

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	diarc 0.3.0 documentation

DiArc Documentation!

Building

Building the Documentation

First you need sphinx installed, on Ubuntu:

$ sudo apt-get install python-sphinx

On other platforms use pip:

$ sudo pip install Sphinx

You have to have built the package first, then you mush source the resulting devel or install space:

$ source /path/to/space/setup.bash

Then from the capabilities source folder you can build the docs:

$ cd docs
$ make html

The resulting docs will be generated to doc/.build/html/index.html.

Running the Tests

Running the Code

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Open Source Robotics Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	diarc 0.3.0 documentation

What is diarc?

Diarc is short for di-graph arcgraph.
It is a python package used for describing and drawing a multiple-input, multiple-output, directional graph as a modified arcgraph.
Diarc provides some built-in tools, as well as an API that can be used to extend its functionality.

Terminology

Drawing the diagram is done by giving three different kinds of descriptions of the graph: connections, layout, and graphics.
Connection descriptions provide the topology of the graph using Logical Objects.
Layout describes where pieces of the graph should be drawn with respect to other pieces of the graph using Relative Objects.
Together, Logical and Relative Objects are paired to form a Diarc Topology - a data structure which provides a 1-1 mapping that specifies an exact diagram to be drawn.
Additionally, by changing only Relative Objects, a single graph can be redrawn many different ways.
Finally, Visual Objects created using a graphical toolkit are created to mirror the properties of Relative Objects and draw the graph to the screen.

TODO diagram showing how all these objects reference each other

Logical (Connection) Objects

Logical objects are used to define the graph, without specifing how it should be drawn.

	Vertex

	A vertex in the graph, connected to other vertices through edges.

	Edge

	A directional edge in the graph. Edges have inputs (sources) and outputs (sinks).

	Connection

	Links a single vertex to a single edge in a single direction (either a source or a sink).
A vertex can have many connections, but is limited to a max of two per edge (one Source and one Sink).
An edge can have an unlimited number of connections.

	Source

	A Connection between a vertex and an edge that designates the edge as leaving the vertex.

	Sink

	A Connection between a vertex and an edge that designates the edge as entering the vertex.

Relative (Layout) Objects

Relative objects are used to define how a graph is laid out.
These objects are usually created automatically along with Logical Objects, but are not assigned the values that specify their positioning.

	Block

	Corresponds to a Vertex in a 1-1 relationship.
Blocks are drawn in a single horizontal line across the middle of the graph.
The order in which blocks are drawn is determined by their index number - a unique interger value that must be greater or equal to zero.
Blocks are drawn in order of increasing index value from left to right.

	Band

	Correspond to an Edge.
This is represented by a line arcing between Snaps inside Blocks.
These lines are drawn above and/or below the line of blocks, depending on the direction of the edge.
Bands drawn above the blocks are called “positive bands” and represent and edge traveling from from left to right.
In other words, the edge’s sources are to the left of the edge’s sinks. Bands drawn below the blocks are called “negative bands” and represent edges with sources to the right of the sinks.
An Edge will always have two Bands (one positive and one negative).
Each Band is drawn such that the arc reaches a certain distance away from the line of blocks.
This distance is called the Band’s altitude, and is represented by a non-zero unique integer.
Positive bands have positive altitudes, while negative bands have negative altitudes.
Since bands can overlap each other, they need also need to specify the order in which they are layered.
This is done using a bands rank, a positive integer value that must be unique among bands on the same side of the Blocks.

	Snap

	Corresponds to a Connection in a 1-1 relationship.
Snaps are split into two groups, Emitters (for Sources) and Collectors (for Sinks).
Snaps are drawn inside their Vertex’s Block, with Emitters on the left and Collectors on the right.
Within these groups, the order of the snaps is determined by the snaps ‘order’, a positive integer that must be unique among its groups.
A snaps absolute location is denoted by a combination of the block it resides in, whether it is in the collectors or emitters, and its order value.
This is designated by a unique identifier called a snapkey, denoted as <blockindex><[E]mitter|[C]ollector><snaporder>.
For example, the second snap from the left in the collector of block with index 5 is denoted as “5c2”.

Visual (Graphical) Objects

Visual Objects are often specified using a graphical library such as Qt.
They specify everything from color and size to actual positioning on the screen.

	BlockItem

	Corresponds to a single _Block (and Vertex).

	BandItem

	Corresponds to a single Band (and Edge).

	SnapItem

	Corresponds to a single Snap (and Connection).

 Copyright 2014, Open Source Robotics Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	diarc 0.3.0 documentation

topology - the diarc graph data structure

This module contains the graph data structures used by diarc.

	
class topology.Topology

	Storage container for describing the graph and diagram

	
vertices

	An unordered list of all Vertex objects.

	
edges

	An unordered list of all Edge objects

	
blocks

	A dictionary of Block objects indexed by Block.index.
The dictionary is generated every time it is requested. Only blocks with proper Block.index values are included.

	
bands

	A dictionary of Band objects, listed by Band.altitude.
Bands which have not been assigned altitudes are not reported. All bands that have an altitude
(regardless of if they are being used (indicated by isUsed) are reported.

	
snaps

	A dictionary of Snap objects, by snapkey. Snaps which have not been
assigned an order are not reported. All snaps that have an order regardless
of if they are being used (indicated by isUsed) are reported.

	
hide_disconnected_snaps

	

	
class topology.Vertex

	A Vertex in a directional graph.
A vertex can connect to multiple edges as either an input (source) or output
(sink) to the edge. It is graphically represented by a Block object.

	
sources

	Unordered list of outgoing connections (Source objects)

	
sinks

	Unordered list of incomming connections. (Sink objects)

	
block

	Block object for this Vertex.
It is created when the vertex is instantiated, and cannot be reassigned.

	
release()

	Removes this vertex from the topology.
This additionally removes all its associated Connection
and Block objects from the topology.

	
class topology.Edge

	A directional multiple-input multiGple-output edge in the graph. Inputs
(sources) and outputs (sinks) are linked to vertices. An edge is represented
graphically by either 1 or 2 Band objects.

	
sources

	

	
sinks

	

	
posBand

	

	
negBand

	

	
release()

	

	
class topology.Connection

	A base class for connecting a vertex to an edge, but without specifing
the nature of the connection (input or output). Rather then using this
class directly, Source or Sink objects should be used.

	
snap

	

	
edge

	

	
vertex

	

	
block

	

	
release()

	

	
class topology.Source(Connection)

	A logical connection from a Vertex to an Edge. Graphically represented
by a Snap object.

	
release()

	

	
class topology.Sink(Connection)

	A logical connection from an Edge to a Vertex. Graphically represented
by a Snap object.

	
release()

	

	
class topology.Block

	Visual Representation of a Vertex
Visual Parameters
Index - Unique int value to determine order in which to draw blocks.

Lower values to the left, higher to the right. Indices do not
necessarily need to be consecutive.

	
index

	Defines the order in which blocks are arranged.
This value is initially unset (defaults to None).
For the block to be displayed as part of the graph, this value must be
changed to a positive integer that is unique among blocks.

	
vertex

	Returns the logical component (Vertex) for this relative object.
The vertex is bound to this block, and cannot be changed.

	
emitter

	Dictionary of Snaps that represent source connections for this block.
Only snaps which have been assigned an order value are represented, since
the order is used as the dictionary key. If hide_disconnected_snaps is
set in the topology, only return snaps where isLinked() is true.

	
collector

	Dictionary of Snap objects that represent sink connections for this block.
Only snaps which have been assigned an order value are represented, since
the order is used as the dictionary key. If hide_disconnected_snaps is
set in the topology, only return snaps where isLinked() is true.

	
leftBlock

	returns the block to the left, determined by block which has the next
lowest index value.

	
rightBlock

	returns the block to the right, determined by block which has the next
highest index value.

	
class topology.Band

	Visual Representation of an Edge.
An Edge can have up to two Bands - one with positive altitude and one negative.
Visual Parameters
Rank - the Z drawing order (higher values closer to user)
Altitude - the distance above or below the Block ribbon

	
altitude

	

	
rank

	

	
edge

	

	
emitters

	

	
collectors

	

	
isPositive

	

	
topBand

	

	
bottomBand

	

	
isUsed()

	

	
class diarc.topology.Vertex(topology)[source]

	A Vertex in a directional graph.
A vertex can connect to multiple edges as either an input (source) or output
(sink) to the edge. It is graphically represented by a Block object.

Sources - outgoing connections to Edges
Sinks - incomming connections from Edges

	
sources

	Returns an unordered list of outgoing connections (Source objects)
from this vertex.

	
sinks

	Returns an unordered list of outgoing connections (Sink objects)
from this vertex.

	
block

	Returns the relative graphical object (Block) for this Vertex.
The block cannot be changed

	
class diarc.topology.Edge(topology)[source]

	A directional multiple-input multiGple-output edge in the graph. Inputs
(sources) and outputs (sinks) are linked to vertices. An edge is represented
graphically by either 1 or 2 Band objects.

Sources - inputs from vertices
Sinks - outputs to vertices

	
release()[source]

	Removes this edge from the topology

	
sources

	returns list of all source connections to this edge

	
sinks

	returns list of all sink connections from this edge

	
class diarc.topology.Connection(topology, vertex, edge)[source]

	A base class for connecting a vertex to an edge, but without specifing
the nature of the connection (input or output). Rather then using this
class directly, Source or Sink objects should be used.

	
release()[source]

	Removes this connection between a vertex and an edge from the topology.
This does NOT release either the vertex or the edge objects, it simply
removes this particular reference to them.

	
class diarc.topology.Source(topology, vertex, edge)[source]

	A logical connection from a Vertex to an Edge. Graphically represented
by a Snap object.

	
class diarc.topology.Sink(topology, vertex, edge)[source]

	A logical connection from an Edge to a Vertex. Graphically represented
by a Snap object.

	
class diarc.topology.Block(vertex)[source]

	Visual Representation of a Vertex
Visual Parameters
Index - Unique int value to determine order in which to draw blocks.

Lower values to the left, higher to the right. Indices do not
necessarily need to be consecutive.

	
vertex

	Returns the logical component (Vertex) for this relative object.
The vertex is bound to this block, and cannot be changed.

	
emitter

	Dictionary of Snaps that represent source connections for this block.
Only snaps which have been assigned an order value are represented, since
the order is used as the dictionary key. If hide_disconnected_snaps is
set in the topology, only return snaps where isLinked() is true.

	
collector

	Dictionary of Snaps that represent sink connections for this block.
Only snaps which have been assigned an order value are represented, since
the order is used as the dictionary key. If hide_disconnected_snaps is
set in the topology, only return snaps where isLinked() is true.

	
class diarc.topology.Band(edge, isPositive)[source]

	Visual Representation of an Edge.
An Edge can have up to two Bands - one with positive altitude and one negative.
Visual Parameters
Rank - the Z drawing order (higher values closer to user)
Altitude - the distance above or below the Block ribbon

	
emitters

	returns a list of source snaps that reach this band

	
collectors

	returns list of sink snaps that reach this band

	
isUsed()[source]

	returns true if this band is needed to represent connections on
its edge, else false. This is determined by checking if any sources
reach this band.

	
topBand

	Returns the band with the next highest altitude, or None if either
there is no band above this one or the block ribbon is above it.
Bands for which isUsed() is false are skipped over.

	
bottomBand

	Returns the band with the next lowest altitude, or None if either
there is no band below this one or the block ribbon is below it.
Bands for which isUsed() is false are skipped over.

	
class diarc.topology.Snap(connection)[source]

	Visual Representation of a Source or Sink.
Snaps are layedout horizontally inside of an Emitter or Collector of a Block.
A Snap provides a mapping between a Source/Sink and one or two Bands associated with a single Edge.
Visual Layout Paramters
Order - 0-indexed order in which to draw snaps within an Emitter or Collector

	
snapkey()[source]

	generates the snapkey for this snap

	
posBandLink

	returns the positive band connection - if it exists.
Just because a positive band link exists does not mean that it should
be drawn. The check for if we should draw the connection happens at drawing
time when we decide if we should be using positive or negative

	
negBandLink

	returns the negative band connection - if it exists. See posBand for
more details.

	
isLinked()[source]

	returns true if this snap is connected to at least one sink, else false.

	
isUsed()[source]

	returns true if topology.hide_disconnected_snaps is True and isLinked is True,
or if topology.hide_disconnected_snaps is false. Otherwise, return true.

	
leftSnap

	Returns the snap directly to the left of this snap within either an
emitter or collector. Returns None if this is leftmost snap.

	
rightSnap

	Returns the snap directly to the right of this snap within either
an emitter or collector. Returns None if this is rightmost snap.

 Copyright 2014, Open Source Robotics Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	diarc 0.3.0 documentation

 Python Module Index

 d |
 t

 			

 		
 d	

 	[image: -]
 	
 diarc	

 	
 	
 diarc.topology	

 			

 		
 t	

 	
 	
 topology	
 the diarc graph data structure

 Copyright 2014, Open Source Robotics Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	diarc 0.3.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | H
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | V

A

 	

 	altitude (topology.Band attribute)

B

 	

 	Band (class in diarc.topology)

 	

 	(class in topology)

 	bands (topology.Topology attribute)

 	Block (class in diarc.topology)

 	

 	(class in topology)

 	

 	block (diarc.topology.Vertex attribute)

 	

 	(topology.Connection attribute)

 	(topology.Vertex attribute)

 	blocks (topology.Topology attribute)

 	bottomBand (diarc.topology.Band attribute)

 	

 	(topology.Band attribute)

C

 	

 	collector (diarc.topology.Block attribute)

 	

 	(topology.Block attribute)

 	collectors (diarc.topology.Band attribute)

 	

 	(topology.Band attribute)

 	

 	Connection (class in diarc.topology)

 	

 	(class in topology)

D

 	

 	diarc.topology (module)

E

 	

 	Edge (class in diarc.topology)

 	

 	(class in topology)

 	edge (topology.Band attribute)

 	

 	(topology.Connection attribute)

 	edges (topology.Topology attribute)

 	

 	emitter (diarc.topology.Block attribute)

 	

 	(topology.Block attribute)

 	emitters (diarc.topology.Band attribute)

 	

 	(topology.Band attribute)

H

 	

 	hide_disconnected_snaps (topology.Topology attribute)

I

 	

 	index (topology.Block attribute)

 	isLinked() (diarc.topology.Snap method)

 	

 	isPositive (topology.Band attribute)

 	isUsed() (diarc.topology.Band method)

 	

 	(diarc.topology.Snap method)

 	(topology.Band method)

L

 	

 	leftBlock (topology.Block attribute)

 	

 	leftSnap (diarc.topology.Snap attribute)

N

 	

 	negBand (topology.Edge attribute)

 	

 	negBandLink (diarc.topology.Snap attribute)

P

 	

 	posBand (topology.Edge attribute)

 	

 	posBandLink (diarc.topology.Snap attribute)

R

 	

 	rank (topology.Band attribute)

 	release() (diarc.topology.Connection method)

 	

 	(diarc.topology.Edge method)

 	(topology.Connection method)

 	(topology.Edge method)

 	(topology.Sink method)

 	(topology.Source method)

 	(topology.Vertex method)

 	

 	rightBlock (topology.Block attribute)

 	rightSnap (diarc.topology.Snap attribute)

S

 	

 	Sink (class in diarc.topology)

 	

 	(class in topology)

 	sinks (diarc.topology.Edge attribute)

 	

 	(diarc.topology.Vertex attribute)

 	(topology.Edge attribute)

 	(topology.Vertex attribute)

 	Snap (class in diarc.topology)

 	snap (topology.Connection attribute)

 	

 	snapkey() (diarc.topology.Snap method)

 	snaps (topology.Topology attribute)

 	Source (class in diarc.topology)

 	

 	(class in topology)

 	sources (diarc.topology.Edge attribute)

 	

 	(diarc.topology.Vertex attribute)

 	(topology.Edge attribute)

 	(topology.Vertex attribute)

T

 	

 	topBand (diarc.topology.Band attribute)

 	

 	(topology.Band attribute)

 	Topology (class in topology)

 	

 	topology (module)

V

 	

 	Vertex (class in diarc.topology)

 	

 	(class in topology)

 	vertex (diarc.topology.Block attribute)

 	

 	(topology.Block attribute)

 	(topology.Connection attribute)

 	

 	vertices (topology.Topology attribute)

 Copyright 2014, Open Source Robotics Foundation.
 Created using Sphinx 1.3.1.

 _static/down.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		diarc 0.3.0 documentation »

 All modules for which code is available

		diarc.topology

 © Copyright 2014, Open Source Robotics Foundation.
 Created using Sphinx 1.3.1.

_modules/diarc/topology.html

 Navigation

 		
 index

 		
 modules |

 		diarc 0.3.0 documentation »

 		Module code »

 Source code for diarc.topology

Copyright 2014 Open Source Robotics Foundation, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
[db] dan@danbrooks.net
#
Diarc topology objects

A Diarc topology consists of two types of objects - logical objects and graphical
objects which visually represent logical objects.

Logical objects: Graphical Objects:
Vertex Block
Edge Band(s)
Connection, Source, Sink Snap(s)

#
TODO:
- Document how to create a topology, and how to remove objects from it.
#
t = Topology()
#
v1 = Vertext(t)
v2 = Vertext(t)
v3 = Vertext(t)
#
Create an edge from v1 to v2
e1 = Edge(t)
src1 = Source(t,v1,e1)
snk1 = Sink(t,v2,e1)

Add connect the edge to v3 as well
snk2 = Sink(t,v3,e1)
#
Add an edge from v3 to v1
e2 = Edge(t)
src2 = Source(t,v3,e2)
snk3 = Sink(t,v1,e2)
#
arrange the vertices in order v1 v2 v3
v1.block.index = 0
v2.block.index = 1
v3.block.index = 2

from util import *
from snapkey import *
import types
import logging

class Topology(object):
 def __init__(self):
 self._vertices = TypedList(Vertex)
 self._edges = TypedList(Edge)
 self._sources = TypedList(Source)
 self._sinks = TypedList(Sink)

 # Visual Settings
 self._hide_disconnected_snaps = False

 @property
 def vertices(self):
 """ returns an unordered list of vertex objects in the topology """
 return self._vertices

 @property
 def edges(self):
 """ returns an unordered list of edge objects in the topology """
 return self._edges

 @property
 def blocks(self):
 """ Returns dictionary of all blocks who have a proper index value assigned """
 return dict(filter(lambda x: isinstance(x[0],int),[(v.block.index,v.block) for v in self._vertices]))

 @property
 def bands(self):
 """ Returns dictionary of all bands, by altitude. Bands which have not
 been assigned altitudes are not reported. All bands that have an altitude
 (regardless of if they are being used (indicated by isUsed) are reported.
 """
 allBands = [band for edge in self._edges for band in [edge.posBand,edge.negBand]]
 if None is [band.altitude for band in allBands]:
 logging.warning("WARNING: There are bands lacking altitude information! Not all bands are represented")
 return dict([(band.altitude,band) for band in filter(lambda x: isinstance(x.altitude,int),allBands)])

 @property
 def snaps(self):
 """ Returns dictionary of all snaps, by snapkey. Snaps which have not been
 assigned an order are not reported. All snaps that have an order regardless
 of if they are being used (indicated by isUsed) are reported.
 """
 containers = [container for block in [[v.block.emitter, v.block.collector] for v in self._vertices] for container in block]
 snaps = [(snap.snapkey(),snap) for snaps in [container.values() for container in containers] for snap in snaps]
 return dict(snaps)

 def __get_hide_disconnected_snaps(self):
 return self._hide_disconnected_snaps
 def __set_hide_disconnected_snaps(self, state):
 typecheck(state, bool, "state")
 self._hide_disconnected_snaps = state
 hide_disconnected_snaps = property(__get_hide_disconnected_snaps, __set_hide_disconnected_snaps)

[docs]class Vertex(object):
 """ A Vertex in a directional graph.
 A vertex can connect to multiple edges as either an input (source) or output
 (sink) to the edge. It is graphically represented by a Block object.

 Sources - outgoing connections to Edges
 Sinks - incomming connections from Edges
 """
 def __init__(self,topology):
 self._topology = typecheck(topology,Topology,"topology")
 self._topology._vertices.append(self)
 # Visual Component
 self._block = Block(self)

 def release(self):
 logging.debug("releasing vertex %r"%self)

 logging.debug("... removing from topology")
 # Release yourself from the topology and remove the reference. This
 # needs to be done before destroying blocks, since we preclaculate
 # block neighbors and that depends on iterating over the vertex list.
 # If we don't cache block neighbors, then the order no longer matters.
 self._topology._vertices.remove(self)

 # Release connections to and from the vertex
 logging.debug("... destroying connections")
 for connection in self._topology._sources + self._topology._sinks:
 if connection.vertex == self:
 connection.release()
 logging.debug("... releasing associated block")
 # Release the block object associated with this vertex
 self._block._release()
 self._block = None
 logging.debug("... destroying reference to topology")
 self._topology = None

 @property
 def sources(self):
 """ Returns an unordered list of outgoing connections (Source objects)
 from this vertex.
 """
 return filter(lambda x: x.vertex == self, self._topology._sources)

 @property
 def sinks(self):
 """ Returns an unordered list of outgoing connections (Sink objects)
 from this vertex.
 """
 return filter(lambda x: x.vertex == self, self._topology._sinks)

 @property
 def block(self):
 """ Returns the relative graphical object (Block) for this Vertex.
 The block cannot be changed
 """
 return self._block

[docs]class Edge(object):
 """ A directional multiple-input multiGple-output edge in the graph. Inputs
 (sources) and outputs (sinks) are linked to vertices. An edge is represented
 graphically by either 1 or 2 Band objects.

 Sources - inputs from vertices
 Sinks - outputs to vertices
 """
 def __init__(self,topology):
 self._topology = typecheck(topology,Topology,"topology")
 self._topology._edges.append(self)
 # Visual Component
 self._pBand = Band(self,True)
 self._nBand = Band(self,False)

[docs] def release(self):
 """ Removes this edge from the topology """
 logging.debug("releasing edge %r"%self)
 # Release connections to and from this edge
 logging.debug("... destroying connections")
 for connection in self._topology._sources + self._topology._sinks:
 if connection.edge == self:
 connection.release()
 # Release each of your bands
 logging.debug("... releasing associated bands")
 self._pBand._release()
 self._nBand._release()
 # Remove references to your bands
 self._pBand = None
 self._nBand = None
 logging.debug("... removing from topology")
 # Release youself from the topology
 self._topology._edges.remove(self)
 # Remove reference to the topology
 self._topology = None

 @property
 def sources(self):
 """ returns list of all source connections to this edge """
 return filter(lambda x: x.edge == self, self._topology._sources)

 @property
 def sinks(self):
 """ returns list of all sink connections from this edge """
 return filter(lambda x: x.edge == self, self._topology._sinks)

 @property
 def posBand(self):
 return self._pBand

 @property
 def negBand(self):
 return self._nBand

[docs]class Connection(object):
 """ A base class for connecting a vertex to an edge, but without specifing
 the nature of the connection (input or output). Rather then using this
 class directly, Source or Sink objects should be used.

 """
 def __init__(self,topology,vertex,edge):
 self._topology = typecheck(topology,Topology,"topology")
 self._vertex = typecheck(vertex,Vertex,"vertex")
 self._edge = typecheck(edge,Edge,"edge")
 if (not isinstance(self,Source)) and (not isinstance(self,Sink)):
 raise Exception("Do not create connections directly! Use Source or Sink")
 self._snap = Snap(self)

[docs] def release(self):
 """ Removes this connection between a vertex and an edge from the topology.
 This does NOT release either the vertex or the edge objects, it simply
 removes this particular reference to them.
 """
 logging.debug("... releasing associated snap")
 # Release and remove the reference to your snap
 self._snap._release()
 self._snap = None
 logging.debug("... deleting pointer to vertex and edge")
 # Remove references to vertex and edge
 self._vertex = None
 self._edge = None

 @property
 def snap(self):
 return self._snap

 @property
 def edge(self):
 return self._edge

 @property
 def vertex(self):
 return self._vertex

 @property
 def block(self):
 return self.vertex.block

[docs]class Source(Connection):
 """ A logical connection from a Vertex to an Edge. Graphically represented
 by a Snap object.
 """
 def __init__(self,topology,vertex,edge):
 super(Source,self).__init__(topology,vertex,edge)
 # Check to make sure there is not already a source going from this vertex to this edge
 for source in vertex.sources + edge.sources:
 if vertex == source.vertex and edge == source.edge:
 raise Exception("Duplicate Source!")
 self._topology._sources.append(self)

 def release(self):
 logging.debug("Releasing Source %r"%self)
 super(Source,self).release()
 # Remove yourself from the topology
 logging.debug("... removing from topology")
 self._topology._sources.remove(self)
 self._topology = None

[docs]class Sink(Connection):
 """ A logical connection from an Edge to a Vertex. Graphically represented
 by a Snap object.
 """
 def __init__(self,topology,vertex,edge):
 super(Sink,self).__init__(topology,vertex,edge)
 # Check to make sure there is not already a sink going from this edge to this vertex
 for sink in vertex.sinks + edge.sinks:
 if vertex == sink.vertex and edge == sink.edge:
 raise Exception("Duplicate Sink!")
 self._topology._sinks.append(self)

 def release(self):
 logging.debug("Releasing Sink %r"%self)
 super(Sink,self).release()
 # Remove youself from the topology
 logging.debug("... removing from topology")
 self._topology._sinks.remove(self)
 self._topology = None

[docs]class Block(object):
 """ Visual Representation of a Vertex
 Visual Parameters
 Index - Unique int value to determine order in which to draw blocks.
 Lower values to the left, higher to the right. Indices do not
 necessarily need to be consecutive.
 """
 def __init__(self,vertex):
 self._vertex = typecheck(vertex,Vertex,"vertex")
 self._topology = vertex._topology
 # Visual Properties
 self._index = None
 # blocks to left and right
self._leftBlock = None
self._rightBlock = None

 def _release(self):
 """ releases this block from the topology.
 This should only be called by Vertex.release()
 """
 logging.debug("removing block %r"%self)
 logging.debug("... removing references to left and right blocks")
 #This needs to recalculate the left and right blocks on either side
 #NOTE: This does not collapse index values, so there becomes a "hole"
 # in the index values
if self._leftBlock:
self._leftBlock._updateNeighbors()
if self._rightBlock:
self._rightBlock._updateNeighbors()
 # Remove cached references to left and right blocks
self._leftBlock = None
self._rightBlock = None
 logging.debug("... remove reference to vertex")
 # We don't need to call release() on the vertex, it should already be
 # called, we just need to remove the reference
 self._vertex = None
 logging.debug("... removing reference to topology")
 self._topology = None

 @property
 def vertex(self):
 """ Returns the logical component (Vertex) for this relative object.
 The vertex is bound to this block, and cannot be changed.
 """
 return self._vertex

 @property
 def emitter(self):
 """ Dictionary of Snaps that represent source connections for this block.
 Only snaps which have been assigned an order value are represented, since
 the order is used as the dictionary key. If hide_disconnected_snaps is
 set in the topology, only return snaps where isLinked() is true.
 """
 snaps = [(s.snap.order, s.snap) for s in self._vertex.sources if isinstance(s.snap.order, int)]
 if self._topology.hide_disconnected_snaps:
 snaps = [tup for tup in snaps if tup[1].isLinked()]
 return dict(snaps)
return dict(filter(lambda x: isinstance(x[0],int), [(s.snap.order, s.snap) for s in self._vertex.sources]))

 @property
 def collector(self):
 """ Dictionary of Snaps that represent sink connections for this block.
 Only snaps which have been assigned an order value are represented, since
 the order is used as the dictionary key. If hide_disconnected_snaps is
 set in the topology, only return snaps where isLinked() is true.
 """
 snaps = [(s.snap.order, s.snap) for s in self._vertex.sinks if isinstance(s.snap.order, int)]
 if self._topology.hide_disconnected_snaps:
 snaps = [tup for tup in snaps if tup[1].isLinked()]
 return dict(snaps)
return dict(filter(lambda x: isinstance(x[0],int),[(s.snap.order,s.snap) for s in self._vertex.sinks]))

 @property
 def leftBlock(self):
""" Returns the block to the left, determined by block wich has the next
lowest index value. This value is cached when the index is set.
"""
return self._leftBlock
 if not isinstance(self._index,int):
 return None
 blocks = self._topology.blocks
 if len(blocks) == 0:
 return None
 if self._index > min(blocks.keys()):
 return blocks[max([b for b in blocks.keys() if b < self._index])]
 # Else
 return None

 @property
 def rightBlock(self):
""" returns the block to the right, determined by block which has the next
highest index value. This value is cached when the index is set.
"""
return self._rightBlock
 if not isinstance(self._index,int):
 return None
 blocks = self._topology.blocks
 if len(blocks) == 0:
 return None
 if self._index < max(blocks.keys()):
 return blocks[min([b for b in blocks.keys() if b > self._index])]
 # Else:
 return None

def _updateNeighbors(self):
""" Update leftIndex and rightIndex, as well as previous neighbors """
blocks = self._topology.blocks
First update your former neighbor's left and right values
If there was an item to the left, it needs a new right hand value
if len(blocks) > 0:
update old neighbors
if not isinstance(self._leftBlock,types.NoneType):
if self._leftBlock.index < max(blocks.keys()):
self._leftBlock._rightBlock = blocks[min([b for b in blocks.keys() if b > self._leftBlock.index])]
else:
self._leftBlock._rightBlock = None

if not isinstance(self._rightBlock,types.NoneType):
if self._rightBlock.index > min(blocks.keys()):
self._rightBlock._leftBlock = blocks[max([b for b in blocks.keys() if b < self._rightBlock.index])]

else:
self._rightBlock._leftBlock = None

Set my current neighbors
if isinstance(self._index,types.NoneType):
self._leftBlock = None
self._rightBlock = None
else:
Calculate new values of left and right blocks
update the right value of the left block and left value of the right block
If you are on an edge, leave the value at None
if self._index > min(blocks.keys()):
self._leftBlock = blocks[max([b for b in blocks.keys() if b < self._index])]
self._leftBlock._rightBlock = self
else:
self._leftBlock = None

if self._index < max(blocks.keys()):
self._rightBlock = blocks[min([b for b in blocks.keys() if b > self._index])]
self._rightBlock._leftBlock = self
else:
self._rightBlock = None

 def __get_index(self):
 return self._index
 def __set_index(self,value):
 """ Check to see if a block with the same index already exists """
 if self._index == value:
 return
 if isinstance(value,types.NoneType):
 self._index = value
self._updateNeighbors()
 return
 allVertices = self._topology._vertices
 allBlocks = [v.block for v in allVertices]
 if value in [b.index for b in allBlocks]:
 raise Exception("Block with index %r already exists!"%value)
 self._index = value
self._updateNeighbors()

 index = property(__get_index,__set_index)

[docs]class Band(object):
 """ Visual Representation of an Edge.
 An Edge can have up to two Bands - one with positive altitude and one negative.
 Visual Parameters
 Rank - the Z drawing order (higher values closer to user)
 Altitude - the distance above or below the Block ribbon
 """
 def __init__(self,edge,isPositive):
 self._edge = typecheck(edge,Edge,"edge")
 self._topology = edge._topology
 # Visual Properties
 self._isPositive = isPositive
 self._altitude = None
 self._rank = None

 def _release(self):
 """ Release all dependent references this object holds """
 logging.debug("removing band %r"%self)
 logging.debug("... removing edge reference")
 self._edge = None
 logging.debug("... removing reference to topology")
 self._topology = None

 @property
 def emitters(self):
 """ returns a list of source snaps that reach this band """
 # We compare the position of each source against the position of the furthest
 # away sink (depending on pos/neg altitude).
 sinkBlockIndices = [s.block.index for s in self.edge.sinks]
 sinkBlockIndices = filter(lambda x: isinstance(x,int), sinkBlockIndices)
 if len(sinkBlockIndices) < 1:
 return list()
 sources = list()
 # Find Sources if this is a Positive Bands
 if self._altitude and self._altitude > 0:
 maxSinkIndex = max(sinkBlockIndices)
 sources = filter(lambda src: src.block.index < maxSinkIndex, self.edge.sources)
 # Find Sources if this is a Negative Bands
 elif self._altitude and self._altitude < 0:
 minSinkIndex = min(sinkBlockIndices)
 sources = filter(lambda src: src.block.index >= minSinkIndex, self.edge.sources)
 return [s.snap for s in sources]

 @property
 def collectors(self):
 """ returns list of sink snaps that reach this band """
 sourceBlockIndices = [s.block.index for s in self.edge.sources]
 sourceBlockIndices = filter(lambda x: isinstance(x,int), sourceBlockIndices)
 if len(sourceBlockIndices) < 1:
 return list()
 sinks = list()
 # Find Sinks if this is a Positive Bands
 if self._altitude and self._altitude > 0:
 minSourceIndex = min(sourceBlockIndices)
 sinks = filter(lambda sink: sink.block.index > minSourceIndex, self.edge.sinks)
 # Find Sinks if this is a Negative Bands
 elif self._altitude and self._altitude < 0:
 maxSourceIndex = max(sourceBlockIndices)
 sinks = filter(lambda sink: sink.block.index <= maxSourceIndex, self.edge.sinks)
 return [s.snap for s in sinks]

[docs] def isUsed(self):
 """ returns true if this band is needed to represent connections on
 its edge, else false. This is determined by checking if any sources
 reach this band.
 """
 # This should be equivalent to checking if any sinks reach this band,
 # but this has not been tested or proven.
sinkBlockIndices = [s.block.index for s in self.edge.sinks if isinstance(s.block.index,int)]
sourceBlockIndices = [s.block.index for s in self.edge.sources if isinstance(s.block.index,int)]
 sinkBlockIndices = [s.block.index for s in self.collectors]
 sourceBlockIndices = [s.block.index for s in self.emitters]
 if len(sinkBlockIndices) == 0 or len(sourceBlockIndices) == 0:
 return False
 # If positive and there is a sink to the left of any source
 if self._isPositive and max(sinkBlockIndices) > min(sourceBlockIndices):
 return True
 elif (not self._isPositive) and min(sinkBlockIndices) <= max(sourceBlockIndices):
 return True
 else:
 return False

 @property
 def isPositive(self):
 return self._isPositive

 @property
 def topBand(self):
 """ Returns the band with the next highest altitude, or None if either
 there is no band above this one or the block ribbon is above it.
 Bands for which isUsed() is false are skipped over.
 """
 if not isinstance(self._altitude,int):
 return None
 bands = self._topology.bands
 available = [altitude for altitude in bands.keys() if altitude > self._altitude]
 if self._isPositive:
 # TODO: we probably dont need band._isPositive if altitude > self._altitude
 available = [altitude for altitude in available if bands[altitude]._isPositive and bands[altitude].isUsed()]
 else:
 available = [altitude for altitude in available if (not bands[altitude]._isPositive) and bands[altitude].isUsed()]
 return bands[min(available)] if len(available) > 0 else None

posMax = max([band.altitude for band in bands.values() if band.isUsed()])
negVals = [altitude for altitude in bands.keys() if altitude < 0]
negMax = max(negVals) if len(negVals) > 0 else 0
if (self._isPositive and self._altitude < posMax) or ((not self._isPositive) and self._altitude < negMax) :
return bands[min([a for a in bands.keys() if a > self._altitude])]
return None

 @property
 def bottomBand(self):
 """ Returns the band with the next lowest altitude, or None if either
 there is no band below this one or the block ribbon is below it.
 Bands for which isUsed() is false are skipped over.
 """
 if not isinstance(self._altitude,int):
 return None
 bands = self._topology.bands
 available = [altitude for altitude in bands.keys() if altitude < self._altitude]
 if self._isPositive:
 available = [altitude for altitude in available if bands[altitude]._isPositive and bands[altitude].isUsed()]
 else:
 available = [altitude for altitude in available if (not bands[altitude]._isPositive) and bands[altitude].isUsed()]
 return bands[max(available)] if len(available) > 0 else None

posVals = [altitude for altitude in bands.keys() if altitude > 0]
posMin = min(posVals) if len(posVals) > 0 else 0
negMin = min(bands.keys())
if (self._isPositive and self._altitude > posMin) or ((not self._isPositive) and self._altitude > negMin):
return bands[max([a for a in bands.keys() if a < self._altitude])]
return None

 def __get_edge(self):
 return self._edge
 def __get_rank(self):
 return self._rank
 def __set_rank(self,val):
 if self._rank == val: return
 # Allow "unsetting" rank
 if val is None:
 self._rank = val
 return
 typecheck(val,int,"val")
 if val < 0:
 raise Exception("Rank must be >= 0, received %d"%val)
 # Make sure the rank is unique among all bands of the same altitude
 allBands = [edge.posBand if self.isPositive else edge.negBand for edge in self._topology._edges]
 if val in [b._rank for b in allBands]:
 raise Exception("%s Band with rank %d already exists!"%("Positive" if self._isPositive else "Negative",val))
 self._rank = val

 def __get_altitude(self):
 return self._altitude
 def __set_altitude(self,value):
 if self._altitude == value:
 return
 # Always allow "unsetting" value
 if value is None:
 self._altitude = value
 return
 if self._isPositive and value <= 0:
 raise Exception("Altitude must be positive")
 if (not self._isPositive) and value >= 0:
 raise Exception("Altitude must be negative")
 # Make sure the altitude is unique among all bands
 allEdges = self._topology._edges
 allBands = filter(lambda x: isinstance(x,Band),[band for edge in allEdges for band in [edge.posBand,edge.negBand]])
 if value in [b.altitude for b in allBands]:
 raise Exception("Band with altitude %d already exists!"%value)
 self._altitude = value

 edge = property(__get_edge)
 rank = property(__get_rank,__set_rank)
 altitude = property(__get_altitude,__set_altitude)

[docs]class Snap(object):
 """ Visual Representation of a Source or Sink.
 Snaps are layedout horizontally inside of an Emitter or Collector of a Block.
 A Snap provides a mapping between a Source/Sink and one or two Bands associated with a single Edge.
 Visual Layout Paramters
 Order - 0-indexed order in which to draw snaps within an Emitter or Collector
 """
 def __init__(self,connection):
 self._connection = typecheck(connection,Connection,"connection")
 self._order = None

[docs] def snapkey(self):
 """ generates the snapkey for this snap """
 return gen_snapkey(self.block.index, "collector" if self.isSink() else "emitter", self._order)

 def _release(self):
 """ This should only be called by a Connection.release() """
 logging.debug("releasing snap %r"%self)
 # the connection should
 logging.debug("... removing reference to connection")
 self._connection = None
print "... removing reference to topology"
self._topology = None

 @property
 def posBandLink(self):
 """ returns the positive band connection - if it exists.
 Just because a positive band link exists does not mean that it should
 be drawn. The check for if we should draw the connection happens at drawing
 time when we decide if we should be using positive or negative"""
 pBand = self._connection.edge._pBand
 # If you are a source snap and there is a sink snap to the right, you connect to this band
 if self.isSource():
 indices = [sink.block.index for sink in pBand.collectors]
 if len(indices) > 0 and max(indices) > self.block.index:
 return pBand
 # if you are a sink snap and there is a source snap to your left, connect to this band
 elif self.isSink():
 indices =[source.block.index for source in pBand.emitters]
 if len(indices) > 0 and min(indices) < self.block.index:
 return pBand
 return None

 @property
 def negBandLink(self):
 """ returns the negative band connection - if it exists. See posBand for
 more details."""
 nBand = self._connection.edge._nBand
 # If you are a source snap and there is a sink snap to the left, connect to this band
 if self.isSource():
 indices = [sink.block.index for sink in nBand.collectors]
 if len(indices) > 0 and min(indices) <= self.block.index:
 return nBand
 # if you are a sink snap and there is a source snap to the right, connect to this band
 elif self.isSink():
 indices = [source.block.index for source in nBand.emitters]
 if len(indices) > 0 and max(indices) >= self.block.index:
 return nBand
 return None

 @property
 def block(self):
 return self._connection.vertex.block

 @property
 def connection(self):
 return self._connection

 @property
 def bandLinks(self):
 return filter(lambda x: isinstance(x,Band), [self.posBandLink,self.negBandLink])

 def isSource(self):
 return isinstance(self._connection,Source)

 def isSink(self):
 return isinstance(self._connection,Sink)

[docs] def isLinked(self):
 """ returns true if this snap is connected to at least one sink, else false. """
 return True if self.posBandLink or self.negBandLink else False

[docs] def isUsed(self):
 """ returns true if topology.hide_disconnected_snaps is True and isLinked is True,
 or if topology.hide_disconnected_snaps is false. Otherwise, return true.
 """
 if self._connection._topology.hide_disconnected_snaps:
 return True if self.isLinked() else False
 else:
 return True

 @property
 def leftSnap(self):
 """ Returns the snap directly to the left of this snap within either an
 emitter or collector. Returns None if this is leftmost snap.
 """
 snaps = self.block.emitter if self.isSource() else self.block.collector
 if isinstance(self._order,int) and self._order > min(snaps.keys()):
 return snaps[max([s for s in snaps.keys() if s < self._order])]
 else:
 return None

 @property
 def rightSnap(self):
 """ Returns the snap directly to the right of this snap within either
 an emitter or collector. Returns None if this is rightmost snap.
 """
 snaps = self.block.emitter if self.isSource() else self.block.collector
 if isinstance(self._order,int) and self._order < max(snaps.keys()):
 return snaps[min([s for s in snaps.keys() if s > self._order])]
 else:
 return None

 def __get_order(self):
 return self._order
 def __set_order(self,value):
 """ Check to see if a snap with the same order already exists """
 if self._order == value:
 return
 # Always allow "unsetting values"
 if value is None:
 self._order = value
 return
 snaps = list()
 # Check to see if the order value exists in this emitter or collector
 if isinstance(self._connection,Source):
 snaps = [e.snap for e in self._connection.vertex.sources]
 if isinstance(self._connection,Sink):
 snaps = [e.snap for e in self._connection.vertex.sinks]
 orders = filter(lambda x: not isinstance(x,types.NoneType),[s.order for s in snaps])
 if value in orders:
 raise Exception("Order value %d already exists!"%value)
 # Update value
 self._order = value

 order = property(__get_order,__set_order)

 © Copyright 2014, Open Source Robotics Foundation.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		diarc 0.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Open Source Robotics Foundation.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

diarc.html

 Navigation

 		
 index

 		
 modules |

 		diarc 0.3.0 documentation »

diarc

import diarc

Define a graph with 3 vertices (v1, v2, and v3), and two edges. Edge e1 has a
single input from v1 and two outputs to v2 and v3. Edge e2 has two inputs from
v1 and v2 and a single output to v3.

t = diarc.Topology()
v1 = diarc.Vertex(t)
v2 = diarc.Vertex(t)
v3 = diarc.Vertex(t)
e1 = diarc.Edge(t)
src1 = diarc.Source(t,v1,e1)
sink1 = diarc.Sink(t,v2,e1)
sink2 = diarc.Sink(t,v3,e1)
e2 = diarc.Edge(t)
src2 = diarc.Source(t,v1,e2)
src3 = diarc.Source(t,v2,e2)
sink3 = diarc.Sink(t,v3,e2)

Define visual characteristics describing how to draw graph.
Assign the order in which Vertices are displayed. Vertices are represented by
visual objects called blocks. Values must be unique and lower values will be
displayed to the left.

v1.block.index = 1
v2.block.index = 2
v3.block.index = 3

Edges are represented at visual objets called bands. Since edges must point
from left to right above the vertices and right to left below them, each edge
must define two band objects corresponding to the two possible positions the
edge could be in. The position above the vertices is represented by the positive
band (posBand) while the position below by the negative band (negBand). Bands
are drawn in an order defined by their altitude. Positive bands have positive
altitudes and negative bands have negative altitudes. The higher the altitude
the further towards the top of the screen the band is drawn. Altitude 0 is
reserved for the line of Vertices.
e1.posBand.altitude = 1
e1.negBand.altitude = -1
e2.posBand.altitude = 2
e2.negBand.altitude = -2

Since edges can overlap we need to define the drawing order in which to layer
them. This is defined by a band’s rank, with higher values being drawn on top
of lower values. Rank values must be unique among posBand’s and negBand’s
seperately, and negative values are not allowed.
e1.posBand.rank = 1
e1.negBand.rank = 1
e2.posBand.rank = 2
e2.negBand.rank = 2

To display the Visualization
from diarc.qt_view import QtView
from diarc.base_adapter import BaseAdapter
view = QtView()
adapter = BaseAdapter(t, view)
adapter._update_view()

		diarc

		Topology
Vertex
Edge
Source
Sink
Block
Band
Snap
Adapter
View

 © Copyright 2014, Open Source Robotics Foundation.
 Created using Sphinx 1.3.1.

_static/minus.png

