

    
      
          
            
  
Diagnostics - A toolbox for analyzing diagnostic data







diagnostics is a Python module designed to make analysis of diagnostic data easier.
It comes with a couple of clear data-structures with automatic quality checks, easy
Boolean logic operators and built-in bookkeeping. To top that off, it’s built on
numpy! [https://www.numpy.org]

diagnostics is free to use (MIT license [https://github.com/tim00w/diagnostics/blob/master/LICENSE]),
open source (GitHub [https://github.com/tim00w/diagnostics]),
works with python 3.5+ and is available for Linux, OSX, and Windows.
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Introduction

This is the Introduction! more info will come soon.


Features

I’ll sum these up at some point




Why should I use diagnostics instead of X?

Because it’s way cooler, you know.







          

      

      

    

  

    
      
          
            
  
Getting started


Note

You can also try out this quickstart as a jupyter notebook on
Binder [https://mybinder.org/v2/gh/tim00w/diagnostics/master?filepath=examples/example.ipynb]!




Installation

To install diagnostics, please use the following command:

pip install pydiagnostics





Alternatively, you can clone the repository and use setup.py to
install:

git clone https://github.com/tim00w/diagnostics.git
cd diagnostics
python setup.py install








Basic usage


TimeSeries

Diagnostic events are derived from from real occurances. For instance,
your phone will probably generate a message (event) if your battery is
running low (percentage below threshold value). The diagnostics library
has a TimeSerie class that can capture these occurances.

For example, a TimeSerie representing your battery life, which
drains 0.01% each second:

import numpy as np
import diagnostics as ds

battery_life = ds.TimeSerie(np.arange(100, 0, -0.01), fs=1)





the first argument is consists of a data array (both list() and
numpy.array() are supported), and additionally you can provide some
keyword parameters. Here we’ve provided the sample frequency (fs)
which is 1 Hz, because we said our battery drains 0.01% each second. In
this particular case we could’ve left fs out, since the default
value of fs is also 1.

Now that we’ve got our data, we can easily visualize this:

battery_life.plot()





Which will show the following matplotlib figure:

[image: ../_images/battery_life1.png]
There are other keyword parameters that we can use as well, such as t0
(start time of TimeSerie in posixtime or a datetime object), and
a name (default is an empty string).

from datetime import datetime

battery_life = ds.TimeSerie(np.arange(100, 0, -0.01),
                            fs=1,
                            t0=datetime(2019,1,1,8,5), # 2019-01-01 08:05
                            name='battery life')





Now we’ve got our battery life set to a specific (start-)datetime, and gave it a
name. Both will come in handy later.




BooleanTimeSeries

Let’s be honest, the battery percentage of your phone does not really
matter to you, unless it goes below a certain threshold. Luckily for us,
our TimeSerie can easily be converted to a BooleanTimeSerie,
which only contains boolean values of when the percentage reaches below
25%:

battery_below25 = battery_life <= 25

battery_below25.plot(as_dt=True, show=True)





Now that’s easy! We can see that our battery goes below 25% around 10:10:

[image: ../_images/battery_below25.png]



StateChangeArray

You could argue that our BooleanTimeSerie contains a lot of data
points with the same value. I’d agree with you, and therefore introduce
a class that only keeps track of the changes in data points, the
StateChangeArray:

battery_low_state = battery_below25.to_statechangearray()





Alternatively, we can create a StateChangeArray (or
BooleanStateChangeArray, you can probably guess the difference
:smile:) from scratch:

s = ds.StateChangeArray([1, 4, 8, 0], t=[1,2,4,8], name='my state')
b = ds.BooleanStateChangeArray([True, False, True, False], t=[1,3,6,9], name='b')

s.plot(show=True)





[image: ../_images/my_state1.png]
Both the data array as the values for time (t) can be list() or
np.array(). When a list of datetime objects is given, they are
converted to posixtime. Otherwise, the input is considered as posixtime.
For now it is not possible to give a datetimearray as an input,
but this wil be implemented in the near future.




Comparing TimeSeries and StateChangeArrays

There are more classes besides TimeSeries and StateChangearrays, each
with their own advantages and disadvantages. The power of this module
lies in clear transformations from one class to another (we’ve already
shown the TimeSerie.to_statechangearray() method), and the
comparison of multiple classes.

To start with TimeSeries, if two (or more) have the same array_length,
t0 and fs, we can easily do calculations with them!

# create two TimeSerie objects that we'll combine
a = ds.TimeSerie(np.sin(np.linspace(0, 2*np.pi, 100)), t0=0, fs=1, name='a')
b = ds.TimeSerie(np.sin(2* np.linspace(0, 2*np.pi, 100)), t0=0, fs=1, name='b')

# It's this easy!
c = a + b





[image: ../_images/timeserie_add.png]
# We're interested in the more extreme values, lets create TimeSeries for these:
d = c <= -1
e = c >=  1

# we'll name them to keep our bookkeeping up to date
d.name = 'c <= -1'
e.name = 'c >= 1'

# and find when one of the above conditions is True!
f = d | e

# when performing boolean operators ('~', '^', '&', '|'), the library
# does it's own bookkeeping:
print(f.name)
f.plot(show=True)





[image: ../_images/timeserie_or.png]
Comparing StateChangeArrays would normally be a bit tricky, since the
data is most likely non-linearly spaced. This means that we can’t just
perform vectorized boolean operations, but we’ll need to combine both
data values as well as their respective points in time.

Luckily for us, the StateChangeArray has this functionality built in:

a = ds.StateChangeArray([True, False, True, False], t=[2,4,6,8], name='a')
b = ds.StateChangeArray([True, False, True, False], t=[3,5,7,9], name='b')

c = a | b
d = a & b
e = ~a
f = a ^ a
g = a ^ e

a.plot(other=b)
c.plot(other=d)





[image: ../_images/statechangearray_ab.png]
[image: ../_images/statechangearray_cd.png]
That’s pretty great right?


Note

plotting is still an experimental feature, and the API/implementation
might change in the near future.






Reports & Events

WIP






What to read next

I’m not sure either, and I’m the one that has to write it first!







          

      

      

    

  

    
      
          
            
  
Advanced Usage

For now there are no advanced usages! It’s an easy library :)





          

      

      

    

  

    
      
          
            
  
Changelog

Everything is still rapidly changing, after a 1.0 release this will become important

WIP





          

      

      

    

  

    
      
          
            
  
Troubleshooting

Honestly, what can go wrong?





          

      

      

    

  

    
      
          
            
  
FAQ

Ask away!





          

      

      

    

  

    
      
          
            
  
Contributing

For now, just yours truly!
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diagnostics.classes module
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Module contents
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