

Documentation for the Disco Language

	Quick Tutorial
	Getting started

	Arithmetic

	Types

	Disco files and the disco REPL

	Logic

	Structural types

	Functions

	Case expressions

	Lists

	Polymorphism

	Laziness

	Properties

	Disco Language Reference

Quick Tutorial

Disco is a small yet expressive, pure functional programming language
designed especially to be used in the context of a discrete
mathematics course. Right now it is in a rough prototype stage; this
tutorial is probably only useful for developers who already have some
knowledge of functional programming.

	Getting started

	Arithmetic

	Types

	Disco files and the disco REPL

	Logic

	Structural types

	Functions

	Case expressions

	Lists

	Polymorphism

	Laziness

	Properties

Getting started

After you have been added as a collaborator to the disco github
repository [https://github.com/disco-lang/disco], get the source code via SSH:

git clone git@github.com:disco-lang/disco.git

If you are not a collaborator on the repository you can also get the
source code via HTTPS:

git clone https://github.com/disco-lang/disco.git

Make sure you have the stack tool [https://docs.haskellstack.org/en/stable/README/] installed. Then navigate to
the root directory of the disco repository, and execute

stack setup
stack build

(This may take quite a while the first time, while stack downloads
and builds all the dependencies of disco.)

After building disco with stack build, to run the disco REPL
(Read-Eval-Print Loop), type stack exec disco at a command prompt.
You should see a disco prompt that looks like this:

Disco>

Arithmetic

As a computational platform for learning discrete mathematics, at the
core of disco is of course the ability to compute with numbers.
However, unlike many other languages, disco does not support
real (aka floating-point) numbers at all—they are not typically
needed for discrete mathematics, and omitting them simplifies the
language quite a bit. To compensate, however, disco has
sophisticated built-in support for rational numbers.

Basic arithmetic

To start out, you can use disco as a simple calculator. For
example, try entering the following expressions, or others like them,
at the Disco> prompt:

	2 + 5

	5 - 8

	5 * (-2)

	(1 + 2)(3 + 4)

	2 ^ 5

	2 ^ 5000

	4 .- 2

	2 .- 4

The last two expressions use the saturating subtraction operator, .-, which
takes two numeric operands, \(a\) and \(b\), and returns \(a - b\)
if \(a > b\), and \(0\) otherwise. Note that unlike regular subtraction,
the result of a saturating subtraction will always be a natural number.

Also notice that it is not always necessary to write * for
multiplication: as is standard mathematical notation, we may often
omit it, as in (1 + 2)(3 + 4), which means the same as (1 + 2) *
(3 + 4). (For precise details on when the asterisk may be omitted,
see the discussion in the section on functions.) Notice also that
integers in disco may be arbitrarily large.

Now try these:

	3/7 + 2/5

	2 ^ (-5)

The results may come as a bit of a surprise if you are already used to
other languages such as Java or Python, which would yield a
floating-point (i.e. real) number; as mentioned before, disco does
not support floating-point numbers. However, rational numbers can
still be entered using decimal notation. Try these expressions as
well:

	2.3 + 1.6

	1/5.

	1/7.

Disco automatically picks either fractional or decimal notation for
the output, depending on whether any values with decimal points were
used in the input (for example, compare 1/5 and 1/5., or
1./5). Note that 1/7. results in 0.[142857];
can you figure out what the brackets indicate?

The standard floor and ceiling operations are built-in:

Disco> floor (17/3)
5
Disco> ceiling (17/3)
6

Just for fun, disco also supports standard mathematical notation for
these operations via Unicode characters:

Disco> ⌊ 17/3 ⌋
5
Disco> ⌈ 17/3 ⌉
6

Integer division, which rounds down to the nearest integer, can be
expressed using //:

Disco> 5 // 2
2
Disco> (-5) // 2
-3

x // y is always equivalent to floor (x/y), but is provided as
a separate operator for convenience.

The counterpart to integer division is mod, which gives the
remainder when the first number is divided by the second:

Disco> 5 mod 2
2
Disco> (2^32) mod 7
4
Disco> (2^32) % 7

The % operator may also be used as a synonym for mod.

Finally, the abs function is provided for computing absolute
value:

Disco> abs 5
5
Disco> abs (-5)
5

Advanced arithmetic

Disco also provides a few more advanced arithmetic operators which you
might not find built in to other languages.

	The divides operator can be used to test whether one number
evenly divides another. Try evaluating these expressions:

	2 divides 20

	2 divides 21

	(-2) divides 20

	2 divides (-20)

	7 divides (2^32 - 4)

	(1/2) divides (3/2)

	(1/5) divides (3/2)

	1 divides 10

	0 divides 10

	10 divides 0

	0 divides 0

The last three expressions may be surprising, but follow directly
from the definition: a divides b is true if there is an
integer k such that a*k = b. For example, there is no
k such that 0*k = 10, so 0 divides 10 is false.

Note that a vertical line is often used to denote divisibility, as
in \(3 \mid 21\), but disco does not support this notation, since
the vertical line is used for other things (and besides, it is
typically not a good idea to use a visually symmetric operator for
a nonsymmetric relation).

	The choose operator can be used to compute binomial
coefficients. For example, 5 choose 2 is the number of ways to
select two things out of five.

	The factorial function is available via standard mathematical
notation:

Disco> 20!
2432902008176640000

	Square root (sqrt) and base-two logarithm (lg) functions are
provided which round their result down to the nearest integer
(remember that disco does not support arbitrary real numbers).

Disco> sqrt (299^2 + 1)
299
Disco> sqrt (299^2 - 1)
298
Disco> lg (2^35 + 7)
35
Disco> lg (2^35 - 1)
34

Types

Every value in disco has a type. Types play a central role in the
language, and help guide and constrain programs. All the types in a
program must match correctly (i.e. the program must typecheck)
before it can be run. The type system has for the most part been
designed to correspond to common mathematical practice, so if you are
used to type systems in other programming languages (even other
functional languages) you may be in for a surprise or two.

Disco can often infer the type of an expression. To find out what
type disco has inferred for a given expression, you can use the
:type command. For example:

Disco> :type 3
3 : ℕ
Disco> :type 2/3
2 / 3 : ℚ⁺
Disco> :type [1,2,5]
[1, 2, 5] : List ℕ

The colon in 3 : ℕ can be read “has type” or “is a”, as in “three is
a natural number”. A colon can also be used to give an explicit type
to an expression, for example, when you want to specify a type other
than what disco would infer. For example:

Disco> :type 3 + 5
3 + 5 : ℕ
Disco> :type (3 : Integer) + 5
(3 : ℤ) + 5 : ℤ

The above example shows that normally, disco infers the type of 3 +
5 to be a natural number, but we can force the 3 to be treated as
an Integer, which in turn forces the whole expression to be inferred
as an integer.

Primitive numeric types

Disco has four built-in primitive numeric types: natural numbers,
integers, positive rationals, and rationals.

	The type of natural numbers, written Natural, Nat, N, or ℕ,
includes the counting numbers \(0, 1, 2, \dots\).

	The type of integers, written Integer, Int, Z, or ℤ,
includes the natural numbers as well as their negatives.

	The type of positive rationals, written QP or ℚ⁺, includes
all ratios of the form \(a/b\) where \(a\) and \(b\) are
natural numbers, with \(b \neq 0\).

	The type of rational numbers, written Rational, Q or ℚ,
includes all ratios of integers.

In mathematics, it is typically not so common to think of the positive
rationals \(\mathbb{Q}^+\) as a separate set by themselves; but
this is mostly for historical reasons and because of the way the
development of rational numbers is usually presented. The natural
numbers support addition and multiplication. Extending them to
support subtraction yields the integers; then, extending these again
to support division yields the rationals. However, what if we do
these extensions in the opposite order? Extending the natural numbers
to support division results in the positive rational numbers; then
extending these with subtraction again yields the rationals. All
told, the relationship between these four types forms a diamond-shaped
lattice:

 Q
 / \
Z Q+
 \ /
 N

Each type is a subset of the type or types above it. Going northwest
in this diagram (\(\mathbb{N} \to \mathbb{Z}\) or
\(\mathbb{Q}^+ \to \mathbb{Q}\)) corresponds to adding negatives,
that is, subtraction; going northeast (\(\mathbb{N} \to
\mathbb{Q}^+\) or \(\mathbb{Z} \to \mathbb{Q}\)) corresponds to
adding reciprocals, that is, division.

Try evaluating each of the following expressions at the disco prompt,
and also request their inferred type with the :type command. What
type does disco infer for each? Why?

	1 + 2

	3 * 7

	1 - 2

	1 / 2

	(1 - 2) / 3

Going southeast in the lattice (getting rid of negatives) is
accomplished with the absolute value function abs. Going
southwest (getting rid of fractions) is accomplished with floor
and ceiling.

Note that disco supports subtyping, that is, values of type S can
be automatically “upgraded” to another type T as long as S is
a “subtype” (think: subset) of T. For example, a natural number
can be automatically upgraded to an integer.

Disco> (-1 : Z) + (3 : N)
2
Disco> :type (-1 : Z) + (3: N)
(-1 : ℤ) + (3 : ℕ) : ℤ

In the above example, the natural number 3 is automatically
upgraded to an integer so that it can be added to -1. When we
discuss functions later, we will see that this principle extends to
function arguments as well: if a function is expecting an integer as
input, it is acceptable to give it a natural number, since the natural
number can be upgraded to an integer.

Modular types

In addition to the four primitive numeric types discussed above, disco
also supports an infinite family of “modular” or finite types of the
form \(\mathbb{Z}_n\). For a given natural number \(n\), the
type \(\mathbb{Z}_n\) consists of the \(n\) values \(\{0,
1, 2, \dots, n-1\}\). Addition, subtraction, multiplication, and
exponentiation are performed \(\pmod{n}\).

Disco> (3 + 5) : Z6
2
Disco> (3 - 5) : Z6
4
Disco> 2^20 : Z7
4

In addition, division can be performed as long as \(n\) is prime:

Disco> 1 / 5 : Z7 -- compute the inverse of 5 mod 7
3
Disco> 3 * 5 : Z7 -- sure enough, 3 * 5 is 1 mod 7
1

Other types

There are many other types built into disco as well—Bool, Void,
Unit, List, product, and sum types, to name a few. These will be
covered throughout the rest of the tutorial and appropriate places.
For now, try executing these commands and see if you can guess what is
going on:

	:type false

	:type ()

	:type [1, 2, 3]

	:type [1, 2, -3]

	:type [1, 2, -3, 4/5]

	:type [[1,2], [3,4,5]]

	:type (1, true)

Disco files and the disco REPL

For anything beyond simple one-off calculations that can be entered at
the disco prompt, disco definitions may be stored in a file which can
be loaded into the REPL.

Disco files

Disco files typically end in .disco.
Here is a simple example:

example/basics.disco

approx_pi : Rational
approx_pi = 22/7

increment : N -> N
increment n = n + 1

This file contains definitions for approx_pi and increment.
Each definition consists of a type signature of the form <name> :
<type>, followed by an equality of the form <name> =
<expression>. Both parts of a definition are required; in
particular, if you omit a type signature, disco will complain that the
name is not defined. The example file shown above contains two
definitions: approx_pi is defined to be the Rational number
\(22/7\), and increment is defined to be the function which
outputs one more than its natural number input. (Functions and the
syntax for defining them will be covered in much more detail in an
upcoming section of the tutorial.)

The order of definitions in a .disco file does not matter;
each definition may refer to any other definition in the whole file.

To load the definitions in a file into the disco REPL, you can use the
:load command. After successfully loading a file, all the names
defined in the file are available for use. For example:

Disco> :load example/basics.disco
Loading example/basics.disco...
Loaded.
Disco> approx_pi
22/7
Disco> increment 3
4
Disco> :type increment
increment : ℕ → ℕ
Disco> approx_pi + increment 17
148/7

Comments and documentation

Comments in disco can be written in one of two ways, using the same
syntax as Haskell. Two consecutive hyphens -- will cause disco to ignore
everything until the next newline character; {- ... -} creates a
multi-line comment causing disco to ignore everything in between
{- and -}.

example/comment.disco

-- This is a comment
approx_pi : Rational
approx_pi = 22/7 -- an OK approximation

{- The following function is very complicated
 and took about three weeks to write.
 Don't laugh.
-}
increment : N -> N
increment n {- the input -} = n + 1 {- one more than the input -}

Comments can be placed anywhere and are literally ignored by disco.
In many cases, however, the purpose of a comment is to provide
documentation for a function. In this case, disco supports special
syntax for documentation, which must be placed before the type
signature of a definition. Each line of documentation must begin with
||| (three vertical bars).

example/doc.disco

||| A reasonable approximation of pi.
approx_pi : Rational
approx_pi = 22/7 -- an OK approximation

||| Take a natural number as input, and return the natural
||| number which is one greater.
|||
||| Should not be used while operating heavy machinery.
-- This comment will be ignored.
increment : N -> N
increment n {- the input -} = n + 1 {- one more than the input -}

fizz : N
fizz = 1

When this file is loaded into the disco REPL, we can use the :doc
command to see the documentation associated with each name.

Disco> :load example/doc.disco
Loading example/doc.disco...
Loaded.
Disco> :doc approx_pi
approx_pi : ℚ

A reasonable approximation of pi.

Disco> :doc increment
increment : ℕ → ℕ

Take a natural number as input, and return the natural
number which is one greater.

Should not be used while operating heavy machinery.

Disco> :doc fizz
fizz : ℕ

Since fizz does not have any associated documentation, the
:doc command simply shows its type.

Other REPL commands

The disco REPL has a few other commands which are useful for disco
developers.

	:parse shows the fully parsed form of an expression.

Disco> :parse 2 + [3,4 : Int]
TBin Add (TNat 2) (TList [TNat 3,TAscr (TNat 4) TyZ] Nothing)

	:desugar shows the desugared core language term corresponding to
an expression.

Disco> :desugar [3,4]
CCons 1 [CNum Fraction (3 % 1),CCons 1 [CNum Fraction (4 % 1),CCons 0 []]]

	:pretty shows the pretty-printed form of a term (without
typechecking it).

Disco> :pretty 2 + [3,4:Int]
2 + [3, (4 : ℤ)]

Logic

Booleans

The type of booleans, written B or Bool, represents logical truth
and falsehood. The two values of this type are written true and
false. (For convenience True and False also work.)

	Logical AND can be written and, &&, or ∧.

	Logical OR is written or, ||, or ∨.

	Logical negation (NOT) is written not or ¬.

Disco> true and false
false
Disco> true || false
true
Disco> not (true ∧ true)
false
Disco> ¬ (false or false or false or true)
false

Equality testing

If you have two disco values of the type, in almost all cases you can
compare them to see whether they are equal using =, resulting in a
Bool value.

Disco> 2 = 5
false
Disco> 3 * 7 = 2*10 + 1
true
Disco> (3/5)^2 + (4/5)^2 = 1
true
Disco> false = false
true

The /= operator tests whether two values are not equal; it is
just the logical negation of =.

Comparison

Again, in almost all cases values can be compared to see which is less
or greater, using operators <, <=, >, or >=.

Disco> 2 < 5
true
Disco> false < true
true
Disco> (5 : Z7) < (9 : Z7)
false

(The last example is false because (9 : Z7) is equivalent to
(2 : Z7).)

Comparisons can also be chained; the result is obtained by comparing
each pair of values according to the comparison between them, and
taking the logical AND of all the results. For example:

Disco> 1 < 3 < 8 < 99
true
Disco> 2.2 < 5.9 > 3.7 < 8.8 > 1.0 < 9
true

Structural types

In addition to the primitive types covered so far, disco also has sum
and product types which can be used to build up more complex
structures out of simpler ones.

Product types

The product of two types, written using an asterisk * or Unicode
times symbol ×, is a type whose values are ordered pairs of values
of the component types. Pairs are written using standard ordered pair
notation.

pair1 : N * Q
pair1 = (3, -5/6)

pair2 : Z5 × Bool
pair2 = (17 + 22, (3,5) < (4,2))

pair3 : Bool * (Bool * Bool)
pair3 = (true, (false, true))

pair4 : Bool * Bool * Bool
pair4 = (true, false, true)

pair1 in the example above has type N * Q, that is, the type
of pairs of a natural number and a rational number; it is defined to
be the pair containing 3 and -5/6. pair2 has type Z5 ×
Bool (using the alternate syntax × in place of *), and
contains two values: \((17 + 22) \pmod{5}\), and the result of
asking whether \((3,5) < (4,2)\).

Disco> pair2
(4, true)

Pairs are compared lexicographically, which intuitively means that the
first component is most important, the second component breaks ties in
the first component, and so on. For example, \((a,b) < (c,d)\) if
either \(a < c\) (in which case \(b\) and \(d\) don’t
matter) or if \(a = c\) and \(b < d\). This is why (3,5) <
(4,2) evaluates to true. Of course, two pairs are equal exactly
when their first elements are equal and their second elements are
equal.

pair3 shows that pairs can be nested: it is a pair whose second
component is also a pair. pair4 looks like an ordered triple, but
in fact we can check that pair3 and pair4 are equal!

Disco> pair3 = pair4
true

Really, pair4 is just syntax sugar for pair3. In general:

	The type X * Y * Z is interpreted as X * (Y * Z).

	The tuple (x,y,z) is interpreted as (x,(y,z)).

This continues recursively, so, for example, A * B * C * D * E
means A * (B * (C * (D * E))). Put another way, disco really only
has pairs, but appears to support arbitrarily large tuples by encoding
them as right-nested pairs.

If you want left-nested pairs you can use explicit parentheses: for
example, (Bool * Bool) * Bool is not the same as Bool * Bool *
Bool, and has values such as ((false, true), true).

Sum types

If X and Y are types, their sum, written X + Y (or X ⊎
Y), is the disjoint union of X and Y. That is, values of
type X + Y are either values of X or values of Y, along
with a “tag” so that we know which it is. The possible tags are
left and right (to indicate the type on the left or right of
the +). For example:

sum1 : N + Bool
sum1 = left 3

sum2 : N + Bool
sum2 = right false

sum3 : N + N + N
sum3 = right (right 3)

sum1 and sum2 have the same type, namely, N + Bool; values
of this type consist of either a natural number or a boolean.
sum1 contains a natural number, tagged with left; sum2
contains a boolean tagged with right.

Notice that X + X is a different type than X, because we get
two distinct copies of all the values in X, some tagged with
left and some with right. This is why we call a sum type a
disjoint union.

Iterated sum types, as in sum3, are handled in exactly the same
way as iterated product types: N + N + N is really syntax sugar
for N + (N + N). sum3 therefore begins with a right tag,
to show that it contains a value of the right-hand type, namely, N +
N; this value in turn consists of another right tag along with a
value of type N. Other values of the same type N + N + N
include right (left 6) and left 5.

Unit and Void types

Disco has two other special built-in types which are rarely useful on
their own, but often play an important role in describing other types.

	The type Unit has just a single value, called ().

Disco> :type ()
() : Unit

It is isomorphic to the type Z1.

	The type Void has no values. It is also isomorphic to Z0.

Counting and enumerating types

For any type which has only a finite number of values, disco can count
how many values there are, using the count operator, or list them
using enumerate (we will learn more about lists later in the
tutorial).

Disco> count ((Z2 * Z4) + Bool)
right 10
Disco> enumerate ((Z2 * Z4) + Bool)
[left (0, 0), left (0, 1), left (0, 2), left (0, 3),
 left (1, 0), left (1, 1), left (1, 2), left (1, 3),
 right false, right true]
Disco> enumerate (Bool * Bool * Bool)
[(false, false, false), (false, false, true), (false, true, false), (false, true, true),
 (true, false, false), (true, false, true), (true, true, false), (true, true, true)]

Functions

The type of functions with input X and output Y is written X
-> Y. Some basic examples of function definitions are shown below.

example/function.disco

f : N -> N
f(x) = x + 7

g : Z -> Bool
g(n) = (n - 3) > 7

factorial : N -> N
factorial(0) = 1
factorial(n) = n * factorial(n .- 1)

	The function f takes a natural number as input, and returns the
natural number which is 7 greater. Notice that f is defined
using the syntax f(x) = In fact, the basic syntax for
function arguments is juxtaposition, just as in Haskell; the syntax
f x = ... would work as well. Stylistically, however, f(x) =
... is to be preferred, since it matches standard mathematical
notation.

	The function g takes an integer n as input, and returns a
boolean indicating whether n - 3 is greater than 7. Note that
this function cannot be given the type N -> Bool, since it uses
subtraction.

	The recursive function factorial computes the factorial of its
input. Top-level functions such as factorial are allowed to be
recursive. Notice also that factorial is defined by two cases,
which are matched in order from top to bottom, just as in Haskell.

Functions can be given inputs using the same syntax:

Disco> f(2^5)
39
Disco> g(-5)
false
Disco> factorial(5 + 6)
39916800

“Multi-argument functions” can be written as functions which take a
product type as input. (This is again a stylistic choice: disco
certainly supports curried functions as well. But in either case,
disco fundamentally supports only one-argument functions.) For
example:

example/multi-arg-functions.disco

gcd : N * N -> N
gcd(a,0) = a
gcd(a,b) = gcd(b, a mod b)

discrim : Q * Q * Q -> Q
discrim(a,b,c) = b^2 - 4*a*c

manhattan : (Q*Q) * (Q*Q) -> Q
manhattan ((x1,y1), (x2,y2)) = abs (x1-x2) + abs (y1-y2)

All of these examples are in fact pattern-matching on their
arguments, although this is most noticeable with the last example,
which decomposes its input into a pair of pairs and gives a name to
each component.

Functions in disco are first-class, and can be provided as input to
another function or output from a function, stored in data structures,
etc. For example, here is how one could write a higher-order
function to take a function on natural numbers and produce a new
function which iterates the original function three times:

example/higher-order.disco

thrice : (N -> N) -> (N -> N)
thrice(f)(n) = f(f(f(n)))

Anonymous functions

The syntax for an anonymous function in disco consists of three parts:
one or more bindings, followed by a mapsto symbol, followed by an arbitrary
disco expression.

	Each binding specifies the name of an input to the function. A binding
can be either a simple variable name, or a parenthesized variable
name with a type annotation (e.g. (x:Nat)). There can be
multiple bindings separated by whitespace, which creates a (curried)
“multi-argument” function.

	disco will accept any one of several syntaxes for the mapsto
symbol: either ->, |->, or ↦.

Note

It’s quite possible this syntax might change. For example, we
might want to disallow -> as a mapsto symbol, since that may
cause confusion with the same symbol used as part of a type. Also, we
might want to require “lambda” syntax before the binding (e.g.
either a backslash or an actual lambda).

The current syntax was designed to mirror the syntax in most common
mathematical practice (e.g. \(x \mapsto x^2 + 3\)), but it’s
quite possible discrete math students will not be familiar with
that notation anyway, in which case we might as well introduce them
to the lambda calculus.

Currently, bindings cannot contain patterns, but in general we
might want to allow this, for example, ((x,y) |-> x + y) : N*N -> N.

Here are a few examples of using anonymous functions as arguments
to thrice:

Disco> thrice(x |-> x*2)(1)
8
Disco> thrice((z:Nat) ↦ z^2 + 2z + 1)(7)
17859076

TODO example of using multi-argument anonymous function

Comparing functions

In certain cases, functions can be compared for equality, or even
compared to see which is less or greater.

Disco> ((x:Bool) -> x) = ((x:Bool) -> not (not x))
true
Disco> ((x:Bool) -> x) = ((x:Bool) -> not x)
false

There is no magic involved, and it does not work by looking at the
definitions of the functions. Simply put, two functions are equal if
they give the same output for every input. So disco can only test two
functions for equality if they have a finite input type, in which case
it simply enumerates all possible values of the input type, and tests
that the two functions give equal outputs for every input.

Functions are ordered by conceptually listing all their outputs
ordered by inputs (that is, list the values of the input type in order
from smallest to largest and apply the function to each) and then
comparing these lists of outputs lexicographically. That is, if i
is the smallest possible input value and f i < g i, then f <
g. If f i = g i, then we move on to consider the second
smallest input value, and so on.

Disambiguating function application and multiplication

As previously mentioned, the fundamental syntax for applying a
function to an argument is juxtaposition, that is, simply putting
the function next to its argument (with a space in between if
necessary).

However, disco also allows multiplication to be written in this way.
How can it tell the difference? Given an expression of the form X
Y (where X and Y may themselves be complex expressions),
disco uses simple syntactic rules to distinguish between
multiplication and function application. In particular, note that the
types of X and Y do not enter into it at all (it would
greatly complicate matters if parsing and typechecking had to be
interleaved—even though this is what human mathematicians do in
their heads; see the discussion below).

To decide whether X Y is function application or multiplication,
disco looks only at the syntax of X; X Y is multiplication if
and only if X is a multiplicative term, and function application
otherwise. A multiplicative term is one that looks like either a
natural number literal, or a unary or binary operation (possibly in
parentheses). For example, 3, (-2), and (x + 5) are all
multiplicative terms, so 3x, (-2)x, and (x + 5)x all get parsed as
multiplication. On the other hand, an expression like (x y) is always parsed as
function application, even if x and y both turn out to have numeric types
types; a bare variable like x does not count as a multiplicative term.
Likewise, (x y) z is parsed as function application, since (x y) is
not a multiplicative term.

Note

You may enjoy reflecting on how a human mathematician does this
disambiguation. In fact, they are doing something much more
sophisticated than disco, implicitly using information about types
and social conventions regarding variable names in addition to
syntactic cues. For example, consider \(x(y + 3)\) versus \(f(y +
3)\). Most mathematicians would unconsciously interpret the first
as multiplication and the second as function application, due to
standard conventions about the use of variable names \(x\) and
\(f\). On the other hand, in the sentence “Let \(x\) be the function
which doubles an integer, and consider \(v = x(y+3)\)“, any
mathematician would have no trouble identifying this use of
\(x(y+3)\) as function application, although they might also
rightly complain that \(x\) is a strange choice for the name of
a function.

Case expressions

Fundamentally, the only construct available in disco which allows
choosing between multiple alternatives is case analysis using a case
expression. (The other is multi-clause functions defined via
pattern-matching, but in fact that is really only syntax sugar for a
case expression.)

The syntax of case expressions is inspired by mathematical notation
such as

\[\begin{split}f(x) = \begin{cases}
 x+2 & x < 0 \\
 x^2 - 3x + 2 & 0 \leq x < 10 \\
 5 - x & \text{otherwise}
 \end{cases}\end{split}\]

Here is how one would write a corresponding definition in disco:

example/case.disco

f : Z -> Z
f(x) = {? x + 2 if x < 0,
 x^2 - 3x + 2 if 0 <= x < 10,
 5 - x otherwise
 ?}

The entire expression is surrounded by {? ... ?}; the curly braces
are reminiscent of the big brace following \(f(x) = \dots\) in the
standard mathematical notation, but we don’t want to use plain curly
braces (since those will be used for sets), so question marks are
added (which remind us that case expressions are really all about
asking questions).

Case syntax and semantics

More formally, the syntax of a case expression consists of one or more
branches, separated by commas, enclosed in {? ... ?}.
(Whitespace, indentation, etc. formally does not matter, though
something like the style shown in the example above is encouraged.)

Each branch consists of an arbitrary expression followed by zero or
more guards. When a case expression is evaluated, each branch is
tried in turn; the first branch which has all its guards succeed is
chosen, and the value of its expression becomes the value of the
entire case expression. In the example above, this means that first
x < 0 is evaluated; if it is true then x + 2 is chosen as the
value of the entire case expression (and the rest of the branches are
ignored). Otherwise, 0 <= x < 10 is evaluated; and so on.

Every guard starts with the word if or when (the two words
are interchangeable). There are three types of guards:

	A boolean guard is simply an expression of type Bool. It
succeeds if the expression evaluates to true.

	A pattern guard has the form <expr> is <pattern>. It succeeds
if the expression <expr> matches the pattern <pattern>.

	The special guard otherwise always succeeds.

Here is an example using both boolean and pattern guards:

example/case-pattern.disco

g : Z*Z -> Z
g(p) = {? 0 when p is (3,_),
 x + y when p is (x,y) if x > 5 or y > 20,
 -100 otherwise
 ?}

Here is the result of evaluating g on a few example inputs:

Disco> g(3,9)
0
Disco> g(4,3)
-100
Disco> g(16,15)
31

When a pattern containing variables matches, the variables are bound
to the corresponding values, and are in scope in both the branch
expression as well as any subsequent guards. In the example above,
when the pattern (x,y) matches p, both x and y may be
used in the branch expression (x + y in this case) as well as in
the second guard if x > 5 or y > 20. That is, the guards in this
branch will only succeed if p is of the form (x,y) and either
x > 5 or y > 20, in which case the value of the whole case
expression becomes the value of x + y; for example, g(16,15) =
31.

Warning

Be careful not to get a Boolean guard using = confused with a
pattern guard using is. (This is probably something that will
confuse students learning the language; ideas on how to make it
less confusing are welcome. As I am writing this, I realize that
it might be a good idea to require when with pattern guards and
if with boolean guards, rather than allowing them to be mixed
and matched.) The difference is in how variables are handled:
boolean guards can only use existing variables; pattern guards
create new variables. For example, ... when p is (x,y) matches
a tuple p and gives the names x and y to the
components. On the other hand, ... if p = (x,y) will probably
complain that x and y are undefined—unless x and
y are already defined elsewhere, in which case this will simply
check that p is exactly equal to the value (x,y). Use a
boolean guard when you want to check some condition; use a pattern
guard when you want to take a value apart or see what it looks
like.

Function pattern-matching

As we have already seen, functions can be defined via multiple
clauses and pattern-matching. In fact, any such definition simply
desugars to one big case expression. For example, the gcd function
shown below actually desugars to something like gcd2:

example/function-desugar.disco

gcd : N * N -> N
gcd(a,0) = a
gcd(a,b) = gcd(b, a mod b)

gcd2 : N * N -> N
gcd2 = p ↦ {? a when p is (a,0),
 gcd2(b, a mod b) when p is (a,b)
 ?}

Lists

Disco defines a type of inductive, singly-linked lists, very similar
to lists in Haskell.

Basic lists

All the elements of a list must be the same type, and the type of a
list with elements of type T is written List T. Since it is
unambiguous, nested list types can be written without parentheses,
e.g. List List List T.

The basic syntax for constructing and pattern-matching on lists is
almost exactly the same as in Haskell, with the one difference that
the single colon (type of) and double colon (cons) have been switched
from Haskell.

example/list.disco

emptyList : List Bool
emptyList = []

nums : List N
nums = [1, 3, 4, 6]

nums2 : List N
nums2 = 1 :: 3 :: 4 :: 6 :: []

 -- nums and nums2 are equal

nested : List List Q
nested = [1, 5/2, -8] :: [[2, 4], [], [1/2]]

sum : List N -> N
sum [] = 0
sum (n :: ns) = n + sum ns

List comprehensions

Disco has list comprehensions which are also similar to Haskell’s. A
list comprehension is enclosed in square brackets, and consists of an
expression, followed by a vertical bar, followed by zero or more
qualifiers, [<expr> | <qual>*].

A qualifier is one of:

	A binding qualifier of the form x in <expr>, where x is
a variable and <expr> is any expression with a list type. x
will take on each of the items of the list in turn.

	A guard qualifier, which is an expression with a boolean type. It
acts to filter out any bindings which cause the expression to
evaluate to false.

For example, comp1 below is a (rather contrived) function on two
lists which results in all possible sums of two even numbers taken
from the lists which add to at least 50. pythagTriples is a list
of all Pythagoren triples with all three components at
most 100. (There are much more efficient ways to compute Pythagorean
triples, but never mind.)

example/comprehension.disco

comp1 : List N -> List N -> List N
comp1 xs ys = [x + y | x in xs, 2 divides x, y in ys, 2 divides y, x + y >= 50]

pythagTriples : List (N*N*N)
pythagTriples = [(a,b,c)
 | a in [1 .. 100]
 , b in [1 .. 100]
 , c in [1 .. 100]
 , a^2 + b^2 = c^2
]

Note

The biggest difference between list comprehensions in disco and
Haskell is that Haskell allows pattern bindings, e.g. Just x <-
xs, which keep only elements from the list which match the
pattern. At the moment, disco only allows variables on the
left-hand side of a binding qualifier. There is no reason in
principle disco can’t support binding qualifiers with patterns, it
just isn’t a big priority and hasn’t been implemented yet.

Polynomial sequences

Like Haskell, disco supports ellipsis notation in literal lists to
denote omitted elements, although there are a few notable
differences. One minor syntactic difference is that (just for fun)
disco accepts two or more dots as an ellipsis; the number of dots
makes no difference.

example/basic-ellipsis.disco

-- Counting numbers from 1 to 100
counting : List N
counting = [1 .. 100]

-- Even numbers from 2 to 100
evens : List N
evens = [2, 4 100]

-- [5, 4, 3, ... -3, -4, -5]
down : List Z
down = [5 .. -5]

-- 1 + 3 + 5 + 7 = 16
s : N
s = {? a+b+c+d when [1, 3 ..] is (a::b::c::d::_) ?}

-- It doesn't always have to be integers
qs : List Q
qs = [2/3, 7/5 .. 10]

	[a ..] denotes the infinite list beginning with a and
counting up by ones.

	[a .. b] denotes the list that starts with a and either
counts up or down by ones (depending on whether b is greater
than or less than a, respectively), continuing as long as the
elements do not “exceed” b (the meaning of “exceed” depends on
whether the counting is going up or down).

	[a, b .. c] denotes the list whose first element is a,
second element is b, and the difference between each element and
the next is the difference b - a. The list continues as long as
the elements do not “exceed” c, where “exceed” means either
“greater than” or “less than”, depending on whether b - a is
positive or negative, respectively.

	[a, b ..] is similar but infinite.

All the above is similar to Haskell, except that [10 .. 1] is the
empty list in Haskell, and disco’s rules about determining when the
list stops are much less strange (the strangeness of Haskell’s rules
is occasioned by floating-point error, which of course disco does not
have to deal with).

However, disco also generalizes things further by allowing notation of
the form [a, b, c ..] or [a, b, c, d ..], and so on. We have
already seen that two values [a, b ..] generate a linear
progression of values; by analogy, three values generate a quadratic
progression, four values a cubic, and so on. In general, when
\(n\) values \(a_0, a_1, \dots, a_n\) are given before an
ellipsis, disco finds the unique polynomial \(p\) of degree
\(n-1\) such that \(p(i) = a_i\), and uses it to generate
additional terms of the list. (In practice, the disco interpreter does
not actually find a polynomial, but uses the method of finite
differences, just like Charles Babbage’s Difference Engine.)

example/general-ellipsis.disco

-- The infinite list of triangular numbers
triangular : List N
triangular = [1, 3, 6 ..]

-- The infinite list of squares
squares : List N
squares = [1, 4, 9 ..]

-- Some cubes
cubes : List N
cubes = [1, 8, 27, 64 .. 1000]

When an ending value is specified, list elements are again included
until the first one which “exceeds” the ending value. The precise
definition of “exceeds” is a bit trickier to state in general, but
corresponds to the eventual behavior of the polynomial: the list stops
as soon as elements become either larger than or smaller than the
ending value, as the polynomial diverges to \(+\infty\) or
\(-\infty\), respectively.

Multinomial coefficients

We already saw that the choose operator can be used to compute
binomial coefficients. In fact, if the second operand to choose
is a list instead of a natural number, it can be used to compute
general multinomial coefficients as well. n choose xs is the
number of ways to choose a sequence of sets whose sizes are given by
the elements of xs from among a set of n items. If the sum of
xs is equal to n, then this is given by n! divided by the
product of the factorials of xs; if the sum of xs is greater
than n, then n choose xs is zero; if the sum is less than
n, it is as if another element were added to xs to make up the
sum (representing the set of elements which are “not chosen”). In
general, n choose k = n choose [k,n-k] = n choose [k].

Polymorphism

Disco also supports polymorphic functions and let expressions. This is best demonstrated by an example.

Generalizing using Polymorphism

Consider the task of incrementing each number in a list of natural numbers. In order to accomplish this task using Disco, you could simply write the following function:

incr : List N -> List N
incr [] = []
incr (a :: as) = (a + 1) :: (incr as)

Disco> incr [1,2,3]
[2,3,4]

Now consider the task of producing a list of singleton lists containing each element from a provided list of Integers. The following function would suffice:

single : List Z -> List (List Z)
single [] = []
single (a :: as) = [a] :: (single as)

Disco> single [-1,2,-3]
[[-1],[2],[-3]]

Do you see the similarities between the two functions? Both functions take a list, apply a function to each element in the list, concatenate the results into a new list, and return this new list. This pattern emerges quite often, and it would be tedious to have to write this same structure twice for two functions as similar as incr and single. Instead, since generalization is the bread and butter of programming, we can capture the essence of the above pattern with the following polymorphic function:

map : (a -> b) -> List a -> List b
map _ [] = []
map f (a :: as) = f a :: (map as)

The function map is a polymorphic, higher-order function which takes as input a function, f, which transforms values of type a to values of type b, a list of elements of type a, and returns a list of elements of type b by applying f to each element in the input list. Note that map will work for any types, a and b, so we call a and b “type variables”. Therefore, you might read the type of map as:

-- map : for all types a and b, (a -> b) -> List a -> List b

Now we can rewrite the functions incr and single as follows:

incr' : List N -> List N
incr' l = let f = (x : N) -> x + 1 in map f l

single' : List Z -> List (List Z)
single' l = let f = (x : Z) -> [x] in map f l

It’s a good idea to try these functions out and verify that they produce the same outputs as their non-generic counterparts.

Other common polymorphic, higher-order functions include foldr and filter:

filter : (a -> Bool) -> List a -> List a
filter _ [] = []
filter f (a :: as) = {? a :: (filter f as) if f a,
 filter f as otherwise
 ?}

foldr : (a -> b -> b) -> b -> List a -> b
foldr _ acc [] = acc
foldr f acc (a :: as) = foldr f (f a acc) as

If you are unfamiliar with these functions, play around with them and see if you can figure out what they do/what pattern they capture! This will help you understand their types.

Note that the following following function would not typecheck in Disco:

invalid : List a -> List a
invalid [] = []
invalid (a : as) = (a + 1) :: (invalid as)

This is because our type definition states that invalid should work lists of all types (due to the type variable a), however, our definition implies that invalid only works on lists of a numeric type.

Limitations

Laziness

Disco takes a hybrid approach to laziness.

	To facilitate compositionality and allow for things such as infinite
lists, structured types (lists, pairs, etc.) in disco are lazy.

	To avoid surprising performance issues, numeric types in disco are
strict.

Examples coming soon.

Let expressions

Let expressions are a mechanism for defining new variables for local
use within an expression. For example, 3 + (let y = 2 in y + y)
evaluates to 7: the expression y + y is evaluated in a context
where y is defined to be 2, and the result is then added to
3. The simplest syntax for a let expression, as in this example,
is let <variable> = <expression1> in <expression2>. The value of
the let expression is the value of <expression2>, which may
contain occurrences of the <variable>; any such occurrences will
take on the value of <expression1>.

More generally:

	A let may have multiple variables defined before in,
separated by commas.

	Each variable may optionally have a type annotation.

	The definitions of later variables may refer to previously defined
variables.

	However, the definition of a variable in a let may not refer to
itself; only top-level definitions may be recursive.

Here is a (somewhat contrived) example which demonstrates all these
features:

example/let.disco

f : Nat -> List Nat
f n =
 let x : Nat = n//2,
 y : Nat = x + 3,
 z : List Nat = [3,x,y]
 in n :: z

An important thing to note is that a given definition in a let
expression will only ever be evaluated (at most) once, even if the
variable is used multiple times. let expressions are thus a way
for the programmer to ensure that the result of some computation is
shared. let x = e in f x x and f e e will always yield the
same result, but the former might be more efficient, if e is
expensive to calculate.

Properties

Each disco definition may have any number of associated properties,
mathematical claims about the behavior of the definition which can be
automatically verified by disco. Properties begin with !!!, must
occur just before their associated definition, and may be arbitrarily
interleaved with documentation lines beginning with |||.

Unit tests

The simplest kind of property is just an expression of type Bool,
which essentially functions as a unit test. When loading a file,
disco will check that all such properties evaluate to true, and
present an error message if any do not.

example/unit-test.disco

!!! gcd(7,6) = 1
!!! gcd(12,18) = 6
!!! gcd(0,0) = 0

gcd : N * N -> N
gcd(a,0) = a
gcd(a,b) = gcd(b, a mod b)

When we load this file, disco reports that it successfully ran the
tests associated with gcd:

Disco> :load example/unit-test.disco
Loading example/unit-test.disco...
Running tests...
 gcd: OK
Loaded.

On the other hand, if we change the first property to !!! gcd(7,6) =
2 and load the file again, we get an error:

Disco> :load example/unit-test.disco
Loading example/unit-test.disco...
Running tests...
 gcd:
 - Test result mismatch for: gcd (7, 6) = 2
 - Expected: 2
 - But got: 1
Loaded.

Quantified properties

More generally, properties can contain universally quantified
variables. The syntax for a universally quantified property is as
follows:

	the word forall (or the Unicode symbol ∀);

	one or more comma-separated bindings, each consisting of a
variable name, a colon, and a type;

	a period;

	and an arbitrary expression, which should have type Bool and
which may refer to the variables bound by the forall.

Such quantified properties have the obvious logical interpretation:
they hold only if the given expression evaluates to true for all
possible values of the quantified variables.

example/property.disco

!!! ∀ x:B. neg (neg x) = x
neg : B -> B
neg x = not x

!!! ∀p: N + N. plusIsoR (plusIso p) = p
plusIso : N + N -> N
plusIso (left n) = 2n
plusIso (right n) = 2n + 1

!!! ∀n:N. plusIso (plusIsoR n) = n
plusIsoR : N -> N + N
plusIsoR n =
 {? left (n // 2) if 2 divides n
 , right (n // 2) otherwise
 ?}

!!! forall x:N, y:N, z:N.
 f(f(x,y), z) = f(x, f(y,z))

f : N*N -> N
f (x,y) = x + x*y + y

In the example above, the first three properties have a single
quantified variable, and specify respectively that neg is
self-inverse, and plusIso and plusIsoR are inverse. The last
function has a property with multiple quantified variables, and
specifies that f is associative. Notice that as in this last
example, properties may extend onto multiple lines, as long as
subsequent lines are indented. Only a single !!! should be used at
the start of each property.

Such properties may be undecidable in general, so disco cannot
automatically prove them. Instead, it searches for counterexamples.
If the input space is finite and sufficiently small (as in the first
example above, which quantifies over a single boolean), disco will
enumerate all possible inputs and check each one; so in this special
case, disco can actually prove the property by exhaustively checking
all cases. Otherwise, disco randomly generates a certain number of
inputs (a la QuickCheck) and checks that the property is
satisfied for each. If a counterexample is found, the property
certainly does not hold, and the counterexample can be printed. If no
counterexample is found, the property “probably” holds.

For example, consider this function with a property claiming it is
associative:

example/failing/property.disco

!!! forall x:N, y:N, z:N.
 f(f(x,y), z) = f(x, f(y,z))

f : N*N -> N
f (x,y) = x + 2*y

The function is not associative, however, and if we try to load this
file disco quickly finds a counterexample:

Disco> :load example/failing/property.disco
Loading example/failing/property.disco...
Running tests...
 f:
 - Test result mismatch for: ∀ x : ℕ, y : ℕ, z : ℕ. f (f (x, y), z) = f (x, f (y, z))
 - Expected: 5
 - But got: 3
 Counterexample:
 x = 1
 y = 0
 z = 1
Loaded.

Disco Language Reference

Coming soon!

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Documentation for the Disco Language

 		
 Quick Tutorial

 		
 Getting started

 		
 Arithmetic

 		
 Basic arithmetic

 		
 Advanced arithmetic

 		
 Types

 		
 Primitive numeric types

 		
 Modular types

 		
 Other types

 		
 Disco files and the disco REPL

 		
 Disco files

 		
 Comments and documentation

 		
 Other REPL commands

 		
 Logic

 		
 Booleans

 		
 Equality testing

 		
 Comparison

 		
 Structural types

 		
 Product types

 		
 Sum types

 		
 Unit and Void types

 		
 Counting and enumerating types

 		
 Functions

 		
 Anonymous functions

 		
 Comparing functions

 		
 Disambiguating function application and multiplication

 		
 Case expressions

 		
 Case syntax and semantics

 		
 Function pattern-matching

 		
 Lists

 		
 Basic lists

 		
 List comprehensions

 		
 Polynomial sequences

 		
 Multinomial coefficients

 		
 Polymorphism

 		
 Generalizing using Polymorphism

 		
 Limitations

 		
 Laziness

 		
 Let expressions

 		
 Properties

 		
 Unit tests

 		
 Quantified properties

 		
 Disco Language Reference

_static/comment-bright.png

_static/ajax-loader.gif

