

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Disco

Disco is a simple, clean and extendable library for the Discord API [https://dis.gd/docs]. Disco is built and aimed at developers looking to quickly start building bots that can be grown and extended to live on thousands of servers, and have immense functionality. To facilitate this, Disco provides a clean and simple interface which gets out of the way, but never sacrifices functionality. Disco is actively used by the staff at Discord to help us build and test Discord.

Stability

Disco is still a relatively young library, and as such it bears the “alpha” tag. For the most part, this means that while the general API and functionality may change or vary from version to version, the core concepts and features shouldn’t diverge much. A benefit of this comes in the form of bleeding edge features and support for the latest Discord version.

Highlights

	Expressive, Idiomatic, and Functional - the API interface stays out of our way, while giving you the required power

	Performant and Efficient - allowing you to build bots that operate on many thousands of servers, without manual sharding

	Modular and Extendable - take only the bits you need to build what you want, while being able to add or remove functionality by installing packages

	Python 2.x/3.x Support - build integrations with the version of Python you need to

Summary

	Introduction

	Installation and Setup

	Bot Tutorial

	Creating and Running a Bot

	Plugins

	Commands

	Listeners

	Message Embeds

	Advanced

	API Docs

	disco.client

	disco.state

	disco.cli

	Bot

	disco.bot.bot

	disco.bot.plugin

	disco.bot.command

	disco.bot.storage

	disco.bot.parser

	API

	disco.api.client

	disco.api.http

	disco.api.ratelimit

	Gateway

	disco.gateway.client

	disco.gateway.events

	disco.gateway.packets

	disco.gateway.sharder

	disco.gateway.ipc

	Types

	disco.types.base

	disco.types.channel

	disco.types.guild

	disco.types.invite

	disco.types.message

	disco.types.permissions

	disco.types.user

	disco.types.voice

	disco.types.webhook

	Util

	disco.util

	disco.util.backdoor

	disco.util.chains

	disco.util.config

	disco.util.functional

	disco.util.hashmap

	disco.util.limiter

	disco.util.logging

	disco.util.sanitize

	disco.util.snowflake

	disco.util.token

	disco.util.websocket

	Voice

	disco.voice.client

	disco.voice.opus

	disco.voice.packets

	disco.voice.playable

	disco.voice.player

Installation and Setup

{% hint style=’tip’ %}
If you are a new Python developer, or are unsure what pip even is, try starting here [https://packaging.python.org/installing/].
{% endhint %}

The easiest way to install the base version of Disco is through Python’s pip [https://pip.pypa.io/en/stable/] utility. To simply install the most minimal version of Disco, simply run:

pip install disco-py

Optional Dependencies

Disco provides a set of optional dependencies which add various bits of functionality or performance changes when installed. These can all be installed in a similar fashion to Disco;

pip install disco-py[performance]

Name	Explanation	Versions
——	————-	———-
voice	Adds functionality required to connect and use voice	Both
http	Adds a built-in HTTP server w/ Flask, allowing plugins to handle HTTP requests	Both
music	Adds the ability to stream and play music from various third party sites	Both
performance	Adds a faster JSON parser (ujson) and an ETF encoding parser	2.x Only
sharding	Adds a library which is required to enable auto-sharding	2.x Only
docs	Adds a library required to build this documentation	Both

Commands

Commands are a big part of the Discord bot usage. A command can be defined as an order you give to a bot. Basic examples of commands are:
!help or !info, most bots have either of the two.
In the case of these examples, when you send !help or !info the bot will reply with a help or info message.

Basic commands

Creating commands in Disco is really easy because of the Plugins [https://b1naryth1ef.github.io/disco/bot_tutorial/building_block_plugins.html] that are a core fundamential of Disco. For more info on them, read back in the Plugins [https://b1naryth1ef.github.io/disco/bot_tutorial/building_block_plugins.html] section of this tutorial. Creating a basic command is done as follows:
First, create a Plugin class:

class myPlugin(Plugin):

Now, we can add a command to it. The command will be named ping, and it will simply reply with pong!

@Plugin.command('ping')
def on_ping_command(self, event):
 event.msg.reply('Pong!')

And there we go! Our very first command!

Command arguments

Next, lets go on to some more advanced commands. Wye’ll create an echo command that will respond with whatever we put in to it.

@Plugin.command('echo', '<content:str...>')
def on_echo_command(self, event, content):
 event.msg.reply(content)

What we did here, was add an argument to our command. The argument we created here, content, is required. This means the command won’t work if you don’t pass in data for the content argument.
You can also add optional arguments to a command. Instead of surrounding the name and type in angle brackets, you’d surround them in square brackets like this: [content:str...]
Keep in mind that arguments that are optional might not be there. You’ll have to create some checks so that your program doesn’t crash on unexpected null values.

Command groups

Now that we have 2 basic commands and we know to create basic commands and add some arguments to it. Let’s create a more advanced command utilizing what we just learned.
The command will take 2 numbers (integers) and simply adds them together. It will work like this: !math add 1 4 and it would return 5. Instead of passing 'math add' as the command name, we’ll be using command groups here.
Using command groups you can easily group commands together and create sub commands. Now, here comes our math command:

@Plugin.command('add', '<a:int> <b:int>', group='math')
def on_add_command(self, event, a, b):
 event.msg.reply('{}'.format(a+b))

Here, we added multiple arguments to our command. Namely, number a and number b, that we add together and return back. Of course, you can do loads more fun things with the Disco command handler.

Optional arguments

Lets create a tag system, that can either store a tag if you’d use it like this: !tag name value or retrieve a tag if you’d use it like this: !tag name

We’ll need 2 arguments. A name argument that’s required, and an optional value argument. Inside the command we’ll check if a value is provided. If there is, we’ll store the tag. Otherwise, we’ll try to retrieve the previously set value for that tag and return it.
For the sake of this example, we’ll asume that the tags dict gets stored somewhere so it doesn’t get removed after a restart.

tags = {}

@Plugin.command('tag', '<name:str> [value:str...]')
def on_tag_command(self, event, name, value=None):

 if value:
 tags[name] = value
 event.msg.reply(':ok_hand: created tag `{}`'.format(name))
 else:
 if name in tags.keys():
 return event.msg.reply(tags[name])
 else:
 return event.msg.reply('Unknown tag: `{}`'.format(name))

ArgumentParser

A different way of adding arguments to a command is by using argparse.ArgumentParser. With argparser it’s easier to create more complicated commands with many options or flags.
Let’s put this into practice by recreating our math add command, but using argparser. More info on argparser and the add_argument() method can be found here [https://docs.python.org/2/library/argparse.html#the-add-argument-method]

@Plugin.command('add', parser=True, group='math')
@Plugin.parser.add_argument('a', type=int)
@Plugin.parser.add_argument('b', type=int)
def on_add_command(self, event, args):
 event.msg.reply('{}'.format(args.a + args.b)

These are all the commands we created in this tutorial:

class myPlugin(Plugin):
 @Plugin.command('ping')
 def on_ping_command(self, event):
 event.msg.reply('Pong!')

 @Plugin.command('echo', '<content:str...>')
 def on_echo_command(self, event, content):
 event.msg.reply(content)

 @Plugin.command('add', '<a:int> <b:int>', group='math')
 def on_add_command(self, event, a, b):
 event.msg.reply('{}'.format(a+b))

 tags = {}
 @Plugin.command('tag', '<name:str> [value:str...]')
 def on_tag_command(self, event, name, value=None):

 if value:
 tags[name] = value
 event.msg.reply(':ok_hand: created tag `{}`'.format(name))
 else:
 if name in tags.keys():
 return event.msg.reply(tags[name])
 else:
 return event.msg.reply('Unknown tag: `{}`'.format(name))

 @Plugin.command('add', parser=True, group='math')
 @Plugin.parser.add_argument('a', type=int)
 @Plugin.parser.add_argument('b', type=int)
 def on_add_command(self, event, args):
 event.msg.reply('{}'.format(args.a + args.b)

Listeners

Listeners provide an API to listen to and execute code upon the occurance of specified Discord events.

Listener Basics

To start off with, lets create a listener attached to our plugin that fires whenever a message is created.

@Plugin.listen('MessageCreate')
def on_message_create(self, event):
 self.log.debug('Got message: %s', event.message)

Ok, but what if we want to make a listener which welcomes new users to our server? Well thats also easy:

@Plugin.listen('GuildMemberAdd')
def on_guild_member_add(self, event):
 self.state.channels.get(MY_WELCOME_CHANNEL_ID).send_message(
 'Hey there {}, welcome to the server!'.format(event.member.mention)
)

Listener Events

To see all the events you can subscribe too, checkout the gateway events list [https://b1naryth1ef.github.io/disco/api/disco_gateway_events.html].

Listener Priority

Each listener thats registered comes with a priority. This priority describes how the builtin event emitter will distribute events to your listener. To set a priority you can simply pass the priority kwarg:

from holster.emitter import Priority

@Plugin.listen('GuildMemberAdd', priority=Priority.BEFORE)
def on_guild_member_add(self, event):
 # This would be very bad, don't do this...
 time.sleep(10)

Priorities

Name	Description
——	————-
BEFORE	Recieves all events sequentially alongside the emitter. This is the most dangerous priority level, as any executed code will block other events in the emitter from flowing. Blocking within a BEFORE handler can be lethal.
SEQUENTIAL	Recieves all events sequentially, but within a seperate greenlet. This priority level can be used for plugins that require sequential events but may block or take a long time to execute their event handler.
NONE	This priority provides no guarentees about the ordering of events. Similar to SEQUENTIAL all event handlers are called within a seperate greenlet.

Plugins

Plugins are Disco are a core abstraction which attempt to encapsulate the functionality of your bot into contained modules. To boil it down, commands related to one another, or listeners that control the same functionality should be within the same Plugin. Although it’s possible to call and pass data between Plugins, you should generally attempt to avoid it.

Plugin Lifecycle

Loading

Plugins are loaded when the Bot is initially created, and when this happens the Plugin.load function is called. If the plugin is being reloaded, the call to this function will contain a dictionary of data returned by the previous unload call. Using this, you can pass data between loaded instances of your plugin to help aid in seamless reloads. Often plugins will require some level of configuration and setup before running, and this code can be inserted within an overridden version of the load function, as such:

class ExamplePlugin(Plugin):
 def load(self, ctx):
 super(ExamplePlugin, self).load(ctx)
 setup_database()
 self.data = ctx.get('data', {})

The load function of a plugin is guaranteed to only be called once for the instance, when reloading a new instance of the plugin will be created.

Unloading

Plugins are unloaded in multiple scenarios (shutdown, before a reload, or during an unload), and when this happens the Plugin.unload function is called. This function is passed one argument containing a dictionary, which (if the plugin wants) can be filled with information that a future iteration (in the case we’re reloading) of the plugin can use to maintain state. Plugins may want to call or save data before being unloaded, and in this case they can override the unload function:

class ExamplePlugin(Plugin):
 def unload(self, ctx):
 ctx['data'] = self.data
 super(ExamplePlugin, self).unload(ctx)

During the unload sequence all greenlets which the plugin owns (e.g. greenlets for command or listener callbacks, any spawned with Plugin.spawn) are terminated. In the case where command callbacks should continue execution past the unload point (e.g. in the case where a plugin reloads itself), you should pass oob=True to the Plugin.command decorator.

Configuration

Disco supports a framework for dynamically passing configuration to plugins. By default, configuration files live within the config/ directory, and are named after the plugin, e.g. ExamplePlugin would be configured via config/example.json. Adding support for configuration within your plugin can be done via a decorator:

from disco.bot import Plugin, Config

class ExamplePluginConfig(Config):
 var1 = "test"
 var2 = True

@Plugin.with_config(ExamplePluginConfig)
class ExamplePlugin(Plugin):
 def load(self, ctx):
 super(ExamplePlugin, self).load(ctx)
 assert self.config.var1 == "test"
 assert self.config.var2

Bot Tutorial

Disco provides a built-in set of tools for building and running Discord bots which can be used to quickly and easily create integrations. Within this tutorial you’ll be shown how to install Disco, write plugins, and run bots. This tutorial assumes you’ve already followed the Installation Steps.

Creating a Bot

The first step to creating bots is to actually register them on Discord itself. To do this, you’ll need to be logged into your Discord account on the browser and then navigate to My Apps [https://discordapp.com/developers/applications/me]. Here you’ll have the option to create a new application, and once created you can add a bot user (by clicking “Create a Bot User”) to your application. Finally, you’ll want to keep track of the bot user token which can be shown by clicking the “click to reveal” link next to the token field.

Once you have a Discord bot account, you can then setup your workspace. For now we’ll just need a folder (perhaps called disco-tutorial) with a few files in it:

disco-tutorial/
 config.json
 plugins/
 __init__.py
 tutorial.py

{% hint style=’tip’ %}
The __init__.py file is required for Python to find your plugin, but it can remain empty.
{% endhint %}

Now let’s setup the configuration file. To start off with we’ll paste the following template in and modify our token key (MY_BOT_TOKEN_HERE) to be the token we obtained above. The plugins section tells disco what plugins to load, based on a module path (similar to how Python imports work). In this example we’re asking disco to load the plugin contained in the tutorial file within the plugins directory (or “module”). Disco by default loads the first plugin it finds within the module, so you want to make sure each plugin class is contained within its own file.

{
 "token": "MY_BOT_TOKEN_HERE",
 "bot": {
 "plugins": [
 "plugins.tutorial"
]
 }
}

Now we’re ready to write our plugin. Plugins are used to isolate the functionality of your bot into components. Plugins can be dynamically loaded, unloaded and reloaded at runtime. Lets start off by writing a plugin with a “ping” command;

from disco.bot import Plugin

class TutorialPlugin(Plugin):
 @Plugin.command('ping')
 def command_ping(self, event):
 event.msg.reply('Pong!')

Now that we have a plugin setup and our configuration is ready, we can run and test the bot. We can do this by executing the following command from within our project directory:

python -m disco.cli --config config.json

If all is successful, you can then test your bot by mentioning it with the command, like so:

@tutorial#1234 ping

At this point, you’ve achieved the creation and setup of a very simple bot. Now lets work on understanding and working with more Disco features.

Message Embeds

A Message Embed [https://b1naryth1ef.github.io/disco/api/disco_types_message.html#messageembed] represents a Discord Embed object. An Embed object is another component of Discord messages that can be used to present data with special formatting and structure.

An example of a message embed:

[image: A discord embed]

An embed can contain the following components:

	Author, including link and avatar

	Title

	Description

	Field(s)

	Thumbnail image

	Image

	Footer, including text and icon

	Timestamp

	Color (sets the color of the left sidebar of the embed)

Creating an embed

Creating an embed is simple, and can be done like this:

from disco.types.message import MessageEmbed #We need this to create the embed
from datetime import datetime #We need this to set the timestamp

embed = MessageEmbed()

This will create a default, empty, Discord Embed object. Now that we have that, let’s assign some values to it. First, lets set the author and the title, with a link that leads to this page. This can be done as follows:

embed.set_author(name='b1nzy#1337', url='https://b1naryth1ef.github.com/disco', icon_url='http://i.imgur.com/1tjdUId.jpg')
embed.title = 'How to create an embed'
embed.url = 'https://b1naryth1ef.github.io/disco/bot_tutorial/message_embeds.html' #This URL will be hooked up to the title of the embed

Now, we can add a description and a few fields:

embed.add_field(name='Inline field 1', value='Some value for this field', inline=True)
embed.add_field(name='Inline field 2', value='Another value for another field', inline=True)
embed.add_field(name='Inline field 3', value='Third value for the third field', inline=True)
embed.add_field(name='A non-inline field', value='You can only have a max of 3 inline field on 1 line', inline=False)
embed.description = 'This is the general description of the embed, you can use the Discord supported MD in here too, to make it look extra fancy. For example, creating some **bold** or ~~strikethrough~~ text.'

Last up, let’s set a footer, color and add a timestamp:

embed.timestamp = datetime.utcnow().isoformat()
embed.set_footer(text='Disco Message Embeds tutorial')
embed.color = '10038562' #This can be any color, but I chose a nice dark red tint

Once your embed is finshed, you can send it using the channel.send_message() message or the event.msg.reply() function.
With channel.send_message():

self.state.channels.get(<ChannelID>).send_message('[optional text]', embed=embed)

with the event.msg.reply() function:

event.msg.reply('[optional text]', embed=embed)

The final embed we created in this tutorial would look like this:

[image: alt text]

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/G1sUcTm.png
% binzy#1337

How to create an embed
This is the general description of the embed, you can use the Discord supported MD
in here too, to make it look extra fancy. For example, creating some bold or

striketrhough text.

Inline field 1 Inline field 2 Inline field 3
Some value for this field Another value for another fieldThird value for the third field

A non-inline field
You can only have a max of 3 inline field on 1 line

Disco Message Embeds tutorial | Fri Sep 8th, 2017 at 10:38 AM

_images/HRWHk.png
€2 Author name (can point to URL)

Title
Description
The title leads to the URL, if given

Field name Field name Field name
Colorsets Colorisanint, Field value
<that not string

Non-inline field name
The number of inline fields that can shown
on the same row is limited to 3

IMAGE

You cannot set
proxy_url, width
or height

@ Footer Text | Timestamp

THUMBNAIL

You cannot set

proxy_url,width
or height

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

