

DIMS User Manual v 0.2.1

This is the DIMS User Manual (version 0.2.1).

	1. Introduction
	1.1. Introduction

	2. Referenced documents

	3. Development and Core Tool Policy
	3.1. General Software Development Philosophy

	3.2. Source Code Control

	3.3. Copyright

	3.4. License

	3.5. Developing on a fork from GitHub

	3.6. Developing

	4. Source Code Management with Git
	4.1. Foundational Git Resources

	4.2. The need for policy and discipline

	4.3. Global Git Configuration

	4.4. Daily tasks with Git

	4.5. Infrequent tasks with Git

	5. Documenting DIMS Components
	5.1. Required Background Reading

	5.2. Why Sphinx?

	5.3. Manually Initiating a docs directory with sphinx-quickstart

	5.4. Building Sphinx Documentation

	5.5. Fixing errors

	5.6. Common Tasks

	5.7. Common Problems

	5.8. Advanced Use of Sphinx Features

	6. Continuous Integration
	6.1. Continuous Integration

	6.2. How source changes are propagated

	6.3. Continuous deployment of documentation

	7. Developing modules for the DIMS CLI app (dimscli)
	7.1. Bootstrapping the dimscli app for development

	7.2. Command Structure

	7.3. Completing commands in dimscli

	7.4. Adding New Columns to Output

	7.5. Adding New Commands

	7.6. Adding a Module in Another Repo

	8. Service Discovery Using Consul

	9. Debugging and Development
	9.1. Determining File System Affects of Running Programs

	10. Docker Datacenter
	10.1. Datacenter Walk-thru

	10.2. Further Information

	11. License

Section author: Dave Dittrich dittrich@u.washington.edu

Copyright © 2014-2016 University of Washington. All rights reserved.

1. Introduction

1.1. Introduction

This chapter introduces ...

2. Referenced documents

	Contract HSHQDC-13-C-B0013, “From Local to Gobal Awareness: A Distributed Incident Management System,” Section C - Statement of Work

	DIMS Training Manual v 0.3.0 [https://dims-training-manual.readthedocs.io/en/latest/index.html#dimstrainingmanual]

	DIMS Job Descriptions v 2.9.0 [https://dims-jds.readthedocs.io/en/latest/index.html#dimsjobdescriptions]

3. Development and Core Tool Policy

This section contains policy statements regarding software development that all
developers working on the DIMS project are expected to adhere to.

In order to prevent core tools being used by developers being incompatible,
rendering installation instructions buggy and/or causing random failures in a
complicated build environment, everyone on the DIMS project must use the
same core tools, and use the same workflow processes. This will allow
controlled updates and provide stability in the tools we are using within the
project.

Without some discipline and adherence to documented policies, far too much time
ends up being wasted when one person can do something, but another can’t, or
something runs fine on one system, but fails on another system. In either case,
team members get blocked from making forward progress and the project suffers
as a result. These policies are not being imposed to stifle anyone’s creativity,
but to help everyone on the team be more productive.

Attention

The requirement to adhere to the policies stated here is partly to keep
the project moving forward smoothly, but also to ensure that the sofware
products developed by this project are suitable for public open source
release as required by the contract (see dimssr:opensourcerelease in
dimssr:dimssystemrequirements) and in conformance with University of
Washington policy.

3.1. General Software Development Philosophy

This section covers some very high-level philosophical points
that DIMS software developers should keep in mind.

There are a huge List of software development philosophies [https://en.wikipedia.org/wiki/List_of_software_development_philosophies] on
Wikipedia. One of the most relevant to the DIMS project, based on
a contractual requirement (see dimssr:agileDevelopment)
is the Agile Manifesto [http://www.agilemanifesto.org/principles.html]. This manifesto is based on twelve
principles:

	Customer satisfaction by early and continuous delivery of valuable software

	Welcome changing requirements, even in late development

	Working software is delivered frequently (weeks rather than months)

	Close, daily cooperation between business people and developers

	Projects are built around motivated individuals, who should be trusted

	Face-to-face conversation is the best form of communication (co-location)

	Working software is the principal measure of progress

	Sustainable development, able to maintain a constant pace

	Continuous attention to technical excellence and good design

	Simplicity—the art of maximizing the amount of work not done—is essential

	Self-organizing teams

	Regular adaptation to changing circumstance

	Avoid friction - “Friction” is anything that slows down an otherwise
smooth running process. Little things that are broken, missing facts,
new programs that you wrote that don’t yet have any documentation,
all make it harder for someone to get work done because something
causes friction. Everything grinds to a halt until the little roadblock
can be removed and then it takes more time to ramp back up to speed.

	Take control - Relying on the default behaviors that are programmed into
an open source product that we use within the DIMS project, without fully
understanding them, can cause problems. When possible, being explicit about
how programs are configured and how they are invoked can make these opaque
default behaviors less of a problem.

	Make it simple - It may take a little effort, but being focused on
finding a simple solution that can be applied uniformly makes it easier
to intergrate a large set of components. The more differences there are
the way a subsystem or service is configured on multiple hosts (like
DNS, for example) means the behavior is random and unpredictable from
one computer system to another, causing friction

	Make it work first, then make it better - Trying to engineer a complete
solution to some need can mean delays in getting something working, which
delays getting that component integrated with other components. Or worrying
about how slow something might be during initial development and trying to
optimize the solution before it is even working and tested by someone
else. Make it work first, doing something simple, then deal with
optimization and a comprehensive feature set later.

	Avoid hard coding!!! - When ever possible, avoid using hard-coded
values in programs, configuration files, or other places where a
simple change of plans or naming conventions results in having to
go find and edit dozens of files. A complete system made up of
multiple services and software components that must be replicated
as a whole cannot possibly be replicated if someone has to hunt
down and change hundreds of values in files spread all over the
place.

	Ansible-ize all the things - All configuration, package installation,
or entity creation on a computer system should be looked at in terms
of how it can be automated with Ansible. Whenever you are tempted to
run a command to change something, or fire up an editor to set a
variable, put it in Ansible and use Ansible to apply it. Manual
processes are not well documented, are not managed under version
control, are not programatically repeatable, and make it harder to
scale or replicate a system of systems because they cause huge
amounts of friction.

	Template and version control all configuration - Adding a new service
(e.g., Nginx, or RabbitMQ) that may have several configuration files is not
just a one-time task. It will be repeated many times, for testing, for
alternate deployments, or when hardware fails or virtual machines get
upgraded. Don’t think that cutting corners to get something up and running
fast by just hand-configuration is the right way to go, because doing it
again will take as much time (or maybe even longer, if someone unfamiliar
with the process has to do it the next time). Take the time when adding a
new service to learn how it is configured, put all of its configuration files
under Ansible control, and use Ansible playbooks or other scripts to do the
configuration at deployment time and at runtime.

	Done means someone else can do it, not just you. A program that
compiles, but nobody else can run, is not done. A bug that was fixed,
but hasn’t been tested by someone other than the person who wrote the
code or fixed the bug, is not done. Something that doesn’t have
documentation, or test steps that explain how to replicate the
results, are not done.

	You can’t grade your own exam Tickets should not be closed until
someone else on the team has been able to validate the results.

	Document early, document often - A program that has no documentation,
or a process someone learns that has no documentation to record that
knowledge and how to use it, doesn’t contribute much to moving the
project forward. We are a team who mostly works independently, across
multiple timezones and on different daily schedules.

3.2. Source Code Control

As pointed out by Jeff Knupp in his blog post Open Sourcing a Python Project
the Right Way [https://www.jeffknupp.com/blog/2013/08/16/open-sourcing-a-python-project-the-right-way/], “git and GitHub have become the de-facto standard for Open
Source projects.” Just as Knupp’s post suggests, the DIMS project has been
following the same git-flow model described by Vincent Driesen in his A
successful Git branching model [http://nvie.com/posts/a-successful-git-branching-model/] blog post, using Sphinx and RST (see the
section Documenting DIMS Components), and using continuous integration via Jenkins
(see Continuous Integration).

3.3. Copyright

All source code should include a copyright statement with the year the
project started (2013) and the current year, as shown here:

#!/usr/bin/env python
#
Copyright (C) 2013, 2015 University of Washington. All rights reserved.
#
...

Note

Where possible, include the actual copyright symbol. For example, in Sphinx
documents, follow the instructions in Section Insertion of text using direct substitution.

3.4. License

All source code repositories shall include the following license statement
to accompany the Copyright statement in the previous section.

Berkeley Three Clause License
=============================

Copyright (c) 2014, 2016 University of Washington. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3.5. Developing on a fork from GitHub

In this section, we will go through the steps for using Hub Flow for
developing on a branch forked from GitHub, publishing the results back
to GitHub for others to share.

For this example, there has already been a fork made on GitHub. Start by
cloning it to your local workstation:

[dittrich@localhost git (master)]$ git clone https://github.com/uw-dims/sphinx-autobuild.git
Cloning into 'sphinx-autobuild'...
remote: Counting objects: 366, done.
remote: Total 366 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (366/366), 62.23 KiB | 0 bytes/s, done.
Resolving deltas: 100% (180/180), done.
Checking connectivity... done.
[dittrich@localhost git (master)]$ cd sphinx-autobuild/
[dittrich@localhost sphinx-autobuild (develop)]$ git branch -a
* develop
 remotes/origin/HEAD -> origin/develop
 remotes/origin/develop
 remotes/origin/feature/1-arbitrary-watch
 remotes/origin/feature/tests
 remotes/origin/master
[dittrich@localhost sphinx-autobuild (develop)]$ git checkout master
Branch master set up to track remote branch master from origin by rebasing.
Switched to a new branch 'master'
[dittrich@localhost sphinx-autobuild (master)]$ git branch -a
 develop
* master
 remotes/origin/HEAD -> origin/develop
 remotes/origin/develop
 remotes/origin/feature/1-arbitrary-watch
 remotes/origin/feature/tests
 remotes/origin/master
[dittrich@localhost sphinx-autobuild (develop)]$ ls
AUTHORS NEWS.rst fabfile.py requirements-testing.txt
CONTRIBUTING.rst README.rst fabtasks requirements.txt
LICENSE docs pytest.ini setup.py
MANIFEST.in entry-points.ini requirements-dev.txt sphinx_autobuild

3.6. Developing

Developing new features for the DIMS CI Utilities...

4. Source Code Management with Git

Daily development work on DIMS source code is done using a local server
accessed via SSH to git.prisem.washington.edu. The public release of DIMS
software will be from github.com/uw-dims [https://github.com/uw-dims] with public
documentation delivered on ReadTheDocs [https://readthedocs.org/]. (DIMS documentation is covered in
Section Documenting DIMS Components.)

Note

At this point github.com/uw-dims [https://github.com/uw-dims] primarily contains forked
repositories of the software described in Section installingtools.

Team members need to have familiarity with a few general task sets,
which are covered in the sections below. These tasks include things like:

	Cloning repositories and initializing them for use of the
hub-flow Git addon scripts.

	On a daily basis, updating repositories, creating feature
or hotfix branches to work on projects, and finishing those branches after
testing is complete to merge them back into the develop branch.

	Creating new repositories, setting triggers for post-commit actions,
and monitoring continuous integration results.

	Keeping up to date with new repositories (or starting fresh with a new
development system by cloning all DIMS repositories a new.)

Attention

Every now and then, you may do something with Git and immediately
think, “Oh, snap! I did not want to do that...” :(

There are resource on Dave Dittrich’s home page in the
dittrich:usinggit section. Two good resources for learning how things
work with Git (and how to undo them) are:

	How to undo (almost) anything with Git [https://github.com/blog/2019-how-to-undo-almost-anything-with-git], GitHub blog post by jaw6, June 8, 2015

	Undo Almost Anything with Git webinar [https://youtu.be/oUzbaCRoeFA], YouTube video by Peter Bell and Michael Smith, February 11, 2014

4.1. Foundational Git Resources

	Yan Pritzker’s Git Workflows book [http://documentup.com/skwp/git-workflows-book]

	The Thing About Git [http://tomayko.com/writings/the-thing-about-git]

	Commit Often, Perfect Later, Publish Once: Git Best Practices [http://sethrobertson.github.io/GitBestPractices/]

	Git Tips [http://mislav.uniqpath.com/2010/07/git-tips/]

	git-flow [http://danielkummer.github.io/git-flow-cheatsheet/] utilities to follow Vincent Dreisen branching workflow

	HubFlow [http://datasift.github.io/gitflow/] (GitFlow for GitHub)

4.2. The need for policy and discipline

Git is a great tool for source management, but can be a little tricky to use
when there is a team of programmers all using Git in slightly different ways.
Bad habits are easy to form, like the short-cut of working on the develop
branch in a multi-branch workflow.

Figure Vincent Driessen Git branching model comes from Vincent Driessen’s “A
successful Git branching model [http://nvie.com/posts/a-successful-git-branching-model/]”. The DIMS project is following this model as
best we can to maintain consistency in how we create and use branches. The
general policy is to derive branch names from Jira tickets, in order to keep
information about why the branch exists, who is responsible for working on it,
and what is supposed to be done on the branch, in a system that can track
progress and prioritization of activities within sprints.

[image: Vincent Driessen Git branching model]
Vincent Driessen Git branching model

Because public release of source code will be through GitHub,
the hubflow tool was chosen for use within the project.
Take a moment to read through the following Gist (original source:
bevanhunt/hubflow_workflow [https://gist.github.com/bevanhunt/903740bf7306d806f943]), just to get an overview of hubflow
concepts. This Gist provides an overview of hubflow branch concepts and
some other things about Git that are good to keep in mind, but this is not
the totality of information in this guide about using hubflow (keep reading
further down for more DIMS-specific examples of using hubflow commands).

Git Hubflow Workflow:

Sync Branch:
git hf update - this will update master and develop and sync remote branches withlocal ones (be sure not to put commits into develop or master as it will push these up)
git hf push - this will push your commits in your local branch to the matching remote branch
git hf pull - this will pull the remote commits into your local branch (don't use if the remote branch has been rebased - use git pull origin "your-branch" instead)

Feature Branch:
gif hf feature start "my-feature" - this will create a feature branch on origin and local will be based off the latest develop branch (make sure to git hf update before or you will get an error if local develop and remote develop have divereged)
git hf feature finish "my-feature" - this will delete the local and remote branches (only do this after a PR has been merged)
git hf feature cancel -f "my-feature" - this will delete the local and remote branches (only do this if the feature branch was created in error)
git hf feature checkout "my-feature" - this will checkout the feature branch

Hotfix Branch:
git hf hotfix start "release-version" - this will create a hotfix branch on origin and local will be based off the latest develop branch (make sure to git hf update before or you get an error if local develop and remote devleop have divereged)
git hf hotfix finish "release-version" - this will delete the local and remote branches and merge the commits of the hotfix branch into master and develop branches - it will also create a release tag that matches the release version on master
git hf hotfix cancel -f "release-version" - this will delete the remote and local branch (only do this if the hotfix was created in error)
git checkout hotfix/"release-version" - this will checkout the hotfix branch (make sure to git hf update first)

Release Branch:
git hf release start "release-version" - this will create a release branch on origin and local will be based off the latest develop branch (make sure to git hf update before or you get an error if local develop and remote devleop have divereged)
git hf release finish "release-version" - this will delete the local and remote branches and merge the commits of the release branch both into develop and master - it will also create a release tag that matches the release version on master
git hf release cancel -f "release-version" - this will delete the local and remote branch (only do this if the release was created in error)
git checkout release/"release-version" - this will checkout the release branch (make sure to git hf update first)

Preparing a PR:
- put the Aha! Ticket # in PR title with a description
- assign to the proper reviewer
- don't squash the commits until after reviewed
- after review - squash the commits

Squashing Commits:
- checkout the branch you want to squash
- git merge-base "my-branch" develop (returns merge-base-hash)
- git rebase -i "merge-base-hash"
- change all commit types to "squash" from "pick" in the text file (except first) & save file
- if you get a no-op message in the text file and still have multiple commits then use the command git rebase -i (without the hash)
- fix any merge conflicts
- you should have one commit
- force update your remote branch: git push origin "my-branch" -f

Resolving merge conflicts with the develop branch that are not squashing related (generally on PRs - auto-merge will show as disabled):
- git hf update
- git rebase develop (while in your branch)
- resolve any merge conflicts

Rules to remember:
- don't ever git merge branches together manually (should never run command - git merge)
- squash only after review and before merging PR into develop

Note

There is a large body of references on Git that are constantly being
updated in the Software Development>Git [https://staff.washington.edu/dittrich/home/swdev.html#git] section of Dave Dittrich’s web
page.

Caution

Mac OS X (by default) uses an HFS file system with case sensitivity.
Unlike Ubuntu and other Linux/Unix distributions using case-sensitive
file systems like ext2, reiserfs, etc., the default OS X file
system does not care if you name a file THISFILE or ThisFile
or thisfile. All of those are the same file name. This can cause
problems when you use Git to share a source repository between computers
running OS X, Windows, and/or Linux. See Git on Mac OS X: Don’t ignore case! [http://tapestryjava.blogspot.com/2010/07/git-on-mac-os-x-dont-ignore-case.html]
and How do I commit case-sensitive only filename changes in Git? [http://stackoverflow.com/questions/17683458/how-do-i-commit-case-sensitive-only-filename-changes-in-git]. A solution
for Mac OS X, posted in Case sensitivity in Git [http://stackoverflow.com/questions/8904327/case-sensitivity-in-git], is documented in
Section macosxcasesensitive.

4.3. Global Git Configuration

As we learn about best practices, the following set of global configuration
settings will be updated. Refer back to this page, or look in the dims-git
repo, for the latest configuration examples.

The following are user-specific settings that you should alter for your own account and preferences of editor/merge method:

$ git config --global user.name "Dave Dittrich"
$ git config --global user.email "dittrich@u.washington.edu"
$ git config --global merge.tool vimdiff
$ git config --global core.editor vim

The following are general and can be applied to anyone’s configuration
(included here without a prompt so you can cut/paste to a command
line):

git config --global push.default tracking
git config --global core.excludesfile ~/.gitignore_global
git config --global core.autocrlf false
git config --global color.diff auto
git config --global color.status auto
git config --global color.branch auto
git config --global color.interactive auto
git config --global color.ui auto
git config --global branch.autosetuprebase always

The following are convenience aliases that help with certain tasks:

git config --global alias.find 'log --color -p -S'
git config --global alias.stat 'status -s'
git config --global alias.unstage "reset HEAD --"
git config --global alias.uncommit "reset --soft HEAD^"
git config --global alias.gr 'log --full-history --decorate=short --all --color --graph'
git config --global alias.lg 'log --oneline --decorate=short --abbrev-commit --all --color --graph'
git config --global alias.log1 'log --oneline --decorate=short'

4.4. Daily tasks with Git

This section covers regular tasks that are performed to
work with source code using Git. This section assumes you are
using the hub flow tool described in Section installingtools.

Warning

These tools are being installed in the dimsenv Python virtual
environment to make it easier for everyone on the team to access them and to
stay up to date with instructions in this document. If you have any
problems, file a Jira [http://jira.prisem.washington.edu/secure/Dashboard.jspa] ticket or talk
to Dave immediately upon encountering a problem. Do not let yourself get
blocked on something and block everyone else as a result!

4.4.1. Updating local repos

The most common task you need to do is keep your local Git repos up to date
with the code that others have pushed to remote repositories for sharing.
With several dozen individual Git repos, keeping your system up to date
with all of these frequently changing repos using git commands alone
is difficult.

To make things easier, helper programs like the hubflow scripts
and mr can be used, but even those programs have their limits.

The preferred method of updating the larger set of DIMS Git repos
is to use dims.git.syncrepos, which in turn calls hubflow via
mr as part of its processing. This convenience script (described in
Section Updating with dims.git.syncrepos) works on many repos at once, saving time and
effort.

You should still learn how hubflow and mr work, since you will
need to use them to update individual Git repos when you are working within
those repos, so we will start with those tools.

4.4.1.1. Updating using hubflow

The following command ensures that a local repo you
are working on is up to date:

Note

The list of actions that are performed is provided at the end of the command
output. This will remind you of what all is happening under the hood of Hub
Flow and is well worth taking a few seconds of your attention.

(dimsenv)[dittrich@localhost ansible-playbooks (develop)]$ git hf update
Fetching origin
remote: Counting objects: 187, done.
remote: Compressing objects: 100% (143/143), done.
remote: Total 165 (delta 56), reused 1 (delta 0)
Receiving objects: 100% (165/165), 31.78 KiB | 0 bytes/s, done.
Resolving deltas: 100% (56/56), completed with 13 local objects.
From git.prisem.washington.edu:/opt/git/ansible-playbooks
 001ba47..0e12ec3 develop -> origin/develop
 * [new branch] feature/dims-334 -> origin/feature/dims-334
Updating 001ba47..0e12ec3
Fast-forward
 docs/source/conf.py | 2 +-
 roles/dims-ci-utils-deploy/tasks/main.yml | 5 +++++
 2 files changed, 6 insertions(+), 1 deletion(-)

Summary of actions:
- Any changes to branches at origin have been downloaded to your local repository
- Any branches that have been deleted at origin have also been deleted from your local repository
- Any changes from origin/master have been merged into branch 'master'
- Any changes from origin/develop have been merged into branch 'develop'
- Any resolved merge conflicts have been pushed back to origin
- You are now on branch 'develop'

If a branch existed on the remote repo (e.g., the feature/eliot branch used
in testing), it would be deleted:

[dittrich@localhost dims-asbuilt (develop)]$ git branch -a
* develop
 master
 remotes/origin/develop
 remotes/origin/feature/eliot
 remotes/origin/master
[dittrich@localhost dims-asbuilt (develop)]$ git hf update
Fetching origin
From git.prisem.washington.edu:/opt/git/dims-asbuilt
 x [deleted] (none) -> origin/feature/eliot

Summary of actions:
- Any changes to branches at origin have been downloaded to your local repository
- Any branches that have been deleted at origin have also been deleted from your local repository
- Any changes from origin/master have been merged into branch 'master'
- Any changes from origin/develop have been merged into branch 'develop'
- Any resolved merge conflicts have been pushed back to origin
- You are now on branch 'develop'
[dittrich@localhost dims-asbuilt (develop)]$ git branch -a
* develop
 master
 remotes/origin/develop
 remotes/origin/master

While using git hf update && git hf pull seems like it is simple enough,
the DIMS project has several dozen repos, many of which are inter-related.
Keeping them all up to date is not simple, and because of this developers
often get far out of sync with the rest of the team.

4.4.1.2. Updating using the mr command

A useful tool for managing multiple Git repositories and keeping them in sync
with the master branches is to use the program mr [http://joeyh.name/code/mr/].

mr uses a configuration file that can be added to using mr register
within a repo, or by editing/writing the .mrconfig file directly.

Attention

These instructions assume the reader is not already using mr
on a regular basis. Additionally, all DIMS Git repos are assumed
to be segrated into their own directory tree apart from any other
Git repos that the developer may be using.

This assumption allows for use of a .mrconfig file specifically for
just DIMS source code that can be over-written entirely with DIMS-specific
settings.

Cloning all of the DIMS source repos at once, or getting the contents of
what should be an up-to-date .mrconfig file, is covered in the Section
Cloning multiple repos from git.prisem.washington.edu.

After all repos have been cloned, they can be kept up to date on a daily
basis. Start your work session with the following commands:

$ cd $GIT
$ mr update

Caution

If you do not update a repo before attempting to git hf push or
git hf update with commited changes, Git will do a pull
and potentially you will end up with at best a merge, and at
worst a merge conflict that you must resolve before the push can
complete. If you are not comfortable handling a merge conflict, talk
to another team member to get help.

4.4.1.3. Updating with dims.git.syncrepos

A script that combines several of the above steps into one single command
is dims.git.synrepos.

[dimsenv] dittrich@dimsdemo1:~ () $ dims.git.syncrepos --version
dims.git.syncrepos version 1.6.97

In the example here, highlighted lines show
where repos are dirty (Repo[9], Repo[13], and Repo[33]), meaning they have
tracked files that are not committed yet and cannot be updated, clean and
requiring updates from the remote repo (Repo[12]), and new repositories from
the remote server (Repo[28] and Repo[30]) that are being cloned and initialized
for use with hub-flow tools. At the end, dims.git.syncrepos reports
how many repos were updated out of the available repos on the remote
server, how many new repos it added, and/or how many repos could not be
updated because they are dirty. Lastly, it reports how long it took (so
you can be aware of how long you have to go get coffee after
starting a sync.)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

	 [dimsenv] dittrich@dimsdemo1:~ () $ dims.git.syncrepos
 [+++] Found 46 available repos at git@git.prisem.washington.edu
 [+++] Repo[1] "/home/dittrich/dims/git/ansible-inventory" clean:
 [+++] Repo[2] "/home/dittrich/dims/git/ansible-playbooks" clean:
 [+++] Repo[3] "/home/dittrich/dims/git/cif-client" clean:
 [+++] Repo[4] "/home/dittrich/dims/git/cif-java" clean:
 [+++] Repo[5] "/home/dittrich/dims/git/configs" clean:
 [+++] Repo[6] "/home/dittrich/dims/git/dims" clean:
 [+++] Repo[7] "/home/dittrich/dims/git/dims-ad" clean:
 [+++] Repo[8] "/home/dittrich/dims/git/dims-asbuilt" clean:
 [---] Repo[9] "/home/dittrich/dims/git/dims-ci-utils" is dirty:
 ?? dims/diffs.1
 ?? dims/manifest.dat
 ?? ubuntu-14.04.2/ubuntu-14.04.3-install.dd.bz2
 4bb5516 (feature/dims-406) Merge branch 'develop' into feature/dims-406

 [+++] Repo[10] "/home/dittrich/dims/git/dims-dashboard" clean:
 [+++] Repo[11] "/home/dittrich/dims/git/dims-db-recovery" clean:
 [+++] Repo[12] "/home/dittrich/dims/git/dims-devguide" clean:
 remote: Counting objects: 29, done.
 remote: Compressing objects: 100% (22/22), done.
 remote: Total 22 (delta 13), reused 0 (delta 0)
 Unpacking objects: 100% (22/22), done.
 From git.prisem.washington.edu:/opt/git/dims-devguide
 daffa68..4b2462b develop -> origin/develop
 Updating daffa68..4b2462b
 Fast-forward
 .bumpversion.cfg | 2 +-
 docs/source/conf.py | 4 ++--
 docs/source/deployconfigure.rst | 2 +-
 docs/source/referenceddocs.rst | 13 +++++++++++++
 4 files changed, 17 insertions(+), 4 deletions(-)
 [---] Repo[13] "/home/dittrich/dims/git/dims-dockerfiles" is dirty:
 8a47fca (HEAD -> develop) Bump version: 1.1.11 → 1.1.12

 [+++] Repo[14] "/home/dittrich/dims/git/dims-dsdd" clean:
 [+++] Repo[15] "/home/dittrich/dims/git/dims-jds" clean:
 [+++] Repo[16] "/home/dittrich/dims/git/dims-keys" clean:
 [+++] Repo[17] "/home/dittrich/dims/git/dims-ocd" clean:
 [+++] Repo[18] "/home/dittrich/dims/git/dims-packer" clean:
 [+++] Repo[19] "/home/dittrich/dims/git/dims-sample-data" clean:
 [+++] Repo[20] "/home/dittrich/dims/git/dims-sr" clean:
 [+++] Repo[21] "/home/dittrich/dims/git/dims-supervisor" clean:
 [+++] Repo[22] "/home/dittrich/dims/git/dims-svd" clean:
 [+++] Repo[23] "/home/dittrich/dims/git/dimssysconfig" clean:
 [+++] Repo[24] "/home/dittrich/dims/git/dims-tp" clean:
 [+++] Repo[25] "/home/dittrich/dims/git/dims-tr" clean:
 [+++] Repo[26] "/home/dittrich/dims/git/dims-vagrant" clean:
 [+++] Repo[27] "/home/dittrich/dims/git/ELK" clean:
 [+++] Adding Repo[28] fuse4j to /home/dittrich/dims/.mrconfig and checking it out.
 mr checkout: /home/dittrich/dims/git/fuse4j
 Cloning into 'fuse4j'...
 remote: Counting objects: 523, done.
 remote: Compressing objects: 100% (240/240), done.
 remote: Total 523 (delta 186), reused 523 (delta 186)
 Receiving objects: 100% (523/523), 180.86 KiB | 0 bytes/s, done.
 Resolving deltas: 100% (186/186), done.
 Checking connectivity... done.
 Using default branch names.

 Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

 How to name your supporting branch prefixes?
 Feature branches? [feature/]
 Release branches? [release/]
 Hotfix branches? [hotfix/]
 Support branches? [support/]
 Version tag prefix? []

 mr checkout: finished (1 ok; 43 skipped)
 [+++] Repo[29] "/home/dittrich/dims/git/ipgrep" clean:
 [+++] Adding Repo[30] java-native-loader to /home/dittrich/dims/.mrconfig and checking it out.
 mr checkout: /home/dittrich/dims/git/java-native-loader
 Cloning into 'java-native-loader'...
 remote: Counting objects: 329, done.
 remote: Compressing objects: 100% (143/143), done.
 remote: Total 329 (delta 62), reused 329 (delta 62)
 Receiving objects: 100% (329/329), 178.36 KiB | 0 bytes/s, done.
 Resolving deltas: 100% (62/62), done.
 Checking connectivity... done.
 Using default branch names.

 Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

 How to name your supporting branch prefixes?
 Feature branches? [feature/]
 Release branches? [release/]
 Hotfix branches? [hotfix/]
 Support branches? [support/]
 Version tag prefix? []

 mr checkout: finished (1 ok; 44 skipped)
 [+++] Repo[31] "/home/dittrich/dims/git/java-stix-v1.1.1" clean:
 [+++] Repo[32] "/home/dittrich/dims/git/mal4s" clean:
 [---] Repo[33] "/home/dittrich/dims/git/MozDef" is dirty:
 M docker/Dockerfile
 M docker/Makefile

 [+++] Repo[34] "/home/dittrich/dims/git/ops-trust-openid" clean:
 [+++] Repo[35] "/home/dittrich/dims/git/ops-trust-portal" clean:
 [+++] Repo[36] "/home/dittrich/dims/git/poster-deck-2014-noflow" clean:
 [+++] Repo[37] "/home/dittrich/dims/git/prisem" clean:
 [+++] Repo[38] "/home/dittrich/dims/git/prisem-replacement" clean:
 [+++] Repo[39] "/home/dittrich/dims/git/pygraph" clean:
 [+++] Repo[40] "/home/dittrich/dims/git/rwfind" clean:
 [---] Repo[41] "/home/dittrich/dims/git/sphinx-autobuild" is clean:
 [+++] Repo[42] "/home/dittrich/dims/git/stix-java" clean:
 [+++] Repo[43] "/home/dittrich/dims/git/ticketing-redis" clean:
 [+++] Repo[44] "/home/dittrich/dims/git/tsk4j" clean:
 [+++] Repo[45] "/home/dittrich/dims/git/tupelo" clean:
 [+++] Repo[46] "/home/dittrich/dims/git/umich-botnets" clean:
 [+++] Updated 40 of 46 available repos.
 [+++] Summary of actions for repos that were updated:
 - Any changes to branches at origin have been downloaded to your local repository
 - Any branches that have been deleted at origin have also been deleted from your local repository
 - Any changes from origin/master have been merged into branch 'master'
 - Any changes from origin/develop have been merged into branch 'develop'
 - Any resolved merge conflicts have been pushed back to origin
 [+++] Added 3 new repos: fuse4j java-native-loader tsk4j
 [+++] Could not update 3 repos: dims-ci-utils dims-dockerfiles MozDef
 [+++] Updating repos took 00:04:12

4.4.2. Managing Version Numbers

The DIMS project uses the Python program bumpversion [https://github.com/peritus/bumpversion] to
update version numbers in Git repositories, following
PEP 440 – Version Identification and Dependency Specification [http://legacy.python.org/dev/peps/pep-0440/].
You can learn how bumpversion [https://github.com/peritus/bumpversion] works from these resources:

	bumpversion screencast [https://asciinema.org/a/3828] showing bumpversion in action

	A Python Versioning Workflow With Bumpversion [http://kylepurdon.com/blog/2015/01/25/a-python-versioning-workflow-with-bumpversion/]

Note

You can find examples of using bumpversion [https://github.com/peritus/bumpversion] (including its configuration file
.bumpversion.cfg and how it is used to manage version numbers in files) in
this document in Sections Creating a new documentation-only repo and
Cherry-picking a commit from one branch to another.

The program bumpversion is included in the Python virtual environment
dimsenv that is created for use in DIMS development.

[dimsenv] dittrich@27b:~/git/homepage (develop*) $ which bumpversion
/Users/dittrich/dims/envs/dimsenv/bin/bumpversion

Caution

Because you must be in the same directory as the .bumpversion.cfg file
when you invoke bumpversion, it is sometimes problematic when using it
to work in a sub-directory one or more levels below the configuration file.
You may see example command lines like (cd ..; bumpversion patch) that
use sub-shells to temporarily change to the right directory, do the
bumpversion patch, then exit leaving you in the same directory where you
are editing files. That is a little more work than is desirable, but
doing a bunch of cd .., bumpersion patch, cd backagain
is even more work.

To make it easier to increment version numbers, a helper
script dims.bumpversion is available as well:

[dimsenv] dittrich@27b:~/git/homepage (develop*) $ which dims.bumpversion
/Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion
[dimsenv] dittrich@27b:~/git/homepage (develop*) $ dims.bumpversion --help
Usage:
/Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion [options] [args]

Use "/Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion --help" to see options.
Use "/Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion --usage" to see help on "bumpversion" itself.

/Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion -- [bumpversion_options] [bumpversion_args]

Follow this second usage example and put -- before any bumpversion
options and arguments to pass them on bumpversion (rather than
process them as though they were /Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion arguments.) After
all, /Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion is just a shell wrapping bumpversion.

Options:
 -h, --help show this help message and exit
 -d, --debug Enable debugging
 -u, --usage Print usage information.
 -v, --verbose Be verbose (on stdout) about what is happening.

The default when you just invoke dims.bumpversion is to do bumpversion patch,
the most frequent version increment. To use a different increment, just add it as
an argument on the command line (e.g., dims.bumpvesion minor).

Here is an example of how this section edit was done, showing
the version number increment in the workflow:

 [dimsenv] dittrich@localhost:~/dims/git/dims-devguide/docs (develop*) $ git add source/sourcemanagement.rst
 [dimsenv] dittrich@localhost:~/dims/git/dims-devguide/docs (develop*) $ git stat
 M docs/source/sourcemanagement.rst
 [dimsenv] dittrich@localhost:~/dims/git/dims-devguide/docs (develop*) $ git commit -m "Add subsection on version numbers and bumpversion/dims.bumpversion"
 [develop b433bae] Add subsection on version numbers and bumpversion/dims.bumpversion
 1 file changed, 92 insertions(+)
 [dimsenv] dittrich@localhost:~/dims/git/dims-devguide/docs (develop*) $ dims.bumpversion
 [dimsenv] dittrich@localhost:~/dims/git/dims-devguide/docs (develop*) $ git hf push
 Fetching origin
 Already up-to-date.
 Counting objects: 11, done.
 Delta compression using up to 8 threads.
 Compressing objects: 100% (11/11), done.
 Writing objects: 100% (11/11), 2.53 KiB | 0 bytes/s, done.
 Total 11 (delta 7), reused 0 (delta 0)
 remote: Running post-receive hook: Thu Oct 22 22:31:50 PDT 2015
 remote: [+++] post-receive-06jenkinsalldocs started
 remote: [+++] REPONAME=dims-devguide
 remote: [+++] BRANCH=develop
 remote: [+++] newrev=00727d53dbc8130cdbdbe35be80f1f4c2d2ee7fa
 remote: [+++] oldrev=e8e7d4db40dd852a044525fdfbada1fe80d81739
 remote: [+++] Branch was updated.
 remote: [+++] This repo has a documentation directory.
 remote: % Total % Received % Xferd Average Speed Time Time Time Current
 remote: Dload Upload Total Spent Left Speed
 remote: 100 79 0 0 100 79 0 2613 --:--:-- --:--:-- --:--:-- 3761
 remote: % Total % Received % Xferd Average Speed Time Time Time Current
 remote: Dload Upload Total Spent Left Speed
 remote: 100 78 0 0 100 78 0 2524 --:--:-- --:--:-- --:--:-- 3250
 remote: [+++] post-receive-06jenkinsalldocs finished
 To git@git.prisem.washington.edu:/opt/git/dims-devguide.git
 e8e7d4d..00727d5 develop -> develop

 Summary of actions:
 - The remote branch 'origin/develop' was updated with your changes

4.4.3. Initializing a repo for hub-flow

Every time you clone a new DIMS repo, it must be initialized with hub-flow
so that hub-flow commands work properly. Initialize your repo this way:

 (dimsenv)[dittrich@localhost git]$ git clone git@git.prisem.washington.edu:/opt/git/dims-ad.git
 Cloning into 'dims-ad'...
 remote: Counting objects: 236, done.
 remote: Compressing objects: 100% (155/155), done.
 remote: Total 236 (delta 117), reused 159 (delta 76)
 Receiving objects: 100% (236/236), 26.20 MiB | 5.89 MiB/s, done.
 Resolving deltas: 100% (117/117), done.
 Checking connectivity... done.
 (dimsenv)[dittrich@localhost git]$ cd dims-ad
 (dimsenv)[dittrich@localhost dims-ad (master)]$ git hf init
 Using default branch names.

 Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

 How to name your supporting branch prefixes?
 Feature branches? [feature/]
 Release branches? [release/]
 Hotfix branches? [hotfix/]
 Support branches? [support/]
 Version tag prefix? []

After initializing hub-flow, there will be two new sections
in your .git/config file starting with hubflow:

(dimsenv)[dittrich@localhost dims-ad (develop)]$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
 ignorecase = true
 precomposeunicode = true
[remote "origin"]
 url = git@git.prisem.washington.edu:/opt/git/dims-ad.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master
 rebase = true
[hubflow "branch"]
 master = master
 develop = develop
[branch "develop"]
 remote = origin
 merge = refs/heads/develop
 rebase = true
[hubflow "prefix"]
 feature = feature/
 release = release/
 hotfix = hotfix/
 support = support/
 versiontag =

Note

A possible test for inclusion in the dims-ci-utils test suite would be
to check for the existance of the hubflow "branch" and hubflow
"prefix" sections.

These are automatically created when repos are checked out using the
dims.git.syncrepos script and/or methods involving mr described
in the following sections.

4.5. Infrequent tasks with Git

4.5.1. Cloning multiple repos from git.prisem.washington.edu

There are several dozen repositories on git.prisem.washington.edu
that contain DIMS-generated code, configuration files, and/or documentation,
but also local copies of Git repositories from other sources (some with
DIMS-related customizations).

To get a list of all repositories on git.prisem.washington.edu,
use the Git shell command list:

 [dittrich@localhost ~]$ ssh git@git.prisem.washington.edu list
 prisem-replacement.git
 ELK.git
 cif-java.git
 cif-client.git
 dims-ad.git
 supervisor.git
 dims-tr.git
 lemonldap-ng.git
 pygraph.git
 parsons-docker.git
 configs.git
 poster-deck-2014-noflow.git
 dims-keys.git
 dims.git
 dims-tp.git
 ops-trust-portal.git
 dimssysconfig.git
 dims-dockerfiles.git
 stix-java.git
 ansible-playbooks.git
 dims-dashboard.git
 mal4s.git
 dims-ocd.git
 sphinx-autobuild.git
 dims-devguide.git
 dims-asbuilt.git
 ticketing-redis.git
 dims-sr.git
 prisem.git
 umich-botnets.git
 dims-dsdd.git
 dims-sample-data.git
 packer.git
 java-stix-v1.1.1.git
 vagrant.git
 dims-jds.git
 ansible-inventory.git
 ops-trust-openid.git
 dims-coreos-vagrant.git
 configstest.git
 poster-deck-2014.git
 rwfind.git
 dims-ci-utils.git
 ipgrep.git
 tupelo.git
 dims-opst-portal.git
 lemonldap-dims.git
 MozDef.git
 tsk4j.git
 dims-svd.git

To clone all of these repositories in a single step, there is
another Git shell command mrconfig that returns the contents
of a .mrconfig file (see man mr for more information).

Caution

To use a .mrconfig file in a an arbitrary directory, you
will need to add the directory path to this file to the ~/.mrtrust
file. In this example, we will clone repos into ~/dims/git by
placing the .mrconfig file in the ~/dims directory.

[dittrich@localhost dims]$ cat ~/.mrtrust
/Users/dittrich/dims/.mrconfig
/Users/dittrich/git/.mrconfig

If you are building a documentation set (i.e., a limited set of documentation-only
repositories that are cross-linked using the intersphinx extension to Sphinx
as described in Section Cross-referencing between documents with the sphinx.ext.intersphinx extension.

 [dittrich@localhost ~]$ cd ~/dims
 [dittrich@localhost dims]$ ssh git@git.prisem.washington.edu mrconfig dims-ad dims-sr dims-ocd
 [git/dims-ad]
 checkout = git clone 'git@git.prisem.washington.edu:/opt/git/dims-ad.git' 'dims-ad' &&
 (cd dims-ad; git hf init)
 show = git remote show origin
 update = git hf update
 pull = git hf update &&
 git hf pull
 stat = git status -s

 [git/dims-sr]
 checkout = git clone 'git@git.prisem.washington.edu:/opt/git/dims-sr.git' 'dims-sr' &&
 (cd dims-sr; git hf init)
 show = git remote show origin
 update = git hf update
 pull = git hf update &&
 git hf pull
 stat = git status -s

 [git/dims-ocd]
 checkout = git clone 'git@git.prisem.washington.edu:/opt/git/dims-ocd.git' 'dims-ocd' &&
 (cd dims-ocd; git hf init)
 show = git remote show origin
 update = git hf update
 pull = git hf update &&
 git hf pull
 stat = git status -s
 [dittrich@localhost dims]$ ssh git@git.prisem.washington.edu mrconfig dims-ad dims-sr dims-ocd > .mrconfig
 [dittrich@localhost dims]$ mr checkout
 mr checkout: /Users/dittrich/dims/git/dims-ad
 Cloning into 'dims-ad'...
 remote: Counting objects: 518, done.
 remote: Compressing objects: 100% (437/437), done.
 remote: Total 518 (delta 308), reused 155 (delta 76)
 Receiving objects: 100% (518/518), 27.88 MiB | 5.88 MiB/s, done.
 Resolving deltas: 100% (308/308), done.
 Checking connectivity... done.
 Using default branch names.

 Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

 How to name your supporting branch prefixes?
 Feature branches? [feature/]
 Release branches? [release/]
 Hotfix branches? [hotfix/]
 Support branches? [support/]
 Version tag prefix? []

 mr checkout: /Users/dittrich/dims/git/dims-ocd
 Cloning into 'dims-ocd'...
 remote: Counting objects: 474, done.
 remote: Compressing objects: 100% (472/472), done.
 remote: Total 474 (delta 288), reused 0 (delta 0)
 Receiving objects: 100% (474/474), 14.51 MiB | 4.26 MiB/s, done.
 Resolving deltas: 100% (288/288), done.
 Checking connectivity... done.
 Using default branch names.

 Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

 How to name your supporting branch prefixes?
 Feature branches? [feature/]
 Release branches? [release/]
 Hotfix branches? [hotfix/]
 Support branches? [support/]
 Version tag prefix? []

 mr checkout: /Users/dittrich/dims/git/dims-sr
 Cloning into 'dims-sr'...
 remote: Counting objects: 450, done.
 remote: Compressing objects: 100% (445/445), done.
 remote: Total 450 (delta 285), reused 0 (delta 0)
 Receiving objects: 100% (450/450), 498.20 KiB | 0 bytes/s, done.
 Resolving deltas: 100% (285/285), done.
 Checking connectivity... done.
 Using default branch names.

 Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

 How to name your supporting branch prefixes?
 Feature branches? [feature/]
 Release branches? [release/]
 Hotfix branches? [hotfix/]
 Support branches? [support/]
 Version tag prefix? []

 mr checkout: finished (3 ok)
 [dittrich@localhost dims]$ mr stat
 mr stat: /Users/dittrich/tmp/dims/git/dims-ad

 mr stat: /Users/dittrich/tmp/dims/git/dims-ocd

 mr stat: /Users/dittrich/tmp/dims/git/dims-sr

 mr stat: finished (3 ok)

Note

The example just shown uses only three repos. If you do not specify
any repo names on the mrconfig Git shell command, it will return
the settings for all 50+ DIMS repos. You can then clone the entire
set of DIMS repositories with the same mr checkout command,
and update all of them at once with mr update.

4.5.1.1. Adding a newly-created repository

Until the dims.git.syncrepos script has a new feature added to it
to detect when a new repo exists on git.prisem.washington.edu that
does not have a local repo associated with it, you must do this yourself.

When someone uses the newrepo script to create a new repo on
git.prisem.washington.edu, you will need to get new .mrconfig
settings for that repo in order for dims.git.syncrepo to synchronize it.
If you have your $GIT environment variable pointing to a directory
that only has DIMS Git repos in it, you just need to create an updated
.mrconfig file.

Note

It is safest to get a new copy of the .mrconfig file contents
and save them to a temporary file that you can compare with the
current file to ensure you are getting just what you expect, and
only then over-writing the .mrconfig file with the new contents.
The steps are shown here:

[dittrich@localhost ~]$ cd $GIT/..
[dittrich@localhost dims]$ ssh git@git.prisem.washington.edu mrconfig > .mrconfig.new
[dittrich@localhost dims]$ diff .mrconfig .mrconfig.new
324a325,333
> [git/dims-db-recovery]
> checkout = git clone 'git@git.prisem.washington.edu:/opt/git/dims-db-recovery.git' 'dims-db-recovery' &&
> (cd dims-db-recovery; git hf init)
> show = git remote show origin
> update = git hf update
> pull = git hf update &&
> git hf pull
> stat = git status -s
>
[dittrich@localhost dims]$ mv .mrconfig.new .mrconfig
[dittrich@27b dims]$ mr checkout
mr checkout: /Users/dittrich/dims/git/dims-db-recovery
Cloning into 'dims-db-recovery'...
remote: Counting objects: 351, done.
remote: Compressing objects: 100% (254/254), done.
remote: Total 351 (delta 63), reused 350 (delta 63)
Receiving objects: 100% (351/351), 7.60 MiB | 5.62 MiB/s, done.
Resolving deltas: 100% (63/63), done.
Checking connectivity... done.
Using default branch names.

Which branch should be used for tracking production releases?
 - master
Branch name for production releases: [master]
Branch name for "next release" development: [develop]

How to name your supporting branch prefixes?
Feature branches? [feature/]
Release branches? [release/]
Hotfix branches? [hotfix/]
Support branches? [support/]
Version tag prefix? []

mr checkout: finished (1 ok; 43 skipped)

4.5.2. Creating Git repositories

As discussed in the introduction to this section, DIMS software
will be hosted on both a local server git.prisem.washington.edu
and from github.com/uw-dims [https://github.com/uw-dims]. This section covers creation of
new repositories on both systems.

4.5.2.1. Creating repositories on GitHub

4.5.2.2. Setting up remote Git repositories on git.prisem.washington.edu

Before a repository can be shared between DIMS team members, a remote
repository must be set up on git.prisem.washington.edu for sharing.
The following is an example session creating a new repository named
dims-ocd for operational concept description (a.k.a., Concept of
Operations).

 [dittrich@localhost ~]$ slogin git.prisem.washington.edu
 Welcome to Ubuntu 12.04.5 LTS (GNU/Linux 3.13.0-43-generic x86_64)
 [...]
 Last login: Sun Jan 11 12:04:36 2015 from lancaster.prisem.washington.edu
 dittrich@jira:~$ sudo su - gituser
 [sudo] password for dittrich:
 git@jira:~$ cd /opt/git
 git@jira:/opt/git$ newrepo dims-ocd.git
 Initialized empty Git repository in /opt/git/dims-ocd.git/
 git@jira:/opt/git$ echo "DIMS Operational Concept Description" > dims-ocd.git/description
 git@jira:/opt/git$ tree dims-ocd.git
 dims-ocd.git
 ├── branches
 ├── config
 ├── description
 ├── HEAD
 ├── hooks
 │ ├── post-receive -> /opt/git/bin/post-receive
 │ ├── post-receive-00logamqp -> /opt/git/bin/post-receive-00logamqp
 │ └── post-receive-01email -> /opt/git/bin/post-receive-01email
 ├── info
 │ └── exclude
 ├── objects
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 └── tags

 9 directories, 7 files

As can be seen in the output of tree at the end, the steps above
only create post-receive hooks for logging to AMQP and sending
email when a git push is done. To add a Jenkins build hook, do
the following command as well:

 git@jira:/opt/git$ ln -s /opt/git/bin/post-receive-02jenkins dims-ocd.git/hooks/post-receive-02jenkins
 git@jira:/opt/git$ tree dims-ocd.git/hooks/
 dims-ocd.git/hooks/
 ├── post-receive -> /opt/git/bin/post-receive
 ├── post-receive-00logamqp -> /opt/git/bin/post-receive-00logamqp
 ├── post-receive-01email -> /opt/git/bin/post-receive-01email
 └── post-receive-02jenkins -> /opt/git/bin/post-receive-02jenkins

 0 directories, 4 files

4.5.2.3. Setting up a local Git repository before pushing to remote

After setting up the remote repository, you should create the
initial local repository. The basic steps are as follows:

	Create the new local repo directory.

	Populate the directory with the files you want in the repo.

	Add them to the repo.

	Commit the files with a comment

	Create an initial version tag.

	Set remote.origin.url to point to the remote repo.

	Push the new repo to the remote repo.

	Push the tags to the remote repo.

Here is an edited transcript of performing the above tasks.

[dittrich@localhost ~]$ cd $GIT
[dittrich@localhost git]$ mkdir dims-ocd
[dittrich@localhost git]$ git init
Initialized empty Git repository in /Users/dittrich/git/.git/
[... prepare files ...]
[dittrich@localhost dims-ocd (master)]$ ls
MIL-STD-498-templates.pdf UW-logo.png conf.py newsystem.rst
Makefile _build currentsystem.rst notes.rst
OCD-DID.pdf _static impacts.rst operationalscenarios.rst
OCD.html _templates index.rst referenceddocs.rst
OCD.rst analysis.rst justifications.rst scope.rst
UW-logo-32x32.ico appendices.rst license.txt
[dittrich@localhost dims-ocd (master)]$ rm OCD.rst
[dittrich@localhost dims-ocd (master)]$ ls
MIL-STD-498-templates.pdf _build currentsystem.rst notes.rst
Makefile _static impacts.rst operationalscenarios.rst
OCD-DID.pdf _templates index.rst referenceddocs.rst
OCD.html analysis.rst justifications.rst scope.rst
UW-logo-32x32.ico appendices.rst license.txt
UW-logo.png conf.py newsystem.rst
[dittrich@localhost dims-ocd (master)]$ git add .
[dittrich@localhost dims-ocd (master)]$ git commit -m "Initial load of MIL-STD-498 template"
[master (root-commit) 39816fa] Initial load of MIL-STD-498 template
 22 files changed, 1119 insertions(+)
 create mode 100644 dims-ocd/MIL-STD-498-templates.pdf
 create mode 100644 dims-ocd/Makefile
 create mode 100644 dims-ocd/OCD-DID.pdf
 create mode 100755 dims-ocd/OCD.html
 create mode 100644 dims-ocd/UW-logo-32x32.ico
 create mode 100644 dims-ocd/UW-logo.png
 create mode 100644 dims-ocd/_build/.gitignore
 create mode 100644 dims-ocd/_static/.gitignore
 create mode 100644 dims-ocd/_templates/.gitignore
 create mode 100644 dims-ocd/analysis.rst
 create mode 100644 dims-ocd/appendices.rst
 create mode 100644 dims-ocd/conf.py
 create mode 100644 dims-ocd/currentsystem.rst
 create mode 100644 dims-ocd/impacts.rst
 create mode 100644 dims-ocd/index.rst
 create mode 100644 dims-ocd/justifications.rst
 create mode 100644 dims-ocd/license.txt
 create mode 100644 dims-ocd/newsystem.rst
 create mode 100644 dims-ocd/notes.rst
 create mode 100644 dims-ocd/operationalscenarios.rst
 create mode 100644 dims-ocd/referenceddocs.rst
 create mode 100644 dims-ocd/scope.rst
[dittrich@localhost dims-ocd (master)]$ git tag -a "2.0.0" -m "Initial template release"
[dittrich@localhost dims-ocd (master)]$ git remote add origin git@git.prisem.washington.edu:/opt/git/dims-ocd.git
[dittrich@localhost dims-ocd (master)]$ git push -u origin master
Counting objects: 24, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (22/22), done.
Writing objects: 100% (24/24), 251.34 KiB | 0 bytes/s, done.
Total 24 (delta 1), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 15 20:46:33 PST 2015
To git@git.prisem.washington.edu:/opt/git/dims-ocd.git
 * [new branch] master -> master
Branch master set up to track remote branch master from origin by rebasing.
[dittrich@localhost dims-ocd (master)]$ git push origin --tags
Counting objects: 1, done.
Writing objects: 100% (1/1), 173 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 15 20:46:45 PST 2015
To git@git.prisem.washington.edu:/opt/git/dims-ocd.git
 * [new tag] 2.0.0 -> 2.0.0

4.5.3. Deleting Sensitive Data From Repos

Before publishing once private repositories on an internal Git repo server to
a public server like GitHub requires making sure that all sensitive
data is premanantly removed from the local repository’s history before
first pushing it to GitHub.

Danger

Read what GitHub has to say in the Danger block at the top of their
Remove sensitive data [https://help.github.com/articles/remove-sensitive-data] page. In short, any time extremely sensitive
data (like a password or private key) is published to GitHub, it
should be considered compromised, reported to the project lead,
and changed as soon as possible.

Follow the instructions in GitHub’s Remove sensitive data [https://help.github.com/articles/remove-sensitive-data] page to use
either git filter-branch or the BFG Repo-Cleaner [http://rtyley.github.io/bfg-repo-cleaner/] to remove
files from a clone of the repo and then push the clean version
to GitHub.

4.5.4. Cherry-picking a commit from one branch to another

There are times when you are working on one branch (e.g., feature/coreos)
and find that there is a bug due to a missing file. This file should be
on the develop branch from which this feature branch was forked, so
the solution is to fix the bug on the develop branch and also get
the fix on the feature branch.

As long as that change (e.g., an added file that does not exist on the branch)
has no chance of a conflict, a simple cherry-pick of the commit will get
things synchronized. Here is an example of the steps:

Let’s say the bug was discovered by noticing this error message shows up when
rendering a Sphinx document using sphinx-autobuild:

+--------- source/index.rst changed ---
/Users/dittrich/git/dims-ci-utils/docs/source/lifecycle.rst:306: WARNING: External Graphviz file u'/Users/dittrich/git/dims-ci-utils/Makefile.dot' not found or reading it failed
+--

The file Makefile.dot is not found. (The reason is that the
lifecycle.rst file was moved from a different place, but the
file it included was not.) We first stash our work (if necessary)
and check out the develop branch. Next, locate the missing file:

[dittrich@localhost docs (feature/coreos)]$ git checkout develop
Switched to branch 'develop'
Your branch is up-to-date with 'origin/develop'.
[dittrich@localhost docs (develop)]$ find ../.. -name 'Makefile.dot'
../../packer/Makefile.dot

We now copy the file to where we believe it should reside, and
to trigger a new sphinx-autobuild, we touch the file that
includes it:

[dittrich@localhost docs (develop)]$ cp ../../packer/Makefile.dot ..
[dittrich@localhost docs (develop)]$ touch source/lifecycle.rst

Switching to the sphinx-autobuild status window, we see the error
message has gone away.

+--------- source/lifecycle.rst changed ---
+--

[I 150331 16:40:04 handlers:74] Reload 1 waiters: None
[I 150331 16:40:04 web:1825] 200 GET /lifecycle.html (127.0.0.1) 0.87ms
[I 150331 16:40:04 web:1825] 200 GET /_static/css/theme.css (127.0.0.1) 1.87ms
[I 150331 16:40:04 web:1825] 304 GET /livereload.js (127.0.0.1) 0.50ms
[I 150331 16:40:04 web:1825] 200 GET /_static/doctools.js (127.0.0.1) 0.43ms
[I 150331 16:40:04 web:1825] 200 GET /_static/jquery.js (127.0.0.1) 0.67ms
[I 150331 16:40:04 web:1825] 200 GET /_static/underscore.js (127.0.0.1) 0.48ms
[I 150331 16:40:04 web:1825] 200 GET /_static/js/theme.js (127.0.0.1) 0.40ms
[I 150331 16:40:04 web:1825] 200 GET /_images/virtual_machine_lifecycle_v2.jpeg (127.0.0.1) 4.61ms
[I 150331 16:40:04 web:1825] 200 GET /_images/whiteboard-lifecycle.png (127.0.0.1) 2.02ms
[I 150331 16:40:04 web:1825] 200 GET /_images/packer_diagram.png (127.0.0.1) 1.65ms
[I 150331 16:40:04 web:1825] 200 GET /_images/screenshot-lifecycle.png (127.0.0.1) 1.37ms
[I 150331 16:40:04 web:1825] 200 GET /_images/vm_org_chart.png (127.0.0.1) 0.70ms
[I 150331 16:40:04 web:1825] 200 GET /_images/graphviz-f8dca63773d709e39ae45240fc6b7ed94229eb74.png (127.0.0.1) 0.92ms
[I 150331 16:40:04 web:1825] 200 GET /_static/fonts/fontawesome-webfont.woff?v=4.0.3 (127.0.0.1) 0.55ms
[I 150331 16:40:05 handlers:109] Browser Connected: http://127.0.0.1:41013/lifecycle.html

Now we double-check to make sure we have the change
we expect, add, and commit the fix:

[dittrich@localhost docs (develop)]$ git stat
?? Makefile.dot
[dittrich@localhost docs (develop)]$ git add ../Makefile.dot
[dittrich@localhost docs (develop)]$ git commit -m "Add Makefile.dot from packer repo for lifecycle.rst"
[develop d5a948e] Add Makefile.dot from packer repo for lifecycle.rst
 1 file changed, 83 insertions(+)
 create mode 100644 Makefile.dot

Make note of the commit that includes just the new file: commit d5a948e
in this case. Now you could bump the version if necessary before pushing.

[dittrich@localhost docs (develop)]$ (cd ..; bumpversion patch)
[dittrich@localhost docs (develop)]$ git hf push
Fetching origin
Already up-to-date.
Counting objects: 10, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (10/10), done.
Writing objects: 100% (10/10), 783 bytes | 0 bytes/s, done.
Total 10 (delta 8), reused 0 (delta 0)
remote: Running post-receive hook: Tue Mar 31 17:02:43 PDT 2015
remote: % Total % Received % Xferd Average Speed Time Time Time Current
remote: Dload Upload Total Spent Left Speed
remote: 100 217 100 217 0 0 2356 0 --:--:-- --:--:-- --:--:-- 2679
remote: Scheduled polling of dims-ci-utils-deploy-develop
remote: Scheduled polling of dims-ci-utils-deploy-master
remote: Scheduled polling of dims-seed-jobs
remote: No git consumers for URI git@git.prisem.washington.edu:/opt/git/dims-ci-utils.git
remote: [+++] post-receive-06jenkinsalldocs started
remote: [+++] REPONAME=dims-ci-utils
remote: [+++] BRANCH=develop
remote: [+++] newrev=a95c9e1356ff7c6aaed5bcdbe7b533ffc74b6cc1
remote: [+++] oldrev=d5a948ebef61da98b7849416ee340e0a4ba45a3a
remote: [+++] Branch was updated.
remote: [+++] This repo has a documentation directory.
remote: % Total % Received % Xferd Average Speed Time Time Time Current
remote: Dload Upload Total Spent Left Speed
remote: 100 79 0 0 100 79 0 1359 --:--:-- --:--:-- --:--:-- 1612
remote: % Total % Received % Xferd Average Speed Time Time Time Current
remote: Dload Upload Total Spent Left Speed
remote: 100 78 0 0 100 78 0 260 --:--:-- --:--:-- --:--:-- 268
remote: [+++] post-receive-06jenkinsalldocs finished
To git@git.prisem.washington.edu:/opt/git/dims-ci-utils.git
 d5a948e..a95c9e1 develop -> develop

Summary of actions:
- The remote branch 'origin/develop' was updated with your changes

Now you can go back to the feature branch you were working on,
and cherry-pick the commit with the missing file.

[dittrich@localhost docs (develop)]$ git checkout feature/coreos
Switched to branch 'feature/coreos'
Your branch is ahead of 'origin/feature/coreos' by 1 commit.
 (use "git push" to publish your local commits)
[dittrich@localhost docs (feature/coreos)]$ git cherry-pick d5a948e
[feature/coreos 14dbf59] Add Makefile.dot from packer repo for lifecycle.rst
 Date: Tue Mar 31 16:38:03 2015 -0700
 1 file changed, 83 insertions(+)
 create mode 100644 Makefile.dot
[dittrich@localhost docs (feature/coreos)]$ git log
commit 14dbf59dff5d6fce51c899b32fef87276dbddef7
Author: Dave Dittrich <dave.dittrich@gmail.com>
Date: Tue Mar 31 16:38:03 2015 -0700

 Add Makefile.dot from packer repo for lifecycle.rst
...

Note

Note that this results in a new commit hash on this branch
(in this case, 14dbf59dff5d6fce51c899b32fef87276dbddef7).

4.5.5. Synchronizing with an upstream repository

Note

The DIMS project is using forks of several source repositories, some
for the sake of local customization, and some for adding features
necessary for DIMS purposes. The MozDef [http://mozdef.readthedocs.org/en/latest/] project is one of these
(see the dimsad:dimsarchitecturedesign document, Section
dimsad:conceptofexecution).

To track another project’s Git repository, syncing
it with a fork that you use locally, it is necessary to
do the following:

	Configuring a remote for a fork [https://help.github.com/articles/configuring-a-remote-for-a-fork/]

	Syncing a fork [https://help.github.com/articles/syncing-a-fork/]

	Make sure that you have defined upstream properly, e.g.,

[dimsenv] ~/dims/git/MozDef (master) $ git remote -v
origin git@git.prisem.washington.edu:/opt/git/MozDef.git (fetch)
origin git@git.prisem.washington.edu:/opt/git/MozDef.git (push)
upstream git@github.com:jeffbryner/MozDef.git (fetch)
upstream git@github.com:jeffbryner/MozDef.git (push)

	Fetch the contents of the upstream remote repository:

[dimsenv] ~/dims/git/MozDef (master) $ git fetch upstream
remote: Counting objects: 6, done.
remote: Total 6 (delta 2), reused 2 (delta 2), pack-reused 4
Unpacking objects: 100% (6/6), done.
From github.com:jeffbryner/MozDef
 700c1be..4575c0f master -> upstream/master
 * [new tag] v1.12 -> v1.12

	Checkout the branch to sync (e.g., master) and then merge
any changes:

[dimsenv] ~/dims/git/MozDef (master) $ git checkout master
Already on 'master'
Your branch is up-to-date with 'origin/master'.
[dimsenv] ~/dims/git/MozDef (master) $ git merge upstream/master
Merge made by the 'recursive' strategy.
 alerts/unauth_ssh_pyes.conf | 4 ++++
 alerts/unauth_ssh_pyes.py | 78 ++
 2 files changed, 82 insertions(+)
 create mode 100644 alerts/unauth_ssh_pyes.conf
 create mode 100644 alerts/unauth_ssh_pyes.py
[dimsenv] ~/dims/git/MozDef (master) $ git push origin master
Counting objects: 8, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (8/8), done.
Writing objects: 100% (8/8), 2.11 KiB | 0 bytes/s, done.
Total 8 (delta 3), reused 0 (delta 0)
remote: Running post-receive hook: Thu Sep 17 20:52:14 PDT 2015
To git@git.prisem.washington.edu:/opt/git/MozDef.git
 180484a..766da56 master -> master

	Now push the updated repository to the “local” remote repository (i.e,
git.prisem.washington.edu for the DIMS project):

[dimsenv] ~/dims/git/MozDef (master) $ git push origin master
Counting objects: 8, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (8/8), done.
Writing objects: 100% (8/8), 2.11 KiB | 0 bytes/s, done.
Total 8 (delta 3), reused 0 (delta 0)
remote: Running post-receive hook: Thu Sep 17 20:52:14 PDT 2015
To git@git.prisem.washington.edu:/opt/git/MozDef.git
 180484a..766da56 master -> master

	If the remote repository is itself the fork (e.g., if you fork a
repository on GitHub, then want to maintain a “local” remote repository
on-site for your project, you may wish to use a label other than
upstream to connote the fork differently):

[dimsenv] ~/git/ansible (release1.8.4*) $ git remote -v
davedittrich git@github.com:davedittrich/ansible.git (fetch)
davedittrich git@github.com:davedittrich/ansible.git (push)
origin https://github.com/ansible/ansible.git (fetch)
origin https://github.com/ansible/ansible.git (push)

4.5.6. Starting a “release”

By convention, DIMS repositories have at least one file, named VERSION,
that contains the release version number. You can see the current release by
looking at the contents of this file.

[dittrich@localhost ansible-playbooks (dev)]$ cat VERSION
1.1.4

Note

There may be other files, such as the Sphinx documentation configuration
file, docs/source/conf.py usually, or other source files for Python
or Java builds. Each of the files that has a version/release number in
it must use the same string and be included in the .bumpversion.cfg
file in order for bumpversion to properly manage release numbers.

Now that you know what the current version number is, you can initiate
a release branch with hub-flow, knowing that the new numbr will be.
In this case, we will create a release branch 1.2.0 to increment
the minor version number component.

[dittrich@localhost ansible-playbooks (dev)]$ git hf release start 1.2.0
Fetching origin
Switched to a new branch 'release/1.2.0'
Total 0 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 22 18:33:54 PST 2015
To git@git.prisem.washington.edu:/opt/git/ansible-playbooks.git
 * [new branch] release/1.2.0 -> release/1.2.0

Summary of actions:
- A new branch 'release/1.2.0' was created, based on 'dev'
- The branch 'release/1.2.0' has been pushed up to 'origin/release/1.2.0'
- You are now on branch 'release/1.2.0'

Follow-up actions:
- Bump the version number now!
- Start committing last-minute fixes in preparing your release
- When done, run:

 git hf release finish '1.2.0'

You should now be on the new release branch:

[dittrich@localhost ansible-playbooks (release/1.2.0)]$

After making any textual changes, bump the version number
to match the new release number:

[dittrich@localhost ansible-playbooks (release/1.2.0)]$ bumpversion minor

Now the release can be finished. You will be placed in an editor
to create comments for actions like merges and tags.

[dittrich@localhost ansible-playbooks (release/1.2.0)]$ bumpversion minor
[dittrich@localhost ansible-playbooks (release/1.2.0)]$ cat VERSION
1.2.0
[dittrich@localhost ansible-playbooks (release/1.2.0)]$ git hf release finish '1.2.0'
Fetching origin
Fetching origin
Counting objects: 9, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (8/8), done.
Writing objects: 100% (9/9), 690 bytes | 0 bytes/s, done.
Total 9 (delta 7), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 22 18:37:24 PST 2015
To git@git.prisem.washington.edu:/opt/git/ansible-playbooks.git
 3ac28a2..5ca145b release/1.2.0 -> release/1.2.0
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.
Removing roles/tomcat/tasks/main.yml
Removing roles/tomcat/handlers/main.yml
Removing roles/tomcat/defaults/main.yml
Removing roles/postgres/templates/pg_hba.conf.j2
Removing roles/postgres/files/schema.psql
Removing roles/ozone/files/postgresql-9.3-1102.jdbc41.jar
Auto-merging roles/logstash/files/demo.logstash.deleteESDB
Auto-merging roles/logstash/files/demo.logstash.addwebsense
Auto-merging roles/logstash/files/demo.logstash.addufw
Auto-merging roles/logstash/files/demo.logstash.addrpcflow
Auto-merging roles/logstash/files/demo.logstash.addcymru

[...]

~
".git/MERGE_MSG" 7L, 280C written
Merge made by the 'recursive' strategy.
 .bumpversion.cfg | 11 +
 Makefile | 61 +-
 VERSION | 1 +
 configure-all.yml | 5 +-
 dims-all-desktop.yml | 56 +
 dims-all-server.yml | 125 ++
 dims-cifv1-server.yml | 50 +

[...]

Release 1.2.0.
#
Write a message for tag:
1.2.0
Lines starting with '#' will be ignored.

[...]

~
".git/TAG_EDITMSG" 5L, 97C written
Switched to branch 'dev'
Your branch is up-to-date with 'origin/dev'.

Merge tag '1.2.0' into dev for
Merge tag '1.2.0' into dev for
Merge tag '1.2.0' into dev for Release 1.2.0.

Please enter a commit message to explain why this merge is necessary,
especially if it merges an updated upstream into a topic branch.
#
Lines starting with '#' will be ignored, and an empty message aborts
the commit.

[...]

".git/MERGE_MSG" 7L, 273C written
Merge made by the 'recursive' strategy.
 .bumpversion.cfg | 2 +-
 VERSION | 2 +-
 docs/source/conf.py | 4 ++--
 group_vars/all | 2 +-
 4 files changed, 5 insertions(+), 5 deletions(-)
Deleted branch release/1.2.0 (was 5ca145b).
Counting objects: 2, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (2/2), 447 bytes | 0 bytes/s, done.
Total 2 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 22 18:38:17 PST 2015
To git@git.prisem.washington.edu:/opt/git/ansible-playbooks.git
 3ac28a2..aec921c dev -> dev
Total 0 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 22 18:38:19 PST 2015
To git@git.prisem.washington.edu:/opt/git/ansible-playbooks.git
 2afb58f..2482d07 master -> master
Counting objects: 1, done.
Writing objects: 100% (1/1), 166 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 22 18:38:25 PST 2015
To git@git.prisem.washington.edu:/opt/git/ansible-playbooks.git
 * [new tag] 1.2.0 -> 1.2.0
remote: Running post-receive hook: Thu Jan 22 18:38:28 PST 2015
To git@git.prisem.washington.edu:/opt/git/ansible-playbooks.git
 - [deleted] release/1.2.0

Summary of actions:
- Latest objects have been fetched from 'origin'
- Release branch has been merged into 'master'
- The release was tagged '1.2.0'
- Tag '1.2.0' has been back-merged into 'dev'
- Branch 'master' has been back-merged into 'dev'
- Release branch 'release/1.2.0' has been deleted
- 'dev', 'master' and tags have been pushed to 'origin'
- Release branch 'release/1.2.0' in 'origin' has been deleted.

Lastly, bump the patch version number in the dev branch to make sure
that when something reports the version in developmental code builds, it
doesn’t look like you are using code from the last tagged master
branch. That completely defeats the purpose of using version numbers for
dependency checks or debugging.

[dittrich@localhost ansible-playbooks (dev)]$ bumpversion patch
[dittrich@localhost ansible-playbooks (dev)]$ git push
Counting objects: 9, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (8/8), done.
Writing objects: 100% (9/9), 683 bytes | 0 bytes/s, done.
Total 9 (delta 7), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 22 18:51:00 PST 2015
To git@git.prisem.washington.edu:/opt/git/ansible-playbooks.git
 aec921c..d4fe053 dev -> dev

Figure New 1.2.0 release on master, dev now on 1.2.1. shows what the branches look like with
GitX.app on a Mac:

[image: New 1.2.0 release, dev on 1.2.1]
New 1.2.0 release on master, dev now on 1.2.1.

4.5.7. Branch Renaming

Several of the git repos comprising the DIMS source code management
system are using the name dev for the main development branch. The
(somewhat) accepted name for the development branch is develop, as detailed
in e.g. http://nvie.com/posts/a-successful-git-branching-model/.

We would therefore like to rename any dev branch to develop throughout
our git repo set. This will of course impact team members who use the
central repos to share work. Research online suggests that branch
renaming can be done. The best source found was
https://gist.github.com/lttlrck/9628955, who suggested a three-part
operation

Rename branch locally
git branch -m old_branch new_branch
Delete the old branch
git push origin :old_branch
Push the new branch, set local branch to track the new remote
git push --set-upstream origin new_branch

To test this recipe out without impacting any existing repos and
therefore avoiding any possible loss of real work, we constructed a
test situation with a central repo and two fake ‘users’ who both push
and pull from that repo. A branch rename is then done, following the
recipe above. The impact on each of the two users is noted.

First, we create a bare repo. This will mimic our authoratitive repos
on git.prisem.washington.edu. We’ll call this repo dims-328.git, named after the DIMS
Jira ticket created to study the branch rename issue:

$ cd
$ mkdir depot
$ cd depot
$ git init --bare dims-328.git

Next, we clone this repo a first time, which simulates the first
‘user’ (replace /home/stuart/ with your local path):

$ cd
$ mkdir scratch
$ cd scratch
$ git clone file:///home/stuart/depot/dims-328.git

Next, we dd some content in master branch

$ cd dims-328
$ echo content > foo
$ git add foo
$ git commit -m "msg"
$ git push origin master

We now clone the ‘depot’ repo a second time, to simulate the second
user. Both users are then developing using the authoratitive repo as
the avenue to share work. Notice how the second user clones into the
specified directory dims-328-2, so as not to tread on the first user’s
work:

$ cd ~/scratch
$ git clone file:///home/stuart/depot/dims-328.git dims-328-2

user1 (first clone) then creates a dev branch and adds some content to
it:

$ cd ~/scratch/dims-328
$ git branch dev
$ git checkout dev
$ echo content > devbranch
$ git add devbranch
$ git commit -m "added content to dev branch"
$ git push origin dev

This will create a dev branch in the origin repo, i.e the depot.

Next, as the second user, pull the changes, checkout dev and edit:

$ cd ~scratch/dims-328-2
$ git pull
$ git checkout dev
$ echo foo >> devbranch

At this point we have two ‘users’ with local repos, both of which share
a common upstream repo. Both users have got the dev branch checked
out, and may have local changes on that branch.

Now, we wish to rename the branch dev to develop throughout, i.e. at
the depot and in users’ repos.

Using instructions from https://gist.github.com/lttlrck/9628955, and
noting the impacts to each user, we first act as user1, who will be
deemed ‘in charge’ of the renaming process:

$ cd ~scratch/dims-328
$ git branch -m dev develop
$ git push origin :dev
To file:///home/stuart/depot/dims-328.git
 - [deleted] dev
$ git push --set-upstream origin develop
Counting objects: 2, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (2/2), 259 bytes | 0 bytes/s, done.
Total 2 (delta 0), reused 0 (delta 0)
To file:///home/stuart/depot/dims-328.git
 * [new branch] develop -> develop
Branch develop set up to track remote branch develop from origin.

Warning

(This reads like a ..warning block. Is that how it was meant?)

The git push output message implies a deletion of the dev branch in
the depot. If user2 were to interact with origin/dev now, what would
happen??

Here are the contents of user1‘s .git/config after the 3-operation
rename:

[stuart@rejewski dims-328 (develop)]$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = file:///home/stuart/depot/dims-328.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master
[branch "develop"]
 remote = origin
 merge = refs/heads/develop

Note how there are references to develop but none to dev. As far as
user1 is concerned, the branch rename appears to have worked and is complete.

Now, what does user2 see? With dev branch checked out, and with a
local mod, we do a pull:

$ cd ~scratch/dims-328-2
$ git pull
From file:///home/stuart/depot/dims-328
 * [new branch] develop -> origin/develop
Your configuration specifies to merge with the ref 'dev'
from the remote, but no such ref was fetched.

This is some form of error message. user2‘s .git/config at this
point is this:

[stuart@rejewski dims-328-2 (dev)]$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = file:///home/stuart/depot/dims-328.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master
[branch "dev"]
 remote = origin
 merge = refs/heads/dev

Perhaps just the branch rename will work for user2? As user2, we do the
first part of the rename recipe:

$ git branch -m dev develop

No errors from this, but user2‘s .git/config still refers to a
dev branch:

[stuart@rejewski dims-328-2 (dev)]$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = file:///home/stuart/depot/dims-328.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master
[branch "develop"]
 remote = origin
 merge = refs/heads/dev

Next, as user2, we issued the third part of the rename recipe (but skipped
the second part):

$ git push --set-upstream origin develop
Branch develop set up to track remote branch develop from origin.
Everything up-to-date.

Note that this is a push, but since user2 had no committed changes
locally, no content was actually pushed.

Now user2‘s .git/config looks better, the token dev has changed to
develop:

[stuart@rejewski dims-328-2 (dev)]$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = file:///home/stuart/depot/dims-328.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master
[branch "develop"]
 remote = origin
 merge = refs/heads/develop

Next, as user2, commit the local change, and push to depot:

$ git add devbranch
$ git commit -m "msg"
$ git push

So it appears that user2 can issue just the branch rename and upstream
operation, and skip the second component of the 3-part recipe (git push
origin :old_branch), likely since this is an operation on the remote
(depot) itself and was already done by user1.

Finally, we switch back to user1 and pull changes made by user2:

$ cd ~scratch/dims-328
$ git pull

Warning

This has addressed only git changes. The wider implications of a git
branch rename on systems such as Jenkins has yet to be addressed. Since
systems like Jenkins generally just clone or pull from depots, it is
expected that only git URLs need to change from including dev to
develop.

4.5.8. Deleting accidentally created tags

When trying to finish a release, you may accidentally create a tag
named finish. It may even get propagated automatically to
origin, in which case it could propagate to others’ repos:

mr update: /Users/dittrich/dims/git/dims-keys
Fetching origin
From git.prisem.washington.edu:/opt/git/dims-keys
 * [new tag] finish -> finish

You can delete them locally and remotely with the
following commands:

 [dittrich@localhost dims-keys (develop)]$ git tag -d finish
 Deleted tag 'finish' (was 516d9d2)
 [dittrich@localhost dims-keys (develop)]$ git push origin :refs/tags/finish
 remote: Running post-receive hook: Thu Aug 6 16:07:17 PDT 2015
 To git@git.prisem.washington.edu:/opt/git/dims-keys.git
 - [deleted] finish

4.5.9. Recovering deleted files

Files that have been deleted in the past, and the deletions commited, can be
recovered by searching the Git history of deletions to identify the commit that
included the deletion. The file can then be checked out using the predecessor
to that commit. See Find and restore a deleted file in a Git repository [http://stackoverflow.com/questions/953481/find-and-restore-a-deleted-file-in-a-git-repository]

4.5.10. Fixing comments in unpublished commits

Note

This section was derived from http://makandracards.com/makandra/868-change-commit-messages-of-past-git-commits

Warning

Only do this if you have not already pushed the changes!!
As noted in the git-commit man page for the --amend option:

You should understand the implications of rewriting history if you
amend a commit that has already been published. (See the "RECOVERING
FROM UPSTREAM REBASE" section in git-rebase(1).)

There may be times when you accidentally make multiple commits,
one at a time, using the same comment (but the changes are
not related to the comment).

Here is an example of three commits all made with git commit -am
using the same message:

 (dimsenv)[dittrich@localhost docs (develop)]$ git log
 commit 08b888b9dd33f53f0e26d8ff8aab7309765ad0eb
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:35:08 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 commit 7f3d0d8134c000a787aad83f2690808008ed1d96
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:34:40 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 commit f6f5d868c8ddd12018ca662a54d1f58c150e6364
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:33:59 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 commit 96575c967f606e2161033de92dd2dc580ad60a8b
 Merge: 1253ea2 dae5aca
 Author: Linda Parsons <lparsonstech@gmail.com>
 Date: Thu Apr 30 14:00:49 2015 -0400

 Merge remote-tracking branch 'origin/develop' into develop

 commit 1253ea20bc553759c43d3a999b81be009851d195
 Author: Linda Parsons <lparsonstech@gmail.com>
 Date: Thu Apr 30 14:00:19 2015 -0400

 Added information for deploying to infrastructure

Note

Make note that the commit immediately prior to the three
erroneously commented commits is 96575c96. We will use
that commit number in a moment...

Looking at the patch information shows these are clearly not
all correctly commented:

 (dimsenv)[dittrich@localhost docs (develop)]$ git log --patch
 commit 08b888b9dd33f53f0e26d8ff8aab7309765ad0eb
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:35:08 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 diff --git a/docs/makedocset b/docs/makedocset
 index dafbedb..9adb954 100644
 --- a/docs/makedocset
 +++ b/docs/makedocset
 @@ -7,7 +7,14 @@
 # This is useful for building a set of documents that employ
 # intersphinx linking, obtaining the links from the co-local
 # repositories instead of specified remote locations.
 +#
 +# To build the docs for a specific server (e.g., when building
 +# using a local docker container running Nginx), set the
 +# environment variable DOCSURL to point to the server:
 +#
 +# $ export DOCSURL=http://192.168.99.100:49153

 +DOCSURL=${DOCSURL:-http://u12-dev-svr-1.prisem.washington.edu:8080/docs/devel}

 # Activate dimsenv virtual environment for Sphinx
 . $HOME/dims/envs/dimsenv/bin/activate

 commit 7f3d0d8134c000a787aad83f2690808008ed1d96
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:34:40 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 diff --git a/docs/source/conf.py b/docs/source/conf.py
 index 9fdc100..b3cd483 100644
 --- a/docs/source/conf.py
 +++ b/docs/source/conf.py
 @@ -351,13 +351,16 @@ epub_exclude_files = ['search.html']
 # If false, no index is generated.
 #epub_use_index = True

 +os.environ['GITBRANCH'] = "develop"
 +
 +if os.environ.get('DOCSURL') is None:
 + #os.environ['DOCSURL'] = "file://{}".format(os.environ.get('GIT'))
 + os.environ['DOCSURL'] = "http://u12-dev-svr-1.prisem.washington.edu:8080/docs/{}/html/".format(
 + os.environ['GITBRANCH'])

 intersphinx_cache_limit = -1 # days to keep the cached inventories (0 == forever)
 intersphinx_mapping = {
 - 'dimsocd': ("%s/dims/docs/dims-ocd" % os.environ['HOME'],
 - ('http://u12-dev-svr-1.prisem.washington.edu:8080/docs/develop/html/dims-ocd/objects.inv', None)),
 - 'dimsad': ("%s/dims/docs/dims-ad" % os.environ['HOME'],
 - ('http://u12-dev-svr-1.prisem.washington.edu:8080/docs/develop/html/dims-ad/objects.inv', None)),
 - 'dimssr': ("%s/dims/docs/dims-sr" % os.environ['HOME'],
 - ('http://u12-dev-svr-1.prisem.washington.edu:8080/docs/develop/html/dims-sr/objects.inv', None))
 + 'dimsocd': ("{}/dims-ocd".format(os.environ['DOCSURL']), None),
 + 'dimsad': ("{}/dims-ad".format(os.environ['DOCSURL']), None),
 + 'dimssr': ("{}/dims-sr".format(os.environ['DOCSURL']), None)
 }

 commit f6f5d868c8ddd12018ca662a54d1f58c150e6364
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:33:59 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 diff --git a/docs/makedocs b/docs/makedocs
 deleted file mode 100644
 index dafbedb..0000000
 --- a/docs/makedocs
 +++ /dev/null
 @@ -1,66 +0,0 @@
 -#!/bin/bash -x
 -#
 -# This script builds multiple Sphinx documents in repos
 -# residing (in their current checkout branch/state) in
 -# the directory specified by the $GIT environment variable.
 -#
 -# This is useful for building a set of documents that employ
 -# intersphinx linking, obtaining the links from the co-local
 -# repositories instead of specified remote locations.
 ...

The last commit is easy to fix. Just use git commit --amend
and edit the message:

(dimsenv)[dittrich@localhost docs (develop)]$ git commit --amend

Add DOCSURL selection of where docs reside for intersphinx links

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
#
Date: Thu Apr 30 18:35:08 2015 -0700
#
On branch develop
Your branch is ahead of 'origin/develop' by 3 commits.
(use "git push" to publish your local commits)
#
Changes to be committed:
modified: makedocset

Now we can see the message has been changed, but so has the
commit hash!

 (dimsenv)[dittrich@localhost docs (develop)]$ git log --patch
 commit 654cb34378cb0a4140725a37e3724b6dcee7aebd
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:35:08 2015 -0700

 Add DOCSURL selection of where docs reside for intersphinx links

 diff --git a/docs/makedocset b/docs/makedocset
 index dafbedb..9adb954 100644
 --- a/docs/makedocset
 +++ b/docs/makedocset
 @@ -7,7 +7,14 @@
 # This is useful for building a set of documents that employ
 # intersphinx linking, obtaining the links from the co-local
 # repositories instead of specified remote locations.
 +#
 +# To build the docs for a specific server (e.g., when building
 +# using a local docker container running Nginx), set the
 +# environment variable DOCSURL to point to the server:
 +#
 +# $ export DOCSURL=http://192.168.99.100:49153

 +DOCSURL=${DOCSURL:-http://u12-dev-svr-1.prisem.washington.edu:8080/docs/devel}

 # Activate dimsenv virtual environment for Sphinx
 . $HOME/dims/envs/dimsenv/bin/activate

 commit 7f3d0d8134c000a787aad83f2690808008ed1d96
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:34:40 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 diff --git a/docs/source/conf.py b/docs/source/conf.py
 ...

The second commit has the correct comment, but commit f6f5d868c
was simply renaming a file. It got caught up as a commit when
the -a option was given when committing the changed file,
not realizing the renamed file had already been added to the
cache.

To change the message for only commit f6f5d86, start an interactive
rebase at the commit immediately prior to that commit (in this case,
commit 96575c9). Change pick to edit for that commit.

 (dimsenv)[dittrich@localhost docs (develop)]$ git rebase -i 96575c9

 edit f6f5d86 Fix intersphinx links to use DOCSURL env variable
 pick 7f3d0d8 Fix intersphinx links to use DOCSURL env variable
 pick 654cb34 Add DOCSURL selection of where docs reside for intersphinx links

 # Rebase 96575c9..654cb34 onto 96575c9 (3 TODO item(s))
 #
 # Commands:
 # p, pick = use commit
 # r, reword = use commit, but edit the commit message
 # e, edit = use commit, but stop for amending
 # s, squash = use commit, but meld into previous commit
 # f, fixup = like "squash", but discard this commit's log message
 # x, exec = run command (the rest of the line) using shell
 #
 # These lines can be re-ordered; they are executed from top to bottom.
 #
 # If you remove a line here THAT COMMIT WILL BE LOST.
 #
 # However, if you remove everything, the rebase will be aborted.
 #
 # Note that empty commits are commented out

As soon as you exit the editor, Git will begin the rebase
and tell you what to do next:

Stopped at f6f5d868c8ddd12018ca662a54d1f58c150e6364... Fix intersphinx links to use DOCSURL env variable
You can amend the commit now, with

 git commit --amend

Once you are satisfied with your changes, run

 git rebase --continue

Now use git commit --amend to edit the comment:

(dimsenv)[dittrich@localhost docs (develop|REBASE-i 1/3)]$ git commit --amend

Rename makedocs -> makedocset

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
#
Date: Thu Apr 30 18:33:59 2015 -0700
#
rebase in progress; onto 96575c9
You are currently editing a commit while rebasing branch 'develop' on '96575c9'.
#
Changes to be committed:
renamed: makedocs -> makedocset
#

Finish off by continuing the rebase for the remaining commits.

(dimsenv)[dittrich@localhost docs (develop|REBASE-i 1/3)]$ git rebase --continue
Successfully rebased and updated refs/heads/develop.

Now git log shows the correct comments, as well as
new commit hashes:

(dimsenv)[dittrich@localhost docs (develop)]$ git log
commit 89af6d9fda07276d3cb06dfd2977f1392fb03b25
Author: Dave Dittrich <dave.dittrich@gmail.com>
Date: Thu Apr 30 18:35:08 2015 -0700

 Add DOCSURL selection of where docs reside for intersphinx links

commit c2c55ff3dcbf10739c5d86ce8a6192e930ccd265
Author: Dave Dittrich <dave.dittrich@gmail.com>
Date: Thu Apr 30 18:34:40 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

commit 2155936ad7e3ae71ef5775b2036a4b6c21a9a86d
Author: Dave Dittrich <dave.dittrich@gmail.com>
Date: Thu Apr 30 18:33:59 2015 -0700

 Rename makedocs -> makedocset

commit 96575c967f606e2161033de92dd2dc580ad60a8b
Merge: 1253ea2 dae5aca
Author: Linda Parsons <lparsonstech@gmail.com>
Date: Thu Apr 30 14:00:49 2015 -0400

 Merge remote-tracking branch 'origin/develop' into develop

4.5.11. Creating a new documentation-only repo

Note

TBD

The following is included here to document how to set up a new
documentation-only repo. The lines that are highlighted are those
that include user input. The long-term goal is to script creating
these repos so as to not require everyone know exactly how to
answer each of these questions. This is blocked waiting on getting
a consistent Python virtual environment that works on both dev
systems and Jenkins before globally functional scripts and Sphinx
configurations will work properly.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101

	[dittrich@localhost git]$ mkdir dims-asbuilt
[dittrich@localhost git]$ cd dims-asbuilt/
[dittrich@localhost dims-asbuilt]$ git init
Initialized empty Git repository in /Users/dittrich/git/dims-asbuilt/.git/
[dittrich@localhost dims-asbuilt (master)]$ workon dimsenv
(dimsenv)[dittrich@localhost dims-asbuilt (master)]$ sphinx-quickstart
Welcome to the Sphinx 1.3.1 quickstart utility.

Please enter values for the following settings (just press Enter to
accept a default value, if one is given in brackets).

Enter the root path for documentation.
> Root path for the documentation [.]:

You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/n) [n]: y

Inside the root directory, two more directories will be created; "_templates"
for custom HTML templates and "_static" for custom stylesheets and other static
files. You can enter another prefix (such as ".") to replace the underscore.
> Name prefix for templates and static dir [_]:

The project name will occur in several places in the built documentation.
> Project name: DIMS 'As-Built' System
> Author name(s): Dave Dittrich

Sphinx has the notion of a "version" and a "release" for the
software. Each version can have multiple releases. For example, for
Python the version is something like 2.5 or 3.0, while the release is
something like 2.5.1 or 3.0a1. If you don't need this dual structure,
just set both to the same value.
> Project version: 0.1.0
> Project release [0.1.0]:

If the documents are to be written in a language other than English,
you can select a language here by its language code. Sphinx will then
translate text that it generates into that language.

For a list of supported codes, see
http://sphinx-doc.org/config.html#confval-language.
> Project language [en]:

The file name suffix for source files. Commonly, this is either ".txt"
or ".rst". Only files with this suffix are considered documents.
> Source file suffix [.rst]:

One document is special in that it is considered the top node of the
"contents tree", that is, it is the root of the hierarchical structure
of the documents. Normally, this is "index", but if your "index"
document is a custom template, you can also set this to another filename.
> Name of your master document (without suffix) [index]:

Sphinx can also add configuration for epub output:
> Do you want to use the epub builder (y/n) [n]: y

Please indicate if you want to use one of the following Sphinx extensions:
> autodoc: automatically insert docstrings from modules (y/n) [n]:
> doctest: automatically test code snippets in doctest blocks (y/n) [n]:
> intersphinx: link between Sphinx documentation of different projects (y/n) [n]: y
> todo: write "todo" entries that can be shown or hidden on build (y/n) [n]: y
> coverage: checks for documentation coverage (y/n) [n]:
> pngmath: include math, rendered as PNG images (y/n) [n]:
> mathjax: include math, rendered in the browser by MathJax (y/n) [n]:
> ifconfig: conditional inclusion of content based on config values (y/n) [n]: y
> viewcode: include links to the source code of documented Python objects (y/n) [n]:

A Makefile and a Windows command file can be generated for you so that you
only have to run e.g. `make html' instead of invoking sphinx-build
directly.
> Create Makefile? (y/n) [y]:
> Create Windows command file? (y/n) [y]: n

Creating file ./source/conf.py.
Creating file ./source/index.rst.
Creating file ./Makefile.

Finished: An initial directory structure has been created.

You should now populate your master file ./source/index.rst and create other documentation
source files. Use the Makefile to build the docs, like so:
 make builder
where "builder" is one of the supported builders, e.g. html, latex or linkcheck.

(dimsenv)[dittrich@localhost dims-asbuilt (master)]$ echo \
> "This is a documentation-only repo. Sphinx source is in docs/source." > README.txt
(dimsenv)[dittrich@localhost dims-asbuilt (master)]$ tree
.
├── README.txt
├── Makefile
├── build
└── source
 ├── _static
 ├── _templates
 ├── conf.py
 └── index.rst

4 directories, 4 files
(dimsenv)[dittrich@localhost dims-asbuilt (master)]$ dims.sphinx-autobuild
Serving on http://127.0.0.1:29583

After setting up the directory structure, editing the source/conf.py file
to fix the title, etc., and creating initial scaffolding files sufficient
to render a Sphinx document, you are almost ready to commit to Git. First,
do make clean to get rid of any rendered files and make sure that only
the source files and README.txt file are present:

[dittrich@localhost dims-asbuilt (master)]$ make clean
rm -rf build/*
[dittrich@localhost dims-asbuilt (master)]$ tree
.
├── Makefile
├── README.txt
├── build
└── source
 ├── _static
 ├── _templates
 ├── cifv1.rst
 ├── conf.py
 ├── git.rst
 ├── index.rst
 └── jenkins.rst

4 directories, 7 files

The next step is to add the source to the local git repo, set the upstream
origin, tag the repository with the version number specified above, and push
it to origin.

[dittrich@localhost dims-asbuilt (master)]$ git add .
[dittrich@localhost dims-asbuilt (master)]$ git stat
A Makefile
A README.txt
A source/cifv1.rst
A source/conf.py
A source/git.rst
A source/index.rst
A source/jenkins.rst
[dittrich@localhost dims-asbuilt (master)]$ git commit -m "Initial load"
[master (root-commit) d0fcaa5] Initial load
 7 files changed, 604 insertions(+)
 create mode 100644 Makefile
 create mode 100644 README.txt
 create mode 100644 source/cifv1.rst
 create mode 100644 source/conf.py
 create mode 100644 source/git.rst
 create mode 100644 source/index.rst
 create mode 100644 source/jenkins.rst
[dittrich@localhost dims-asbuilt (master)]$ git remote add origin git@git.prisem.washington.edu:/opt/git/dims-asbuilt.git
[dittrich@localhost dims-asbuilt (master)]$ git tag -a "0.1.0" -m "Initial template release"
[dittrich@localhost dims-asbuilt (master)]$ git push origin master
Counting objects: 10, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (7/7), done.
Writing objects: 100% (10/10), 7.37 KiB | 0 bytes/s, done.
Total 10 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Wed Mar 18 16:15:02 PDT 2015
To git@git.prisem.washington.edu:/opt/git/dims-asbuilt.git
 * [new branch] master -> master
[dittrich@localhost dims-asbuilt (master)]$ git push origin --tags
Counting objects: 1, done.
Writing objects: 100% (1/1), 173 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Wed Mar 18 16:26:29 PDT 2015
To git@git.prisem.washington.edu:/opt/git/dims-asbuilt.git
 * [new tag] 0.1.0 -> 0.1.0

Following those steps, initialize the repo for hub-flow.

[dittrich@localhost dims-asbuilt (master)]$ git hf init
Using default branch names.

Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

How to name your supporting branch prefixes?
Feature branches? [feature/]
Release branches? [release/]
Hotfix branches? [hotfix/]
Support branches? [support/]
Version tag prefix? []
Total 0 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Wed Mar 18 16:24:14 PDT 2015
To git@git.prisem.washington.edu:/opt/git/dims-asbuilt.git
 * [new branch] develop -> develop

Set up bumpversion:

[dittrich@localhost dims-asbuilt (develop)]$ vi .bumpversion.cfg

[bumpversion]
current_version = 0.1.0
commit = True
tag = False

[bumpversion:file:source/conf.py]

Use the --dry-run option to test whether the configuration
was done properly before attempting to actually bump the version
number.

[dittrich@localhost dims-asbuilt (develop)]$ bumpversion --dry-run --verbose patch
Reading config file .bumpversion.cfg:
[bumpversion]
current_version = 0.1.0
commit = True
tag = False

[bumpversion:file:source/conf.py]

Parsing version '0.1.0' using regexp '(?P<major>\d+)\.(?P<minor>\d+)\.(?P<patch>\d+)'
Parsed the following values: major=0, minor=1, patch=0
Attempting to increment part 'patch'
Values are now: major=0, minor=1, patch=1
Dry run active, won't touch any files.
New version will be '0.1.1'
Asserting files source/conf.py contain the version string:
Found '0.1.0' in source/conf.py at line 61: version = '0.1.1'
Would change file source/conf.py:
--- a/source/conf.py
+++ b/source/conf.py
@@ -59,9 +59,9 @@
 # built documents.
 #
 # The short X.Y version.
-version = '0.1.0'
+version = '0.1.1'
 # The full version, including alpha/beta/rc tags.
-release = '0.1.0'
+release = '0.1.1'

 # The language for content autogenerated by Sphinx. Refer to documentation
 # for a list of supported languages.
Would write to config file .bumpversion.cfg:
[bumpversion]
current_version = 0.1.1
commit = True
tag = False

[bumpversion:file:source/conf.py]

Would prepare Git commit
Would add changes in file 'source/conf.py' to Git
Would add changes in file '.bumpversion.cfg' to Git
Would commit to Git with message 'Bump version: 0.1.0 → 0.1.1'
Would tag 'v0.1.1' in Git
[dittrich@localhost dims-asbuilt (develop)]$ bumpversion patch

Now use hub-flow to push the current state of the local repo.

[dittrich@localhost dims-asbuilt (develop)]$ git hf push
Fetching origin
Already up-to-date.
Counting objects: 4, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 375 bytes | 0 bytes/s, done.
Total 4 (delta 3), reused 0 (delta 0)
remote: Running post-receive hook: Wed Mar 18 16:38:27 PDT 2015
To git@git.prisem.washington.edu:/opt/git/dims-asbuilt.git
 d0fcaa5..db3c7f1 develop -> develop

Summary of actions:
- The remote branch 'origin/develop' was updated with your changes

Finally, add the hook to trigger Jenkins documentation construction (in
this case, cutting/pasting the hook from another repo to get the link correct).

[git@jira git]$ tree dims-ad.git/hooks/
dims-ad.git/hooks/
├── post-receive -> /opt/git/bin/post-receive
├── post-receive-00logamqp -> /opt/git/bin/post-receive-00logamqp
├── post-receive-01email -> /opt/git/bin/post-receive-01email
└── post-receive-06jenkinsalldocs -> /opt/git/bin/post-receive-06jenkinsalldocs

0 directories, 4 files
[git@jira git]$ ln -s /opt/git/bin/post-receive-06jenkinsalldocs dims-asbuilt.git/hooks/post-receive-06jenkinsalldocs
[git@jira git]$ tree dims-asbuilt.git/hooks/
dims-asbuilt.git/hooks/
├── post-receive -> /opt/git/bin/post-receive
├── post-receive-00logamqp -> /opt/git/bin/post-receive-00logamqp
├── post-receive-01email -> /opt/git/bin/post-receive-01email
└── post-receive-06jenkinsalldocs -> /opt/git/bin/post-receive-06jenkinsalldocs

0 directories, 4 files

4.5.12. Permanently Removing Files from a Git Repo

There are times when files exist in the repo (either active, or
no longer active, but still included in past commits) that you want
to permanently remove from the repo. Simply doing git rm file is
not good enough. A common reason for doing this is if someone decided
to commit many large binary archive files (e.g., some source packages,
operating system installation ISOs, etc).

Danger

Realize that if you are trying to permanently remove secrets, such
as passwords or encryption private keys, even doing these steps is
not enough. Right now, go read the GitHub Remove sensitive data [https://help.github.com/articles/remove-sensitive-data]
and its warning before going any further.

	How to delete files permanently from your local and remote git repositories [http://www.zyxware.com/articles/4027/how-to-delete-files-permanently-from-your-local-and-remote-git-repositories], by Anoopjohn, February 20, 2014

	GitHub aaronzirbes/shrink-git-repo.sh [https://gist.github.com/aaronzirbes/4570924] (“This script will help you remove large files from your git repo history and shrink the size of your repository.”)

	How to Shrink a Git Repository [http://stevelorek.com/how-to-shrink-a-git-repository.html], by Steve Lorek, May 11, 2012

The page How to Shrink a Git Repository [http://stevelorek.com/how-to-shrink-a-git-repository.html] was used successfully to perform
cleanup of a large number of archives that were committed to the
ansible-playbooks repo. The string filename needed to be substituted
with the paths of the files to delete, which were identified by the script
git-find-largest and edited with vi and awk to strip out just the
paths. The following command was then used on the list:

for f in $(cat largest.txt); do \
 git filter-branch --tag-name-filter cat \
 --index-filter "git rm -r --cached --ignore-unmatch $f" \
 --prune-empty -f -- --all; \
done

After that, the steps to clear the cache, do garbage collection and pruning, etc. were followed.

5. Documenting DIMS Components

This chapter covers Sphinx [http://sphinx-doc.org] and ReStructured Text (reST) [http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html],
and how they are used with ReadTheDocs [https://readthedocs.org/] (a hosted documentation
site) and GitHub [https://github.com] (a hosted Git source repository site) to
document open source project repositories. It includes specifics
of how Sphinx is used for documentation within the DIMS project.

5.1. Required Background Reading

Before trying to use Sphinx, it is important to understand how it works and
what basic things you can do with it to produce organized and structured
documentation that includes things like headings, tables, figures, images,
links, cross-references to labelled items, and callout notes.

Start by taking less than five minutes and reading all of the very short
Sphinx Style Guide [http://documentation-style-guide-sphinx.readthedocs.org/en/latest/style-guide.html]. It will give you some insight into high-level concepts
of Sphinx and reST.

Next, spend another 10-15 minutes and read through all of the slightly
longer Documenting Your Project Using Sphinx [https://pythonhosted.org/an_example_pypi_project/sphinx.html] document to see the full range
of markup and directives supported by reST.

A short tutorial that includes an example is IBM’s
Easy and beautiful documentation with Sphinx [http://www.ibm.com/developerworks/library/os-sphinx-documentation/].

A much longer (2+hours when delivered live) Sphinx Tutorial v0.1 [http://brandons-sphinx-tutorial.readthedocs.org/en/v0.1/] by Brandon
Rhodes from PyCon 2013 walks through the full range of tasks necessary to
document a Python code project.

Lastly, read Problems with StructuredText [http://docutils.sourceforge.net/docs/dev/rst/problems.html] to learn about limitations in reST
and some ways to deal with them.

5.2. Why Sphinx?

Just to illustrate how widely Sphinx is used in the open source
community, here is a list of project repos in Dave Dittrich’s $GIT
directory that use Sphinx (by virtue of their containing a Sphinx
configuration file conf.py under a documentation directory):

[dittrich@localhost git]$ find . -name conf.py
./ansible/docsite/conf.py
./celery/docs/conf.py
./crits/documentation/src/conf.py
./cuckoo/docs/book/src/conf.py
./CybOXProject/python-cybox/docs/conf.py
./elasticsearch-dsl-py/docs/conf.py
./MAECProject/python-maec/docs/conf.py
./MozDef/docs/source/conf.py
./pika/docs/conf.py
./pyxb/doc/conf.py
./redis-py/docs/conf.py
./robotframework/doc/api/conf.py
./sphinx_rtd_theme/demo_docs/source/conf.py
./STIXProject/python-stix/docs/conf.py
./TAXIIProject/libtaxii/docs/conf.py
./thug/doc/source/conf.py

Sphinx, since it is a Python project, is effectively programmable
and highly configurable and flexible. You can do parameterized
creation of documents to make them unique to a site using an
open source software product, can exercise tests in code,
can produce HTML and LaTeX-derived PDF, all from the same source
documentation files. That is just the start. Sphinx also
produces search indexes, dynamic tables of contents, forward
and back buttons in HTML pages, and many other helpful
features for documenting a project. Because it effectively
compiles the documentation, things like unit tests, functional
tests, software version descriptions, insertion of Graphviz [https://en.wikipedia.org/wiki/Graphviz]
directed and undirected graphs to illustrate relationships
between system components... The list goes on.

5.3. Manually Initiating a docs directory with sphinx-quickstart

The program sphinx-quickstart can be used to initiate a Sphinx
document directory. It is important to understand the ramifications
of the first three questions in the context of how other Sphinx
tools (e.g., sphinx-autobuild) work. Use of sphinx-autobuild
is covered later. Here are the first two questions you are faced
with after running sphinx-quickstart and what results from
the choice.

[dittrich@localhost tmp]$ sphinx-quickstart
Welcome to the Sphinx 1.2.3 quickstart utility.

Please enter values for the following settings (just press Enter to
accept a default value, if one is given in brackets).

Enter the root path for documentation.
> Root path for the documentation [.]:

You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/n) [n]: y

5.3.1. Separated source and build directories

Answering y to the second question (as shown above) results a having
separate source and build directories, with the following
structure:

.
├── Makefile
├── build
└── source
 ├── _static
 ├── _templates
 ├── conf.py
 └── index.rst

4 directories, 3 files

When you initiate a build with make html, here is what the resulting
directory contents will include:

.
├── Makefile
├── build
│ ├── doctrees
│ │ ├── environment.pickle
│ │ └── index.doctree
│ └── html
│ ├── _sources
│ │ └── index.txt
│ ├── _static
│ │ ├── ajax-loader.gif
│ │ ├── basic.css
│ │ ├── comment-bright.png
│ │ ├── comment-close.png
│ │ ├── comment.png
│ │ ├── default.css
│ │ ├── doctools.js
│ │ ├── down-pressed.png
│ │ ├── down.png
│ │ ├── file.png
│ │ ├── jquery.js
│ │ ├── minus.png
│ │ ├── plus.png
│ │ ├── pygments.css
│ │ ├── searchtools.js
│ │ ├── sidebar.js
│ │ ├── underscore.js
│ │ ├── up-pressed.png
│ │ ├── up.png
│ │ └── websupport.js
│ ├── genindex.html
│ ├── index.html
│ ├── objects.inv
│ ├── search.html
│ └── searchindex.js
└── source
 ├── _static
 ├── _templates
 ├── conf.py
 └── index.rst

8 directories, 31 files

Note

Notice how the build/ directory now contains subdirectories html/
and doctrees/ directories. There were no files created or changed in
source/ directory by the make operation.

Warning

You should answer y to the second question. DIMS project repositories
should have separated source/ and build/ directories.

5.3.2. Mixed source and build

Had the second and third questions above been answered with a n,
this is what the resulting directory structure would look like:

.
|── Makefile
|── _build
|── _static
|── _templates
|── conf.py
+── index.rst

3 directories, 3 files

Notice the conf.py and index.rst files are located in the same
directory root as _build. When you build this document with make html,
the resulting directory structure now looks like this:

.
├── Makefile
├── _build
│ ├── doctrees
│ │ ├── environment.pickle
│ │ └── index.doctree
│ └── html
│ ├── _sources
│ │ └── index.txt
│ ├── _static
│ │ ├── ajax-loader.gif
│ │ ├── basic.css
│ │ ├── comment-bright.png
│ │ ├── comment-close.png
│ │ ├── comment.png
│ │ ├── default.css
│ │ ├── doctools.js
│ │ ├── down-pressed.png
│ │ ├── down.png
│ │ ├── file.png
│ │ ├── jquery.js
│ │ ├── minus.png
│ │ ├── plus.png
│ │ ├── pygments.css
│ │ ├── searchtools.js
│ │ ├── sidebar.js
│ │ ├── underscore.js
│ │ ├── up-pressed.png
│ │ ├── up.png
│ │ └── websupport.js
│ ├── genindex.html
│ ├── index.html
│ ├── objects.inv
│ ├── search.html
│ └── searchindex.js
├── _static
├── _templates
├── conf.py
└── index.rst

7 directories, 31 files

Note

In this second example, the source files index.rst and the conf.py
file are at the same directory level as the _build/ directory
(and all of its contents). Doing a make html or make latexpdf
both cause the source directory . to change, because new files
and directores were created within the . directory.

The sphinx-quickstart program gives you an option of separating the source
directory from other directories. When this option is chosen, the result is
a directory structure that has the Makefile at the top level with
a build and source directory at the same directory level, which
looks like this:

.
|── Makefile
|── build
+── source
 ├── README.rst
 ├── _static
 ├── _templates
 ├── conf.py
 ├── developing.rst
 ├── index.rst
 ├── intro.rst
 ├── license.rst
 └── quickstart.rst

4 directories, 8 files

5.4. Building Sphinx Documentation

You can build HTML manually with the Makefile, build PDF output with the
Makefile, or automatically build HTML whenever files change on disk using
sphinx-autobuild.

When you are ready to try building your documentation, start with
manually building HTML output (which you can test locally with
a browser). Once you understand how building HTML works, and
know what to look for in terms of error messages and warnings,
you will find it is faster and easier to create Sphinx documents
using sphinx-autobuild and a browser in a second window.

5.4.1. Manually Building HTML

The most simple way to render Sphinx documents is to use
the Makefile created by sphinx-quickstart using
make as shown here:

[dittrich@localhost docs (dev)]$ make html
sphinx-build -b html -d build/doctrees source build/html
Making output directory...
Running Sphinx v1.2.3
loading pickled environment... not yet created
loading intersphinx inventory from http://docs.python.org/objects.inv...
building [html]: targets for 8 source files that are out of date
updating environment: 8 added, 0 changed, 0 removed
reading sources... [12%] README
reading sources... [25%] continuousintegration
reading sources... [37%] deployconfigure
reading sources... [50%] developing
reading sources... [62%] documentation
reading sources... [75%] index
reading sources... [87%] introduction
reading sources... [100%] quickstart

looking for now-outdated files... none found
pickling environment... done
checking consistency... /Users/dittrich/git/dims-ci-utils/docs/source/README.rst:: WARNING: document isn't included in any toctree
done
preparing documents... done
writing output... [12%] README
writing output... [25%] continuousintegration
writing output... [37%] deployconfigure
writing output... [50%] developing
writing output... [62%] documentation
writing output... [75%] index
writing output... [87%] introduction
writing output... [100%] quickstart

writing additional files... genindex search
copying images... [100%] images/DD_home_page_small.jpg

copying downloadable files... [100%] /Users/dittrich/git/dims-ci-utils/docs/source/images/DD_home_page.png

copying static files... done
copying extra files... done
dumping search index... done
dumping object inventory... done
build succeeded, 1 warning.

Build finished. The HTML pages are in build/html.

You can now load the page with a browser:

[dittrich@localhost docs (dev)]$ open -a Opera.app build/html/index.html

[image: Rendered HTML in Opera on a Mac]
This documentation, rendered on a Mac using Opera.

5.4.2. Manually Building PDF using LaTeX

Now, render the same document as a PDF file using LaTeX:

[dittrich@localhost docs (dev)]$ make latexpdf
sphinx-build -b latex -d build/doctrees source build/latex
Making output directory...
Running Sphinx v1.2.3
loading pickled environment... done
building [latex]: all documents
updating environment: 0 added, 0 changed, 0 removed
looking for now-outdated files... none found
processing DIMSCIUtilities.tex... index introduction quickstart documentation developing continuousintegration deployconfigure
resolving references...
writing... done
copying images... dims-ci-utils-doc.png DD_home_page_small.jpg
copying TeX support files...
done
build succeeded.
Running LaTeX files through pdflatex...
/Applications/Xcode.app/Contents/Developer/usr/bin/make -C build/latex all-pdf
pdflatex 'DIMSCIUtilities.tex'
This is pdfTeX, Version 3.14159265-2.6-1.40.15 (TeX Live 2014/MacPorts 2014_4) (preloaded format=pdflatex)
 restricted \write18 enabled.
entering extended mode
(./DIMSCIUtilities.tex
LaTeX2e <2014/05/01>
Babel <3.9k> and hyphenation patterns for 43 languages loaded.
(./sphinxmanual.cls
Document Class: sphinxmanual 2009/06/02 Document class (Sphinx manual)
(/opt/local/share/texmf-texlive/tex/latex/base/report.cls
Document Class: report 2007/10/19 v1.4h Standard LaTeX document class
(/opt/local/share/texmf-texlive/tex/latex/base/size10.clo)))
(/opt/local/share/texmf-texlive/tex/latex/base/inputenc.sty

[...pages of output removed...]

[25] [26]
Chapter 6.
[27] [28]
Chapter 7.
[29] [30]
Chapter 8.
(./DIMSCIUtilities.ind) [31] (./DIMSCIUtilities.aux))
(see the transcript file for additional information){/opt/local/share/texmf-tex
live/fonts/enc/dvips/base/8r.enc}</opt/local/share/texmf-texlive/fonts/type1/ur
w/courier/ucrb8a.pfb></opt/local/share/texmf-texlive/fonts/type1/urw/courier/uc
rr8a.pfb></opt/local/share/texmf-texlive/fonts/type1/urw/courier/ucrro8a.pfb></
opt/local/share/texmf-texlive/fonts/type1/urw/helvetic/uhvb8a.pfb></opt/local/s
hare/texmf-texlive/fonts/type1/urw/helvetic/uhvbo8a.pfb></opt/local/share/texmf
-texlive/fonts/type1/urw/times/utmb8a.pfb></opt/local/share/texmf-texlive/fonts
/type1/urw/times/utmr8a.pfb></opt/local/share/texmf-texlive/fonts/type1/urw/tim
es/utmri8a.pfb>
Output written on DIMSCIUtilities.pdf (35 pages, 381656 bytes).
Transcript written on DIMSCIUtilities.log.
pdflatex finished; the PDF files are in build/latex.

Now open the PDF file (this example uses Mac OS X Preview.app, but you can
also use evince on some Linux systems):

[dittrich@localhost docs (dev)]$ open build/latex/DIMSCIUtilities.pdf

[image: Rendered PDF in Preview on a Mac]
This documentation, rendered using LaTeX on a Mac,
viewed with Preview.

5.4.3. Automatically building HTML

Sphinx has a program called sphinx-autobuild that can monitor a directory
for any file changes in that directory and below, re-building the document
immediately upong detecting changes. When used to build HTML content, it makes
the pages available on a local TCP port using a simple HTTP service (just like
if the docs were put up on GitHub, readthedocs, etc.)

Note

You may need to install sphinx-autobuild using pip separately.
Refer to section installingsphinx.

Here is where the importance of splitting the source/ directory
from build/ directory becomes evident.

Invoke sphinx-autobuild from the command line in a separate terminal
window, so you can watch the output for error messages. By default, sphinx-autobuild
listens on 8000/tcp. (This can be changed with the -p flag on the command line).
After starting sphinx-autobuild you then enter the URL that is produced
(in this case, the URL is http://127.0.0.1:8000). Now edit files in
another terminal or editor application window.

[dittrich@localhost docs (dev)]$ sphinx-autobuild --ignore '*.swp' source build/html
Serving on http://127.0.0.1:8000
[I 150105 18:50:45 handlers:109] Browser Connected: http://127.0.0.1:8000/documentation.html
[I 150105 18:50:45 handlers:118] Start watching changes
[I 150105 18:50:48 handlers:74] Reload 1 waiters: None
[I 150105 18:50:48 web:1811] 200 GET /documentation.html (127.0.0.1) 16.57ms
[I 150105 18:50:48 web:1811] 304 GET /livereload.js (127.0.0.1) 1.08ms
[I 150105 18:50:48 web:1811] 200 GET /_static/pygments.css (127.0.0.1) 0.83ms
[I 150105 18:50:48 web:1811] 200 GET /_static/default.css (127.0.0.1) 0.62ms
[I 150105 18:50:48 web:1811] 200 GET /_static/jquery.js (127.0.0.1) 1.24ms
[I 150105 18:50:48 web:1811] 200 GET /_static/underscore.js (127.0.0.1) 1.09ms
[I 150105 18:50:48 web:1811] 200 GET /_static/doctools.js (127.0.0.1) 0.68ms
[I 150105 18:50:48 web:1811] 200 GET /_images/DD_home_page_small.jpg (127.0.0.1) 0.86ms
[I 150105 18:50:48 web:1811] 200 GET /_static/basic.css (127.0.0.1) 0.46ms
[I 150105 18:50:48 web:1811] 200 GET /_images/dims-ci-utils-doc-html.png (127.0.0.1) 1.59ms
[I 150105 18:50:48 web:1811] 200 GET /_images/dims-ci-utils-doc-pdf.png (127.0.0.1) 0.72ms
[I 150105 18:50:48 handlers:109] Browser Connected: http://127.0.0.1:8000/documentation.html

+--------- source/documentation.rst changed -------------------------------------
| Running Sphinx v1.2.3
| loading pickled environment... not yet created
| No builder selected, using default: html
| loading intersphinx inventory from http://docs.python.org/objects.inv...
| building [html]: targets for 8 source files that are out of date
| updating environment: 8 added, 0 changed, 0 removed
| reading sources... [12%] README
| reading sources... [25%] continuousintegration
| reading sources... [37%] deployconfigure
| reading sources... [50%] developing
| reading sources... [62%] documentation
| reading sources... [75%] index
| reading sources... [87%] introduction
| reading sources... [100%] quickstart
/Users/dittrich/git/dims-ci-utils/docs/source/documentation.rst:281: WARNING: Literal block ends without a blank line; unexpected unindent.
/Users/dittrich/git/dims-ci-utils/docs/source/documentation.rst:519: WARNING: Literal block ends without a blank line; unexpected unindent.
|
| looking for now-outdated files... none found
| pickling environment... done
/Users/dittrich/git/dims-ci-utils/docs/source/README.rst:: WARNING: document isn't included in any toctree
| checking consistency... done
| preparing documents... done
| writing output... [12%] README
| writing output... [25%] continuousintegration
| writing output... [37%] deployconfigure
| writing output... [50%] developing
| writing output... [62%] documentation
| writing output... [75%] index
| writing output... [87%] introduction
| writing output... [100%] quickstart
|
| writing additional files... genindex search
| copying images... [33%] dims-ci-utils-doc-pdf.png
| copying images... [66%] DD_home_page_small.jpg
| copying images... [100%] dims-ci-utils-doc-html.png
|
| copying downloadable files... [100%] /Users/dittrich/git/dims-ci-utils/docs/source/images/DD_home_page.png
|
| copying static files... done
| copying extra files... done
| dumping search index... done
| dumping object inventory... done
| build succeeded, 3 warnings.
+--

+--------- source/documentation.rst changed -------------------------------------
| Running Sphinx v1.2.3
| loading pickled environment... done
| No builder selected, using default: html
| building [html]: targets for 0 source files that are out of date
| updating environment: 0 added, 0 changed, 0 removed
| looking for now-outdated files... none found
| no targets are out of date.
+--

[I 150105 18:51:17 handlers:74] Reload 1 waiters: None
[I 150105 18:51:17 web:1811] 200 GET /documentation.html (127.0.0.1) 1.70ms
[I 150105 18:51:17 web:1811] 200 GET /_static/default.css (127.0.0.1) 0.70ms
[I 150105 18:51:17 web:1811] 200 GET /_static/doctools.js (127.0.0.1) 0.76ms
[I 150105 18:51:17 web:1811] 200 GET /_static/underscore.js (127.0.0.1) 0.88ms
[I 150105 18:51:17 web:1811] 200 GET /_static/jquery.js (127.0.0.1) 1.26ms
[I 150105 18:51:17 web:1811] 200 GET /_static/pygments.css (127.0.0.1) 0.71ms
[I 150105 18:51:17 web:1811] 304 GET /livereload.js (127.0.0.1) 0.83ms
[I 150105 18:51:17 web:1811] 200 GET /_images/DD_home_page_small.jpg (127.0.0.1) 1.04ms
[I 150105 18:51:17 web:1811] 200 GET /_static/basic.css (127.0.0.1) 0.54ms
[I 150105 18:51:17 web:1811] 200 GET /_images/dims-ci-utils-doc-html.png (127.0.0.1) 1.86ms
[I 150105 18:51:17 web:1811] 200 GET /_images/dims-ci-utils-doc-pdf.png (127.0.0.1) 0.96ms
[I 150105 18:51:17 handlers:109] Browser Connected: http://127.0.0.1:8000/documentation.html

Every time you change a file, sphinx-autobuild will rebuild it and your
brower will be informed that it needs to reload the page so you can immediately
see the results. This helps in developing Sphinx documentation quickly, as all
you need to do is edit files and watch for error messages in the sphinx-autobuild
window and see if the browser page shows what you want it to show.

Warning

The above example uses --ignore '*.swp' to avoid temporary swap
files created by the vim editor. If you use an editor that creates
temporary files using a different file extension, you should use that
name instead. Otherwise, every time you open a file with the editor
it will appear to sphinx-autobuild as though a source file changed
and it will regenerate the document.

Warning

If you restart the sphinx-autobuild process, you will need to reconnect
the browser to the sphinx-autobuild listening port, otherwise the browser
will stop updating the page automatically at the end of each automatic build.
Refreshing the page can fix this.

If you start the browser and attempt to re-open a previously used URL before
you start sphinx-autobuild, you may experience a similar problem. Try to
use touch to update a file, or edit a file and force a write operation.
Either of these will trigger a rebuild and refresh of the browser, which
should then keep it in sync.

The example above produces a lot of output in the sphinx-autobuild terminal
output, which in practice makes it a little harder to see the error messages.
To decrease the amount of output, you may want to add the -q flag (see also
sphinx-build -h for how to control the underlying build process, and
sphinx-autobuild --help for more autobuild options).

[dittrich@localhost docs (dev)]$ sphinx-autobuild -q --ignore '*.swp' source build/html

Warning

By default, sphinx-autobuild will attempt to bind to port 8000/tcp. If
that port is in use by another instance of sphinx-autobuild, you will
get an error message. Use the -p flag to change the listening port
number to something else (e.g., -p 8001).

5.5. Fixing errors

If there are any problems, Sphinx will call them out with warnings.
Pay attention to the build output.

rm -rf build/*
sphinx-build -b html -d build/doctrees source build/html
Making output directory...
Running Sphinx v1.2.3
loading pickled environment... not yet created
loading intersphinx inventory from http://docs.python.org/objects.inv...
building [html]: targets for 7 source files that are out of date
updating environment: 7 added, 0 changed, 0 removed
reading sources... [14%] README
reading sources... [28%] advanced
reading sources... [42%] developing
reading sources... [57%] index
reading sources... [71%] intro
reading sources... [85%] license
reading sources... [100%] quickstart

/Users/dittrich/git/dims-ci-utils/docs/source/intro.rst:26: WARNING: Inline literal start-string without end-string.
/Users/dittrich/git/dims-ci-utils/docs/source/intro.rst:95: WARNING: Literal block ends without a blank line; unexpected unindent.
looking for now-outdated files... none found
pickling environment... done
checking consistency...
/Users/dittrich/git/dims-ci-utils/docs/source/README.rst:: WARNING: document isn't included in any toctree
/Users/dittrich/git/dims-ci-utils/docs/source/advanced.rst:: WARNING: document isn't included in any toctree
/Users/dittrich/git/dims-ci-utils/docs/source/license.rst:: WARNING: document isn't included in any toctree
done
preparing documents... done
writing output... [14%] README
writing output... [28%] advanced
writing output... [42%] developing
writing output... [57%] index
writing output... [71%] intro
writing output... [85%] license
writing output... [100%] quickstart

writing additional files... genindex search
copying static files... done
copying extra files... done
dumping search index... done
dumping object inventory... done
build succeeded, 23 warnings.

Build finished. The HTML pages are in build/html.

5.5.1. Typographic errors

Both of the errors seen in this first example above are simple typographical
errors in the intro.rst file.

The first one, as it says, involves an improper literal on
line 25:

25 A much longer (2+hours when delivered live) ``Sphinx Tutorial v0.1`_ by Brandon
26 Rhodes from PyCon 2013 walks through the full range of tasks necessary to
27 document a Python code project.

Here is the context for the second error message, regarding line 95:

73 Manually Initiating a ``docs`` directory with ``sphinx-quickstart``
74 ---
75
76 The ``sphinx-quickstart`` program gives you an option of separating the soruce
77 directory from other directories. The result is a directory structure that
78 looks like this: ::
79
80 .
81 ├── Makefile
82 ├── build
83 └── source
84 ├── README.rst
85 ├── _static
86 ├── _templates
87 ├── conf.py
88 ├── developing.rst
89 ├── index.rst
90 ├── intro.rst
91 ├── license.rst
92 └── quickstart.rst
93
94 4 directories, 8 files
95 ..
96

As you can see, there is no blank line before the end of the literal block that
ends on line 94 and before the reST comment tag (..) on line 25 (the one
identified in the error message).

This is a simple error, but it happens quite frequently when inserting literal
text examples. If need be, go back and re-read Sphinx Style Guide [http://documentation-style-guide-sphinx.readthedocs.org/en/latest/style-guide.html] and
Documenting Your Project Using Sphinx [https://pythonhosted.org/an_example_pypi_project/sphinx.html] every now and then when you are
starting out to get a refresher, and also have a browser window up with the
The reStructuredText_ Cheat Sheet: Syntax Reminders [http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt] or Quick
reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickref.html] quick reference guide to help while writing reST documents.

5.5.2. Link errors

A more subtle problem that comes up frequently when creating
links to reference material in Sphinx documents is this
error:

/Users/dittrich/git/dims-ci-utils/docs/source/intro.rst:274: ERROR: Unknown
target name: "the restructuredtext_ cheat sheet: syntax reminders".

See if you can spot the reason why by looking very closely at lines
274 and 323 before reading the explanation that follows:

...
273 are starting out to get a refresher, and also have a browser window
274 up with the `The reStructuredText_ Cheat Sheet: Syntax Reminders`_ or
275 `Quick reStructuredText`_ quick reference guide to help while
276 writing reST documents.
...
321 .. _Sphinx Tutorial v0.1: http://brandons-sphinx-tutorial.readthedocs.org/en/v0.1/
323 .. _The reStructuredText_ Cheat Sheet: Syntax Reminders: http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt
324 .. _Quick reStructuredText: http://docutils.sourceforge.net/docs/user/rst/quickref.html

Unlike the links on lines 321 and 324, the target string specified on
line 323 has two colons in it. This causes Sphinx to parse the line
incorrectly (which in turn causes the Unknown target name error
to be triggered). The error is not really on line 274, but is
actually on line 323! It just presents itself as a missing target
error on line 274. The solution is to make sure that all colons in
targets for links are escaped, except the one before
the URL, like this:

323 .. _The reStructuredText_ Cheat Sheet\: Syntax Reminders: http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt

5.5.3. LaTeX image errors

You may get errors rendering LaTeX PDF documents that include
image files. Such an error may look like this:

[dittrich@localhost docs (feature/docs)]$ make latexpdf
sphinx-build -b latex -d build/doctrees source build/latex
Running Sphinx v1.2.3

...

Running LaTeX files through pdflatex...
/Applications/Xcode.app/Contents/Developer/usr/bin/make -C build/latex all-pdf
pdflatex 'DIMSCIUtilities.tex'
This is pdfTeX, Version 3.14159265-2.6-1.40.15 (TeX Live 2014/MacPorts 2014_4) (preloaded format=pdflatex)

...

Chapter 1.
[3] [4] (/opt/local/share/texmf-texlive/tex/latex/psnfss/ts1pcr.fd) [5]

pdfTeX warning: pdflatex: arithmetic: number too big
! Dimension too large.
<argument> \ht \@tempboxa

l.348 ...=0.800\linewidth]{images/DD_home_page_small.png}

? q
OK, entering \batchmodemake[1]: *** [DIMSCIUtilities.pdf] Error 1
make: *** [latexpdf] Error 2

The solution to this [http://tex.stackexchange.com/questions/51164/dimension-too-large-on-a-png-figure-under-xelatex-and-beamer] is to use mogrify -density 90 DD_home_page_small.png
to fix the image resolution metadata in the PNG file.

5.5.4. LaTeX Unicode rendering errors

Another error message that could occur when rendering the kind of
text in the code-block seen in Section Typographic errors relates to
the Unicode characters produced by the tree program to show the indentation
levels.

Here is an error message (with the specific lines highlighted) that can show up
in a Jenkins build process FAILURE message:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	Running LaTeX files through pdflatex...
make -C build/latex all-pdf
make[1]: Entering directory `/var/lib/jenkins/jobs/dims-docs-deploy/workspace/ansible-playbooks/docs/build/latex'
pdflatex 'AnsiblePlaybooksRepository.tex'
This is pdfTeX, Version 3.1415926-1.40.10 (TeX Live 2009/Debian)
entering extended mode
(./AnsiblePlaybooksRepository.tex

...

Underfull \hbox (badness 10000) in paragraph at lines 819--822
[]\T1/ptm/m/n/10 While it is not re-quired to in-stall dims-ci-utils, you prob-
a-bly will want to run the play-book
[11] [12] [13]

! Package inputenc Error: Unicode char \u8:â”œ not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help.
 ...

l.1040 â”œ-- defaults

?
! Emergency stop.
 ...

l.1040 â”œ-- defaults

! ==> Fatal error occurred, no output PDF file produced!
Transcript written on AnsiblePlaybooksRepository.log.
make[1]: *** [AnsiblePlaybooksRepository.pdf] Error 1
make[1]: Leaving directory `/var/lib/jenkins/jobs/dims-docs-deploy/workspace/ansible-playbooks/docs/build/latex'
make: *** [latexpdf] Error 2
Build step 'Custom Python Builder' marked build as failure
Warning: you have no plugins providing access control for builds, so falling back to legacy behavior of permitting any downstream builds to be triggered
Finished: FAILURE

Here is the specific block of text that triggered the rendering
error message:

 .. code-block:: bash

 ── defaults
 ── main.yml
 ── files
 ── base-requirements.txt
 ── debian-virtualenv-prereqs.sh
 ── dimsenv-requirements.txt
 ── macos-virtualenv-prereqs.sh
 ── meta
 ── main.yml
 ── tasks
 ── main.yml
 ── post_tasks.yml -> ../../../dims/post_tasks.yml
 ── pre_tasks.yml -> ../../../dims/pre_tasks.yml
 ── templates
 ── bashrc.dims.virtualenv.j2
 ── builddimsenvmod.sh.j2

 ..

The problem is that the long-dash character is not defined to
LaTeX. This is done in the Sphinx conf.py file, and all DIMS
documents should include these definitions because we frequently
embed output of tree, which uses Unicode characters for line
drawing. (Not all do, which causes random failures when adding text to
Sphinx documents.)

 latex_elements = {
 ...
 # Additional stuff for the LaTeX preamble.
 #
 # The following comes from
 # https://github.com/rtfd/readthedocs.org/issues/416
 #
 'preamble': "".join((
 '\DeclareUnicodeCharacter{00A0}{ }', # NO-BREAK SPACE
 '\DeclareUnicodeCharacter{2014}{\dash}', # LONG DASH
 '\DeclareUnicodeCharacter{251C}{+}', # BOX DRAWINGS LIGHT VERTICAL AND RIGHT
 '\DeclareUnicodeCharacter{2514}{+}', # BOX DRAWINGS LIGHT UP AND RIGHT
)),
 }

Note

See http://tex.stackexchange.com/questions/34604/entering-unicode-characters-in-latex

5.5.5. “LaTeX is not a TTY” errors

Another variation of errors during LaTeX rendering presents itself similarly
to the previous error, but the problem is due to inability to map a Unicode
character to a LaTeX macro: the problem is due to directly (or indirectly)
sending output saved from Unix command line programs that do fancy things
like coloring characters, etc, using ANSI escape sequences. While a terminal
program that uses the Unix TTY subsystem may handle the ANSI escape
sequences, and HTML renderers may know how to handle the ANSI escape
sequences, LaTeX does not. Here is an example of this problem, excerpted
from a Jenkins build job email message:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	 Started by user anonymous
 [EnvInject] - Loading node environment variables.
 Building in workspace /var/lib/jenkins/jobs/dims-docs-deploy/workspace

 Deleting project workspace... done

 [workspace] $ /bin/bash -xe /tmp/shiningpanda5607640542889107840.sh
 + jenkins.logmon
 [workspace] $ /bin/bash -xe /tmp/shiningpanda5535708223044870299.sh
 + jenkins.dims-docs-deploy
 [+++] jenkins.dims-docs-deploy: Deploying documentation
 [+++] jenkins.dims-docs-deploy: Get global vars from jenkins.dims-defaults.
 [+++] jenkins.dims-defaults Default variables
 [+++] PLAYBOOKSREPO=ansible-playbooks
 [+++] INVENTORYREPO=ansible-inventory
 [+++] GITURLPREFIX=git@git.prisem.washington.edu:/opt/git/
 [+++] MASTERBRANCH=master
 [+++] DEVBRANCH=develop
 [+++] DEVHOSTS=development
 [+++] MASTERHOSTS=production
 [+++] DEFAULTHOSTFILE=development
 [+++] DEFAULTANSIBLEBRANCH=develop
 [+++] DEFAULTINVENTORYBRANCH=develop
 [+++] DEFAULTREMOTEUSER=ansible

 ...
 ! Package inputenc Error: Keyboard character used is undefined
 (inputenc) in inputencoding `utf8'.

 See the inputenc package documentation for explanation.
 Type H <return> for immediate help.
 ...

 l.5790 ...dl{}GIT/dims\PYGZhy{}dockerfiles/configu

 ! ==> Fatal error occurred, no output PDF file produced!
 Transcript written on UsingDockerinDIMS.log.
 make[1]: *** [UsingDockerinDIMS.pdf] Error 1
 make[1]: Leaving directory `/var/lib/jenkins/jobs/dims-docs-deploy/workspace/dims-dockerfiles/docs/build/latex'
 make: *** [latexpdf] Error 2
 Build step 'Custom Python Builder' marked build as failure
 Warning: you have no plugins providing access control for builds, so falling back to legacy behavior of permitting any downstream builds to be triggered
 Finished: FAILURE

To find the line in question (5790, in this case, called out in output
line 34 above), manually trigger a LaTeX PDF build from the Sphinx
document and then look for the LaTeX source file that corresponds with the
PDF file name (seen in output line 38 above) in the build/latex subdirectory
(in this case, it would be
$GIT/dims-dockerfiles/docs/build/latex/UsingDockerinDIMS.tex) to
find the character that causes the error:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	 [dimsenv] ~/dims/git/dims-dockerfiles/docs (develop) $ make latexpdf

 ...

 ! Package inputenc Error: Keyboard character used is undefined
 (inputenc) in inputencoding `utf8'.

 See the inputenc package documentation for explanation.
 Type H <return> for immediate help.
 ...

 l.5789 ...dl{}GIT/dims\PYGZhy{}dockerfiles/configu

 ? ^Cmake[1]: *** Deleting file `UsingDockerinDIMS.pdf'
 ^Z
 [1]+ Stopped make latexpdf
 [dimsenv] ~/dims/git/dims-dockerfiles/docs (develop) $ kill -9 %1
 [1]+ Killed: 9 make latexpdf
 [dimsenv] ~/dims/git/dims-dockerfiles/docs (develop) $ pr -n build/latex/UsingDockerinDIMS.tex | less

 ...

 5780 * VPN \PYGZsq{}01\PYGZus{}uwapl\PYGZus{}dimsdev2\PYGZsq{} is running
 5781 * VPN \PYGZsq{}02\PYGZus{}prsm\PYGZus{}dimsdev2\PYGZsq{} is running
 5782 [+++] Sourcing /opt/dims/etc/bashrc.dims.d/bashrc.dims.virtualenv ...
 5783 [+++] Activating DIMS virtual environment (dimsenv) [ansible\PYGZhy{}playbooks v1.2.93]
 5784 [+++] (Create file /home/mboggess/.DIMS\PYGZus{}NO\PYGZus{}DIMSENV\PYGZus{}ACTIVATE to disable)
 5785 [+++] Virtual environment \PYGZsq{}dimsenv\PYGZsq{} activated [ansible\PYGZhy{}playbooks v1.2.93]
 5786 [+++] /opt/dims/bin/dims.install.dimscommands: won\PYGZsq{}t try to install scripts in /opt/dims
 5787 [+++] Sourcing /opt/dims/etc/bashrc.dims.d/git\PYGZhy{}prompt.sh ...
 5788 [+++] Sourcing /opt/dims/etc/bashrc.dims.d/hub.bash\PYGZus{}completion.sh ...
 5789 ESC[1;34m[dimsenv]ESC[0m ESC[1;33mmboggess@dimsdev2:\PYGZti{}/core\PYGZhy{}localESC[0m () \PYGZdl{} bash \PYGZdl{}GIT/dims\PYGZhy{}dockerfiles/configu
 5790 rations/elasticsearch/setup\PYGZus{}cluster.sh
 5791
 5792 elasticsearch@.service 0\PYGZpc{} 0 0.0KB/s \PYGZhy{}\PYGZhy{}:\PYGZhy{}\PYGZhy{} ETA
 5793 elasticsearch@.service 100\PYGZpc{} 1680 1.6KB/s 00:00
 5794
 5795 start\PYGZus{}elasticsearch\PYGZus{}cluster.sh 0\PYGZpc{} 0 0.0KB/s \PYGZhy{}\PYGZhy{}:\PYGZhy{}\PYGZhy{} ETA
 5796 start\PYGZus{}elasticsearch\PYGZus{}cluster.sh 100\PYGZpc{} 75 0.1KB/s 00:00
 5797 ESC[1;34m[dimsenv]ESC[0m ESC[1;33mmboggess@dimsdev2:\PYGZti{}/core\PYGZhy{}localESC[0m () \PYGZdl{} vagrant ssh core\PYGZhy{}01 \PYGZhy{}\PYGZhy{} \PYGZhy{}A
 5798 VM name: core\PYGZhy{}01 \PYGZhy{} IP: 172.17.8.101
 5799 Last login: Wed Sep 9 13:50:22 2015 from 10.0.2.2
 5800
 5801 CoreESC[38;5;206mOESC[38;5;45mSESC[39m alpha (794.0.0)
 5802 ESC]0;core@core\PYGZhy{}01:\PYGZti{}^GESC[?1034hESC[01;32mcore@core\PYGZhy{}01ESC[01;34m \PYGZti{} \PYGZdl{}ESC[00m ls
 5803 ESC[0mESC[01;34minstancesESC[0m start\PYGZus{}elasticsearch\PYGZus{}cluster.sh ESC[01;34mstaticESC[0m ESC[01;34mtemplatesESC[0m
 5804 ESC]0;core@core\PYGZhy{}01:\PYGZti{}^GESC[01;32mcore@core\PYGZhy{}01ESC[01;34m \PYGZti{} \PYGZdl{}ESC[00m bash start\PYGZus{}elasticsearch\PYGZus{}cluster.sh
 5805 ESC]0;core@core\PYGZhy{}01:\PYGZti{}^GESC[01;32mcore@core\PYGZhy{}01ESC[01;34m \PYGZti{} \PYGZdl{}ESC[00m ESC[Ketcdctl cluster\PYGZhy{}hea
 ...

Note

Pay close attention to the commands used to reproduce the error that Jenkins
encountered from the command line. LaTeX, which is being invoked by Sphinx
(a Python program that invokes pdflatex as a subprocess) has some
problems getting the CTRL-C character (see line 14). To work around this,
do the following:

	Suspend the process with CTRL-Z (see line 15).

	Identify the suspended job’s number found within the square brackets on
line 16: ([1]+ Stopped ..., in this case, job 1).

	Use the kill command (see man kill and man signal) to send
the -9 (non-maskable interrupt) signal to the suspended job
(see line 17).

	Use pr -n to add line numbers to the file and pass the output
to a pager like less to find the line number called out by
LaTeX (see lines 19 and 32).

As can be seen in line 32 above, the escape sequence ESC[1;34m (set
foreground color ‘Blue’: see Bash Prompt HOWTO: Chapter 6. ANSI Escape
Sequences: Colours and Cursor Movement [http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/x329.html]) is causing LaTeX to fail.

The moral of the story is, only send properly mapped Unicode and/or UTF-8/ASCII
text to Sphinx, so that when it does not fail when it invokes LaTeX.

Note

You can strip ANSI escape sequences in many ways. Google “strip ANSI
escape sequences” to find some. Another way to handle this is to
disable colorizing, or cut/paste command output as simple text
rather than capturing terminal output with programs like
script.

5.6. Common Tasks

5.6.1. Creating figures with thumbnails with links to larger images

Dave Dittrich’s home page [https://staff.washington.edu/dittrich/] has a section with images, which
uses low-resolution version for the main page and keeps the
high-resolution image in a separate _download directory
to be used as targets in the captions of those thumbnails.
Here is a partial directory listing:

[dittrich@localhost sphinx (master)]$ tree
.
├── Makefile
├── _build
├── _download
├── . . .
├── images
│ ├── Black_Mamba_Vienna-small.jpg
│ ├── Black_Mamba_Vienna.jpg
│ ├── Climbing_Gym_Manchester-small.jpg
│ ├── Climbing_Gym_Manchester.jpg
│ ├── DCA_Sunset-small.jpg
│ ├── DCA_Sunset.jpg
│ ├── QR-code-security-QR-code.gif
│ ├── QR-code-security-QR-code.png
│ ├── Sagrada_Familia_Barcelona-small.jpg
│ ├── Sagrada_Familia_Barcelona.jpg
│ ├── Screen-Shot-2014-12-31-at-1.15.34-PM.png
│ ├── Seattle_Sunset_1-small.jpg
│ ├── Seattle_Sunset_1.jpg
│ ├── Seattle_Sunset_2-small.jpg
│ ├── Seattle_Sunset_2.jpg
│ ├── T-Rex-Chicago-small.jpg
│ ├── T-Rex-Chicago.jpg
│ ├── UW-Memorial-Way-Northbound-small.jpg
│ ├── UW-Memorial-Way-Northbound.jpg
│ ├── WA_OR_Volcanoes-small.jpg
│ ├── WA_OR_Volcanoes.jpg
│ ├── . . .
│ └── weber_guy.png
├── images.rst
├── . . .
└── www.rst

Here is how the figure with link works:

.. figure:: images/DD_home_page_small.jpg
 :alt: Dave Dittrich's home page
 :width: 80%
 :align: center

 A screen shot of Dave Dittrich's home page.
 :download:`Full size image <images/DD_home_page.png>

[image: Dave Dittrich's home page]
A screen shot of Dave Dittrich’s home page.
Full size image

Note

Mouse over the image and right click and you will get the small
image. Mouse over the words Full size image in the caption
and right click and you get the... well, yes... full size image.

Note

The small version of an image can be created using ImageMagick’s
convert program like this:

$ convert DD_home_page.png -resize 50% DD_home_page_small.jpg

5.6.2. Section numbering

Sphinx does not render HTML documents with section numbers by default, but
it will render LaTeX PDF documents with section numbers. To make these both
consistent, add the :numbered: option to the toctree directive:

Contents:

.. toctree::
 :numbered:
 :maxdepth: 2

See http://sphinx-doc.org/markup/toctree.html and http://stackoverflow.com/questions/20061577/sphinx-section-numbering-for-more-than-level-3-headings-sectnum

5.6.3. Converting HTML content to Sphinx reST files

Many of the DIMS project documents are created using templates described in A
forgotten military standard that saves weeks of work (by providing free project
management templates) [http://kkovacs.eu/free-project-management-template-mil-std-498], by Kristof Kovacs. Kovacs’ web site has HTML versions
of each of these templates in a ZIP archive. Download the archive and
unpack it. Using the program html2rest, you can convert these documents
to a reST format document.

Warning

The format of these HTML files is not parsed properly by html2rest,
at least not without some pre-processing. Strip out the HTML break
tags using the following commands:

$ sed 's|
||g' ~/MIL-STD-498-templates-html-master/SRS.html > SRS.html
$ html2rest SRS.html > SRS.rst-orig

Once converted, you can now split the file SRS.rst-orig into separate
sections, enable section numbering with the :numbered: option to the
toctree directive and strip off the hard-coded numbers from sections,
and add labels for sections (for cross-referencing). Here is an example of
before and after for one such section from SRS.html:

Section 5 from the original HTML:

<h1>5. Requirements traceability.</h1>
<p>This paragraph shall contain:
<ol type="a">
 Traceability from each CSCI requirement in this specification to the system (or subsystem, if applicable) requirements it addresses. (Alternatively, this traceability may be provided by annotating each requirement in Section 3.)

 Note: Each level of system refinement may result in requirements not directly traceable to higher-level requirements. For example, a system architectural design that creates multiple CSCIs may result in requirements about how the CSCIs will interface, even though these interfaces are not covered in system requirements. Such requirements may be traced to a general requirement such as "system implementation" or to the system design decisions that resulted in their generation.
 Traceability from each system (or subsystem, if applicable) requirement allocated to this CSCI to the CSCI requirements that address it. All system (subsystem) requirements allocated to this CSCI shall be accounted for. Those that trace to CSCI requirements contained in IRSs shall reference those IRSs.

</p>

Section 5 from SRS.rst-orig after conversion with html2rest:

5. Requirements traceability.
=============================

This paragraph shall contain:

#. Traceability from each CSCI requirement in this specification to
 the system (or subsystem, if applicable) requirements it addresses.
 (Alternatively, this traceability may be provided by annotating each
 requirement in Section 3.) Note: Each level of system refinement may
 result in requirements not directly traceable to higher-level
 requirements. For example, a system architectural design that creates
 multiple CSCIs may result in requirements about how the CSCIs will
 interface, even though these interfaces are not covered in system
 requirements. Such requirements may be traced to a general requirement
 such as "system implementation" or to the system design decisions that
 resulted in their generation.
#. Traceability from each system (or subsystem, if applicable)
 requirement allocated to this CSCI to the CSCI requirements that
 address it. All system (subsystem) requirements allocated to this CSCI
 shall be accounted for. Those that trace to CSCI requirements
 contained in IRSs shall reference those IRSs.

Section 5 in a separate file traceability.rst:

.. _traceability:

Requirements traceability
=========================

This paragraph shall contain:

#. Traceability from each CSCI requirement in this specification to
 the system (or subsystem, if applicable) requirements it addresses.
 (Alternatively, this traceability may be provided by annotating each
 requirement in Section :ref:`requirements`.)

 .. note::

 Each level of system refinement may result in requirements not directly
 traceable to higher-level requirements. For example, a system
 architectural design that creates multiple CSCIs may result in
 requirements about how the CSCIs will interface, even though these
 interfaces are not covered in system requirements. Such requirements may
 be traced to a general requirement such as "system implementation" or to
 the system design decisions that resulted in their generation.

#. Traceability from each system (or subsystem, if applicable)
 requirement allocated to this CSCI to the CSCI requirements that
 address it. All system (subsystem) requirements allocated to this CSCI
 shall be accounted for. Those that trace to CSCI requirements
 contained in IRSs shall reference those IRSs.

The rendered HTML for section 5 can be seen in the
figure Correct rendering of note within list.

5.6.4. Referencing subsections or figures

In the last example covered in section Converting HTML content to Sphinx reST files, note the label
definition .. _traceability: right before the section heading Requirements
traceability. A reference to this label will result in the section heading
being used as the text for the hyperlink. This section itself is preceded by
the label referencinglabels, which is rendered on reference as
Referencing subsections or figures. This is the way to reference a sub-section (or figure,
table, etc.) of a document.

Note

The section Cross-referencing between documents with the sphinx.ext.intersphinx extension builds on this concept of linking
to arbitrary locations in a file by label.

5.7. Common Problems

5.7.1. Improperly referencing links to external documents

Sphinx documents are used to produce HTML, but reST itself
is not like HTML in terms of links to external references. An HTML
document may have many HREF elements that all have the same
text to represent the hyperlink, but links in reST documents
produce targets that can be cross-referenced from multiple places
and need to be unique.

Here is output of sphinx-autobuild showing this problem:

+--------- source/.vmprovisioning.rst.swp changed -------------------------------
/Users/dittrich/git/dims-ci-utils/docs/source/vmprovisioning.rst:3: WARNING: Duplicate explicit target name: "here".
/Users/dittrich/git/dims-ci-utils/docs/source/vmprovisioning.rst:3: WARNING: Duplicate explicit target name: "here".

This message reports that the target name help has been duplicated twice
within the text (meaning it occurs three times in definitions).

Note

The line number reported is not accurate for some reason. It is not actually on line 3 in vmprovisioning.rst.

Here are the three occurrances of the target help in the file:

 [...]

 When a new VM is created from base.ovf via import, it will of course
 inherit the complete hard drive contents from the OVF. If the import
 is done without the ``keepnatmacs`` option, the new VM will have a new
 MAC address, which will then *not* match the details in the udev file,
 at which point the VM's network configuration will appear broken.
 This issue is a known one, see e.g. `here
 <http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1032790>`_
 or simply Google **ubuntu udev vm**.

 [...]

 Again ``packer`` is used to build the ``base-keyed`` OVF from the base OVF.
 We also perform an extra step (see ``base-keyed/base-keyed.json``) in
 converting the OVF to a Vagrant box file. Further, we use the merged
 ``Vagrantfile`` idiom (Packer instructions `here
 <https://www.packer.io/docs/post-processors/vagrant.html>`_ and
 Vagrant description `here
 <https://docs.vagrantup.com/v2/vagrantfile/>`_) to embed SSH
 credentials into the box file itself. These are then available to
 every Vagrant-managed VM created from that box file. This eliminates
 the need to manage (via manual or automated edits) SSH user name and
 private key name in each/every ``Vagrantfile`` spawned from this box.

 [...]

These three links can all be made unique like this:

 [...]

 When a new VM is created from base.ovf via import, it will of course
 inherit the complete hard drive contents from the OVF. If the import
 is done without the ``keepnatmacs`` option, the new VM will have a new
 MAC address, which will then *not* match the details in the udev file,
 at which point the VM's network configuration will appear broken.
 This issue is a known one, as seen in the VMWare Knowledge base article
 `Networking fails after cloning an Ubuntu virtual machine (1032790)`_
 or simply Google **ubuntu udev vm**.

 [...]

 Again ``packer`` is used to build the ``base-keyed`` OVF from the base OVF.
 We also perform an extra step (see ``base-keyed/base-keyed.json``) in
 converting the OVF to a Vagrant box file. Further, we use the merged
 ``Vagrantfile`` idiom to embed SSH credentials into the box file itself.
 (See the Packer documentation on the `Vagrant Post-Processor`_ and
 Vagrant documentation on the `Vagrantfile`_.)
 These are then available to
 every Vagrant-managed VM created from that box file. This eliminates
 the need to manage (via manual or automated edits) SSH user name and
 private key name in each/every ``Vagrantfile`` spawned from this box.

 [...]

 .. _Networking fails after cloning an Ubuntu virtual machine (1032790): http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1032790
 .. _Vagrant Post-Processor: https://www.packer.io/docs/post-processors/vagrant.html
 .. _Vagrantfile: https://docs.vagrantup.com/v2/vagrantfile/

5.7.2. Not having the proper white space around literal blocks

We saw this example, and how to fix it, in Section Fixing errors.

5.7.3. Using inconsistent indentation in literal blocks and directives

Say you are trying to create a list, and you want to include
notes or warnings in one of the list items. Here are examples of
the wrong and right way to do this.

Source code (incorrect indentation within list):

.. _traceability:

Requirements traceability
=========================

This paragraph shall contain:

#. Traceability from each CSCI requirement in this specification to
 the system (or subsystem, if applicable) requirements it addresses.
 (Alternatively, this traceability may be provided by annotating each
 requirement in Section :ref:`requirements`.)

.. note::

 Each level of system refinement may result in requirements not directly
 traceable to higher-level requirements. For example, a system
 architectural design that creates multiple CSCIs may result in
 requirements about how the CSCIs will interface, even though these
 interfaces are not covered in system requirements. Such requirements may
 be traced to a general requirement such as "system implementation" or to
 the system design decisions that resulted in their generation.

#. Traceability from each system (or subsystem, if applicable)
 requirement allocated to this CSCI to the CSCI requirements that
 address it. All system (subsystem) requirements allocated to this CSCI
 shall be accounted for. Those that trace to CSCI requirements
 contained in IRSs shall reference those IRSs.

[image: Incorrect rendering of note within list]
Incorrect rendering of note within list

Source code (correct indentation within list):

.. _traceability:

Requirements traceability
=========================

This paragraph shall contain:

#. Traceability from each CSCI requirement in this specification to
 the system (or subsystem, if applicable) requirements it addresses.
 (Alternatively, this traceability may be provided by annotating each
 requirement in Section :ref:`requirements`.)

 .. note::

 Each level of system refinement may result in requirements not directly
 traceable to higher-level requirements. For example, a system
 architectural design that creates multiple CSCIs may result in
 requirements about how the CSCIs will interface, even though these
 interfaces are not covered in system requirements. Such requirements may
 be traced to a general requirement such as "system implementation" or to
 the system design decisions that resulted in their generation.

#. Traceability from each system (or subsystem, if applicable)
 requirement allocated to this CSCI to the CSCI requirements that
 address it. All system (subsystem) requirements allocated to this CSCI
 shall be accounted for. Those that trace to CSCI requirements
 contained in IRSs shall reference those IRSs.

[image: Correct rendering of note within list]
Correct rendering of note within list

5.7.4. Having multiple colons in link target labels

It is easy to get used to using directives like .. figure::
or .. note:: and placing the double-colon after them.
Labels look similar, but are not directives. They also have
the underscore in front of them and should look like:

.. _label:

This is a reference to :ref:`label`.

5.8. Advanced Use of Sphinx Features

This section discusses more advanced features of Sphinx to accomplish
particular tasks.

To illustrate two cases, consider the following:

	During DIMS development, there will be (1) a DIMS instance for
developers to use, (2) another DIMS instance for test and
evaluation prior to release, and (3) yet another instance
for user acceptance and functional testing that will be used
by the PRISEM user base.

	In production, there will be an instance of DIMS deployed for
different groups in multiple parts of the country, each with
their own name, organizational structure and policies, etc.

In order to produce documentation that provides a sufficient level of precise
detail so as to be immediately useful, documents for DIMS will need to be build
by doing parameterized construction of documentation based on case-specific
parameters.

Put yourself in a DIMS user’s shoes. Which of the following two examples
would be more useful to you?

Note

To access the DIMS front end, connect your browser to:
https://dims.example.com:12345/dimsapi/

Note

To access the DIMS front end, connect your browser to
the specific host and port configured for the
login portal server, followed by the string “/dimsapi/”. Ask
your site administrator for the details.

Every instantiation of the full DIMS system (comprised of many separate service
components) will be unique in several run-time aspects. Each will have its own
IP address block, its own top level Domain Name System name, its own
organizational name, its own policies and its own membership. That is just a
start. One set of documentation cannot possibly be generalized in a way that
it can be used by everyone, without reading like the second example above. Each
instantiation needs its own uniquely produced documentation, which means
documenation must be configured just like the system itself is configured.
If the documentation must be hand-edited for each user, that places a huge
burden on those wanting to implement DIMS and the system will not be used
widely enough to have the intended impact.

5.8.1. Cross-referencing between documents with the sphinx.ext.intersphinx extension

ReST supports Cross-referencing arbitrary locations [http://sphinx-doc.org/markup/inline.html?highlight=ref#role-ref] within a document using
:ref:. To reference arbitrary locations (by their label) in other documents
requires the Sphinx extension sphinx.ext.intersphinx.
(See the documentation for sphinx.ext.intersphinx [http://sphinx-doc.org/ext/intersphinx.html] and Section
Referencing subsections or figures for more on labels.)

Intersphinx links allow, for example, cross referencing a test in the Test Plan
document to a requirement or user story in the Requirements document to provide
requirements traceability in testing.

5.8.1.1. Mapping URLs to documents

The first step is to enable the extension by making sure it
is included in the conf.py file:

 # Add any Sphinx extension module names here, as strings. They can be
 # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
 # ones.
 extensions = [
 'sphinx.ext.autodoc',
 'sphinx.ext.doctest',
 'sphinx.ext.todo',
 'sphinx.ext.intersphinx',
 'sphinx.ext.graphviz',
 'sphinx.ext.ifconfig',
]

When you build HTML output, any labels that are defined in your reST files e
recorded in an inventory file. By default, the inventory is named
objects.inv.

To cross-reference the objects.inv files from other documents
requires a mapping of these inventories to symbolic name to
define a label namespace for use in :ref: directives.

Note

You may use multiple targets for each inventory file, which is necessary
when you are building multiple documents locally before they have been
published in their final internet-accessible web site (e.g, the Read the
Docs site). Obviously, if the remote inventory does not exist, it cannot be
used (but when it does exist, you may want to use it instead of a local
copy). Documents built automatically for publication with Jenkins
would not have local copies, so they automatically would link with remote
versions.

Warning

Because of the chicken/egg problem just described, document sets
that are to be cross-linked would need to be rendered twice in
order to first generate the inventory file that is used by
other documents that reference it, and to get those inventories
from the other documents in order to reference them. This is similar
to how LaTeX works, where the recommendation is to run pdflatex
twice, then run bibtex for bibliographies, then run pdflatex
one last time to get cross-references and citations set up
properly.

In the example below, both local and remote locations are specified.

Warning

You cannot use ‘-‘ in the symbol that maps the inventory files, so
the following examples simply remove that character from the Git
repo names.

intersphinx_cache_limit = -1 # days to keep the cached inventories (0 == forever)
intersphinx_mapping = {
 'dimsocd': ('http://u12-dev-svr-1.prisem.washington.edu:8080/docs/develop/html/dims-ocd',
 ('../../dims-ocd/build/html/objects.inv',None)),
 'dimsad': ('http://u12-dev-svr-1.prisem.washington.edu:8080/docs/develop/html/dims-ad',
 ('../../dims-ad/build/html/objects.inv',None)),
 'dimstp': ('http://u12-dev-svr-1.prisem.washington.edu:8080/docs/develop/html/dims-tp',
 ('../../dims-tp/build/html/objects.inv',None))
}

5.8.1.2. Linking to the label

In the reST document (in this case, the referenceddocs.rst file),
normal :ref: directives are used, but the target of the :ref:
includes the name of the inventory prepended to the label so as
to map to the proper URL. The first reference in this example
maps to the Operational Concept Description document:

 .. _referenceddocs:

 Referenced Documents
 ====================

 The following documents describe the DIMS project and provide background
 material related to tasking.

 #. :ref:`dimsocd:dimsoperationalconceptdescription`

 #. :ref:`dimsad:dimsarchitecturedesign`

 #. :ref:`dimstp:dimstestplan`

 #. HSHQDC-13-C-B0013, "From Local to Gobal Awareness: A Distributed Incident Management System," Draft contract, Section C - Statement of Work (marked up version)

 #. MIL-STD-498, Military Standard Software Development and Documentation,
 AMSC No. N7069, Dec. 1994.

The label dimsoperationalconceptdescription occurs in the index.rst
file on line 3, immediately preceding the title on line 6 (which has the release number
inserted into it).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 .. DIMS Operational Concept Description documentation master file.

 .. _dimsoperationalconceptdescription:

 ==
 DIMS Operational Concept Description v |release|
 ==

 .. topic:: Executive Summary

 Since HSPD-7 was released in 2003, the Department of Homeland Security has
 had a core mission of working to protect the nationâ€™s critical
 infrastructure. In 2008, the *National Response Framework* was released, and
 ...

The final rendered DIMS System Requirements document has links to
the related DIMS Operational Concept Description, DIMS Architecture
Design, and DIMS Test Plan documents, all with their current
release number visible for precise cross-referencing.

Note

Documents released from the master branch, all at once, will
be easier to trace back to the code base for which they apply.

[image: Rendered intersphinx links]
Rendered intersphinx links

When you build the document, you will see the objects.inv files
being loaded:

(dimsenv)[dittrich@localhost dims-sr (develop)]$ make html
Makefile:27: warning: overriding commands for target `help'
/opt/dims/etc/Makefile.dims.global:48: warning: ignoring old commands for target `help'
sphinx-build -b html -d build/doctrees source build/html
Running Sphinx v1.3.1+
loading pickled environment... done
loading intersphinx inventory from http://u12-dev-svr-1.prisem.washington.edu:8080/docs/develop/html/dims-ocd/objects.inv...
loading intersphinx inventory from http://u12-dev-svr-1.prisem.washington.edu:8080/docs/develop/html/dims-ad/objects.inv...
loading intersphinx inventory from http://u12-dev-svr-1.prisem.washington.edu:8080/docs/develop/html/dims-tp/objects.inv...
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 0 source files that are out of date
updating environment: [config changed] 8 added, 0 changed, 0 removed
reading sources... [12%] appendices
reading sources... [25%] index
...

5.8.2. Insertion of text using direct substitution

Sphinx has ways of producing customized output when documents are built
using direct textual substitution, and through execution of programs from
within Sphinx. The simplest method is direct substitution.

Say you want a copyright symbol in a document. You start by
selecting or creating a file that maps strings surrounded by
pipe characters to some other string. There is a file called
isonum.txt that does this for many Unicode characters,
like the copyright symbol. The first 20 lines of this file
look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 .. This data file has been placed in the public domain.
 .. Derived from the Unicode character mappings available from
 <http://www.w3.org/2003/entities/xml/>.
 Processed by unicode2rstsubs.py, part of Docutils:
 <http://docutils.sourceforge.net>.

 .. |amp| unicode:: U+00026 .. AMPERSAND
 .. |apos| unicode:: U+00027 .. APOSTROPHE
 .. |ast| unicode:: U+0002A .. ASTERISK
 .. |brvbar| unicode:: U+000A6 .. BROKEN BAR
 .. |bsol| unicode:: U+0005C .. REVERSE SOLIDUS
 .. |cent| unicode:: U+000A2 .. CENT SIGN
 .. |colon| unicode:: U+0003A .. COLON
 .. |comma| unicode:: U+0002C .. COMMA
 .. |commat| unicode:: U+00040 .. COMMERCIAL AT
 .. |copy| unicode:: U+000A9 .. COPYRIGHT SIGN
 .. |curren| unicode:: U+000A4 .. CURRENCY SIGN
 .. |darr| unicode:: U+02193 .. DOWNWARDS ARROW
 .. |deg| unicode:: U+000B0 .. DEGREE SIGN
 .. |divide| unicode:: U+000F7 .. DIVISION SIGN

Note

This is how to visually parse line 16: The ..
at the start to indicate a reST directive is
being used, |copy| as the string to match,
unicode:: U+000A9 as a reST directive for a Unicode
character, and .. COPYRIGHT SIGN as a comment that
explains this is the copyright sign. The comment is
unecessary, but helps explain what is being mapped.

You must first include the map before any substitutions will be recognized,
then wherever the string |copy| occurs, the Unicode character U+000A9
will be inserted. Here is a simple example of how to do this:

.. include:: <isonum.txt>

Copyright |copy| 2015 University of Washington. All rights reserved.

This code renders as follows:

Copyright © 2015 University of Washington. All rights reserved.

5.8.3. Insertion of text programmatically

A more complicated way of text substitution is by using the fact
that Sphinx is a Python program, which can include and execute
Python code at run time.

Let’s start by creating a minimial Sphinx doc set using
sphinx-quickstart.

We then modify the conf.py file by uncommenting the
path modification line as follows:

add these directories to sys.path here. If the directory is relative to the
documentation root, use os.path.abspath to make it absolute, like shown here.
sys.path.insert(0, '/opt/dims/etc')

Next, put this line at the very end of the file:

from rst_prolog import *

Create the file /opt/dims/etc/rst_prolog.py and insert
an rst_prolog string that is used by Sphinx before generating
any output files:

rst_prolog = """
.. |dims_ftw| replace:: for the win
"""

Here is a minimal Sphinx file that includes the variable
that we will substitute at compile-time:

.. Sphinx Demo repository documentation master file, created by
 sphinx-quickstart on Tue Dec 30 12:43:11 2014.
 You can adapt this file completely to your liking, but it should at least
 contain the root `toctree` directive.

Welcome to Sphinx Demo repository's documentation!
==

.. toctree::
 :maxdepth: 2

.. include: <rst_prolog>

This is |dims_ftw|!!!

Indices and tables
==================

* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

When you render this file with make html and then load it
with a browser (in this case, lynx), you get the following:

#Welcome to Sphinx Demo repository's documentation! -- Sphinx.. (p1 of 2)
 #Sphinx Demo Repository 1.0 documentation

Navigation

 * index
 * Sphinx Demo Repository 1.0 documentation

Welcome to Sphinx Demo repository's documentation!

This is for the win!!!

Indices and tables

 * Index
 * Module Index
 * Search Page

Table Of Contents
-- press space for next page --
 Arrow keys: Up and Down to move. Right to follow a link; Left to go back.
 H)elp O)ptions P)rint G)o M)ain screen Q)uit /=search [delete]=history list

Warning

When you render this document, Python includes the rst_prolog.py file
(which is actually Python code) and will produce a .pyc file. You may
need to delete it, if and when you remove the associated .py file.

[dittrich@localhost docs (dev)]$ ls -l /opt/dims/etc/
total 24
-rw-r--r-- 1 dims dims 3046 Dec 30 10:11 Makefile.dims.global
-rw-r--r-- 1 dittrich dims 58 Dec 30 15:13 rst_prolog.py
-rw-r--r-- 1 dittrich dims 177 Dec 30 15:14 rst_prolog.pyc

5.8.4. Inserting a graph using Graphviz

Sphinx uses Graphviz [https://en.wikipedia.org/wiki/Graphviz] to render directed and undirected graphs inline in a
document. To insert a graph, create a DOT [https://en.wikipedia.org/wiki/DOT_(graph_description_language)] language file to describe
the graph, then reference the file using the graphviz:: directive.

[image: digraph tools { "DEPLOYING" [shape=rectangle]; "DEVELOPING" [shape=rectangle]; "CONFIGURING" [shape=rectangle]; "OS-ISOs" [shape=rectangle]; "dims-ci-utils" -> "jenkins"; "dims-ci-utils" -> "ansible"; "dims-ci-utils" -> "packer"; "dims-ci-utils" -> "vagrant"; "dims-ci-utils" -> "sphinx"; "dims-ci-utils" -> "git"; "git-extras" -> "git"; "git-flow" -> "git"; "tig" -> "git"; "hub" -> "git"; "OS-ISOs" -> "packer"; "packer" -> "vagrant"; "vagrant" -> "ansible"; "vagrant" -> "DEVELOPING"; "git" -> "DEVELOPING"; "sphinx" -> "DEVELOPING"; "jira" -> "DEVELOPING"; "jira" -> "DEPLOYING"; "jira" -> "CONFIGURING"; "jenkins" -> "DEVELOPING"; "ansible" -> "DEPLOYING"; "jenkins" -> "DEPLOYING"; "dims-ci-utils" -> "CONFIGURING"; "ansible" -> "CONFIGURING"; "jenkins" -> "CONFIGURING"; }]
Relationships between tools and processes in DIMS

THe DOT [https://en.wikipedia.org/wiki/DOT_(graph_description_language)] file for the graph above looks like this:

digraph tools {
 "DEPLOYING" [shape=rectangle];
	"DEVELOPING" [shape=rectangle];
	"CONFIGURING" [shape=rectangle];
	"OS-ISOs" [shape=rectangle];
	"dims-ci-utils" -> "jenkins";
	"dims-ci-utils" -> "ansible";
	"dims-ci-utils" -> "packer";
	"dims-ci-utils" -> "vagrant";
	"dims-ci-utils" -> "sphinx";
	"dims-ci-utils" -> "git";
	"git-extras" -> "git";
	"git-flow" -> "git";
	"tig" -> "git";
	"hub" -> "git";
	"OS-ISOs" -> "packer";
	"packer" -> "vagrant";
 "vagrant" -> "ansible";
 "vagrant" -> "DEVELOPING";
	"git" -> "DEVELOPING";
	"sphinx" -> "DEVELOPING";
	"jira" -> "DEVELOPING";
	"jira" -> "DEPLOYING";
	"jira" -> "CONFIGURING";
	"jenkins" -> "DEVELOPING";
	"ansible" -> "DEPLOYING";
	"jenkins" -> "DEPLOYING";
	"dims-ci-utils" -> "CONFIGURING";
	"ansible" -> "CONFIGURING";
	"jenkins" -> "CONFIGURING";
}

Note

You can find a Gallery [http://ftp.graphviz.org/Gallery.php] of example DOT [https://en.wikipedia.org/wiki/DOT_(graph_description_language)] files at the
Graphviz web site [http://ftp.graphviz.org/Documentation.php] that shows how to do more advanced
things, such as labelled edges [http://ftp.graphviz.org/content/fsm].

6. Continuous Integration

6.1. Continuous Integration

Continuous Integration [http://en.wikipedia.org/wiki/Continuous_integration] is a software engineering process where multiple
developers merge their working code into a coherent system on a regular basis,
allowing for easier testing of code changes and integration of disparate parts
of the system. Using a combination of a build system (Jenkins, in this case)
and triggers invoked by the source code management system (Git, in this case),
a change to source code results in that code being compiled, bundled, and
installed (as necessary) onto the hosts where it needs to run to serve its
function within the system as a whole.

Continuous Integration works well in a software engineering environment
using Agile/Scrum [http://www.perforce.com/company/newsletter/2013/04/beyond-scrum-continuous-integration-build-and-test-automation].

6.2. How source changes are propagated

This section summarizes how changes in source repos are propagated using Jenkins
and Ansible. You can find more information in the documentation for the
ansible-inventory and ansible-playbooks repositories.

Git repos containing DIMS software under development contain “post-receive”
hooks which notify the Jenkins server when changes are pushed to a repository.
We are currently using two kinds of hooks: 1) A general hook which notifies
Jenkins that a push has occured, and 2) A hook which calls a parameterized
Jenkins job when a push has occured.

For the general hook, Jenkins jobs essentially “listen” for the notifications.
A Jenkins job specifies the repository and branch it wishes to be notified
about, as well as optionally specifying particular directory locations it is
monitoring. When a notification is received that matches, the job will
determine if any actually source changes occurred. If so, the job is run.

The “parameterized” hook is used to call a parameterized Jenkins documentation
job when a push is received in a system documentation repository. The Jenkins
job builds the documentation in the repo and deploys it (using Ansible) to any
documentation servers in the system inventory that correspond to the branch
that was updated.

Attention

In general, each repository with DIMS software under development will have
a Jenkins job “listening” for each branch of the repository that we want to
build and deploy continuously. Note that Jenkins jobs can be triggered by
changes to more than one branch, but we found it is unreliable. When using
hubflow to do releases, for example, a job that was supposed to be
triggered by changes in both the master and develop branch only
built the develop branch even though changes had been pushed to both
the master and develop branches. Since we can programmatically
create jobs via the Jenkins Job DSL plugin, it is trivial to create (and
modify) jobs for both the master and develop branches (and other
branches as needed - release branches for testing, for example).

A Jenkins job that builds and deploys updated software from a Git repository
uses Ansible to do the deployment.

Note

We are currently using flat files to define the inventory for a deployment
(a “host” file), although we hope to move to using dynamic inventories.
Either way, we need to define the hosts in a system and group them in ways
that make deployments easy and scalable. (More on this subject can be found
in the ansibleinventory:ansibleinventory documentation.)

Ideally, software in a “develop” branch would be deployed in one or more
development and/or test systems, each defined by a single host file
(inventory). Software in the “master” branch would be deployed to one or more
production or operational systems. One could set up a workflow where release
branches were automatically deployed to a release-test system - where the
software could be tested before final release. (When the code in the release
branch was fully tested and accepted, it would be merged into master
according to the hubflow workflow, which would cause it to be automatically
deployed to production/operational systems).

Figure How software in repositories flows to machines in inventories illustrates this. At the current time, however, we
essentially only have one “system” - a “development” system that has grown
ad hoc and was not created from scratch using our proposed workflows. The
figure shows how we have develop branches of (some) repos also installed in
what we’ve named “prisem”, “project”, and “infrastructure” inventories.
Ideally we would want to consolidate machines under the “development” inventory
if we truly wish to install “develop” branch software automatically on all
these machines. This would make defining jobs in the Jenkins DSL simpler
as well. See the ansibleinventory:ansibleinventory documentation for a
description of our current inventory.

[image: Repos to inventories]
How software in repositories flows to machines in inventories

We define “groups” for machines in inventories. The groups are used by
Ansible to determine whether or not plays should be run on machines in an
inventory. The following figure illustrates this. Machines can be found in
more than one group. The group “all” contains all machines in the inventory.
A playbook that specifies a host of “all” will run on all machines in the
inventory (unless further limited by other means, such as flags passed to
the ansible-playbook command or conditional expressions in a role task). The
dims-ci-utils code, for example, is to be installed on all machines in the
inventory. However, the role that deploys dims-ci-utils restricts a couple
tasks to specific groups of machines. One of those groups is the “git” group.

[image: Git to Ansible groups]
Machines belong to different groups in an inventory

6.3. Continuous deployment of documentation

For our documentation, we currently deploy all docs from all repository
branches to a single VM to make retrieval efficient and to aid in development
of the documentation. Ansible is not used for deployment. We simply use
rsync over SSH to deploy the docs.

The following figure shows the flows involved in documentation deployment.

[image: Documentation deployment]
Diagram of documentation deployment flow.

The workflow runs something like this:

	Push to remote repository runs a post-receive hook.

	Post-receive hook calls the parameterized Jenkins job dims-docs-deploy
if either a branch is deleted or if a branch is updated in a repo that
contains documentation. The job is called twice - once to build html and
once to build PDF.

	Jenkins job dims-deploy-docs runs the script jenkins.docs-deploy

	Script jenkins.docs-deploy clones and checks out the documentation,
builds the documentation, and rsyncs the documentation to the target server.

Documentation is deployed on the target documentation server with the following
directory structure:

/opt/dims/docs/$BRANCH/html/$REPONAME
/opt/dims/docs/$BRANCH/pdf/$REPONAME

Note

$BRANCH only includes the last part of a branch name with the /
delimiter. Therefore, since we use the hubflow branching model, branch
feature/dims-313 is deployed to /opt/dims/docs/dims-313/html/$REPONAME
and /opt/dims/docs/dims-313/pdf/$REPONAME

To view the documentation, you go to https://$HOST:$PORT/docs/$BRANCH/$TYPE/$REPONAME
or go to https://$HOST:$PORT/docs/ and browse the directory tree.

	Currently the Jenkins job defaults to deploying the documentation on

	https://u12-dev-svr-1.prisem.washington.edu:8443/docs

The following paragraphs describe this workflow in more detail.

6.3.1. Post-receive hook

The post-receive hook, post-receive-jenkins06alldocs, calls a parameterized
Jenkins job, dims-docs-deploy, when the repository receives a push. The
hook code follows:

The hook determines if the repo contains documentation based upon the existence
of the file $REPO/docs/source/conf.py. This determines the value of
DOCPATH, which is the path in the repository to the Makefile that will
build the docs.

Attention

All DIMS source repositories must have their documentation in a subdirectory
named docs/ in order to simplify the logic of finding and processing
Sphinx documentation.

Once the DOCPATH is determined, two curl commands are sent to Jenkins server
to call the job dims-docs-deploy - once for HTML, and once for PDF.

The hook source is located in dims-ci-utils/git/ and is deployed by the
dims-ci-utils-deploy-$BRANCH jobs.

Note

Currently, we do not have an automated way to add the symlink to the
appropriate repos. The command to do that is:

$ ln -s /opt/git/bin/post-receive-06jenkinsalldocs /opt/git/${REPO}.git/hooks/post-receive-06jenkinsalldocs

6.3.2. Jenkins parameterized job dims-docs-deploy

The parameterized job dims-docs-deploy accepts the following parameters, with the
defaults shown. All parameters are string parameters.

	NAME
	Default Value
	Description

	REPO
	
	Repository to build

	BRANCH
	
	Branch to build

	DOCPATH
	.
	Path to Makefile

	DOCTYPE
	html
	Type of doc to build, html or pdf

	DOCDELETE
	false
	True to delete docs for this branch

	DOCHOST
	u12-dev-svr-1.prisem.washington.edu
	Host to receive the docs

	DOCDEST
	/opt/dims/docs
	Root path on host to receive the docs

	DOCURL
	http://u12-dev-svr-1.prisem.washington.edu:8443/docs
	URL of docs index

Defaults are given to make it easier to run the job via curl or via the Jenkins
web interface - you don’t need to include all of the parameters unless they
are different than the defaults shown. The post-receive hooks sends the
parameters REPO, BRANCH, DOCPATH, DOCTYPE, and DOCDELETE
when it calls the job.

The dims-docs-deploy job is created via Jenkins DSL, so it is easy to modify if
needed. The Jenkins DSL is located in the file jenkins/DSL/jenkins-dsl.groovy, in
the dims-ci-utils repo. It is automatically run by the Jenkins seed
job dims-seed-job whenever a change is pushed to the
jenkins/DSL directory. In this way, the jobs are always up-to-date.

The portion of jenkins-dsl.groovy that builds the parameterized documentation job
is shown below:

// Parameterized job to build and deploy DIMS documentation
job {
 name 'dims-docs-deploy'
 description ('Job to build and deploy DIMS documenation')
 logRotator(-1, 15, -1, -5)
 parameters {
 stringParam('REPO', '', 'Repository to build')
 stringParam('BRANCH', '', 'Branch of the repo to use')
 stringParam('DOCPATH', '.', 'Path to the doc Makefile from repo root')
 stringParam('DOCTYPE', 'html', 'Type of document to build - html or pdf')
 stringParam('DOCDELETE', 'false', 'True if the documentation is to be deleted')
 stringParam('DOCHOST', docHost, 'Host to receive the docs')
 stringParam('DOCDEST', docDest, 'Root destination on host to deploy the docs')
 stringParam('DOCURL', docUrl, 'URL to documentation root directory')
 }
 wrappers {
 preBuildCleanup()
 }
 // This job runs a script
 steps {
 shell ("jenkins.dims-docs-deploy")
 }
 publishers {
 downstreamParameterized postNotify
 }
}

The post-receive hook calls dims-deploy-docs via curl. You can also do
this manually. For example:

$ curl --data-urlencode "REPO=${REPONAME}" --data-urlencode "BRANCH=${BRANCH}" --data-urlencode "DOCPATH=${DOCPATH}" --data-urlencode "DOCTYPE=${DOCTYPE}" $JENKINSURL/job/$JOB/buildWithParameters

where you have defined the variables shown and
JOB="dims-docs-deploy" and JENKINSURL="http://jenkins.prisem.washington.edu"

You can also run the job via the Jenkins UI. Go to
http://jenkins.prisem.washington.edu/view/Current/job/dims-docs-deploy/
and click the Build with Parameters link on the left.

6.3.3. Deployment script jenkins.dims-docs-deploy

As you can see in the previous section, the build step of the
dims-docs-deploy job calls the jenkins.dims-docs-deploy script. The
script has access to the job’s parameters as environment variables, so they
don’t need to be passed explicitly when the script is called from the Jenkins
job. The script, jenkins.dims-docs-deploy, along with other scripts used to
build and deploy software by Jenkins, has its source located in
dims-ci-utils/jenkins/job-scripts. It is deployed on Jenkins in the
/opt/dims/bin directory.

The jenkins.dims-docs-deploy script follows the pattern used by other deploy job scripts:

	Get default variables

	Get parameters and massage as needed

	Checkout the docs repo and branch as specified by parameters

	Build the docs

	Deploy the docs

Since we are deploying all documentation to one server irrespective of branch, we do not
use the Ansible infrastructure for final deployment. Instead we simply use ssh to make
the modifications on the target machine as necessary. A variable, REMOTEUSER, is used
for the user making the SSH calls. On Jenkins, this user is ansible. If you are running the
script manually (while testing, for example), you can provide a different user
by calling the script with REMOTEUSER, as in:

$ REPO=dims-sr BRANCH=develop DOCPATH=. DOCTYPE=html REMOTEUSER=$USER jenkins.dims-docs-deploy

Of course, $USER must be a DIMS user on the target machine (one of the default users
installed by Ansible when a DIMS machine is provisioned) and have the appropriate private
key.

For your reference, the jenkins.dims-docs-deploy source follows:

7. Developing modules for the DIMS CLI app (dimscli)

7.1. Bootstrapping the dimscli app for development

	Clone the repo python-dimscli from git.prisem.washington.edu. This can be
done by running dims.git.syncrepos:

	Prepare a new Python virtual environment with all of the DIMS pre-requisite
tools necessary for DIMS software development:

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ VENV=dimscli dimsenv.install.user
sudo password:

PLAY [Install python virtual environment] *************************************

...

PLAY RECAP **
localhost : ok=30 changed=19 unreachable=0 failed=0

The new dimscli virtual environment should show up as an option for
workon:

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ workon
dimscli
dimsenv

	Invoke the new dimscli Python virtual environment.

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ workon dimscli
[+++] Virtual environment 'dimscli' activated [ansible-playbooks v1.2.113]

	Because this is a new Python virtual environment created with the DIMS
build tools, it only has those Python packages defined in Ansible
playbooks role python-virtualenv.

The first time you try to run dimscli, or any time that you change
any of the pre-requisites used for programming dimscli modules,
you must use pip to update and/or install the required
packages. These will eventually be added to the defaults for the
dimsenv standard virtual environment.

[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ pip install -U -r requirements.txt
Collecting pbr<2.0,>=1.4 (from -r requirements.txt (line 1))
Using cached pbr-1.8.1-py2.py3-none-any.whl
Collecting six>=1.9.0 (from -r requirements.txt (line 2))
Using cached six-1.10.0-py2.py3-none-any.whl
Requirement already up-to-date: Babel>=1.3 in /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages (from -r requirements.txt (line 3))
Collecting cliff>=1.14.0 (from -r requirements.txt (line 4))
Downloading cliff-1.15.0-py2-none-any.whl
Collecting keystoneauth1>=1.0.0 (from -r requirements.txt (line 5))
Downloading keystoneauth1-1.2.0-py2.py3-none-any.whl (149kB)
100% |████████████████████████████████| 151kB 2.7MB/s
Collecting os-client-config!=1.6.2,>=1.4.0 (from -r requirements.txt (line 6))
Downloading os_client_config-1.10.1-py2.py3-none-any.whl (42kB)
100% |████████████████████████████████| 45kB 6.0MB/s

...

Running setup.py bdist_wheel for msgpack-python
Stored in directory: /home/dittrich/.cache/pip/wheels/f3/97/a5/dd6e3b680de10b689464c44bc211239d1fe54bd296ff860897
Running setup.py bdist_wheel for functools32
Stored in directory: /home/dittrich/.cache/pip/wheels/38/c6/c7/ee17acd621120c302e25c2fa8b3a8b235d5d1137c6ab4c9728
Successfully built simplejson warlock msgpack-python functools32
Installing collected packages: msgpack-python, oslo.serialization, python-keystoneclient, simplejson,
python-neutronclient, functools32, jsonschema, jsonpointer, jsonpatch, warlock, python-glanceclient,
python-novaclient, python-cinderclient, python-openstackclient

Successfully installed functools32-3.2.3.post2 jsonpatch-1.12 jsonpointer-1.10 jsonschema-2.5.1 msgpack-python-0.4.6
oslo.serialization-1.11.0 python-cinderclient-1.4.0 python-glanceclient-1.1.0 python-keystoneclient-1.8.1
python-neutronclient-3.1.0 python-novaclient-2.34.0 python-openstackclient-1.8.0 simplejson-3.8.1 warlock-1.2.0
PrettyTable-0.7.2 appdirs-1.4.0 cliff-1.15.0 cliff-tablib-1.1 cmd2-0.6.8 debtcollector-0.10.0 iso8601-0.1.11
keystoneauth1-1.2.0 monotonic-0.4 netaddr-0.7.18 netifaces-0.10.4 os-client-config-1.10.1 oslo.config-2.6.0
oslo.i18n-2.7.0 oslo.utils-2.7.0 oslosphinx-3.3.1 pbr-1.8.1 pyparsing-2.0.5 pytz-2015.7 requests-2.8.1
six-1.10.0 stevedore-1.9.0 tablib-0.10.0 unicodecsv-0.14.1 wrapt-1.10.5

	Once all the pre-requisite packages are installed in the virtual environment,
install the dimscli app and its modules as well using python setup.py
install or pip install -e . (either will work):

[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ python setup.py install
running install
[pbr] Writing ChangeLog
[pbr] Generating ChangeLog
[pbr] ChangeLog complete (0.0s)
[pbr] Generating AUTHORS
[pbr] AUTHORS complete (0.0s)
running build
running build_py
creating build
creating build/lib
creating build/lib/dimscli
creating build/lib/dimscli/common

...

byte-compiling /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages/dimscli/common/timing.py to timing.pyc
byte-compiling /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages/dimscli/common/context.py to context.pyc
byte-compiling /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages/dimscli/common/clientmanager.py to clientmanager.pyc
byte-compiling /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages/dimscli/common/logs.py to logs.pyc
byte-compiling /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages/dimscli/common/utils.py to utils.pyc
running install_egg_info
Copying python_dimscli.egg-info to /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages/python_dimscli-0.0.1.dev391-py2.7.egg-info
running install_scripts
Installing dimscli script to /home/dittrich/dims/envs/dimscli/bin

	Run the dimscli app like any other program, directly from the command line.

There are two ways to use dimscli.

	As a single command with command line options like other Linux commands

[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ dimscli --version
dimscli 0.0.1
[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $

	As an interactive shell that allows you to run multiple commands in
sequence within the same context (i.e., the same state, or runtime settings
you invoke while in the shell) by just just the program name and no
arguments or options.

[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ dimscli
defaults: {u'auth_type': 'password', u'compute_api_version': u'2', 'key': None, u'database_api_version': u'1.0',
'api_timeout': None, u'baremetal_api_version': u'1', 'cacert': None, u'image_api_use_tasks': False,
u'floating_ip_source': u'neutron', u'orchestration_api_version': u'1', u'interface': None, u'network_api_version':
u'2.0', u'image_format': u'qcow2', u'object_api_version': u'1', u'image_api_version': u'2', 'verify': True,
u'identity_api_version': u'2.0', u'volume_api_version': u'1', 'cert': None, u'secgroup_source': u'neutron',
u'dns_api_version': u'2', u'disable_vendor_agent': {}}
cloud cfg: {'auth_type': 'password', u'compute_api_version': u'2', u'orchestration_api_version': u'1',
u'database_api_version': u'1.0', 'cacert': None, u'network_api_version': u'2.0', u'image_format': u'qcow2',
u'object_api_version': u'1', u'image_api_version': u'2', 'verify': True, u'dns_api_version': u'2',
'verbose_level': '1', 'region_name': '', 'api_timeout': None, u'baremetal_api_version': u'1', 'auth': {},
'default_domain': 'default', u'image_api_use_tasks': False, u'floating_ip_source': u'neutron', 'key': None,
'timing': False, 'deferred_help': False, u'identity_api_version': u'2.0', u'volume_api_version': u'1',
'cert': None, u'secgroup_source': u'neutron', u'interface': None, u'disable_vendor_agent': {}}
compute API version 2, cmd group dims.compute.v2
network version 2.0 is not in supported versions 2
network API version 2.0, cmd group dims.network.v2
image API version 2, cmd group dims.image.v2
volume API version 1, cmd group dims.volume.v1
identity API version 2.0, cmd group dims.identity.v2
object_store API version 1, cmd group dims.object_store.v1
(dimscli) help

Shell commands (type help <topic>):
===================================
cmdenvironment edit hi l list pause r save shell show
ed help history li load py run set shortcuts

Undocumented commands:
======================
EOF eof exit q quit

Application commands (type help <topic>):
===
aggregate add host host show role list
aggregate create ip fixed add role remove
aggregate delete ip fixed remove role show
aggregate list ip floating add security group create
aggregate remove host ip floating create security group delete
aggregate set ip floating delete security group list
aggregate show ip floating list security group rule create
catalog list ip floating pool list security group rule delete
catalog show ip floating remove security group rule list
command list keypair create security group set
complete keypair delete security group show
configuration show keypair list server create
console log show keypair show server delete
console url show module list server image create
container create network create server list
container delete network delete server reboot
container list network list server rebuild
container save network set server set
container show network show server show
endpoint create object create server ssh
endpoint delete object delete service create
endpoint list object list service delete
endpoint show object save service list
extension list object show service show
flavor create project create token issue
flavor delete project delete token revoke
flavor list project list user create
flavor set project set user delete
flavor show project show user list
flavor unset role add user role list
help role create user set
host list role delete user show

(dimscli) exit
END return value: 0
[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $

7.2. Command Structure

The dimscli shell follows the openstack client in the manner in which
commands are to be constructed. See the Openstack Command Structure [http://docs.openstack.org/developer/python-openstackclient/commands.html] page
for details. To quote:

Commands consist of an object described by one or more words followed by an
action. Commands that require two objects have the primary object ahead of
the action and the secondary object after the action. Any positional
arguments identifying the objects shall appear in the same order as the
objects. In badly formed English it is expressed as “(Take) object1 (and
perform) action (using) object2 (to it).”

<object-1> <action> <object-2>

Examples:

$ group add user <group> <user>

$ volume type list # 'volume type' is a two-word single object

7.3. Completing commands in dimscli

The initial implementation of dimscli ported from the openstacklient
code base does not have much actual code underlying it, though the
scaffolding of openstacklient and many of its defined modules are
currently configured in the code. You can see the modules that are
not there by simply asking for dimscli --help and noting the
errors (and what they point to, which indicates which code you
need to seek out to use and/or replace.)

[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ dimscli --help
defaults: {u'auth_type': 'password', u'compute_api_version': u'2', 'key': None, u'database_api_version': u'1.0', 'api_timeout': None, u'baremetal_api_version': u'1', 'cacert': None, u'image_api_use_tasks
': False, u'floating_ip_source': u'neutron', u'orchestration_api_version': u'1', u'interface': None, u'network_api_version': u'2.0', u'image_format': u'qcow2', u'object_api_version': u'1', u'image_api_ve
rsion': u'2', 'verify': True, u'identity_api_version': u'2.0', u'volume_api_version': u'1', 'cert': None, u'secgroup_source': u'neutron', u'dns_api_version': u'2', u'disable_vendor_agent': {}}
cloud cfg: {'auth_type': 'password', u'compute_api_version': u'2', u'orchestration_api_version': u'1', u'database_api_version': u'1.0', 'cacert': None, u'network_api_version': u'2.0', u'image_format': u'
qcow2', u'object_api_version': u'1', u'image_api_version': u'2', 'verify': True, u'dns_api_version': u'2', 'verbose_level': '1', 'region_name': '', 'api_timeout': None, u'baremetal_api_version': u'1', 'a
uth': {}, 'default_domain': 'default', u'image_api_use_tasks': False, u'floating_ip_source': u'neutron', 'key': None, 'timing': False, 'deferred_help': True, u'identity_api_version': u'2.0', u'volume_api
_version': u'1', 'cert': None, u'secgroup_source': u'neutron', u'interface': None, u'disable_vendor_agent': {}}
compute API version 2, cmd group dims.compute.v2
network version 2.0 is not in supported versions 2
network API version 2.0, cmd group dims.network.v2
image API version 2, cmd group dims.image.v2
volume API version 1, cmd group dims.volume.v1
identity API version 2.0, cmd group dims.identity.v2
object_store API version 1, cmd group dims.object_store.v1
usage: dimscli [--version] [-v] [--log-file LOG_FILE] [-q] [-h] [--debug]
 [--os-cloud <cloud-config-name>]
 [--os-region-name <auth-region-name>]
 [--os-cacert <ca-bundle-file>] [--verify | --insecure]
 [--os-default-domain <auth-domain>]
 ...

 --os-object-api-version <object-api-version>
 Object API version, default=1 (Env:
 OS_OBJECT_API_VERSION)

Commands:
Could not load EntryPoint.parse('aggregate_add_host = dimscli.compute.v2.aggregate:AddAggregateHost')
Could not load EntryPoint.parse('aggregate_create = dimscli.compute.v2.aggregate:CreateAggregate')
Could not load EntryPoint.parse('aggregate_delete = dimscli.compute.v2.aggregate:DeleteAggregate')
Could not load EntryPoint.parse('aggregate_list = dimscli.compute.v2.aggregate:ListAggregate')
Could not load EntryPoint.parse('aggregate_remove_host = dimscli.compute.v2.aggregate:RemoveAggregateHost')
Could not load EntryPoint.parse('aggregate_set = dimscli.compute.v2.aggregate:SetAggregate')
Could not load EntryPoint.parse('aggregate_show = dimscli.compute.v2.aggregate:ShowAggregate')
Could not load EntryPoint.parse('catalog_list = dimscli.identity.v2_0.catalog:ListCatalog')
Could not load EntryPoint.parse('catalog_show = dimscli.identity.v2_0.catalog:ShowCatalog')
Could not load EntryPoint.parse('command_list = dimscli.common.module:ListCommand')
 complete print bash completion command
Could not load EntryPoint.parse('configuration_show = dimscli.common.configuration:ShowConfiguration')
Could not load EntryPoint.parse('console_log_show = dimscli.compute.v2.console:ShowConsoleLog')
Could not load EntryPoint.parse('console_url_show = dimscli.compute.v2.console:ShowConsoleURL')
Could not load EntryPoint.parse('container_create = dimscli.object.v1.container:CreateContainer')
Could not load EntryPoint.parse('container_delete = dimscli.object.v1.container:DeleteContainer')
Could not load EntryPoint.parse('container_list = dimscli.object.v1.container:ListContainer')
Could not load EntryPoint.parse('container_save = dimscli.object.v1.container:SaveContainer')
Could not load EntryPoint.parse('container_show = dimscli.object.v1.container:ShowContainer')
Could not load EntryPoint.parse('endpoint_create = dimscli.identity.v2_0.endpoint:CreateEndpoint')
Could not load EntryPoint.parse('endpoint_delete = dimscli.identity.v2_0.endpoint:DeleteEndpoint')
Could not load EntryPoint.parse('endpoint_list = dimscli.identity.v2_0.endpoint:ListEndpoint')
Could not load EntryPoint.parse('endpoint_show = dimscli.identity.v2_0.endpoint:ShowEndpoint')
Could not load EntryPoint.parse('extension_list = dimscli.common.extension:ListExtension')
Could not load EntryPoint.parse('flavor_create = dimscli.compute.v2.flavor:CreateFlavor')
Could not load EntryPoint.parse('flavor_delete = dimscli.compute.v2.flavor:DeleteFlavor')
Could not load EntryPoint.parse('flavor_list = dimscli.compute.v2.flavor:ListFlavor')
Could not load EntryPoint.parse('flavor_set = dimscli.compute.v2.flavor:SetFlavor')
Could not load EntryPoint.parse('flavor_show = dimscli.compute.v2.flavor:ShowFlavor')
Could not load EntryPoint.parse('flavor_unset = dimscli.compute.v2.flavor:UnsetFlavor')
 help print detailed help for another command
Could not load EntryPoint.parse('host_list = dimscli.compute.v2.host:ListHost')
Could not load EntryPoint.parse('host_show = dimscli.compute.v2.host:ShowHost')
Could not load EntryPoint.parse('ip_fixed_add = dimscli.compute.v2.fixedip:AddFixedIP')
Could not load EntryPoint.parse('ip_fixed_remove = dimscli.compute.v2.fixedip:RemoveFixedIP')
Could not load EntryPoint.parse('ip_floating_add = dimscli.compute.v2.floatingip:AddFloatingIP')
Could not load EntryPoint.parse('ip_floating_create = dimscli.compute.v2.floatingip:CreateFloatingIP')
Could not load EntryPoint.parse('ip_floating_delete = dimscli.compute.v2.floatingip:DeleteFloatingIP')
Could not load EntryPoint.parse('ip_floating_list = dimscli.compute.v2.floatingip:ListFloatingIP')
Could not load EntryPoint.parse('ip_floating_pool_list = dimscli.compute.v2.floatingippool:ListFloatingIPPool')
Could not load EntryPoint.parse('ip_floating_remove = dimscli.compute.v2.floatingip:RemoveFloatingIP')
Could not load EntryPoint.parse('keypair_create = dimscli.compute.v2.keypair:CreateKeypair')
Could not load EntryPoint.parse('keypair_delete = dimscli.compute.v2.keypair:DeleteKeypair')
Could not load EntryPoint.parse('keypair_list = dimscli.compute.v2.keypair:ListKeypair')
Could not load EntryPoint.parse('keypair_show = dimscli.compute.v2.keypair:ShowKeypair')
Could not load EntryPoint.parse('module_list = dimscli.common.module:ListModule')
Could not load EntryPoint.parse('network_create = dimscli.network.v2.network:CreateNetwork')
Could not load EntryPoint.parse('network_delete = dimscli.network.v2.network:DeleteNetwork')
Could not load EntryPoint.parse('network_list = dimscli.network.v2.network:ListNetwork')
Could not load EntryPoint.parse('network_set = dimscli.network.v2.network:SetNetwork')
Could not load EntryPoint.parse('network_show = dimscli.network.v2.network:ShowNetwork')
Could not load EntryPoint.parse('object_create = dimscli.object.v1.object:CreateObject')
Could not load EntryPoint.parse('object_delete = dimscli.object.v1.object:DeleteObject')
Could not load EntryPoint.parse('object_list = dimscli.object.v1.object:ListObject')
Could not load EntryPoint.parse('object_save = dimscli.object.v1.object:SaveObject')
Could not load EntryPoint.parse('object_show = dimscli.object.v1.object:ShowObject')
Could not load EntryPoint.parse('project_create = dimscli.identity.v2_0.project:CreateProject')
Could not load EntryPoint.parse('project_delete = dimscli.identity.v2_0.project:DeleteProject')
Could not load EntryPoint.parse('project_list = dimscli.identity.v2_0.project:ListProject')
Could not load EntryPoint.parse('project_set = dimscli.identity.v2_0.project:SetProject')
Could not load EntryPoint.parse('project_show = dimscli.identity.v2_0.project:ShowProject')
Could not load EntryPoint.parse('role_add = dimscli.identity.v2_0.role:AddRole')
Could not load EntryPoint.parse('role_create = dimscli.identity.v2_0.role:CreateRole')
Could not load EntryPoint.parse('role_delete = dimscli.identity.v2_0.role:DeleteRole')
Could not load EntryPoint.parse('role_list = dimscli.identity.v2_0.role:ListRole')
Could not load EntryPoint.parse('role_remove = dimscli.identity.v2_0.role:RemoveRole')
Could not load EntryPoint.parse('role_show = dimscli.identity.v2_0.role:ShowRole')
Could not load EntryPoint.parse('security_group_create = dimscli.compute.v2.security_group:CreateSecurityGroup')
Could not load EntryPoint.parse('security_group_delete = dimscli.compute.v2.security_group:DeleteSecurityGroup')
Could not load EntryPoint.parse('security_group_list = dimscli.compute.v2.security_group:ListSecurityGroup')
Could not load EntryPoint.parse('security_group_rule_create = dimscli.compute.v2.security_group:CreateSecurityGroupRule')
Could not load EntryPoint.parse('security_group_rule_delete = dimscli.compute.v2.security_group:DeleteSecurityGroupRule')
Could not load EntryPoint.parse('security_group_rule_list = dimscli.compute.v2.security_group:ListSecurityGroupRule')
Could not load EntryPoint.parse('security_group_set = dimscli.compute.v2.security_group:SetSecurityGroup')
Could not load EntryPoint.parse('security_group_show = dimscli.compute.v2.security_group:ShowSecurityGroup')
Could not load EntryPoint.parse('server_create = dimscli.compute.v2.server:CreateServer')
Could not load EntryPoint.parse('server_delete = dimscli.compute.v2.server:DeleteServer')
Could not load EntryPoint.parse('server_image_create = dimscli.compute.v2.server:CreateServerImage')
Could not load EntryPoint.parse('server_list = dimscli.compute.v2.server:ListServer')
Could not load EntryPoint.parse('server_reboot = dimscli.compute.v2.server:RebootServer')
Could not load EntryPoint.parse('server_rebuild = dimscli.compute.v2.server:RebuildServer')
Could not load EntryPoint.parse('server_set = dimscli.compute.v2.server:SetServer')
Could not load EntryPoint.parse('server_show = dimscli.compute.v2.server:ShowServer')
Could not load EntryPoint.parse('server_ssh = dimscli.compute.v2.server:SshServer')
Could not load EntryPoint.parse('service_create = dimscli.identity.v2_0.service:CreateService')
Could not load EntryPoint.parse('service_delete = dimscli.identity.v2_0.service:DeleteService')
Could not load EntryPoint.parse('service_list = dimscli.identity.v2_0.service:ListService')
Could not load EntryPoint.parse('service_show = dimscli.identity.v2_0.service:ShowService')
Could not load EntryPoint.parse('token_issue = dimscli.identity.v2_0.token:IssueToken')
Could not load EntryPoint.parse('token_revoke = dimscli.identity.v2_0.token:RevokeToken')
Could not load EntryPoint.parse('user_create = dimscli.identity.v2_0.user:CreateUser')
Could not load EntryPoint.parse('user_delete = dimscli.identity.v2_0.user:DeleteUser')
Could not load EntryPoint.parse('user_list = dimscli.identity.v2_0.user:ListUser')
Could not load EntryPoint.parse('user_role_list = dimscli.identity.v2_0.role:ListUserRole')
Could not load EntryPoint.parse('user_set = dimscli.identity.v2_0.user:SetUser')
Could not load EntryPoint.parse('user_show = dimscli.identity.v2_0.user:ShowUser')
END return value: 1
[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $

Using the last error message above as an example, there needs to be a module
named $GIT/python-dimscli/dimscli/identity/v2_0/user.py with a
class ShowUser. Look in the python-openstack/openstack/identity/v2_0/
directory for their user.py and build off that example.

Attention

Clone the python-openstackclient repo using git clone
https://git.openstack.org/openstack/python-openstackclient and
see the cliff documentation, Section Exploring the Demo App [http://docs.openstack.org/developer/cliff/demoapp.html], for how
this works.

Attention

See the file $GIT/python-dimscli/README.rst for more
documentation produced during initial creation of the openstackclient
fork of dimscli.

cliff supports list formatting in tables, CSV, JSON, etc., but not in shell
format. That is only supported by the ShowOne class, which is not what we
want for producing a set of variables for insertion into shell environments.

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli list nodes
+----------------+---------------+
| Node | Address |
+----------------+---------------+
b52	10.86.86.7
consul-breathe	10.142.29.117
consul-echoes	10.142.29.116
consul-seamus	10.142.29.120
dimsdemo1	10.86.86.2
dimsdev1	10.86.86.5
dimsdev2	10.86.86.5
four	192.168.0.101
+----------------+---------------+

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli list nodes -f csv
"Node","Address"
"b52","10.86.86.7"
"consul-breathe","10.142.29.117"
"consul-echoes","10.142.29.116"
"consul-seamus","10.142.29.120"
"dimsdemo1","10.86.86.2"
"dimsdev1","10.86.86.5"
"dimsdev2","10.86.86.5"
"four","192.168.0.101"

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli list nodes -f json
[{"Node": "b52", "Address": "10.86.86.7"}, {"Node": "consul-breathe", "Address": "10.142.29.117"}, {"Node": "consul-echoes", "Address": "10.142.29.116"}, {"Node": "consul-seamus", "Address": "10.142.29.120"}, {"Node": "dimsdemo1", "Address": "10.86.86.2"}, {"Node": "dimsdev1", "Address": "10.86.86.5"}, {"Node": "dimsdev2", "Address": "10.86.86.5"}, {"Node": "four", "Address": "192.168.0.101"}]
[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli list nodes -f json | python -m json.tool
[
 {
 "Address": "10.86.86.7",
 "Node": "b52"
 },
 {
 "Address": "10.142.29.117",
 "Node": "consul-breathe"
 },
 {
 "Address": "10.142.29.116",
 "Node": "consul-echoes"
 },
 {
 "Address": "10.142.29.120",
 "Node": "consul-seamus"
 },
 {
 "Address": "10.86.86.2",
 "Node": "dimsdemo1"
 },
 {
 "Address": "10.86.86.5",
 "Node": "dimsdev1"
 },
 {
 "Address": "10.86.86.5",
 "Node": "dimsdev2"
 },
 {
 "Address": "192.168.0.101",
 "Node": "four"
 }
]

To produce the list in the form of shell variables, we need to create a custom
formatter and load it into the dimscli shell via Stevedore.

After adding the new formatter, it is possible to extract the list of nodes registered
with Consul and produce a set of variable declarations from the list.

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli list nodes -f shell
b52="10.86.86.7"
consul_breathe="10.142.29.117"
consul_echoes="10.142.29.116"
consul_seamus="10.142.29.120"
dimsdemo1="10.86.86.2"
dimsdev1="10.86.86.5"
dimsdev2="10.86.86.5"
four="192.168.0.101"

In practice, you may wish to insert these as variables in the shell’s set using
the eval statement for use when invoking shell commands:

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ eval $(dimscli list nodes -f shell --prefix=DIMS_)
[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ set | grep DIMS_
DIMS_REV=unspecified
DIMS_VERSION='1.6.124 (dims-ci-utils)'
DIMS_b52=10.86.86.7
DIMS_consul_breathe=10.142.29.117
DIMS_consul_echoes=10.142.29.116
DIMS_consul_seamus=10.142.29.120
DIMS_dimsdemo1=10.86.86.2
DIMS_dimsdev2=10.86.86.5
DIMS_four=192.168.0.101
 echo "REV: $DIMS_REV";
 echo "[dims-ci-utils version $(version) (rev $DIMS_REV)]";
 echo "$PROGRAM $DIMS_VERSION";
 echo "$BASE $DIMS_VERSION";

7.4. Adding New Columns to Output

Say we want to also include the Consul status, to help determine which node is
currently the Leader in a cluster, which are a Peer in the cluster, and which
are simply an Agent that is proxying to the cluster.

The changes to existing code to affect this new feature are shown here:

commit caab2d05274898878e1123bd337b431c8d2f2a8e
Author: Dave Dittrich <dittrich@u.washington.edu>
Date: Sat Jan 2 12:53:56 2016 -0800

 Add Consul node status to 'nodes list' output

diff --git a/dimscli/list.py b/dimscli/list.py
index 45acdda..3893b10 100644
--- a/dimscli/list.py
+++ b/dimscli/list.py
@@ -26,9 +26,35 @@ class Nodes(Lister):

 log = logging.getLogger(__name__)

+ def get_node_status(self):
+ """
+ Determine the status from Consul
+
+ :return: None
+ """
+ self.leaderDict = dict(zip(['Address', 'Port'],
+ self.consul.status.leader().split(":")))
+ self.peersDictList = [dict(zip(['Address', 'Port'], p.split(":")))
+ for p in self.consul.status.peers()]
+
+ def status(self, address):
+ """
+ Determine node status as returned from Consul.
+
+ :param address: IP address to check
+ :return: One of: "Leader", "Peer", or "Agent"
+ """
+ if address in self.leaderDict.values():
+ return "Leader"
+ elif address in [p['Address'] for p in self.peersDictList]:
+ return "Peer"
+ else:
+ return "Agent"
+
 def take_action(self, parsed_args):
- consul = consulate.Consul()
- nodes = consul.catalog.nodes()
- columns = ('Node', 'Address')
- data = ((node['Node'], node['Address']) for node in nodes)
+ self.consul = consulate.Consul()
+ nodes = self.consul.catalog.nodes()
+ self.get_node_status()
+ columns = ('Node', 'Address', 'Status')
+ data = ((node['Node'], node['Address'], self.status(node['Address'])) for node in nodes)
 return (columns, data)

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli nodes list
+-----------+---------------+--------+
| Node | Address | Status |
+-----------+---------------+--------+
b52	10.86.86.2	Agent
breathe	10.142.29.117	Leader
dimsdemo1	10.86.86.3	Agent
echoes	10.142.29.116	Peer
seamus	10.142.29.120	Peer
+-----------+---------------+--------+
[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli nodes list -f csv
"Node","Address","Status"
"b52","10.86.86.2","Agent"
"breathe","10.142.29.117","Leader"
"dimsdemo1","10.86.86.3","Agent"
"echoes","10.142.29.116","Peer"
"seamus","10.142.29.120","Peer"
[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli nodes list -f json | python -mjson.tool
[
 {
 "Address": "10.86.86.2",
 "Node": "b52",
 "Status": "Agent"
 },
 {
 "Address": "10.142.29.117",
 "Node": "breathe",
 "Status": "Leader"
 },
 {
 "Address": "10.86.86.3",
 "Node": "dimsdemo1",
 "Status": "Agent"
 },
 {
 "Address": "10.142.29.116",
 "Node": "echoes",
 "Status": "Peer"
 },
 {
 "Address": "10.142.29.120",
 "Node": "seamus",
 "Status": "Peer"
 }
]

If we wish to turn a subset of this table into variables, using the shell output
feature added above, we need to select a pair of columns (to map to Variable=Value
in the output). The results could then be used in Ansible playbooks, shell scripts,
selecting color for nodes in a graph, or any number of other purposes.

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli nodes list --column Node --column Status -f shell
b52="Agent"
breathe="Leader"
dimsdemo1="Agent"
echoes="Peer"
seamus="Peer"

7.5. Adding New Commands

In this example, we will add a new command ansible with a subcommand
execute that will use Ansible’s Python API [http://docs.ansible.com/ansible/developing_api.html] (specifically the
ansible.runner.Runner class) to execute arbitrary commands on hosts
via Ansible.

Note

What is being demonstrated here is adding a new subcommand to the
dimscli repo directly. It is also possible to add a new command
from a module in another repo using Stevedore.

Here are the changes that implement this new command:

commit eccf3af707aac5a13144580bfbf548b45616d49f
Author: Dave Dittrich <dittrich@u.washington.edu>
Date: Fri Jan 1 20:34:42 2016 -0800

 Add 'ansible execute' command

diff --git a/dimscli/dimsansible/__init__.py b/dimscli/dimsansible/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/dimscli/dimsansible/ansiblerunner.py b/dimscli/dimsansible/ansiblerunner.py
new file mode 100644
index 0000000..68cd3ea
--- /dev/null
+++ b/dimscli/dimsansible/ansiblerunner.py
@@ -0,0 +1,61 @@
+#!/usr/bin/python
+
+import sys
+import logging
+
+from cliff.lister import Lister
+from ansible.runner import Runner
+
+HOST_LIST = "/etc/ansible/hosts"
+CMD = "/usr/bin/uptime"
+
+class Execute(Lister):
+ """Execute a command via Ansible and return a list of results.
+
+ """
+
+ log = logging.getLogger(__name__)
+
+ def get_parser(self, prog_name):
+ parser = super(Execute, self).get_parser(prog_name)
+ parser.add_argument(
+ "--host-list",
+ metavar="<host-list>",
+ default=HOST_LIST,
+ help="Hosts file (default: {})".format(HOST_LIST),
+)
+ parser.add_argument(
+ "--program",
+ metavar="<program>",
+ default=CMD,
+ help="Program to run (default: {})".format(CMD),
+)
+ return parser
+
+ def take_action(self, parsed_args):
+
+ results = Runner(
+ host_list=parsed_args.host_list,
+ pattern='*',
+ forks=10,
+ module_name='command',
+ module_args=parsed_args.program,
+).run()
+
+ if results is None:
+ print "No hosts found"
+ sys.exit(1)
+
+ outtable = []
+
+ for (hostname, result) in results['contacted'].items():
+ if not 'failed' in result:
+ outtable.append((hostname, 'GOOD', result['stdout']))
+ elif 'failed' in result:
+ outtable.append((hostname, 'FAIL', result['msg']))
+ for (hostname, result) in results['dark'].items():
+ outtable.append((hostname, 'DARK', result['msg']))
+
+ column_names = ('Host', 'Status', 'Results')
+
+ return column_names, outtable
diff --git a/setup.cfg b/setup.cfg
index 14f6ce7..9571d4f 100644
--- a/setup.cfg
+++ b/setup.cfg
@@ -37,6 +37,7 @@ dims.cli =
 files_list = dimscli.list:Files
 nodes_list = dimscli.list:Nodes
 show_file = dimscli.show:File
+ ansible_execute = dimscli.dimsansible.ansiblerunner:Execute

 cliff.formatter.list =
 shell = dimscli.formatters.shell:DIMSShellFormatter

Here is what the command can do (as seen in the --help output).

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ dimscli ansible execute --help
usage: dimscli ansible execute [-h]
 [-f {csv,html,json,json,shell,table,value,yaml,yaml}]
 [-c COLUMN] [--prefix PREFIX]
 [--max-width <integer>] [--noindent]
 [--quote {all,minimal,none,nonnumeric}]
 [--host-list <host-list>] [--program <program>]

Execute a command via Ansible and return a list of results.

optional arguments:
 -h, --help show this help message and exit
 --host-list <host-list>
 Hosts file (default: /etc/ansible/hosts)
 --program <program> Program to run (default: /usr/bin/uptime)

output formatters:
 output formatter options

 -f {csv,html,json,json,shell,table,value,yaml,yaml}, --format {csv,html,json,json,shell,table,value,yaml,yaml}
 the output format, defaults to table
 -c COLUMN, --column COLUMN
 specify the column(s) to include, can be repeated

shell formatter:
 a format a UNIX shell can parse (variable="value")

 --prefix PREFIX add a prefix to all variable names

table formatter:
 --max-width <integer>
 Maximum display width, 0 to disable

json formatter:
 --noindent whether to disable indenting the JSON

CSV Formatter:
 --quote {all,minimal,none,nonnumeric}
 when to include quotes, defaults to nonnumeric

The script defaults to using the standard Ansible /etc/ansible/hosts file to get its inventory. In this case,
the DIMS $GIT/ansible-inventory/development file was copied to the default location. Using this file to
execute the default command /usr/bin/uptime on the defined development hosts results in the following:

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ dimscli ansible execute
+-------------------------------------+--------+--+
| Host | Status | Results |
+-------------------------------------+--------+--+
linda-vm1.prisem.washington.edu	GOOD	18:31:22 up 146 days, 8:27, 1 user, load average: 0.00, 0.01, 0.05
u12-dev-ws-1.prisem.washington.edu	GOOD	18:31:21 up 146 days, 8:27, 1 user, load average: 0.00, 0.01, 0.05
hub.prisem.washington.edu	GOOD	02:31:22 up 128 days, 8:42, 1 user, load average: 0.00, 0.01, 0.05
floyd2-p.prisem.washington.edu	GOOD	18:31:21 up 20 days, 56 min, 1 user, load average: 0.02, 0.04, 0.05
u12-dev-svr-1.prisem.washington.edu	GOOD	18:31:22 up 142 days, 11:22, 1 user, load average: 0.00, 0.01, 0.05
+-------------------------------------+--------+--+

Using the --program command line option, a different command can be run:

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ dimscli ansible execute --program "ip addr"
+-------------------------------------+--------+--+
| Host | Status | Results |
+-------------------------------------+--------+--+
linda-vm1.prisem.washington.edu	GOOD	1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
		link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
		inet 127.0.0.1/8 scope host lo
		valid_lft forever preferred_lft forever
		2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 08:00:27:3b:3a:65 brd ff:ff:ff:ff:ff:ff
		inet 10.0.2.15/24 brd 10.0.2.255 scope global eth0
		valid_lft forever preferred_lft forever
		3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 08:00:27:36:2b:2c brd ff:ff:ff:ff:ff:ff
		inet 192.168.88.11/24 brd 192.168.88.255 scope global eth1
		valid_lft forever preferred_lft forever
u12-dev-svr-1.prisem.washington.edu	GOOD	1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
		link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
		inet 127.0.0.1/8 scope host lo
		valid_lft forever preferred_lft forever
		inet6 ::1/128 scope host
		valid_lft forever preferred_lft forever
		2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 08:00:27:38:db:8c brd ff:ff:ff:ff:ff:ff
		inet 10.0.2.15/24 brd 10.0.2.255 scope global eth0
		valid_lft forever preferred_lft forever
		inet6 fe80::a00:27ff:fe38:db8c/64 scope link
		valid_lft forever preferred_lft forever
		3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 08:00:27:e7:80:52 brd ff:ff:ff:ff:ff:ff
		inet 192.168.88.13/24 brd 192.168.88.255 scope global eth1
		valid_lft forever preferred_lft forever
		inet6 fe80::a00:27ff:fee7:8052/64 scope link
		valid_lft forever preferred_lft forever
hub.prisem.washington.edu	GOOD	1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
		link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
		inet 127.0.0.1/8 scope host lo
		valid_lft forever preferred_lft forever
		inet6 ::1/128 scope host
		valid_lft forever preferred_lft forever
		2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
		link/ether 08:00:27:9c:f8:95 brd ff:ff:ff:ff:ff:ff
		inet 10.0.2.15/24 brd 10.0.2.255 scope global eth0
		valid_lft forever preferred_lft forever
		inet6 fe80::a00:27ff:fe9c:f895/64 scope link
		valid_lft forever preferred_lft forever
		3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
		link/ether 08:00:27:28:63:2a brd ff:ff:ff:ff:ff:ff
		inet 192.168.88.14/24 brd 192.168.88.255 scope global eth1
		valid_lft forever preferred_lft forever
		inet6 fe80::a00:27ff:fe28:632a/64 scope link
		valid_lft forever preferred_lft forever
		4: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
		link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff
		inet 172.17.42.1/16 scope global docker0
		valid_lft forever preferred_lft forever
		inet6 fe80::5484:7aff:fefe:9799/64 scope link
		valid_lft forever preferred_lft forever
		22: veth6dc6dd5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker0 state UP group default
		link/ether 8e:d6:f5:66:fb:88 brd ff:ff:ff:ff:ff:ff
		inet6 fe80::8cd6:f5ff:fe66:fb88/64 scope link
		valid_lft forever preferred_lft forever
		42: vethdc35259: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker0 state UP group default
		link/ether 46:c3:87:32:83:a1 brd ff:ff:ff:ff:ff:ff
		inet6 fe80::44c3:87ff:fe32:83a1/64 scope link
		valid_lft forever preferred_lft forever
floyd2-p.prisem.washington.edu	GOOD	1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
		link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
		inet 127.0.0.1/8 scope host lo
		valid_lft forever preferred_lft forever
		2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 52:54:00:17:19:9a brd ff:ff:ff:ff:ff:ff
		inet 172.22.29.175/24 brd 172.22.29.255 scope global eth0
		valid_lft forever preferred_lft forever
		3: eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000
		link/ether 52:54:00:85:34:b7 brd ff:ff:ff:ff:ff:ff
u12-dev-ws-1.prisem.washington.edu	GOOD	1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
		link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
		inet 127.0.0.1/8 scope host lo
		valid_lft forever preferred_lft forever
		2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 08:00:27:07:6b:00 brd ff:ff:ff:ff:ff:ff
		inet 10.0.2.15/24 brd 10.0.2.255 scope global eth0
		valid_lft forever preferred_lft forever
		3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 08:00:27:75:a0:25 brd ff:ff:ff:ff:ff:ff
		inet 192.168.88.12/24 brd 192.168.88.255 scope global eth1
		valid_lft forever preferred_lft forever
		4: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN
		link/ether 5a:cb:bd:c2:f5:82 brd ff:ff:ff:ff:ff:ff
		inet 172.17.42.1/16 scope global docker0
		valid_lft forever preferred_lft forever
+-------------------------------------+--------+--+

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ dimscli ansible execute --program "cat /etc/hosts"
+-------------------------------------+--------+---+
| Host | Status | Results |
+-------------------------------------+--------+---+
linda-vm1.prisem.washington.edu	GOOD	127.0.0.1 localhost
		127.0.1.1 ubu12-generic
		# The following lines are desirable for IPv6 capable hosts
		::1 ip6-localhost ip6-loopback
		fe00::0 ip6-localnet
		ff00::0 ip6-mcastprefix
		ff02::1 ip6-allnodes
		ff02::2 ip6-allrouters
		127.0.0.1 auth-test.prisem.washington.edu manager-test.prisem.washington.edu reload-test.prisem.washington.edu test5.prisem.washingto
		127.0.0.1 auth-test.prisem.washington.edu manager-test.prisem.washington.edu reload-test.prisem.washington.edu test5.prisem.washingto
		127.0.0.1 auth-test.prisem.washington.edu manager-test.prisem.washington.edu reload-test.prisem.washington.edu test5.prisem.washingto
		127.0.0.1 auth-test.prisem.washington.edu manager-test.prisem.washington.edu reload-test.prisem.washington.edu test5.prisem.washingto
		127.0.0.1 auth-test.prisem.washington.edu manager-test.prisem.washington.edu reload-test.prisem.washington.edu test5.prisem.washingto
		127.0.0.1 auth-test.prisem.washington.edu manager-test.prisem.washington.edu reload-test.prisem.washington.edu test5.prisem.washingto
		127.0.0.1 auth-test.prisem.washington.edu manager-test.prisem.washington.edu reload-test.prisem.washington.edu test5.prisem.washingto
		127.0.0.1 auth-test.prisem.washington.edu manager-test.prisem.washington.edu reload-test.prisem.washington.edu test5.prisem.washingto
		127.0.0.1 auth-test.prisem.washington.edu manager-test.prisem.washington.edu reload-test.prisem.washington.edu test5.prisem.washingto
u12-dev-svr-1.prisem.washington.edu	GOOD	127.0.0.1 localhost
		127.0.1.1 u12-dev-svr-1
		# The following lines are desirable for IPv6 capable hosts
		::1 ip6-localhost ip6-loopback
		fe00::0 ip6-localnet
		ff00::0 ip6-mcastprefix
		ff02::1 ip6-allnodes
		ff02::2 ip6-allrouters
hub.prisem.washington.edu	GOOD	127.0.0.1 localhost
		127.0.1.1 hub
		# The following lines are desirable for IPv6 capable hosts
		::1 localhost ip6-localhost ip6-loopback
		ff02::1 ip6-allnodes
		ff02::2 ip6-allrouters
		127.0.1.1 hub
floyd2-p.prisem.washington.edu	GOOD	127.0.0.1 localhost
		127.0.0.1 floyd2-p floyd2-p.prisem.washington.edu
u12-dev-ws-1.prisem.washington.edu	GOOD	127.0.0.1 localhost
		127.0.1.1 u12-dev-1
		# The following lines are desirable for IPv6 capable hosts
		::1 ip6-localhost ip6-loopback
		fe00::0 ip6-localnet
		ff00::0 ip6-mcastprefix
		ff02::1 ip6-allnodes
		ff02::2 ip6-allrouters
+-------------------------------------+--------+---+

To run a command across the full set of ansible-compatible hosts, we can use the helper Makefile in the
$GIT/ansible-inventory repo to extract a list of all hosts specified in any inventory file to
form a complete set.

Note

This helper Makefile was originally written to take a set of static inventory files
and generate a set, rather than forcing someone to manually edit a file and manually
combine all hosts from any file (which is error prone, tedious, difficult to remember
how to do... basically impractical for a scalable solution.)

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ (cd $GIT/ansible-inventory; make help)
usage: make [something]

Where 'something' is one of:

 help - Show this help information
 all - Default is create complete_inventory file.

 inventory - Create file 'complete_inventory' with all hosts
 from any file with an '[all]' section in it.

 tree - Produce a tree listing of everything except
 'older-*' directories.

 clean - Clean up files.

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ (cd $GIT/ansible-inventory; make inventory)
echo '[all]' > complete_inventory
cat development hosts-old infrastructure Makefile prisem project | awk '\
 /^\[all\]/ { echo = 1; next; }\
 /^$/ { echo = 0; }\
 { if (echo == 1) { print; } }' |\
 sort | uniq >> complete_inventory

Now this list can be used to run the command across the full set of hosts under Ansible control.

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ dimscli ansible execute --host-list /home/dittrich/dims/git/ansible-inventory/complete_inventory
+-------------------------------------+--------+--+
| Host | Status | Results |
+-------------------------------------+--------+--+
rabbitmq.prisem.washington.edu	GOOD	18:35:04 up 20 days, 1:00, 1 user, load average: 0.00, 0.04, 0.05
wellington.prisem.washington.edu	GOOD	18:35:06 up 146 days, 8:43, 1 user, load average: 0.43, 0.64, 0.43
hub.prisem.washington.edu	GOOD	02:35:02 up 128 days, 8:46, 1 user, load average: 0.11, 0.06, 0.05
git.prisem.washington.edu	GOOD	18:35:03 up 146 days, 8:30, 2 users, load average: 0.18, 0.07, 0.06
time.prisem.washington.edu	GOOD	18:35:04 up 20 days, 1:00, 2 users, load average: 0.06, 0.13, 0.13
jira-int.prisem.washington.edu	GOOD	18:35:03 up 146 days, 8:30, 2 users, load average: 0.18, 0.07, 0.06
u12-dev-ws-1.prisem.washington.edu	GOOD	18:35:05 up 146 days, 8:30, 1 user, load average: 0.01, 0.02, 0.05
sso.prisem.washington.edu	GOOD	18:35:05 up 146 days, 8:30, 1 user, load average: 0.00, 0.02, 0.05
lapp-int.prisem.washington.edu	GOOD	18:35:02 up 146 days, 8:31, 2 users, load average: 0.16, 0.05, 0.06
foswiki-int.prisem.washington.edu	GOOD	18:35:03 up 146 days, 8:31, 1 user, load average: 0.00, 0.01, 0.05
u12-dev-svr-1.prisem.washington.edu	GOOD	18:35:03 up 142 days, 11:26, 1 user, load average: 0.03, 0.04, 0.05
linda-vm1.prisem.washington.edu	GOOD	18:35:05 up 146 days, 8:31, 1 user, load average: 0.13, 0.04, 0.05
floyd2-p.prisem.washington.edu	GOOD	18:35:02 up 20 days, 59 min, 1 user, load average: 0.08, 0.04, 0.05
jenkins-int.prisem.washington.edu	GOOD	18:35:03 up 146 days, 8:31, 1 user, load average: 0.01, 0.02, 0.05
lapp.prisem.washington.edu	GOOD	18:35:02 up 146 days, 8:31, 1 user, load average: 0.16, 0.05, 0.06
eclipse.prisem.washington.edu	DARK	SSH encountered an unknown error during the connection. We recommend you re-run the command using -vvvv, which will enable SSH debugging output to help diagnose the issue
lancaster.prisem.washington.edu	DARK	SSH encountered an unknown error during the connection. We recommend you re-run the command using -vvvv, which will enable SSH debugging output to help diagnose the issue
+-------------------------------------+--------+--+

Note

As can be seen here, the hosts eclipse.prisem.washington.edu and
lancaster.prisem.washington.edu do not conform with the standard use of
Ansible via SSH. These kind of one-off or manually-configured hosts
limit the scalability and consistent use of Ansible as a system
configuration and management tool.

7.6. Adding a Module in Another Repo

[dimsenv] dittrich@dimsdemo1:~/git/ansible-playbooks () $ cookiecutter https://git.openstack.org/openstack-dev/cookiecutter.git
Cloning into 'cookiecutter'...
remote: Counting objects: 602, done.
remote: Compressing objects: 100% (265/265), done.
remote: Total 602 (delta 345), reused 563 (delta 310)
Receiving objects: 100% (602/602), 81.17 KiB | 0 bytes/s, done.
Resolving deltas: 100% (345/345), done.
Checking connectivity... done.
module_name [replace with the name of the python module]: dims_ansible_playbook
repo_group [openstack]: dims
repo_name [replace with the name for the git repo]: ansible-playbooks
launchpad_project [replace with the name of the project on launchpad]:
project_short_description [OpenStack Boilerplate contains all the boilerplate you need to create an OpenStack package.]: Python ansible-playbook module for dimscli
Initialized empty Git repository in /home/dittrich/git/ansible-playbooks/ansible-playbooks/.git/
[master (root-commit) 7d01bbe] Initial Cookiecutter Commit.
 26 files changed, 647 insertions(+)
 create mode 100644 .coveragerc
 create mode 100644 .gitignore
 create mode 100644 .gitreview
 create mode 100644 .mailmap
 create mode 100644 .testr.conf
 create mode 100644 CONTRIBUTING.rst
 create mode 100644 HACKING.rst
 create mode 100644 LICENSE
 create mode 100644 MANIFEST.in
 create mode 100644 README.rst
 create mode 100644 babel.cfg
 create mode 100644 dims_ansible_playbook/__init__.py
 create mode 100644 dims_ansible_playbook/tests/__init__.py
 create mode 100644 dims_ansible_playbook/tests/base.py
 create mode 100644 dims_ansible_playbook/tests/test_dims_ansible_playbook.py
 create mode 100755 doc/source/conf.py
 create mode 100644 doc/source/contributing.rst
 create mode 100644 doc/source/index.rst
 create mode 100644 doc/source/installation.rst
 create mode 100644 doc/source/readme.rst
 create mode 100644 doc/source/usage.rst
 create mode 100644 requirements.txt
 create mode 100644 setup.cfg
 create mode 100644 setup.py
 create mode 100644 test-requirements.txt
 create mode 100644 tox.ini
[dimsenv] dittrich@dimsdemo1:~/git/ansible-playbooks () $ ls -l
total 4
drwxrwxr-x 5 dittrich dittrich 4096 Jan 1 16:17 ansible-playbooks

8. Service Discovery Using Consul

Consul provides many services that are used by DIMS components, including
a key/value store and DNS service. DIMS takes advantage of the DNS
service by having dnsmasq on each host direct certain queries to
the Consul cluster for resolution, which can be used for service discovery (as
opposed to hard-coding IP addresses or specific host names and port numbers
in source code or configuration files.) The chapter Developing modules for the DIMS CLI app (dimscli) discusses
some of the ways Consul is accessed by dimscli (e.g., see Section
Adding New Columns to Output)

A program named ianitor (GitHub ClearcodeHQ/ianitor [https://github.com/ClearcodeHQ/ianitor]) facilitates using
this Consul DNS capability by wrapping services so they are registered in
Consul’s DNS and monitored by Consul’s health checking features. This
would allow a monitoring application to notify someone when a DIMS service
component (such as something in the backend data store) becomes unavailable.

Note

The ianitor package from PyPi is installed in the DIMS Python Virtual
Environment, so it should be available on all DIMS components that would
need it.

This registration and service discovery process be illustrated using the
netcat (nc) program to create a listening process that will demonstrate
how this works.

First, we start nc on a specific listening port

[dimsenv] dittrich@dimsdemo1:~ () $ ianitor --port 9999 netcat -- nc -l 9999

There is no output at this point, since nc is now running in the
foreground (under the watch of ianitor, also running in the foreground)
patiently listening on port 9999 for something to connect to it. You can
prove to yourself that it is running by looking in the process tree:

 init(1)-+-ModemManager(1000)-+-{ModemManager}(1032)
 | `-{ModemManager}(1036)
 | ...
 |-lightdm(1662)-+-Xorg(1673)
 | |-lightdm(1738)-+-init(2060)-+-GoogleTalkPlugi(3880)-+-{GoogleTalkPlugi}(3881)
 | | | | ...
 | | | |-tmux(3066)-+-bash(4512)---ianitor(680)---nc(683)
 | | | | ...
 | ...

Now that the service is running, we can validate that iainitor has
registered it in Consul. Figure Consul Service Listing shows Consul’s
view of Services showing service:netcat has been registered and
is alive and healthy.

[image: Consul Service Listing]
Consul Service Listing

Using dig, the host on which this service was registered
can be obtained by a simple A record lookup for
netcat.service.consul, as seen here:

 [dimsenv] dittrich@dimsdemo1:~ () $ dig netcat.service.consul

 ; <<>> DiG 9.9.5-3ubuntu0.7-Ubuntu <<>> netcat.service.consul
 ;; global options: +cmd
 ;; Got answer:
 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16448
 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

 ;; QUESTION SECTION:
 ;netcat.service.consul. IN A

 ;; ANSWER SECTION:
 netcat.service.consul. 0 IN A 10.86.86.7

 ;; Query time: 26 msec
 ;; SERVER: 127.0.0.1#53(127.0.0.1)
 ;; WHEN: Sun Jan 24 12:19:58 PST 2016
 ;; MSG SIZE rcvd: 76

Now switch to Consul’s Nodes tab. Figure Consul service registration for netcat shows
that node dimsdemo1 is running the service netcat, and this time the
service port is also shown to the right (“:9999”):

[image: Consul service registration for netcat]
Consul service registration for netcat

The service’s port number can also be obtained from Consul
via dnsmasq by asking for the DNS SRV record for
netcat.service.consul:

 [dimsenv] dittrich@dimsdemo1:~ () $ dig netcat.service.consul SRV

 ; <<>> DiG 9.9.5-3ubuntu0.7-Ubuntu <<>> netcat.service.consul SRV
 ;; global options: +cmd
 ;; Got answer:
 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8464
 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

 ;; QUESTION SECTION:
 ;netcat.service.consul. IN SRV

 ;; ANSWER SECTION:
 netcat.service.consul. 0 IN SRV 1 1 9999 dimsdemo1.node.dc1.consul.

 ;; ADDITIONAL SECTION:
 dimsdemo1.node.dc1.consul. 0 IN A 10.86.86.7

 ;; Query time: 13 msec
 ;; SERVER: 127.0.0.1#53(127.0.0.1)
 ;; WHEN: Sun Jan 24 12:48:44 PST 2016
 ;; MSG SIZE rcvd: 146

Now we can test connecting to the netcat listener (which will show anything
that gets sent to it after the TCP connection is established.)

Attention

When attempting to duplicate this example, keep in mind that
you must have already enabled iptables access to the port
on which nc is listening, otherwise any connection
attempt will be blocked and this won’t work as shown here.
Always keep iptables in mind when trying to expose
network services and test them.

The first test will be using curl from the command line:

 [dimsenv] dittrich@dimsdemo1:~ () $ curl --data Hello http://dimsdemo1.node.dc1.consul:9999/areyouthere

Going back to the window where we ran ianitor, the result is the following:

 [dimsenv] dittrich@dimsdemo1:~ () $ ianitor --port 9999 netcat -- netcat -l 9999
 POST /areyouthere HTTP/1.1
 User-Agent: curl/7.35.0
 Host: dimsdemo1.node.dc1.consul:9999
 Accept: */*
 Content-Length: 5
 Content-Type: application/x-www-form-urlencoded

 Hello

Note

Because netcat simply listens on a port and then prints out what
it receives (never sending anything back), both windows will hang. Just
CTRL-C to kill them. This is just a proof-of-concept, not a real
service. If you kill the ianitor/nc command first, the
curl response will make this very clear with this message:

curl: (52) Empty reply from server

If you connect directly using http://dimsdemo1.node.dc1.consul:9999 from a
browser, you would get a slightly different result.

 [dimsenv] dittrich@dimsdemo1:~ () $ ianitor --port 9999 netcat -- netcat -l 9999
 GET / HTTP/1.1
 Host: dimsdemo1.node.dc1.consul:9999
 User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:43.0) Gecko/20100101 Firefox/43.0
 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
 Accept-Language: en-US,en;q=0.5
 Accept-Encoding: gzip, deflate
 Connection: keep-alive

In practice, ianitor would be used to wrap a service that is being
started by some process manager, such as supervisord. See the
Example supervisord config [https://github.com/ClearcodeHQ/ianitor#example-supervisord-config] on the ianitor GitHub page.

9. Debugging and Development

This chapter covers some tools and tactics used for testing and debugging
misbehaving system components, or obtaining sufficient detail about how
subsystem components work in order to control them to achieve project goals and
requirement objectives. Executing some command line or triggering an
action in a user interface that results in the system appearing to
“hang” can be caused by many things. Just looking at the surface and
seeing no action is useless in determining the root cause of the
issue. The ability to turn a “black box” into a “transparent box”
is invaluable to the process of testing and debugging.

Hint

Some useful resources on the processes of testing and debugging
are listed here:

	Testing and Debugging [http://www.jodypaul.com/SWE/TD/TestDebug.html]

	White-box testing, Wikipedia [https://en.wikipedia.org/wiki/White-box_testing]

	White-Box Testing [http://www.drdobbs.com/tools/white-box-testing/184404030], by Oliver Cole, March 1, 2000

9.1. Determining File System Affects of Running Programs

Many programs used in the DIMS project consume gigabytes of disk storage,
often in hidden locations that are not obvious to the user. The act of
taking an Ubuntu 14.04 install ISO image, converting it with Packer
into a BOX file, turning that into a Virtualbox image, and instantiating
a Vagrant virtual machine can turn just under 1 GB into 3-5 GB of storage.
Multiply that by a dozen or more virtual machines and this quickly can
add up. If you are not aware of what gets created, and you change names
of virtual machines, you can end up with a huge amount of wasted disk
space with unused virtual disks, virtual machine images, etc.

For this reason, every programmer developing tools that use programs
like this should be methodical about understanding every process in
terms of inputs, process, and outputs, such that it is possible
to see what is produced to help the person using your tools know
what is happening, and to undo those effects in a controlled way
to simplify cleaning up.

Hint

An easy way to help the user of your tools is to be organized and
put large files related to a workflow like Packer->Virtualbox->Vagrant
VM creation under a single directory path like /vm that can
deleted in one step, backed up and moved to another system with
a larger hard drive, or expanded by mounting a second hard drive
onto that directory path as a mount point. Scattering the files
across many unrelated subdirectories in random locations and
depths within the user’s $HOME directory tree makes it much
harder to handle a situation where the hard drive on a laptop
reaches 100% utilization.

Let’s take a look at a portion of the workflow of Packer->Virtualbox->Vagrant
creation to see how to white-box disk utilization and space management.

We start by changing directory into the $GIT/dims-packer repository where
tools for creating Vagrants using Packer are kept. We create an initial empty
file to serve as a marker in time for then locating any files that
were created after this file.

Note

The example here will search through a set of directories that were
chosen based on knowledge that they exist and are used by various tools.
To obtain this knowledge, it is often helpful to start looking at the
root of the filesystem (/) and look for any files in any
directories, which you will quickly find has a lot of unrelated file
system additions that just happen to have been made at the same time
as the program you were running. A more precise way to identify
where files are created is to trace execution of the program in
question, following all forked children, using a program like
strace and/or ltrace, however these tools require a much
deeper understanding of how the Unix/Linux kernel works.

$ cd $GIT/dims-packer

$ cd $GIT/dims-packer
$ find /home/dittrich/.vagrant.d/ /home/dittrich/.packer.d/ /home/dittrich/VirtualBox\ VMs/ . /vm -newer foo -ls
56230373 4 drwxrwxr-x 7 dittrich dittrich 4096 Mar 15 13:14 /home/dittrich/.vagrant.d/
56230688 0 -rw-rw-r-- 1 dittrich dittrich 0 Mar 15 13:14 /home/dittrich/.vagrant.d/data/machine-index/index.lock
56230689 4 drwxr-xr-x 2 dittrich dittrich 4096 Mar 15 13:14 /home/dittrich/.packer.d/
56230691 4 -rw-rw-r-- 1 dittrich dittrich 318 Mar 15 13:14 /home/dittrich/.packer.d/checkpoint_cache
55314574 4 drwx------ 6 dittrich dittrich 4096 Mar 15 13:24 /home/dittrich/VirtualBox\ VMs/
58589344 2183628 -rw------- 1 dittrich dittrich 2240348160 Mar 15 13:27 /home/dittrich/VirtualBox\ VMs/vagrant-run-ns1_default_1458069887689_42029/ns1_box-disk1.vmdk
58987212 4 drwx------ 2 dittrich dittrich 4096 Mar 15 13:24 /home/dittrich/VirtualBox\ VMs/devserver
55574611 4 drwxrwxr-x 19 dittrich dittrich 4096 Mar 15 13:24 .
58590167 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:24 ./vagrant-output
58590705 633044 -rw-rw-r-- 1 dittrich dittrich 648229139 Mar 15 13:24 ./vagrant-output/packer_devserver_box_virtualbox.box
55574679 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:14 ./ubuntu_64_vagrant
55574655 4 -rw-rw-r-- 1 dittrich dittrich 3263 Mar 15 13:14 ./ubuntu_64_vagrant/devserver-base.json
55574654 4 -rw-rw-r-- 1 dittrich dittrich 3044 Mar 15 13:14 ./ubuntu_64_vagrant/devserver-box.json
58590704 4 drwxr-xr-x 2 dittrich dittrich 4096 Mar 15 13:21 ./output-devserver
58590711 12 -rw------- 1 dittrich dittrich 10629 Mar 15 13:20 ./output-devserver/devserver.ovf
58590712 620528 -rw------- 1 dittrich dittrich 635416064 Mar 15 13:21 ./output-devserver/devserver-disk1.vmdk
55574612 4 drwxrwxr-x 8 dittrich dittrich 4096 Mar 15 13:27 ./.git

[dimsenv] dittrich@dimsdemo1:~/dims/git/dims-packer (feature/dims-696*) $ touch foo2
[dimsenv] dittrich@dimsdemo1:~/dims/git/dims-packer (feature/dims-696*) $ find /home/dittrich/.vagrant.d/ /home/dittrich/.packer.d/ /home/dittrich/VirtualBox\ VMs/ . /vm -newer foo2 -ls
56230373 4 drwxrwxr-x 7 dittrich dittrich 4096 Mar 15 13:33 /home/dittrich/.vagrant.d/
56230688 0 -rw-rw-r-- 1 dittrich dittrich 0 Mar 15 13:33 /home/dittrich/.vagrant.d/data/machine-index/index.lock
55574612 4 drwxrwxr-x 8 dittrich dittrich 4096 Mar 15 13:33 ./.git
53346305 4 drwxr-xr-x 5 dittrich dittrich 4096 Mar 15 13:33 /vm
53346306 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:33 /vm/devserver
53346314 4 -rw-rw-r-- 1 dittrich dittrich 1 Mar 15 13:33 /vm/devserver/.vagrant-IP
53346310 4 -rw-rw-r-- 1 dittrich dittrich 6 Mar 15 13:33 /vm/devserver/.vagrant-ISDESKTOP
53346311 4 -rw-rw-r-- 1 dittrich dittrich 7 Mar 15 13:33 /vm/devserver/.vagrant-VMTYPE
53346312 4 -rw-rw-r-- 1 dittrich dittrich 7 Mar 15 13:33 /vm/devserver/.vagrant-PLATFORM
53346309 4 -rw-rw-r-- 1 dittrich dittrich 10 Mar 15 13:33 /vm/devserver/.vagrant-NAME
53346313 4 -rw-rw-r-- 1 dittrich dittrich 32 Mar 15 13:33 /vm/devserver/.vagrant-BOXNAME
53346316 4 -rw-rw-r-- 1 dittrich dittrich 26 Mar 15 13:33 /vm/devserver/.vagrant-VAGRANTFILEPATH
53346319 8 -rwxrwxr-x 1 dittrich dittrich 4351 Mar 15 13:33 /vm/devserver/test.vagrant.ansible-current
53346318 8 -rw-rw-r-- 1 dittrich dittrich 4245 Mar 15 13:33 /vm/devserver/Makefile
53346315 4 -rw-rw-r-- 1 dittrich dittrich 1 Mar 15 13:33 /vm/devserver/.vagrant-FORWARDPORT
53346308 4 -rw-rw-r-- 1 dittrich dittrich 2738 Mar 15 13:33 /vm/devserver/Vagrantfile
53346307 4 -rw-rw-r-- 1 dittrich dittrich 2028 Mar 15 13:33 /vm/devserver/.vagrant_show
53346317 4 -rw-rw-r-- 1 dittrich dittrich 199 Mar 15 13:33 /vm/devserver/hosts

[dimsenv] dittrich@dimsdemo1:~/dims/git/dims-packer (feature/dims-696*) $ touch foo3
[dimsenv] dittrich@dimsdemo1:~/dims/git/dims-packer (feature/dims-696*) $ find /home/dittrich/.vagrant.d/ /home/dittrich/.packer.d/ /home/dittrich/VirtualBox\ VMs/ . /vm -newer foo3 -ls
56230373 4 drwxrwxr-x 7 dittrich dittrich 4096 Mar 15 13:48 /home/dittrich/.vagrant.d/
56230681 4 drwxrwxr-x 4 dittrich dittrich 4096 Mar 15 13:34 /home/dittrich/.vagrant.d/data
56232110 0 -rw-rw-r-- 1 dittrich dittrich 0 Mar 15 13:34 /home/dittrich/.vagrant.d/data/lock.dotlock.lock
56230688 0 -rw-rw-r-- 1 dittrich dittrich 0 Mar 15 13:48 /home/dittrich/.vagrant.d/data/machine-index/index.lock
56232608 0 -rw-rw-r-- 1 dittrich dittrich 0 Mar 15 13:34 /home/dittrich/.vagrant.d/data/lock.machine-action-fab0a1f680af28d59f47b677629a540a.lock
56230682 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:35 /home/dittrich/.vagrant.d/tmp
56230680 4 drwxrwxr-x 11 dittrich dittrich 4096 Mar 15 13:35 /home/dittrich/.vagrant.d/boxes
58987205 4 drwxrwxr-x 3 dittrich dittrich 4096 Mar 15 13:35 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox
58987206 4 drwxrwxr-x 3 dittrich dittrich 4096 Mar 15 13:35 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox/0
58987207 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:35 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox/0/virtualbox
58987202 646144 -rw-rw-r-- 1 dittrich dittrich 661647360 Mar 15 13:35 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox/0/virtualbox/devserver_box-disk1.vmdk
58987203 4 -rw-rw-r-- 1 dittrich dittrich 26 Mar 15 13:35 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox/0/virtualbox/metadata.json
58987200 4 -rw-rw-r-- 1 dittrich dittrich 258 Mar 15 13:34 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox/0/virtualbox/Vagrantfile
58987201 12 -rw-rw-r-- 1 dittrich dittrich 10785 Mar 15 13:34 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox/0/virtualbox/box.ovf
55574611 4 drwxrwxr-x 19 dittrich dittrich 4096 Mar 15 13:48 .
55574612 4 drwxrwxr-x 8 dittrich dittrich 4096 Mar 15 13:48 ./.git
55575296 4 -rw-rw-r-- 1 dittrich dittrich 2590 Mar 15 13:48 ./make-devserver-201603151348.txt
53346306 4 drwxrwxr-x 5 dittrich dittrich 4096 Mar 15 13:48 /vm/devserver
53346314 4 -rw-rw-r-- 1 dittrich dittrich 14 Mar 15 13:48 /vm/devserver/.vagrant-IP
53346310 4 -rw-rw-r-- 1 dittrich dittrich 6 Mar 15 13:48 /vm/devserver/.vagrant-ISDESKTOP
53346311 4 -rw-rw-r-- 1 dittrich dittrich 7 Mar 15 13:48 /vm/devserver/.vagrant-VMTYPE
53346312 4 -rw-rw-r-- 1 dittrich dittrich 7 Mar 15 13:48 /vm/devserver/.vagrant-PLATFORM
53346309 4 -rw-rw-r-- 1 dittrich dittrich 10 Mar 15 13:48 /vm/devserver/.vagrant-NAME
53346313 4 -rw-rw-r-- 1 dittrich dittrich 32 Mar 15 13:48 /vm/devserver/.vagrant-BOXNAME
53347678 4 drwxrwxr-x 10 dittrich dittrich 4096 Mar 15 13:48 /vm/devserver/dims-keys
53347720 0 -rw-rw-r-- 1 dittrich dittrich 0 Mar 15 13:48 /vm/devserver/dims-keys/README.rd
53347719 4 -rw-rw-r-- 1 dittrich dittrich 43 Mar 15 13:48 /vm/devserver/dims-keys/.gitignore
53347722 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:48 /vm/devserver/dims-keys/ansible-pub
. . .
53347752 4 -rw-rw-r-- 1 dittrich dittrich 402 Mar 15 13:48 /vm/devserver/dims-keys/ssh-pub/dims_andclay_rsa.pub
53347775 4 -rw-rw-r-- 1 dittrich dittrich 79 Mar 15 13:48 /vm/devserver/dims-keys/ssh-pub/dims_eliot_rsa.sig
53346320 4 drwxrwxr-x 3 dittrich dittrich 4096 Mar 15 13:34 /vm/devserver/.vagrant
53346321 4 drwxrwxr-x 3 dittrich dittrich 4096 Mar 15 13:34 /vm/devserver/.vagrant/machines
53346322 4 drwxrwxr-x 3 dittrich dittrich 4096 Mar 15 13:34 /vm/devserver/.vagrant/machines/default
53346323 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:34 /vm/devserver/.vagrant/machines/default/virtualbox
53346316 4 -rw-rw-r-- 1 dittrich dittrich 26 Mar 15 13:48 /vm/devserver/.vagrant-VAGRANTFILEPATH
53346318 8 -rw-rw-r-- 1 dittrich dittrich 4245 Mar 15 13:48 /vm/devserver/Makefile
53346315 4 -rw-rw-r-- 1 dittrich dittrich 1 Mar 15 13:48 /vm/devserver/.vagrant-FORWARDPORT
53346308 4 -rw-rw-r-- 1 dittrich dittrich 2751 Mar 15 13:48 /vm/devserver/Vagrantfile
53346307 4 -rw-rw-r-- 1 dittrich dittrich 2041 Mar 15 13:48 /vm/devserver/.vagrant_show
53346317 4 -rw-rw-r-- 1 dittrich dittrich 212 Mar 15 13:48 /vm/devserver/hosts

$ touch foo4
$ find /home/dittrich/.vagrant.d/ /home/dittrich/.packer.d/ /home/dittrich/VirtualBox\ VMs/ . /vm -newer foo4 -ls
58589344 2183628 -rw------- 1 dittrich dittrich 2240348160 Mar 15 14:17 /home/dittrich/VirtualBox\ VMs/vagrant-run-ns1_default_1458069887689_42029/ns1_box-disk1.vmdk
55574611 4 drwxrwxr-x 19 dittrich dittrich 4096 Mar 15 14:13 .
55576829 28 -rw-rw-r-- 1 dittrich dittrich 27191 Mar 15 14:13 ./Makefile
55574612 4 drwxrwxr-x 8 dittrich dittrich 4096 Mar 15 14:13 ./.git
53870594 4 drwxrwxr-x 5 dittrich dittrich 4096 Mar 15 14:15 /vm/vagrant-run-ns1
53870676 4 -rw-rw-r-- 2 dittrich dittrich 4 Mar 15 14:13 /vm/vagrant-run-ns1/ns1.dims
53870676 4 -rw-rw-r-- 2 dittrich dittrich 4 Mar 15 14:13 /vm/vagrant-run-ns1/ns1.local
53346306 4 drwxrwxr-x 5 dittrich dittrich 4096 Mar 15 13:51 /vm/devserver
53347790 4 -rw-rw-r-- 1 dittrich dittrich 2756 Mar 15 13:51 /vm/devserver/Vagrantfile

10. Docker Datacenter

This chapter documents a walk thru for running a development instance of
Docker Universal Control Plane [https://www.docker.com/products/docker-universal-control-plane], part of Docker Datacenter [https://www.docker.com/products/docker-datacenter].

Watch a UCP demo [https://www.docker.com/products/docker-universal-control-plane#/demo].

10.1. Datacenter Walk-thru

The following output walks thru these items:

	starting 3 VMs with Docker Machine [https://docs.docker.com/machine/]

	installing UCP on one node as a controller; joining 2 other nodes

	setting up container networking [http://docs-stage.docker.com.s3-website-us-east-1.amazonaws.com/ucp/networking/] on each node

	creating one overlay network [https://docs.docker.com/engine/userguide/networking/dockernetworks/]

	starting a Consul [https://www.consul.io/] container on each node

Once you’ve completed the steps outlined, you should be able to go to
https://<controller-ip>:443, log in with “admin” and the password you
gave during the prompt, submit the license, and see the following:

[image: _images/UCPdashboard.png]
[image: _images/UCPcontainers.png]

10.2. Further Information

As more is learned about Docker Datacenter, particularly admin-related
information, it will be documented here.

11. License

Berkeley Three Clause License
=============================

Copyright (c) 2014, 2016 University of Washington. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

 _static/comment-close.png

_static/comment-bright.png

_static/UW-logo.png

_images/UCPdashboard.png
2 Universal Control

¢ | ¥ @ [shepherstown brewery

@ @) @ https://192.168.99.100/#/dashboard

@ Dashboard

RESOURCES

& Applications

© Containers

Nodes

Volumes

& Networks

[Images
UCP ADMIN
& Users &Teams

@ Settings

Dashboard

Overview

0 22 40

Resources

CPU
0%
Cluster Controllers
STATUS CONTROLLER URL SWARM MANAGER
B ritpsi192.168.99.100:443 tcp://192.168.99.100:3376

Universal Control Plane 1.0.0(9025773) | API:1.22

Memory

Scheduling Strategy: spread

_static/comment.png

_static/minus.png

_images/ianitor-netcat.png
[C: SERvICES, oDES KEVIVALUE AcL c1+ o)
‘ netcat
Fiter by name | anystas v Bwa
I consul 3 passing TAGS
No tags
l netcat. 2passing NODES
I dimsdemol 1086.86.7 2passing

Service 'netcat' check service:netcat

Serf Health Status serfHealtn

passing

passing

_static/plus.png

_images/repos_to_inventories.png
GIT
develop |
repo C Vv\fﬂf]fSter‘
o Melegsg
\\\\\\\ . . de ez\\\\
S \\\ \\\\ op
S \\\del’@\\\\
.. \\\qu -
S Qe -
\\@l’@ AN
ey
S % \\\
Should have one repo to one
system inventory N

relationship. We can have a
one repo to many systems if
that relationship is always
true.

Inventory - Systems

development
y
> production
-
test
A
prisem
.
project
A

infrastructure

_static/ajax-loader.gif

_images/git_to_groups.png
GIT

develop branch This example inventory has groups: all,
changes I prisem, tupelo, dashboard, git,
| | elasticsearch
dims-ci-utils } 3
SN 1 development inventory
; ALL
_ | | P prisem |] TN
prisem ; ; N gt
\\\\\\\T\\\\\\%\\\\\\ [tupelo \\\ Vi
dims-dashboard : 3){"/(/iashboard \\g (élasticsearch \
: : \) 4 E - e
tupelo 3 !

ansible-playbook command
via host (inventory),
playbook

_images/gitx-newrelease.png
80606
Le]
Refesh

[ansible-playbooks (branch: dev)

ANSIBLE-PLAYBOOKS
W stage

BRANCHES

REMOTES
» @ origin

TAGs
OTHER

STASHES
Bl L6bScc7 Add tags for.

SUBMODULES

[+p])+8]) [

J [e=2]

@D wal e Q- Subject, Author, SHA
Subject Author

(E0Bump version: 1.2.0 + 1.2.1 Dave Dittrich
(EEE Merge tag '1.2.0' into dev for Release 1.2.0. Dave Dittrich
({5t (S5 rERD) (signmesier) (126)Merge branch 'release/1.2.0' to produce new release. Dave Dittrich
Bump version: 1.1.4 ~ 1.2.0 Dave Dittrich
Bump version: 1.1.3 ~ 1.14 Dave Dittrich
Add docs/ directory and put under bumpversion control Dave Dittrich
Bump version: 1.1.2 ~ 1.1.3 Dave Dittrich
Add VERSION to bumpversion control Dave Dittrich
Bump version: 1.1.1 = 1.1.2 Dave Dittrich
Add dnsmasg templates Dave Dittrich
Add version variable for bumpversion Dave Dittrich
Add bumpversion config file Dave Dittrich

Renamed tomeat role to tomcat-0zone so as not to interfere with refactoring of the tomcat role
DIMS-326 - modify when: not use_http comparison to also check against text false

Moved tasks to modify Ubuntu firefox browser startup page to desktop-setup role

Using dims_user and dims_group rather than hard-coded values in tasks file for logstash
Added missing step to install kibana web source, added kibana config file, added comments
Fixed kiban nain confiauration install

Bump version: 12.0 - 1.2.1

Dave Dittrich (author)
Jan 22, 2015, 6:45:10 PM

=

© bumpversion.cfg

© VERSION

© docs/source/conf.py
© group_vars/all

Linda Parsons
Linda Parsons
Linda Colby
Linda Colby
Linda Parsons
Linda Parsons

commit : d4fe@53ctab695c69357d780c3648720c615dd9
tree : fafcd712114208786b876cB3e586ad1chrc3ddbl
parent : 2ec921ce05b3bd71888b7069990c735acd6b141

+1-1
+1-1
+2-2
+1-1

Giff —git a/.bumpversion.cfg b/.bumpversion.cfg
index 4e4docd, .03471e0 100644

—— a/.bumpuersion. cfg

“+++ b/ bumpversion. cfg

@15 +1,5 ee

(2-][+0] s 8|2

764 commits loaded

_static/file.png

_images/dims-ci-utils-doc-html.png
) %
© 0 O | ouve pisrich—Dave i | |5 Welcome o the DIMS 1t |

[® file:// /Users/dittrich/git/dims~ci-utils/docs/ build/htmi /index.htm]

DIMS Cl Utiliies 1.0.4 documentation » next index

Table Of Contents Welcome to the DIMS CI Utilities’ documentation!
S This document describes the DIMS Cl Utilities (dims-ci-uti1s for short) and how to use them in DIMS development.

The DIMS CI Utilities are intended to provide common utilities, documentation standards, and a framework with which to build a
complex system in a scalable manner. These utilities are divided into subsections that are used in various places with the
development and testing environments of DIMS. These include:

This Page « Development using Git for source code management
« Continuous integration build/deploy using Jenkins
« Deployment, installation, and configuration using Ansible
Quick search « Instantiation and handling of build/destroy lifecycle stages of Virtualbox virtual machines using Packer and

I Vegrant

Enter search terms or a module, * Introduction
class or function name. o Introduction

o Documentation with Sphinx
o Source code management with Git
o Continuous integration with Jenkins
o Deployment and configuration with Ansible
« Quick Start Guide
Quick Start Guide
Installation steps
DIMS Directory Tree
Group membership
Environment Variable Settings
Clone the source code repository
Install the DIMS Cl utiities
Example: YAML file validation
« Documentation
Documentation
Required Background Reading
Why Sphinx?
Installing Sphynx
Manually Initiating a accs directory with sphinx-quickstart
Common Problems

ow Source

6000000

°

°

s o000

_images/deploy_all_docs.jpeg
Parameterized Documentation Deployment

dims-ci-utils

packer

GIT

HOOK

e post-

JENKINS

JoB

receive-06jenkinsalldocs

DOCREPO
DOCBRANCH
DOCPATH
DOCTYPE
Systenydee DOCDELETE
repo
e
%0©
X
A
< “éo
‘e
RS s 0 W

dims-docs-deploy
jenkins.docs-deploy

Get defaults

S E—

Get parameters
and variables

—y
Checkout repo
Build doc

G

Deploy via ssh or
delete

Docs
server

_static/down.png

_images/DD_home_page_small.jpg
< > 0 ® [0

Dave Dittrich

il

\ Dave Dittrich

‘StatusiSenio Softwar Enpinar/Computer Speclst,
Toniied Pysics Laborstory

esing wih the Adhanced Persistent That

beloe o even 3 thing.

1 you spend more on cofea than o IT secury, the you wil b hacked. Whats more,

aichaca Carke,Former Specia Adior o he residen on ybersscuity, BSA 2002

In the informtion conony, ling to mainsin on nformed view of the leve of cyber-
veat il 00n b a0 unsutanabl sk fo Baard level dsison makers, The ptantaly
G impac of ndiidusl and curultive cybar-Sacks mesns (ot the e has bcome
e responbity of Chil Exacutves ond Saards o Directos, rther . specolst

TABLE OF CONTENTS
s At Respone Contnm
bt (shsSesog)
[

images

p—
pr—
Sousung

_static/up.png

nav.xhtml

 Table of Contents

 		DIMS User Manual v 0.2.1

 		Introduction

 		Introduction

 		Referenced documents

 		Development and Core Tool Policy

 		General Software Development Philosophy

 		Source Code Control

 		Copyright

 		License

 		Developing on a fork from GitHub

 		Developing

 		Source Code Management with Git

 		Foundational Git Resources

 		The need for policy and discipline

 		Global Git Configuration

 		Daily tasks with Git

 		Updating local repos

 		Managing Version Numbers

 		Initializing a repo for hub-flow

 		Infrequent tasks with Git

 		Cloning multiple repos from git.prisem.washington.edu

 		Creating Git repositories

 		Deleting Sensitive Data From Repos

 		Cherry-picking a commit from one branch to another

 		Synchronizing with an upstream repository

 		Starting a “release”

 		Branch Renaming

 		Deleting accidentally created tags

 		Recovering deleted files

 		Fixing comments in unpublished commits

 		Creating a new documentation-only repo

 		Permanently Removing Files from a Git Repo

 		Documenting DIMS Components

 		Required Background Reading

 		Why Sphinx?

 		Manually Initiating a docs directory with sphinx-quickstart

 		Separated source and build directories

 		Mixed source and build

 		Building Sphinx Documentation

 		Manually Building HTML

 		Manually Building PDF using LaTeX

 		Automatically building HTML

 		Fixing errors

 		Typographic errors

 		Link errors

 		LaTeX image errors

 		LaTeX Unicode rendering errors

 		“LaTeX is not a TTY” errors

 		Common Tasks

 		Creating figures with thumbnails with links to larger images

 		Section numbering

 		Converting HTML content to Sphinx reST files

 		Referencing subsections or figures

 		Common Problems

 		Improperly referencing links to external documents

 		Not having the proper white space around literal blocks

 		Using inconsistent indentation in literal blocks and directives

 		Having multiple colons in link target labels

 		Advanced Use of Sphinx Features

 		Cross-referencing between documents with the sphinx.ext.intersphinx extension

 		Insertion of text using direct substitution

 		Insertion of text programmatically

 		Inserting a graph using Graphviz

 		Continuous Integration

 		Continuous Integration

 		How source changes are propagated

 		Continuous deployment of documentation

 		Post-receive hook

 		Jenkins parameterized job dims-docs-deploy

 		Deployment script jenkins.dims-docs-deploy

 		Developing modules for the DIMS CLI app (dimscli)

 		Bootstrapping the dimscli app for development

 		Command Structure

 		Completing commands in dimscli

 		Adding New Columns to Output

 		Adding New Commands

 		Adding a Module in Another Repo

 		Service Discovery Using Consul

 		Debugging and Development

 		Determining File System Affects of Running Programs

 		Docker Datacenter

 		Datacenter Walk-thru

 		Further Information

 		License

_static/down-pressed.png

_images/intersphinx-links.png
2.Referenced Documents
3.Requirements
4.Qualification provisions
5.Notes

6.License

7. Appendices

» 2. Referenced Documents

2. Referenced Documents

The following documents describe the DIMS project and provide
background material related to tasking.

1

2.

3

4. HSHQDC-13-C-B0013, “From Local to Gobal Awareness: A Distributed
Incident Management System,” Draft contract, Section C - Statement of
Work (marked up version)

5. MIL-STD-498, Military Standard Software Development and
Documentation, AMSC No.N7069, Dec. 1994.

_images/graphviz-d9a7b4927e09e04b84ce62a6a67c5ef74e44d187.png
dims-ci-utils 0S-1SOs git-extras,

jenkins

CONFIGURING

packer sphinx
vagrant

ansible DEVELOPING

DEPLOYING

jira

git-flow

tig

hub

_images/consul-service-netcat.png
® - o consul by HashiCorp - Chromium

/@ consulby Hashicory x _\ -

< > @ (D 10.142.29.120:8500/ui/#/dc1 fnodes/dimsdemot

SERVICES NODES KEYIVALUE AcL be1- o]
dimsdemol 10.6.86.7 DEREGISTER
Filler by name any siatus v ExpAND.
I bs2 0 services SERVICES
netcat 9999
I breathe 1services Notags
l dimsdemo1 1 services CHECKS
I dimsdemo2 0services)
Service 'netcat’ check service:netcat passing
| echoes 2services
NoTES
[our 0services ourpur
I rabbitmq 0services
I ceamus R I ———
Serf Health Status serfriealtn passing
NoTES
outpuT

LOCK SESSIONS

No sessions

_static/up-pressed.png

_images/git-model@2x.png
release

feature
branches hotfixes master

branches develop

Severe bug
fixed for
production:
hotfix0.2
Incorporate
bugfix in
develop

09 o

Major
feature for
next release

Feature
for future
release

Start of
release
branch for

From this point on, .0

“next release”
means the release
after 1.0

Bugfixes from
rel. branch
may be
continuously
merged back
into develop

1.0

ST~
\

_images/dims-ci-utils-doc-pdf.png
806 [« DIMSClUtilities.pdf (page 1 of 35)

EmEEale

DIMS CI Utilities Documentation
Release 1.0.4

David Dittrich

_images/note_in_list_correct.png
5. Requirements traceability |

This paragraph shall contain:

1.

o

Traceabilty from each CSCI requirement in this specification to the system (or subsystem, if applicable) requirements
it addresses. (Alternatively, this traceabilty may be provided by annotating each requirement in Section
Requirements.)

Note: Each level of system refinement may result in requirements not directly traceable to higher-level
requirements. For example, a system architectural design that creates multiple CSCls may result in requirements
about how the CSCIs will interface, even though these interfaces are not covered in system requirements. Such
requirements may be traced to a general requirement such as “system implementation” or to the system design
decisions that resulted in their generation.

. Traceability from each system (or subsystem, if applicable) requirement allocated to this CSCI to the CSCI

requirements that address it. All system (subsystem) requirements allocated to this CSCI shall be accounted for.
Those that trace to CSCI requirements contained in IRSs shall reference those IRSs.

_images/UCPcontainers.png
¢ | ¥ @ [shepherstown brewery

@ Dashboard

RESOURCES

& Applications

© Contalners

Nodes

Volumes

Networks

[Images
UCP ADMIN
& Users &Teams

@ Settings

DLEIIE | Hide stopped &system containers ~

® 697710905924

® 3b0881350ca

| @ 678e7c4sels6

NODE

node2

nodet

node0

NAME IMAGE

consul-node2 progrium/consul
consul-nodet progrium/consul
consul-node0 progrium/consul

Universal Control Plane 1.0.0 (9025773)

CREATED

2016-03-07 173

110 -0500

2016-03-07 173

2016-03-07 173

Items per page

API122

10

25

50

100

_images/note_in_list_incorrect.png
5. Requirements traceability

This paragraph shall contai

1. Traceability from each CSCI requirement in this specification to the system (or subsystem, if applicable) requirements
it addresses. (Alternatively, this traceabilty may be provided by annotating each requirement in Section

Requirements.)

Note: Each level of system refinement may result in requirements not directly traceable to higher-level requirements.
For example, a system architectural design that creates multiple CSCls may result in requirements about how the CSCls
will interface, even though these interfaces are not covered in system requirements. Such requirements may be traced to
ageneral requirement such as "system implementation” or to the system design decisions that resulted in their

generation.

1. Traceability from each system (or subsystem, if applicable) requirement allocated to this CSCI to the CSCI
requirements that address it. All system (subsystem) requirements allocated to this CSCI shall be accounted for.
Those that trace to CSCI requirements contained in IRSs shall reference those IRSs.

