt__() (chainer.initializers.Normal method), 930
__gt__() (chainer.initializers.One method), 929
__gt__() (chainer.initializers.Orthogonal method),

933
__gt__() (chainer.initializers.Uniform method), 934
__gt__() (chainer.initializers.UpsamplingDeconvFilter

method), 937
__gt__() (chainer.initializers.Zero method), 928
__gt__() (chainer.iterators.DaliIterator method),

1061
__gt__() (chainer.iterators.MultiprocessIterator

method), 1057
__gt__() (chainer.iterators.MultithreadIterator

method), 1059
__gt__() (chainer.iterators.OrderSampler method),

1062
__gt__() (chainer.iterators.SerialIterator method),

1055
__gt__() (chainer.iterators.ShuffleOrderSampler

method), 1063
__gt__() (chainer.link_hooks.SpectralNormalization

method), 790
__gt__() (chainer.link_hooks.TimerHook method),

792
__gt__() (chainer.link_hooks.WeightStandardization

method), 793
__gt__() (chainer.links.BatchNormalization method),

602
__gt__() (chainer.links.BatchRenormalization

method), 608
__gt__() (chainer.links.Bias method), 322
__gt__() (chainer.links.Bilinear method), 328
__gt__() (chainer.links.BinaryHierarchicalSoftmax

method), 635
__gt__() (chainer.links.BlackOut method), 641
__gt__() (chainer.links.CRF1d method), 647

Index 1307

Chainer Documentation, Release 7.0.0b4

__gt__() (chainer.links.ChildSumTreeLSTM method),
335

__gt__() (chainer.links.Classifier method), 688
__gt__() (chainer.links.Convolution1D method), 341
__gt__() (chainer.links.Convolution2D method), 348
__gt__() (chainer.links.Convolution3D method), 354
__gt__() (chainer.links.ConvolutionND method), 362
__gt__() (chainer.links.Deconvolution1D method),

368
__gt__() (chainer.links.Deconvolution2D method),

375
__gt__() (chainer.links.Deconvolution3D method),

381
__gt__() (chainer.links.DeconvolutionND method),

389
__gt__() (chainer.links.DecorrelatedBatchNormalization

method), 615
__gt__() (chainer.links.DeformableConvolution2D

method), 395
__gt__() (chainer.links.DepthwiseConvolution2D

method), 402
__gt__() (chainer.links.DilatedConvolution2D

method), 409
__gt__() (chainer.links.EmbedID method), 416
__gt__() (chainer.links.GRU method), 422
__gt__() (chainer.links.GoogLeNet method), 711
__gt__() (chainer.links.GroupNormalization method),

622
__gt__() (chainer.links.Highway method), 428
__gt__() (chainer.links.Inception method), 435
__gt__() (chainer.links.InceptionBN method), 441
__gt__() (chainer.links.LSTM method), 462
__gt__() (chainer.links.LayerNormalization method),

628
__gt__() (chainer.links.Linear method), 448
__gt__() (chainer.links.LocalConvolution2D method),

455
__gt__() (chainer.links.MLPConvolution2D method),

469
__gt__() (chainer.links.Maxout method), 674
__gt__() (chainer.links.NStepBiGRU method), 483
__gt__() (chainer.links.NStepBiLSTM method), 490
__gt__() (chainer.links.NStepBiRNNReLU method),

498
__gt__() (chainer.links.NStepBiRNNTanh method),

505
__gt__() (chainer.links.NStepGRU method), 512
__gt__() (chainer.links.NStepLSTM method), 519
__gt__() (chainer.links.NStepRNNReLU method), 526
__gt__() (chainer.links.NStepRNNTanh method), 534
__gt__() (chainer.links.NaryTreeLSTM method), 476
__gt__() (chainer.links.NegativeSampling method),

680
__gt__() (chainer.links.PReLU method), 661

__gt__() (chainer.links.Parameter method), 540
__gt__() (chainer.links.ResNet101Layers method),

735
__gt__() (chainer.links.ResNet152Layers method),

742
__gt__() (chainer.links.ResNet50Layers method), 727
__gt__() (chainer.links.Scale method), 546
__gt__() (chainer.links.SimplifiedDropconnect

method), 654
__gt__() (chainer.links.StatefulGRU method), 553
__gt__() (chainer.links.StatefulMGU method), 566
__gt__() (chainer.links.StatefulPeepholeLSTM

method), 579
__gt__() (chainer.links.StatefulZoneoutLSTM

method), 585
__gt__() (chainer.links.StatelessGRU method), 560
__gt__() (chainer.links.StatelessLSTM method), 592
__gt__() (chainer.links.StatelessMGU method), 572
__gt__() (chainer.links.Swish method), 667
__gt__() (chainer.links.TheanoFunction method), 750
__gt__() (chainer.links.VGG16Layers method), 695
__gt__() (chainer.links.VGG19Layers method), 703
__gt__() (chainer.links.caffe.CaffeFunction method),

757
__gt__() (chainer.links.model.vision.resnet.ResNetLayers

method), 720
__gt__() (chainer.optimizer.Hyperparameter method),

915
__gt__() (chainer.optimizer_hooks.GradientClipping

method), 921
__gt__() (chainer.optimizer_hooks.GradientHardClipping

method), 922
__gt__() (chainer.optimizer_hooks.GradientLARS

method), 924
__gt__() (chainer.optimizer_hooks.GradientNoise

method), 923
__gt__() (chainer.optimizer_hooks.Lasso method),

920
__gt__() (chainer.optimizer_hooks.WeightDecay

method), 919
__gt__() (chainer.optimizers.AMSBound method), 885
__gt__() (chainer.optimizers.AMSGrad method), 878
__gt__() (chainer.optimizers.AdaBound method), 882
__gt__() (chainer.optimizers.AdaDelta method), 865
__gt__() (chainer.optimizers.AdaGrad method), 868
__gt__() (chainer.optimizers.Adam method), 872
__gt__() (chainer.optimizers.AdamW method), 875
__gt__() (chainer.optimizers.CorrectedMomentumSGD

method), 889
__gt__() (chainer.optimizers.MSVAG method), 897
__gt__() (chainer.optimizers.MomentumSGD

method), 891
__gt__() (chainer.optimizers.NesterovAG method),

894

1308 Index

Chainer Documentation, Release 7.0.0b4

__gt__() (chainer.optimizers.RMSprop method), 900
__gt__() (chainer.optimizers.RMSpropGraves

method), 903
__gt__() (chainer.optimizers.SGD method), 906
__gt__() (chainer.optimizers.SMORMS3 method), 909
__gt__() (chainer.serializers.DictionarySerializer

method), 1064
__gt__() (chainer.serializers.HDF5Deserializer

method), 1069
__gt__() (chainer.serializers.HDF5Serializer

method), 1068
__gt__() (chainer.serializers.NpzDeserializer

method), 1066
__gt__() (chainer.testing.FunctionTestCase method),

1140
__gt__() (chainer.testing.LinkInitializersTestCase

method), 1150
__gt__() (chainer.testing.LinkTestCase method), 1158
__gt__() (chainer.training.Extension method), 960
__gt__() (chainer.training.Trainer method), 949
__gt__() (chainer.training.Updater method), 951
__gt__() (chainer.training.extensions.DumpGraph

method), 996
__gt__() (chainer.training.extensions.Evaluator

method), 964
__gt__() (chainer.training.extensions.ExponentialShift

method), 972
__gt__() (chainer.training.extensions.FailOnNonNumber

method), 967
__gt__() (chainer.training.extensions.InverseShift

method), 974
__gt__() (chainer.training.extensions.LinearShift

method), 976
__gt__() (chainer.training.extensions.LogReport

method), 989
__gt__() (chainer.training.extensions.MicroAverage

method), 966
__gt__() (chainer.training.extensions.MultistepShift

method), 978
__gt__() (chainer.training.extensions.ParameterStatistics

method), 970
__gt__() (chainer.training.extensions.PlotReport

method), 991
__gt__() (chainer.training.extensions.PolynomialShift

method), 980
__gt__() (chainer.training.extensions.PrintReport

method), 985
__gt__() (chainer.training.extensions.ProgressBar

method), 987
__gt__() (chainer.training.extensions.StepShift

method), 983
__gt__() (chainer.training.extensions.VariableStatisticsPlot

method), 994
__gt__() (chainer.training.extensions.WarmupShift

method), 981
__gt__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 946
__gt__() (chainer.training.extensions.snapshot_writers.ProcessWriter

method), 943
__gt__() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 944
__gt__() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 941
__gt__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 945
__gt__() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 942
__gt__() (chainer.training.extensions.snapshot_writers.Writer

method), 940
__gt__() (chainer.training.extensions.unchain_variables

method), 1000
__gt__() (chainer.training.triggers.BestValueTrigger

method), 1002
__gt__() (chainer.training.triggers.EarlyStoppingTrigger

method), 1003
__gt__() (chainer.training.triggers.IntervalTrigger

method), 1004
__gt__() (chainer.training.triggers.ManualScheduleTrigger

method), 1005
__gt__() (chainer.training.triggers.MaxValueTrigger

method), 1006
__gt__() (chainer.training.triggers.MinValueTrigger

method), 1006
__gt__() (chainer.training.triggers.OnceTrigger

method), 1007
__gt__() (chainer.training.triggers.TimeTrigger

method), 1008
__gt__() (chainer.training.updaters.MultiprocessParallelUpdater

method), 957
__gt__() (chainer.training.updaters.ParallelUpdater

method), 955
__gt__() (chainer.training.updaters.StandardUpdater

method), 953
__gt__() (chainer.utils.CooMatrix method), 1100
__gt__() (chainer.utils.WalkerAlias method), 1093
__gt__() (chainer.utils.type_check.Expr method),

1125
__gt__() (chainer.utils.type_check.TypeInfo method),

1126
__gt__() (chainer.utils.type_check.TypeInfoTuple

method), 1127
__gt__() (chainer.utils.type_check.Variable method),

1127
__gt__() (chainer.variable.VariableNode method),

150
__gt__() (chainerx.ndarray method), 1173
__iter__() (chainer.ChainList method), 773
__iter__() (chainer.Sequential method), 780

Index 1309

Chainer Documentation, Release 7.0.0b4

__iter__() (chainer.dataset.Iterator method), 1020
__iter__() (chainer.dataset.TabularDataset method),

1012
__iter__() (chainer.dataset.tabular.DelegateDataset

method), 1016
__iter__() (chainer.iterators.DaliIterator method),

1060
__iter__() (chainer.iterators.MultiprocessIterator

method), 1057
__iter__() (chainer.iterators.MultithreadIterator

method), 1059
__iter__() (chainer.iterators.SerialIterator method),

1054
__iter__() (chainer.links.MLPConvolution2D

method), 464
__iter__() (chainer.links.NStepBiGRU method), 477
__iter__() (chainer.links.NStepBiLSTM method),

485
__iter__() (chainer.links.NStepBiRNNReLU

method), 492
__iter__() (chainer.links.NStepBiRNNTanh method),

499
__iter__() (chainer.links.NStepGRU method), 506
__iter__() (chainer.links.NStepLSTM method), 513
__iter__() (chainer.links.NStepRNNReLU method),

521
__iter__() (chainer.links.NStepRNNTanh method),

528
__iter__() (chainer.utils.type_check.TypeInfoTuple

method), 1126
__le__() (chainer.AbstractSerializer method), 1072
__le__() (chainer.Chain method), 771
__le__() (chainer.ChainList method), 778
__le__() (chainer.Deserializer method), 1073
__le__() (chainer.DeviceResident method), 1078
__le__() (chainer.DictSummary method), 1098
__le__() (chainer.Distribution method), 861
__le__() (chainer.Function method), 291
__le__() (chainer.FunctionAdapter method), 295
__le__() (chainer.FunctionHook method), 315
__le__() (chainer.FunctionNode method), 301
__le__() (chainer.GradientMethod method), 918
__le__() (chainer.Initializer method), 926
__le__() (chainer.Link method), 764
__le__() (chainer.LinkHook method), 795
__le__() (chainer.Optimizer method), 912
__le__() (chainer.Parameter method), 145
__le__() (chainer.Reporter method), 1095
__le__() (chainer.Sequential method), 787
__le__() (chainer.Serializer method), 1071
__le__() (chainer.Summary method), 1097
__le__() (chainer.UpdateRule method), 914
__le__() (chainer.Variable method), 136

__le__() (chainer.backend.ChainerxDevice method),
1083

__le__() (chainer.backend.CpuDevice method), 1080
__le__() (chainer.backend.Device method), 1075
__le__() (chainer.backend.GpuDevice method), 1081
__le__() (chainer.backend.Intel64Device method),

1082
__le__() (chainer.computational_graph.ComputationalGraph

method), 1114
__le__() (chainer.configuration.GlobalConfig

method), 1107
__le__() (chainer.configuration.LocalConfig method),

1108
__le__() (chainer.dataset.ConcatWithAsyncTransfer

method), 1023
__le__() (chainer.dataset.Converter method), 1021
__le__() (chainer.dataset.DatasetMixin method),

1010
__le__() (chainer.dataset.Iterator method), 1020
__le__() (chainer.dataset.TabularDataset method),

1014
__le__() (chainer.dataset.tabular.DelegateDataset

method), 1018
__le__() (chainer.datasets.ConcatenatedDataset

method), 1028
__le__() (chainer.datasets.DictDataset method), 1026
__le__() (chainer.datasets.ImageDataset method),

1036
__le__() (chainer.datasets.LabeledImageDataset

method), 1041
__le__() (chainer.datasets.LabeledZippedImageDataset

method), 1042
__le__() (chainer.datasets.MultiZippedImageDataset

method), 1039
__le__() (chainer.datasets.PickleDataset method),

1046
__le__() (chainer.datasets.PickleDatasetWriter

method), 1047
__le__() (chainer.datasets.SubDataset method), 1030
__le__() (chainer.datasets.TextDataset method), 1045
__le__() (chainer.datasets.TransformDataset

method), 1034
__le__() (chainer.datasets.TupleDataset method),

1027
__le__() (chainer.datasets.ZippedImageDataset

method), 1037
__le__() (chainer.device_resident.DeviceResidentsVisitor

method), 1078
__le__() (chainer.distributions.Bernoulli method),

798
__le__() (chainer.distributions.Beta method), 802
__le__() (chainer.distributions.Categorical method),

805
__le__() (chainer.distributions.Cauchy method), 808

1310 Index

Chainer Documentation, Release 7.0.0b4

__le__() (chainer.distributions.Chisquare method),
811

__le__() (chainer.distributions.Dirichlet method), 814
__le__() (chainer.distributions.Exponential method),

817
__le__() (chainer.distributions.Gamma method), 820
__le__() (chainer.distributions.Geometric method),

824
__le__() (chainer.distributions.Gumbel method), 827
__le__() (chainer.distributions.Independent method),

830
__le__() (chainer.distributions.Laplace method), 834
__le__() (chainer.distributions.LogNormal method),

837
__le__() (chainer.distributions.MultivariateNormal

method), 840
__le__() (chainer.distributions.Normal method), 843
__le__() (chainer.distributions.OneHotCategorical

method), 846
__le__() (chainer.distributions.Pareto method), 849
__le__() (chainer.distributions.Poisson method), 852
__le__() (chainer.distributions.Uniform method), 856
__le__() (chainer.function_hooks.CUDAProfileHook

method), 306
__le__() (chainer.function_hooks.CupyMemoryProfileHook

method), 308
__le__() (chainer.function_hooks.PrintHook method),

310
__le__() (chainer.function_hooks.TimerHook

method), 312
__le__() (chainer.initializers.Constant method), 927
__le__() (chainer.initializers.DownsamplingConvFilter

method), 938
__le__() (chainer.initializers.GlorotNormal method),

932
__le__() (chainer.initializers.GlorotUniform method),

936
__le__() (chainer.initializers.HeNormal method), 932
__le__() (chainer.initializers.HeUniform method),

936
__le__() (chainer.initializers.Identity method), 927
__le__() (chainer.initializers.LeCunNormal method),

931
__le__() (chainer.initializers.LeCunUniform method),

935
__le__() (chainer.initializers.NaN method), 929
__le__() (chainer.initializers.Normal method), 930
__le__() (chainer.initializers.One method), 929
__le__() (chainer.initializers.Orthogonal method),

933
__le__() (chainer.initializers.Uniform method), 934
__le__() (chainer.initializers.UpsamplingDeconvFilter

method), 937
__le__() (chainer.initializers.Zero method), 928

__le__() (chainer.iterators.DaliIterator method),
1061

__le__() (chainer.iterators.MultiprocessIterator
method), 1057

__le__() (chainer.iterators.MultithreadIterator
method), 1059

__le__() (chainer.iterators.OrderSampler method),
1062

__le__() (chainer.iterators.SerialIterator method),
1055

__le__() (chainer.iterators.ShuffleOrderSampler
method), 1063

__le__() (chainer.link_hooks.SpectralNormalization
method), 790

__le__() (chainer.link_hooks.TimerHook method),
792

__le__() (chainer.link_hooks.WeightStandardization
method), 793

__le__() (chainer.links.BatchNormalization method),
602

__le__() (chainer.links.BatchRenormalization
method), 608

__le__() (chainer.links.Bias method), 322
__le__() (chainer.links.Bilinear method), 328
__le__() (chainer.links.BinaryHierarchicalSoftmax

method), 635
__le__() (chainer.links.BlackOut method), 641
__le__() (chainer.links.CRF1d method), 647
__le__() (chainer.links.ChildSumTreeLSTM method),

335
__le__() (chainer.links.Classifier method), 687
__le__() (chainer.links.Convolution1D method), 341
__le__() (chainer.links.Convolution2D method), 348
__le__() (chainer.links.Convolution3D method), 354
__le__() (chainer.links.ConvolutionND method), 362
__le__() (chainer.links.Deconvolution1D method),

368
__le__() (chainer.links.Deconvolution2D method),

375
__le__() (chainer.links.Deconvolution3D method),

381
__le__() (chainer.links.DeconvolutionND method),

389
__le__() (chainer.links.DecorrelatedBatchNormalization

method), 615
__le__() (chainer.links.DeformableConvolution2D

method), 395
__le__() (chainer.links.DepthwiseConvolution2D

method), 402
__le__() (chainer.links.DilatedConvolution2D

method), 409
__le__() (chainer.links.EmbedID method), 416
__le__() (chainer.links.GRU method), 422
__le__() (chainer.links.GoogLeNet method), 711

Index 1311

Chainer Documentation, Release 7.0.0b4

__le__() (chainer.links.GroupNormalization method),
622

__le__() (chainer.links.Highway method), 428
__le__() (chainer.links.Inception method), 435
__le__() (chainer.links.InceptionBN method), 441
__le__() (chainer.links.LSTM method), 462
__le__() (chainer.links.LayerNormalization method),

628
__le__() (chainer.links.Linear method), 448
__le__() (chainer.links.LocalConvolution2D method),

455
__le__() (chainer.links.MLPConvolution2D method),

469
__le__() (chainer.links.Maxout method), 674
__le__() (chainer.links.NStepBiGRU method), 483
__le__() (chainer.links.NStepBiLSTM method), 490
__le__() (chainer.links.NStepBiRNNReLU method),

498
__le__() (chainer.links.NStepBiRNNTanh method),

505
__le__() (chainer.links.NStepGRU method), 512
__le__() (chainer.links.NStepLSTM method), 519
__le__() (chainer.links.NStepRNNReLU method), 526
__le__() (chainer.links.NStepRNNTanh method), 534
__le__() (chainer.links.NaryTreeLSTM method), 476
__le__() (chainer.links.NegativeSampling method),

680
__le__() (chainer.links.PReLU method), 661
__le__() (chainer.links.Parameter method), 540
__le__() (chainer.links.ResNet101Layers method),

735
__le__() (chainer.links.ResNet152Layers method),

742
__le__() (chainer.links.ResNet50Layers method), 727
__le__() (chainer.links.Scale method), 546
__le__() (chainer.links.SimplifiedDropconnect

method), 654
__le__() (chainer.links.StatefulGRU method), 553
__le__() (chainer.links.StatefulMGU method), 566
__le__() (chainer.links.StatefulPeepholeLSTM

method), 579
__le__() (chainer.links.StatefulZoneoutLSTM

method), 585
__le__() (chainer.links.StatelessGRU method), 560
__le__() (chainer.links.StatelessLSTM method), 592
__le__() (chainer.links.StatelessMGU method), 572
__le__() (chainer.links.Swish method), 667
__le__() (chainer.links.TheanoFunction method), 750
__le__() (chainer.links.VGG16Layers method), 695
__le__() (chainer.links.VGG19Layers method), 703
__le__() (chainer.links.caffe.CaffeFunction method),

757
__le__() (chainer.links.model.vision.resnet.ResNetLayers

method), 720

__le__() (chainer.optimizer.Hyperparameter method),
915

__le__() (chainer.optimizer_hooks.GradientClipping
method), 921

__le__() (chainer.optimizer_hooks.GradientHardClipping
method), 922

__le__() (chainer.optimizer_hooks.GradientLARS
method), 924

__le__() (chainer.optimizer_hooks.GradientNoise
method), 923

__le__() (chainer.optimizer_hooks.Lasso method),
920

__le__() (chainer.optimizer_hooks.WeightDecay
method), 919

__le__() (chainer.optimizers.AMSBound method), 885
__le__() (chainer.optimizers.AMSGrad method), 878
__le__() (chainer.optimizers.AdaBound method), 882
__le__() (chainer.optimizers.AdaDelta method), 865
__le__() (chainer.optimizers.AdaGrad method), 868
__le__() (chainer.optimizers.Adam method), 871
__le__() (chainer.optimizers.AdamW method), 875
__le__() (chainer.optimizers.CorrectedMomentumSGD

method), 888
__le__() (chainer.optimizers.MSVAG method), 897
__le__() (chainer.optimizers.MomentumSGD

method), 891
__le__() (chainer.optimizers.NesterovAG method),

894
__le__() (chainer.optimizers.RMSprop method), 900
__le__() (chainer.optimizers.RMSpropGraves

method), 903
__le__() (chainer.optimizers.SGD method), 906
__le__() (chainer.optimizers.SMORMS3 method), 909
__le__() (chainer.serializers.DictionarySerializer

method), 1064
__le__() (chainer.serializers.HDF5Deserializer

method), 1069
__le__() (chainer.serializers.HDF5Serializer

method), 1068
__le__() (chainer.serializers.NpzDeserializer

method), 1066
__le__() (chainer.testing.FunctionTestCase method),

1140
__le__() (chainer.testing.LinkInitializersTestCase

method), 1150
__le__() (chainer.testing.LinkTestCase method), 1158
__le__() (chainer.training.Extension method), 960
__le__() (chainer.training.Trainer method), 949
__le__() (chainer.training.Updater method), 951
__le__() (chainer.training.extensions.DumpGraph

method), 996
__le__() (chainer.training.extensions.Evaluator

method), 964
__le__() (chainer.training.extensions.ExponentialShift

1312 Index

Chainer Documentation, Release 7.0.0b4

method), 972
__le__() (chainer.training.extensions.FailOnNonNumber

method), 967
__le__() (chainer.training.extensions.InverseShift

method), 974
__le__() (chainer.training.extensions.LinearShift

method), 976
__le__() (chainer.training.extensions.LogReport

method), 989
__le__() (chainer.training.extensions.MicroAverage

method), 966
__le__() (chainer.training.extensions.MultistepShift

method), 978
__le__() (chainer.training.extensions.ParameterStatistics

method), 970
__le__() (chainer.training.extensions.PlotReport

method), 991
__le__() (chainer.training.extensions.PolynomialShift

method), 980
__le__() (chainer.training.extensions.PrintReport

method), 985
__le__() (chainer.training.extensions.ProgressBar

method), 987
__le__() (chainer.training.extensions.StepShift

method), 983
__le__() (chainer.training.extensions.VariableStatisticsPlot

method), 994
__le__() (chainer.training.extensions.WarmupShift

method), 981
__le__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 946
__le__() (chainer.training.extensions.snapshot_writers.ProcessWriter

method), 943
__le__() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 944
__le__() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 941
__le__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 945
__le__() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 942
__le__() (chainer.training.extensions.snapshot_writers.Writer

method), 940
__le__() (chainer.training.extensions.unchain_variables

method), 1000
__le__() (chainer.training.triggers.BestValueTrigger

method), 1002
__le__() (chainer.training.triggers.EarlyStoppingTrigger

method), 1003
__le__() (chainer.training.triggers.IntervalTrigger

method), 1004
__le__() (chainer.training.triggers.ManualScheduleTrigger

method), 1005
__le__() (chainer.training.triggers.MaxValueTrigger

method), 1006
__le__() (chainer.training.triggers.MinValueTrigger

method), 1006
__le__() (chainer.training.triggers.OnceTrigger

method), 1007
__le__() (chainer.training.triggers.TimeTrigger

method), 1008
__le__() (chainer.training.updaters.MultiprocessParallelUpdater

method), 957
__le__() (chainer.training.updaters.ParallelUpdater

method), 955
__le__() (chainer.training.updaters.StandardUpdater

method), 953
__le__() (chainer.utils.CooMatrix method), 1100
__le__() (chainer.utils.WalkerAlias method), 1093
__le__() (chainer.utils.type_check.Expr method),

1125
__le__() (chainer.utils.type_check.TypeInfo method),

1126
__le__() (chainer.utils.type_check.TypeInfoTuple

method), 1127
__le__() (chainer.utils.type_check.Variable method),

1127
__le__() (chainer.variable.VariableNode method),

150
__le__() (chainerx.ndarray method), 1173
__len__() (chainer.ChainList method), 772
__len__() (chainer.Parameter method), 142
__len__() (chainer.Sequential method), 780
__len__() (chainer.Variable method), 133
__len__() (chainer.dataset.DatasetMixin method),

1010
__len__() (chainer.dataset.TabularDataset method),

1012
__len__() (chainer.dataset.tabular.DelegateDataset

method), 1016
__len__() (chainer.datasets.ConcatenatedDataset

method), 1028
__len__() (chainer.datasets.DictDataset method),

1026
__len__() (chainer.datasets.ImageDataset method),

1036
__len__() (chainer.datasets.LabeledImageDataset

method), 1041
__len__() (chainer.datasets.LabeledZippedImageDataset

method), 1042
__len__() (chainer.datasets.MultiZippedImageDataset

method), 1039
__len__() (chainer.datasets.PickleDataset method),

1046
__len__() (chainer.datasets.SubDataset method),

1030
__len__() (chainer.datasets.TextDataset method),

1044

Index 1313

Chainer Documentation, Release 7.0.0b4

__len__() (chainer.datasets.TransformDataset
method), 1034

__len__() (chainer.datasets.TupleDataset method),
1027

__len__() (chainer.datasets.ZippedImageDataset
method), 1037

__len__() (chainer.links.MLPConvolution2D
method), 464

__len__() (chainer.links.NStepBiGRU method), 477
__len__() (chainer.links.NStepBiLSTM method), 485
__len__() (chainer.links.NStepBiRNNReLU method),

492
__len__() (chainer.links.NStepBiRNNTanh method),

499
__len__() (chainer.links.NStepGRU method), 506
__len__() (chainer.links.NStepLSTM method), 513
__len__() (chainer.links.NStepRNNReLU method),

521
__len__() (chainer.links.NStepRNNTanh method), 528
__len__() (chainer.utils.type_check.TypeInfoTuple

method), 1126
__lt__() (chainer.AbstractSerializer method), 1072
__lt__() (chainer.Chain method), 771
__lt__() (chainer.ChainList method), 778
__lt__() (chainer.Deserializer method), 1073
__lt__() (chainer.DeviceResident method), 1078
__lt__() (chainer.DictSummary method), 1098
__lt__() (chainer.Distribution method), 861
__lt__() (chainer.Function method), 291
__lt__() (chainer.FunctionAdapter method), 295
__lt__() (chainer.FunctionHook method), 315
__lt__() (chainer.FunctionNode method), 301
__lt__() (chainer.GradientMethod method), 918
__lt__() (chainer.Initializer method), 925
__lt__() (chainer.Link method), 764
__lt__() (chainer.LinkHook method), 795
__lt__() (chainer.Optimizer method), 911
__lt__() (chainer.Parameter method), 145
__lt__() (chainer.Reporter method), 1095
__lt__() (chainer.Sequential method), 787
__lt__() (chainer.Serializer method), 1071
__lt__() (chainer.Summary method), 1097
__lt__() (chainer.UpdateRule method), 914
__lt__() (chainer.Variable method), 136
__lt__() (chainer.backend.ChainerxDevice method),

1083
__lt__() (chainer.backend.CpuDevice method), 1080
__lt__() (chainer.backend.Device method), 1075
__lt__() (chainer.backend.GpuDevice method), 1081
__lt__() (chainer.backend.Intel64Device method),

1082
__lt__() (chainer.computational_graph.ComputationalGraph

method), 1114

__lt__() (chainer.configuration.GlobalConfig
method), 1107

__lt__() (chainer.configuration.LocalConfig method),
1108

__lt__() (chainer.dataset.ConcatWithAsyncTransfer
method), 1023

__lt__() (chainer.dataset.Converter method), 1021
__lt__() (chainer.dataset.DatasetMixin method),

1010
__lt__() (chainer.dataset.Iterator method), 1020
__lt__() (chainer.dataset.TabularDataset method),

1014
__lt__() (chainer.dataset.tabular.DelegateDataset

method), 1018
__lt__() (chainer.datasets.ConcatenatedDataset

method), 1028
__lt__() (chainer.datasets.DictDataset method), 1026
__lt__() (chainer.datasets.ImageDataset method),

1036
__lt__() (chainer.datasets.LabeledImageDataset

method), 1041
__lt__() (chainer.datasets.LabeledZippedImageDataset

method), 1042
__lt__() (chainer.datasets.MultiZippedImageDataset

method), 1039
__lt__() (chainer.datasets.PickleDataset method),

1046
__lt__() (chainer.datasets.PickleDatasetWriter

method), 1047
__lt__() (chainer.datasets.SubDataset method), 1030
__lt__() (chainer.datasets.TextDataset method), 1045
__lt__() (chainer.datasets.TransformDataset

method), 1034
__lt__() (chainer.datasets.TupleDataset method),

1027
__lt__() (chainer.datasets.ZippedImageDataset

method), 1037
__lt__() (chainer.device_resident.DeviceResidentsVisitor

method), 1078
__lt__() (chainer.distributions.Bernoulli method),

798
__lt__() (chainer.distributions.Beta method), 801
__lt__() (chainer.distributions.Categorical method),

805
__lt__() (chainer.distributions.Cauchy method), 808
__lt__() (chainer.distributions.Chisquare method),

811
__lt__() (chainer.distributions.Dirichlet method), 814
__lt__() (chainer.distributions.Exponential method),

817
__lt__() (chainer.distributions.Gamma method), 820
__lt__() (chainer.distributions.Geometric method),

824
__lt__() (chainer.distributions.Gumbel method), 827

1314 Index

Chainer Documentation, Release 7.0.0b4

__lt__() (chainer.distributions.Independent method),
830

__lt__() (chainer.distributions.Laplace method), 833
__lt__() (chainer.distributions.LogNormal method),

837
__lt__() (chainer.distributions.MultivariateNormal

method), 840
__lt__() (chainer.distributions.Normal method), 843
__lt__() (chainer.distributions.OneHotCategorical

method), 846
__lt__() (chainer.distributions.Pareto method), 849
__lt__() (chainer.distributions.Poisson method), 852
__lt__() (chainer.distributions.Uniform method), 856
__lt__() (chainer.function_hooks.CUDAProfileHook

method), 306
__lt__() (chainer.function_hooks.CupyMemoryProfileHook

method), 308
__lt__() (chainer.function_hooks.PrintHook method),

310
__lt__() (chainer.function_hooks.TimerHook

method), 312
__lt__() (chainer.initializers.Constant method), 927
__lt__() (chainer.initializers.DownsamplingConvFilter

method), 938
__lt__() (chainer.initializers.GlorotNormal method),

932
__lt__() (chainer.initializers.GlorotUniform method),

936
__lt__() (chainer.initializers.HeNormal method), 932
__lt__() (chainer.initializers.HeUniform method),

936
__lt__() (chainer.initializers.Identity method), 927
__lt__() (chainer.initializers.LeCunNormal method),

931
__lt__() (chainer.initializers.LeCunUniform method),

935
__lt__() (chainer.initializers.NaN method), 929
__lt__() (chainer.initializers.Normal method), 930
__lt__() (chainer.initializers.One method), 929
__lt__() (chainer.initializers.Orthogonal method),

933
__lt__() (chainer.initializers.Uniform method), 934
__lt__() (chainer.initializers.UpsamplingDeconvFilter

method), 937
__lt__() (chainer.initializers.Zero method), 928
__lt__() (chainer.iterators.DaliIterator method),

1060
__lt__() (chainer.iterators.MultiprocessIterator

method), 1057
__lt__() (chainer.iterators.MultithreadIterator

method), 1059
__lt__() (chainer.iterators.OrderSampler method),

1062
__lt__() (chainer.iterators.SerialIterator method),

1055
__lt__() (chainer.iterators.ShuffleOrderSampler

method), 1062
__lt__() (chainer.link_hooks.SpectralNormalization

method), 790
__lt__() (chainer.link_hooks.TimerHook method),

792
__lt__() (chainer.link_hooks.WeightStandardization

method), 793
__lt__() (chainer.links.BatchNormalization method),

602
__lt__() (chainer.links.BatchRenormalization

method), 608
__lt__() (chainer.links.Bias method), 322
__lt__() (chainer.links.Bilinear method), 328
__lt__() (chainer.links.BinaryHierarchicalSoftmax

method), 635
__lt__() (chainer.links.BlackOut method), 641
__lt__() (chainer.links.CRF1d method), 647
__lt__() (chainer.links.ChildSumTreeLSTM method),

335
__lt__() (chainer.links.Classifier method), 687
__lt__() (chainer.links.Convolution1D method), 341
__lt__() (chainer.links.Convolution2D method), 348
__lt__() (chainer.links.Convolution3D method), 354
__lt__() (chainer.links.ConvolutionND method), 362
__lt__() (chainer.links.Deconvolution1D method),

368
__lt__() (chainer.links.Deconvolution2D method),

375
__lt__() (chainer.links.Deconvolution3D method),

381
__lt__() (chainer.links.DeconvolutionND method),

388
__lt__() (chainer.links.DecorrelatedBatchNormalization

method), 615
__lt__() (chainer.links.DeformableConvolution2D

method), 395
__lt__() (chainer.links.DepthwiseConvolution2D

method), 402
__lt__() (chainer.links.DilatedConvolution2D

method), 409
__lt__() (chainer.links.EmbedID method), 416
__lt__() (chainer.links.GRU method), 422
__lt__() (chainer.links.GoogLeNet method), 711
__lt__() (chainer.links.GroupNormalization method),

622
__lt__() (chainer.links.Highway method), 428
__lt__() (chainer.links.Inception method), 435
__lt__() (chainer.links.InceptionBN method), 441
__lt__() (chainer.links.LSTM method), 462
__lt__() (chainer.links.LayerNormalization method),

628
__lt__() (chainer.links.Linear method), 448

Index 1315

Chainer Documentation, Release 7.0.0b4

__lt__() (chainer.links.LocalConvolution2D method),
455

__lt__() (chainer.links.MLPConvolution2D method),
469

__lt__() (chainer.links.Maxout method), 674
__lt__() (chainer.links.NStepBiGRU method), 483
__lt__() (chainer.links.NStepBiLSTM method), 490
__lt__() (chainer.links.NStepBiRNNReLU method),

498
__lt__() (chainer.links.NStepBiRNNTanh method),

505
__lt__() (chainer.links.NStepGRU method), 512
__lt__() (chainer.links.NStepLSTM method), 519
__lt__() (chainer.links.NStepRNNReLU method), 526
__lt__() (chainer.links.NStepRNNTanh method), 534
__lt__() (chainer.links.NaryTreeLSTM method), 476
__lt__() (chainer.links.NegativeSampling method),

680
__lt__() (chainer.links.PReLU method), 660
__lt__() (chainer.links.Parameter method), 540
__lt__() (chainer.links.ResNet101Layers method),

735
__lt__() (chainer.links.ResNet152Layers method),

742
__lt__() (chainer.links.ResNet50Layers method), 727
__lt__() (chainer.links.Scale method), 546
__lt__() (chainer.links.SimplifiedDropconnect

method), 654
__lt__() (chainer.links.StatefulGRU method), 553
__lt__() (chainer.links.StatefulMGU method), 566
__lt__() (chainer.links.StatefulPeepholeLSTM

method), 579
__lt__() (chainer.links.StatefulZoneoutLSTM

method), 585
__lt__() (chainer.links.StatelessGRU method), 560
__lt__() (chainer.links.StatelessLSTM method), 592
__lt__() (chainer.links.StatelessMGU method), 572
__lt__() (chainer.links.Swish method), 667
__lt__() (chainer.links.TheanoFunction method), 750
__lt__() (chainer.links.VGG16Layers method), 695
__lt__() (chainer.links.VGG19Layers method), 703
__lt__() (chainer.links.caffe.CaffeFunction method),

757
__lt__() (chainer.links.model.vision.resnet.ResNetLayers

method), 719
__lt__() (chainer.optimizer.Hyperparameter method),

915
__lt__() (chainer.optimizer_hooks.GradientClipping

method), 921
__lt__() (chainer.optimizer_hooks.GradientHardClipping

method), 922
__lt__() (chainer.optimizer_hooks.GradientLARS

method), 924
__lt__() (chainer.optimizer_hooks.GradientNoise

method), 923
__lt__() (chainer.optimizer_hooks.Lasso method),

920
__lt__() (chainer.optimizer_hooks.WeightDecay

method), 919
__lt__() (chainer.optimizers.AMSBound method), 885
__lt__() (chainer.optimizers.AMSGrad method), 878
__lt__() (chainer.optimizers.AdaBound method), 882
__lt__() (chainer.optimizers.AdaDelta method), 865
__lt__() (chainer.optimizers.AdaGrad method), 868
__lt__() (chainer.optimizers.Adam method), 871
__lt__() (chainer.optimizers.AdamW method), 875
__lt__() (chainer.optimizers.CorrectedMomentumSGD

method), 888
__lt__() (chainer.optimizers.MSVAG method), 897
__lt__() (chainer.optimizers.MomentumSGD

method), 891
__lt__() (chainer.optimizers.NesterovAG method),

894
__lt__() (chainer.optimizers.RMSprop method), 900
__lt__() (chainer.optimizers.RMSpropGraves

method), 903
__lt__() (chainer.optimizers.SGD method), 906
__lt__() (chainer.optimizers.SMORMS3 method), 908
__lt__() (chainer.serializers.DictionarySerializer

method), 1064
__lt__() (chainer.serializers.HDF5Deserializer

method), 1069
__lt__() (chainer.serializers.HDF5Serializer

method), 1068
__lt__() (chainer.serializers.NpzDeserializer

method), 1066
__lt__() (chainer.testing.FunctionTestCase method),

1140
__lt__() (chainer.testing.LinkInitializersTestCase

method), 1150
__lt__() (chainer.testing.LinkTestCase method), 1158
__lt__() (chainer.training.Extension method), 960
__lt__() (chainer.training.Trainer method), 949
__lt__() (chainer.training.Updater method), 951
__lt__() (chainer.training.extensions.DumpGraph

method), 996
__lt__() (chainer.training.extensions.Evaluator

method), 964
__lt__() (chainer.training.extensions.ExponentialShift

method), 972
__lt__() (chainer.training.extensions.FailOnNonNumber

method), 967
__lt__() (chainer.training.extensions.InverseShift

method), 974
__lt__() (chainer.training.extensions.LinearShift

method), 976
__lt__() (chainer.training.extensions.LogReport

method), 989

1316 Index

Chainer Documentation, Release 7.0.0b4

__lt__() (chainer.training.extensions.MicroAverage
method), 966

__lt__() (chainer.training.extensions.MultistepShift
method), 978

__lt__() (chainer.training.extensions.ParameterStatistics
method), 970

__lt__() (chainer.training.extensions.PlotReport
method), 991

__lt__() (chainer.training.extensions.PolynomialShift
method), 979

__lt__() (chainer.training.extensions.PrintReport
method), 985

__lt__() (chainer.training.extensions.ProgressBar
method), 987

__lt__() (chainer.training.extensions.StepShift
method), 983

__lt__() (chainer.training.extensions.VariableStatisticsPlot
method), 993

__lt__() (chainer.training.extensions.WarmupShift
method), 981

__lt__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter
method), 946

__lt__() (chainer.training.extensions.snapshot_writers.ProcessWriter
method), 943

__lt__() (chainer.training.extensions.snapshot_writers.QueueWriter
method), 944

__lt__() (chainer.training.extensions.snapshot_writers.SimpleWriter
method), 940

__lt__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter
method), 945

__lt__() (chainer.training.extensions.snapshot_writers.ThreadWriter
method), 942

__lt__() (chainer.training.extensions.snapshot_writers.Writer
method), 939

__lt__() (chainer.training.extensions.unchain_variables
method), 1000

__lt__() (chainer.training.triggers.BestValueTrigger
method), 1002

__lt__() (chainer.training.triggers.EarlyStoppingTrigger
method), 1003

__lt__() (chainer.training.triggers.IntervalTrigger
method), 1004

__lt__() (chainer.training.triggers.ManualScheduleTrigger
method), 1005

__lt__() (chainer.training.triggers.MaxValueTrigger
method), 1006

__lt__() (chainer.training.triggers.MinValueTrigger
method), 1006

__lt__() (chainer.training.triggers.OnceTrigger
method), 1007

__lt__() (chainer.training.triggers.TimeTrigger
method), 1008

__lt__() (chainer.training.updaters.MultiprocessParallelUpdater
method), 957

__lt__() (chainer.training.updaters.ParallelUpdater
method), 955

__lt__() (chainer.training.updaters.StandardUpdater
method), 953

__lt__() (chainer.utils.CooMatrix method), 1100
__lt__() (chainer.utils.WalkerAlias method), 1092
__lt__() (chainer.utils.type_check.Expr method),

1125
__lt__() (chainer.utils.type_check.TypeInfo method),

1126
__lt__() (chainer.utils.type_check.TypeInfoTuple

method), 1127
__lt__() (chainer.utils.type_check.Variable method),

1127
__lt__() (chainer.variable.VariableNode method),

150
__lt__() (chainerx.ndarray method), 1173
__matmul__() (chainer.Parameter method), 147
__matmul__() (chainer.Variable method), 137
__mul__() (chainer.Parameter method), 146
__mul__() (chainer.Variable method), 136
__mul__() (chainer.utils.type_check.Expr method),

1125
__mul__() (chainer.utils.type_check.TypeInfoTuple

method), 1127
__mul__() (chainer.utils.type_check.Variable method),

1128
__ne__() (chainer.AbstractSerializer method), 1072
__ne__() (chainer.Chain method), 771
__ne__() (chainer.ChainList method), 778
__ne__() (chainer.Deserializer method), 1073
__ne__() (chainer.DeviceResident method), 1078
__ne__() (chainer.DictSummary method), 1098
__ne__() (chainer.Distribution method), 861
__ne__() (chainer.Function method), 290
__ne__() (chainer.FunctionAdapter method), 295
__ne__() (chainer.FunctionHook method), 315
__ne__() (chainer.FunctionNode method), 301
__ne__() (chainer.GradientMethod method), 918
__ne__() (chainer.Initializer method), 925
__ne__() (chainer.Link method), 764
__ne__() (chainer.LinkHook method), 795
__ne__() (chainer.Optimizer method), 911
__ne__() (chainer.Parameter method), 145
__ne__() (chainer.Reporter method), 1095
__ne__() (chainer.Sequential method), 786
__ne__() (chainer.Serializer method), 1071
__ne__() (chainer.Summary method), 1097
__ne__() (chainer.UpdateRule method), 914
__ne__() (chainer.Variable method), 135
__ne__() (chainer.backend.ChainerxDevice method),

1083
__ne__() (chainer.backend.CpuDevice method), 1080
__ne__() (chainer.backend.Device method), 1075

Index 1317

Chainer Documentation, Release 7.0.0b4

__ne__() (chainer.backend.GpuDevice method), 1081
__ne__() (chainer.backend.Intel64Device method),

1082
__ne__() (chainer.computational_graph.ComputationalGraph

method), 1114
__ne__() (chainer.configuration.GlobalConfig

method), 1107
__ne__() (chainer.configuration.LocalConfig method),

1108
__ne__() (chainer.dataset.ConcatWithAsyncTransfer

method), 1023
__ne__() (chainer.dataset.Converter method), 1021
__ne__() (chainer.dataset.DatasetMixin method),

1010
__ne__() (chainer.dataset.Iterator method), 1020
__ne__() (chainer.dataset.TabularDataset method),

1014
__ne__() (chainer.dataset.tabular.DelegateDataset

method), 1018
__ne__() (chainer.datasets.ConcatenatedDataset

method), 1028
__ne__() (chainer.datasets.DictDataset method), 1026
__ne__() (chainer.datasets.ImageDataset method),

1036
__ne__() (chainer.datasets.LabeledImageDataset

method), 1041
__ne__() (chainer.datasets.LabeledZippedImageDataset

method), 1042
__ne__() (chainer.datasets.MultiZippedImageDataset

method), 1039
__ne__() (chainer.datasets.PickleDataset method),

1046
__ne__() (chainer.datasets.PickleDatasetWriter

method), 1047
__ne__() (chainer.datasets.SubDataset method), 1030
__ne__() (chainer.datasets.TextDataset method), 1044
__ne__() (chainer.datasets.TransformDataset

method), 1034
__ne__() (chainer.datasets.TupleDataset method),

1027
__ne__() (chainer.datasets.ZippedImageDataset

method), 1037
__ne__() (chainer.device_resident.DeviceResidentsVisitor

method), 1078
__ne__() (chainer.distributions.Bernoulli method),

798
__ne__() (chainer.distributions.Beta method), 801
__ne__() (chainer.distributions.Categorical method),

805
__ne__() (chainer.distributions.Cauchy method), 808
__ne__() (chainer.distributions.Chisquare method),

811
__ne__() (chainer.distributions.Dirichlet method), 814
__ne__() (chainer.distributions.Exponential method),

817
__ne__() (chainer.distributions.Gamma method), 820
__ne__() (chainer.distributions.Geometric method),

823
__ne__() (chainer.distributions.Gumbel method), 827
__ne__() (chainer.distributions.Independent method),

830
__ne__() (chainer.distributions.Laplace method), 833
__ne__() (chainer.distributions.LogNormal method),

836
__ne__() (chainer.distributions.MultivariateNormal

method), 840
__ne__() (chainer.distributions.Normal method), 843
__ne__() (chainer.distributions.OneHotCategorical

method), 846
__ne__() (chainer.distributions.Pareto method), 849
__ne__() (chainer.distributions.Poisson method), 852
__ne__() (chainer.distributions.Uniform method), 856
__ne__() (chainer.function_hooks.CUDAProfileHook

method), 305
__ne__() (chainer.function_hooks.CupyMemoryProfileHook

method), 308
__ne__() (chainer.function_hooks.PrintHook method),

310
__ne__() (chainer.function_hooks.TimerHook

method), 312
__ne__() (chainer.initializers.Constant method), 927
__ne__() (chainer.initializers.DownsamplingConvFilter

method), 938
__ne__() (chainer.initializers.GlorotNormal method),

931
__ne__() (chainer.initializers.GlorotUniform method),

935
__ne__() (chainer.initializers.HeNormal method), 932
__ne__() (chainer.initializers.HeUniform method),

936
__ne__() (chainer.initializers.Identity method), 926
__ne__() (chainer.initializers.LeCunNormal method),

931
__ne__() (chainer.initializers.LeCunUniform method),

935
__ne__() (chainer.initializers.NaN method), 929
__ne__() (chainer.initializers.Normal method), 930
__ne__() (chainer.initializers.One method), 928
__ne__() (chainer.initializers.Orthogonal method),

933
__ne__() (chainer.initializers.Uniform method), 934
__ne__() (chainer.initializers.UpsamplingDeconvFilter

method), 937
__ne__() (chainer.initializers.Zero method), 928
__ne__() (chainer.iterators.DaliIterator method),

1060
__ne__() (chainer.iterators.MultiprocessIterator

method), 1057

1318 Index

Chainer Documentation, Release 7.0.0b4

__ne__() (chainer.iterators.MultithreadIterator
method), 1059

__ne__() (chainer.iterators.OrderSampler method),
1062

__ne__() (chainer.iterators.SerialIterator method),
1055

__ne__() (chainer.iterators.ShuffleOrderSampler
method), 1062

__ne__() (chainer.link_hooks.SpectralNormalization
method), 790

__ne__() (chainer.link_hooks.TimerHook method),
792

__ne__() (chainer.link_hooks.WeightStandardization
method), 793

__ne__() (chainer.links.BatchNormalization method),
602

__ne__() (chainer.links.BatchRenormalization
method), 608

__ne__() (chainer.links.Bias method), 322
__ne__() (chainer.links.Bilinear method), 328
__ne__() (chainer.links.BinaryHierarchicalSoftmax

method), 635
__ne__() (chainer.links.BlackOut method), 641
__ne__() (chainer.links.CRF1d method), 647
__ne__() (chainer.links.ChildSumTreeLSTM method),

335
__ne__() (chainer.links.Classifier method), 687
__ne__() (chainer.links.Convolution1D method), 341
__ne__() (chainer.links.Convolution2D method), 348
__ne__() (chainer.links.Convolution3D method), 354
__ne__() (chainer.links.ConvolutionND method), 362
__ne__() (chainer.links.Deconvolution1D method),

368
__ne__() (chainer.links.Deconvolution2D method),

375
__ne__() (chainer.links.Deconvolution3D method),

381
__ne__() (chainer.links.DeconvolutionND method),

388
__ne__() (chainer.links.DecorrelatedBatchNormalization

method), 615
__ne__() (chainer.links.DeformableConvolution2D

method), 395
__ne__() (chainer.links.DepthwiseConvolution2D

method), 402
__ne__() (chainer.links.DilatedConvolution2D

method), 409
__ne__() (chainer.links.EmbedID method), 416
__ne__() (chainer.links.GRU method), 422
__ne__() (chainer.links.GoogLeNet method), 711
__ne__() (chainer.links.GroupNormalization method),

622
__ne__() (chainer.links.Highway method), 428
__ne__() (chainer.links.Inception method), 435

__ne__() (chainer.links.InceptionBN method), 441
__ne__() (chainer.links.LSTM method), 462
__ne__() (chainer.links.LayerNormalization method),

628
__ne__() (chainer.links.Linear method), 448
__ne__() (chainer.links.LocalConvolution2D method),

455
__ne__() (chainer.links.MLPConvolution2D method),

469
__ne__() (chainer.links.Maxout method), 674
__ne__() (chainer.links.NStepBiGRU method), 483
__ne__() (chainer.links.NStepBiLSTM method), 490
__ne__() (chainer.links.NStepBiRNNReLU method),

498
__ne__() (chainer.links.NStepBiRNNTanh method),

505
__ne__() (chainer.links.NStepGRU method), 512
__ne__() (chainer.links.NStepLSTM method), 519
__ne__() (chainer.links.NStepRNNReLU method), 526
__ne__() (chainer.links.NStepRNNTanh method), 534
__ne__() (chainer.links.NaryTreeLSTM method), 476
__ne__() (chainer.links.NegativeSampling method),

680
__ne__() (chainer.links.PReLU method), 660
__ne__() (chainer.links.Parameter method), 540
__ne__() (chainer.links.ResNet101Layers method),

735
__ne__() (chainer.links.ResNet152Layers method),

742
__ne__() (chainer.links.ResNet50Layers method), 727
__ne__() (chainer.links.Scale method), 546
__ne__() (chainer.links.SimplifiedDropconnect

method), 654
__ne__() (chainer.links.StatefulGRU method), 553
__ne__() (chainer.links.StatefulMGU method), 566
__ne__() (chainer.links.StatefulPeepholeLSTM

method), 579
__ne__() (chainer.links.StatefulZoneoutLSTM

method), 585
__ne__() (chainer.links.StatelessGRU method), 560
__ne__() (chainer.links.StatelessLSTM method), 592
__ne__() (chainer.links.StatelessMGU method), 572
__ne__() (chainer.links.Swish method), 667
__ne__() (chainer.links.TheanoFunction method), 750
__ne__() (chainer.links.VGG16Layers method), 695
__ne__() (chainer.links.VGG19Layers method), 703
__ne__() (chainer.links.caffe.CaffeFunction method),

757
__ne__() (chainer.links.model.vision.resnet.ResNetLayers

method), 719
__ne__() (chainer.optimizer.Hyperparameter method),

915
__ne__() (chainer.optimizer_hooks.GradientClipping

method), 921

Index 1319

Chainer Documentation, Release 7.0.0b4

__ne__() (chainer.optimizer_hooks.GradientHardClipping
method), 922

__ne__() (chainer.optimizer_hooks.GradientLARS
method), 924

__ne__() (chainer.optimizer_hooks.GradientNoise
method), 923

__ne__() (chainer.optimizer_hooks.Lasso method),
920

__ne__() (chainer.optimizer_hooks.WeightDecay
method), 919

__ne__() (chainer.optimizers.AMSBound method), 885
__ne__() (chainer.optimizers.AMSGrad method), 878
__ne__() (chainer.optimizers.AdaBound method), 882
__ne__() (chainer.optimizers.AdaDelta method), 865
__ne__() (chainer.optimizers.AdaGrad method), 868
__ne__() (chainer.optimizers.Adam method), 871
__ne__() (chainer.optimizers.AdamW method), 875
__ne__() (chainer.optimizers.CorrectedMomentumSGD

method), 888
__ne__() (chainer.optimizers.MSVAG method), 897
__ne__() (chainer.optimizers.MomentumSGD

method), 891
__ne__() (chainer.optimizers.NesterovAG method),

894
__ne__() (chainer.optimizers.RMSprop method), 900
__ne__() (chainer.optimizers.RMSpropGraves

method), 903
__ne__() (chainer.optimizers.SGD method), 906
__ne__() (chainer.optimizers.SMORMS3 method), 908
__ne__() (chainer.serializers.DictionarySerializer

method), 1064
__ne__() (chainer.serializers.HDF5Deserializer

method), 1069
__ne__() (chainer.serializers.HDF5Serializer

method), 1068
__ne__() (chainer.serializers.NpzDeserializer

method), 1066
__ne__() (chainer.testing.FunctionTestCase method),

1140
__ne__() (chainer.testing.LinkInitializersTestCase

method), 1150
__ne__() (chainer.testing.LinkTestCase method), 1158
__ne__() (chainer.training.Extension method), 960
__ne__() (chainer.training.Trainer method), 949
__ne__() (chainer.training.Updater method), 951
__ne__() (chainer.training.extensions.DumpGraph

method), 996
__ne__() (chainer.training.extensions.Evaluator

method), 964
__ne__() (chainer.training.extensions.ExponentialShift

method), 972
__ne__() (chainer.training.extensions.FailOnNonNumber

method), 967
__ne__() (chainer.training.extensions.InverseShift

method), 974
__ne__() (chainer.training.extensions.LinearShift

method), 976
__ne__() (chainer.training.extensions.LogReport

method), 989
__ne__() (chainer.training.extensions.MicroAverage

method), 966
__ne__() (chainer.training.extensions.MultistepShift

method), 978
__ne__() (chainer.training.extensions.ParameterStatistics

method), 970
__ne__() (chainer.training.extensions.PlotReport

method), 991
__ne__() (chainer.training.extensions.PolynomialShift

method), 979
__ne__() (chainer.training.extensions.PrintReport

method), 985
__ne__() (chainer.training.extensions.ProgressBar

method), 987
__ne__() (chainer.training.extensions.StepShift

method), 983
__ne__() (chainer.training.extensions.VariableStatisticsPlot

method), 993
__ne__() (chainer.training.extensions.WarmupShift

method), 981
__ne__() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 946
__ne__() (chainer.training.extensions.snapshot_writers.ProcessWriter

method), 943
__ne__() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 944
__ne__() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 940
__ne__() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 945
__ne__() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 942
__ne__() (chainer.training.extensions.snapshot_writers.Writer

method), 939
__ne__() (chainer.training.extensions.unchain_variables

method), 1000
__ne__() (chainer.training.triggers.BestValueTrigger

method), 1002
__ne__() (chainer.training.triggers.EarlyStoppingTrigger

method), 1003
__ne__() (chainer.training.triggers.IntervalTrigger

method), 1004
__ne__() (chainer.training.triggers.ManualScheduleTrigger

method), 1005
__ne__() (chainer.training.triggers.MaxValueTrigger

method), 1006
__ne__() (chainer.training.triggers.MinValueTrigger

method), 1006
__ne__() (chainer.training.triggers.OnceTrigger

1320 Index

Chainer Documentation, Release 7.0.0b4

method), 1007
__ne__() (chainer.training.triggers.TimeTrigger

method), 1008
__ne__() (chainer.training.updaters.MultiprocessParallelUpdater

method), 957
__ne__() (chainer.training.updaters.ParallelUpdater

method), 955
__ne__() (chainer.training.updaters.StandardUpdater

method), 953
__ne__() (chainer.utils.CooMatrix method), 1099
__ne__() (chainer.utils.WalkerAlias method), 1092
__ne__() (chainer.utils.type_check.Expr method),

1125
__ne__() (chainer.utils.type_check.TypeInfo method),

1126
__ne__() (chainer.utils.type_check.TypeInfoTuple

method), 1127
__ne__() (chainer.utils.type_check.Variable method),

1127
__ne__() (chainer.variable.VariableNode method),

150
__ne__() (chainerx.ndarray method), 1173
__neg__() (chainer.Parameter method), 145
__neg__() (chainer.Variable method), 136
__neg__() (chainer.utils.type_check.Expr method),

1125
__neg__() (chainer.utils.type_check.Variable method),

1128
__next__() (chainer.dataset.Iterator method), 1020
__next__() (chainer.iterators.DaliIterator method),

1060
__next__() (chainer.iterators.MultiprocessIterator

method), 1057
__next__() (chainer.iterators.MultithreadIterator

method), 1058
__next__() (chainer.iterators.SerialIterator method),

1054
__nonzero__() (chainer.Parameter method), 145
__nonzero__() (chainer.Variable method), 136
__nonzero__() (chainer.utils.type_check.Expr

method), 1125
__nonzero__() (chainer.utils.type_check.Variable

method), 1127
__pow__() (chainer.Parameter method), 146
__pow__() (chainer.Variable method), 137
__pow__() (chainer.utils.type_check.Expr method),

1125
__pow__() (chainer.utils.type_check.Variable method),

1128
__radd__() (chainer.Parameter method), 145
__radd__() (chainer.Variable method), 136
__radd__() (chainer.utils.type_check.Expr method),

1125
__radd__() (chainer.utils.type_check.Variable

method), 1128
__rdiv__() (chainer.Parameter method), 146
__rdiv__() (chainer.Variable method), 137
__rfloordiv__() (chainer.Parameter method), 146
__rfloordiv__() (chainer.Variable method), 137
__rfloordiv__() (chainer.utils.type_check.Expr

method), 1125
__rfloordiv__() (chainer.utils.type_check.Variable

method), 1128
__rmatmul__() (chainer.Parameter method), 147
__rmatmul__() (chainer.Variable method), 138
__rmul__() (chainer.Parameter method), 146
__rmul__() (chainer.Variable method), 137
__rmul__() (chainer.utils.type_check.Expr method),

1125
__rmul__() (chainer.utils.type_check.TypeInfoTuple

method), 1127
__rmul__() (chainer.utils.type_check.Variable

method), 1128
__rpow__() (chainer.Parameter method), 146
__rpow__() (chainer.Variable method), 137
__rsub__() (chainer.Parameter method), 145
__rsub__() (chainer.Variable method), 136
__rsub__() (chainer.utils.type_check.Expr method),

1125
__rsub__() (chainer.utils.type_check.Variable

method), 1128
__rtruediv__() (chainer.Parameter method), 146
__rtruediv__() (chainer.Variable method), 137
__rtruediv__() (chainer.utils.type_check.Expr

method), 1125
__rtruediv__() (chainer.utils.type_check.Variable

method), 1128
__setitem__() (chainer.ChainList method), 772
__setitem__() (chainer.Sequential method), 780
__setitem__() (chainer.links.MLPConvolution2D

method), 464
__setitem__() (chainer.links.NStepBiGRU method),

477
__setitem__() (chainer.links.NStepBiLSTM

method), 485
__setitem__() (chainer.links.NStepBiRNNReLU

method), 492
__setitem__() (chainer.links.NStepBiRNNTanh

method), 499
__setitem__() (chainer.links.NStepGRU method),

506
__setitem__() (chainer.links.NStepLSTM method),

513
__setitem__() (chainer.links.NStepRNNReLU

method), 521
__setitem__() (chainer.links.NStepRNNTanh

method), 528
__sub__() (chainer.Parameter method), 145

Index 1321

Chainer Documentation, Release 7.0.0b4

__sub__() (chainer.Variable method), 136
__sub__() (chainer.utils.type_check.Expr method),

1125
__sub__() (chainer.utils.type_check.Variable method),

1128
__truediv__() (chainer.Parameter method), 146
__truediv__() (chainer.Variable method), 137
__truediv__() (chainer.utils.type_check.Expr

method), 1125
__truediv__() (chainer.utils.type_check.Variable

method), 1128

A
a (chainer.distributions.Beta attribute), 802
absolute() (in module chainer.functions), 245
absolute_error() (in module chainer.functions),

226
AbstractSerializer (class in chainer), 1071
accuracy() (in module chainer.functions), 222
adabound (chainer.optimizers.AdaBound attribute),

882
adabound (chainer.optimizers.Adam attribute), 872
adabound (chainer.optimizers.AdamW attribute), 875
adabound (chainer.optimizers.AMSBound attribute),

885
adabound (chainer.optimizers.AMSGrad attribute), 878
AdaBound (class in chainer.optimizers), 879
AdaDelta (class in chainer.optimizers), 863
AdaGrad (class in chainer.optimizers), 866
Adam (class in chainer.optimizers), 869
AdamW (class in chainer.optimizers), 872
add() (chainer.DictSummary method), 1098
add() (chainer.Summary method), 1097
add() (in module chainer.functions), 152
add_hook() (chainer.Chain method), 766
add_hook() (chainer.ChainList method), 773
add_hook() (chainer.Function method), 288
add_hook() (chainer.FunctionAdapter method), 292
add_hook() (chainer.FunctionNode method), 298
add_hook() (chainer.GradientMethod method), 916
add_hook() (chainer.Link method), 760
add_hook() (chainer.links.BatchNormalization

method), 597
add_hook() (chainer.links.BatchRenormalization

method), 603
add_hook() (chainer.links.Bias method), 317
add_hook() (chainer.links.Bilinear method), 323
add_hook() (chainer.links.BinaryHierarchicalSoftmax

method), 629
add_hook() (chainer.links.BlackOut method), 636
add_hook() (chainer.links.caffe.CaffeFunction

method), 752
add_hook() (chainer.links.ChildSumTreeLSTM

method), 330

add_hook() (chainer.links.Classifier method), 682
add_hook() (chainer.links.Convolution1D method),

336
add_hook() (chainer.links.Convolution2D method),

343
add_hook() (chainer.links.Convolution3D method),

349
add_hook() (chainer.links.ConvolutionND method),

357
add_hook() (chainer.links.CRF1d method), 642
add_hook() (chainer.links.Deconvolution1D method),

363
add_hook() (chainer.links.Deconvolution2D method),

370
add_hook() (chainer.links.Deconvolution3D method),

376
add_hook() (chainer.links.DeconvolutionND method),

384
add_hook() (chainer.links.DecorrelatedBatchNormalization

method), 610
add_hook() (chainer.links.DeformableConvolution2D

method), 390
add_hook() (chainer.links.DepthwiseConvolution2D

method), 397
add_hook() (chainer.links.DilatedConvolution2D

method), 404
add_hook() (chainer.links.EmbedID method), 411
add_hook() (chainer.links.GoogLeNet method), 705
add_hook() (chainer.links.GroupNormalization

method), 617
add_hook() (chainer.links.GRU method), 417
add_hook() (chainer.links.Highway method), 423
add_hook() (chainer.links.Inception method), 430
add_hook() (chainer.links.InceptionBN method), 436
add_hook() (chainer.links.LayerNormalization

method), 623
add_hook() (chainer.links.Linear method), 443
add_hook() (chainer.links.LocalConvolution2D

method), 450
add_hook() (chainer.links.LSTM method), 457
add_hook() (chainer.links.Maxout method), 669
add_hook() (chainer.links.MLPConvolution2D

method), 464
add_hook() (chainer.links.model.vision.resnet.ResNetLayers

method), 713
add_hook() (chainer.links.NaryTreeLSTM method),

471
add_hook() (chainer.links.NegativeSampling method),

675
add_hook() (chainer.links.NStepBiGRU method), 477
add_hook() (chainer.links.NStepBiLSTM method),

485
add_hook() (chainer.links.NStepBiRNNReLU

method), 492

1322 Index

Chainer Documentation, Release 7.0.0b4

add_hook() (chainer.links.NStepBiRNNTanh method),
499

add_hook() (chainer.links.NStepGRU method), 506
add_hook() (chainer.links.NStepLSTM method), 513
add_hook() (chainer.links.NStepRNNReLU method),

521
add_hook() (chainer.links.NStepRNNTanh method),

528
add_hook() (chainer.links.Parameter method), 535
add_hook() (chainer.links.PReLU method), 656
add_hook() (chainer.links.ResNet101Layers method),

729
add_hook() (chainer.links.ResNet152Layers method),

736
add_hook() (chainer.links.ResNet50Layers method),

721
add_hook() (chainer.links.Scale method), 541
add_hook() (chainer.links.SimplifiedDropconnect

method), 649
add_hook() (chainer.links.StatefulGRU method), 548
add_hook() (chainer.links.StatefulMGU method), 561
add_hook() (chainer.links.StatefulPeepholeLSTM

method), 574
add_hook() (chainer.links.StatefulZoneoutLSTM

method), 580
add_hook() (chainer.links.StatelessGRU method), 555
add_hook() (chainer.links.StatelessLSTM method),

587
add_hook() (chainer.links.StatelessMGU method),

567
add_hook() (chainer.links.Swish method), 662
add_hook() (chainer.links.TheanoFunction method),

745
add_hook() (chainer.links.VGG16Layers method),

689
add_hook() (chainer.links.VGG19Layers method),

697
add_hook() (chainer.Optimizer method), 910
add_hook() (chainer.optimizers.AdaBound method),

880
add_hook() (chainer.optimizers.AdaDelta method),

863
add_hook() (chainer.optimizers.AdaGrad method),

866
add_hook() (chainer.optimizers.Adam method), 869
add_hook() (chainer.optimizers.AdamW method), 873
add_hook() (chainer.optimizers.AMSBound method),

883
add_hook() (chainer.optimizers.AMSGrad method),

876
add_hook() (chainer.optimizers.CorrectedMomentumSGD

method), 886
add_hook() (chainer.optimizers.MomentumSGD

method), 889

add_hook() (chainer.optimizers.MSVAG method), 895
add_hook() (chainer.optimizers.NesterovAG method),

892
add_hook() (chainer.optimizers.RMSprop method),

898
add_hook() (chainer.optimizers.RMSpropGraves

method), 901
add_hook() (chainer.optimizers.SGD method), 904
add_hook() (chainer.optimizers.SMORMS3 method),

906
add_hook() (chainer.Sequential method), 780
add_hook() (chainer.UpdateRule method), 913
add_hook() (in module chain-

ermn.global_except_hook), 1237
add_link() (chainer.Chain method), 767
add_link() (chainer.ChainList method), 773
add_link() (chainer.links.caffe.CaffeFunction

method), 752
add_link() (chainer.links.ChildSumTreeLSTM

method), 330
add_link() (chainer.links.Classifier method), 682
add_link() (chainer.links.DeformableConvolution2D

method), 390
add_link() (chainer.links.GoogLeNet method), 705
add_link() (chainer.links.GRU method), 417
add_link() (chainer.links.Highway method), 423
add_link() (chainer.links.Inception method), 430
add_link() (chainer.links.InceptionBN method), 436
add_link() (chainer.links.LSTM method), 457
add_link() (chainer.links.Maxout method), 669
add_link() (chainer.links.MLPConvolution2D

method), 464
add_link() (chainer.links.model.vision.resnet.ResNetLayers

method), 714
add_link() (chainer.links.NaryTreeLSTM method),

471
add_link() (chainer.links.NStepBiGRU method), 478
add_link() (chainer.links.NStepBiLSTM method),

485
add_link() (chainer.links.NStepBiRNNReLU

method), 492
add_link() (chainer.links.NStepBiRNNTanh method),

499
add_link() (chainer.links.NStepGRU method), 506
add_link() (chainer.links.NStepLSTM method), 514
add_link() (chainer.links.NStepRNNReLU method),

521
add_link() (chainer.links.NStepRNNTanh method),

528
add_link() (chainer.links.ResNet101Layers method),

729
add_link() (chainer.links.ResNet152Layers method),

736
add_link() (chainer.links.ResNet50Layers method),

Index 1323

Chainer Documentation, Release 7.0.0b4

721
add_link() (chainer.links.Scale method), 541
add_link() (chainer.links.StatefulGRU method), 548
add_link() (chainer.links.StatefulMGU method), 561
add_link() (chainer.links.StatefulPeepholeLSTM

method), 574
add_link() (chainer.links.StatefulZoneoutLSTM

method), 580
add_link() (chainer.links.StatelessGRU method), 556
add_link() (chainer.links.StatelessLSTM method),

587
add_link() (chainer.links.StatelessMGU method),

567
add_link() (chainer.links.VGG16Layers method),

690
add_link() (chainer.links.VGG19Layers method),

697
add_link() (chainer.Sequential method), 781
add_link() (chainermn.MultiNodeChainList

method), 1227
add_observer() (chainer.Reporter method), 1094
add_observers() (chainer.Reporter method), 1095
add_param() (chainer.Chain method), 767
add_param() (chainer.ChainList method), 773
add_param() (chainer.Link method), 760
add_param() (chainer.links.BatchNormalization

method), 597
add_param() (chainer.links.BatchRenormalization

method), 603
add_param() (chainer.links.Bias method), 317
add_param() (chainer.links.Bilinear method), 323
add_param() (chainer.links.BinaryHierarchicalSoftmax

method), 630
add_param() (chainer.links.BlackOut method), 636
add_param() (chainer.links.caffe.CaffeFunction

method), 752
add_param() (chainer.links.ChildSumTreeLSTM

method), 330
add_param() (chainer.links.Classifier method), 682
add_param() (chainer.links.Convolution1D method),

336
add_param() (chainer.links.Convolution2D method),

343
add_param() (chainer.links.Convolution3D method),

349
add_param() (chainer.links.ConvolutionND method),

357
add_param() (chainer.links.CRF1d method), 642
add_param() (chainer.links.Deconvolution1D

method), 363
add_param() (chainer.links.Deconvolution2D

method), 370
add_param() (chainer.links.Deconvolution3D

method), 376

add_param() (chainer.links.DeconvolutionND
method), 384

add_param() (chainer.links.DecorrelatedBatchNormalization
method), 610

add_param() (chainer.links.DeformableConvolution2D
method), 391

add_param() (chainer.links.DepthwiseConvolution2D
method), 397

add_param() (chainer.links.DilatedConvolution2D
method), 404

add_param() (chainer.links.EmbedID method), 411
add_param() (chainer.links.GoogLeNet method), 705
add_param() (chainer.links.GroupNormalization

method), 617
add_param() (chainer.links.GRU method), 417
add_param() (chainer.links.Highway method), 424
add_param() (chainer.links.Inception method), 430
add_param() (chainer.links.InceptionBN method), 437
add_param() (chainer.links.LayerNormalization

method), 623
add_param() (chainer.links.Linear method), 443
add_param() (chainer.links.LocalConvolution2D

method), 450
add_param() (chainer.links.LSTM method), 457
add_param() (chainer.links.Maxout method), 669
add_param() (chainer.links.MLPConvolution2D

method), 464
add_param() (chainer.links.model.vision.resnet.ResNetLayers

method), 714
add_param() (chainer.links.NaryTreeLSTM method),

471
add_param() (chainer.links.NegativeSampling

method), 675
add_param() (chainer.links.NStepBiGRU method),

478
add_param() (chainer.links.NStepBiLSTM method),

485
add_param() (chainer.links.NStepBiRNNReLU

method), 492
add_param() (chainer.links.NStepBiRNNTanh

method), 499
add_param() (chainer.links.NStepGRU method), 507
add_param() (chainer.links.NStepLSTM method), 514
add_param() (chainer.links.NStepRNNReLU method),

521
add_param() (chainer.links.NStepRNNTanh method),

528
add_param() (chainer.links.Parameter method), 535
add_param() (chainer.links.PReLU method), 656
add_param() (chainer.links.ResNet101Layers

method), 729
add_param() (chainer.links.ResNet152Layers

method), 737
add_param() (chainer.links.ResNet50Layers method),

1324 Index

Chainer Documentation, Release 7.0.0b4

721
add_param() (chainer.links.Scale method), 541
add_param() (chainer.links.SimplifiedDropconnect

method), 649
add_param() (chainer.links.StatefulGRU method), 549
add_param() (chainer.links.StatefulMGU method),

562
add_param() (chainer.links.StatefulPeepholeLSTM

method), 574
add_param() (chainer.links.StatefulZoneoutLSTM

method), 580
add_param() (chainer.links.StatelessGRU method),

556
add_param() (chainer.links.StatelessLSTM method),

588
add_param() (chainer.links.StatelessMGU method),

568
add_param() (chainer.links.Swish method), 662
add_param() (chainer.links.TheanoFunction method),

746
add_param() (chainer.links.VGG16Layers method),

690
add_param() (chainer.links.VGG19Layers method),

697
add_param() (chainer.Sequential method), 781
add_persistent() (chainer.Chain method), 767
add_persistent() (chainer.ChainList method), 773
add_persistent() (chainer.Link method), 760
add_persistent() (chainer.links.BatchNormalization

method), 597
add_persistent() (chainer.links.BatchRenormalization

method), 603
add_persistent() (chainer.links.Bias method), 317
add_persistent() (chainer.links.Bilinear method),

324
add_persistent() (chainer.links.BinaryHierarchicalSoftmax

method), 630
add_persistent() (chainer.links.BlackOut method),

636
add_persistent() (chainer.links.caffe.CaffeFunction

method), 753
add_persistent() (chainer.links.ChildSumTreeLSTM

method), 330
add_persistent() (chainer.links.Classifier

method), 683
add_persistent() (chainer.links.Convolution1D

method), 336
add_persistent() (chainer.links.Convolution2D

method), 344
add_persistent() (chainer.links.Convolution3D

method), 350
add_persistent() (chainer.links.ConvolutionND

method), 357
add_persistent() (chainer.links.CRF1d method),

642
add_persistent() (chainer.links.Deconvolution1D

method), 363
add_persistent() (chainer.links.Deconvolution2D

method), 371
add_persistent() (chainer.links.Deconvolution3D

method), 377
add_persistent() (chainer.links.DeconvolutionND

method), 384
add_persistent() (chainer.links.DecorrelatedBatchNormalization

method), 610
add_persistent() (chainer.links.DeformableConvolution2D

method), 391
add_persistent() (chainer.links.DepthwiseConvolution2D

method), 397
add_persistent() (chainer.links.DilatedConvolution2D

method), 405
add_persistent() (chainer.links.EmbedID

method), 411
add_persistent() (chainer.links.GoogLeNet

method), 706
add_persistent() (chainer.links.GroupNormalization

method), 617
add_persistent() (chainer.links.GRU method), 417
add_persistent() (chainer.links.Highway method),

424
add_persistent() (chainer.links.Inception method),

430
add_persistent() (chainer.links.InceptionBN

method), 437
add_persistent() (chainer.links.LayerNormalization

method), 623
add_persistent() (chainer.links.Linear method),

444
add_persistent() (chainer.links.LocalConvolution2D

method), 450
add_persistent() (chainer.links.LSTM method),

457
add_persistent() (chainer.links.Maxout method),

669
add_persistent() (chainer.links.MLPConvolution2D

method), 465
add_persistent() (chainer.links.model.vision.resnet.ResNetLayers

method), 714
add_persistent() (chainer.links.NaryTreeLSTM

method), 471
add_persistent() (chainer.links.NegativeSampling

method), 675
add_persistent() (chainer.links.NStepBiGRU

method), 478
add_persistent() (chainer.links.NStepBiLSTM

method), 485
add_persistent() (chainer.links.NStepBiRNNReLU

method), 492

Index 1325

Chainer Documentation, Release 7.0.0b4

add_persistent() (chainer.links.NStepBiRNNTanh
method), 500

add_persistent() (chainer.links.NStepGRU
method), 507

add_persistent() (chainer.links.NStepLSTM
method), 514

add_persistent() (chainer.links.NStepRNNReLU
method), 521

add_persistent() (chainer.links.NStepRNNTanh
method), 528

add_persistent() (chainer.links.Parameter
method), 535

add_persistent() (chainer.links.PReLU method),
656

add_persistent() (chainer.links.ResNet101Layers
method), 729

add_persistent() (chainer.links.ResNet152Layers
method), 737

add_persistent() (chainer.links.ResNet50Layers
method), 722

add_persistent() (chainer.links.Scale method),
542

add_persistent() (chainer.links.SimplifiedDropconnect
method), 649

add_persistent() (chainer.links.StatefulGRU
method), 549

add_persistent() (chainer.links.StatefulMGU
method), 562

add_persistent() (chainer.links.StatefulPeepholeLSTM
method), 574

add_persistent() (chainer.links.StatefulZoneoutLSTM
method), 581

add_persistent() (chainer.links.StatelessGRU
method), 556

add_persistent() (chainer.links.StatelessLSTM
method), 588

add_persistent() (chainer.links.StatelessMGU
method), 568

add_persistent() (chainer.links.Swish method),
663

add_persistent() (chainer.links.TheanoFunction
method), 746

add_persistent() (chainer.links.VGG16Layers
method), 690

add_persistent() (chainer.links.VGG19Layers
method), 697

add_persistent() (chainer.Sequential method), 781
addCleanup() (chainer.testing.FunctionTestCase

method), 1134
addCleanup() (chainer.testing.LinkInitializersTestCase

method), 1144
addCleanup() (chainer.testing.LinkTestCase method),

1153
added() (chainer.function_hooks.CUDAProfileHook

method), 305
added() (chainer.function_hooks.CupyMemoryProfileHook

method), 306
added() (chainer.function_hooks.PrintHook method),

309
added() (chainer.function_hooks.TimerHook method),

311
added() (chainer.FunctionHook method), 314
added() (chainer.link_hooks.SpectralNormalization

method), 789
added() (chainer.link_hooks.TimerHook method), 791
added() (chainer.link_hooks.WeightStandardization

method), 792
added() (chainer.LinkHook method), 795
addgrad() (chainer.Parameter method), 142
addgrad() (chainer.Variable method), 133
addgrads() (chainer.Chain method), 767
addgrads() (chainer.ChainList method), 773
addgrads() (chainer.Link method), 760
addgrads() (chainer.links.BatchNormalization

method), 597
addgrads() (chainer.links.BatchRenormalization

method), 604
addgrads() (chainer.links.Bias method), 317
addgrads() (chainer.links.Bilinear method), 324
addgrads() (chainer.links.BinaryHierarchicalSoftmax

method), 630
addgrads() (chainer.links.BlackOut method), 636
addgrads() (chainer.links.caffe.CaffeFunction

method), 753
addgrads() (chainer.links.ChildSumTreeLSTM

method), 330
addgrads() (chainer.links.Classifier method), 683
addgrads() (chainer.links.Convolution1D method),

336
addgrads() (chainer.links.Convolution2D method),

344
addgrads() (chainer.links.Convolution3D method),

350
addgrads() (chainer.links.ConvolutionND method),

357
addgrads() (chainer.links.CRF1d method), 642
addgrads() (chainer.links.Deconvolution1D method),

363
addgrads() (chainer.links.Deconvolution2D method),

371
addgrads() (chainer.links.Deconvolution3D method),

377
addgrads() (chainer.links.DeconvolutionND method),

384
addgrads() (chainer.links.DecorrelatedBatchNormalization

method), 611
addgrads() (chainer.links.DeformableConvolution2D

method), 391

1326 Index

Chainer Documentation, Release 7.0.0b4

addgrads() (chainer.links.DepthwiseConvolution2D
method), 397

addgrads() (chainer.links.DilatedConvolution2D
method), 405

addgrads() (chainer.links.EmbedID method), 411
addgrads() (chainer.links.GoogLeNet method), 706
addgrads() (chainer.links.GroupNormalization

method), 617
addgrads() (chainer.links.GRU method), 418
addgrads() (chainer.links.Highway method), 424
addgrads() (chainer.links.Inception method), 430
addgrads() (chainer.links.InceptionBN method), 437
addgrads() (chainer.links.LayerNormalization

method), 624
addgrads() (chainer.links.Linear method), 444
addgrads() (chainer.links.LocalConvolution2D

method), 450
addgrads() (chainer.links.LSTM method), 458
addgrads() (chainer.links.Maxout method), 669
addgrads() (chainer.links.MLPConvolution2D

method), 465
addgrads() (chainer.links.model.vision.resnet.ResNetLayers

method), 714
addgrads() (chainer.links.NaryTreeLSTM method),

472
addgrads() (chainer.links.NegativeSampling method),

676
addgrads() (chainer.links.NStepBiGRU method), 478
addgrads() (chainer.links.NStepBiLSTM method),

485
addgrads() (chainer.links.NStepBiRNNReLU

method), 493
addgrads() (chainer.links.NStepBiRNNTanh method),

500
addgrads() (chainer.links.NStepGRU method), 507
addgrads() (chainer.links.NStepLSTM method), 514
addgrads() (chainer.links.NStepRNNReLU method),

522
addgrads() (chainer.links.NStepRNNTanh method),

529
addgrads() (chainer.links.Parameter method), 535
addgrads() (chainer.links.PReLU method), 656
addgrads() (chainer.links.ResNet101Layers method),

730
addgrads() (chainer.links.ResNet152Layers method),

737
addgrads() (chainer.links.ResNet50Layers method),

722
addgrads() (chainer.links.Scale method), 542
addgrads() (chainer.links.SimplifiedDropconnect

method), 649
addgrads() (chainer.links.StatefulGRU method), 549
addgrads() (chainer.links.StatefulMGU method), 562
addgrads() (chainer.links.StatefulPeepholeLSTM

method), 575
addgrads() (chainer.links.StatefulZoneoutLSTM

method), 581
addgrads() (chainer.links.StatelessGRU method), 556
addgrads() (chainer.links.StatelessLSTM method),

588
addgrads() (chainer.links.StatelessMGU method),

568
addgrads() (chainer.links.Swish method), 663
addgrads() (chainer.links.TheanoFunction method),

746
addgrads() (chainer.links.VGG16Layers method),

690
addgrads() (chainer.links.VGG19Layers method),

698
addgrads() (chainer.Sequential method), 781
addTypeEqualityFunc()

(chainer.testing.FunctionTestCase method),
1134

addTypeEqualityFunc()
(chainer.testing.LinkInitializersTestCase
method), 1145

addTypeEqualityFunc()
(chainer.testing.LinkTestCase method), 1153

aggregate() (chain-
ermn.extensions.GenericMultiNodeEvaluator
method), 1223

allgather() (chainermn.CommunicatorBase
method), 1218

allgather() (in module chainermn.functions), 1232
allreduce() (chainermn.CommunicatorBase

method), 1218
allreduce_grad() (chainermn.CommunicatorBase

method), 1218
allreduce_obj() (chainermn.CommunicatorBase

method), 1219
AllreducePersistent (class in chain-

ermn.extensions), 1234
alltoall() (chainermn.CommunicatorBase method),

1219
alltoall() (in module chainermn.functions), 1232
alpha (chainer.distributions.Dirichlet attribute), 815
alpha (chainer.distributions.Pareto attribute), 849
alpha (chainer.optimizers.AdaBound attribute), 882
alpha (chainer.optimizers.Adam attribute), 872
alpha (chainer.optimizers.AdamW attribute), 875
alpha (chainer.optimizers.AMSBound attribute), 885
alpha (chainer.optimizers.AMSGrad attribute), 878
alpha (chainer.optimizers.RMSprop attribute), 900
alpha (chainer.optimizers.RMSpropGraves attribute),

903
alpha0 (chainer.distributions.Dirichlet attribute), 815
alpha_t (chainer.optimizers.AdaBound attribute), 882
alpha_t (chainer.optimizers.Adam attribute), 872

Index 1327

Chainer Documentation, Release 7.0.0b4

alpha_t (chainer.optimizers.AdamW attribute), 875
alpha_t (chainer.optimizers.AMSBound attribute), 885
alpha_t (chainer.optimizers.AMSGrad attribute), 878
AMSBound (class in chainer.optimizers), 883
amsgrad (chainer.optimizers.AdaBound attribute), 882
amsgrad (chainer.optimizers.Adam attribute), 872
amsgrad (chainer.optimizers.AdamW attribute), 875
amsgrad (chainer.optimizers.AMSBound attribute), 885
amsgrad (chainer.optimizers.AMSGrad attribute), 878
AMSGrad (class in chainer.optimizers), 876
append() (chainer.ChainList method), 773
append() (chainer.links.MLPConvolution2D method),

465
append() (chainer.links.NStepBiGRU method), 478
append() (chainer.links.NStepBiLSTM method), 485
append() (chainer.links.NStepBiRNNReLU method),

493
append() (chainer.links.NStepBiRNNTanh method),

500
append() (chainer.links.NStepGRU method), 507
append() (chainer.links.NStepLSTM method), 514
append() (chainer.links.NStepRNNReLU method), 522
append() (chainer.links.NStepRNNTanh method), 529
append() (chainer.Sequential method), 781
apply() (chainer.FunctionAdapter method), 292
apply() (chainer.FunctionNode method), 298
arccos() (in module chainer.functions), 245
arcsin() (in module chainer.functions), 245
arctan() (in module chainer.functions), 246
arctan2() (in module chainer.functions), 246
arctanh() (in module chainer.functions), 246
argmax() (chainer.links.CRF1d method), 643
argmax() (in module chainer.functions), 246
argmax_crf1d() (in module chainer.functions), 231
argmin() (in module chainer.functions), 247
array (chainer.Parameter attribute), 147
array (chainer.Variable attribute), 138
as_array() (in module chainer), 139
as_dict() (chainer.dataset.tabular.DelegateDataset

method), 1016
as_dict() (chainer.dataset.TabularDataset method),

1012
as_strided() (in module chainer.functions), 168
as_tuple() (chainer.dataset.tabular.DelegateDataset

method), 1016
as_tuple() (chainer.dataset.TabularDataset method),

1012
as_variable() (in module chainer), 139
assert_() (chainer.testing.FunctionTestCase method),

1138
assert_() (chainer.testing.LinkInitializersTestCase

method), 1149
assert_() (chainer.testing.LinkTestCase method),

1157

assert_allclose() (in module chainer.testing),
1132

assert_warns() (in module chainer.testing), 1132
assertAlmostEqual()

(chainer.testing.FunctionTestCase method),
1135

assertAlmostEqual()
(chainer.testing.LinkInitializersTestCase
method), 1145

assertAlmostEqual()
(chainer.testing.LinkTestCase method), 1153

assertAlmostEquals()
(chainer.testing.FunctionTestCase method),
1135

assertAlmostEquals()
(chainer.testing.LinkInitializersTestCase
method), 1145

assertAlmostEquals()
(chainer.testing.LinkTestCase method), 1153

assertCountEqual()
(chainer.testing.FunctionTestCase method),
1135

assertCountEqual()
(chainer.testing.LinkInitializersTestCase
method), 1145

assertCountEqual() (chainer.testing.LinkTestCase
method), 1153

assertDictContainsSubset()
(chainer.testing.FunctionTestCase method),
1135

assertDictContainsSubset()
(chainer.testing.LinkInitializersTestCase
method), 1145

assertDictContainsSubset()
(chainer.testing.LinkTestCase method), 1154

assertDictEqual()
(chainer.testing.FunctionTestCase method),
1135

assertDictEqual()
(chainer.testing.LinkInitializersTestCase
method), 1145

assertDictEqual() (chainer.testing.LinkTestCase
method), 1154

assertEqual() (chainer.testing.FunctionTestCase
method), 1135

assertEqual() (chainer.testing.LinkInitializersTestCase
method), 1145

assertEqual() (chainer.testing.LinkTestCase
method), 1154

assertEquals() (chainer.testing.FunctionTestCase
method), 1135

assertEquals() (chainer.testing.LinkInitializersTestCase
method), 1145

assertEquals() (chainer.testing.LinkTestCase

1328 Index

Chainer Documentation, Release 7.0.0b4

method), 1154
assertFalse() (chainer.testing.FunctionTestCase

method), 1135
assertFalse() (chainer.testing.LinkInitializersTestCase

method), 1145
assertFalse() (chainer.testing.LinkTestCase

method), 1154
assertGreater() (chainer.testing.FunctionTestCase

method), 1135
assertGreater() (chainer.testing.LinkInitializersTestCase

method), 1145
assertGreater() (chainer.testing.LinkTestCase

method), 1154
assertGreaterEqual()

(chainer.testing.FunctionTestCase method),
1135

assertGreaterEqual()
(chainer.testing.LinkInitializersTestCase
method), 1145

assertGreaterEqual()
(chainer.testing.LinkTestCase method), 1154

assertIn() (chainer.testing.FunctionTestCase
method), 1135

assertIn() (chainer.testing.LinkInitializersTestCase
method), 1145

assertIn() (chainer.testing.LinkTestCase method),
1154

assertIs() (chainer.testing.FunctionTestCase
method), 1135

assertIs() (chainer.testing.LinkInitializersTestCase
method), 1145

assertIs() (chainer.testing.LinkTestCase method),
1154

assertIsInstance()
(chainer.testing.FunctionTestCase method),
1135

assertIsInstance()
(chainer.testing.LinkInitializersTestCase
method), 1146

assertIsInstance() (chainer.testing.LinkTestCase
method), 1154

assertIsNone() (chainer.testing.FunctionTestCase
method), 1135

assertIsNone() (chainer.testing.LinkInitializersTestCase
method), 1146

assertIsNone() (chainer.testing.LinkTestCase
method), 1154

assertIsNot() (chainer.testing.FunctionTestCase
method), 1135

assertIsNot() (chainer.testing.LinkInitializersTestCase
method), 1146

assertIsNot() (chainer.testing.LinkTestCase
method), 1154

assertIsNotNone()

(chainer.testing.FunctionTestCase method),
1135

assertIsNotNone()
(chainer.testing.LinkInitializersTestCase
method), 1146

assertIsNotNone() (chainer.testing.LinkTestCase
method), 1154

assertLess() (chainer.testing.FunctionTestCase
method), 1136

assertLess() (chainer.testing.LinkInitializersTestCase
method), 1146

assertLess() (chainer.testing.LinkTestCase method),
1154

assertLessEqual()
(chainer.testing.FunctionTestCase method),
1136

assertLessEqual()
(chainer.testing.LinkInitializersTestCase
method), 1146

assertLessEqual() (chainer.testing.LinkTestCase
method), 1154

assertListEqual()
(chainer.testing.FunctionTestCase method),
1136

assertListEqual()
(chainer.testing.LinkInitializersTestCase
method), 1146

assertListEqual() (chainer.testing.LinkTestCase
method), 1154

assertLogs() (chainer.testing.FunctionTestCase
method), 1136

assertLogs() (chainer.testing.LinkInitializersTestCase
method), 1146

assertLogs() (chainer.testing.LinkTestCase method),
1154

assertMultiLineEqual()
(chainer.testing.FunctionTestCase method),
1136

assertMultiLineEqual()
(chainer.testing.LinkInitializersTestCase
method), 1146

assertMultiLineEqual()
(chainer.testing.LinkTestCase method), 1155

assertNotAlmostEqual()
(chainer.testing.FunctionTestCase method),
1136

assertNotAlmostEqual()
(chainer.testing.LinkInitializersTestCase
method), 1146

assertNotAlmostEqual()
(chainer.testing.LinkTestCase method), 1155

assertNotAlmostEquals()
(chainer.testing.FunctionTestCase method),
1136

Index 1329

Chainer Documentation, Release 7.0.0b4

assertNotAlmostEquals()
(chainer.testing.LinkInitializersTestCase
method), 1146

assertNotAlmostEquals()
(chainer.testing.LinkTestCase method), 1155

assertNotEqual() (chainer.testing.FunctionTestCase
method), 1136

assertNotEqual() (chainer.testing.LinkInitializersTestCase
method), 1146

assertNotEqual() (chainer.testing.LinkTestCase
method), 1155

assertNotEquals()
(chainer.testing.FunctionTestCase method),
1136

assertNotEquals()
(chainer.testing.LinkInitializersTestCase
method), 1147

assertNotEquals() (chainer.testing.LinkTestCase
method), 1155

assertNotIn() (chainer.testing.FunctionTestCase
method), 1136

assertNotIn() (chainer.testing.LinkInitializersTestCase
method), 1147

assertNotIn() (chainer.testing.LinkTestCase
method), 1155

assertNotIsInstance()
(chainer.testing.FunctionTestCase method),
1136

assertNotIsInstance()
(chainer.testing.LinkInitializersTestCase
method), 1147

assertNotIsInstance()
(chainer.testing.LinkTestCase method), 1155

assertNotRegex() (chainer.testing.FunctionTestCase
method), 1136

assertNotRegex() (chainer.testing.LinkInitializersTestCase
method), 1147

assertNotRegex() (chainer.testing.LinkTestCase
method), 1155

assertNotRegexpMatches()
(chainer.testing.FunctionTestCase method),
1136

assertNotRegexpMatches()
(chainer.testing.LinkInitializersTestCase
method), 1147

assertNotRegexpMatches()
(chainer.testing.LinkTestCase method), 1155

assertRaises() (chainer.testing.FunctionTestCase
method), 1137

assertRaises() (chainer.testing.LinkInitializersTestCase
method), 1147

assertRaises() (chainer.testing.LinkTestCase
method), 1155

assertRaisesRegex()

(chainer.testing.FunctionTestCase method),
1137

assertRaisesRegex()
(chainer.testing.LinkInitializersTestCase
method), 1147

assertRaisesRegex()
(chainer.testing.LinkTestCase method), 1155

assertRaisesRegexp()
(chainer.testing.FunctionTestCase method),
1137

assertRaisesRegexp()
(chainer.testing.LinkInitializersTestCase
method), 1147

assertRaisesRegexp()
(chainer.testing.LinkTestCase method), 1156

assertRegex() (chainer.testing.FunctionTestCase
method), 1137

assertRegex() (chainer.testing.LinkInitializersTestCase
method), 1147

assertRegex() (chainer.testing.LinkTestCase
method), 1156

assertRegexpMatches()
(chainer.testing.FunctionTestCase method),
1137

assertRegexpMatches()
(chainer.testing.LinkInitializersTestCase
method), 1147

assertRegexpMatches()
(chainer.testing.LinkTestCase method), 1156

assertSequenceEqual()
(chainer.testing.FunctionTestCase method),
1137

assertSequenceEqual()
(chainer.testing.LinkInitializersTestCase
method), 1147

assertSequenceEqual()
(chainer.testing.LinkTestCase method), 1156

assertSetEqual() (chainer.testing.FunctionTestCase
method), 1137

assertSetEqual() (chainer.testing.LinkInitializersTestCase
method), 1148

assertSetEqual() (chainer.testing.LinkTestCase
method), 1156

assertTrue() (chainer.testing.FunctionTestCase
method), 1138

assertTrue() (chainer.testing.LinkInitializersTestCase
method), 1148

assertTrue() (chainer.testing.LinkTestCase method),
1156

assertTupleEqual()
(chainer.testing.FunctionTestCase method),
1138

assertTupleEqual()
(chainer.testing.LinkInitializersTestCase

1330 Index

Chainer Documentation, Release 7.0.0b4

method), 1148
assertTupleEqual() (chainer.testing.LinkTestCase

method), 1156
assertWarns() (chainer.testing.FunctionTestCase

method), 1138
assertWarns() (chainer.testing.LinkInitializersTestCase

method), 1148
assertWarns() (chainer.testing.LinkTestCase

method), 1156
assertWarnsRegex()

(chainer.testing.FunctionTestCase method),
1138

assertWarnsRegex()
(chainer.testing.LinkInitializersTestCase
method), 1148

assertWarnsRegex() (chainer.testing.LinkTestCase
method), 1157

autotune (chainer.configuration.GlobalConfig at-
tribute), 1107

available() (chainer.training.extensions.PlotReport
static method), 990

available() (chainer.training.extensions.VariableStatisticsPlot
static method), 993

available() (chainer.training.updaters.MultiprocessParallelUpdater
static method), 956

available_layers (chainer.links.GoogLeNet
attribute), 711

available_layers (chainer.links.model.vision.resnet.ResNetLayers
attribute), 720

available_layers (chainer.links.ResNet101Layers
attribute), 735

available_layers (chainer.links.ResNet152Layers
attribute), 743

available_layers (chainer.links.ResNet50Layers
attribute), 727

available_layers (chainer.links.VGG16Layers at-
tribute), 696

available_layers (chainer.links.VGG19Layers at-
tribute), 703

average() (in module chainer.functions), 247
average_pooling_1d() (in module

chainer.functions), 276
average_pooling_2d() (in module

chainer.functions), 276
average_pooling_3d() (in module

chainer.functions), 276
average_pooling_nd() (in module

chainer.functions), 277
avg_mean (chainer.links.BatchNormalization attribute),

602
avg_mean (chainer.links.BatchRenormalization at-

tribute), 608
avg_var (chainer.links.BatchNormalization attribute),

602

avg_var (chainer.links.BatchRenormalization at-
tribute), 608

B
b (chainer.distributions.Beta attribute), 802
backend_config (chainer.testing.FunctionTestCase

attribute), 1140
backend_config (chainer.testing.LinkInitializersTestCase

attribute), 1150
backend_config (chainer.testing.LinkTestCase at-

tribute), 1159
backward() (chainer.Function method), 288
backward() (chainer.FunctionAdapter method), 292
backward() (chainer.FunctionNode method), 298
backward() (chainer.Parameter method), 142
backward() (chainer.Variable method), 133
backward() (in module chainer), 140
backward_accumulate()

(chainer.FunctionAdapter method), 293
backward_accumulate() (chainer.FunctionNode

method), 299
backward_cpu() (chainer.Function method), 288
backward_gpu() (chainer.Function method), 289
backward_postprocess()

(chainer.function_hooks.CUDAProfileHook
method), 305

backward_postprocess()
(chainer.function_hooks.CupyMemoryProfileHook
method), 307

backward_postprocess()
(chainer.function_hooks.PrintHook method),
309

backward_postprocess()
(chainer.function_hooks.TimerHook method),
311

backward_postprocess() (chainer.FunctionHook
method), 314

backward_preprocess()
(chainer.function_hooks.CUDAProfileHook
method), 305

backward_preprocess()
(chainer.function_hooks.CupyMemoryProfileHook
method), 307

backward_preprocess()
(chainer.function_hooks.PrintHook method),
309

backward_preprocess()
(chainer.function_hooks.TimerHook method),
311

backward_preprocess() (chainer.FunctionHook
method), 314

batch_det() (in module chainer.functions), 250
batch_inv() (in module chainer.functions), 247

Index 1331

Chainer Documentation, Release 7.0.0b4

batch_l2_norm_squared() (in module
chainer.functions), 247

batch_matmul() (in module chainer.functions), 248
batch_normalization() (in module

chainer.functions), 270
batch_renormalization() (in module

chainer.functions), 271
batch_shape (chainer.Distribution attribute), 861
batch_shape (chainer.distributions.Bernoulli at-

tribute), 799
batch_shape (chainer.distributions.Beta attribute),

802
batch_shape (chainer.distributions.Categorical at-

tribute), 805
batch_shape (chainer.distributions.Cauchy attribute),

808
batch_shape (chainer.distributions.Chisquare at-

tribute), 811
batch_shape (chainer.distributions.Dirichlet at-

tribute), 815
batch_shape (chainer.distributions.Exponential at-

tribute), 818
batch_shape (chainer.distributions.Gamma attribute),

821
batch_shape (chainer.distributions.Geometric at-

tribute), 824
batch_shape (chainer.distributions.Gumbel attribute),

827
batch_shape (chainer.distributions.Independent at-

tribute), 830
batch_shape (chainer.distributions.Laplace at-

tribute), 834
batch_shape (chainer.distributions.LogNormal

attribute), 837
batch_shape (chainer.distributions.MultivariateNormal

attribute), 840
batch_shape (chainer.distributions.Normal attribute),

843
batch_shape (chainer.distributions.OneHotCategorical

attribute), 846
batch_shape (chainer.distributions.Pareto attribute),

849
batch_shape (chainer.distributions.Poisson attribute),

853
batch_shape (chainer.distributions.Uniform at-

tribute), 856
batch_size (chainer.iterators.DaliIterator attribute),

1061
BatchNormalization (class in chainer.links), 594
BatchRenormalization (class in chainer.links),

603
bcast() (chainermn.CommunicatorBase method),

1219
bcast() (in module chainermn.functions), 1231

bcast_data() (chainermn.CommunicatorBase
method), 1219

bcast_obj() (chainermn.CommunicatorBase
method), 1219

before_test() (chainer.testing.FunctionTestCase
method), 1139

before_test() (chainer.testing.LinkInitializersTestCase
method), 1149

before_test() (chainer.testing.LinkTestCase
method), 1157

Bernoulli (class in chainer.distributions), 796
bernoulli_nll() (in module chainer.functions), 226
BestValueTrigger (class in

chainer.training.triggers), 1001
beta (chainer.links.BatchNormalization attribute), 602
beta (chainer.links.BatchRenormalization attribute),

608
beta (chainer.optimizers.MSVAG attribute), 897
Beta (class in chainer.distributions), 800
beta1 (chainer.optimizers.AdaBound attribute), 882
beta1 (chainer.optimizers.Adam attribute), 872
beta1 (chainer.optimizers.AdamW attribute), 875
beta1 (chainer.optimizers.AMSBound attribute), 885
beta1 (chainer.optimizers.AMSGrad attribute), 879
beta2 (chainer.optimizers.AdaBound attribute), 882
beta2 (chainer.optimizers.Adam attribute), 872
beta2 (chainer.optimizers.AdamW attribute), 875
beta2 (chainer.optimizers.AMSBound attribute), 885
beta2 (chainer.optimizers.AMSGrad attribute), 879
Bias (class in chainer.links), 316
bias() (in module chainer.functions), 248
Bilinear (class in chainer.links), 322
bilinear() (in module chainer.functions), 197
binary_accuracy() (in module chainer.functions),

223
BinaryHierarchicalSoftmax (class in

chainer.links), 629
black_out() (in module chainer.functions), 227
BlackOut (class in chainer.links), 635
broadcast() (in module chainer.functions), 169
broadcast_to() (in module chainer.functions), 170
build_computational_graph() (in module

chainer.computational_graph), 1111

C
cache_or_load_file() (in module

chainer.dataset), 1025
cached_download() (in module chainer.dataset),

1024
CaffeFunction (class in chainer.links.caffe), 751
calc_local() (chain-

ermn.extensions.GenericMultiNodeEvaluator
method), 1223

1332 Index

Chainer Documentation, Release 7.0.0b4

call_for_each_param
(chainer.optimizer_hooks.GradientHardClipping
attribute), 922

call_for_each_param
(chainer.optimizer_hooks.GradientLARS
attribute), 925

call_for_each_param
(chainer.optimizer_hooks.GradientNoise
attribute), 923

call_for_each_param
(chainer.optimizer_hooks.Lasso attribute),
920

call_for_each_param
(chainer.optimizer_hooks.WeightDecay at-
tribute), 919

call_hook() (chainer.GradientMethod method), 916
call_hook() (chainer.Optimizer method), 910
call_hook() (chainer.optimizers.AdaBound method),

880
call_hook() (chainer.optimizers.AdaDelta method),

864
call_hook() (chainer.optimizers.AdaGrad method),

866
call_hook() (chainer.optimizers.Adam method), 870
call_hook() (chainer.optimizers.AdamW method),

873
call_hook() (chainer.optimizers.AMSBound

method), 883
call_hook() (chainer.optimizers.AMSGrad method),

876
call_hook() (chainer.optimizers.CorrectedMomentumSGD

method), 887
call_hook() (chainer.optimizers.MomentumSGD

method), 889
call_hook() (chainer.optimizers.MSVAG method),

895
call_hook() (chainer.optimizers.NesterovAG

method), 892
call_hook() (chainer.optimizers.RMSprop method),

898
call_hook() (chainer.optimizers.RMSpropGraves

method), 901
call_hook() (chainer.optimizers.SGD method), 904
call_hook() (chainer.optimizers.SMORMS3 method),

907
call_hooks() (chainer.GradientMethod method),

916
call_hooks() (chainer.Optimizer method), 910
call_hooks() (chainer.optimizers.AdaBound

method), 880
call_hooks() (chainer.optimizers.AdaDelta method),

864
call_hooks() (chainer.optimizers.AdaGrad method),

866

call_hooks() (chainer.optimizers.Adam method),
870

call_hooks() (chainer.optimizers.AdamW method),
873

call_hooks() (chainer.optimizers.AMSBound
method), 883

call_hooks() (chainer.optimizers.AMSGrad
method), 876

call_hooks() (chainer.optimizers.CorrectedMomentumSGD
method), 887

call_hooks() (chainer.optimizers.MomentumSGD
method), 889

call_hooks() (chainer.optimizers.MSVAG method),
895

call_hooks() (chainer.optimizers.NesterovAG
method), 892

call_hooks() (chainer.optimizers.RMSprop method),
898

call_hooks() (chainer.optimizers.RMSpropGraves
method), 901

call_hooks() (chainer.optimizers.SGD method), 904
call_hooks() (chainer.optimizers.SMORMS3

method), 907
cast() (in module chainer.functions), 170
Categorical (class in chainer.distributions), 803
Cauchy (class in chainer.distributions), 806
cdf() (chainer.Distribution method), 860
cdf() (chainer.distributions.Bernoulli method), 797
cdf() (chainer.distributions.Beta method), 800
cdf() (chainer.distributions.Categorical method), 803
cdf() (chainer.distributions.Cauchy method), 806
cdf() (chainer.distributions.Chisquare method), 810
cdf() (chainer.distributions.Dirichlet method), 813
cdf() (chainer.distributions.Exponential method), 816
cdf() (chainer.distributions.Gamma method), 819
cdf() (chainer.distributions.Geometric method), 822
cdf() (chainer.distributions.Gumbel method), 825
cdf() (chainer.distributions.Independent method), 828
cdf() (chainer.distributions.Laplace method), 832
cdf() (chainer.distributions.LogNormal method), 835
cdf() (chainer.distributions.MultivariateNormal

method), 838
cdf() (chainer.distributions.Normal method), 841
cdf() (chainer.distributions.OneHotCategorical

method), 844
cdf() (chainer.distributions.Pareto method), 848
cdf() (chainer.distributions.Poisson method), 851
cdf() (chainer.distributions.Uniform method), 854
ceil() (in module chainer.functions), 249
Chain (class in chainer), 765
chainer (module), 131, 758, 1070
chainer.backend (module), 1074
chainer.backends.cuda (module), 1084
chainer.backends.intel64 (module), 1089

Index 1333

Chainer Documentation, Release 7.0.0b4

chainer.computational_graph (module), 1111
chainer.dataset (module), 1008
chainer.datasets (module), 1025
chainer.distributions (module), 796
chainer.exporters (module), 1122
chainer.function_hooks (module), 304
chainer.functions (module), 151
chainer.gradient_check (module), 1128
chainer.initializers (module), 926
chainer.iterators (module), 1053
chainer.link_hooks (module), 787
chainer.links (module), 315
chainer.links.caffe (module), 1122
chainer.optimizers (module), 863
chainer.serializers (module), 1063
chainer.testing (module), 1132
chainer.training (module), 938
chainer.training.extensions.snapshot_writers

(module), 939
chainer.utils (module), 1245
chainer.utils.type_check (module), 1123
chainermn (module), 1183, 1192, 1198, 1217
chainerx (module), 1173, 1178
chainerx_device (chainer.FunctionAdapter at-

tribute), 296
chainerx_device (chainer.FunctionNode attribute),

302
ChainerxDevice (class in chainer.backend), 1083
ChainList (class in chainer), 772
check_backward() (in module

chainer.gradient_check), 1128
check_backward_options

(chainer.testing.FunctionTestCase attribute),
1140

check_backward_options
(chainer.testing.LinkTestCase attribute),
1159

check_double_backward() (in module
chainer.gradient_check), 1130

check_double_backward_options
(chainer.testing.FunctionTestCase attribute),
1140

check_forward_options
(chainer.testing.FunctionTestCase attribute),
1140

check_forward_options
(chainer.testing.LinkTestCase attribute),
1159

check_forward_outputs()
(chainer.testing.FunctionTestCase method),
1139

check_forward_outputs()
(chainer.testing.LinkInitializersTestCase
method), 1149

check_forward_outputs()
(chainer.testing.LinkTestCase method), 1157

check_initializers_options
(chainer.testing.LinkInitializersTestCase
attribute), 1150

check_nan_in_grads() (chainer.GradientMethod
method), 916

check_nan_in_grads() (chainer.Optimizer
method), 910

check_nan_in_grads()
(chainer.optimizers.AdaBound method),
880

check_nan_in_grads()
(chainer.optimizers.AdaDelta method), 864

check_nan_in_grads()
(chainer.optimizers.AdaGrad method), 866

check_nan_in_grads() (chainer.optimizers.Adam
method), 870

check_nan_in_grads()
(chainer.optimizers.AdamW method), 873

check_nan_in_grads()
(chainer.optimizers.AMSBound method),
883

check_nan_in_grads()
(chainer.optimizers.AMSGrad method), 876

check_nan_in_grads()
(chainer.optimizers.CorrectedMomentumSGD
method), 887

check_nan_in_grads()
(chainer.optimizers.MomentumSGD method),
889

check_nan_in_grads()
(chainer.optimizers.MSVAG method), 895

check_nan_in_grads()
(chainer.optimizers.NesterovAG method),
892

check_nan_in_grads()
(chainer.optimizers.RMSprop method), 898

check_nan_in_grads()
(chainer.optimizers.RMSpropGraves method),
901

check_nan_in_grads() (chainer.optimizers.SGD
method), 904

check_nan_in_grads()
(chainer.optimizers.SMORMS3 method),
907

check_type_forward() (chainer.Function
method), 289

check_type_forward() (chainer.FunctionAdapter
method), 293

check_type_forward() (chainer.FunctionNode
method), 299

children() (chainer.Chain method), 767
children() (chainer.ChainList method), 773

1334 Index

Chainer Documentation, Release 7.0.0b4

children() (chainer.Link method), 760
children() (chainer.links.BatchNormalization

method), 597
children() (chainer.links.BatchRenormalization

method), 604
children() (chainer.links.Bias method), 318
children() (chainer.links.Bilinear method), 324
children() (chainer.links.BinaryHierarchicalSoftmax

method), 630
children() (chainer.links.BlackOut method), 636
children() (chainer.links.caffe.CaffeFunction

method), 753
children() (chainer.links.ChildSumTreeLSTM

method), 330
children() (chainer.links.Classifier method), 683
children() (chainer.links.Convolution1D method),

337
children() (chainer.links.Convolution2D method),

344
children() (chainer.links.Convolution3D method),

350
children() (chainer.links.ConvolutionND method),

358
children() (chainer.links.CRF1d method), 643
children() (chainer.links.Deconvolution1D method),

364
children() (chainer.links.Deconvolution2D method),

371
children() (chainer.links.Deconvolution3D method),

377
children() (chainer.links.DeconvolutionND method),

384
children() (chainer.links.DecorrelatedBatchNormalization

method), 611
children() (chainer.links.DeformableConvolution2D

method), 391
children() (chainer.links.DepthwiseConvolution2D

method), 398
children() (chainer.links.DilatedConvolution2D

method), 405
children() (chainer.links.EmbedID method), 412
children() (chainer.links.GoogLeNet method), 706
children() (chainer.links.GroupNormalization

method), 617
children() (chainer.links.GRU method), 418
children() (chainer.links.Highway method), 424
children() (chainer.links.Inception method), 431
children() (chainer.links.InceptionBN method), 437
children() (chainer.links.LayerNormalization

method), 624
children() (chainer.links.Linear method), 444
children() (chainer.links.LocalConvolution2D

method), 450
children() (chainer.links.LSTM method), 458

children() (chainer.links.Maxout method), 670
children() (chainer.links.MLPConvolution2D

method), 465
children() (chainer.links.model.vision.resnet.ResNetLayers

method), 714
children() (chainer.links.NaryTreeLSTM method),

472
children() (chainer.links.NegativeSampling method),

676
children() (chainer.links.NStepBiGRU method), 478
children() (chainer.links.NStepBiLSTM method),

486
children() (chainer.links.NStepBiRNNReLU

method), 493
children() (chainer.links.NStepBiRNNTanh method),

500
children() (chainer.links.NStepGRU method), 507
children() (chainer.links.NStepLSTM method), 514
children() (chainer.links.NStepRNNReLU method),

522
children() (chainer.links.NStepRNNTanh method),

529
children() (chainer.links.Parameter method), 535
children() (chainer.links.PReLU method), 656
children() (chainer.links.ResNet101Layers method),

730
children() (chainer.links.ResNet152Layers method),

737
children() (chainer.links.ResNet50Layers method),

722
children() (chainer.links.Scale method), 542
children() (chainer.links.SimplifiedDropconnect

method), 649
children() (chainer.links.StatefulGRU method), 549
children() (chainer.links.StatefulMGU method), 562
children() (chainer.links.StatefulPeepholeLSTM

method), 575
children() (chainer.links.StatefulZoneoutLSTM

method), 581
children() (chainer.links.StatelessGRU method), 556
children() (chainer.links.StatelessLSTM method),

588
children() (chainer.links.StatelessMGU method),

568
children() (chainer.links.Swish method), 663
children() (chainer.links.TheanoFunction method),

746
children() (chainer.links.VGG16Layers method),

690
children() (chainer.links.VGG19Layers method),

698
children() (chainer.Sequential method), 781
ChildSumTreeLSTM (class in chainer.links), 329
Chisquare (class in chainer.distributions), 809

Index 1335

Chainer Documentation, Release 7.0.0b4

chx_array (chainer.Parameter attribute), 147
chx_array (chainer.Variable attribute), 138
classification_summary() (in module

chainer.functions), 224
Classifier (class in chainer.links), 681
clear() (chainer.ChainList method), 774
clear() (chainer.links.MLPConvolution2D method),

465
clear() (chainer.links.NStepBiGRU method), 478
clear() (chainer.links.NStepBiLSTM method), 486
clear() (chainer.links.NStepBiRNNReLU method),

493
clear() (chainer.links.NStepBiRNNTanh method), 500
clear() (chainer.links.NStepGRU method), 507
clear() (chainer.links.NStepLSTM method), 514
clear() (chainer.links.NStepRNNReLU method), 522
clear() (chainer.links.NStepRNNTanh method), 529
clear() (chainer.Sequential method), 781
clear_memo() (in module chainer.backends.cuda),

1087
cleargrad() (chainer.Parameter method), 143
cleargrad() (chainer.Variable method), 134
cleargrads() (chainer.Chain method), 767
cleargrads() (chainer.ChainList method), 774
cleargrads() (chainer.Link method), 760
cleargrads() (chainer.links.BatchNormalization

method), 597
cleargrads() (chainer.links.BatchRenormalization

method), 604
cleargrads() (chainer.links.Bias method), 318
cleargrads() (chainer.links.Bilinear method), 324
cleargrads() (chainer.links.BinaryHierarchicalSoftmax

method), 630
cleargrads() (chainer.links.BlackOut method), 637
cleargrads() (chainer.links.caffe.CaffeFunction

method), 753
cleargrads() (chainer.links.ChildSumTreeLSTM

method), 331
cleargrads() (chainer.links.Classifier method), 683
cleargrads() (chainer.links.Convolution1D method),

337
cleargrads() (chainer.links.Convolution2D method),

344
cleargrads() (chainer.links.Convolution3D method),

350
cleargrads() (chainer.links.ConvolutionND

method), 358
cleargrads() (chainer.links.CRF1d method), 643
cleargrads() (chainer.links.Deconvolution1D

method), 364
cleargrads() (chainer.links.Deconvolution2D

method), 371
cleargrads() (chainer.links.Deconvolution3D

method), 377

cleargrads() (chainer.links.DeconvolutionND
method), 384

cleargrads() (chainer.links.DecorrelatedBatchNormalization
method), 611

cleargrads() (chainer.links.DeformableConvolution2D
method), 391

cleargrads() (chainer.links.DepthwiseConvolution2D
method), 398

cleargrads() (chainer.links.DilatedConvolution2D
method), 405

cleargrads() (chainer.links.EmbedID method), 412
cleargrads() (chainer.links.GoogLeNet method),

706
cleargrads() (chainer.links.GroupNormalization

method), 617
cleargrads() (chainer.links.GRU method), 418
cleargrads() (chainer.links.Highway method), 424
cleargrads() (chainer.links.Inception method), 431
cleargrads() (chainer.links.InceptionBN method),

437
cleargrads() (chainer.links.LayerNormalization

method), 624
cleargrads() (chainer.links.Linear method), 444
cleargrads() (chainer.links.LocalConvolution2D

method), 451
cleargrads() (chainer.links.LSTM method), 458
cleargrads() (chainer.links.Maxout method), 670
cleargrads() (chainer.links.MLPConvolution2D

method), 465
cleargrads() (chainer.links.model.vision.resnet.ResNetLayers

method), 714
cleargrads() (chainer.links.NaryTreeLSTM method),

472
cleargrads() (chainer.links.NegativeSampling

method), 676
cleargrads() (chainer.links.NStepBiGRU method),

478
cleargrads() (chainer.links.NStepBiLSTM method),

486
cleargrads() (chainer.links.NStepBiRNNReLU

method), 493
cleargrads() (chainer.links.NStepBiRNNTanh

method), 500
cleargrads() (chainer.links.NStepGRU method), 507
cleargrads() (chainer.links.NStepLSTM method),

514
cleargrads() (chainer.links.NStepRNNReLU

method), 522
cleargrads() (chainer.links.NStepRNNTanh

method), 529
cleargrads() (chainer.links.Parameter method), 536
cleargrads() (chainer.links.PReLU method), 656
cleargrads() (chainer.links.ResNet101Layers

method), 730

1336 Index

Chainer Documentation, Release 7.0.0b4

cleargrads() (chainer.links.ResNet152Layers
method), 737

cleargrads() (chainer.links.ResNet50Layers
method), 722

cleargrads() (chainer.links.Scale method), 542
cleargrads() (chainer.links.SimplifiedDropconnect

method), 649
cleargrads() (chainer.links.StatefulGRU method),

549
cleargrads() (chainer.links.StatefulMGU method),

562
cleargrads() (chainer.links.StatefulPeepholeLSTM

method), 575
cleargrads() (chainer.links.StatefulZoneoutLSTM

method), 581
cleargrads() (chainer.links.StatelessGRU method),

556
cleargrads() (chainer.links.StatelessLSTM method),

588
cleargrads() (chainer.links.StatelessMGU method),

568
cleargrads() (chainer.links.Swish method), 663
cleargrads() (chainer.links.TheanoFunction

method), 746
cleargrads() (chainer.links.VGG16Layers method),

690
cleargrads() (chainer.links.VGG19Layers method),

698
cleargrads() (chainer.Sequential method), 781
clip() (in module chainer.functions), 249
clipped_relu() (in module chainer.functions), 153
close() (chainer.datasets.PickleDataset method), 1046
close() (chainer.datasets.PickleDatasetWriter

method), 1047
close() (chainer.datasets.TextDataset method), 1044
CommunicatorBase (class in chainermn), 1218
ComputationalGraph (class in

chainer.computational_graph), 1113
compute_accuracy (chainer.links.Classifier at-

tribute), 688
compute_mean() (chainer.DictSummary method),

1098
compute_mean() (chainer.Summary method), 1097
concat() (chainer.dataset.tabular.DelegateDataset

method), 1016
concat() (chainer.dataset.TabularDataset method),

1012
concat() (in module chainer.functions), 171
concat_examples (in module chainer.dataset), 1022
ConcatenatedDataset (class in chainer.datasets),

1027
ConcatWithAsyncTransfer (class in

chainer.dataset), 1022
config (in module chainer), 1106

connect_trainer() (chainer.training.Updater
method), 950

connect_trainer()
(chainer.training.updaters.MultiprocessParallelUpdater
method), 956

connect_trainer()
(chainer.training.updaters.ParallelUpdater
method), 954

connect_trainer()
(chainer.training.updaters.StandardUpdater
method), 952

connectionist_temporal_classification()
(in module chainer.functions), 228

Constant (class in chainer.initializers), 927
consume() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 946
consume() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 944
consume() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 945
contiguous (chainer.testing.FunctionTestCase at-

tribute), 1140
contiguous (chainer.testing.LinkInitializersTestCase

attribute), 1150
contiguous (chainer.testing.LinkTestCase attribute),

1159
contrastive() (in module chainer.functions), 229
convert() (chainer.dataset.tabular.DelegateDataset

method), 1016
convert() (chainer.dataset.TabularDataset method),

1012
convert_caffemodel_to_npz()

(chainer.links.GoogLeNet class method),
706

convert_caffemodel_to_npz()
(chainer.links.model.vision.resnet.ResNetLayers
class method), 714

convert_caffemodel_to_npz()
(chainer.links.ResNet101Layers class method),
730

convert_caffemodel_to_npz()
(chainer.links.ResNet152Layers class method),
737

convert_caffemodel_to_npz()
(chainer.links.ResNet50Layers class method),
722

convert_caffemodel_to_npz()
(chainer.links.VGG16Layers class method),
690

convert_caffemodel_to_npz()
(chainer.links.VGG19Layers class method),
698

Converter (class in chainer.dataset), 1021
converter() (in module chainer.dataset), 1022

Index 1337

Chainer Documentation, Release 7.0.0b4

Convolution1D (class in chainer.links), 336
Convolution2D (class in chainer.links), 342
Convolution3D (class in chainer.links), 349
convolution_1d() (in module chainer.functions),

198
convolution_2d() (in module chainer.functions),

198
convolution_3d() (in module chainer.functions),

200
convolution_nd() (in module chainer.functions),

200
ConvolutionND (class in chainer.links), 355
CooMatrix (class in chainer.utils), 1099
copy() (chainer.Chain method), 767
copy() (chainer.ChainList method), 774
copy() (chainer.Link method), 760
copy() (chainer.links.BatchNormalization method), 598
copy() (chainer.links.BatchRenormalization method),

604
copy() (chainer.links.Bias method), 318
copy() (chainer.links.Bilinear method), 324
copy() (chainer.links.BinaryHierarchicalSoftmax

method), 630
copy() (chainer.links.BlackOut method), 637
copy() (chainer.links.caffe.CaffeFunction method), 753
copy() (chainer.links.ChildSumTreeLSTM method),

331
copy() (chainer.links.Classifier method), 683
copy() (chainer.links.Convolution1D method), 337
copy() (chainer.links.Convolution2D method), 344
copy() (chainer.links.Convolution3D method), 350
copy() (chainer.links.ConvolutionND method), 358
copy() (chainer.links.CRF1d method), 643
copy() (chainer.links.Deconvolution1D method), 364
copy() (chainer.links.Deconvolution2D method), 371
copy() (chainer.links.Deconvolution3D method), 377
copy() (chainer.links.DeconvolutionND method), 385
copy() (chainer.links.DecorrelatedBatchNormalization

method), 611
copy() (chainer.links.DeformableConvolution2D

method), 391
copy() (chainer.links.DepthwiseConvolution2D

method), 398
copy() (chainer.links.DilatedConvolution2D method),

405
copy() (chainer.links.EmbedID method), 412
copy() (chainer.links.GoogLeNet method), 706
copy() (chainer.links.GroupNormalization method),

617
copy() (chainer.links.GRU method), 418
copy() (chainer.links.Highway method), 424
copy() (chainer.links.Inception method), 431
copy() (chainer.links.InceptionBN method), 437

copy() (chainer.links.LayerNormalization method),
624

copy() (chainer.links.Linear method), 444
copy() (chainer.links.LocalConvolution2D method),

451
copy() (chainer.links.LSTM method), 458
copy() (chainer.links.Maxout method), 670
copy() (chainer.links.MLPConvolution2D method),

465
copy() (chainer.links.model.vision.resnet.ResNetLayers

method), 715
copy() (chainer.links.NaryTreeLSTM method), 472
copy() (chainer.links.NegativeSampling method), 676
copy() (chainer.links.NStepBiGRU method), 479
copy() (chainer.links.NStepBiLSTM method), 486
copy() (chainer.links.NStepBiRNNReLU method), 493
copy() (chainer.links.NStepBiRNNTanh method), 500
copy() (chainer.links.NStepGRU method), 507
copy() (chainer.links.NStepLSTM method), 514
copy() (chainer.links.NStepRNNReLU method), 522
copy() (chainer.links.NStepRNNTanh method), 529
copy() (chainer.links.Parameter method), 536
copy() (chainer.links.PReLU method), 656
copy() (chainer.links.ResNet101Layers method), 730
copy() (chainer.links.ResNet152Layers method), 737
copy() (chainer.links.ResNet50Layers method), 722
copy() (chainer.links.Scale method), 542
copy() (chainer.links.SimplifiedDropconnect method),

650
copy() (chainer.links.StatefulGRU method), 549
copy() (chainer.links.StatefulMGU method), 562
copy() (chainer.links.StatefulPeepholeLSTM method),

575
copy() (chainer.links.StatefulZoneoutLSTM method),

581
copy() (chainer.links.StatelessGRU method), 556
copy() (chainer.links.StatelessLSTM method), 588
copy() (chainer.links.StatelessMGU method), 568
copy() (chainer.links.Swish method), 663
copy() (chainer.links.TheanoFunction method), 746
copy() (chainer.links.VGG16Layers method), 691
copy() (chainer.links.VGG19Layers method), 698
copy() (chainer.Sequential method), 782
copy() (in module chainer.backends.cuda), 1086
copy() (in module chainer.functions), 171
copydata() (chainer.Parameter method), 143
copydata() (chainer.Variable method), 134
copyparams() (chainer.Chain method), 768
copyparams() (chainer.ChainList method), 774
copyparams() (chainer.Link method), 761
copyparams() (chainer.links.BatchNormalization

method), 598
copyparams() (chainer.links.BatchRenormalization

method), 604

1338 Index

Chainer Documentation, Release 7.0.0b4

copyparams() (chainer.links.Bias method), 318
copyparams() (chainer.links.Bilinear method), 324
copyparams() (chainer.links.BinaryHierarchicalSoftmax

method), 631
copyparams() (chainer.links.BlackOut method), 637
copyparams() (chainer.links.caffe.CaffeFunction

method), 753
copyparams() (chainer.links.ChildSumTreeLSTM

method), 331
copyparams() (chainer.links.Classifier method), 684
copyparams() (chainer.links.Convolution1D method),

337
copyparams() (chainer.links.Convolution2D method),

345
copyparams() (chainer.links.Convolution3D method),

351
copyparams() (chainer.links.ConvolutionND

method), 358
copyparams() (chainer.links.CRF1d method), 643
copyparams() (chainer.links.Deconvolution1D

method), 364
copyparams() (chainer.links.Deconvolution2D

method), 372
copyparams() (chainer.links.Deconvolution3D

method), 377
copyparams() (chainer.links.DeconvolutionND

method), 385
copyparams() (chainer.links.DecorrelatedBatchNormalization

method), 611
copyparams() (chainer.links.DeformableConvolution2D

method), 392
copyparams() (chainer.links.DepthwiseConvolution2D

method), 398
copyparams() (chainer.links.DilatedConvolution2D

method), 406
copyparams() (chainer.links.EmbedID method), 412
copyparams() (chainer.links.GoogLeNet method),

706
copyparams() (chainer.links.GroupNormalization

method), 618
copyparams() (chainer.links.GRU method), 418
copyparams() (chainer.links.Highway method), 425
copyparams() (chainer.links.Inception method), 431
copyparams() (chainer.links.InceptionBN method),

438
copyparams() (chainer.links.LayerNormalization

method), 624
copyparams() (chainer.links.Linear method), 445
copyparams() (chainer.links.LocalConvolution2D

method), 451
copyparams() (chainer.links.LSTM method), 458
copyparams() (chainer.links.Maxout method), 670
copyparams() (chainer.links.MLPConvolution2D

method), 465

copyparams() (chainer.links.model.vision.resnet.ResNetLayers
method), 715

copyparams() (chainer.links.NaryTreeLSTM method),
472

copyparams() (chainer.links.NegativeSampling
method), 676

copyparams() (chainer.links.NStepBiGRU method),
479

copyparams() (chainer.links.NStepBiLSTM method),
486

copyparams() (chainer.links.NStepBiRNNReLU
method), 493

copyparams() (chainer.links.NStepBiRNNTanh
method), 500

copyparams() (chainer.links.NStepGRU method), 507
copyparams() (chainer.links.NStepLSTM method),

515
copyparams() (chainer.links.NStepRNNReLU

method), 522
copyparams() (chainer.links.NStepRNNTanh

method), 529
copyparams() (chainer.links.Parameter method), 536
copyparams() (chainer.links.PReLU method), 657
copyparams() (chainer.links.ResNet101Layers

method), 730
copyparams() (chainer.links.ResNet152Layers

method), 738
copyparams() (chainer.links.ResNet50Layers

method), 723
copyparams() (chainer.links.Scale method), 542
copyparams() (chainer.links.SimplifiedDropconnect

method), 650
copyparams() (chainer.links.StatefulGRU method),

550
copyparams() (chainer.links.StatefulMGU method),

563
copyparams() (chainer.links.StatefulPeepholeLSTM

method), 575
copyparams() (chainer.links.StatefulZoneoutLSTM

method), 581
copyparams() (chainer.links.StatelessGRU method),

557
copyparams() (chainer.links.StatelessLSTM method),

589
copyparams() (chainer.links.StatelessMGU method),

569
copyparams() (chainer.links.Swish method), 663
copyparams() (chainer.links.TheanoFunction

method), 747
copyparams() (chainer.links.VGG16Layers method),

691
copyparams() (chainer.links.VGG19Layers method),

698
copyparams() (chainer.Sequential method), 782

Index 1339

Chainer Documentation, Release 7.0.0b4

copyto() (in module chainer.backend), 1079
CorrectedMomentumSGD (class in

chainer.optimizers), 886
cos() (in module chainer.functions), 249
cosh() (in module chainer.functions), 249
count() (chainer.ChainList method), 774
count() (chainer.links.MLPConvolution2D method),

466
count() (chainer.links.NStepBiGRU method), 479
count() (chainer.links.NStepBiLSTM method), 486
count() (chainer.links.NStepBiRNNReLU method),

493
count() (chainer.links.NStepBiRNNTanh method), 501
count() (chainer.links.NStepGRU method), 508
count() (chainer.links.NStepLSTM method), 515
count() (chainer.links.NStepRNNReLU method), 522
count() (chainer.links.NStepRNNTanh method), 529
count() (chainer.Sequential method), 782
count() (chainer.utils.type_check.TypeInfoTuple

method), 1126
count_by_layer_type() (chainer.Sequential

method), 782
count_params() (chainer.Chain method), 768
count_params() (chainer.ChainList method), 774
count_params() (chainer.Link method), 761
count_params() (chainer.links.BatchNormalization

method), 598
count_params() (chainer.links.BatchRenormalization

method), 605
count_params() (chainer.links.Bias method), 318
count_params() (chainer.links.Bilinear method), 325
count_params() (chainer.links.BinaryHierarchicalSoftmax

method), 631
count_params() (chainer.links.BlackOut method),

637
count_params() (chainer.links.caffe.CaffeFunction

method), 754
count_params() (chainer.links.ChildSumTreeLSTM

method), 331
count_params() (chainer.links.Classifier method),

684
count_params() (chainer.links.Convolution1D

method), 337
count_params() (chainer.links.Convolution2D

method), 345
count_params() (chainer.links.Convolution3D

method), 351
count_params() (chainer.links.ConvolutionND

method), 358
count_params() (chainer.links.CRF1d method), 644
count_params() (chainer.links.Deconvolution1D

method), 364
count_params() (chainer.links.Deconvolution2D

method), 372

count_params() (chainer.links.Deconvolution3D
method), 378

count_params() (chainer.links.DeconvolutionND
method), 385

count_params() (chainer.links.DecorrelatedBatchNormalization
method), 611

count_params() (chainer.links.DeformableConvolution2D
method), 392

count_params() (chainer.links.DepthwiseConvolution2D
method), 398

count_params() (chainer.links.DilatedConvolution2D
method), 406

count_params() (chainer.links.EmbedID method),
412

count_params() (chainer.links.GoogLeNet method),
707

count_params() (chainer.links.GroupNormalization
method), 618

count_params() (chainer.links.GRU method), 418
count_params() (chainer.links.Highway method),

425
count_params() (chainer.links.Inception method),

431
count_params() (chainer.links.InceptionBN

method), 438
count_params() (chainer.links.LayerNormalization

method), 625
count_params() (chainer.links.Linear method), 445
count_params() (chainer.links.LocalConvolution2D

method), 451
count_params() (chainer.links.LSTM method), 459
count_params() (chainer.links.Maxout method), 670
count_params() (chainer.links.MLPConvolution2D

method), 466
count_params() (chainer.links.model.vision.resnet.ResNetLayers

method), 715
count_params() (chainer.links.NaryTreeLSTM

method), 473
count_params() (chainer.links.NegativeSampling

method), 677
count_params() (chainer.links.NStepBiGRU

method), 479
count_params() (chainer.links.NStepBiLSTM

method), 486
count_params() (chainer.links.NStepBiRNNReLU

method), 493
count_params() (chainer.links.NStepBiRNNTanh

method), 501
count_params() (chainer.links.NStepGRU method),

508
count_params() (chainer.links.NStepLSTM method),

515
count_params() (chainer.links.NStepRNNReLU

method), 522

1340 Index

Chainer Documentation, Release 7.0.0b4

count_params() (chainer.links.NStepRNNTanh
method), 529

count_params() (chainer.links.Parameter method),
536

count_params() (chainer.links.PReLU method), 657
count_params() (chainer.links.ResNet101Layers

method), 731
count_params() (chainer.links.ResNet152Layers

method), 738
count_params() (chainer.links.ResNet50Layers

method), 723
count_params() (chainer.links.Scale method), 543
count_params() (chainer.links.SimplifiedDropconnect

method), 650
count_params() (chainer.links.StatefulGRU

method), 550
count_params() (chainer.links.StatefulMGU

method), 563
count_params() (chainer.links.StatefulPeepholeLSTM

method), 576
count_params() (chainer.links.StatefulZoneoutLSTM

method), 582
count_params() (chainer.links.StatelessGRU

method), 557
count_params() (chainer.links.StatelessLSTM

method), 589
count_params() (chainer.links.StatelessMGU

method), 569
count_params() (chainer.links.Swish method), 664
count_params() (chainer.links.TheanoFunction

method), 747
count_params() (chainer.links.VGG16Layers

method), 691
count_params() (chainer.links.VGG19Layers

method), 699
count_params() (chainer.Sequential method), 782
countTestCases() (chainer.testing.FunctionTestCase

method), 1139
countTestCases() (chainer.testing.LinkInitializersTestCase

method), 1149
countTestCases() (chainer.testing.LinkTestCase

method), 1157
covariance (chainer.Distribution attribute), 862
covariance (chainer.distributions.Bernoulli attribute),

799
covariance (chainer.distributions.Beta attribute), 802
covariance (chainer.distributions.Categorical at-

tribute), 805
covariance (chainer.distributions.Cauchy attribute),

808
covariance (chainer.distributions.Chisquare at-

tribute), 812
covariance (chainer.distributions.Dirichlet attribute),

815

covariance (chainer.distributions.Exponential at-
tribute), 818

covariance (chainer.distributions.Gamma attribute),
821

covariance (chainer.distributions.Geometric at-
tribute), 824

covariance (chainer.distributions.Gumbel attribute),
827

covariance (chainer.distributions.Independent at-
tribute), 830

covariance (chainer.distributions.Laplace attribute),
834

covariance (chainer.distributions.LogNormal at-
tribute), 837

covariance (chainer.distributions.MultivariateNormal
attribute), 840

covariance (chainer.distributions.Normal attribute),
843

covariance (chainer.distributions.OneHotCategorical
attribute), 846

covariance (chainer.distributions.Pareto attribute),
850

covariance (chainer.distributions.Poisson attribute),
853

covariance (chainer.distributions.Uniform attribute),
856

CpuDevice (class in chainer.backend), 1079
create_communicator() (in module chainermn),

1217
create_consumer()

(chainer.training.extensions.snapshot_writers.ProcessQueueWriter
method), 946

create_consumer()
(chainer.training.extensions.snapshot_writers.QueueWriter
method), 944

create_consumer()
(chainer.training.extensions.snapshot_writers.ThreadQueueWriter
method), 945

create_context() (chainer.backend.ChainerxDevice
method), 1083

create_context() (chainer.backend.CpuDevice
method), 1079

create_context() (chainer.backend.Device
method), 1074

create_context() (chainer.backend.GpuDevice
method), 1080

create_context() (chainer.backend.Intel64Device
method), 1082

create_empty_dataset() (in module chain-
ermn.datasets), 1225

create_huffman_tree()
(chainer.links.BinaryHierarchicalSoftmax
static method), 631

create_link() (chainer.testing.LinkInitializersTestCase

Index 1341

Chainer Documentation, Release 7.0.0b4

method), 1149
create_link() (chainer.testing.LinkTestCase

method), 1157
create_mnbn_model() (in module chain-

ermn.links), 1228
create_multi_node_checkpointer() (in mod-

ule chainermn), 1236
create_multi_node_evaluator() (in module

chainermn), 1222
create_multi_node_iterator() (in module

chainermn.iterators), 1233
create_multi_node_optimizer() (in module

chainermn), 1222
create_queue() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 946
create_queue() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 944
create_queue() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 945
create_synchronized_iterator() (in module

chainermn.iterators), 1234
create_task() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 946
create_task() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 944
create_task() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 945
create_update_rule() (chainer.GradientMethod

method), 916
create_update_rule()

(chainer.optimizers.AdaBound method),
880

create_update_rule()
(chainer.optimizers.AdaDelta method), 864

create_update_rule()
(chainer.optimizers.AdaGrad method), 866

create_update_rule() (chainer.optimizers.Adam
method), 870

create_update_rule()
(chainer.optimizers.AdamW method), 873

create_update_rule()
(chainer.optimizers.AMSBound method),
883

create_update_rule()
(chainer.optimizers.AMSGrad method), 876

create_update_rule()
(chainer.optimizers.CorrectedMomentumSGD
method), 887

create_update_rule()
(chainer.optimizers.MomentumSGD method),
890

create_update_rule()
(chainer.optimizers.MSVAG method), 895

create_update_rule()

(chainer.optimizers.NesterovAG method),
892

create_update_rule()
(chainer.optimizers.RMSprop method), 898

create_update_rule()
(chainer.optimizers.RMSpropGraves method),
901

create_update_rule() (chainer.optimizers.SGD
method), 904

create_update_rule()
(chainer.optimizers.SMORMS3 method),
907

create_worker() (chainer.training.extensions.snapshot_writers.ProcessWriter
method), 942

create_worker() (chainer.training.extensions.snapshot_writers.ThreadWriter
method), 941

creator (chainer.Parameter attribute), 147
creator (chainer.Variable attribute), 138
creator (chainer.variable.VariableNode attribute), 150
creator_node (chainer.Parameter attribute), 147
creator_node (chainer.Variable attribute), 138
creator_node (chainer.variable.VariableNode at-

tribute), 150
crelu() (in module chainer.functions), 153
CRF1d (class in chainer.links), 641
crf1d() (in module chainer.functions), 230
cross_covariance() (in module chainer.functions),

231
cross_entropy() (in module chainer), 857
CUDAProfileHook (class in chainer.function_hooks),

304
cudnn_deterministic

(chainer.configuration.GlobalConfig attribute),
1107

cudnn_fast_batch_normalization
(chainer.configuration.GlobalConfig attribute),
1107

cumprod() (in module chainer.functions), 250
cumsum() (in module chainer.functions), 250
CupyMemoryProfileHook (class in

chainer.function_hooks), 306
current_position (chainer.iterators.MultiprocessIterator

attribute), 1058
current_position (chainer.iterators.MultithreadIterator

attribute), 1059
current_position (chainer.iterators.SerialIterator

attribute), 1055

D
d (chainer.distributions.MultivariateNormal attribute),

840
DaliIterator (class in chainer.iterators), 1060
data (chainer.Parameter attribute), 147
data (chainer.Variable attribute), 138

1342 Index

Chainer Documentation, Release 7.0.0b4

data (chainer.variable.VariableNode attribute), 151
DatasetMixin (class in chainer.dataset), 1009
debug (chainer.configuration.GlobalConfig attribute),

1107
debug() (chainer.testing.FunctionTestCase method),

1139
debug() (chainer.testing.LinkInitializersTestCase

method), 1149
debug() (chainer.testing.LinkTestCase method), 1157
debug_print() (chainer.Parameter method), 143
debug_print() (chainer.Variable method), 134
Deconvolution1D (class in chainer.links), 363
Deconvolution2D (class in chainer.links), 368
Deconvolution3D (class in chainer.links), 376
deconvolution_1d() (in module chainer.functions),

202
deconvolution_2d() (in module chainer.functions),

202
deconvolution_3d() (in module chainer.functions),

204
deconvolution_nd() (in module chainer.functions),

204
DeconvolutionND (class in chainer.links), 382
decorrelated_batch_normalization() (in

module chainer.functions), 271
DecorrelatedBatchNormalization (class in

chainer.links), 609
decov() (in module chainer.functions), 232
default_name (chainer.training.Extension attribute),

960
default_name (chainer.training.extensions.DumpGraph

attribute), 996
default_name (chainer.training.extensions.Evaluator

attribute), 964
default_name (chainer.training.extensions.ExponentialShift

attribute), 973
default_name (chainer.training.extensions.FailOnNonNumber

attribute), 967
default_name (chainer.training.extensions.InverseShift

attribute), 974
default_name (chainer.training.extensions.LinearShift

attribute), 976
default_name (chainer.training.extensions.LogReport

attribute), 989
default_name (chainer.training.extensions.MicroAverage

attribute), 966
default_name (chainer.training.extensions.MultistepShift

attribute), 978
default_name (chainer.training.extensions.ParameterStatistics

attribute), 970
default_name (chainer.training.extensions.PlotReport

attribute), 991
default_name (chainer.training.extensions.PolynomialShift

attribute), 980

default_name (chainer.training.extensions.PrintReport
attribute), 985

default_name (chainer.training.extensions.ProgressBar
attribute), 987

default_name (chainer.training.extensions.StepShift
attribute), 983

default_name (chainer.training.extensions.unchain_variables
attribute), 1000

default_name (chainer.training.extensions.VariableStatisticsPlot
attribute), 994

default_name (chainer.training.extensions.WarmupShift
attribute), 982

default_statistics
(chainer.training.extensions.ParameterStatistics
attribute), 970

defaultTestResult()
(chainer.testing.FunctionTestCase method),
1139

defaultTestResult()
(chainer.testing.LinkInitializersTestCase
method), 1149

defaultTestResult()
(chainer.testing.LinkTestCase method), 1157

deformable_convolution_2d_sampler() (in
module chainer.functions), 207

DeformableConvolution2D (class in
chainer.links), 389

DelegateDataset (class in chainer.dataset.tabular),
1015

delete_hook() (chainer.Chain method), 768
delete_hook() (chainer.ChainList method), 774
delete_hook() (chainer.Function method), 289
delete_hook() (chainer.FunctionAdapter method),

293
delete_hook() (chainer.FunctionNode method), 299
delete_hook() (chainer.Link method), 761
delete_hook() (chainer.links.BatchNormalization

method), 598
delete_hook() (chainer.links.BatchRenormalization

method), 605
delete_hook() (chainer.links.Bias method), 318
delete_hook() (chainer.links.Bilinear method), 325
delete_hook() (chainer.links.BinaryHierarchicalSoftmax

method), 631
delete_hook() (chainer.links.BlackOut method), 637
delete_hook() (chainer.links.caffe.CaffeFunction

method), 754
delete_hook() (chainer.links.ChildSumTreeLSTM

method), 331
delete_hook() (chainer.links.Classifier method), 684
delete_hook() (chainer.links.Convolution1D

method), 337
delete_hook() (chainer.links.Convolution2D

method), 345

Index 1343

Chainer Documentation, Release 7.0.0b4

delete_hook() (chainer.links.Convolution3D
method), 351

delete_hook() (chainer.links.ConvolutionND
method), 359

delete_hook() (chainer.links.CRF1d method), 644
delete_hook() (chainer.links.Deconvolution1D

method), 364
delete_hook() (chainer.links.Deconvolution2D

method), 372
delete_hook() (chainer.links.Deconvolution3D

method), 378
delete_hook() (chainer.links.DeconvolutionND

method), 385
delete_hook() (chainer.links.DecorrelatedBatchNormalization

method), 612
delete_hook() (chainer.links.DeformableConvolution2D

method), 392
delete_hook() (chainer.links.DepthwiseConvolution2D

method), 399
delete_hook() (chainer.links.DilatedConvolution2D

method), 406
delete_hook() (chainer.links.EmbedID method), 412
delete_hook() (chainer.links.GoogLeNet method),

707
delete_hook() (chainer.links.GroupNormalization

method), 618
delete_hook() (chainer.links.GRU method), 419
delete_hook() (chainer.links.Highway method), 425
delete_hook() (chainer.links.Inception method), 432
delete_hook() (chainer.links.InceptionBN method),

438
delete_hook() (chainer.links.LayerNormalization

method), 625
delete_hook() (chainer.links.Linear method), 445
delete_hook() (chainer.links.LocalConvolution2D

method), 451
delete_hook() (chainer.links.LSTM method), 459
delete_hook() (chainer.links.Maxout method), 671
delete_hook() (chainer.links.MLPConvolution2D

method), 466
delete_hook() (chainer.links.model.vision.resnet.ResNetLayers

method), 715
delete_hook() (chainer.links.NaryTreeLSTM

method), 473
delete_hook() (chainer.links.NegativeSampling

method), 677
delete_hook() (chainer.links.NStepBiGRU method),

479
delete_hook() (chainer.links.NStepBiLSTM

method), 486
delete_hook() (chainer.links.NStepBiRNNReLU

method), 494
delete_hook() (chainer.links.NStepBiRNNTanh

method), 501

delete_hook() (chainer.links.NStepGRU method),
508

delete_hook() (chainer.links.NStepLSTM method),
515

delete_hook() (chainer.links.NStepRNNReLU
method), 522

delete_hook() (chainer.links.NStepRNNTanh
method), 530

delete_hook() (chainer.links.Parameter method),
536

delete_hook() (chainer.links.PReLU method), 657
delete_hook() (chainer.links.ResNet101Layers

method), 731
delete_hook() (chainer.links.ResNet152Layers

method), 738
delete_hook() (chainer.links.ResNet50Layers

method), 723
delete_hook() (chainer.links.Scale method), 543
delete_hook() (chainer.links.SimplifiedDropconnect

method), 650
delete_hook() (chainer.links.StatefulGRU method),

550
delete_hook() (chainer.links.StatefulMGU method),

563
delete_hook() (chainer.links.StatefulPeepholeLSTM

method), 576
delete_hook() (chainer.links.StatefulZoneoutLSTM

method), 582
delete_hook() (chainer.links.StatelessGRU method),

557
delete_hook() (chainer.links.StatelessLSTM

method), 589
delete_hook() (chainer.links.StatelessMGU

method), 569
delete_hook() (chainer.links.Swish method), 664
delete_hook() (chainer.links.TheanoFunction

method), 747
delete_hook() (chainer.links.VGG16Layers

method), 691
delete_hook() (chainer.links.VGG19Layers

method), 699
delete_hook() (chainer.Sequential method), 782
deleted() (chainer.function_hooks.CUDAProfileHook

method), 305
deleted() (chainer.function_hooks.CupyMemoryProfileHook

method), 307
deleted() (chainer.function_hooks.PrintHook

method), 309
deleted() (chainer.function_hooks.TimerHook

method), 311
deleted() (chainer.FunctionHook method), 314
deleted() (chainer.link_hooks.SpectralNormalization

method), 789
deleted() (chainer.link_hooks.TimerHook method),

1344 Index

Chainer Documentation, Release 7.0.0b4

791
deleted() (chainer.link_hooks.WeightStandardization

method), 793
deleted() (chainer.LinkHook method), 795
depth2space() (in module chainer.functions), 172
depthwise_convolution_2d() (in module

chainer.functions), 206
DepthwiseConvolution2D (class in chainer.links),

396
Deserializer (class in chainer), 1072
det() (in module chainer.functions), 250
device (chainer.Chain attribute), 772
device (chainer.ChainList attribute), 778
device (chainer.DeviceResident attribute), 1078
device (chainer.Link attribute), 765
device (chainer.links.BatchNormalization attribute),

602
device (chainer.links.BatchRenormalization attribute),

609
device (chainer.links.Bias attribute), 322
device (chainer.links.Bilinear attribute), 328
device (chainer.links.BinaryHierarchicalSoftmax at-

tribute), 635
device (chainer.links.BlackOut attribute), 641
device (chainer.links.caffe.CaffeFunction attribute),

758
device (chainer.links.ChildSumTreeLSTM attribute),

335
device (chainer.links.Classifier attribute), 688
device (chainer.links.Convolution1D attribute), 341
device (chainer.links.Convolution2D attribute), 349
device (chainer.links.Convolution3D attribute), 355
device (chainer.links.ConvolutionND attribute), 362
device (chainer.links.CRF1d attribute), 647
device (chainer.links.Deconvolution1D attribute), 368
device (chainer.links.Deconvolution2D attribute), 375
device (chainer.links.Deconvolution3D attribute), 381
device (chainer.links.DeconvolutionND attribute), 389
device (chainer.links.DecorrelatedBatchNormalization

attribute), 615
device (chainer.links.DeformableConvolution2D at-

tribute), 396
device (chainer.links.DepthwiseConvolution2D at-

tribute), 402
device (chainer.links.DilatedConvolution2D attribute),

409
device (chainer.links.EmbedID attribute), 416
device (chainer.links.GoogLeNet attribute), 711
device (chainer.links.GroupNormalization attribute),

622
device (chainer.links.GRU attribute), 422
device (chainer.links.Highway attribute), 429
device (chainer.links.Inception attribute), 435
device (chainer.links.InceptionBN attribute), 441

device (chainer.links.LayerNormalization attribute),
628

device (chainer.links.Linear attribute), 448
device (chainer.links.LocalConvolution2D attribute),

455
device (chainer.links.LSTM attribute), 463
device (chainer.links.Maxout attribute), 674
device (chainer.links.MLPConvolution2D attribute),

470
device (chainer.links.model.vision.resnet.ResNetLayers

attribute), 720
device (chainer.links.NaryTreeLSTM attribute), 476
device (chainer.links.NegativeSampling attribute), 680
device (chainer.links.NStepBiGRU attribute), 483
device (chainer.links.NStepBiLSTM attribute), 491
device (chainer.links.NStepBiRNNReLU attribute), 498
device (chainer.links.NStepBiRNNTanh attribute), 505
device (chainer.links.NStepGRU attribute), 512
device (chainer.links.NStepLSTM attribute), 519
device (chainer.links.NStepRNNReLU attribute), 527
device (chainer.links.NStepRNNTanh attribute), 534
device (chainer.links.Parameter attribute), 540
device (chainer.links.PReLU attribute), 661
device (chainer.links.ResNet101Layers attribute), 735
device (chainer.links.ResNet152Layers attribute), 743
device (chainer.links.ResNet50Layers attribute), 727
device (chainer.links.Scale attribute), 546
device (chainer.links.SimplifiedDropconnect attribute),

654
device (chainer.links.StatefulGRU attribute), 554
device (chainer.links.StatefulMGU attribute), 567
device (chainer.links.StatefulPeepholeLSTM attribute),

579
device (chainer.links.StatefulZoneoutLSTM attribute),

586
device (chainer.links.StatelessGRU attribute), 561
device (chainer.links.StatelessLSTM attribute), 593
device (chainer.links.StatelessMGU attribute), 572
device (chainer.links.Swish attribute), 667
device (chainer.links.TheanoFunction attribute), 750
device (chainer.links.VGG16Layers attribute), 696
device (chainer.links.VGG19Layers attribute), 703
device (chainer.Parameter attribute), 148
device (chainer.Sequential attribute), 787
device (chainer.training.updaters.MultiprocessParallelUpdater

attribute), 958
device (chainer.training.updaters.ParallelUpdater at-

tribute), 956
device (chainer.training.updaters.StandardUpdater at-

tribute), 953
device (chainer.utils.WalkerAlias attribute), 1093
device (chainer.Variable attribute), 138
Device (class in chainer.backend), 1074

Index 1345

Chainer Documentation, Release 7.0.0b4

device_resident_accept() (chainer.Chain
method), 768

device_resident_accept() (chainer.ChainList
method), 774

device_resident_accept()
(chainer.DeviceResident method), 1077

device_resident_accept() (chainer.Link
method), 761

device_resident_accept()
(chainer.links.BatchNormalization method),
598

device_resident_accept()
(chainer.links.BatchRenormalization method),
605

device_resident_accept() (chainer.links.Bias
method), 318

device_resident_accept()
(chainer.links.Bilinear method), 325

device_resident_accept()
(chainer.links.BinaryHierarchicalSoftmax
method), 631

device_resident_accept()
(chainer.links.BlackOut method), 637

device_resident_accept()
(chainer.links.caffe.CaffeFunction method),
754

device_resident_accept()
(chainer.links.ChildSumTreeLSTM method),
331

device_resident_accept()
(chainer.links.Classifier method), 684

device_resident_accept()
(chainer.links.Convolution1D method), 338

device_resident_accept()
(chainer.links.Convolution2D method), 345

device_resident_accept()
(chainer.links.Convolution3D method), 351

device_resident_accept()
(chainer.links.ConvolutionND method), 359

device_resident_accept()
(chainer.links.CRF1d method), 644

device_resident_accept()
(chainer.links.Deconvolution1D method),
365

device_resident_accept()
(chainer.links.Deconvolution2D method),
372

device_resident_accept()
(chainer.links.Deconvolution3D method),
378

device_resident_accept()
(chainer.links.DeconvolutionND method),
385

device_resident_accept()

(chainer.links.DecorrelatedBatchNormalization
method), 612

device_resident_accept()
(chainer.links.DeformableConvolution2D
method), 392

device_resident_accept()
(chainer.links.DepthwiseConvolution2D
method), 399

device_resident_accept()
(chainer.links.DilatedConvolution2D method),
406

device_resident_accept()
(chainer.links.EmbedID method), 413

device_resident_accept()
(chainer.links.GoogLeNet method), 707

device_resident_accept()
(chainer.links.GroupNormalization method),
618

device_resident_accept() (chainer.links.GRU
method), 419

device_resident_accept()
(chainer.links.Highway method), 425

device_resident_accept()
(chainer.links.Inception method), 432

device_resident_accept()
(chainer.links.InceptionBN method), 438

device_resident_accept()
(chainer.links.LayerNormalization method),
625

device_resident_accept() (chainer.links.Linear
method), 445

device_resident_accept()
(chainer.links.LocalConvolution2D method),
451

device_resident_accept() (chainer.links.LSTM
method), 459

device_resident_accept()
(chainer.links.Maxout method), 671

device_resident_accept()
(chainer.links.MLPConvolution2D method),
466

device_resident_accept()
(chainer.links.model.vision.resnet.ResNetLayers
method), 715

device_resident_accept()
(chainer.links.NaryTreeLSTM method), 473

device_resident_accept()
(chainer.links.NegativeSampling method),
677

device_resident_accept()
(chainer.links.NStepBiGRU method), 479

device_resident_accept()
(chainer.links.NStepBiLSTM method), 486

device_resident_accept()

1346 Index

Chainer Documentation, Release 7.0.0b4

(chainer.links.NStepBiRNNReLU method),
494

device_resident_accept()
(chainer.links.NStepBiRNNTanh method),
501

device_resident_accept()
(chainer.links.NStepGRU method), 508

device_resident_accept()
(chainer.links.NStepLSTM method), 515

device_resident_accept()
(chainer.links.NStepRNNReLU method),
522

device_resident_accept()
(chainer.links.NStepRNNTanh method), 530

device_resident_accept()
(chainer.links.Parameter method), 536

device_resident_accept()
(chainer.links.PReLU method), 657

device_resident_accept()
(chainer.links.ResNet101Layers method),
731

device_resident_accept()
(chainer.links.ResNet152Layers method),
738

device_resident_accept()
(chainer.links.ResNet50Layers method),
723

device_resident_accept() (chainer.links.Scale
method), 543

device_resident_accept()
(chainer.links.SimplifiedDropconnect method),
650

device_resident_accept()
(chainer.links.StatefulGRU method), 550

device_resident_accept()
(chainer.links.StatefulMGU method), 563

device_resident_accept()
(chainer.links.StatefulPeepholeLSTM method),
576

device_resident_accept()
(chainer.links.StatefulZoneoutLSTM method),
582

device_resident_accept()
(chainer.links.StatelessGRU method), 557

device_resident_accept()
(chainer.links.StatelessLSTM method), 589

device_resident_accept()
(chainer.links.StatelessMGU method), 569

device_resident_accept() (chainer.links.Swish
method), 664

device_resident_accept()
(chainer.links.TheanoFunction method),
747

device_resident_accept()

(chainer.links.VGG16Layers method), 691
device_resident_accept()

(chainer.links.VGG19Layers method), 699
device_resident_accept() (chainer.Sequential

method), 782
device_resident_accept()

(chainer.utils.WalkerAlias method), 1091
DeviceResident (class in chainer), 1076
DeviceResidentsVisitor (class in

chainer.device_resident), 1078
diagonal() (in module chainer.functions), 173
DictDataset (class in chainer.datasets), 1026
DictionarySerializer (class in

chainer.serializers), 1063
DictSummary (class in chainer), 1098
digamma() (in module chainer.functions), 251
dilated_convolution_2d() (in module

chainer.functions), 209
DilatedConvolution2D (class in chainer.links),

403
Dirichlet (class in chainer.distributions), 812
disable_update() (chainer.Chain method), 768
disable_update() (chainer.ChainList method), 774
disable_update() (chainer.Link method), 761
disable_update() (chainer.links.BatchNormalization

method), 599
disable_update() (chainer.links.BatchRenormalization

method), 605
disable_update() (chainer.links.Bias method), 319
disable_update() (chainer.links.Bilinear method),

325
disable_update() (chainer.links.BinaryHierarchicalSoftmax

method), 631
disable_update() (chainer.links.BlackOut method),

638
disable_update() (chainer.links.caffe.CaffeFunction

method), 754
disable_update() (chainer.links.ChildSumTreeLSTM

method), 332
disable_update() (chainer.links.Classifier

method), 684
disable_update() (chainer.links.Convolution1D

method), 338
disable_update() (chainer.links.Convolution2D

method), 345
disable_update() (chainer.links.Convolution3D

method), 351
disable_update() (chainer.links.ConvolutionND

method), 359
disable_update() (chainer.links.CRF1d method),

644
disable_update() (chainer.links.Deconvolution1D

method), 365
disable_update() (chainer.links.Deconvolution2D

Index 1347

Chainer Documentation, Release 7.0.0b4

method), 372
disable_update() (chainer.links.Deconvolution3D

method), 378
disable_update() (chainer.links.DeconvolutionND

method), 386
disable_update() (chainer.links.DecorrelatedBatchNormalization

method), 612
disable_update() (chainer.links.DeformableConvolution2D

method), 392
disable_update() (chainer.links.DepthwiseConvolution2D

method), 399
disable_update() (chainer.links.DilatedConvolution2D

method), 406
disable_update() (chainer.links.EmbedID

method), 413
disable_update() (chainer.links.GoogLeNet

method), 707
disable_update() (chainer.links.GroupNormalization

method), 618
disable_update() (chainer.links.GRU method), 419
disable_update() (chainer.links.Highway method),

425
disable_update() (chainer.links.Inception method),

432
disable_update() (chainer.links.InceptionBN

method), 438
disable_update() (chainer.links.LayerNormalization

method), 625
disable_update() (chainer.links.Linear method),

445
disable_update() (chainer.links.LocalConvolution2D

method), 452
disable_update() (chainer.links.LSTM method),

459
disable_update() (chainer.links.Maxout method),

671
disable_update() (chainer.links.MLPConvolution2D

method), 466
disable_update() (chainer.links.model.vision.resnet.ResNetLayers

method), 716
disable_update() (chainer.links.NaryTreeLSTM

method), 473
disable_update() (chainer.links.NegativeSampling

method), 677
disable_update() (chainer.links.NStepBiGRU

method), 479
disable_update() (chainer.links.NStepBiLSTM

method), 486
disable_update() (chainer.links.NStepBiRNNReLU

method), 494
disable_update() (chainer.links.NStepBiRNNTanh

method), 501
disable_update() (chainer.links.NStepGRU

method), 508

disable_update() (chainer.links.NStepLSTM
method), 515

disable_update() (chainer.links.NStepRNNReLU
method), 523

disable_update() (chainer.links.NStepRNNTanh
method), 530

disable_update() (chainer.links.Parameter
method), 537

disable_update() (chainer.links.PReLU method),
657

disable_update() (chainer.links.ResNet101Layers
method), 731

disable_update() (chainer.links.ResNet152Layers
method), 738

disable_update() (chainer.links.ResNet50Layers
method), 723

disable_update() (chainer.links.Scale method),
543

disable_update() (chainer.links.SimplifiedDropconnect
method), 651

disable_update() (chainer.links.StatefulGRU
method), 550

disable_update() (chainer.links.StatefulMGU
method), 563

disable_update() (chainer.links.StatefulPeepholeLSTM
method), 576

disable_update() (chainer.links.StatefulZoneoutLSTM
method), 582

disable_update() (chainer.links.StatelessGRU
method), 557

disable_update() (chainer.links.StatelessLSTM
method), 589

disable_update() (chainer.links.StatelessMGU
method), 569

disable_update() (chainer.links.Swish method),
664

disable_update() (chainer.links.TheanoFunction
method), 747

disable_update() (chainer.links.VGG16Layers
method), 691

disable_update() (chainer.links.VGG19Layers
method), 699

disable_update() (chainer.Sequential method), 782
discriminative_margin_based_clustering_loss()

(in module chainer.functions), 232
distribution (chainer.distributions.Independent at-

tribute), 831
Distribution (class in chainer), 859
doCleanups() (chainer.testing.FunctionTestCase

method), 1139
doCleanups() (chainer.testing.LinkInitializersTestCase

method), 1149
doCleanups() (chainer.testing.LinkTestCase method),

1157

1348 Index

Chainer Documentation, Release 7.0.0b4

dodge_nondifferentiable
(chainer.testing.FunctionTestCase attribute),
1140

dodge_nondifferentiable
(chainer.testing.LinkTestCase attribute),
1159

DownsamplingConvFilter (class in
chainer.initializers), 937

dropout() (in module chainer.functions), 266
dstack() (in module chainer.functions), 174
dtype (chainer.configuration.GlobalConfig attribute),

1107
dtype (chainer.Parameter attribute), 148
dtype (chainer.Variable attribute), 139
dump() (chainer.computational_graph.ComputationalGraph

method), 1113
DumpGraph (class in chainer.training.extensions), 994
DumpGraph(), 61

E
EarlyStoppingTrigger (class in

chainer.training.triggers), 1002
einsum() (in module chainer.functions), 251
elapsed_time (chainer.training.Trainer attribute),

949
elementwise() (in module chainer.backends.cuda),

1088
elu() (in module chainer.functions), 154
embed_id() (in module chainer.functions), 210
EmbedID (class in chainer.links), 410
enable_backprop (chainer.configuration.GlobalConfig

attribute), 1107
enable_update() (chainer.Chain method), 768
enable_update() (chainer.ChainList method), 774
enable_update() (chainer.Link method), 762
enable_update() (chainer.links.BatchNormalization

method), 599
enable_update() (chainer.links.BatchRenormalization

method), 605
enable_update() (chainer.links.Bias method), 319
enable_update() (chainer.links.Bilinear method),

325
enable_update() (chainer.links.BinaryHierarchicalSoftmax

method), 632
enable_update() (chainer.links.BlackOut method),

638
enable_update() (chainer.links.caffe.CaffeFunction

method), 754
enable_update() (chainer.links.ChildSumTreeLSTM

method), 332
enable_update() (chainer.links.Classifier method),

684
enable_update() (chainer.links.Convolution1D

method), 338

enable_update() (chainer.links.Convolution2D
method), 345

enable_update() (chainer.links.Convolution3D
method), 351

enable_update() (chainer.links.ConvolutionND
method), 359

enable_update() (chainer.links.CRF1d method),
644

enable_update() (chainer.links.Deconvolution1D
method), 365

enable_update() (chainer.links.Deconvolution2D
method), 372

enable_update() (chainer.links.Deconvolution3D
method), 378

enable_update() (chainer.links.DeconvolutionND
method), 386

enable_update() (chainer.links.DecorrelatedBatchNormalization
method), 612

enable_update() (chainer.links.DeformableConvolution2D
method), 392

enable_update() (chainer.links.DepthwiseConvolution2D
method), 399

enable_update() (chainer.links.DilatedConvolution2D
method), 406

enable_update() (chainer.links.EmbedID method),
413

enable_update() (chainer.links.GoogLeNet
method), 707

enable_update() (chainer.links.GroupNormalization
method), 619

enable_update() (chainer.links.GRU method), 419
enable_update() (chainer.links.Highway method),

425
enable_update() (chainer.links.Inception method),

432
enable_update() (chainer.links.InceptionBN

method), 438
enable_update() (chainer.links.LayerNormalization

method), 625
enable_update() (chainer.links.Linear method), 445
enable_update() (chainer.links.LocalConvolution2D

method), 452
enable_update() (chainer.links.LSTM method), 459
enable_update() (chainer.links.Maxout method),

671
enable_update() (chainer.links.MLPConvolution2D

method), 466
enable_update() (chainer.links.model.vision.resnet.ResNetLayers

method), 716
enable_update() (chainer.links.NaryTreeLSTM

method), 473
enable_update() (chainer.links.NegativeSampling

method), 677
enable_update() (chainer.links.NStepBiGRU

Index 1349

Chainer Documentation, Release 7.0.0b4

method), 479
enable_update() (chainer.links.NStepBiLSTM

method), 486
enable_update() (chainer.links.NStepBiRNNReLU

method), 494
enable_update() (chainer.links.NStepBiRNNTanh

method), 501
enable_update() (chainer.links.NStepGRU

method), 508
enable_update() (chainer.links.NStepLSTM

method), 515
enable_update() (chainer.links.NStepRNNReLU

method), 523
enable_update() (chainer.links.NStepRNNTanh

method), 530
enable_update() (chainer.links.Parameter method),

537
enable_update() (chainer.links.PReLU method),

658
enable_update() (chainer.links.ResNet101Layers

method), 731
enable_update() (chainer.links.ResNet152Layers

method), 739
enable_update() (chainer.links.ResNet50Layers

method), 723
enable_update() (chainer.links.Scale method), 543
enable_update() (chainer.links.SimplifiedDropconnect

method), 651
enable_update() (chainer.links.StatefulGRU

method), 550
enable_update() (chainer.links.StatefulMGU

method), 563
enable_update() (chainer.links.StatefulPeepholeLSTM

method), 576
enable_update() (chainer.links.StatefulZoneoutLSTM

method), 582
enable_update() (chainer.links.StatelessGRU

method), 557
enable_update() (chainer.links.StatelessLSTM

method), 589
enable_update() (chainer.links.StatelessMGU

method), 569
enable_update() (chainer.links.Swish method), 664
enable_update() (chainer.links.TheanoFunction

method), 747
enable_update() (chainer.links.VGG16Layers

method), 692
enable_update() (chainer.links.VGG19Layers

method), 699
enable_update() (chainer.Sequential method), 782
entropy (chainer.Distribution attribute), 862
entropy (chainer.distributions.Bernoulli attribute), 799
entropy (chainer.distributions.Beta attribute), 802
entropy (chainer.distributions.Categorical attribute),

805
entropy (chainer.distributions.Cauchy attribute), 808
entropy (chainer.distributions.Chisquare attribute),

812
entropy (chainer.distributions.Dirichlet attribute), 815
entropy (chainer.distributions.Exponential attribute),

818
entropy (chainer.distributions.Gamma attribute), 821
entropy (chainer.distributions.Geometric attribute),

824
entropy (chainer.distributions.Gumbel attribute), 827
entropy (chainer.distributions.Independent attribute),

831
entropy (chainer.distributions.Laplace attribute), 834
entropy (chainer.distributions.LogNormal attribute),

837
entropy (chainer.distributions.MultivariateNormal at-

tribute), 840
entropy (chainer.distributions.Normal attribute), 843
entropy (chainer.distributions.OneHotCategorical at-

tribute), 846
entropy (chainer.distributions.Pareto attribute), 850
entropy (chainer.distributions.Poisson attribute), 853
entropy (chainer.distributions.Uniform attribute), 856
environment variable

LD_LIBRARY_PATH, 1189
MV2_SMP_USE_CMA, 1189, 1192
MV2_USE_CUDA, 1189, 1192
PATH, 1189

epoch (chainer.GradientMethod attribute), 918
epoch (chainer.iterators.MultiprocessIterator attribute),

1058
epoch (chainer.iterators.MultithreadIterator attribute),

1059
epoch (chainer.iterators.SerialIterator attribute), 1055
epoch (chainer.Optimizer attribute), 912
epoch (chainer.optimizers.AdaBound attribute), 882
epoch (chainer.optimizers.AdaDelta attribute), 866
epoch (chainer.optimizers.AdaGrad attribute), 868
epoch (chainer.optimizers.Adam attribute), 872
epoch (chainer.optimizers.AdamW attribute), 875
epoch (chainer.optimizers.AMSBound attribute), 885
epoch (chainer.optimizers.AMSGrad attribute), 879
epoch (chainer.optimizers.CorrectedMomentumSGD at-

tribute), 889
epoch (chainer.optimizers.MomentumSGD attribute),

891
epoch (chainer.optimizers.MSVAG attribute), 897
epoch (chainer.optimizers.NesterovAG attribute), 894
epoch (chainer.optimizers.RMSprop attribute), 900
epoch (chainer.optimizers.RMSpropGraves attribute),

903
epoch (chainer.optimizers.SGD attribute), 906
epoch (chainer.optimizers.SMORMS3 attribute), 909

1350 Index

Chainer Documentation, Release 7.0.0b4

epoch (chainer.training.updaters.MultiprocessParallelUpdater
attribute), 958

epoch (chainer.training.updaters.ParallelUpdater at-
tribute), 956

epoch (chainer.training.updaters.StandardUpdater at-
tribute), 953

epoch_detail (chainer.iterators.DaliIterator at-
tribute), 1061

epoch_detail (chainer.iterators.MultiprocessIterator
attribute), 1058

epoch_detail (chainer.iterators.MultithreadIterator
attribute), 1059

epoch_detail (chainer.iterators.SerialIterator
attribute), 1055

epoch_detail (chainer.training.updaters.MultiprocessParallelUpdater
attribute), 958

epoch_detail (chainer.training.updaters.ParallelUpdater
attribute), 956

epoch_detail (chainer.training.updaters.StandardUpdater
attribute), 953

eps (chainer.optimizers.AdaBound attribute), 882
eps (chainer.optimizers.AdaDelta attribute), 866
eps (chainer.optimizers.AdaGrad attribute), 868
eps (chainer.optimizers.Adam attribute), 872
eps (chainer.optimizers.AdamW attribute), 875
eps (chainer.optimizers.AMSBound attribute), 886
eps (chainer.optimizers.AMSGrad attribute), 879
eps (chainer.optimizers.RMSprop attribute), 900
eps (chainer.optimizers.RMSpropGraves attribute), 903
eps (chainer.optimizers.SMORMS3 attribute), 909
eps_inside_sqrt (chainer.optimizers.RMSprop at-

tribute), 900
erf() (in module chainer.functions), 252
erfc() (in module chainer.functions), 252
erfcinv() (in module chainer.functions), 252
erfcx() (in module chainer.functions), 252
erfinv() (in module chainer.functions), 253
eta (chainer.optimizers.AdaBound attribute), 882
eta (chainer.optimizers.Adam attribute), 872
eta (chainer.optimizers.AdamW attribute), 875
eta (chainer.optimizers.AMSBound attribute), 886
eta (chainer.optimizers.AMSGrad attribute), 879
eta (chainer.optimizers.MSVAG attribute), 897
eval() (chainer.utils.type_check.Expr method), 1125
eval() (chainer.utils.type_check.Variable method),

1127
eval() (in module chainer.utils.type_check), 1125
evaluate() (chainer.training.extensions.Evaluator

method), 962
Evaluator, 62
Evaluator (class in chainer.training.extensions), 961
event_shape (chainer.Distribution attribute), 862
event_shape (chainer.distributions.Bernoulli at-

tribute), 799

event_shape (chainer.distributions.Beta attribute),
802

event_shape (chainer.distributions.Categorical at-
tribute), 805

event_shape (chainer.distributions.Cauchy attribute),
808

event_shape (chainer.distributions.Chisquare at-
tribute), 812

event_shape (chainer.distributions.Dirichlet at-
tribute), 815

event_shape (chainer.distributions.Exponential at-
tribute), 818

event_shape (chainer.distributions.Gamma attribute),
821

event_shape (chainer.distributions.Geometric at-
tribute), 824

event_shape (chainer.distributions.Gumbel attribute),
827

event_shape (chainer.distributions.Independent at-
tribute), 831

event_shape (chainer.distributions.Laplace at-
tribute), 834

event_shape (chainer.distributions.LogNormal
attribute), 837

event_shape (chainer.distributions.MultivariateNormal
attribute), 840

event_shape (chainer.distributions.Normal attribute),
844

event_shape (chainer.distributions.OneHotCategorical
attribute), 847

event_shape (chainer.distributions.Pareto attribute),
850

event_shape (chainer.distributions.Poisson attribute),
853

event_shape (chainer.distributions.Uniform at-
tribute), 856

exp() (in module chainer.functions), 253
expand_dims() (in module chainer.functions), 175
expect() (in module chainer.utils.type_check), 1125
experimental() (in module chainer.utils), 1101
expm1() (in module chainer.functions), 253
Exponential (class in chainer.distributions), 816
ExponentialShift (class in

chainer.training.extensions), 971
export() (in module chainer.exporters.caffe), 1122
Expr (class in chainer.utils.type_check), 1124
extend() (chainer.ChainList method), 774
extend() (chainer.links.MLPConvolution2D method),

466
extend() (chainer.links.NStepBiGRU method), 479
extend() (chainer.links.NStepBiLSTM method), 487
extend() (chainer.links.NStepBiRNNReLU method),

494
extend() (chainer.links.NStepBiRNNTanh method),

Index 1351

Chainer Documentation, Release 7.0.0b4

501
extend() (chainer.links.NStepGRU method), 508
extend() (chainer.links.NStepLSTM method), 515
extend() (chainer.links.NStepRNNReLU method), 523
extend() (chainer.links.NStepRNNTanh method), 530
extend() (chainer.Sequential method), 783
extend() (chainer.training.Trainer method), 948
Extension (class in chainer.training), 958
extract() (chainer.links.GoogLeNet method), 707
extract() (chainer.links.model.vision.resnet.ResNetLayers

method), 716
extract() (chainer.links.ResNet101Layers method),

731
extract() (chainer.links.ResNet152Layers method),

739
extract() (chainer.links.ResNet50Layers method),

723
extract() (chainer.links.VGG16Layers method), 692
extract() (chainer.links.VGG19Layers method), 699

F
f1_score() (in module chainer.functions), 224
fail() (chainer.testing.FunctionTestCase method),

1139
fail() (chainer.testing.LinkInitializersTestCase

method), 1149
fail() (chainer.testing.LinkTestCase method), 1157
failIf() (chainer.testing.FunctionTestCase method),

1139
failIf() (chainer.testing.LinkInitializersTestCase

method), 1149
failIf() (chainer.testing.LinkTestCase method), 1157
failIfAlmostEqual()

(chainer.testing.FunctionTestCase method),
1139

failIfAlmostEqual()
(chainer.testing.LinkInitializersTestCase
method), 1149

failIfAlmostEqual()
(chainer.testing.LinkTestCase method), 1157

failIfEqual() (chainer.testing.FunctionTestCase
method), 1139

failIfEqual() (chainer.testing.LinkInitializersTestCase
method), 1149

failIfEqual() (chainer.testing.LinkTestCase
method), 1157

FailOnNonNumber (class in
chainer.training.extensions), 966

failUnless() (chainer.testing.FunctionTestCase
method), 1139

failUnless() (chainer.testing.LinkInitializersTestCase
method), 1149

failUnless() (chainer.testing.LinkTestCase method),
1157

failUnlessAlmostEqual()
(chainer.testing.FunctionTestCase method),
1139

failUnlessAlmostEqual()
(chainer.testing.LinkInitializersTestCase
method), 1149

failUnlessAlmostEqual()
(chainer.testing.LinkTestCase method), 1158

failUnlessEqual()
(chainer.testing.FunctionTestCase method),
1139

failUnlessEqual()
(chainer.testing.LinkInitializersTestCase
method), 1149

failUnlessEqual() (chainer.testing.LinkTestCase
method), 1158

failUnlessRaises()
(chainer.testing.FunctionTestCase method),
1139

failUnlessRaises()
(chainer.testing.LinkInitializersTestCase
method), 1149

failUnlessRaises() (chainer.testing.LinkTestCase
method), 1158

fallback_device (chainer.backend.ChainerxDevice
attribute), 1084

fetch() (chainer.dataset.tabular.DelegateDataset
method), 1016

fetch() (chainer.dataset.TabularDataset method),
1013

fft() (in module chainer.functions), 253
fill_value (chainer.initializers.Constant attribute),

927
fill_value (chainer.initializers.NaN attribute), 929
fill_value (chainer.initializers.One attribute), 929
fill_value (chainer.initializers.Zero attribute), 928
final_lr (chainer.optimizers.AdaBound attribute),

882
final_lr (chainer.optimizers.Adam attribute), 872
final_lr (chainer.optimizers.AdamW attribute), 875
final_lr (chainer.optimizers.AMSBound attribute),

886
final_lr (chainer.optimizers.AMSGrad attribute), 879
finalize() (chainer.dataset.Iterator method), 1020
finalize() (chainer.iterators.DaliIterator method),

1060
finalize() (chainer.iterators.MultiprocessIterator

method), 1057
finalize() (chainer.iterators.MultithreadIterator

method), 1059
finalize() (chainer.iterators.SerialIterator method),

1054
finalize() (chainer.training.Extension method), 959
finalize() (chainer.training.extensions.DumpGraph

1352 Index

Chainer Documentation, Release 7.0.0b4

method), 995
finalize() (chainer.training.extensions.Evaluator

method), 963
finalize() (chainer.training.extensions.ExponentialShift

method), 972
finalize() (chainer.training.extensions.FailOnNonNumber

method), 966
finalize() (chainer.training.extensions.InverseShift

method), 973
finalize() (chainer.training.extensions.LinearShift

method), 975
finalize() (chainer.training.extensions.LogReport

method), 988
finalize() (chainer.training.extensions.MicroAverage

method), 965
finalize() (chainer.training.extensions.MultistepShift

method), 977
finalize() (chainer.training.extensions.ParameterStatistics

method), 969
finalize() (chainer.training.extensions.PlotReport

method), 990
finalize() (chainer.training.extensions.PolynomialShift

method), 979
finalize() (chainer.training.extensions.PrintReport

method), 984
finalize() (chainer.training.extensions.ProgressBar

method), 986
finalize() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter

method), 946
finalize() (chainer.training.extensions.snapshot_writers.ProcessWriter

method), 943
finalize() (chainer.training.extensions.snapshot_writers.QueueWriter

method), 944
finalize() (chainer.training.extensions.snapshot_writers.SimpleWriter

method), 940
finalize() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter

method), 945
finalize() (chainer.training.extensions.snapshot_writers.ThreadWriter

method), 941
finalize() (chainer.training.extensions.snapshot_writers.Writer

method), 939
finalize() (chainer.training.extensions.StepShift

method), 982
finalize() (chainer.training.extensions.unchain_variables

method), 999
finalize() (chainer.training.extensions.VariableStatisticsPlot

method), 993
finalize() (chainer.training.extensions.WarmupShift

method), 981
finalize() (chainer.training.Updater method), 950
finalize() (chainer.training.updaters.MultiprocessParallelUpdater

method), 957
finalize() (chainer.training.updaters.ParallelUpdater

method), 955

finalize() (chainer.training.updaters.StandardUpdater
method), 952

finalize() (chainermn.CommunicatorBase method),
1219

finished (chainer.training.triggers.OnceTrigger at-
tribute), 1007

fix() (in module chainer.functions), 254
fix_random() (in module chainer.testing), 1162
fixed_batch_normalization() (in module

chainer.functions), 272
fixed_batch_renormalization() (in module

chainer.functions), 273
fixed_decorrelated_batch_normalization()

(in module chainer.functions), 273
flatten() (chainer.Sequential method), 783
flatten() (in module chainer.functions), 176
flip() (in module chainer.functions), 176
fliplr() (in module chainer.functions), 177
flipud() (in module chainer.functions), 177
floor() (in module chainer.functions), 254
flush() (chainer.datasets.PickleDatasetWriter

method), 1047
fmod() (in module chainer.functions), 254
force_backprop_mode() (in module chainer), 302
forget() (in module chainer.functions), 286
forward() (chainer.Function method), 289
forward() (chainer.FunctionAdapter method), 294
forward() (chainer.FunctionNode method), 300
forward() (chainer.links.BatchNormalization

method), 599
forward() (chainer.links.BatchRenormalization

method), 605
forward() (chainer.links.Bias method), 319
forward() (chainer.links.Bilinear method), 325
forward() (chainer.links.BinaryHierarchicalSoftmax

method), 632
forward() (chainer.links.BlackOut method), 638
forward() (chainer.links.caffe.CaffeFunction method),

754
forward() (chainer.links.ChildSumTreeLSTM

method), 332
forward() (chainer.links.Classifier method), 684
forward() (chainer.links.Convolution1D method), 338
forward() (chainer.links.Convolution2D method), 345
forward() (chainer.links.Convolution3D method), 351
forward() (chainer.links.ConvolutionND method), 359
forward() (chainer.links.CRF1d method), 644
forward() (chainer.links.Deconvolution1D method),

365
forward() (chainer.links.Deconvolution2D method),

372
forward() (chainer.links.Deconvolution3D method),

378
forward() (chainer.links.DeconvolutionND method),

Index 1353

Chainer Documentation, Release 7.0.0b4

386
forward() (chainer.links.DecorrelatedBatchNormalization

method), 612
forward() (chainer.links.DeformableConvolution2D

method), 392
forward() (chainer.links.DepthwiseConvolution2D

method), 399
forward() (chainer.links.DilatedConvolution2D

method), 406
forward() (chainer.links.EmbedID method), 413
forward() (chainer.links.GoogLeNet method), 708
forward() (chainer.links.GroupNormalization

method), 619
forward() (chainer.links.GRU method), 419
forward() (chainer.links.Highway method), 425
forward() (chainer.links.Inception method), 432
forward() (chainer.links.InceptionBN method), 438
forward() (chainer.links.LayerNormalization

method), 625
forward() (chainer.links.Linear method), 445
forward() (chainer.links.LocalConvolution2D

method), 452
forward() (chainer.links.LSTM method), 459
forward() (chainer.links.Maxout method), 671
forward() (chainer.links.MLPConvolution2D

method), 466
forward() (chainer.links.model.vision.resnet.ResNetLayers

method), 716
forward() (chainer.links.NaryTreeLSTM method), 473
forward() (chainer.links.NegativeSampling method),

677
forward() (chainer.links.NStepBiGRU method), 479
forward() (chainer.links.NStepBiLSTM method), 487
forward() (chainer.links.NStepBiRNNReLU method),

494
forward() (chainer.links.NStepBiRNNTanh method),

501
forward() (chainer.links.NStepGRU method), 508
forward() (chainer.links.NStepLSTM method), 515
forward() (chainer.links.NStepRNNReLU method),

523
forward() (chainer.links.NStepRNNTanh method), 530
forward() (chainer.links.Parameter method), 537
forward() (chainer.links.PReLU method), 658
forward() (chainer.links.ResNet101Layers method),

732
forward() (chainer.links.ResNet152Layers method),

739
forward() (chainer.links.ResNet50Layers method),

724
forward() (chainer.links.Scale method), 543
forward() (chainer.links.SimplifiedDropconnect

method), 651
forward() (chainer.links.StatefulGRU method), 550

forward() (chainer.links.StatefulMGU method), 563
forward() (chainer.links.StatefulPeepholeLSTM

method), 576
forward() (chainer.links.StatefulZoneoutLSTM

method), 582
forward() (chainer.links.StatelessGRU method), 557
forward() (chainer.links.StatelessLSTM method), 589
forward() (chainer.links.StatelessMGU method), 569
forward() (chainer.links.Swish method), 664
forward() (chainer.links.TheanoFunction method),

747
forward() (chainer.links.VGG16Layers method), 692
forward() (chainer.links.VGG19Layers method), 700
forward() (chainer.Sequential method), 783
forward() (chainer.testing.FunctionTestCase method),

1139
forward() (chainer.testing.LinkInitializersTestCase

method), 1149
forward() (chainer.testing.LinkTestCase method),

1158
forward_chainerx() (chainer.FunctionAdapter

method), 294
forward_chainerx() (chainer.FunctionNode

method), 300
forward_cpu() (chainer.Function method), 289
forward_cpu() (chainer.FunctionAdapter method),

294
forward_cpu() (chainer.FunctionNode method), 300
forward_expected()

(chainer.testing.FunctionTestCase method),
1139

forward_expected() (chainer.testing.LinkTestCase
method), 1158

forward_gpu() (chainer.Function method), 290
forward_gpu() (chainer.FunctionAdapter method),

294
forward_gpu() (chainer.FunctionNode method), 300
forward_postprocess()

(chainer.function_hooks.CUDAProfileHook
method), 305

forward_postprocess()
(chainer.function_hooks.CupyMemoryProfileHook
method), 307

forward_postprocess()
(chainer.function_hooks.PrintHook method),
309

forward_postprocess()
(chainer.function_hooks.TimerHook method),
311

forward_postprocess() (chainer.FunctionHook
method), 314

forward_postprocess()
(chainer.link_hooks.SpectralNormalization
method), 789

1354 Index

Chainer Documentation, Release 7.0.0b4

forward_postprocess()
(chainer.link_hooks.TimerHook method),
791

forward_postprocess()
(chainer.link_hooks.WeightStandardization
method), 793

forward_postprocess() (chainer.LinkHook
method), 795

forward_preprocess()
(chainer.function_hooks.CUDAProfileHook
method), 305

forward_preprocess()
(chainer.function_hooks.CupyMemoryProfileHook
method), 307

forward_preprocess()
(chainer.function_hooks.PrintHook method),
310

forward_preprocess()
(chainer.function_hooks.TimerHook method),
311

forward_preprocess() (chainer.FunctionHook
method), 315

forward_preprocess()
(chainer.link_hooks.SpectralNormalization
method), 789

forward_preprocess()
(chainer.link_hooks.TimerHook method),
791

forward_preprocess()
(chainer.link_hooks.WeightStandardization
method), 793

forward_preprocess() (chainer.LinkHook
method), 795

from_array() (chainer.backend.ChainerxDevice
static method), 1083

from_array() (chainer.backend.CpuDevice static
method), 1079

from_array() (chainer.backend.GpuDevice static
method), 1081

from_array() (chainer.backend.Intel64Device static
method), 1082

from_chx() (chainer.Chain method), 768
from_chx() (chainer.ChainList method), 774
from_chx() (chainer.DeviceResident method), 1077
from_chx() (chainer.Link method), 762
from_chx() (chainer.links.BatchNormalization

method), 599
from_chx() (chainer.links.BatchRenormalization

method), 605
from_chx() (chainer.links.Bias method), 319
from_chx() (chainer.links.Bilinear method), 325
from_chx() (chainer.links.BinaryHierarchicalSoftmax

method), 632
from_chx() (chainer.links.BlackOut method), 638

from_chx() (chainer.links.caffe.CaffeFunction
method), 754

from_chx() (chainer.links.ChildSumTreeLSTM
method), 332

from_chx() (chainer.links.Classifier method), 685
from_chx() (chainer.links.Convolution1D method),

338
from_chx() (chainer.links.Convolution2D method),

345
from_chx() (chainer.links.Convolution3D method),

351
from_chx() (chainer.links.ConvolutionND method),

359
from_chx() (chainer.links.CRF1d method), 644
from_chx() (chainer.links.Deconvolution1D method),

365
from_chx() (chainer.links.Deconvolution2D method),

372
from_chx() (chainer.links.Deconvolution3D method),

378
from_chx() (chainer.links.DeconvolutionND method),

386
from_chx() (chainer.links.DecorrelatedBatchNormalization

method), 612
from_chx() (chainer.links.DeformableConvolution2D

method), 393
from_chx() (chainer.links.DepthwiseConvolution2D

method), 399
from_chx() (chainer.links.DilatedConvolution2D

method), 406
from_chx() (chainer.links.EmbedID method), 413
from_chx() (chainer.links.GoogLeNet method), 708
from_chx() (chainer.links.GroupNormalization

method), 619
from_chx() (chainer.links.GRU method), 419
from_chx() (chainer.links.Highway method), 426
from_chx() (chainer.links.Inception method), 432
from_chx() (chainer.links.InceptionBN method), 438
from_chx() (chainer.links.LayerNormalization

method), 625
from_chx() (chainer.links.Linear method), 445
from_chx() (chainer.links.LocalConvolution2D

method), 452
from_chx() (chainer.links.LSTM method), 459
from_chx() (chainer.links.Maxout method), 671
from_chx() (chainer.links.MLPConvolution2D

method), 466
from_chx() (chainer.links.model.vision.resnet.ResNetLayers

method), 716
from_chx() (chainer.links.NaryTreeLSTM method),

473
from_chx() (chainer.links.NegativeSampling method),

677
from_chx() (chainer.links.NStepBiGRU method), 480

Index 1355

Chainer Documentation, Release 7.0.0b4

from_chx() (chainer.links.NStepBiLSTM method),
487

from_chx() (chainer.links.NStepBiRNNReLU
method), 494

from_chx() (chainer.links.NStepBiRNNTanh method),
501

from_chx() (chainer.links.NStepGRU method), 509
from_chx() (chainer.links.NStepLSTM method), 516
from_chx() (chainer.links.NStepRNNReLU method),

523
from_chx() (chainer.links.NStepRNNTanh method),

530
from_chx() (chainer.links.Parameter method), 537
from_chx() (chainer.links.PReLU method), 658
from_chx() (chainer.links.ResNet101Layers method),

732
from_chx() (chainer.links.ResNet152Layers method),

739
from_chx() (chainer.links.ResNet50Layers method),

724
from_chx() (chainer.links.Scale method), 543
from_chx() (chainer.links.SimplifiedDropconnect

method), 651
from_chx() (chainer.links.StatefulGRU method), 550
from_chx() (chainer.links.StatefulMGU method), 563
from_chx() (chainer.links.StatefulPeepholeLSTM

method), 576
from_chx() (chainer.links.StatefulZoneoutLSTM

method), 582
from_chx() (chainer.links.StatelessGRU method), 558
from_chx() (chainer.links.StatelessLSTM method),

590
from_chx() (chainer.links.StatelessMGU method),

569
from_chx() (chainer.links.Swish method), 664
from_chx() (chainer.links.TheanoFunction method),

747
from_chx() (chainer.links.VGG16Layers method),

692
from_chx() (chainer.links.VGG19Layers method),

700
from_chx() (chainer.Parameter method), 143
from_chx() (chainer.Sequential method), 783
from_chx() (chainer.utils.WalkerAlias method), 1091
from_chx() (chainer.Variable method), 134
from_chx() (in module chainer.backend), 1090
from_data() (in module chainer.dataset.tabular),

1018
from_device_id() (chainer.backend.GpuDevice

static method), 1081
from_fallback_device()

(chainer.backend.ChainerxDevice static
method), 1083

function (chainer.FunctionAdapter attribute), 296

Function (class in chainer), 287
FunctionAdapter (class in chainer), 291
FunctionHook (class in chainer), 312
FunctionNode (class in chainer), 296
functions (chainer.links.GoogLeNet attribute), 711
functions (chainer.links.model.vision.resnet.ResNetLayers

attribute), 720
functions (chainer.links.ResNet101Layers attribute),

735
functions (chainer.links.ResNet152Layers attribute),

743
functions (chainer.links.ResNet50Layers attribute),

727
functions (chainer.links.VGG16Layers attribute), 696
functions (chainer.links.VGG19Layers attribute), 703
FunctionTestCase (class in chainer.testing), 1132

G
gamma (chainer.links.BatchNormalization attribute), 602
gamma (chainer.links.BatchRenormalization attribute),

609
gamma (chainer.optimizers.AdaBound attribute), 882
gamma (chainer.optimizers.Adam attribute), 872
gamma (chainer.optimizers.AdamW attribute), 875
gamma (chainer.optimizers.AMSBound attribute), 886
gamma (chainer.optimizers.AMSGrad attribute), 879
Gamma (class in chainer.distributions), 819
gather() (chainermn.CommunicatorBase method),

1220
gather() (in module chainermn.functions), 1231
gather_obj() (chainermn.CommunicatorBase

method), 1220
gaussian() (in module chainer.functions), 267
gaussian_kl_divergence() (in module

chainer.functions), 233
gaussian_nll() (in module chainer.functions), 234
generate_array() (in module chainer.initializers),

938
generate_grad_grad_inputs()

(chainer.testing.FunctionTestCase method),
1139

generate_grad_outputs()
(chainer.testing.FunctionTestCase method),
1139

generate_grad_outputs()
(chainer.testing.LinkTestCase method), 1158

generate_inputs()
(chainer.testing.FunctionTestCase method),
1139

generate_inputs()
(chainer.testing.LinkInitializersTestCase
method), 1149

generate_inputs() (chainer.testing.LinkTestCase
method), 1158

1356 Index

Chainer Documentation, Release 7.0.0b4

generate_params()
(chainer.testing.LinkInitializersTestCase
method), 1149

generate_params() (chainer.testing.LinkTestCase
method), 1158

GenericMultiNodeEvaluator (class in chain-
ermn.extensions), 1223

Geometric (class in chainer.distributions), 822
get_all_iterators()

(chainer.training.extensions.Evaluator
method), 963

get_all_optimizers() (chainer.training.Updater
method), 950

get_all_optimizers()
(chainer.training.updaters.MultiprocessParallelUpdater
method), 957

get_all_optimizers()
(chainer.training.updaters.ParallelUpdater
method), 955

get_all_optimizers()
(chainer.training.updaters.StandardUpdater
method), 953

get_all_targets()
(chainer.training.extensions.Evaluator
method), 963

get_array_module() (in module chainer.backend),
1076

get_array_module() (in module
chainer.backends.cuda), 1088

get_cifar10() (in module chainer.datasets), 1051
get_cifar100() (in module chainer.datasets), 1051
get_config() (chainermn.CommunicatorBase

method), 1220
get_conv_outsize() (in module chainer.utils),

1090
get_cross_validation_datasets() (in mod-

ule chainer.datasets), 1032
get_cross_validation_datasets_random()

(in module chainer.datasets), 1032
get_current_reporter() (in module chainer),

1096
get_dataset_root() (in module chainer.dataset),

1024
get_deconv_outsize() (in module chainer.utils),

1090
get_device() (in module chainer), 1075
get_device() (in module chainer.backends.cuda),

1085
get_device_from_array() (in module

chainer.backend), 1076
get_device_from_array() (in module

chainer.backends.cuda), 1085
get_device_from_id() (in module

chainer.backends.cuda), 1085

get_dict() (chainer.optimizer.Hyperparameter
method), 915

get_dtype() (in module chainer), 1108
get_example() (chainer.dataset.DatasetMixin

method), 1010
get_example() (chainer.dataset.tabular.DelegateDataset

method), 1017
get_example() (chainer.dataset.TabularDataset

method), 1013
get_example() (chainer.datasets.ConcatenatedDataset

method), 1028
get_example() (chainer.datasets.ImageDataset

method), 1036
get_example() (chainer.datasets.LabeledImageDataset

method), 1041
get_example() (chainer.datasets.LabeledZippedImageDataset

method), 1042
get_example() (chainer.datasets.MultiZippedImageDataset

method), 1039
get_example() (chainer.datasets.PickleDataset

method), 1046
get_example() (chainer.datasets.SubDataset

method), 1030
get_example() (chainer.datasets.TextDataset

method), 1044
get_example() (chainer.datasets.TransformDataset

method), 1034
get_example() (chainer.datasets.ZippedImageDataset

method), 1037
get_examples() (chainer.dataset.tabular.DelegateDataset

method), 1017
get_examples() (chainer.dataset.TabularDataset

method), 1013
get_extension() (chainer.training.Trainer method),

949
get_fashion_mnist() (in module

chainer.datasets), 1050
get_fashion_mnist_labels() (in module

chainer.datasets), 1050
get_initializers()

(chainer.testing.LinkInitializersTestCase
method), 1149

get_item() (in module chainer.functions), 177
get_iterator() (chainer.training.extensions.Evaluator

method), 963
get_iterator() (chainer.training.updaters.MultiprocessParallelUpdater

method), 957
get_iterator() (chainer.training.updaters.ParallelUpdater

method), 955
get_iterator() (chainer.training.updaters.StandardUpdater

method), 953
get_kuzushiji_mnist() (in module

chainer.datasets), 1049
get_kuzushiji_mnist_labels() (in module

Index 1357

Chainer Documentation, Release 7.0.0b4

chainer.datasets), 1050
get_max_workspace_size() (in module

chainer.backends.cuda), 1089
get_mnist() (in module chainer.datasets), 1048
get_optimizer() (chainer.training.Updater

method), 951
get_optimizer() (chainer.training.updaters.MultiprocessParallelUpdater

method), 957
get_optimizer() (chainer.training.updaters.ParallelUpdater

method), 955
get_optimizer() (chainer.training.updaters.StandardUpdater

method), 953
get_ptb_words() (in module chainer.datasets), 1052
get_ptb_words_vocabulary() (in module

chainer.datasets), 1052
get_retained_inputs()

(chainer.FunctionAdapter method), 294
get_retained_inputs() (chainer.FunctionNode

method), 300
get_retained_outputs()

(chainer.FunctionAdapter method), 294
get_retained_outputs() (chainer.FunctionNode

method), 300
get_svhn() (in module chainer.datasets), 1052
get_target() (chainer.training.extensions.Evaluator

method), 963
get_trainer_with_mock_updater() (in mod-

ule chainer.testing), 1160
get_training_length()

(chainer.training.triggers.EarlyStoppingTrigger
method), 1003

get_training_length()
(chainer.training.triggers.IntervalTrigger
method), 1004

get_trigger() (in module chainer.training), 1001
get_variable() (chainer.variable.VariableNode

method), 149
get_variable_or_none()

(chainer.variable.VariableNode method),
149

global_config (in module chainer), 1106
GlobalConfig (class in chainer.configuration), 1106
GlorotNormal (class in chainer.initializers), 931
GlorotUniform (class in chainer.initializers), 935
GoogLeNet (class in chainer.links), 704
gpu() (in module chainer.testing.attr), 1161
GpuDevice (class in chainer.backend), 1080
grad (chainer.Parameter attribute), 148
grad (chainer.Variable attribute), 139
grad (chainer.variable.VariableNode attribute), 151
grad() (in module chainer), 303
grad_var (chainer.Parameter attribute), 148
grad_var (chainer.Variable attribute), 139
grad_var (chainer.variable.VariableNode attribute),

151
GradientClipping (class in

chainer.optimizer_hooks), 920
GradientHardClipping (class in

chainer.optimizer_hooks), 921
GradientLARS (class in chainer.optimizer_hooks), 923
GradientMethod (class in chainer), 915
GradientNoise (class in chainer.optimizer_hooks),

922
group_normalization() (in module

chainer.functions), 273
GroupNormalization (class in chainer.links), 616
GRU (class in chainer.links), 417
Gumbel (class in chainer.distributions), 825
gumbel_softmax() (in module chainer.functions),

268

H
hard_sigmoid() (in module chainer.functions), 154
HDF5Deserializer (class in chainer.serializers),

1068
HDF5Serializer (class in chainer.serializers), 1067
HeNormal (class in chainer.initializers), 932
HeUniform (class in chainer.initializers), 936
high (chainer.distributions.Uniform attribute), 856
Highway (class in chainer.links), 423
hinge() (in module chainer.functions), 234
hstack() (in module chainer.functions), 178
huber_loss() (in module chainer.functions), 235
Hyperparameter (class in chainer.optimizer), 914

I
icdf() (chainer.Distribution method), 860
icdf() (chainer.distributions.Bernoulli method), 797
icdf() (chainer.distributions.Beta method), 800
icdf() (chainer.distributions.Categorical method), 803
icdf() (chainer.distributions.Cauchy method), 806
icdf() (chainer.distributions.Chisquare method), 810
icdf() (chainer.distributions.Dirichlet method), 813
icdf() (chainer.distributions.Exponential method), 816
icdf() (chainer.distributions.Gamma method), 819
icdf() (chainer.distributions.Geometric method), 822
icdf() (chainer.distributions.Gumbel method), 825
icdf() (chainer.distributions.Independent method), 828
icdf() (chainer.distributions.Laplace method), 832
icdf() (chainer.distributions.LogNormal method), 835
icdf() (chainer.distributions.MultivariateNormal

method), 838
icdf() (chainer.distributions.Normal method), 842
icdf() (chainer.distributions.OneHotCategorical

method), 845
icdf() (chainer.distributions.Pareto method), 848
icdf() (chainer.distributions.Poisson method), 851
icdf() (chainer.distributions.Uniform method), 854

1358 Index

Chainer Documentation, Release 7.0.0b4

id() (chainer.testing.FunctionTestCase method), 1139
id() (chainer.testing.LinkInitializersTestCase method),

1149
id() (chainer.testing.LinkTestCase method), 1158
Identity (class in chainer.initializers), 926
identity() (in module chainer.functions), 254
ifft() (in module chainer.functions), 254
ignore_label (chainer.links.EmbedID attribute), 416
im2col() (in module chainer.functions), 179
ImageDataset (class in chainer.datasets), 1034
in_recomputing (chainer.configuration.GlobalConfig

attribute), 1107
Inception (class in chainer.links), 429
InceptionBN (class in chainer.links), 436
Independent (class in chainer.distributions), 828
index() (chainer.ChainList method), 775
index() (chainer.links.MLPConvolution2D method),

466
index() (chainer.links.NStepBiGRU method), 480
index() (chainer.links.NStepBiLSTM method), 487
index() (chainer.links.NStepBiRNNReLU method),

494
index() (chainer.links.NStepBiRNNTanh method), 502
index() (chainer.links.NStepGRU method), 509
index() (chainer.links.NStepLSTM method), 516
index() (chainer.links.NStepRNNReLU method), 523
index() (chainer.links.NStepRNNTanh method), 530
index() (chainer.Sequential method), 783
index() (chainer.utils.type_check.TypeInfoTuple

method), 1126
init_hx() (chainer.links.NStepBiGRU method), 480
init_hx() (chainer.links.NStepBiLSTM method), 487
init_hx() (chainer.links.NStepBiRNNReLU method),

494
init_hx() (chainer.links.NStepBiRNNTanh method),

502
init_hx() (chainer.links.NStepGRU method), 509
init_hx() (chainer.links.NStepLSTM method), 516
init_hx() (chainer.links.NStepRNNReLU method),

523
init_hx() (chainer.links.NStepRNNTanh method), 530
init_scope() (chainer.Chain method), 769
init_scope() (chainer.ChainList method), 775
init_scope() (chainer.Link method), 762
init_scope() (chainer.links.BatchNormalization

method), 599
init_scope() (chainer.links.BatchRenormalization

method), 605
init_scope() (chainer.links.Bias method), 319
init_scope() (chainer.links.Bilinear method), 325
init_scope() (chainer.links.BinaryHierarchicalSoftmax

method), 632
init_scope() (chainer.links.BlackOut method), 638

init_scope() (chainer.links.caffe.CaffeFunction
method), 755

init_scope() (chainer.links.ChildSumTreeLSTM
method), 332

init_scope() (chainer.links.Classifier method), 685
init_scope() (chainer.links.Convolution1D method),

338
init_scope() (chainer.links.Convolution2D method),

346
init_scope() (chainer.links.Convolution3D method),

352
init_scope() (chainer.links.ConvolutionND

method), 359
init_scope() (chainer.links.CRF1d method), 644
init_scope() (chainer.links.Deconvolution1D

method), 365
init_scope() (chainer.links.Deconvolution2D

method), 372
init_scope() (chainer.links.Deconvolution3D

method), 378
init_scope() (chainer.links.DeconvolutionND

method), 386
init_scope() (chainer.links.DecorrelatedBatchNormalization

method), 612
init_scope() (chainer.links.DeformableConvolution2D

method), 393
init_scope() (chainer.links.DepthwiseConvolution2D

method), 399
init_scope() (chainer.links.DilatedConvolution2D

method), 406
init_scope() (chainer.links.EmbedID method), 413
init_scope() (chainer.links.GoogLeNet method),

708
init_scope() (chainer.links.GroupNormalization

method), 619
init_scope() (chainer.links.GRU method), 419
init_scope() (chainer.links.Highway method), 426
init_scope() (chainer.links.Inception method), 432
init_scope() (chainer.links.InceptionBN method),

438
init_scope() (chainer.links.LayerNormalization

method), 625
init_scope() (chainer.links.Linear method), 445
init_scope() (chainer.links.LocalConvolution2D

method), 452
init_scope() (chainer.links.LSTM method), 459
init_scope() (chainer.links.Maxout method), 671
init_scope() (chainer.links.MLPConvolution2D

method), 466
init_scope() (chainer.links.model.vision.resnet.ResNetLayers

method), 717
init_scope() (chainer.links.NaryTreeLSTM method),

473
init_scope() (chainer.links.NegativeSampling

Index 1359

Chainer Documentation, Release 7.0.0b4

method), 677
init_scope() (chainer.links.NStepBiGRU method),

480
init_scope() (chainer.links.NStepBiLSTM method),

487
init_scope() (chainer.links.NStepBiRNNReLU

method), 494
init_scope() (chainer.links.NStepBiRNNTanh

method), 502
init_scope() (chainer.links.NStepGRU method), 509
init_scope() (chainer.links.NStepLSTM method),

516
init_scope() (chainer.links.NStepRNNReLU

method), 523
init_scope() (chainer.links.NStepRNNTanh

method), 530
init_scope() (chainer.links.Parameter method), 537
init_scope() (chainer.links.PReLU method), 658
init_scope() (chainer.links.ResNet101Layers

method), 732
init_scope() (chainer.links.ResNet152Layers

method), 739
init_scope() (chainer.links.ResNet50Layers

method), 724
init_scope() (chainer.links.Scale method), 543
init_scope() (chainer.links.SimplifiedDropconnect

method), 651
init_scope() (chainer.links.StatefulGRU method),

550
init_scope() (chainer.links.StatefulMGU method),

563
init_scope() (chainer.links.StatefulPeepholeLSTM

method), 576
init_scope() (chainer.links.StatefulZoneoutLSTM

method), 582
init_scope() (chainer.links.StatelessGRU method),

558
init_scope() (chainer.links.StatelessLSTM method),

590
init_scope() (chainer.links.StatelessMGU method),

569
init_scope() (chainer.links.Swish method), 664
init_scope() (chainer.links.TheanoFunction

method), 747
init_scope() (chainer.links.VGG16Layers method),

692
init_scope() (chainer.links.VGG19Layers method),

700
init_scope() (chainer.Sequential method), 783
init_state() (chainer.UpdateRule method), 913
initialize() (chainer.Parameter method), 143
initialize() (chainer.training.Extension method),

959
initialize() (chainer.training.extensions.DumpGraph

method), 995
initialize() (chainer.training.extensions.Evaluator

method), 963
initialize() (chainer.training.extensions.ExponentialShift

method), 972
initialize() (chainer.training.extensions.FailOnNonNumber

method), 967
initialize() (chainer.training.extensions.InverseShift

method), 973
initialize() (chainer.training.extensions.LinearShift

method), 975
initialize() (chainer.training.extensions.LogReport

method), 988
initialize() (chainer.training.extensions.MicroAverage

method), 965
initialize() (chainer.training.extensions.MultistepShift

method), 977
initialize() (chainer.training.extensions.ParameterStatistics

method), 969
initialize() (chainer.training.extensions.PlotReport

method), 990
initialize() (chainer.training.extensions.PolynomialShift

method), 979
initialize() (chainer.training.extensions.PrintReport

method), 984
initialize() (chainer.training.extensions.ProgressBar

method), 986
initialize() (chainer.training.extensions.StepShift

method), 982
initialize() (chainer.training.extensions.unchain_variables

method), 999
initialize() (chainer.training.extensions.VariableStatisticsPlot

method), 993
initialize() (chainer.training.extensions.WarmupShift

method), 981
initializer (chainer.Parameter attribute), 148
Initializer (class in chainer), 925
inject_backend_tests() (in module

chainer.testing), 1162
input_device (chainer.training.updaters.MultiprocessParallelUpdater

attribute), 958
input_device (chainer.training.updaters.ParallelUpdater

attribute), 956
input_device (chainer.training.updaters.StandardUpdater

attribute), 954
inputs (chainer.Function attribute), 291
inputs (chainer.FunctionAdapter attribute), 296
inputs (chainer.FunctionNode attribute), 302
insert() (chainer.ChainList method), 775
insert() (chainer.links.MLPConvolution2D method),

467
insert() (chainer.links.NStepBiGRU method), 480
insert() (chainer.links.NStepBiLSTM method), 488
insert() (chainer.links.NStepBiRNNReLU method),

1360 Index

Chainer Documentation, Release 7.0.0b4

495
insert() (chainer.links.NStepBiRNNTanh method),

502
insert() (chainer.links.NStepGRU method), 509
insert() (chainer.links.NStepLSTM method), 516
insert() (chainer.links.NStepRNNReLU method), 524
insert() (chainer.links.NStepRNNTanh method), 531
insert() (chainer.Sequential method), 784
Intel64Device (class in chainer.backend), 1081
inter_rank() (chainermn.CommunicatorBase prop-

erty), 1220
inter_size() (chainermn.CommunicatorBase prop-

erty), 1220
IntervalTrigger (class in

chainer.training.triggers), 1003
intra_rank() (chainermn.CommunicatorBase prop-

erty), 1220
inv() (in module chainer.functions), 255
InverseShift (class in chainer.training.extensions),

973
invoke_before_training

(chainer.training.extensions.PolynomialShift
attribute), 980

is_array_supported()
(chainer.backend.ChainerxDevice method),
1083

is_array_supported()
(chainer.backend.CpuDevice method), 1079

is_array_supported() (chainer.backend.Device
method), 1074

is_array_supported()
(chainer.backend.GpuDevice method), 1081

is_array_supported()
(chainer.backend.Intel64Device method),
1082

is_before_training (chainer.training.Trainer at-
tribute), 950

is_debug() (in module chainer), 1110
is_ideep_available() (in module

chainer.backends.intel64), 1089
is_new_epoch (chainer.iterators.MultiprocessIterator

attribute), 1058
is_new_epoch (chainer.iterators.MultithreadIterator

attribute), 1059
is_new_epoch (chainer.iterators.SerialIterator

attribute), 1055
is_new_epoch (chainer.training.updaters.MultiprocessParallelUpdater

attribute), 958
is_new_epoch (chainer.training.updaters.ParallelUpdater

attribute), 956
is_new_epoch (chainer.training.updaters.StandardUpdater

attribute), 954
is_safe_to_update() (chainer.GradientMethod

method), 916

is_safe_to_update() (chainer.Optimizer method),
910

is_safe_to_update()
(chainer.optimizers.AdaBound method),
880

is_safe_to_update()
(chainer.optimizers.AdaDelta method), 864

is_safe_to_update()
(chainer.optimizers.AdaGrad method), 867

is_safe_to_update() (chainer.optimizers.Adam
method), 870

is_safe_to_update() (chainer.optimizers.AdamW
method), 873

is_safe_to_update()
(chainer.optimizers.AMSBound method),
883

is_safe_to_update()
(chainer.optimizers.AMSGrad method), 877

is_safe_to_update()
(chainer.optimizers.CorrectedMomentumSGD
method), 887

is_safe_to_update()
(chainer.optimizers.MomentumSGD method),
890

is_safe_to_update() (chainer.optimizers.MSVAG
method), 895

is_safe_to_update()
(chainer.optimizers.NesterovAG method),
893

is_safe_to_update()
(chainer.optimizers.RMSprop method), 898

is_safe_to_update()
(chainer.optimizers.RMSpropGraves method),
901

is_safe_to_update() (chainer.optimizers.SGD
method), 904

is_safe_to_update()
(chainer.optimizers.SMORMS3 method),
907

item() (chainer.Parameter method), 143
item() (chainer.Variable method), 134
Iterator (class in chainer.dataset), 1019

J
join() (chainer.dataset.tabular.DelegateDataset

method), 1017
join() (chainer.dataset.TabularDataset method), 1013

K
k (chainer.distributions.Chisquare attribute), 812
k (chainer.distributions.Gamma attribute), 821
keep_graph_on_report

(chainer.configuration.GlobalConfig attribute),
1107

Index 1361

Chainer Documentation, Release 7.0.0b4

keys (chainer.dataset.tabular.DelegateDataset at-
tribute), 1018

keys (chainer.dataset.TabularDataset attribute), 1014
kl_divergence() (in module chainer), 857

L
label (chainer.Function attribute), 291
label (chainer.FunctionAdapter attribute), 296
label (chainer.FunctionNode attribute), 302
label (chainer.Parameter attribute), 148
label (chainer.Variable attribute), 139
label (chainer.variable.VariableNode attribute), 151
LabeledImageDataset (class in chainer.datasets),

1039
LabeledZippedImageDataset (class in

chainer.datasets), 1041
lam (chainer.distributions.Exponential attribute), 818
lam (chainer.distributions.Poisson attribute), 853
Laplace (class in chainer.distributions), 832
Lasso (class in chainer.optimizer_hooks), 919
layer_normalization() (in module

chainer.functions), 274
LayerNormalization (class in chainer.links), 622
lazy_grad_sum (chainer.configuration.GlobalConfig

attribute), 1107
lazy_grad_sum (chainer.FunctionAdapter attribute),

296
lazy_grad_sum (chainer.FunctionNode attribute),

302
LD_LIBRARY_PATH, 1189
leaky_relu() (in module chainer.functions), 155
LeCunNormal (class in chainer.initializers), 930
LeCunUniform (class in chainer.initializers), 934
lgamma() (in module chainer.functions), 255
Linear (class in chainer.links), 442
linear() (in module chainer.functions), 211
linear_interpolate() (in module

chainer.functions), 255
LinearShift (class in chainer.training.extensions),

975
Link (class in chainer), 758
LinkHook (class in chainer), 794
LinkInitializersTestCase (class in

chainer.testing), 1142
links() (chainer.Chain method), 769
links() (chainer.ChainList method), 775
links() (chainer.Link method), 762
links() (chainer.links.BatchNormalization method),

599
links() (chainer.links.BatchRenormalization method),

606
links() (chainer.links.Bias method), 319
links() (chainer.links.Bilinear method), 326

links() (chainer.links.BinaryHierarchicalSoftmax
method), 632

links() (chainer.links.BlackOut method), 638
links() (chainer.links.caffe.CaffeFunction method),

755
links() (chainer.links.ChildSumTreeLSTM method),

332
links() (chainer.links.Classifier method), 685
links() (chainer.links.Convolution1D method), 338
links() (chainer.links.Convolution2D method), 346
links() (chainer.links.Convolution3D method), 352
links() (chainer.links.ConvolutionND method), 359
links() (chainer.links.CRF1d method), 645
links() (chainer.links.Deconvolution1D method), 365
links() (chainer.links.Deconvolution2D method), 373
links() (chainer.links.Deconvolution3D method), 379
links() (chainer.links.DeconvolutionND method), 386
links() (chainer.links.DecorrelatedBatchNormalization

method), 613
links() (chainer.links.DeformableConvolution2D

method), 393
links() (chainer.links.DepthwiseConvolution2D

method), 399
links() (chainer.links.DilatedConvolution2D method),

407
links() (chainer.links.EmbedID method), 413
links() (chainer.links.GoogLeNet method), 708
links() (chainer.links.GroupNormalization method),

619
links() (chainer.links.GRU method), 419
links() (chainer.links.Highway method), 426
links() (chainer.links.Inception method), 432
links() (chainer.links.InceptionBN method), 439
links() (chainer.links.LayerNormalization method),

626
links() (chainer.links.Linear method), 446
links() (chainer.links.LocalConvolution2D method),

452
links() (chainer.links.LSTM method), 460
links() (chainer.links.Maxout method), 671
links() (chainer.links.MLPConvolution2D method),

467
links() (chainer.links.model.vision.resnet.ResNetLayers

method), 717
links() (chainer.links.NaryTreeLSTM method), 474
links() (chainer.links.NegativeSampling method), 678
links() (chainer.links.NStepBiGRU method), 481
links() (chainer.links.NStepBiLSTM method), 488
links() (chainer.links.NStepBiRNNReLU method),

495
links() (chainer.links.NStepBiRNNTanh method), 502
links() (chainer.links.NStepGRU method), 509
links() (chainer.links.NStepLSTM method), 517
links() (chainer.links.NStepRNNReLU method), 524

1362 Index

Chainer Documentation, Release 7.0.0b4

links() (chainer.links.NStepRNNTanh method), 531
links() (chainer.links.Parameter method), 537
links() (chainer.links.PReLU method), 658
links() (chainer.links.ResNet101Layers method), 732
links() (chainer.links.ResNet152Layers method), 740
links() (chainer.links.ResNet50Layers method), 725
links() (chainer.links.Scale method), 544
links() (chainer.links.SimplifiedDropconnect method),

651
links() (chainer.links.StatefulGRU method), 551
links() (chainer.links.StatefulMGU method), 564
links() (chainer.links.StatefulPeepholeLSTM method),

577
links() (chainer.links.StatefulZoneoutLSTM method),

583
links() (chainer.links.StatelessGRU method), 558
links() (chainer.links.StatelessLSTM method), 590
links() (chainer.links.StatelessMGU method), 570
links() (chainer.links.Swish method), 665
links() (chainer.links.TheanoFunction method), 748
links() (chainer.links.VGG16Layers method), 693
links() (chainer.links.VGG19Layers method), 700
links() (chainer.Sequential method), 784
LinkTestCase (class in chainer.testing), 1150
load() (chainer.Deserializer method), 1073
load() (chainer.serializers.HDF5Deserializer method),

1069
load() (chainer.serializers.NpzDeserializer method),

1065
load_hdf5() (in module chainer.serializers), 1070
load_npz() (in module chainer.serializers), 1066
loc (chainer.distributions.Cauchy attribute), 809
loc (chainer.distributions.Gumbel attribute), 827
loc (chainer.distributions.Laplace attribute), 834
loc (chainer.distributions.MultivariateNormal at-

tribute), 840
loc (chainer.distributions.Normal attribute), 844
loc (chainer.distributions.Uniform attribute), 856
local_convolution_2d() (in module

chainer.functions), 211
local_function_hooks (chainer.Function at-

tribute), 291
local_function_hooks (chainer.FunctionAdapter

attribute), 296
local_function_hooks (chainer.FunctionNode at-

tribute), 302
local_link_hooks (chainer.Chain attribute), 772
local_link_hooks (chainer.ChainList attribute),

778
local_link_hooks (chainer.Link attribute), 765
local_link_hooks (chainer.links.BatchNormalization

attribute), 602
local_link_hooks (chainer.links.BatchRenormalization

attribute), 609

local_link_hooks (chainer.links.Bias attribute),
322

local_link_hooks (chainer.links.Bilinear attribute),
328

local_link_hooks (chainer.links.BinaryHierarchicalSoftmax
attribute), 635

local_link_hooks (chainer.links.BlackOut at-
tribute), 641

local_link_hooks (chainer.links.caffe.CaffeFunction
attribute), 758

local_link_hooks (chainer.links.ChildSumTreeLSTM
attribute), 335

local_link_hooks (chainer.links.Classifier at-
tribute), 688

local_link_hooks (chainer.links.Convolution1D at-
tribute), 341

local_link_hooks (chainer.links.Convolution2D at-
tribute), 349

local_link_hooks (chainer.links.Convolution3D at-
tribute), 355

local_link_hooks (chainer.links.ConvolutionND
attribute), 362

local_link_hooks (chainer.links.CRF1d attribute),
647

local_link_hooks (chainer.links.Deconvolution1D
attribute), 368

local_link_hooks (chainer.links.Deconvolution2D
attribute), 375

local_link_hooks (chainer.links.Deconvolution3D
attribute), 381

local_link_hooks (chainer.links.DeconvolutionND
attribute), 389

local_link_hooks (chainer.links.DecorrelatedBatchNormalization
attribute), 615

local_link_hooks (chainer.links.DeformableConvolution2D
attribute), 396

local_link_hooks (chainer.links.DepthwiseConvolution2D
attribute), 402

local_link_hooks (chainer.links.DilatedConvolution2D
attribute), 409

local_link_hooks (chainer.links.EmbedID at-
tribute), 416

local_link_hooks (chainer.links.GoogLeNet
attribute), 711

local_link_hooks (chainer.links.GroupNormalization
attribute), 622

local_link_hooks (chainer.links.GRU attribute),
422

local_link_hooks (chainer.links.Highway at-
tribute), 429

local_link_hooks (chainer.links.Inception at-
tribute), 435

local_link_hooks (chainer.links.InceptionBN at-
tribute), 441

Index 1363

Chainer Documentation, Release 7.0.0b4

local_link_hooks (chainer.links.LayerNormalization
attribute), 628

local_link_hooks (chainer.links.Linear attribute),
448

local_link_hooks (chainer.links.LocalConvolution2D
attribute), 455

local_link_hooks (chainer.links.LSTM attribute),
463

local_link_hooks (chainer.links.Maxout attribute),
674

local_link_hooks (chainer.links.MLPConvolution2D
attribute), 470

local_link_hooks (chainer.links.model.vision.resnet.ResNetLayers
attribute), 720

local_link_hooks (chainer.links.NaryTreeLSTM at-
tribute), 476

local_link_hooks (chainer.links.NegativeSampling
attribute), 680

local_link_hooks (chainer.links.NStepBiGRU at-
tribute), 483

local_link_hooks (chainer.links.NStepBiLSTM at-
tribute), 491

local_link_hooks (chainer.links.NStepBiRNNReLU
attribute), 498

local_link_hooks (chainer.links.NStepBiRNNTanh
attribute), 505

local_link_hooks (chainer.links.NStepGRU at-
tribute), 512

local_link_hooks (chainer.links.NStepLSTM at-
tribute), 519

local_link_hooks (chainer.links.NStepRNNReLU
attribute), 527

local_link_hooks (chainer.links.NStepRNNTanh
attribute), 534

local_link_hooks (chainer.links.Parameter at-
tribute), 540

local_link_hooks (chainer.links.PReLU attribute),
661

local_link_hooks (chainer.links.ResNet101Layers
attribute), 735

local_link_hooks (chainer.links.ResNet152Layers
attribute), 743

local_link_hooks (chainer.links.ResNet50Layers
attribute), 728

local_link_hooks (chainer.links.Scale attribute),
546

local_link_hooks (chainer.links.SimplifiedDropconnect
attribute), 654

local_link_hooks (chainer.links.StatefulGRU at-
tribute), 554

local_link_hooks (chainer.links.StatefulMGU at-
tribute), 567

local_link_hooks (chainer.links.StatefulPeepholeLSTM
attribute), 579

local_link_hooks (chainer.links.StatefulZoneoutLSTM
attribute), 586

local_link_hooks (chainer.links.StatelessGRU at-
tribute), 561

local_link_hooks (chainer.links.StatelessLSTM at-
tribute), 593

local_link_hooks (chainer.links.StatelessMGU at-
tribute), 572

local_link_hooks (chainer.links.Swish attribute),
667

local_link_hooks (chainer.links.TheanoFunction
attribute), 750

local_link_hooks (chainer.links.VGG16Layers at-
tribute), 696

local_link_hooks (chainer.links.VGG19Layers at-
tribute), 703

local_link_hooks (chainer.Sequential attribute),
787

local_response_normalization() (in module
chainer.functions), 274

LocalConfig (class in chainer.configuration), 1107
LocalConvolution2D (class in chainer.links), 449
log (chainer.training.extensions.LogReport attribute),

989
log() (in module chainer.functions), 256
log10() (in module chainer.functions), 256
log1p() (in module chainer.functions), 256
log2() (in module chainer.functions), 256
log_cdf() (chainer.Distribution method), 860
log_cdf() (chainer.distributions.Bernoulli method),

797
log_cdf() (chainer.distributions.Beta method), 800
log_cdf() (chainer.distributions.Categorical method),

803
log_cdf() (chainer.distributions.Cauchy method), 807
log_cdf() (chainer.distributions.Chisquare method),

810
log_cdf() (chainer.distributions.Dirichlet method),

813
log_cdf() (chainer.distributions.Exponential method),

816
log_cdf() (chainer.distributions.Gamma method),

819
log_cdf() (chainer.distributions.Geometric method),

822
log_cdf() (chainer.distributions.Gumbel method),

825
log_cdf() (chainer.distributions.Independent

method), 829
log_cdf() (chainer.distributions.Laplace method),

832
log_cdf() (chainer.distributions.LogNormal method),

835
log_cdf() (chainer.distributions.MultivariateNormal

1364 Index

Chainer Documentation, Release 7.0.0b4

method), 838
log_cdf() (chainer.distributions.Normal method), 842
log_cdf() (chainer.distributions.OneHotCategorical

method), 845
log_cdf() (chainer.distributions.Pareto method), 848
log_cdf() (chainer.distributions.Poisson method), 851
log_cdf() (chainer.distributions.Uniform method),

854
log_ndtr() (in module chainer.functions), 256
log_p (chainer.distributions.Categorical attribute), 805
log_p (chainer.distributions.OneHotCategorical at-

tribute), 847
log_prob() (chainer.Distribution method), 860
log_prob() (chainer.distributions.Bernoulli method),

797
log_prob() (chainer.distributions.Beta method), 800
log_prob() (chainer.distributions.Categorical

method), 803
log_prob() (chainer.distributions.Cauchy method),

807
log_prob() (chainer.distributions.Chisquare method),

810
log_prob() (chainer.distributions.Dirichlet method),

813
log_prob() (chainer.distributions.Exponential

method), 816
log_prob() (chainer.distributions.Gamma method),

819
log_prob() (chainer.distributions.Geometric method),

822
log_prob() (chainer.distributions.Gumbel method),

826
log_prob() (chainer.distributions.Independent

method), 829
log_prob() (chainer.distributions.Laplace method),

832
log_prob() (chainer.distributions.LogNormal

method), 835
log_prob() (chainer.distributions.MultivariateNormal

method), 839
log_prob() (chainer.distributions.Normal method),

842
log_prob() (chainer.distributions.OneHotCategorical

method), 845
log_prob() (chainer.distributions.Pareto method),

848
log_prob() (chainer.distributions.Poisson method),

851
log_prob() (chainer.distributions.Uniform method),

854
log_scale (chainer.distributions.Normal attribute),

844
log_softmax() (in module chainer.functions), 156
log_survival_function() (chainer.Distribution

method), 860
log_survival_function()

(chainer.distributions.Bernoulli method),
797

log_survival_function()
(chainer.distributions.Beta method), 800

log_survival_function()
(chainer.distributions.Categorical method),
804

log_survival_function()
(chainer.distributions.Cauchy method), 807

log_survival_function()
(chainer.distributions.Chisquare method),
810

log_survival_function()
(chainer.distributions.Dirichlet method),
813

log_survival_function()
(chainer.distributions.Exponential method),
816

log_survival_function()
(chainer.distributions.Gamma method), 819

log_survival_function()
(chainer.distributions.Geometric method),
822

log_survival_function()
(chainer.distributions.Gumbel method), 826

log_survival_function()
(chainer.distributions.Independent method),
829

log_survival_function()
(chainer.distributions.Laplace method), 832

log_survival_function()
(chainer.distributions.LogNormal method),
835

log_survival_function()
(chainer.distributions.MultivariateNormal
method), 839

log_survival_function()
(chainer.distributions.Normal method), 842

log_survival_function()
(chainer.distributions.OneHotCategorical
method), 845

log_survival_function()
(chainer.distributions.Pareto method), 848

log_survival_function()
(chainer.distributions.Poisson method), 851

log_survival_function()
(chainer.distributions.Uniform method),
855

logit (chainer.distributions.Bernoulli attribute), 799
LogNormal (class in chainer.distributions), 835
LogReport, 61
LogReport (class in chainer.training.extensions), 987

Index 1365

Chainer Documentation, Release 7.0.0b4

logsumexp() (in module chainer.functions), 257
longMessage (chainer.testing.FunctionTestCase at-

tribute), 1140
longMessage (chainer.testing.LinkInitializersTestCase

attribute), 1150
longMessage (chainer.testing.LinkTestCase attribute),

1159
loss_scaling() (chainer.GradientMethod method),

916
loss_scaling() (chainer.Optimizer method), 910
loss_scaling() (chainer.optimizers.AdaBound

method), 880
loss_scaling() (chainer.optimizers.AdaDelta

method), 864
loss_scaling() (chainer.optimizers.AdaGrad

method), 867
loss_scaling() (chainer.optimizers.Adam method),

870
loss_scaling() (chainer.optimizers.AdamW

method), 873
loss_scaling() (chainer.optimizers.AMSBound

method), 884
loss_scaling() (chainer.optimizers.AMSGrad

method), 877
loss_scaling() (chainer.optimizers.CorrectedMomentumSGD

method), 887
loss_scaling() (chainer.optimizers.MomentumSGD

method), 890
loss_scaling() (chainer.optimizers.MSVAG

method), 895
loss_scaling() (chainer.optimizers.NesterovAG

method), 893
loss_scaling() (chainer.optimizers.RMSprop

method), 898
loss_scaling() (chainer.optimizers.RMSpropGraves

method), 901
loss_scaling() (chainer.optimizers.SGD method),

904
loss_scaling() (chainer.optimizers.SMORMS3

method), 907
low (chainer.distributions.Uniform attribute), 856
lr (chainer.optimizers.AdaBound attribute), 882
lr (chainer.optimizers.AdaGrad attribute), 868
lr (chainer.optimizers.Adam attribute), 872
lr (chainer.optimizers.AdamW attribute), 875
lr (chainer.optimizers.AMSBound attribute), 886
lr (chainer.optimizers.AMSGrad attribute), 879
lr (chainer.optimizers.CorrectedMomentumSGD at-

tribute), 889
lr (chainer.optimizers.MomentumSGD attribute), 891
lr (chainer.optimizers.MSVAG attribute), 897
lr (chainer.optimizers.NesterovAG attribute), 894
lr (chainer.optimizers.RMSprop attribute), 900
lr (chainer.optimizers.RMSpropGraves attribute), 903

lr (chainer.optimizers.SGD attribute), 906
lr (chainer.optimizers.SMORMS3 attribute), 909
LSTM (class in chainer.links), 455
lstm() (in module chainer.functions), 156

M
make_extension() (in module chainer.training), 960
make_statistics() (chainer.DictSummary

method), 1098
make_statistics() (chainer.Summary method),

1097
ManualScheduleTrigger (class in

chainer.training.triggers), 1004
matmul() (in module chainer.functions), 257
max() (in module chainer.functions), 258
max_pooling_1d() (in module chainer.functions),

277
max_pooling_2d() (in module chainer.functions),

278
max_pooling_3d() (in module chainer.functions),

278
max_pooling_nd() (in module chainer.functions),

278
maxDiff (chainer.testing.FunctionTestCase attribute),

1140
maxDiff (chainer.testing.LinkInitializersTestCase at-

tribute), 1150
maxDiff (chainer.testing.LinkTestCase attribute), 1159
maximum() (in module chainer.functions), 258
Maxout (class in chainer.links), 668
maxout() (in module chainer.functions), 158
MaxValueTrigger (class in

chainer.training.triggers), 1005
mean (chainer.Distribution attribute), 862
mean (chainer.distributions.Bernoulli attribute), 799
mean (chainer.distributions.Beta attribute), 802
mean (chainer.distributions.Categorical attribute), 805
mean (chainer.distributions.Cauchy attribute), 809
mean (chainer.distributions.Chisquare attribute), 812
mean (chainer.distributions.Dirichlet attribute), 815
mean (chainer.distributions.Exponential attribute), 818
mean (chainer.distributions.Gamma attribute), 821
mean (chainer.distributions.Geometric attribute), 824
mean (chainer.distributions.Gumbel attribute), 827
mean (chainer.distributions.Independent attribute), 831
mean (chainer.distributions.Laplace attribute), 834
mean (chainer.distributions.LogNormal attribute), 837
mean (chainer.distributions.MultivariateNormal at-

tribute), 840
mean (chainer.distributions.Normal attribute), 844
mean (chainer.distributions.OneHotCategorical at-

tribute), 847
mean (chainer.distributions.Pareto attribute), 850
mean (chainer.distributions.Poisson attribute), 853

1366 Index

Chainer Documentation, Release 7.0.0b4

mean (chainer.distributions.Uniform attribute), 856
mean() (chainer.Parameter method), 143
mean() (chainer.Variable method), 134
mean() (in module chainer.functions), 259
mean_absolute_error() (in module

chainer.functions), 237
mean_squared_error() (in module

chainer.functions), 237
memoize() (in module chainer.backends.cuda), 1087
MicroAverage (class in chainer.training.extensions),

964
min() (in module chainer.functions), 259
minimum() (in module chainer.functions), 259
MinValueTrigger (class in

chainer.training.triggers), 1006
mixed16 (in module chainer), 1109
MLPConvolution2D (class in chainer.links), 463
mode (chainer.dataset.tabular.DelegateDataset at-

tribute), 1018
mode (chainer.dataset.TabularDataset attribute), 1014
mode (chainer.Distribution attribute), 862
mode (chainer.distributions.Bernoulli attribute), 799
mode (chainer.distributions.Beta attribute), 802
mode (chainer.distributions.Categorical attribute), 805
mode (chainer.distributions.Cauchy attribute), 809
mode (chainer.distributions.Chisquare attribute), 812
mode (chainer.distributions.Dirichlet attribute), 815
mode (chainer.distributions.Exponential attribute), 818
mode (chainer.distributions.Gamma attribute), 821
mode (chainer.distributions.Geometric attribute), 824
mode (chainer.distributions.Gumbel attribute), 827
mode (chainer.distributions.Independent attribute), 831
mode (chainer.distributions.Laplace attribute), 834
mode (chainer.distributions.LogNormal attribute), 837
mode (chainer.distributions.MultivariateNormal at-

tribute), 840
mode (chainer.distributions.Normal attribute), 844
mode (chainer.distributions.OneHotCategorical at-

tribute), 847
mode (chainer.distributions.Pareto attribute), 850
mode (chainer.distributions.Poisson attribute), 853
mode (chainer.distributions.Uniform attribute), 856
momentum (chainer.optimizers.CorrectedMomentumSGD

attribute), 889
momentum (chainer.optimizers.MomentumSGD at-

tribute), 892
momentum (chainer.optimizers.NesterovAG attribute),

894
momentum (chainer.optimizers.RMSpropGraves at-

tribute), 903
MomentumSGD (class in chainer.optimizers), 889
moveaxis() (in module chainer.functions), 180
MSVAG (class in chainer.optimizers), 895
mu (chainer.distributions.LogNormal attribute), 837

multi_gpu() (in module chainer.testing.attr), 1161
multi_node_mean_grad() (chain-

ermn.CommunicatorBase method), 1220
multi_node_snapshot() (in module chain-

ermn.extensions), 1234
MultiNodeBatchNormalization (class in chain-

ermn.links), 1228
MultiNodeChainList (class in chainermn), 1225
MultiprocessIterator (class in chainer.iterators),

1056
MultiprocessParallelUpdater (class in

chainer.training.updaters), 956
MultistepShift (class in

chainer.training.extensions), 976
MultithreadIterator (class in chainer.iterators),

1058
MultivariateNormal (class in

chainer.distributions), 838
MultiZippedImageDataset (class in

chainer.datasets), 1038
MV2_SMP_USE_CMA, 1189, 1192
MV2_USE_CUDA, 1189, 1192

N
n_cells (chainer.links.NStepBiGRU attribute), 483
n_cells (chainer.links.NStepBiLSTM attribute), 491
n_cells (chainer.links.NStepBiRNNReLU attribute),

498
n_cells (chainer.links.NStepBiRNNTanh attribute),

505
n_cells (chainer.links.NStepGRU attribute), 512
n_cells (chainer.links.NStepLSTM attribute), 520
n_cells (chainer.links.NStepRNNReLU attribute), 527
n_cells (chainer.links.NStepRNNTanh attribute), 534
n_step_bigru() (in module chainer.functions), 212
n_step_bilstm() (in module chainer.functions), 214
n_step_birnn() (in module chainer.functions), 216
n_step_gru() (in module chainer.functions), 218
n_step_lstm() (in module chainer.functions), 219
n_step_rnn() (in module chainer.functions), 220
n_weights (chainer.links.NStepBiGRU attribute), 484
n_weights (chainer.links.NStepBiLSTM attribute), 491
n_weights (chainer.links.NStepBiRNNReLU at-

tribute), 498
n_weights (chainer.links.NStepBiRNNTanh attribute),

505
n_weights (chainer.links.NStepGRU attribute), 512
n_weights (chainer.links.NStepLSTM attribute), 520
n_weights (chainer.links.NStepRNNReLU attribute),

527
n_weights (chainer.links.NStepRNNTanh attribute),

534
name (chainer.backend.ChainerxDevice attribute), 1084
name (chainer.backend.CpuDevice attribute), 1080

Index 1367

Chainer Documentation, Release 7.0.0b4

name (chainer.backend.Device attribute), 1075
name (chainer.backend.GpuDevice attribute), 1081
name (chainer.backend.Intel64Device attribute), 1082
name (chainer.function_hooks.CUDAProfileHook at-

tribute), 306
name (chainer.function_hooks.CupyMemoryProfileHook

attribute), 308
name (chainer.function_hooks.PrintHook attribute), 310
name (chainer.function_hooks.TimerHook attribute), 312
name (chainer.FunctionHook attribute), 315
name (chainer.link_hooks.SpectralNormalization at-

tribute), 790
name (chainer.link_hooks.TimerHook attribute), 792
name (chainer.link_hooks.WeightStandardization at-

tribute), 793
name (chainer.LinkHook attribute), 796
name (chainer.optimizer_hooks.GradientClipping

attribute), 921
name (chainer.optimizer_hooks.GradientHardClipping

attribute), 922
name (chainer.optimizer_hooks.GradientLARS at-

tribute), 925
name (chainer.optimizer_hooks.GradientNoise at-

tribute), 923
name (chainer.optimizer_hooks.Lasso attribute), 920
name (chainer.optimizer_hooks.WeightDecay attribute),

919
name (chainer.Parameter attribute), 148
name (chainer.training.Extension attribute), 960
name (chainer.training.extensions.DumpGraph at-

tribute), 996
name (chainer.training.extensions.Evaluator attribute),

964
name (chainer.training.extensions.ExponentialShift at-

tribute), 973
name (chainer.training.extensions.FailOnNonNumber at-

tribute), 967
name (chainer.training.extensions.InverseShift attribute),

974
name (chainer.training.extensions.LinearShift attribute),

976
name (chainer.training.extensions.LogReport attribute),

989
name (chainer.training.extensions.MicroAverage at-

tribute), 966
name (chainer.training.extensions.MultistepShift at-

tribute), 978
name (chainer.training.extensions.ParameterStatistics

attribute), 970
name (chainer.training.extensions.PlotReport attribute),

991
name (chainer.training.extensions.PolynomialShift at-

tribute), 980
name (chainer.training.extensions.PrintReport attribute),

985
name (chainer.training.extensions.ProgressBar at-

tribute), 987
name (chainer.training.extensions.StepShift attribute),

983
name (chainer.training.extensions.unchain_variables at-

tribute), 1000
name (chainer.training.extensions.VariableStatisticsPlot

attribute), 994
name (chainer.training.extensions.WarmupShift at-

tribute), 982
name (chainer.Variable attribute), 139
namedlinks() (chainer.Chain method), 769
namedlinks() (chainer.ChainList method), 775
namedlinks() (chainer.Link method), 762
namedlinks() (chainer.links.BatchNormalization

method), 599
namedlinks() (chainer.links.BatchRenormalization

method), 606
namedlinks() (chainer.links.Bias method), 319
namedlinks() (chainer.links.Bilinear method), 326
namedlinks() (chainer.links.BinaryHierarchicalSoftmax

method), 632
namedlinks() (chainer.links.BlackOut method), 638
namedlinks() (chainer.links.caffe.CaffeFunction

method), 755
namedlinks() (chainer.links.ChildSumTreeLSTM

method), 332
namedlinks() (chainer.links.Classifier method), 685
namedlinks() (chainer.links.Convolution1D method),

338
namedlinks() (chainer.links.Convolution2D method),

346
namedlinks() (chainer.links.Convolution3D method),

352
namedlinks() (chainer.links.ConvolutionND

method), 360
namedlinks() (chainer.links.CRF1d method), 645
namedlinks() (chainer.links.Deconvolution1D

method), 365
namedlinks() (chainer.links.Deconvolution2D

method), 373
namedlinks() (chainer.links.Deconvolution3D

method), 379
namedlinks() (chainer.links.DeconvolutionND

method), 386
namedlinks() (chainer.links.DecorrelatedBatchNormalization

method), 613
namedlinks() (chainer.links.DeformableConvolution2D

method), 393
namedlinks() (chainer.links.DepthwiseConvolution2D

method), 400
namedlinks() (chainer.links.DilatedConvolution2D

method), 407

1368 Index

Chainer Documentation, Release 7.0.0b4

namedlinks() (chainer.links.EmbedID method), 413
namedlinks() (chainer.links.GoogLeNet method),

709
namedlinks() (chainer.links.GroupNormalization

method), 619
namedlinks() (chainer.links.GRU method), 419
namedlinks() (chainer.links.Highway method), 426
namedlinks() (chainer.links.Inception method), 433
namedlinks() (chainer.links.InceptionBN method),

439
namedlinks() (chainer.links.LayerNormalization

method), 626
namedlinks() (chainer.links.Linear method), 446
namedlinks() (chainer.links.LocalConvolution2D

method), 452
namedlinks() (chainer.links.LSTM method), 460
namedlinks() (chainer.links.Maxout method), 672
namedlinks() (chainer.links.MLPConvolution2D

method), 467
namedlinks() (chainer.links.model.vision.resnet.ResNetLayers

method), 717
namedlinks() (chainer.links.NaryTreeLSTM method),

474
namedlinks() (chainer.links.NegativeSampling

method), 678
namedlinks() (chainer.links.NStepBiGRU method),

481
namedlinks() (chainer.links.NStepBiLSTM method),

488
namedlinks() (chainer.links.NStepBiRNNReLU

method), 495
namedlinks() (chainer.links.NStepBiRNNTanh

method), 502
namedlinks() (chainer.links.NStepGRU method), 509
namedlinks() (chainer.links.NStepLSTM method),

517
namedlinks() (chainer.links.NStepRNNReLU

method), 524
namedlinks() (chainer.links.NStepRNNTanh

method), 531
namedlinks() (chainer.links.Parameter method), 537
namedlinks() (chainer.links.PReLU method), 658
namedlinks() (chainer.links.ResNet101Layers

method), 732
namedlinks() (chainer.links.ResNet152Layers

method), 740
namedlinks() (chainer.links.ResNet50Layers

method), 725
namedlinks() (chainer.links.Scale method), 544
namedlinks() (chainer.links.SimplifiedDropconnect

method), 652
namedlinks() (chainer.links.StatefulGRU method),

551
namedlinks() (chainer.links.StatefulMGU method),

564
namedlinks() (chainer.links.StatefulPeepholeLSTM

method), 577
namedlinks() (chainer.links.StatefulZoneoutLSTM

method), 583
namedlinks() (chainer.links.StatelessGRU method),

558
namedlinks() (chainer.links.StatelessLSTM method),

590
namedlinks() (chainer.links.StatelessMGU method),

570
namedlinks() (chainer.links.Swish method), 665
namedlinks() (chainer.links.TheanoFunction

method), 748
namedlinks() (chainer.links.VGG16Layers method),

693
namedlinks() (chainer.links.VGG19Layers method),

700
namedlinks() (chainer.Sequential method), 784
namedparams() (chainer.Chain method), 769
namedparams() (chainer.ChainList method), 775
namedparams() (chainer.Link method), 762
namedparams() (chainer.links.BatchNormalization

method), 600
namedparams() (chainer.links.BatchRenormalization

method), 606
namedparams() (chainer.links.Bias method), 319
namedparams() (chainer.links.Bilinear method), 326
namedparams() (chainer.links.BinaryHierarchicalSoftmax

method), 632
namedparams() (chainer.links.BlackOut method), 639
namedparams() (chainer.links.caffe.CaffeFunction

method), 755
namedparams() (chainer.links.ChildSumTreeLSTM

method), 333
namedparams() (chainer.links.Classifier method), 685
namedparams() (chainer.links.Convolution1D

method), 339
namedparams() (chainer.links.Convolution2D

method), 346
namedparams() (chainer.links.Convolution3D

method), 352
namedparams() (chainer.links.ConvolutionND

method), 360
namedparams() (chainer.links.CRF1d method), 645
namedparams() (chainer.links.Deconvolution1D

method), 365
namedparams() (chainer.links.Deconvolution2D

method), 373
namedparams() (chainer.links.Deconvolution3D

method), 379
namedparams() (chainer.links.DeconvolutionND

method), 386
namedparams() (chainer.links.DecorrelatedBatchNormalization

Index 1369

Chainer Documentation, Release 7.0.0b4

method), 613
namedparams() (chainer.links.DeformableConvolution2D

method), 393
namedparams() (chainer.links.DepthwiseConvolution2D

method), 400
namedparams() (chainer.links.DilatedConvolution2D

method), 407
namedparams() (chainer.links.EmbedID method), 414
namedparams() (chainer.links.GoogLeNet method),

709
namedparams() (chainer.links.GroupNormalization

method), 619
namedparams() (chainer.links.GRU method), 420
namedparams() (chainer.links.Highway method), 426
namedparams() (chainer.links.Inception method), 433
namedparams() (chainer.links.InceptionBN method),

439
namedparams() (chainer.links.LayerNormalization

method), 626
namedparams() (chainer.links.Linear method), 446
namedparams() (chainer.links.LocalConvolution2D

method), 453
namedparams() (chainer.links.LSTM method), 460
namedparams() (chainer.links.Maxout method), 672
namedparams() (chainer.links.MLPConvolution2D

method), 467
namedparams() (chainer.links.model.vision.resnet.ResNetLayers

method), 717
namedparams() (chainer.links.NaryTreeLSTM

method), 474
namedparams() (chainer.links.NegativeSampling

method), 678
namedparams() (chainer.links.NStepBiGRU method),

481
namedparams() (chainer.links.NStepBiLSTM

method), 488
namedparams() (chainer.links.NStepBiRNNReLU

method), 495
namedparams() (chainer.links.NStepBiRNNTanh

method), 502
namedparams() (chainer.links.NStepGRU method),

510
namedparams() (chainer.links.NStepLSTM method),

517
namedparams() (chainer.links.NStepRNNReLU

method), 524
namedparams() (chainer.links.NStepRNNTanh

method), 531
namedparams() (chainer.links.Parameter method),

537
namedparams() (chainer.links.PReLU method), 658
namedparams() (chainer.links.ResNet101Layers

method), 732
namedparams() (chainer.links.ResNet152Layers

method), 740
namedparams() (chainer.links.ResNet50Layers

method), 725
namedparams() (chainer.links.Scale method), 544
namedparams() (chainer.links.SimplifiedDropconnect

method), 652
namedparams() (chainer.links.StatefulGRU method),

551
namedparams() (chainer.links.StatefulMGU method),

564
namedparams() (chainer.links.StatefulPeepholeLSTM

method), 577
namedparams() (chainer.links.StatefulZoneoutLSTM

method), 583
namedparams() (chainer.links.StatelessGRU method),

558
namedparams() (chainer.links.StatelessLSTM

method), 590
namedparams() (chainer.links.StatelessMGU

method), 570
namedparams() (chainer.links.Swish method), 665
namedparams() (chainer.links.TheanoFunction

method), 748
namedparams() (chainer.links.VGG16Layers

method), 693
namedparams() (chainer.links.VGG19Layers

method), 700
namedparams() (chainer.Sequential method), 784
NaN (class in chainer.initializers), 929
NaryTreeLSTM (class in chainer.links), 470
ndarray (class in chainerx), 1173
ndim (chainer.Parameter attribute), 148
ndim (chainer.Variable attribute), 139
ndtr() (in module chainer.functions), 259
ndtri() (in module chainer.functions), 260
negative_sampling() (in module

chainer.functions), 238
NegativeSampling (class in chainer.links), 675
NesterovAG (class in chainer.optimizers), 892
new_epoch() (chainer.GradientMethod method), 916
new_epoch() (chainer.Optimizer method), 910
new_epoch() (chainer.optimizers.AdaBound method),

880
new_epoch() (chainer.optimizers.AdaDelta method),

864
new_epoch() (chainer.optimizers.AdaGrad method),

867
new_epoch() (chainer.optimizers.Adam method), 870
new_epoch() (chainer.optimizers.AdamW method),

874
new_epoch() (chainer.optimizers.AMSBound

method), 884
new_epoch() (chainer.optimizers.AMSGrad method),

877

1370 Index

Chainer Documentation, Release 7.0.0b4

new_epoch() (chainer.optimizers.CorrectedMomentumSGD
method), 887

new_epoch() (chainer.optimizers.MomentumSGD
method), 890

new_epoch() (chainer.optimizers.MSVAG method),
896

new_epoch() (chainer.optimizers.NesterovAG
method), 893

new_epoch() (chainer.optimizers.RMSprop method),
899

new_epoch() (chainer.optimizers.RMSpropGraves
method), 902

new_epoch() (chainer.optimizers.SGD method), 904
new_epoch() (chainer.optimizers.SMORMS3 method),

907
next() (chainer.dataset.Iterator method), 1020
next() (chainer.iterators.DaliIterator method), 1060
next() (chainer.iterators.MultiprocessIterator

method), 1057
next() (chainer.iterators.MultithreadIterator method),

1059
next() (chainer.iterators.SerialIterator method), 1055
no_backprop_mode() (in module chainer), 303
node (chainer.Function attribute), 291
node (chainer.Parameter attribute), 148
node (chainer.Variable attribute), 139
Normal (class in chainer.distributions), 841
Normal (class in chainer.initializers), 930
normalize() (in module chainer.functions), 275
normalize_weight()

(chainer.link_hooks.SpectralNormalization
method), 789

NpzDeserializer (class in chainer.serializers), 1065
NStepBiGRU (class in chainer.links), 477
NStepBiLSTM (class in chainer.links), 484
NStepBiRNNReLU (class in chainer.links), 491
NStepBiRNNTanh (class in chainer.links), 498
NStepGRU (class in chainer.links), 506
NStepLSTM (class in chainer.links), 513
NStepRNNReLU (class in chainer.links), 520
NStepRNNTanh (class in chainer.links), 527
numerical_grad() (in module

chainer.gradient_check), 1131

O
observe_lr() (in module

chainer.training.extensions), 970
observe_value() (in module

chainer.training.extensions), 970
on_error() (chainer.training.Extension method), 959
on_error() (chainer.training.extensions.DumpGraph

method), 995
on_error() (chainer.training.extensions.Evaluator

method), 963

on_error() (chainer.training.extensions.ExponentialShift
method), 972

on_error() (chainer.training.extensions.FailOnNonNumber
method), 967

on_error() (chainer.training.extensions.InverseShift
method), 974

on_error() (chainer.training.extensions.LinearShift
method), 975

on_error() (chainer.training.extensions.LogReport
method), 988

on_error() (chainer.training.extensions.MicroAverage
method), 965

on_error() (chainer.training.extensions.MultistepShift
method), 977

on_error() (chainer.training.extensions.ParameterStatistics
method), 969

on_error() (chainer.training.extensions.PlotReport
method), 991

on_error() (chainer.training.extensions.PolynomialShift
method), 979

on_error() (chainer.training.extensions.PrintReport
method), 985

on_error() (chainer.training.extensions.ProgressBar
method), 986

on_error() (chainer.training.extensions.StepShift
method), 983

on_error() (chainer.training.extensions.unchain_variables
method), 999

on_error() (chainer.training.extensions.VariableStatisticsPlot
method), 993

on_error() (chainer.training.extensions.WarmupShift
method), 981

OnceTrigger (class in chainer.training.triggers), 1007
One (class in chainer.initializers), 928
OneHotCategorical (class in chainer.distributions),

844
onnx_chainer (module), 1243
open_pickle_dataset() (in module

chainer.datasets), 1047
open_pickle_dataset_writer() (in module

chainer.datasets), 1048
Optimizer (class in chainer), 909
OrderSampler (class in chainer.iterators), 1061
Orthogonal (class in chainer.initializers), 933
output_data (chainer.Function attribute), 291
output_data (chainer.FunctionAdapter attribute),

296
output_data (chainer.FunctionNode attribute), 302
outputs (chainer.Function attribute), 291
outputs (chainer.FunctionAdapter attribute), 296
outputs (chainer.FunctionNode attribute), 302

P
p (chainer.distributions.Bernoulli attribute), 799

Index 1371

Chainer Documentation, Release 7.0.0b4

p (chainer.distributions.Categorical attribute), 805
p (chainer.distributions.Geometric attribute), 824
p (chainer.distributions.OneHotCategorical attribute),

847
pad() (in module chainer.functions), 180
pad_sequence() (in module chainer.functions), 181
ParallelUpdater (class in

chainer.training.updaters), 954
param_names (chainer.testing.LinkInitializersTestCase

attribute), 1150
param_names (chainer.testing.LinkTestCase attribute),

1159
Parameter (class in chainer), 140
Parameter (class in chainer.links), 534
parameterize() (in module chainer.testing), 1162
ParameterStatistics (class in

chainer.training.extensions), 968
params (chainer.Distribution attribute), 862
params (chainer.distributions.Bernoulli attribute), 799
params (chainer.distributions.Beta attribute), 802
params (chainer.distributions.Categorical attribute),

805
params (chainer.distributions.Cauchy attribute), 809
params (chainer.distributions.Chisquare attribute), 812
params (chainer.distributions.Dirichlet attribute), 815
params (chainer.distributions.Exponential attribute),

818
params (chainer.distributions.Gamma attribute), 821
params (chainer.distributions.Geometric attribute), 824
params (chainer.distributions.Gumbel attribute), 827
params (chainer.distributions.Independent attribute),

831
params (chainer.distributions.Laplace attribute), 834
params (chainer.distributions.LogNormal attribute),

837
params (chainer.distributions.MultivariateNormal at-

tribute), 840
params (chainer.distributions.Normal attribute), 844
params (chainer.distributions.OneHotCategorical at-

tribute), 847
params (chainer.distributions.Pareto attribute), 850
params (chainer.distributions.Poisson attribute), 853
params (chainer.distributions.Uniform attribute), 856
params() (chainer.Chain method), 769
params() (chainer.ChainList method), 775
params() (chainer.Link method), 762
params() (chainer.links.BatchNormalization method),

600
params() (chainer.links.BatchRenormalization

method), 606
params() (chainer.links.Bias method), 320
params() (chainer.links.Bilinear method), 326
params() (chainer.links.BinaryHierarchicalSoftmax

method), 633

params() (chainer.links.BlackOut method), 639
params() (chainer.links.caffe.CaffeFunction method),

755
params() (chainer.links.ChildSumTreeLSTM method),

333
params() (chainer.links.Classifier method), 685
params() (chainer.links.Convolution1D method), 339
params() (chainer.links.Convolution2D method), 346
params() (chainer.links.Convolution3D method), 352
params() (chainer.links.ConvolutionND method), 360
params() (chainer.links.CRF1d method), 645
params() (chainer.links.Deconvolution1D method),

366
params() (chainer.links.Deconvolution2D method),

373
params() (chainer.links.Deconvolution3D method),

379
params() (chainer.links.DeconvolutionND method),

386
params() (chainer.links.DecorrelatedBatchNormalization

method), 613
params() (chainer.links.DeformableConvolution2D

method), 393
params() (chainer.links.DepthwiseConvolution2D

method), 400
params() (chainer.links.DilatedConvolution2D

method), 407
params() (chainer.links.EmbedID method), 414
params() (chainer.links.GoogLeNet method), 709
params() (chainer.links.GroupNormalization method),

620
params() (chainer.links.GRU method), 420
params() (chainer.links.Highway method), 426
params() (chainer.links.Inception method), 433
params() (chainer.links.InceptionBN method), 439
params() (chainer.links.LayerNormalization method),

626
params() (chainer.links.Linear method), 446
params() (chainer.links.LocalConvolution2D method),

453
params() (chainer.links.LSTM method), 460
params() (chainer.links.Maxout method), 672
params() (chainer.links.MLPConvolution2D method),

467
params() (chainer.links.model.vision.resnet.ResNetLayers

method), 717
params() (chainer.links.NaryTreeLSTM method), 474
params() (chainer.links.NegativeSampling method),

678
params() (chainer.links.NStepBiGRU method), 481
params() (chainer.links.NStepBiLSTM method), 488
params() (chainer.links.NStepBiRNNReLU method),

495
params() (chainer.links.NStepBiRNNTanh method),

1372 Index

Chainer Documentation, Release 7.0.0b4

502
params() (chainer.links.NStepGRU method), 510
params() (chainer.links.NStepLSTM method), 517
params() (chainer.links.NStepRNNReLU method), 524
params() (chainer.links.NStepRNNTanh method), 531
params() (chainer.links.Parameter method), 538
params() (chainer.links.PReLU method), 658
params() (chainer.links.ResNet101Layers method),

732
params() (chainer.links.ResNet152Layers method),

740
params() (chainer.links.ResNet50Layers method), 725
params() (chainer.links.Scale method), 544
params() (chainer.links.SimplifiedDropconnect

method), 652
params() (chainer.links.StatefulGRU method), 551
params() (chainer.links.StatefulMGU method), 564
params() (chainer.links.StatefulPeepholeLSTM

method), 577
params() (chainer.links.StatefulZoneoutLSTM

method), 583
params() (chainer.links.StatelessGRU method), 558
params() (chainer.links.StatelessLSTM method), 590
params() (chainer.links.StatelessMGU method), 570
params() (chainer.links.Swish method), 665
params() (chainer.links.TheanoFunction method), 748
params() (chainer.links.VGG16Layers method), 693
params() (chainer.links.VGG19Layers method), 701
params() (chainer.Sequential method), 784
parent (chainer.optimizer.Hyperparameter attribute),

915
Pareto (class in chainer.distributions), 847
PATH, 1189
permutate() (in module chainer.functions), 181
perplexity() (chainer.Distribution method), 860
perplexity() (chainer.distributions.Bernoulli

method), 797
perplexity() (chainer.distributions.Beta method),

801
perplexity() (chainer.distributions.Categorical

method), 804
perplexity() (chainer.distributions.Cauchy method),

807
perplexity() (chainer.distributions.Chisquare

method), 810
perplexity() (chainer.distributions.Dirichlet

method), 813
perplexity() (chainer.distributions.Exponential

method), 816
perplexity() (chainer.distributions.Gamma

method), 820
perplexity() (chainer.distributions.Geometric

method), 823
perplexity() (chainer.distributions.Gumbel

method), 826
perplexity() (chainer.distributions.Independent

method), 829
perplexity() (chainer.distributions.Laplace

method), 833
perplexity() (chainer.distributions.LogNormal

method), 836
perplexity() (chainer.distributions.MultivariateNormal

method), 839
perplexity() (chainer.distributions.Normal

method), 842
perplexity() (chainer.distributions.OneHotCategorical

method), 845
perplexity() (chainer.distributions.Pareto method),

848
perplexity() (chainer.distributions.Poisson

method), 851
perplexity() (chainer.distributions.Uniform

method), 855
PickleDataset (class in chainer.datasets), 1045
PickleDatasetWriter (class in chainer.datasets),

1047
PlotReport, 62
PlotReport (class in chainer.training.extensions), 989
Poisson (class in chainer.distributions), 851
polygamma() (in module chainer.functions), 260
PolynomialShift (class in

chainer.training.extensions), 978
pop() (chainer.ChainList method), 776
pop() (chainer.links.MLPConvolution2D method), 467
pop() (chainer.links.NStepBiGRU method), 481
pop() (chainer.links.NStepBiLSTM method), 488
pop() (chainer.links.NStepBiRNNReLU method), 495
pop() (chainer.links.NStepBiRNNTanh method), 503
pop() (chainer.links.NStepGRU method), 510
pop() (chainer.links.NStepLSTM method), 517
pop() (chainer.links.NStepRNNReLU method), 524
pop() (chainer.links.NStepRNNTanh method), 531
pop() (chainer.Sequential method), 784
precision() (in module chainer.functions), 224
predict() (chainer.links.GoogLeNet method), 709
predict() (chainer.links.model.vision.resnet.ResNetLayers

method), 717
predict() (chainer.links.ResNet101Layers method),

733
predict() (chainer.links.ResNet152Layers method),

740
predict() (chainer.links.ResNet50Layers method),

725
predict() (chainer.links.VGG16Layers method), 693
predict() (chainer.links.VGG19Layers method), 701
PReLU (class in chainer.links), 655
prelu() (in module chainer.functions), 159
prepare() (in module

Index 1373

Chainer Documentation, Release 7.0.0b4

chainer.links.model.vision.googlenet), 712
prepare() (in module

chainer.links.model.vision.resnet), 743
prepare() (in module chainer.links.model.vision.vgg),

704
previous_epoch_detail

(chainer.iterators.DaliIterator attribute),
1061

previous_epoch_detail
(chainer.iterators.MultiprocessIterator at-
tribute), 1058

previous_epoch_detail
(chainer.iterators.MultithreadIterator at-
tribute), 1059

previous_epoch_detail
(chainer.iterators.SerialIterator attribute),
1055

previous_epoch_detail
(chainer.training.updaters.MultiprocessParallelUpdater
attribute), 958

previous_epoch_detail
(chainer.training.updaters.ParallelUpdater
attribute), 956

previous_epoch_detail
(chainer.training.updaters.StandardUpdater
attribute), 954

print_report() (chainer.function_hooks.CupyMemoryProfileHook
method), 307

print_report() (chainer.function_hooks.TimerHook
method), 312

print_report() (chainer.link_hooks.TimerHook
method), 791

print_runtime_info() (in module chainer), 1093
printable_specs (chainer.Chain attribute), 772
printable_specs (chainer.ChainList attribute), 778
printable_specs (chainer.Link attribute), 765
printable_specs (chainer.links.BatchNormalization

attribute), 602
printable_specs (chainer.links.BatchRenormalization

attribute), 609
printable_specs (chainer.links.Bias attribute), 322
printable_specs (chainer.links.Bilinear attribute),

329
printable_specs (chainer.links.BinaryHierarchicalSoftmax

attribute), 635
printable_specs (chainer.links.BlackOut attribute),

641
printable_specs (chainer.links.caffe.CaffeFunction

attribute), 758
printable_specs (chainer.links.ChildSumTreeLSTM

attribute), 335
printable_specs (chainer.links.Classifier attribute),

688
printable_specs (chainer.links.Convolution1D at-

tribute), 341
printable_specs (chainer.links.Convolution2D at-

tribute), 349
printable_specs (chainer.links.Convolution3D at-

tribute), 355
printable_specs (chainer.links.ConvolutionND at-

tribute), 362
printable_specs (chainer.links.CRF1d attribute),

648
printable_specs (chainer.links.Deconvolution1D

attribute), 368
printable_specs (chainer.links.Deconvolution2D

attribute), 376
printable_specs (chainer.links.Deconvolution3D

attribute), 381
printable_specs (chainer.links.DeconvolutionND

attribute), 389
printable_specs (chainer.links.DecorrelatedBatchNormalization

attribute), 615
printable_specs (chainer.links.DeformableConvolution2D

attribute), 396
printable_specs (chainer.links.DepthwiseConvolution2D

attribute), 402
printable_specs (chainer.links.DilatedConvolution2D

attribute), 410
printable_specs (chainer.links.EmbedID attribute),

416
printable_specs (chainer.links.GoogLeNet at-

tribute), 712
printable_specs (chainer.links.GroupNormalization

attribute), 622
printable_specs (chainer.links.GRU attribute), 422
printable_specs (chainer.links.Highway attribute),

429
printable_specs (chainer.links.Inception attribute),

435
printable_specs (chainer.links.InceptionBN at-

tribute), 442
printable_specs (chainer.links.LayerNormalization

attribute), 628
printable_specs (chainer.links.Linear attribute),

449
printable_specs (chainer.links.LocalConvolution2D

attribute), 455
printable_specs (chainer.links.LSTM attribute),

463
printable_specs (chainer.links.Maxout attribute),

674
printable_specs (chainer.links.MLPConvolution2D

attribute), 470
printable_specs (chainer.links.model.vision.resnet.ResNetLayers

attribute), 720
printable_specs (chainer.links.NaryTreeLSTM at-

tribute), 476

1374 Index

Chainer Documentation, Release 7.0.0b4

printable_specs (chainer.links.NegativeSampling
attribute), 681

printable_specs (chainer.links.NStepBiGRU
attribute), 484

printable_specs (chainer.links.NStepBiLSTM at-
tribute), 491

printable_specs (chainer.links.NStepBiRNNReLU
attribute), 498

printable_specs (chainer.links.NStepBiRNNTanh
attribute), 505

printable_specs (chainer.links.NStepGRU at-
tribute), 512

printable_specs (chainer.links.NStepLSTM at-
tribute), 520

printable_specs (chainer.links.NStepRNNReLU at-
tribute), 527

printable_specs (chainer.links.NStepRNNTanh at-
tribute), 534

printable_specs (chainer.links.Parameter at-
tribute), 540

printable_specs (chainer.links.PReLU attribute),
661

printable_specs (chainer.links.ResNet101Layers
attribute), 735

printable_specs (chainer.links.ResNet152Layers
attribute), 743

printable_specs (chainer.links.ResNet50Layers at-
tribute), 728

printable_specs (chainer.links.Scale attribute), 546
printable_specs (chainer.links.SimplifiedDropconnect

attribute), 654
printable_specs (chainer.links.StatefulGRU at-

tribute), 554
printable_specs (chainer.links.StatefulMGU

attribute), 567
printable_specs (chainer.links.StatefulPeepholeLSTM

attribute), 579
printable_specs (chainer.links.StatefulZoneoutLSTM

attribute), 586
printable_specs (chainer.links.StatelessGRU at-

tribute), 561
printable_specs (chainer.links.StatelessLSTM at-

tribute), 593
printable_specs (chainer.links.StatelessMGU at-

tribute), 573
printable_specs (chainer.links.Swish attribute),

668
printable_specs (chainer.links.TheanoFunction at-

tribute), 751
printable_specs (chainer.links.VGG16Layers at-

tribute), 696
printable_specs (chainer.links.VGG19Layers at-

tribute), 703
printable_specs (chainer.Sequential attribute), 787

PrintHook (class in chainer.function_hooks), 308
PrintReport, 62
PrintReport (class in chainer.training.extensions),

984
priority (chainer.training.Extension attribute), 960
priority (chainer.training.extensions.DumpGraph at-

tribute), 996
priority (chainer.training.extensions.Evaluator at-

tribute), 964
priority (chainer.training.extensions.ExponentialShift

attribute), 973
priority (chainer.training.extensions.FailOnNonNumber

attribute), 967
priority (chainer.training.extensions.InverseShift at-

tribute), 974
priority (chainer.training.extensions.LinearShift at-

tribute), 976
priority (chainer.training.extensions.LogReport at-

tribute), 989
priority (chainer.training.extensions.MicroAverage

attribute), 966
priority (chainer.training.extensions.MultistepShift

attribute), 978
priority (chainer.training.extensions.ParameterStatistics

attribute), 970
priority (chainer.training.extensions.PlotReport at-

tribute), 991
priority (chainer.training.extensions.PolynomialShift

attribute), 980
priority (chainer.training.extensions.PrintReport at-

tribute), 985
priority (chainer.training.extensions.ProgressBar at-

tribute), 987
priority (chainer.training.extensions.StepShift at-

tribute), 983
priority (chainer.training.extensions.unchain_variables

attribute), 1000
priority (chainer.training.extensions.VariableStatisticsPlot

attribute), 994
priority (chainer.training.extensions.WarmupShift at-

tribute), 982
prob() (chainer.Distribution method), 860
prob() (chainer.distributions.Bernoulli method), 798
prob() (chainer.distributions.Beta method), 801
prob() (chainer.distributions.Categorical method), 804
prob() (chainer.distributions.Cauchy method), 807
prob() (chainer.distributions.Chisquare method), 810
prob() (chainer.distributions.Dirichlet method), 814
prob() (chainer.distributions.Exponential method), 817
prob() (chainer.distributions.Gamma method), 820
prob() (chainer.distributions.Geometric method), 823
prob() (chainer.distributions.Gumbel method), 826
prob() (chainer.distributions.Independent method), 829
prob() (chainer.distributions.Laplace method), 833

Index 1375

Chainer Documentation, Release 7.0.0b4

prob() (chainer.distributions.LogNormal method), 836
prob() (chainer.distributions.MultivariateNormal

method), 839
prob() (chainer.distributions.Normal method), 842
prob() (chainer.distributions.OneHotCategorical

method), 845
prob() (chainer.distributions.Pareto method), 848
prob() (chainer.distributions.Poisson method), 852
prob() (chainer.distributions.Uniform method), 855
ProcessQueueWriter (class in

chainer.training.extensions.snapshot_writers),
945

ProcessWriter (class in
chainer.training.extensions.snapshot_writers),
942

prod() (in module chainer.functions), 260
product() (in module chainer.testing), 1162
product_dict() (in module chainer.testing), 1162
ProgressBar (class in chainer.training.extensions),

986
pseudo_connect() (in module chainermn.functions),

1229

Q
QueueWriter (class in

chainer.training.extensions.snapshot_writers),
943

R
r2_score() (in module chainer.functions), 225
rank (chainer.Function attribute), 291
rank (chainer.FunctionAdapter attribute), 296
rank (chainer.FunctionNode attribute), 302
rank (chainer.Parameter attribute), 148
rank (chainer.Variable attribute), 139
rank (chainer.variable.VariableNode attribute), 151
rank() (chainermn.CommunicatorBase property), 1220
raw() (in module chainer.backends.cuda), 1088
reallocate_cleared_grads()

(chainer.GradientMethod method), 917
reallocate_cleared_grads()

(chainer.optimizers.AdaBound method),
880

reallocate_cleared_grads()
(chainer.optimizers.AdaDelta method), 864

reallocate_cleared_grads()
(chainer.optimizers.AdaGrad method), 867

reallocate_cleared_grads()
(chainer.optimizers.Adam method), 870

reallocate_cleared_grads()
(chainer.optimizers.AdamW method), 874

reallocate_cleared_grads()
(chainer.optimizers.AMSBound method),
884

reallocate_cleared_grads()
(chainer.optimizers.AMSGrad method), 877

reallocate_cleared_grads()
(chainer.optimizers.CorrectedMomentumSGD
method), 887

reallocate_cleared_grads()
(chainer.optimizers.MomentumSGD method),
890

reallocate_cleared_grads()
(chainer.optimizers.MSVAG method), 896

reallocate_cleared_grads()
(chainer.optimizers.NesterovAG method),
893

reallocate_cleared_grads()
(chainer.optimizers.RMSprop method), 899

reallocate_cleared_grads()
(chainer.optimizers.RMSpropGraves method),
902

reallocate_cleared_grads()
(chainer.optimizers.SGD method), 905

reallocate_cleared_grads()
(chainer.optimizers.SMORMS3 method),
907

recall() (in module chainer.functions), 225
recv() (chainermn.CommunicatorBase method), 1221
recv() (in module chainermn.functions), 1229
recv_obj() (chainermn.CommunicatorBase method),

1221
reduce() (in module chainer.backends.cuda), 1088
register_kl() (in module chainer), 858
register_persistent() (chainer.Chain method),

769
register_persistent() (chainer.ChainList

method), 776
register_persistent() (chainer.Link method),

762
register_persistent()

(chainer.links.BatchNormalization method),
600

register_persistent()
(chainer.links.BatchRenormalization method),
606

register_persistent() (chainer.links.Bias
method), 320

register_persistent() (chainer.links.Bilinear
method), 326

register_persistent()
(chainer.links.BinaryHierarchicalSoftmax
method), 633

register_persistent() (chainer.links.BlackOut
method), 639

register_persistent()
(chainer.links.caffe.CaffeFunction method),
755

1376 Index

Chainer Documentation, Release 7.0.0b4

register_persistent()
(chainer.links.ChildSumTreeLSTM method),
333

register_persistent() (chainer.links.Classifier
method), 686

register_persistent()
(chainer.links.Convolution1D method), 339

register_persistent()
(chainer.links.Convolution2D method), 346

register_persistent()
(chainer.links.Convolution3D method), 352

register_persistent()
(chainer.links.ConvolutionND method), 360

register_persistent() (chainer.links.CRF1d
method), 645

register_persistent()
(chainer.links.Deconvolution1D method),
366

register_persistent()
(chainer.links.Deconvolution2D method),
373

register_persistent()
(chainer.links.Deconvolution3D method),
379

register_persistent()
(chainer.links.DeconvolutionND method),
387

register_persistent()
(chainer.links.DecorrelatedBatchNormalization
method), 613

register_persistent()
(chainer.links.DeformableConvolution2D
method), 393

register_persistent()
(chainer.links.DepthwiseConvolution2D
method), 400

register_persistent()
(chainer.links.DilatedConvolution2D method),
407

register_persistent() (chainer.links.EmbedID
method), 414

register_persistent()
(chainer.links.GoogLeNet method), 709

register_persistent()
(chainer.links.GroupNormalization method),
620

register_persistent() (chainer.links.GRU
method), 420

register_persistent() (chainer.links.Highway
method), 426

register_persistent() (chainer.links.Inception
method), 433

register_persistent()
(chainer.links.InceptionBN method), 439

register_persistent()
(chainer.links.LayerNormalization method),
626

register_persistent() (chainer.links.Linear
method), 446

register_persistent()
(chainer.links.LocalConvolution2D method),
453

register_persistent() (chainer.links.LSTM
method), 460

register_persistent() (chainer.links.Maxout
method), 672

register_persistent()
(chainer.links.MLPConvolution2D method),
467

register_persistent()
(chainer.links.model.vision.resnet.ResNetLayers
method), 718

register_persistent()
(chainer.links.NaryTreeLSTM method), 474

register_persistent()
(chainer.links.NegativeSampling method),
678

register_persistent()
(chainer.links.NStepBiGRU method), 481

register_persistent()
(chainer.links.NStepBiLSTM method), 488

register_persistent()
(chainer.links.NStepBiRNNReLU method),
495

register_persistent()
(chainer.links.NStepBiRNNTanh method),
503

register_persistent() (chainer.links.NStepGRU
method), 510

register_persistent()
(chainer.links.NStepLSTM method), 517

register_persistent()
(chainer.links.NStepRNNReLU method),
524

register_persistent()
(chainer.links.NStepRNNTanh method), 531

register_persistent() (chainer.links.Parameter
method), 538

register_persistent() (chainer.links.PReLU
method), 659

register_persistent()
(chainer.links.ResNet101Layers method),
733

register_persistent()
(chainer.links.ResNet152Layers method),
740

register_persistent()
(chainer.links.ResNet50Layers method),

Index 1377

Chainer Documentation, Release 7.0.0b4

725
register_persistent() (chainer.links.Scale

method), 544
register_persistent()

(chainer.links.SimplifiedDropconnect method),
652

register_persistent()
(chainer.links.StatefulGRU method), 551

register_persistent()
(chainer.links.StatefulMGU method), 564

register_persistent()
(chainer.links.StatefulPeepholeLSTM method),
577

register_persistent()
(chainer.links.StatefulZoneoutLSTM method),
583

register_persistent()
(chainer.links.StatelessGRU method), 558

register_persistent()
(chainer.links.StatelessLSTM method), 590

register_persistent()
(chainer.links.StatelessMGU method), 570

register_persistent() (chainer.links.Swish
method), 665

register_persistent()
(chainer.links.TheanoFunction method),
748

register_persistent()
(chainer.links.VGG16Layers method), 693

register_persistent()
(chainer.links.VGG19Layers method), 701

register_persistent() (chainer.Sequential
method), 784

register_statistics()
(chainer.training.extensions.ParameterStatistics
method), 969

reinterpreted_batch_ndims
(chainer.distributions.Independent attribute),
831

relu() (in module chainer.functions), 161
relu6() (in module chainer.functions), 161
remove() (chainer.ChainList method), 776
remove() (chainer.links.MLPConvolution2D method),

467
remove() (chainer.links.NStepBiGRU method), 481
remove() (chainer.links.NStepBiLSTM method), 488
remove() (chainer.links.NStepBiRNNReLU method),

496
remove() (chainer.links.NStepBiRNNTanh method),

503
remove() (chainer.links.NStepGRU method), 510
remove() (chainer.links.NStepLSTM method), 517
remove() (chainer.links.NStepRNNReLU method), 524
remove() (chainer.links.NStepRNNTanh method), 532

remove() (chainer.Sequential method), 785
remove_by_layer_type() (chainer.Sequential

method), 785
remove_hook() (chainer.GradientMethod method),

917
remove_hook() (chainer.Optimizer method), 910
remove_hook() (chainer.optimizers.AdaBound

method), 881
remove_hook() (chainer.optimizers.AdaDelta

method), 864
remove_hook() (chainer.optimizers.AdaGrad

method), 867
remove_hook() (chainer.optimizers.Adam method),

870
remove_hook() (chainer.optimizers.AdamW method),

874
remove_hook() (chainer.optimizers.AMSBound

method), 884
remove_hook() (chainer.optimizers.AMSGrad

method), 877
remove_hook() (chainer.optimizers.CorrectedMomentumSGD

method), 887
remove_hook() (chainer.optimizers.MomentumSGD

method), 890
remove_hook() (chainer.optimizers.MSVAG method),

896
remove_hook() (chainer.optimizers.NesterovAG

method), 893
remove_hook() (chainer.optimizers.RMSprop

method), 899
remove_hook() (chainer.optimizers.RMSpropGraves

method), 902
remove_hook() (chainer.optimizers.SGD method),

905
remove_hook() (chainer.optimizers.SMORMS3

method), 907
remove_hook() (chainer.UpdateRule method), 913
repeat (chainer.iterators.DaliIterator attribute), 1061
repeat (chainer.iterators.MultithreadIterator at-

tribute), 1059
repeat (chainer.iterators.SerialIterator attribute), 1055
repeat() (chainer.Chain method), 770
repeat() (chainer.ChainList method), 776
repeat() (chainer.Link method), 763
repeat() (chainer.links.BatchNormalization method),

600
repeat() (chainer.links.BatchRenormalization

method), 606
repeat() (chainer.links.Bias method), 320
repeat() (chainer.links.Bilinear method), 326
repeat() (chainer.links.BinaryHierarchicalSoftmax

method), 633
repeat() (chainer.links.BlackOut method), 639
repeat() (chainer.links.caffe.CaffeFunction method),

1378 Index

Chainer Documentation, Release 7.0.0b4

756
repeat() (chainer.links.ChildSumTreeLSTM method),

333
repeat() (chainer.links.Classifier method), 686
repeat() (chainer.links.Convolution1D method), 339
repeat() (chainer.links.Convolution2D method), 347
repeat() (chainer.links.Convolution3D method), 353
repeat() (chainer.links.ConvolutionND method), 360
repeat() (chainer.links.CRF1d method), 645
repeat() (chainer.links.Deconvolution1D method),

366
repeat() (chainer.links.Deconvolution2D method),

373
repeat() (chainer.links.Deconvolution3D method),

379
repeat() (chainer.links.DeconvolutionND method),

387
repeat() (chainer.links.DecorrelatedBatchNormalization

method), 613
repeat() (chainer.links.DeformableConvolution2D

method), 394
repeat() (chainer.links.DepthwiseConvolution2D

method), 400
repeat() (chainer.links.DilatedConvolution2D

method), 407
repeat() (chainer.links.EmbedID method), 414
repeat() (chainer.links.GoogLeNet method), 709
repeat() (chainer.links.GroupNormalization method),

620
repeat() (chainer.links.GRU method), 420
repeat() (chainer.links.Highway method), 427
repeat() (chainer.links.Inception method), 433
repeat() (chainer.links.InceptionBN method), 439
repeat() (chainer.links.LayerNormalization method),

626
repeat() (chainer.links.Linear method), 446
repeat() (chainer.links.LocalConvolution2D method),

453
repeat() (chainer.links.LSTM method), 460
repeat() (chainer.links.Maxout method), 672
repeat() (chainer.links.MLPConvolution2D method),

468
repeat() (chainer.links.model.vision.resnet.ResNetLayers

method), 718
repeat() (chainer.links.NaryTreeLSTM method), 474
repeat() (chainer.links.NegativeSampling method),

678
repeat() (chainer.links.NStepBiGRU method), 481
repeat() (chainer.links.NStepBiLSTM method), 488
repeat() (chainer.links.NStepBiRNNReLU method),

496
repeat() (chainer.links.NStepBiRNNTanh method),

503
repeat() (chainer.links.NStepGRU method), 510

repeat() (chainer.links.NStepLSTM method), 517
repeat() (chainer.links.NStepRNNReLU method), 524
repeat() (chainer.links.NStepRNNTanh method), 532
repeat() (chainer.links.Parameter method), 538
repeat() (chainer.links.PReLU method), 659
repeat() (chainer.links.ResNet101Layers method),

733
repeat() (chainer.links.ResNet152Layers method),

741
repeat() (chainer.links.ResNet50Layers method), 725
repeat() (chainer.links.Scale method), 544
repeat() (chainer.links.SimplifiedDropconnect

method), 652
repeat() (chainer.links.StatefulGRU method), 551
repeat() (chainer.links.StatefulMGU method), 564
repeat() (chainer.links.StatefulPeepholeLSTM

method), 577
repeat() (chainer.links.StatefulZoneoutLSTM

method), 583
repeat() (chainer.links.StatelessGRU method), 559
repeat() (chainer.links.StatelessLSTM method), 591
repeat() (chainer.links.StatelessMGU method), 570
repeat() (chainer.links.Swish method), 665
repeat() (chainer.links.TheanoFunction method), 748
repeat() (chainer.links.VGG16Layers method), 694
repeat() (chainer.links.VGG19Layers method), 701
repeat() (chainer.Sequential method), 785
repeat() (in module chainer.functions), 182
report() (chainer.Reporter method), 1095
report() (in module chainer), 1096
report_key_template

(chainer.training.extensions.ParameterStatistics
attribute), 970

report_scope() (in module chainer), 1097
Reporter (class in chainer), 1094
requires_grad (chainer.Parameter attribute), 148
requires_grad (chainer.Variable attribute), 139
requires_grad (chainer.variable.VariableNode at-

tribute), 151
reset() (chainer.iterators.DaliIterator method), 1060
reset() (chainer.iterators.MultiprocessIterator

method), 1057
reset() (chainer.iterators.MultithreadIterator

method), 1059
reset() (chainer.iterators.SerialIterator method),

1055
reset_state() (chainer.links.GRU method), 421
reset_state() (chainer.links.LSTM method), 461
reset_state() (chainer.links.StatefulGRU method),

552
reset_state() (chainer.links.StatefulMGU method),

565
reset_state() (chainer.links.StatefulPeepholeLSTM

method), 578

Index 1379

Chainer Documentation, Release 7.0.0b4

reset_state() (chainer.links.StatefulZoneoutLSTM
method), 584

reshape() (chainer.Parameter method), 143
reshape() (chainer.Variable method), 134
reshape() (in module chainer.functions), 183
reshape_W() (chainer.link_hooks.SpectralNormalization

method), 790
resize_images() (in module chainer.functions), 184
ResNet101Layers (class in chainer.links), 728
ResNet152Layers (class in chainer.links), 736
ResNet50Layers (class in chainer.links), 720
ResNetLayers (class in

chainer.links.model.vision.resnet), 713
retain_data() (chainer.Parameter method), 143
retain_data() (chainer.Variable method), 134
retain_data() (chainer.variable.VariableNode

method), 149
retain_inputs() (chainer.Function method), 290
retain_inputs() (chainer.FunctionAdapter

method), 295
retain_inputs() (chainer.FunctionNode method),

301
retain_outputs() (chainer.Function method), 290
retain_outputs() (chainer.FunctionAdapter

method), 295
retain_outputs() (chainer.FunctionNode method),

301
reverse() (chainer.ChainList method), 777
reverse() (chainer.links.MLPConvolution2D

method), 468
reverse() (chainer.links.NStepBiGRU method), 482
reverse() (chainer.links.NStepBiLSTM method), 489
reverse() (chainer.links.NStepBiRNNReLU method),

496
reverse() (chainer.links.NStepBiRNNTanh method),

504
reverse() (chainer.links.NStepGRU method), 511
reverse() (chainer.links.NStepLSTM method), 518
reverse() (chainer.links.NStepRNNReLU method),

525
reverse() (chainer.links.NStepRNNTanh method), 532
reverse() (chainer.Sequential method), 785
rho (chainer.optimizers.AdaDelta attribute), 866
RMSprop (class in chainer.optimizers), 898
RMSpropGraves (class in chainer.optimizers), 901
rnn() (chainer.links.NStepBiGRU method), 482
rnn() (chainer.links.NStepBiLSTM method), 489
rnn() (chainer.links.NStepBiRNNReLU method), 496
rnn() (chainer.links.NStepBiRNNTanh method), 504
rnn() (chainer.links.NStepGRU method), 511
rnn() (chainer.links.NStepLSTM method), 518
rnn() (chainer.links.NStepRNNReLU method), 525
rnn() (chainer.links.NStepRNNTanh method), 532

roi_average_align_2d() (in module
chainer.functions), 279

roi_average_pooling_2d() (in module
chainer.functions), 280

roi_max_align_2d() (in module chainer.functions),
280

roi_max_pooling_2d() (in module
chainer.functions), 281

roi_pooling_2d() (in module chainer.functions),
281

rollaxis() (in module chainer.functions), 184
rrelu() (in module chainer.functions), 160
rsqrt() (in module chainer.functions), 261
run() (chainer.testing.FunctionTestCase method), 1139
run() (chainer.testing.LinkInitializersTestCase

method), 1149
run() (chainer.testing.LinkTestCase method), 1158
run() (chainer.training.Trainer method), 949
run_test_backward()

(chainer.testing.FunctionTestCase method),
1139

run_test_double_backward()
(chainer.testing.FunctionTestCase method),
1139

run_test_forward()
(chainer.testing.FunctionTestCase method),
1139

S
sample() (chainer.Distribution method), 861
sample() (chainer.distributions.Bernoulli method),

798
sample() (chainer.distributions.Beta method), 801
sample() (chainer.distributions.Categorical method),

804
sample() (chainer.distributions.Cauchy method), 807
sample() (chainer.distributions.Chisquare method),

811
sample() (chainer.distributions.Dirichlet method), 814
sample() (chainer.distributions.Exponential method),

817
sample() (chainer.distributions.Gamma method), 820
sample() (chainer.distributions.Geometric method),

823
sample() (chainer.distributions.Gumbel method), 826
sample() (chainer.distributions.Independent method),

829
sample() (chainer.distributions.Laplace method), 833
sample() (chainer.distributions.LogNormal method),

836
sample() (chainer.distributions.MultivariateNormal

method), 839
sample() (chainer.distributions.Normal method), 842

1380 Index

Chainer Documentation, Release 7.0.0b4

sample() (chainer.distributions.OneHotCategorical
method), 845

sample() (chainer.distributions.Pareto method), 849
sample() (chainer.distributions.Poisson method), 852
sample() (chainer.distributions.Uniform method), 855
sample() (chainer.utils.WalkerAlias method), 1091
sample_data (chainer.links.BlackOut attribute), 641
sample_gpu() (chainer.utils.WalkerAlias method),

1092
sample_n() (chainer.Distribution method), 861
sample_n() (chainer.distributions.Bernoulli method),

798
sample_n() (chainer.distributions.Beta method), 801
sample_n() (chainer.distributions.Categorical

method), 804
sample_n() (chainer.distributions.Cauchy method),

808
sample_n() (chainer.distributions.Chisquare method),

811
sample_n() (chainer.distributions.Dirichlet method),

814
sample_n() (chainer.distributions.Exponential

method), 817
sample_n() (chainer.distributions.Gamma method),

820
sample_n() (chainer.distributions.Geometric method),

823
sample_n() (chainer.distributions.Gumbel method),

826
sample_n() (chainer.distributions.Independent

method), 829
sample_n() (chainer.distributions.Laplace method),

833
sample_n() (chainer.distributions.LogNormal

method), 836
sample_n() (chainer.distributions.MultivariateNormal

method), 839
sample_n() (chainer.distributions.Normal method),

843
sample_n() (chainer.distributions.OneHotCategorical

method), 846
sample_n() (chainer.distributions.Pareto method),

849
sample_n() (chainer.distributions.Poisson method),

852
sample_n() (chainer.distributions.Uniform method),

855
sample_xp() (chainer.utils.WalkerAlias method),

1092
save() (chainer.Serializer method), 1071
save() (chainer.serializers.DictionarySerializer

method), 1064
save() (chainer.serializers.HDF5Serializer method),

1068

save() (chainer.training.extensions.snapshot_writers.ProcessQueueWriter
method), 946

save() (chainer.training.extensions.snapshot_writers.ProcessWriter
method), 943

save() (chainer.training.extensions.snapshot_writers.QueueWriter
method), 944

save() (chainer.training.extensions.snapshot_writers.SimpleWriter
method), 940

save() (chainer.training.extensions.snapshot_writers.ThreadQueueWriter
method), 945

save() (chainer.training.extensions.snapshot_writers.ThreadWriter
method), 941

save() (chainer.training.extensions.snapshot_writers.Writer
method), 939

save_and_load() (in module chainer.testing), 1159
save_and_load_hdf5() (in module

chainer.testing), 1160
save_and_load_npz() (in module chainer.testing),

1160
save_hdf5() (in module chainer.serializers), 1069
save_npz() (in module chainer.serializers), 1066
save_plot_using_module()

(chainer.training.extensions.VariableStatisticsPlot
method), 993

scale (chainer.distributions.Cauchy attribute), 809
scale (chainer.distributions.Gumbel attribute), 828
scale (chainer.distributions.Laplace attribute), 834
scale (chainer.distributions.Normal attribute), 844
scale (chainer.distributions.Pareto attribute), 850
scale (chainer.distributions.Uniform attribute), 857
Scale (class in chainer.links), 540
scale() (in module chainer.functions), 261
scale_tril (chainer.distributions.MultivariateNormal

attribute), 841
scatter() (chainermn.CommunicatorBase method),

1221
scatter() (in module chainermn.functions), 1232
scatter_add() (in module chainer.functions), 185
scatter_dataset() (in module chainermn), 1224
scatter_index() (in module chainermn), 1224
schedule_func (chainer.configuration.GlobalConfig

attribute), 1107
scope() (chainer.Reporter method), 1095
select_item() (in module chainer.functions), 185
selu() (in module chainer.functions), 162
send() (chainer.backend.ChainerxDevice method),

1083
send() (chainer.backend.CpuDevice method), 1080
send() (chainer.backend.Device method), 1074
send() (chainer.backend.GpuDevice method), 1081
send() (chainer.backend.Intel64Device method), 1082
send() (chainermn.CommunicatorBase method), 1221
send() (in module chainermn.functions), 1229
send_array() (chainer.backend.ChainerxDevice

Index 1381

Chainer Documentation, Release 7.0.0b4

method), 1083
send_array() (chainer.backend.CpuDevice method),

1080
send_array() (chainer.backend.GpuDevice method),

1081
send_array() (chainer.backend.Intel64Device

method), 1082
send_obj() (chainermn.CommunicatorBase method),

1221
separate() (in module chainer.functions), 186
Sequential (class in chainer), 778
SerialIterator (class in chainer.iterators), 1054
serialize() (chainer.Chain method), 770
serialize() (chainer.ChainList method), 777
serialize() (chainer.dataset.Iterator method), 1020
serialize() (chainer.DictSummary method), 1098
serialize() (chainer.GradientMethod method), 917
serialize() (chainer.iterators.DaliIterator method),

1060
serialize() (chainer.iterators.MultiprocessIterator

method), 1057
serialize() (chainer.iterators.MultithreadIterator

method), 1059
serialize() (chainer.iterators.SerialIterator

method), 1055
serialize() (chainer.Link method), 763
serialize() (chainer.links.BatchNormalization

method), 601
serialize() (chainer.links.BatchRenormalization

method), 607
serialize() (chainer.links.Bias method), 321
serialize() (chainer.links.Bilinear method), 327
serialize() (chainer.links.BinaryHierarchicalSoftmax

method), 634
serialize() (chainer.links.BlackOut method), 640
serialize() (chainer.links.caffe.CaffeFunction

method), 756
serialize() (chainer.links.ChildSumTreeLSTM

method), 334
serialize() (chainer.links.Classifier method), 686
serialize() (chainer.links.Convolution1D method),

340
serialize() (chainer.links.Convolution2D method),

347
serialize() (chainer.links.Convolution3D method),

353
serialize() (chainer.links.ConvolutionND method),

361
serialize() (chainer.links.CRF1d method), 646
serialize() (chainer.links.Deconvolution1D

method), 367
serialize() (chainer.links.Deconvolution2D

method), 374
serialize() (chainer.links.Deconvolution3D

method), 380
serialize() (chainer.links.DeconvolutionND

method), 387
serialize() (chainer.links.DecorrelatedBatchNormalization

method), 614
serialize() (chainer.links.DeformableConvolution2D

method), 394
serialize() (chainer.links.DepthwiseConvolution2D

method), 401
serialize() (chainer.links.DilatedConvolution2D

method), 408
serialize() (chainer.links.EmbedID method), 415
serialize() (chainer.links.GoogLeNet method), 710
serialize() (chainer.links.GroupNormalization

method), 621
serialize() (chainer.links.GRU method), 421
serialize() (chainer.links.Highway method), 427
serialize() (chainer.links.Inception method), 434
serialize() (chainer.links.InceptionBN method), 440
serialize() (chainer.links.LayerNormalization

method), 627
serialize() (chainer.links.Linear method), 447
serialize() (chainer.links.LocalConvolution2D

method), 454
serialize() (chainer.links.LSTM method), 461
serialize() (chainer.links.Maxout method), 673
serialize() (chainer.links.MLPConvolution2D

method), 468
serialize() (chainer.links.model.vision.resnet.ResNetLayers

method), 718
serialize() (chainer.links.NaryTreeLSTM method),

475
serialize() (chainer.links.NegativeSampling

method), 679
serialize() (chainer.links.NStepBiGRU method),

482
serialize() (chainer.links.NStepBiLSTM method),

489
serialize() (chainer.links.NStepBiRNNReLU

method), 497
serialize() (chainer.links.NStepBiRNNTanh

method), 504
serialize() (chainer.links.NStepGRU method), 511
serialize() (chainer.links.NStepLSTM method), 518
serialize() (chainer.links.NStepRNNReLU method),

525
serialize() (chainer.links.NStepRNNTanh method),

533
serialize() (chainer.links.Parameter method), 539
serialize() (chainer.links.PReLU method), 659
serialize() (chainer.links.ResNet101Layers

method), 734
serialize() (chainer.links.ResNet152Layers

method), 741

1382 Index

Chainer Documentation, Release 7.0.0b4

serialize() (chainer.links.ResNet50Layers method),
726

serialize() (chainer.links.Scale method), 545
serialize() (chainer.links.SimplifiedDropconnect

method), 653
serialize() (chainer.links.StatefulGRU method), 552
serialize() (chainer.links.StatefulMGU method),

565
serialize() (chainer.links.StatefulPeepholeLSTM

method), 578
serialize() (chainer.links.StatefulZoneoutLSTM

method), 584
serialize() (chainer.links.StatelessGRU method),

559
serialize() (chainer.links.StatelessLSTM method),

591
serialize() (chainer.links.StatelessMGU method),

571
serialize() (chainer.links.Swish method), 666
serialize() (chainer.links.TheanoFunction method),

749
serialize() (chainer.links.VGG16Layers method),

694
serialize() (chainer.links.VGG19Layers method),

702
serialize() (chainer.Optimizer method), 910
serialize() (chainer.optimizers.AdaBound method),

881
serialize() (chainer.optimizers.AdaDelta method),

864
serialize() (chainer.optimizers.AdaGrad method),

867
serialize() (chainer.optimizers.Adam method), 870
serialize() (chainer.optimizers.AdamW method),

874
serialize() (chainer.optimizers.AMSBound

method), 884
serialize() (chainer.optimizers.AMSGrad method),

877
serialize() (chainer.optimizers.CorrectedMomentumSGD

method), 887
serialize() (chainer.optimizers.MomentumSGD

method), 890
serialize() (chainer.optimizers.MSVAG method),

896
serialize() (chainer.optimizers.NesterovAG

method), 893
serialize() (chainer.optimizers.RMSprop method),

899
serialize() (chainer.optimizers.RMSpropGraves

method), 902
serialize() (chainer.optimizers.SGD method), 905
serialize() (chainer.optimizers.SMORMS3 method),

908

serialize() (chainer.Sequential method), 786
serialize() (chainer.Summary method), 1097
serialize() (chainer.training.Extension method),

959
serialize() (chainer.training.extensions.DumpGraph

method), 995
serialize() (chainer.training.extensions.Evaluator

method), 963
serialize() (chainer.training.extensions.ExponentialShift

method), 972
serialize() (chainer.training.extensions.FailOnNonNumber

method), 967
serialize() (chainer.training.extensions.InverseShift

method), 974
serialize() (chainer.training.extensions.LinearShift

method), 976
serialize() (chainer.training.extensions.LogReport

method), 989
serialize() (chainer.training.extensions.MicroAverage

method), 965
serialize() (chainer.training.extensions.MultistepShift

method), 978
serialize() (chainer.training.extensions.ParameterStatistics

method), 969
serialize() (chainer.training.extensions.PlotReport

method), 991
serialize() (chainer.training.extensions.PolynomialShift

method), 979
serialize() (chainer.training.extensions.PrintReport

method), 985
serialize() (chainer.training.extensions.ProgressBar

method), 987
serialize() (chainer.training.extensions.StepShift

method), 983
serialize() (chainer.training.extensions.unchain_variables

method), 1000
serialize() (chainer.training.extensions.VariableStatisticsPlot

method), 993
serialize() (chainer.training.extensions.WarmupShift

method), 981
serialize() (chainer.training.Trainer method), 949
serialize() (chainer.training.triggers.BestValueTrigger

method), 1002
serialize() (chainer.training.triggers.IntervalTrigger

method), 1004
serialize() (chainer.training.triggers.ManualScheduleTrigger

method), 1005
serialize() (chainer.training.triggers.MaxValueTrigger

method), 1005
serialize() (chainer.training.triggers.MinValueTrigger

method), 1006
serialize() (chainer.training.triggers.OnceTrigger

method), 1007
serialize() (chainer.training.triggers.TimeTrigger

Index 1383

Chainer Documentation, Release 7.0.0b4

method), 1008
serialize() (chainer.training.Updater method), 951
serialize() (chainer.training.updaters.MultiprocessParallelUpdater

method), 957
serialize() (chainer.training.updaters.ParallelUpdater

method), 955
serialize() (chainer.training.updaters.StandardUpdater

method), 953
serialize() (chainer.UpdateRule method), 913
Serializer (class in chainer), 1070
set_config() (chainermn.CommunicatorBase

method), 1221
set_creator() (chainer.Parameter method), 143
set_creator() (chainer.Variable method), 134
set_creator() (chainer.variable.VariableNode

method), 149
set_creator_node() (chainer.Parameter method),

144
set_creator_node() (chainer.Variable method),

134
set_creator_node()

(chainer.variable.VariableNode method),
149

set_dataset_root() (in module chainer.dataset),
1024

set_debug() (in module chainer), 1110
set_loss_scale() (chainer.GradientMethod

method), 917
set_loss_scale() (chainer.Optimizer method), 911
set_loss_scale() (chainer.optimizers.AdaBound

method), 881
set_loss_scale() (chainer.optimizers.AdaDelta

method), 865
set_loss_scale() (chainer.optimizers.AdaGrad

method), 867
set_loss_scale() (chainer.optimizers.Adam

method), 871
set_loss_scale() (chainer.optimizers.AdamW

method), 874
set_loss_scale() (chainer.optimizers.AMSBound

method), 884
set_loss_scale() (chainer.optimizers.AMSGrad

method), 877
set_loss_scale() (chainer.optimizers.CorrectedMomentumSGD

method), 888
set_loss_scale() (chainer.optimizers.MomentumSGD

method), 890
set_loss_scale() (chainer.optimizers.MSVAG

method), 896
set_loss_scale() (chainer.optimizers.NesterovAG

method), 893
set_loss_scale() (chainer.optimizers.RMSprop

method), 899
set_loss_scale() (chainer.optimizers.RMSpropGraves

method), 902
set_loss_scale() (chainer.optimizers.SGD

method), 905
set_loss_scale() (chainer.optimizers.SMORMS3

method), 908
set_max_workspace_size() (in module

chainer.backends.cuda), 1089
set_state() (chainer.links.GRU method), 421
set_state() (chainer.links.LSTM method), 461
set_state() (chainer.links.StatefulGRU method), 552
set_state() (chainer.links.StatefulMGU method),

565
set_state() (chainer.links.StatefulZoneoutLSTM

method), 584
setup() (chainer.GradientMethod method), 917
setup() (chainer.Optimizer method), 911
setup() (chainer.optimizers.AdaBound method), 881
setup() (chainer.optimizers.AdaDelta method), 865
setup() (chainer.optimizers.AdaGrad method), 867
setup() (chainer.optimizers.Adam method), 871
setup() (chainer.optimizers.AdamW method), 874
setup() (chainer.optimizers.AMSBound method), 884
setup() (chainer.optimizers.AMSGrad method), 877
setup() (chainer.optimizers.CorrectedMomentumSGD

method), 888
setup() (chainer.optimizers.MomentumSGD method),

890
setup() (chainer.optimizers.MSVAG method), 896
setup() (chainer.optimizers.NesterovAG method), 893
setup() (chainer.optimizers.RMSprop method), 899
setup() (chainer.optimizers.RMSpropGraves method),

902
setup() (chainer.optimizers.SGD method), 905
setup() (chainer.optimizers.SMORMS3 method), 908
setUp() (chainer.testing.FunctionTestCase method),

1139
setUp() (chainer.testing.LinkInitializersTestCase

method), 1149
setUp() (chainer.testing.LinkTestCase method), 1158
setup_workers() (chainer.training.updaters.MultiprocessParallelUpdater

method), 957
setUpClass() (chainer.testing.FunctionTestCase

class method), 1139
setUpClass() (chainer.testing.LinkInitializersTestCase

class method), 1149
setUpClass() (chainer.testing.LinkTestCase class

method), 1158
SGD (class in chainer.optimizers), 904
shape (chainer.Parameter attribute), 148
shape (chainer.Variable attribute), 139
shift() (in module chainer.functions), 221
shortDescription()

(chainer.testing.FunctionTestCase method),
1139

1384 Index

Chainer Documentation, Release 7.0.0b4

shortDescription()
(chainer.testing.LinkInitializersTestCase
method), 1150

shortDescription() (chainer.testing.LinkTestCase
method), 1158

show() (chainer.configuration.GlobalConfig method),
1106

show() (chainer.configuration.LocalConfig method),
1108

ShuffleOrderSampler (class in chainer.iterators),
1062

sigma (chainer.distributions.LogNormal attribute), 837
sigmoid() (in module chainer.functions), 162
sigmoid_cross_entropy() (in module

chainer.functions), 239
sign() (in module chainer.functions), 262
SimpleWriter (class in

chainer.training.extensions.snapshot_writers),
940

simplified_dropconnect() (in module
chainer.functions), 268

SimplifiedDropconnect (class in chainer.links),
648

sin() (in module chainer.functions), 262
sinh() (in module chainer.functions), 262
size (chainer.Parameter attribute), 148
size (chainer.utils.type_check.TypeInfo attribute), 1126
size (chainer.Variable attribute), 139
size() (chainer.utils.type_check.TypeInfoTuple

method), 1126
size() (chainermn.CommunicatorBase property), 1222
skip_backward_test

(chainer.testing.FunctionTestCase attribute),
1140

skip_backward_test (chainer.testing.LinkTestCase
attribute), 1159

skip_double_backward_test
(chainer.testing.FunctionTestCase attribute),
1140

skip_forward_test
(chainer.testing.FunctionTestCase attribute),
1140

skip_forward_test (chainer.testing.LinkTestCase
attribute), 1159

skipTest() (chainer.testing.FunctionTestCase
method), 1139

skipTest() (chainer.testing.LinkInitializersTestCase
method), 1150

skipTest() (chainer.testing.LinkTestCase method),
1158

slice (chainer.dataset.tabular.DelegateDataset at-
tribute), 1018

slice (chainer.dataset.TabularDataset attribute), 1014
slstm() (in module chainer.functions), 162

SMORMS3 (class in chainer.optimizers), 906
snapshot(), 61
snapshot() (in module chainer.training.extensions),

996
snapshot_object(), 61
snapshot_object() (in module

chainer.training.extensions), 998
softmax() (in module chainer.functions), 164
softmax_cross_entropy() (in module

chainer.functions), 240
softplus() (in module chainer.functions), 164
space2depth() (in module chainer.functions), 187
sparse_matmul() (in module chainer.functions), 262
spatial_pyramid_pooling_2d() (in module

chainer.functions), 282
spatial_transformer_grid() (in module

chainer.functions), 187
spatial_transformer_sampler() (in module

chainer.functions), 188
SpectralNormalization (class in

chainer.link_hooks), 788
split() (chainermn.CommunicatorBase method),

1222
split_axis() (in module chainer.functions), 189
split_dataset() (in module chainer.datasets), 1031
split_dataset_random() (in module

chainer.datasets), 1031
sqrt() (in module chainer.functions), 263
square() (in module chainer.functions), 263
squared_difference() (in module

chainer.functions), 264
squared_error() (in module chainer.functions), 241
squeeze() (in module chainer.functions), 189
stack (chainer.Function attribute), 291
stack (chainer.FunctionAdapter attribute), 296
stack (chainer.FunctionNode attribute), 302
stack() (in module chainer.functions), 190
StandardUpdater (class in

chainer.training.updaters), 951
start_finetuning()

(chainer.links.BatchNormalization method),
601

start_finetuning()
(chainer.links.BatchRenormalization method),
607

start_finetuning()
(chainer.links.DecorrelatedBatchNormalization
method), 614

state (chainer.UpdateRule attribute), 914
StatefulGRU (class in chainer.links), 547
StatefulMGU (class in chainer.links), 561
StatefulPeepholeLSTM (class in chainer.links),

573
StatefulZoneoutLSTM (class in chainer.links), 580

Index 1385

Chainer Documentation, Release 7.0.0b4

StatelessGRU (class in chainer.links), 554
StatelessLSTM (class in chainer.links), 586
StatelessMGU (class in chainer.links), 567
static_graph() (in module chainer), 1114
stddev (chainer.Distribution attribute), 862
stddev (chainer.distributions.Bernoulli attribute), 799
stddev (chainer.distributions.Beta attribute), 802
stddev (chainer.distributions.Categorical attribute),

806
stddev (chainer.distributions.Cauchy attribute), 809
stddev (chainer.distributions.Chisquare attribute), 812
stddev (chainer.distributions.Dirichlet attribute), 815
stddev (chainer.distributions.Exponential attribute),

818
stddev (chainer.distributions.Gamma attribute), 821
stddev (chainer.distributions.Geometric attribute), 824
stddev (chainer.distributions.Gumbel attribute), 828
stddev (chainer.distributions.Independent attribute),

831
stddev (chainer.distributions.Laplace attribute), 834
stddev (chainer.distributions.LogNormal attribute),

837
stddev (chainer.distributions.MultivariateNormal at-

tribute), 841
stddev (chainer.distributions.Normal attribute), 844
stddev (chainer.distributions.OneHotCategorical at-

tribute), 847
stddev (chainer.distributions.Pareto attribute), 850
stddev (chainer.distributions.Poisson attribute), 853
stddev (chainer.distributions.Uniform attribute), 857
StepShift (class in chainer.training.extensions), 982
SubDataset (class in chainer.datasets), 1029
subTest() (chainer.testing.FunctionTestCase method),

1139
subTest() (chainer.testing.LinkInitializersTestCase

method), 1150
subTest() (chainer.testing.LinkTestCase method),

1158
sum() (in module chainer.functions), 264
sum_to() (in module chainer.functions), 265
Summary (class in chainer), 1097
summary() (chainer.function_hooks.CupyMemoryProfileHook

method), 307
summary() (chainer.function_hooks.TimerHook

method), 312
summary() (chainer.link_hooks.TimerHook method),

791
summary() (chainer.Parameter method), 144
summary() (chainer.Variable method), 135
support (chainer.Distribution attribute), 862
support (chainer.distributions.Bernoulli attribute), 799
support (chainer.distributions.Beta attribute), 802
support (chainer.distributions.Categorical attribute),

806

support (chainer.distributions.Cauchy attribute), 809
support (chainer.distributions.Chisquare attribute),

812
support (chainer.distributions.Dirichlet attribute), 815
support (chainer.distributions.Exponential attribute),

818
support (chainer.distributions.Gamma attribute), 821
support (chainer.distributions.Geometric attribute),

825
support (chainer.distributions.Gumbel attribute), 828
support (chainer.distributions.Independent attribute),

831
support (chainer.distributions.Laplace attribute), 834
support (chainer.distributions.LogNormal attribute),

837
support (chainer.distributions.MultivariateNormal at-

tribute), 841
support (chainer.distributions.Normal attribute), 844
support (chainer.distributions.OneHotCategorical at-

tribute), 847
support (chainer.distributions.Pareto attribute), 850
support (chainer.distributions.Poisson attribute), 853
support (chainer.distributions.Uniform attribute), 857
supported_array_types

(chainer.backend.ChainerxDevice attribute),
1084

supported_array_types
(chainer.backend.CpuDevice attribute), 1080

supported_array_types (chainer.backend.Device
attribute), 1075

supported_array_types
(chainer.backend.GpuDevice attribute), 1081

supported_array_types
(chainer.backend.Intel64Device attribute),
1082

survival_function() (chainer.Distribution
method), 861

survival_function()
(chainer.distributions.Bernoulli method),
798

survival_function() (chainer.distributions.Beta
method), 801

survival_function()
(chainer.distributions.Categorical method),
804

survival_function()
(chainer.distributions.Cauchy method), 808

survival_function()
(chainer.distributions.Chisquare method),
811

survival_function()
(chainer.distributions.Dirichlet method),
814

survival_function()

1386 Index

Chainer Documentation, Release 7.0.0b4

(chainer.distributions.Exponential method),
817

survival_function()
(chainer.distributions.Gamma method), 820

survival_function()
(chainer.distributions.Geometric method),
823

survival_function()
(chainer.distributions.Gumbel method), 826

survival_function()
(chainer.distributions.Independent method),
830

survival_function()
(chainer.distributions.Laplace method), 833

survival_function()
(chainer.distributions.LogNormal method),
836

survival_function()
(chainer.distributions.MultivariateNormal
method), 839

survival_function()
(chainer.distributions.Normal method), 843

survival_function()
(chainer.distributions.OneHotCategorical
method), 846

survival_function()
(chainer.distributions.Pareto method), 849

survival_function()
(chainer.distributions.Poisson method), 852

survival_function()
(chainer.distributions.Uniform method),
855

swapaxes() (in module chainer.functions), 191
Swish (class in chainer.links), 661
swish() (in module chainer.functions), 165

T
t (chainer.GradientMethod attribute), 918
t (chainer.Optimizer attribute), 912
t (chainer.optimizers.AdaBound attribute), 882
t (chainer.optimizers.AdaDelta attribute), 866
t (chainer.optimizers.AdaGrad attribute), 868
t (chainer.optimizers.Adam attribute), 872
t (chainer.optimizers.AdamW attribute), 876
t (chainer.optimizers.AMSBound attribute), 886
t (chainer.optimizers.AMSGrad attribute), 879
t (chainer.optimizers.CorrectedMomentumSGD at-

tribute), 889
t (chainer.optimizers.MomentumSGD attribute), 892
t (chainer.optimizers.MSVAG attribute), 897
t (chainer.optimizers.NesterovAG attribute), 894
t (chainer.optimizers.RMSprop attribute), 900
t (chainer.optimizers.RMSpropGraves attribute), 903
t (chainer.optimizers.SGD attribute), 906

t (chainer.optimizers.SMORMS3 attribute), 909
T (chainer.Parameter attribute), 147
T (chainer.Variable attribute), 138
table (chainer.function_hooks.TimerHook attribute),

312
table (chainer.link_hooks.TimerHook attribute), 792
TabularDataset (class in chainer.dataset), 1010
tan() (in module chainer.functions), 265
tanh() (in module chainer.functions), 166
target (chainer.GradientMethod attribute), 918
target (chainer.Optimizer attribute), 912
target (chainer.optimizers.AdaBound attribute), 882
target (chainer.optimizers.AdaDelta attribute), 866
target (chainer.optimizers.AdaGrad attribute), 869
target (chainer.optimizers.Adam attribute), 872
target (chainer.optimizers.AdamW attribute), 876
target (chainer.optimizers.AMSBound attribute), 886
target (chainer.optimizers.AMSGrad attribute), 879
target (chainer.optimizers.CorrectedMomentumSGD

attribute), 889
target (chainer.optimizers.MomentumSGD attribute),

892
target (chainer.optimizers.MSVAG attribute), 897
target (chainer.optimizers.NesterovAG attribute), 894
target (chainer.optimizers.RMSprop attribute), 900
target (chainer.optimizers.RMSpropGraves attribute),

903
target (chainer.optimizers.SGD attribute), 906
target (chainer.optimizers.SMORMS3 attribute), 909
tearDown() (chainer.testing.FunctionTestCase

method), 1140
tearDown() (chainer.testing.LinkInitializersTestCase

method), 1150
tearDown() (chainer.testing.LinkTestCase method),

1158
tearDownClass() (chainer.testing.FunctionTestCase

class method), 1140
tearDownClass() (chainer.testing.LinkInitializersTestCase

class method), 1150
tearDownClass() (chainer.testing.LinkTestCase

class method), 1158
tensordot() (in module chainer.functions), 265
test_backward() (chainer.testing.FunctionTestCase

method), 1140
test_backward() (chainer.testing.LinkTestCase

method), 1158
test_double_backward()

(chainer.testing.FunctionTestCase method),
1140

test_forward() (chainer.testing.FunctionTestCase
method), 1140

test_forward() (chainer.testing.LinkTestCase
method), 1158

test_initializers()

Index 1387

Chainer Documentation, Release 7.0.0b4

(chainer.testing.LinkInitializersTestCase
method), 1150

TextDataset (class in chainer.datasets), 1043
TheanoFunction (class in chainer.links), 745
theta (chainer.distributions.Gamma attribute), 821
ThreadQueueWriter (class in

chainer.training.extensions.snapshot_writers),
944

ThreadWriter (class in
chainer.training.extensions.snapshot_writers),
941

tile() (in module chainer.functions), 192
TimerHook (class in chainer.function_hooks), 310
TimerHook (class in chainer.link_hooks), 790
TimeTrigger (class in chainer.training.triggers), 1007
timing (chainer.optimizer_hooks.GradientClipping at-

tribute), 921
timing (chainer.optimizer_hooks.GradientHardClipping

attribute), 922
timing (chainer.optimizer_hooks.GradientLARS

attribute), 925
timing (chainer.optimizer_hooks.GradientNoise

attribute), 923
timing (chainer.optimizer_hooks.Lasso attribute), 920
timing (chainer.optimizer_hooks.WeightDecay at-

tribute), 919
to_chx() (chainer.Chain method), 770
to_chx() (chainer.ChainList method), 777
to_chx() (chainer.DeviceResident method), 1077
to_chx() (chainer.Link method), 763
to_chx() (chainer.links.BatchNormalization method),

601
to_chx() (chainer.links.BatchRenormalization

method), 607
to_chx() (chainer.links.Bias method), 321
to_chx() (chainer.links.Bilinear method), 327
to_chx() (chainer.links.BinaryHierarchicalSoftmax

method), 634
to_chx() (chainer.links.BlackOut method), 640
to_chx() (chainer.links.caffe.CaffeFunction method),

756
to_chx() (chainer.links.ChildSumTreeLSTM method),

334
to_chx() (chainer.links.Classifier method), 687
to_chx() (chainer.links.Convolution1D method), 340
to_chx() (chainer.links.Convolution2D method), 347
to_chx() (chainer.links.Convolution3D method), 353
to_chx() (chainer.links.ConvolutionND method), 361
to_chx() (chainer.links.CRF1d method), 646
to_chx() (chainer.links.Deconvolution1D method),

367
to_chx() (chainer.links.Deconvolution2D method),

374
to_chx() (chainer.links.Deconvolution3D method),

380
to_chx() (chainer.links.DeconvolutionND method),

388
to_chx() (chainer.links.DecorrelatedBatchNormalization

method), 614
to_chx() (chainer.links.DeformableConvolution2D

method), 394
to_chx() (chainer.links.DepthwiseConvolution2D

method), 401
to_chx() (chainer.links.DilatedConvolution2D

method), 408
to_chx() (chainer.links.EmbedID method), 415
to_chx() (chainer.links.GoogLeNet method), 710
to_chx() (chainer.links.GroupNormalization method),

621
to_chx() (chainer.links.GRU method), 421
to_chx() (chainer.links.Highway method), 427
to_chx() (chainer.links.Inception method), 434
to_chx() (chainer.links.InceptionBN method), 440
to_chx() (chainer.links.LayerNormalization method),

627
to_chx() (chainer.links.Linear method), 447
to_chx() (chainer.links.LocalConvolution2D method),

454
to_chx() (chainer.links.LSTM method), 461
to_chx() (chainer.links.Maxout method), 673
to_chx() (chainer.links.MLPConvolution2D method),

468
to_chx() (chainer.links.model.vision.resnet.ResNetLayers

method), 719
to_chx() (chainer.links.NaryTreeLSTM method), 475
to_chx() (chainer.links.NegativeSampling method),

679
to_chx() (chainer.links.NStepBiGRU method), 482
to_chx() (chainer.links.NStepBiLSTM method), 489
to_chx() (chainer.links.NStepBiRNNReLU method),

497
to_chx() (chainer.links.NStepBiRNNTanh method),

504
to_chx() (chainer.links.NStepGRU method), 511
to_chx() (chainer.links.NStepLSTM method), 518
to_chx() (chainer.links.NStepRNNReLU method), 525
to_chx() (chainer.links.NStepRNNTanh method), 533
to_chx() (chainer.links.Parameter method), 539
to_chx() (chainer.links.PReLU method), 660
to_chx() (chainer.links.ResNet101Layers method),

734
to_chx() (chainer.links.ResNet152Layers method),

741
to_chx() (chainer.links.ResNet50Layers method), 726
to_chx() (chainer.links.Scale method), 545
to_chx() (chainer.links.SimplifiedDropconnect

method), 653
to_chx() (chainer.links.StatefulGRU method), 552

1388 Index

Chainer Documentation, Release 7.0.0b4

to_chx() (chainer.links.StatefulMGU method), 565
to_chx() (chainer.links.StatefulPeepholeLSTM

method), 578
to_chx() (chainer.links.StatefulZoneoutLSTM

method), 584
to_chx() (chainer.links.StatelessGRU method), 559
to_chx() (chainer.links.StatelessLSTM method), 591
to_chx() (chainer.links.StatelessMGU method), 571
to_chx() (chainer.links.Swish method), 666
to_chx() (chainer.links.TheanoFunction method), 749
to_chx() (chainer.links.VGG16Layers method), 694
to_chx() (chainer.links.VGG19Layers method), 702
to_chx() (chainer.Parameter method), 144
to_chx() (chainer.Sequential method), 786
to_chx() (chainer.utils.WalkerAlias method), 1092
to_chx() (chainer.Variable method), 135
to_chx() (in module chainer.backend), 1090
to_coo() (in module chainer.utils), 1100
to_cpu() (chainer.Chain method), 770
to_cpu() (chainer.ChainList method), 777
to_cpu() (chainer.DeviceResident method), 1077
to_cpu() (chainer.Link method), 764
to_cpu() (chainer.links.BatchNormalization method),

601
to_cpu() (chainer.links.BatchRenormalization

method), 607
to_cpu() (chainer.links.Bias method), 321
to_cpu() (chainer.links.Bilinear method), 327
to_cpu() (chainer.links.BinaryHierarchicalSoftmax

method), 634
to_cpu() (chainer.links.BlackOut method), 640
to_cpu() (chainer.links.caffe.CaffeFunction method),

756
to_cpu() (chainer.links.ChildSumTreeLSTM method),

334
to_cpu() (chainer.links.Classifier method), 687
to_cpu() (chainer.links.Convolution1D method), 340
to_cpu() (chainer.links.Convolution2D method), 347
to_cpu() (chainer.links.Convolution3D method), 353
to_cpu() (chainer.links.ConvolutionND method), 361
to_cpu() (chainer.links.CRF1d method), 646
to_cpu() (chainer.links.Deconvolution1D method),

367
to_cpu() (chainer.links.Deconvolution2D method),

374
to_cpu() (chainer.links.Deconvolution3D method),

380
to_cpu() (chainer.links.DeconvolutionND method),

388
to_cpu() (chainer.links.DecorrelatedBatchNormalization

method), 614
to_cpu() (chainer.links.DeformableConvolution2D

method), 394

to_cpu() (chainer.links.DepthwiseConvolution2D
method), 401

to_cpu() (chainer.links.DilatedConvolution2D
method), 408

to_cpu() (chainer.links.EmbedID method), 415
to_cpu() (chainer.links.GoogLeNet method), 710
to_cpu() (chainer.links.GroupNormalization method),

621
to_cpu() (chainer.links.GRU method), 421
to_cpu() (chainer.links.Highway method), 427
to_cpu() (chainer.links.Inception method), 434
to_cpu() (chainer.links.InceptionBN method), 440
to_cpu() (chainer.links.LayerNormalization method),

627
to_cpu() (chainer.links.Linear method), 447
to_cpu() (chainer.links.LocalConvolution2D method),

454
to_cpu() (chainer.links.LSTM method), 461
to_cpu() (chainer.links.Maxout method), 673
to_cpu() (chainer.links.MLPConvolution2D method),

469
to_cpu() (chainer.links.model.vision.resnet.ResNetLayers

method), 719
to_cpu() (chainer.links.NaryTreeLSTM method), 475
to_cpu() (chainer.links.NegativeSampling method),

679
to_cpu() (chainer.links.NStepBiGRU method), 482
to_cpu() (chainer.links.NStepBiLSTM method), 490
to_cpu() (chainer.links.NStepBiRNNReLU method),

497
to_cpu() (chainer.links.NStepBiRNNTanh method),

504
to_cpu() (chainer.links.NStepGRU method), 511
to_cpu() (chainer.links.NStepLSTM method), 518
to_cpu() (chainer.links.NStepRNNReLU method), 526
to_cpu() (chainer.links.NStepRNNTanh method), 533
to_cpu() (chainer.links.Parameter method), 539
to_cpu() (chainer.links.PReLU method), 660
to_cpu() (chainer.links.ResNet101Layers method),

734
to_cpu() (chainer.links.ResNet152Layers method),

742
to_cpu() (chainer.links.ResNet50Layers method), 726
to_cpu() (chainer.links.Scale method), 545
to_cpu() (chainer.links.SimplifiedDropconnect

method), 653
to_cpu() (chainer.links.StatefulGRU method), 552
to_cpu() (chainer.links.StatefulMGU method), 565
to_cpu() (chainer.links.StatefulPeepholeLSTM

method), 578
to_cpu() (chainer.links.StatefulZoneoutLSTM

method), 584
to_cpu() (chainer.links.StatelessGRU method), 559
to_cpu() (chainer.links.StatelessLSTM method), 592

Index 1389

Chainer Documentation, Release 7.0.0b4

to_cpu() (chainer.links.StatelessMGU method), 571
to_cpu() (chainer.links.Swish method), 666
to_cpu() (chainer.links.TheanoFunction method), 749
to_cpu() (chainer.links.VGG16Layers method), 695
to_cpu() (chainer.links.VGG19Layers method), 702
to_cpu() (chainer.Parameter method), 144
to_cpu() (chainer.Sequential method), 786
to_cpu() (chainer.utils.WalkerAlias method), 1092
to_cpu() (chainer.Variable method), 135
to_cpu() (in module chainer.backends.cuda), 1086
to_dense() (chainer.utils.CooMatrix method), 1099
to_device() (chainer.Chain method), 771
to_device() (chainer.ChainList method), 777
to_device() (chainer.DeviceResident method), 1077
to_device() (chainer.Link method), 764
to_device() (chainer.links.BatchNormalization

method), 601
to_device() (chainer.links.BatchRenormalization

method), 608
to_device() (chainer.links.Bias method), 321
to_device() (chainer.links.Bilinear method), 327
to_device() (chainer.links.BinaryHierarchicalSoftmax

method), 634
to_device() (chainer.links.BlackOut method), 640
to_device() (chainer.links.caffe.CaffeFunction

method), 757
to_device() (chainer.links.ChildSumTreeLSTM

method), 334
to_device() (chainer.links.Classifier method), 687
to_device() (chainer.links.Convolution1D method),

340
to_device() (chainer.links.Convolution2D method),

348
to_device() (chainer.links.Convolution3D method),

354
to_device() (chainer.links.ConvolutionND method),

361
to_device() (chainer.links.CRF1d method), 647
to_device() (chainer.links.Deconvolution1D

method), 367
to_device() (chainer.links.Deconvolution2D

method), 374
to_device() (chainer.links.Deconvolution3D

method), 380
to_device() (chainer.links.DeconvolutionND

method), 388
to_device() (chainer.links.DecorrelatedBatchNormalization

method), 614
to_device() (chainer.links.DeformableConvolution2D

method), 395
to_device() (chainer.links.DepthwiseConvolution2D

method), 401
to_device() (chainer.links.DilatedConvolution2D

method), 409

to_device() (chainer.links.EmbedID method), 415
to_device() (chainer.links.GoogLeNet method), 710
to_device() (chainer.links.GroupNormalization

method), 621
to_device() (chainer.links.GRU method), 421
to_device() (chainer.links.Highway method), 428
to_device() (chainer.links.Inception method), 434
to_device() (chainer.links.InceptionBN method), 441
to_device() (chainer.links.LayerNormalization

method), 627
to_device() (chainer.links.Linear method), 448
to_device() (chainer.links.LocalConvolution2D

method), 454
to_device() (chainer.links.LSTM method), 462
to_device() (chainer.links.Maxout method), 673
to_device() (chainer.links.MLPConvolution2D

method), 469
to_device() (chainer.links.model.vision.resnet.ResNetLayers

method), 719
to_device() (chainer.links.NaryTreeLSTM method),

475
to_device() (chainer.links.NegativeSampling

method), 679
to_device() (chainer.links.NStepBiGRU method),

482
to_device() (chainer.links.NStepBiLSTM method),

490
to_device() (chainer.links.NStepBiRNNReLU

method), 497
to_device() (chainer.links.NStepBiRNNTanh

method), 504
to_device() (chainer.links.NStepGRU method), 511
to_device() (chainer.links.NStepLSTM method), 518
to_device() (chainer.links.NStepRNNReLU method),

526
to_device() (chainer.links.NStepRNNTanh method),

533
to_device() (chainer.links.Parameter method), 539
to_device() (chainer.links.PReLU method), 660
to_device() (chainer.links.ResNet101Layers

method), 734
to_device() (chainer.links.ResNet152Layers

method), 742
to_device() (chainer.links.ResNet50Layers method),

727
to_device() (chainer.links.Scale method), 545
to_device() (chainer.links.SimplifiedDropconnect

method), 653
to_device() (chainer.links.StatefulGRU method), 553
to_device() (chainer.links.StatefulMGU method),

566
to_device() (chainer.links.StatefulPeepholeLSTM

method), 578
to_device() (chainer.links.StatefulZoneoutLSTM

1390 Index

Chainer Documentation, Release 7.0.0b4

method), 585
to_device() (chainer.links.StatelessGRU method),

560
to_device() (chainer.links.StatelessLSTM method),

592
to_device() (chainer.links.StatelessMGU method),

571
to_device() (chainer.links.Swish method), 666
to_device() (chainer.links.TheanoFunction method),

749
to_device() (chainer.links.VGG16Layers method),

695
to_device() (chainer.links.VGG19Layers method),

702
to_device() (chainer.Parameter method), 144
to_device() (chainer.Sequential method), 786
to_device() (chainer.utils.WalkerAlias method),

1092
to_device() (chainer.Variable method), 135
to_device() (in module chainer.dataset), 1023
to_gpu() (chainer.Chain method), 771
to_gpu() (chainer.ChainList method), 777
to_gpu() (chainer.DeviceResident method), 1077
to_gpu() (chainer.Link method), 764
to_gpu() (chainer.links.BatchNormalization method),

601
to_gpu() (chainer.links.BatchRenormalization

method), 608
to_gpu() (chainer.links.Bias method), 321
to_gpu() (chainer.links.Bilinear method), 328
to_gpu() (chainer.links.BinaryHierarchicalSoftmax

method), 634
to_gpu() (chainer.links.BlackOut method), 640
to_gpu() (chainer.links.caffe.CaffeFunction method),

757
to_gpu() (chainer.links.ChildSumTreeLSTM method),

334
to_gpu() (chainer.links.Classifier method), 687
to_gpu() (chainer.links.Convolution1D method), 340
to_gpu() (chainer.links.Convolution2D method), 348
to_gpu() (chainer.links.Convolution3D method), 354
to_gpu() (chainer.links.ConvolutionND method), 361
to_gpu() (chainer.links.CRF1d method), 647
to_gpu() (chainer.links.Deconvolution1D method),

367
to_gpu() (chainer.links.Deconvolution2D method),

375
to_gpu() (chainer.links.Deconvolution3D method),

381
to_gpu() (chainer.links.DeconvolutionND method),

388
to_gpu() (chainer.links.DecorrelatedBatchNormalization

method), 615
to_gpu() (chainer.links.DeformableConvolution2D

method), 395
to_gpu() (chainer.links.DepthwiseConvolution2D

method), 401
to_gpu() (chainer.links.DilatedConvolution2D

method), 409
to_gpu() (chainer.links.EmbedID method), 415
to_gpu() (chainer.links.GoogLeNet method), 711
to_gpu() (chainer.links.GroupNormalization method),

621
to_gpu() (chainer.links.GRU method), 421
to_gpu() (chainer.links.Highway method), 428
to_gpu() (chainer.links.Inception method), 434
to_gpu() (chainer.links.InceptionBN method), 441
to_gpu() (chainer.links.LayerNormalization method),

628
to_gpu() (chainer.links.Linear method), 448
to_gpu() (chainer.links.LocalConvolution2D method),

454
to_gpu() (chainer.links.LSTM method), 462
to_gpu() (chainer.links.Maxout method), 673
to_gpu() (chainer.links.MLPConvolution2D method),

469
to_gpu() (chainer.links.model.vision.resnet.ResNetLayers

method), 719
to_gpu() (chainer.links.NaryTreeLSTM method), 476
to_gpu() (chainer.links.NegativeSampling method),

680
to_gpu() (chainer.links.NStepBiGRU method), 483
to_gpu() (chainer.links.NStepBiLSTM method), 490
to_gpu() (chainer.links.NStepBiRNNReLU method),

497
to_gpu() (chainer.links.NStepBiRNNTanh method),

504
to_gpu() (chainer.links.NStepGRU method), 511
to_gpu() (chainer.links.NStepLSTM method), 519
to_gpu() (chainer.links.NStepRNNReLU method), 526
to_gpu() (chainer.links.NStepRNNTanh method), 533
to_gpu() (chainer.links.Parameter method), 539
to_gpu() (chainer.links.PReLU method), 660
to_gpu() (chainer.links.ResNet101Layers method),

734
to_gpu() (chainer.links.ResNet152Layers method),

742
to_gpu() (chainer.links.ResNet50Layers method), 727
to_gpu() (chainer.links.Scale method), 546
to_gpu() (chainer.links.SimplifiedDropconnect

method), 653
to_gpu() (chainer.links.StatefulGRU method), 553
to_gpu() (chainer.links.StatefulMGU method), 566
to_gpu() (chainer.links.StatefulPeepholeLSTM

method), 579
to_gpu() (chainer.links.StatefulZoneoutLSTM

method), 585
to_gpu() (chainer.links.StatelessGRU method), 560

Index 1391

Chainer Documentation, Release 7.0.0b4

to_gpu() (chainer.links.StatelessLSTM method), 592
to_gpu() (chainer.links.StatelessMGU method), 572
to_gpu() (chainer.links.Swish method), 667
to_gpu() (chainer.links.TheanoFunction method), 750
to_gpu() (chainer.links.VGG16Layers method), 695
to_gpu() (chainer.links.VGG19Layers method), 702
to_gpu() (chainer.Parameter method), 144
to_gpu() (chainer.Sequential method), 786
to_gpu() (chainer.utils.WalkerAlias method), 1092
to_gpu() (chainer.Variable method), 135
to_gpu() (in module chainer.backends.cuda), 1086
to_intel64() (chainer.Chain method), 771
to_intel64() (chainer.ChainList method), 777
to_intel64() (chainer.DeviceResident method),

1077
to_intel64() (chainer.Link method), 764
to_intel64() (chainer.links.BatchNormalization

method), 601
to_intel64() (chainer.links.BatchRenormalization

method), 608
to_intel64() (chainer.links.Bias method), 321
to_intel64() (chainer.links.Bilinear method), 328
to_intel64() (chainer.links.BinaryHierarchicalSoftmax

method), 634
to_intel64() (chainer.links.BlackOut method), 640
to_intel64() (chainer.links.caffe.CaffeFunction

method), 757
to_intel64() (chainer.links.ChildSumTreeLSTM

method), 334
to_intel64() (chainer.links.Classifier method), 687
to_intel64() (chainer.links.Convolution1D method),

340
to_intel64() (chainer.links.Convolution2D method),

348
to_intel64() (chainer.links.Convolution3D method),

354
to_intel64() (chainer.links.ConvolutionND

method), 362
to_intel64() (chainer.links.CRF1d method), 647
to_intel64() (chainer.links.Deconvolution1D

method), 367
to_intel64() (chainer.links.Deconvolution2D

method), 375
to_intel64() (chainer.links.Deconvolution3D

method), 381
to_intel64() (chainer.links.DeconvolutionND

method), 388
to_intel64() (chainer.links.DecorrelatedBatchNormalization

method), 615
to_intel64() (chainer.links.DeformableConvolution2D

method), 395
to_intel64() (chainer.links.DepthwiseConvolution2D

method), 402
to_intel64() (chainer.links.DilatedConvolution2D

method), 409
to_intel64() (chainer.links.EmbedID method), 415
to_intel64() (chainer.links.GoogLeNet method),

711
to_intel64() (chainer.links.GroupNormalization

method), 621
to_intel64() (chainer.links.GRU method), 422
to_intel64() (chainer.links.Highway method), 428
to_intel64() (chainer.links.Inception method), 435
to_intel64() (chainer.links.InceptionBN method),

441
to_intel64() (chainer.links.LayerNormalization

method), 628
to_intel64() (chainer.links.Linear method), 448
to_intel64() (chainer.links.LocalConvolution2D

method), 454
to_intel64() (chainer.links.LSTM method), 462
to_intel64() (chainer.links.Maxout method), 674
to_intel64() (chainer.links.MLPConvolution2D

method), 469
to_intel64() (chainer.links.model.vision.resnet.ResNetLayers

method), 719
to_intel64() (chainer.links.NaryTreeLSTM method),

476
to_intel64() (chainer.links.NegativeSampling

method), 680
to_intel64() (chainer.links.NStepBiGRU method),

483
to_intel64() (chainer.links.NStepBiLSTM method),

490
to_intel64() (chainer.links.NStepBiRNNReLU

method), 497
to_intel64() (chainer.links.NStepBiRNNTanh

method), 504
to_intel64() (chainer.links.NStepGRU method), 512
to_intel64() (chainer.links.NStepLSTM method),

519
to_intel64() (chainer.links.NStepRNNReLU

method), 526
to_intel64() (chainer.links.NStepRNNTanh

method), 533
to_intel64() (chainer.links.Parameter method), 539
to_intel64() (chainer.links.PReLU method), 660
to_intel64() (chainer.links.ResNet101Layers

method), 734
to_intel64() (chainer.links.ResNet152Layers

method), 742
to_intel64() (chainer.links.ResNet50Layers

method), 727
to_intel64() (chainer.links.Scale method), 546
to_intel64() (chainer.links.SimplifiedDropconnect

method), 654
to_intel64() (chainer.links.StatefulGRU method),

553

1392 Index

Chainer Documentation, Release 7.0.0b4

to_intel64() (chainer.links.StatefulMGU method),
566

to_intel64() (chainer.links.StatefulPeepholeLSTM
method), 579

to_intel64() (chainer.links.StatefulZoneoutLSTM
method), 585

to_intel64() (chainer.links.StatelessGRU method),
560

to_intel64() (chainer.links.StatelessLSTM method),
592

to_intel64() (chainer.links.StatelessMGU method),
572

to_intel64() (chainer.links.Swish method), 667
to_intel64() (chainer.links.TheanoFunction

method), 750
to_intel64() (chainer.links.VGG16Layers method),

695
to_intel64() (chainer.links.VGG19Layers method),

703
to_intel64() (chainer.Parameter method), 144
to_intel64() (chainer.Sequential method), 786
to_intel64() (chainer.utils.WalkerAlias method),

1092
to_intel64() (chainer.Variable method), 135
total_acquired_bytes()

(chainer.function_hooks.CupyMemoryProfileHook
method), 308

total_time() (chainer.function_hooks.TimerHook
method), 312

total_time() (chainer.link_hooks.TimerHook
method), 791

total_used_bytes()
(chainer.function_hooks.CupyMemoryProfileHook
method), 308

train (chainer.configuration.GlobalConfig attribute),
1107

Trainer (class in chainer.training), 947
transform() (chainer.dataset.tabular.DelegateDataset

method), 1017
transform() (chainer.dataset.TabularDataset

method), 1013
transform_batch()

(chainer.dataset.tabular.DelegateDataset
method), 1017

transform_batch()
(chainer.dataset.TabularDataset method),
1013

TransformDataset (class in chainer.datasets), 1032
transpose() (chainer.Parameter method), 144
transpose() (chainer.Variable method), 135
transpose() (in module chainer.functions), 193
transpose_sequence() (in module

chainer.functions), 194
tree_lstm() (in module chainer.functions), 166

trigger (chainer.training.Extension attribute), 960
trigger (chainer.training.extensions.Evaluator at-

tribute), 964
trigger (chainer.training.extensions.ExponentialShift

attribute), 973
trigger (chainer.training.extensions.FailOnNonNumber

attribute), 967
trigger (chainer.training.extensions.InverseShift at-

tribute), 974
trigger (chainer.training.extensions.LinearShift

attribute), 976
trigger (chainer.training.extensions.LogReport at-

tribute), 989
trigger (chainer.training.extensions.MicroAverage at-

tribute), 966
trigger (chainer.training.extensions.MultistepShift at-

tribute), 978
trigger (chainer.training.extensions.ParameterStatistics

attribute), 970
trigger (chainer.training.extensions.PlotReport

attribute), 991
trigger (chainer.training.extensions.PolynomialShift

attribute), 980
trigger (chainer.training.extensions.PrintReport at-

tribute), 985
trigger (chainer.training.extensions.ProgressBar at-

tribute), 987
trigger (chainer.training.extensions.StepShift at-

tribute), 983
trigger (chainer.training.extensions.VariableStatisticsPlot

attribute), 994
trigger (chainer.training.extensions.WarmupShift at-

tribute), 982
trigger() (chainer.training.extensions.DumpGraph

method), 996
trigger() (chainer.training.extensions.unchain_variables

method), 1000
triplet() (in module chainer.functions), 242
TupleDataset (class in chainer.datasets), 1026
type_check (chainer.configuration.GlobalConfig at-

tribute), 1107
TypeInfo (class in chainer.utils.type_check), 1126
TypeInfoTuple (class in chainer.utils.type_check),

1126

U
unary_math_function_unittest() (in module

chainer.testing), 1141
unchain() (chainer.Function method), 290
unchain() (chainer.FunctionAdapter method), 295
unchain() (chainer.FunctionNode method), 301
unchain() (chainer.Parameter method), 144
unchain() (chainer.Variable method), 135

Index 1393

Chainer Documentation, Release 7.0.0b4

unchain() (chainer.variable.VariableNode method),
150

unchain_backward() (chainer.Parameter method),
144

unchain_backward() (chainer.Variable method),
135

unchain_variables (class in
chainer.training.extensions), 999

Uniform (class in chainer.distributions), 854
Uniform (class in chainer.initializers), 934
unpooling_1d() (in module chainer.functions), 282
unpooling_2d() (in module chainer.functions), 283
unpooling_3d() (in module chainer.functions), 283
unpooling_nd() (in module chainer.functions), 284
update() (chainer.GradientMethod method), 917
update() (chainer.Optimizer method), 911
update() (chainer.optimizers.AdaBound method), 881
update() (chainer.optimizers.AdaDelta method), 865
update() (chainer.optimizers.AdaGrad method), 868
update() (chainer.optimizers.Adam method), 871
update() (chainer.optimizers.AdamW method), 874
update() (chainer.optimizers.AMSBound method), 884
update() (chainer.optimizers.AMSGrad method), 878
update() (chainer.optimizers.CorrectedMomentumSGD

method), 888
update() (chainer.optimizers.MomentumSGD

method), 891
update() (chainer.optimizers.MSVAG method), 896
update() (chainer.optimizers.NesterovAG method),

893
update() (chainer.optimizers.RMSprop method), 899
update() (chainer.optimizers.RMSpropGraves

method), 902
update() (chainer.optimizers.SGD method), 905
update() (chainer.optimizers.SMORMS3 method), 908
update() (chainer.Parameter method), 144
update() (chainer.training.Updater method), 951
update() (chainer.training.updaters.MultiprocessParallelUpdater

method), 957
update() (chainer.training.updaters.ParallelUpdater

method), 955
update() (chainer.training.updaters.StandardUpdater

method), 953
update() (chainer.UpdateRule method), 913
update_core() (chainer.training.updaters.MultiprocessParallelUpdater

method), 957
update_core() (chainer.training.updaters.ParallelUpdater

method), 955
update_core() (chainer.training.updaters.StandardUpdater

method), 953
update_core() (chainer.UpdateRule method), 913
update_core_chainerx() (chainer.UpdateRule

method), 913
update_core_cpu() (chainer.UpdateRule method),

914
update_core_gpu() (chainer.UpdateRule method),

914
update_enabled (chainer.Chain attribute), 772
update_enabled (chainer.ChainList attribute), 778
update_enabled (chainer.Link attribute), 765
update_enabled (chainer.links.BatchNormalization

attribute), 602
update_enabled (chainer.links.BatchRenormalization

attribute), 609
update_enabled (chainer.links.Bias attribute), 322
update_enabled (chainer.links.Bilinear attribute),

329
update_enabled (chainer.links.BinaryHierarchicalSoftmax

attribute), 635
update_enabled (chainer.links.BlackOut attribute),

641
update_enabled (chainer.links.caffe.CaffeFunction

attribute), 758
update_enabled (chainer.links.ChildSumTreeLSTM

attribute), 335
update_enabled (chainer.links.Classifier attribute),

688
update_enabled (chainer.links.Convolution1D at-

tribute), 341
update_enabled (chainer.links.Convolution2D at-

tribute), 349
update_enabled (chainer.links.Convolution3D at-

tribute), 355
update_enabled (chainer.links.ConvolutionND at-

tribute), 362
update_enabled (chainer.links.CRF1d attribute),

648
update_enabled (chainer.links.Deconvolution1D at-

tribute), 368
update_enabled (chainer.links.Deconvolution2D at-

tribute), 376
update_enabled (chainer.links.Deconvolution3D at-

tribute), 382
update_enabled (chainer.links.DeconvolutionND at-

tribute), 389
update_enabled (chainer.links.DecorrelatedBatchNormalization

attribute), 616
update_enabled (chainer.links.DeformableConvolution2D

attribute), 396
update_enabled (chainer.links.DepthwiseConvolution2D

attribute), 402
update_enabled (chainer.links.DilatedConvolution2D

attribute), 410
update_enabled (chainer.links.EmbedID attribute),

416
update_enabled (chainer.links.GoogLeNet at-

tribute), 712
update_enabled (chainer.links.GroupNormalization

1394 Index

Chainer Documentation, Release 7.0.0b4

attribute), 622
update_enabled (chainer.links.GRU attribute), 422
update_enabled (chainer.links.Highway attribute),

429
update_enabled (chainer.links.Inception attribute),

435
update_enabled (chainer.links.InceptionBN at-

tribute), 442
update_enabled (chainer.links.LayerNormalization

attribute), 629
update_enabled (chainer.links.Linear attribute), 449
update_enabled (chainer.links.LocalConvolution2D

attribute), 455
update_enabled (chainer.links.LSTM attribute), 463
update_enabled (chainer.links.Maxout attribute),

674
update_enabled (chainer.links.MLPConvolution2D

attribute), 470
update_enabled (chainer.links.model.vision.resnet.ResNetLayers

attribute), 720
update_enabled (chainer.links.NaryTreeLSTM at-

tribute), 477
update_enabled (chainer.links.NegativeSampling at-

tribute), 681
update_enabled (chainer.links.NStepBiGRU at-

tribute), 484
update_enabled (chainer.links.NStepBiLSTM at-

tribute), 491
update_enabled (chainer.links.NStepBiRNNReLU

attribute), 498
update_enabled (chainer.links.NStepBiRNNTanh at-

tribute), 505
update_enabled (chainer.links.NStepGRU attribute),

512
update_enabled (chainer.links.NStepLSTM at-

tribute), 520
update_enabled (chainer.links.NStepRNNReLU at-

tribute), 527
update_enabled (chainer.links.NStepRNNTanh at-

tribute), 534
update_enabled (chainer.links.Parameter attribute),

540
update_enabled (chainer.links.PReLU attribute),

661
update_enabled (chainer.links.ResNet101Layers at-

tribute), 735
update_enabled (chainer.links.ResNet152Layers at-

tribute), 743
update_enabled (chainer.links.ResNet50Layers at-

tribute), 728
update_enabled (chainer.links.Scale attribute), 547
update_enabled (chainer.links.SimplifiedDropconnect

attribute), 654
update_enabled (chainer.links.StatefulGRU at-

tribute), 554
update_enabled (chainer.links.StatefulMGU at-

tribute), 567
update_enabled (chainer.links.StatefulPeepholeLSTM

attribute), 580
update_enabled (chainer.links.StatefulZoneoutLSTM

attribute), 586
update_enabled (chainer.links.StatelessGRU at-

tribute), 561
update_enabled (chainer.links.StatelessLSTM

attribute), 593
update_enabled (chainer.links.StatelessMGU

attribute), 573
update_enabled (chainer.links.Swish attribute), 668
update_enabled (chainer.links.TheanoFunction at-

tribute), 751
update_enabled (chainer.links.VGG16Layers at-

tribute), 696
update_enabled (chainer.links.VGG19Layers at-

tribute), 703
update_enabled (chainer.Sequential attribute), 787
update_loss_scale() (chainer.GradientMethod

method), 917
update_loss_scale() (chainer.Optimizer method),

911
update_loss_scale()

(chainer.optimizers.AdaBound method),
881

update_loss_scale()
(chainer.optimizers.AdaDelta method), 865

update_loss_scale()
(chainer.optimizers.AdaGrad method), 868

update_loss_scale() (chainer.optimizers.Adam
method), 871

update_loss_scale() (chainer.optimizers.AdamW
method), 874

update_loss_scale()
(chainer.optimizers.AMSBound method),
885

update_loss_scale()
(chainer.optimizers.AMSGrad method), 878

update_loss_scale()
(chainer.optimizers.CorrectedMomentumSGD
method), 888

update_loss_scale()
(chainer.optimizers.MomentumSGD method),
891

update_loss_scale() (chainer.optimizers.MSVAG
method), 897

update_loss_scale()
(chainer.optimizers.NesterovAG method),
894

update_loss_scale()
(chainer.optimizers.RMSprop method), 900

Index 1395

Chainer Documentation, Release 7.0.0b4

update_loss_scale()
(chainer.optimizers.RMSpropGraves method),
903

update_loss_scale() (chainer.optimizers.SGD
method), 905

update_loss_scale()
(chainer.optimizers.SMORMS3 method),
908

Updater (class in chainer.training), 950
UpdateRule (class in chainer), 912
upsampling_2d() (in module chainer.functions), 284
UpsamplingDeconvFilter (class in

chainer.initializers), 937
use() (chainer.backend.ChainerxDevice method), 1083
use() (chainer.backend.CpuDevice method), 1080
use() (chainer.backend.Device method), 1075
use() (chainer.backend.GpuDevice method), 1081
use() (chainer.backend.Intel64Device method), 1082
use_auto_new_epoch (chainer.GradientMethod at-

tribute), 918
use_auto_new_epoch (chainer.Optimizer attribute),

912
use_auto_new_epoch

(chainer.optimizers.AdaBound attribute),
882

use_auto_new_epoch (chainer.optimizers.AdaDelta
attribute), 866

use_auto_new_epoch (chainer.optimizers.AdaGrad
attribute), 869

use_auto_new_epoch (chainer.optimizers.Adam at-
tribute), 872

use_auto_new_epoch (chainer.optimizers.AdamW
attribute), 876

use_auto_new_epoch
(chainer.optimizers.AMSBound attribute),
886

use_auto_new_epoch (chainer.optimizers.AMSGrad
attribute), 879

use_auto_new_epoch
(chainer.optimizers.CorrectedMomentumSGD
attribute), 889

use_auto_new_epoch
(chainer.optimizers.MomentumSGD attribute),
892

use_auto_new_epoch (chainer.optimizers.MSVAG
attribute), 897

use_auto_new_epoch
(chainer.optimizers.NesterovAG attribute),
894

use_auto_new_epoch (chainer.optimizers.RMSprop
attribute), 900

use_auto_new_epoch
(chainer.optimizers.RMSpropGraves attribute),
903

use_auto_new_epoch (chainer.optimizers.SGD at-
tribute), 906

use_auto_new_epoch
(chainer.optimizers.SMORMS3 attribute),
909

use_bi_direction (chainer.links.NStepBiGRU at-
tribute), 484

use_bi_direction (chainer.links.NStepBiLSTM at-
tribute), 491

use_bi_direction (chainer.links.NStepBiRNNReLU
attribute), 498

use_bi_direction (chainer.links.NStepBiRNNTanh
attribute), 505

use_bi_direction (chainer.links.NStepGRU at-
tribute), 513

use_bi_direction (chainer.links.NStepLSTM at-
tribute), 520

use_bi_direction (chainer.links.NStepRNNReLU
attribute), 527

use_bi_direction (chainer.links.NStepRNNTanh
attribute), 534

use_cleargrads() (chainer.GradientMethod
method), 917

use_cleargrads() (chainer.optimizers.AdaBound
method), 881

use_cleargrads() (chainer.optimizers.AdaDelta
method), 865

use_cleargrads() (chainer.optimizers.AdaGrad
method), 868

use_cleargrads() (chainer.optimizers.Adam
method), 871

use_cleargrads() (chainer.optimizers.AdamW
method), 874

use_cleargrads() (chainer.optimizers.AMSBound
method), 885

use_cleargrads() (chainer.optimizers.AMSGrad
method), 878

use_cleargrads() (chainer.optimizers.CorrectedMomentumSGD
method), 888

use_cleargrads() (chainer.optimizers.MomentumSGD
method), 891

use_cleargrads() (chainer.optimizers.MSVAG
method), 897

use_cleargrads() (chainer.optimizers.NesterovAG
method), 894

use_cleargrads() (chainer.optimizers.RMSprop
method), 900

use_cleargrads() (chainer.optimizers.RMSpropGraves
method), 903

use_cleargrads() (chainer.optimizers.SGD
method), 905

use_cleargrads() (chainer.optimizers.SMORMS3
method), 908

use_cudnn (chainer.configuration.GlobalConfig

1396 Index

Chainer Documentation, Release 7.0.0b4

attribute), 1107
use_cudnn_tensor_core

(chainer.configuration.GlobalConfig attribute),
1107

use_fp32_update() (chainer.GradientMethod
method), 918

use_fp32_update() (chainer.optimizers.AdaBound
method), 881

use_fp32_update() (chainer.optimizers.AdaDelta
method), 865

use_fp32_update() (chainer.optimizers.AdaGrad
method), 868

use_fp32_update() (chainer.optimizers.Adam
method), 871

use_fp32_update() (chainer.optimizers.AdamW
method), 875

use_fp32_update() (chainer.optimizers.AMSBound
method), 885

use_fp32_update() (chainer.optimizers.AMSGrad
method), 878

use_fp32_update()
(chainer.optimizers.CorrectedMomentumSGD
method), 888

use_fp32_update()
(chainer.optimizers.MomentumSGD method),
891

use_fp32_update() (chainer.optimizers.MSVAG
method), 897

use_fp32_update()
(chainer.optimizers.NesterovAG method),
894

use_fp32_update() (chainer.optimizers.RMSprop
method), 900

use_fp32_update()
(chainer.optimizers.RMSpropGraves method),
903

use_fp32_update() (chainer.optimizers.SGD
method), 906

use_fp32_update() (chainer.optimizers.SMORMS3
method), 908

use_fp32_update() (chainer.UpdateRule method),
914

use_gpu (chainer.utils.WalkerAlias attribute), 1093
use_ideep (chainer.configuration.GlobalConfig

attribute), 1107
use_static_graph (chainer.configuration.GlobalConfig

attribute), 1107
using_config() (in module chainer), 1106
using_device() (in module chainer), 1076

V
Variable (class in chainer), 131
Variable (class in chainer.utils.type_check), 1127
VariableNode (class in chainer.variable), 148

VariableStatisticsPlot (class in
chainer.training.extensions), 992

variance (chainer.Distribution attribute), 862
variance (chainer.distributions.Bernoulli attribute),

799
variance (chainer.distributions.Beta attribute), 803
variance (chainer.distributions.Categorical attribute),

806
variance (chainer.distributions.Cauchy attribute), 809
variance (chainer.distributions.Chisquare attribute),

812
variance (chainer.distributions.Dirichlet attribute),

815
variance (chainer.distributions.Exponential attribute),

818
variance (chainer.distributions.Gamma attribute), 822
variance (chainer.distributions.Geometric attribute),

825
variance (chainer.distributions.Gumbel attribute), 828
variance (chainer.distributions.Independent attribute),

831
variance (chainer.distributions.Laplace attribute), 834
variance (chainer.distributions.LogNormal attribute),

838
variance (chainer.distributions.MultivariateNormal

attribute), 841
variance (chainer.distributions.Normal attribute), 844
variance (chainer.distributions.OneHotCategorical

attribute), 847
variance (chainer.distributions.Pareto attribute), 850
variance (chainer.distributions.Poisson attribute), 854
variance (chainer.distributions.Uniform attribute),

857
VGG16Layers (class in chainer.links), 689
VGG19Layers (class in chainer.links), 696
visit_array() (chainer.device_resident.DeviceResidentsVisitor

method), 1078
visit_device_resident()

(chainer.device_resident.DeviceResidentsVisitor
method), 1078

visit_variable() (chainer.device_resident.DeviceResidentsVisitor
method), 1078

vstack() (in module chainer.functions), 195

W
WalkerAlias (class in chainer.utils), 1091
WarmupShift (class in chainer.training.extensions),

980
warn_nondeterministic

(chainer.configuration.GlobalConfig attribute),
1107

weight_decay_rate (chainer.optimizers.AdaBound
attribute), 882

Index 1397

Chainer Documentation, Release 7.0.0b4

weight_decay_rate (chainer.optimizers.Adam at-
tribute), 872

weight_decay_rate (chainer.optimizers.AdamW at-
tribute), 876

weight_decay_rate (chainer.optimizers.AMSBound
attribute), 886

weight_decay_rate (chainer.optimizers.AMSGrad
attribute), 879

weight_decay_rate (chainer.optimizers.MSVAG at-
tribute), 897

WeightDecay (class in chainer.optimizer_hooks), 918
WeightStandardization (class in

chainer.link_hooks), 792
where() (in module chainer.functions), 196
with_converter() (chainer.dataset.tabular.DelegateDataset

method), 1017
with_converter() (chainer.dataset.TabularDataset

method), 1014
with_requires() (in module chainer.testing), 1161
within_init_scope (chainer.Chain attribute), 772
within_init_scope (chainer.ChainList attribute),

778
within_init_scope (chainer.Link attribute), 765
within_init_scope

(chainer.links.BatchNormalization attribute),
602

within_init_scope
(chainer.links.BatchRenormalization attribute),
609

within_init_scope (chainer.links.Bias attribute),
322

within_init_scope (chainer.links.Bilinear at-
tribute), 329

within_init_scope
(chainer.links.BinaryHierarchicalSoftmax
attribute), 635

within_init_scope (chainer.links.BlackOut at-
tribute), 641

within_init_scope
(chainer.links.caffe.CaffeFunction attribute),
758

within_init_scope
(chainer.links.ChildSumTreeLSTM attribute),
335

within_init_scope (chainer.links.Classifier at-
tribute), 688

within_init_scope (chainer.links.Convolution1D
attribute), 341

within_init_scope (chainer.links.Convolution2D
attribute), 349

within_init_scope (chainer.links.Convolution3D
attribute), 355

within_init_scope (chainer.links.ConvolutionND
attribute), 362

within_init_scope (chainer.links.CRF1d at-
tribute), 648

within_init_scope
(chainer.links.Deconvolution1D attribute),
368

within_init_scope
(chainer.links.Deconvolution2D attribute),
376

within_init_scope
(chainer.links.Deconvolution3D attribute),
382

within_init_scope
(chainer.links.DeconvolutionND attribute),
389

within_init_scope
(chainer.links.DecorrelatedBatchNormalization
attribute), 616

within_init_scope
(chainer.links.DeformableConvolution2D
attribute), 396

within_init_scope
(chainer.links.DepthwiseConvolution2D at-
tribute), 402

within_init_scope
(chainer.links.DilatedConvolution2D attribute),
410

within_init_scope (chainer.links.EmbedID at-
tribute), 416

within_init_scope (chainer.links.GoogLeNet at-
tribute), 712

within_init_scope
(chainer.links.GroupNormalization attribute),
622

within_init_scope (chainer.links.GRU attribute),
422

within_init_scope (chainer.links.Highway at-
tribute), 429

within_init_scope (chainer.links.Inception at-
tribute), 435

within_init_scope (chainer.links.InceptionBN at-
tribute), 442

within_init_scope
(chainer.links.LayerNormalization attribute),
629

within_init_scope (chainer.links.Linear attribute),
449

within_init_scope
(chainer.links.LocalConvolution2D attribute),
455

within_init_scope (chainer.links.LSTM attribute),
463

within_init_scope (chainer.links.Maxout at-
tribute), 674

within_init_scope

1398 Index

Chainer Documentation, Release 7.0.0b4

(chainer.links.MLPConvolution2D attribute),
470

within_init_scope
(chainer.links.model.vision.resnet.ResNetLayers
attribute), 720

within_init_scope (chainer.links.NaryTreeLSTM
attribute), 477

within_init_scope
(chainer.links.NegativeSampling attribute),
681

within_init_scope (chainer.links.NStepBiGRU at-
tribute), 484

within_init_scope (chainer.links.NStepBiLSTM
attribute), 491

within_init_scope
(chainer.links.NStepBiRNNReLU attribute),
498

within_init_scope
(chainer.links.NStepBiRNNTanh attribute),
505

within_init_scope (chainer.links.NStepGRU at-
tribute), 513

within_init_scope (chainer.links.NStepLSTM at-
tribute), 520

within_init_scope (chainer.links.NStepRNNReLU
attribute), 527

within_init_scope (chainer.links.NStepRNNTanh
attribute), 534

within_init_scope (chainer.links.Parameter
attribute), 540

within_init_scope (chainer.links.PReLU at-
tribute), 661

within_init_scope
(chainer.links.ResNet101Layers attribute),
735

within_init_scope
(chainer.links.ResNet152Layers attribute),
743

within_init_scope (chainer.links.ResNet50Layers
attribute), 728

within_init_scope (chainer.links.Scale attribute),
547

within_init_scope
(chainer.links.SimplifiedDropconnect at-
tribute), 654

within_init_scope (chainer.links.StatefulGRU at-
tribute), 554

within_init_scope (chainer.links.StatefulMGU at-
tribute), 567

within_init_scope
(chainer.links.StatefulPeepholeLSTM at-
tribute), 580

within_init_scope
(chainer.links.StatefulZoneoutLSTM attribute),

586
within_init_scope (chainer.links.StatelessGRU at-

tribute), 561
within_init_scope (chainer.links.StatelessLSTM

attribute), 593
within_init_scope (chainer.links.StatelessMGU

attribute), 573
within_init_scope (chainer.links.Swish attribute),

668
within_init_scope (chainer.links.TheanoFunction

attribute), 751
within_init_scope (chainer.links.VGG16Layers

attribute), 696
within_init_scope (chainer.links.VGG19Layers

attribute), 703
within_init_scope (chainer.Sequential attribute),

787
write() (chainer.datasets.PickleDatasetWriter

method), 1047
Writer (class in chainer.training.extensions.snapshot_writers),

939

X
xp (chainer.backend.Device attribute), 1075
xp (chainer.backend.GpuDevice attribute), 1081
xp (chainer.Chain attribute), 772
xp (chainer.ChainList attribute), 778
xp (chainer.DeviceResident attribute), 1078
xp (chainer.Distribution attribute), 862
xp (chainer.distributions.Bernoulli attribute), 799
xp (chainer.distributions.Beta attribute), 803
xp (chainer.distributions.Categorical attribute), 806
xp (chainer.distributions.Cauchy attribute), 809
xp (chainer.distributions.Chisquare attribute), 812
xp (chainer.distributions.Dirichlet attribute), 815
xp (chainer.distributions.Exponential attribute), 818
xp (chainer.distributions.Gamma attribute), 822
xp (chainer.distributions.Geometric attribute), 825
xp (chainer.distributions.Gumbel attribute), 828
xp (chainer.distributions.Independent attribute), 831
xp (chainer.distributions.Laplace attribute), 834
xp (chainer.distributions.LogNormal attribute), 838
xp (chainer.distributions.MultivariateNormal attribute),

841
xp (chainer.distributions.Normal attribute), 844
xp (chainer.distributions.OneHotCategorical attribute),

847
xp (chainer.distributions.Pareto attribute), 850
xp (chainer.distributions.Poisson attribute), 854
xp (chainer.distributions.Uniform attribute), 857
xp (chainer.Link attribute), 765
xp (chainer.links.BatchNormalization attribute), 602
xp (chainer.links.BatchRenormalization attribute), 609
xp (chainer.links.Bias attribute), 322

Index 1399

Chainer Documentation, Release 7.0.0b4

xp (chainer.links.Bilinear attribute), 329
xp (chainer.links.BinaryHierarchicalSoftmax attribute),

635
xp (chainer.links.BlackOut attribute), 641
xp (chainer.links.caffe.CaffeFunction attribute), 758
xp (chainer.links.ChildSumTreeLSTM attribute), 335
xp (chainer.links.Classifier attribute), 688
xp (chainer.links.Convolution1D attribute), 341
xp (chainer.links.Convolution2D attribute), 349
xp (chainer.links.Convolution3D attribute), 355
xp (chainer.links.ConvolutionND attribute), 362
xp (chainer.links.CRF1d attribute), 648
xp (chainer.links.Deconvolution1D attribute), 368
xp (chainer.links.Deconvolution2D attribute), 376
xp (chainer.links.Deconvolution3D attribute), 382
xp (chainer.links.DeconvolutionND attribute), 389
xp (chainer.links.DecorrelatedBatchNormalization at-

tribute), 616
xp (chainer.links.DeformableConvolution2D attribute),

396
xp (chainer.links.DepthwiseConvolution2D attribute),

402
xp (chainer.links.DilatedConvolution2D attribute), 410
xp (chainer.links.EmbedID attribute), 416
xp (chainer.links.GoogLeNet attribute), 712
xp (chainer.links.GroupNormalization attribute), 622
xp (chainer.links.GRU attribute), 422
xp (chainer.links.Highway attribute), 429
xp (chainer.links.Inception attribute), 435
xp (chainer.links.InceptionBN attribute), 442
xp (chainer.links.LayerNormalization attribute), 629
xp (chainer.links.Linear attribute), 449
xp (chainer.links.LocalConvolution2D attribute), 455
xp (chainer.links.LSTM attribute), 463
xp (chainer.links.Maxout attribute), 674
xp (chainer.links.MLPConvolution2D attribute), 470
xp (chainer.links.model.vision.resnet.ResNetLayers at-

tribute), 720
xp (chainer.links.NaryTreeLSTM attribute), 477
xp (chainer.links.NegativeSampling attribute), 681
xp (chainer.links.NStepBiGRU attribute), 484
xp (chainer.links.NStepBiLSTM attribute), 491
xp (chainer.links.NStepBiRNNReLU attribute), 498
xp (chainer.links.NStepBiRNNTanh attribute), 505
xp (chainer.links.NStepGRU attribute), 513
xp (chainer.links.NStepLSTM attribute), 520
xp (chainer.links.NStepRNNReLU attribute), 527
xp (chainer.links.NStepRNNTanh attribute), 534
xp (chainer.links.Parameter attribute), 540
xp (chainer.links.PReLU attribute), 661
xp (chainer.links.ResNet101Layers attribute), 735
xp (chainer.links.ResNet152Layers attribute), 743
xp (chainer.links.ResNet50Layers attribute), 728
xp (chainer.links.Scale attribute), 547

xp (chainer.links.SimplifiedDropconnect attribute), 654
xp (chainer.links.StatefulGRU attribute), 554
xp (chainer.links.StatefulMGU attribute), 567
xp (chainer.links.StatefulPeepholeLSTM attribute), 580
xp (chainer.links.StatefulZoneoutLSTM attribute), 586
xp (chainer.links.StatelessGRU attribute), 561
xp (chainer.links.StatelessLSTM attribute), 593
xp (chainer.links.StatelessMGU attribute), 573
xp (chainer.links.Swish attribute), 668
xp (chainer.links.TheanoFunction attribute), 751
xp (chainer.links.VGG16Layers attribute), 696
xp (chainer.links.VGG19Layers attribute), 703
xp (chainer.Parameter attribute), 148
xp (chainer.Sequential attribute), 787
xp (chainer.utils.WalkerAlias attribute), 1093
xp (chainer.Variable attribute), 139

Z
Zero (class in chainer.initializers), 928
zero_grads() (chainer.links.Bilinear method), 328
zerograd() (chainer.Parameter method), 144
zerograd() (chainer.Variable method), 135
zerograds() (chainer.Chain method), 771
zerograds() (chainer.ChainList method), 777
zerograds() (chainer.Link method), 764
zerograds() (chainer.links.BatchNormalization

method), 602
zerograds() (chainer.links.BatchRenormalization

method), 608
zerograds() (chainer.links.Bias method), 321
zerograds() (chainer.links.Bilinear method), 328
zerograds() (chainer.links.BinaryHierarchicalSoftmax

method), 634
zerograds() (chainer.links.BlackOut method), 640
zerograds() (chainer.links.caffe.CaffeFunction

method), 757
zerograds() (chainer.links.ChildSumTreeLSTM

method), 335
zerograds() (chainer.links.Classifier method), 687
zerograds() (chainer.links.Convolution1D method),

341
zerograds() (chainer.links.Convolution2D method),

348
zerograds() (chainer.links.Convolution3D method),

354
zerograds() (chainer.links.ConvolutionND method),

362
zerograds() (chainer.links.CRF1d method), 647
zerograds() (chainer.links.Deconvolution1D

method), 367
zerograds() (chainer.links.Deconvolution2D

method), 375
zerograds() (chainer.links.Deconvolution3D

method), 381

1400 Index

Chainer Documentation, Release 7.0.0b4

zerograds() (chainer.links.DeconvolutionND
method), 388

zerograds() (chainer.links.DecorrelatedBatchNormalization
method), 615

zerograds() (chainer.links.DeformableConvolution2D
method), 395

zerograds() (chainer.links.DepthwiseConvolution2D
method), 402

zerograds() (chainer.links.DilatedConvolution2D
method), 409

zerograds() (chainer.links.EmbedID method), 416
zerograds() (chainer.links.GoogLeNet method), 711
zerograds() (chainer.links.GroupNormalization

method), 621
zerograds() (chainer.links.GRU method), 422
zerograds() (chainer.links.Highway method), 428
zerograds() (chainer.links.Inception method), 435
zerograds() (chainer.links.InceptionBN method), 441
zerograds() (chainer.links.LayerNormalization

method), 628
zerograds() (chainer.links.Linear method), 448
zerograds() (chainer.links.LocalConvolution2D

method), 454
zerograds() (chainer.links.LSTM method), 462
zerograds() (chainer.links.Maxout method), 674
zerograds() (chainer.links.MLPConvolution2D

method), 469
zerograds() (chainer.links.model.vision.resnet.ResNetLayers

method), 719
zerograds() (chainer.links.NaryTreeLSTM method),

476
zerograds() (chainer.links.NegativeSampling

method), 680
zerograds() (chainer.links.NStepBiGRU method),

483
zerograds() (chainer.links.NStepBiLSTM method),

490
zerograds() (chainer.links.NStepBiRNNReLU

method), 497
zerograds() (chainer.links.NStepBiRNNTanh

method), 505
zerograds() (chainer.links.NStepGRU method), 512
zerograds() (chainer.links.NStepLSTM method), 519
zerograds() (chainer.links.NStepRNNReLU method),

526
zerograds() (chainer.links.NStepRNNTanh method),

533
zerograds() (chainer.links.Parameter method), 539
zerograds() (chainer.links.PReLU method), 660
zerograds() (chainer.links.ResNet101Layers

method), 735
zerograds() (chainer.links.ResNet152Layers

method), 742
zerograds() (chainer.links.ResNet50Layers method),

727
zerograds() (chainer.links.Scale method), 546
zerograds() (chainer.links.SimplifiedDropconnect

method), 654
zerograds() (chainer.links.StatefulGRU method), 553
zerograds() (chainer.links.StatefulMGU method),

566
zerograds() (chainer.links.StatefulPeepholeLSTM

method), 579
zerograds() (chainer.links.StatefulZoneoutLSTM

method), 585
zerograds() (chainer.links.StatelessGRU method),

560
zerograds() (chainer.links.StatelessLSTM method),

592
zerograds() (chainer.links.StatelessMGU method),

572
zerograds() (chainer.links.Swish method), 667
zerograds() (chainer.links.TheanoFunction method),

750
zerograds() (chainer.links.VGG16Layers method),

695
zerograds() (chainer.links.VGG19Layers method),

703
zerograds() (chainer.Sequential method), 786
zeta() (in module chainer.functions), 266
ZippedImageDataset (class in chainer.datasets),

1036
zoneout() (in module chainer.functions), 269

Index 1401

	Chainer at a Glance
	Mushrooms – tasty or deadly?
	Code Breakdown
	Output

	Concepts Walkthrough
	Define-by-Run
	Variables and Derivatives
	Links
	Define your own function
	Creating Models
	Optimizer
	Trainer
	Trainer Extensions
	Using GPU(s) in Chainer
	Type Checks
	Serializers – saving and loading
	Customize your own logging

	Neural Net Examples
	MNIST using Trainer
	MNIST with a Manual Training Loop
	Convolutional Network for Visual Recognition Tasks
	DCGAN: Generate images with Deep Convolutional GAN
	Recurrent Nets and their Computational Graph
	RNN Language Models
	Word2Vec: Obtain word embeddings
	Write a Sequence to Sequence (seq2seq) Model

	API Reference
	Variable and Parameter
	Functions
	Link and Chains
	Probability Distributions
	Optimizers
	Weight Initializers
	Snapshot Writers
	Training Tools
	Datasets
	Iterator
	Serializers
	Backends and Devices
	Utilities
	Configuring Chainer
	Debug Mode
	Visualization of Computational Graph
	Static Subgraph Optimizations: Usage
	Static Subgraph Optimizations: Design Notes
	Caffe Model Support
	Assertion and Testing

	Installation
	Recommended Environments
	Requirements
	Install Chainer
	Uninstall Chainer
	Upgrade Chainer
	Reinstall Chainer
	Run Chainer with Docker
	FAQ

	ChainerX Documentation
	Installation
	ChainerX Tutorial
	Limitations
	Reference
	Contribution Guide
	Tips and FAQs

	Distributed Deep Learning with ChainerMN
	Installation
	Tutorial
	Model Parallel
	API Reference

	Export Chainer to ONNX
	Introduction
	Module Reference
	Indices and tables

	API Compatibility Policy
	Versioning and Backward Compatibility
	Breaking the Compatibility
	Experimental APIs
	Supported Backward Compatibility
	Model Format Compatibility
	Installation Compatibility

	Contribution Guide
	Issues and Pull Requests
	Coding Guidelines
	Unit Testing
	Documentation
	Other Forms of Contribution
	Development Cycle

	Tips and FAQs
	It takes too long time to compile a computational graph. Can I skip it?
	MNIST example does not converge in CPU mode on Mac OS X
	How do I fix InvalidType error?
	How do I accelerate my model using Chainer Backend for Intel Architecture?
	My training process gets stuck when using MultiprocessIterator

	Performance Best Practices
	Use the Latest Version
	Enable Hardware Accelerations
	Migrate Data Preprocessing Code from NumPy to CuPy
	Avoid Data Transfer
	Optimize cuDNN Convolution
	Fine-Tune Configuration
	Load Datasets Concurrently
	Use Multiple GPUs
	Use Multiple Nodes

	Upgrade Guide
	Chainer v7
	Chainer v6
	Chainer v5
	Chainer v4
	Chainer v3
	Chainer v2

	License
	Indices and tables
	Bibliography
	Python Module Index
	Index

