

 Navigation

 	
 index

 	dhrpdocs latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a docs/index.rst or docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	dhrpdocs latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 terms/container.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Container

Introduction

[image:]

Once you start a process in Docker from an Image, Docker
fetches the image and its Parent Image, and repeats the
process until it reaches the Base Image. Then
the Union File System adds a read-write layer on top. That
read-write layer, plus the information about its Parent
Image
and some additional information like its unique id, networking
configuration, and resource limits is called a container.

Container state

Containers can change, and so they have state. A container may be
running or exited.

When a container is running, the idea of a “container” also includes a
tree of processes running on the CPU, isolated from the other processes
running on the host.

When the container is exited, the state of the file system and its exit
value is preserved. You can start, stop, and restart a container. The
processes restart from scratch (their memory state is not preserved
in a container), but the file system is just as it was when the
container was stopped.

You can promote a container to an Image with docker commit.
Once a container is an image, you can use it as a parent for new containers.

Container IDs

All containers are identified by a 64 hexadecimal digit string
(internally a 256bit value). To simplify their use, a short ID of the
first 12 characters can be used on the command line. There is a small
possibility of short id collisions, so the docker server will always
return the long ID.

 © Copyright .
 Created using Sphinx 1.3.1.

terms/registry.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Registry

Introduction

A Registry is a hosted service containing
repositories of
images which responds to the Registry API.

The default registry can be accessed using a browser at
Docker Hub [https://hub.docker.com] or using the
docker search command.

Further reading

For more information see Working with
Repositories

 © Copyright .
 Created using Sphinx 1.3.1.

project/work-issue.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Work on your issue

The work you do for your issue depends on the specific issue you picked.
This section gives you a step-by-step workflow. Where appropriate, it provides
command examples.

However, this is a generalized workflow, depending on your issue you may repeat
steps or even skip some. How much time the work takes depends on you — you
could spend days or 30 minutes of your time.

How to work on your local branch

Follow this workflow as you work:

		Review the appropriate style guide.

If you are changing code, review the coding style guide. Changing documentation? Review the
documentation style guide.

		Make changes in your feature branch.

Your feature branch you created in the last section. Here you use the
development container. If you are making a code change, you can mount your
source into a development container and iterate that way. For documentation
alone, you can work on your local host.

Make sure you don’t change files in the vendor directory and its
subdirectories; they contain third-party dependency code. Review if you forgot the details of
working with a container.

		Test your changes as you work.

If you have followed along with the guide, you know the make test target
runs the entire test suite and make docs builds the documentation. If you
forgot the other test targets, see the documentation for testing both code and
documentation.

		For code changes, add unit tests if appropriate.

If you add new functionality or change existing functionality, you should
add a unit test also. Use the existing test files for inspiration. Aren’t
sure if you need tests? Skip this step; you can add them later in the
process if necessary.

		Format your source files correctly.

 		File type
 		How to format

 		.go
 		

 Format .go files using the gofmt command.
 For example, if you edited the `docker.go` file you would format the file
 like this:

 $ gofmt -s -w docker.go

 Most file editors have a plugin to format for you. Check your editor's
 documentation.

 		.md and non-.go files
 		Wrap lines to 80 characters.

		List your changes.

 $ git status
 On branch 11038-fix-rhel-link
 Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: docs/installation/mac.md
 modified: docs/installation/rhel.md

The status command lists what changed in the repository. Make sure you see
the changes you expect.

		Add your change to Git.

 $ git add docs/installation/mac.md
 $ git add docs/installation/rhel.md

		Commit your changes making sure you use the -s flag to sign your work.

 $ git commit -s -m "Fixing RHEL link"

		Push your change to your repository.

 $ git push origin 11038-fix-rhel-link
 Username for 'https://github.com': moxiegirl
 Password for 'https://moxiegirl@github.com':
 Counting objects: 60, done.
 Compressing objects: 100% (7/7), done.
 Writing objects: 100% (7/7), 582 bytes | 0 bytes/s, done.
 Total 7 (delta 6), reused 0 (delta 0)
 To https://github.com/moxiegirl/docker.git
 * [new branch] 11038-fix-rhel-link -> 11038-fix-rhel-link
 Branch 11038-fix-rhel-link set up to track remote branch 11038-fix-rhel-link from origin.

Review your branch on GitHub

After you push a new branch, you should verify it on GitHub:

		Open your browser to GitHub.

		Go to your Docker fork.

		Select your branch from the dropdown.

[image: Find branch]

		Use the “Compare” button to compare the differences between your branch and master.

Depending how long you’ve been working on your branch, your branch maybe
behind Docker’s upstream repository.

		Review the commits.

Make sure your branch only shows the work you’ve done.

Pull and rebase frequently

You should pull and rebase frequently as you work.

		Return to the terminal on your local machine and checkout your
feature branch in your local docker-fork repository.

		Fetch any last minute changes from docker/docker.

 $ git fetch upstream master
 From github.com:docker/docker
 * branch master -> FETCH_HEAD

		Start an interactive rebase.

 $ git rebase -i upstream/master

		Rebase opens an editor with a list of commits.

 pick 1a79f55 Tweak some of the other text for grammar
 pick 53e4983 Fix a link
 pick 3ce07bb Add a new line about RHEL

		Replace the pick keyword with squash on all but the first commit.

 pick 1a79f55 Tweak some of the other text for grammar
 squash 53e4983 Fix a link
 squash 3ce07bb Add a new line about RHEL

After you save the changes and quit from the editor, git starts
the rebase, reporting the progress along the way. Sometimes
your changes can conflict with the work of others. If git
encounters a conflict, it stops the rebase, and prints guidance
for how to correct the conflict.

		Edit and save your commit message.

 $ git commit -s

Make sure your message includes your signature.

		Force push any changes to your fork on GitHub.

 $ git push -f origin 11038-fix-rhel-link

Where to go next

At this point, you should understand how to work on an issue. In the next
section, you learn how to make a pull request.

 © Copyright .
 Created using Sphinx 1.3.1.

project/set-up-git.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Configure Git for contributing

Work through this page to configure Git and a repository you’ll use throughout
the Contributor Guide. The work you do further in the guide, depends on the work
you do here.

Fork and clone the Docker code

Before contributing, you first fork the Docker code repository. A fork copies
a repository at a particular point in time. GitHub tracks for you where a fork
originates.

As you make contributions, you change your fork’s code. When you are ready,
you make a pull request back to the original Docker repository. If you aren’t
familiar with this workflow, don’t worry, this guide walks you through all the
steps.

To fork and clone Docker:

		Open a browser and log into GitHub with your account.

		Go to the docker/docker repository.

		Click the “Fork” button in the upper right corner of the GitHub interface.

[image: Branch Signature]

GitHub forks the repository to your GitHub account. The original
docker/docker repository becomes a new fork YOUR_ACCOUNT/docker under
your account.

		Copy your fork’s clone URL from GitHub.

GitHub allows you to use HTTPS or SSH protocols for clones. You can use the
git command line or clients like Subversion to clone a repository.

[image: Copy clone URL]

This guide assume you are using the HTTPS protocol and the git command
line. If you are comfortable with SSH and some other tool, feel free to use
that instead. You’ll need to convert what you see in the guide to what is
appropriate to your tool.

		Open a terminal window on your local host and change to your home directory.

 $ cd ~

In Windows, you’ll work in your Boot2Docker window instead of Powershell or
a cmd window.

		Create a repos directory.

 $ mkdir repos

		Change into your repos directory.

 $ cd repos

		Clone the fork to your local host into a repository called docker-fork.

 $ git clone https://github.com/moxiegirl/docker.git docker-fork

Naming your local repo docker-fork should help make these instructions
easier to follow; experienced coders don’t typically change the name.

		Change directory into your new docker-fork directory.

 $ cd docker-fork

Take a moment to familiarize yourself with the repository’s contents. List
the contents.

Set your signature and an upstream remote

When you contribute to Docker, you must certify you agree with the
Developer Certificate of Origin.
You indicate your agreement by signing your git commits like this:

Signed-off-by: Pat Smith <pat.smith@email.com>

To create a signature, you configure your username and email address in Git.
You can set these globally or locally on just your docker-fork repository.
You must sign with your real name. We don’t accept anonymous contributions or
contributions through pseudonyms.

As you change code in your fork, you’ll want to keep it in sync with the changes
others make in the docker/docker repository. To make syncing easier, you’ll
also add a remote called upstream that points to docker/docker. A remote
is just another project version hosted on the internet or network.

To configure your username, email, and add a remote:

		Change to the root of your docker-fork repository.

 $ cd docker-fork

		Set your user.name for the repository.

 $ git config --local user.name "FirstName LastName"

		Set your user.email for the repository.

 $ git config --local user.email "emailname@mycompany.com"

		Set your local repo to track changes upstream, on the docker repository.

 $ git remote add upstream https://github.com/docker/docker.git

		Check the result in your git configuration.

 $ git config --local -l
 core.repositoryformatversion=0
 core.filemode=true
 core.bare=false
 core.logallrefupdates=true
 remote.origin.url=https://github.com/moxiegirl/docker.git
 remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*
 branch.master.remote=origin
 branch.master.merge=refs/heads/master
 user.name=Mary Anthony
 user.email=mary@docker.com
 remote.upstream.url=https://github.com/docker/docker.git
 remote.upstream.fetch=+refs/heads/*:refs/remotes/upstream/*

To list just the remotes use:

 $ git remote -v
 origin https://github.com/moxiegirl/docker.git (fetch)
 origin https://github.com/moxiegirl/docker.git (push)
 upstream https://github.com/docker/docker.git (fetch)
 upstream https://github.com/docker/docker.git (push)

Create and push a branch

As you change code in your fork, make your changes on a repository branch.
The branch name should reflect what you are working on. In this section, you
create a branch, make a change, and push it up to your fork.

This branch is just for testing your config for this guide. The changes are part
of a dry run, so the branch name will be dry-run-test. To create and push
the branch to your fork on GitHub:

		Open a terminal and go to the root of your docker-fork.

 $ cd docker-fork

		Create a dry-run-test branch.

 $ git checkout -b dry-run-test

This command creates the branch and switches the repository to it.

		Verify you are in your new branch.

 $ git branch
 * dry-run-test
 master

The current branch has an * (asterisk) marker. So, these results shows you
are on the right branch.

		Create a TEST.md file in the repository’s root.

 $ touch TEST.md

		Edit the file and add your email and location.

[image: Add your information]

You can use any text editor you are comfortable with.

		Save and close the file.

		Check the status of your branch.

 $ git status
 On branch dry-run-test
 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 TEST.md

 nothing added to commit but untracked files present (use "git add" to track)

You’ve only changed the one file. It is untracked so far by git.

		Add your file.

 $ git add TEST.md

That is the only staged file. Stage is fancy word for work that Git is
tracking.

		Sign and commit your change.

 $ git commit -s -m "Making a dry run test."
 [dry-run-test 6e728fb] Making a dry run test
 1 file changed, 1 insertion(+)
 create mode 100644 TEST.md

Commit messages should have a short summary sentence of no more than 50
characters. Optionally, you can also include a more detailed explanation
after the summary. Separate the summary from any explanation with an empty
line.

		Push your changes to GitHub.

 $ git push --set-upstream origin dry-run-test
 Username for 'https://github.com': moxiegirl
 Password for 'https://moxiegirl@github.com':

Git prompts you for your GitHub username and password. Then, the command
returns a result.

 Counting objects: 13, done.
 Compressing objects: 100% (2/2), done.
 Writing objects: 100% (3/3), 320 bytes | 0 bytes/s, done.
 Total 3 (delta 1), reused 0 (delta 0)
 To https://github.com/moxiegirl/docker.git
 * [new branch] dry-run-test -> dry-run-test
 Branch dry-run-test set up to track remote branch dry-run-test from origin.

		Open your browser to GitHub.

		Navigate to your Docker fork.

		Make sure the dry-run-test branch exists, that it has your commit, and the
commit is signed.

[image: Branch Signature]

Where to go next

Congratulations, you have finished configuring both your local host environment
and Git for contributing. In the next section you’ll learn how to set up and
work in a Docker development container.

 © Copyright .
 Created using Sphinx 1.3.1.

terms/image.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Image

Introduction

[image:]

In Docker terminology, a read-only Layer is
called an image. An image never changes.

Since Docker uses a Union File System, the
processes think the whole file system is mounted read-write. But all the
changes go to the top-most writeable layer, and underneath, the original
file in the read-only image is unchanged. Since images don’t change,
images do not have state.

[image:]

Parent image

[image:]

Each image may depend on one more image which forms the layer beneath
it. We sometimes say that the lower image is the parent of the upper
image.

Base image

An image that has no parent is a base image.

Image IDs

All images are identified by a 64 hexadecimal digit string (internally a
256bit value). To simplify their use, a short ID of the first 12
characters can be used on the command line. There is a small possibility
of short id collisions, so the docker server will always return the long
ID.

 © Copyright .
 Created using Sphinx 1.3.1.

_images/cool_view.png
ooe 192.168.59.108:48168/cor X

€ - € [[) 192.168.59.108:49166/cool htm wOoBA 4O=

‘This is cool

terms/layer.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Layers

Introduction

In a traditional Linux boot, the kernel first mounts the root File
System as read-only, checks its
integrity, and then switches the whole rootfs volume to read-write mode.

Layer

When Docker mounts the rootfs, it starts read-only, as in a traditional
Linux boot, but then, instead of changing the file system to read-write
mode, it takes advantage of a union
mount [http://en.wikipedia.org/wiki/Union_mount] to add a read-write
file system over the read-only file system. In fact there may be
multiple read-only file systems stacked on top of each other. We think
of each one of these file systems as a layer.

[image:]

At first, the top read-write layer has nothing in it, but any time a
process creates a file, this happens in the top layer. And if something
needs to update an existing file in a lower layer, then the file gets
copied to the upper layer and changes go into the copy. The version of
the file on the lower layer cannot be seen by the applications anymore,
but it is there, unchanged.

Union File System

We call the union of the read-write layer and all the read-only layers a
union file system.

 © Copyright .
 Created using Sphinx 1.3.1.

_images/register_email.png
g
freenode Account Registration = imsax %

freenode <noreply. support@freenode.net> 6:10 PM (15 hours ago)
to moxiegin_ ~

moxiegir_,

In order to complete your account registration, you must type the following
command on IRC:

Jmsg NickServ VERIFY REGISTER moxiegir_ assywinr

‘Thank you for registering your account on the freenode IRC network!

«

@

L]

_images/windows-boot2docker-start.png
/c/Users/ahmetb

export DOCKER_TLS_VERIFY=1
ity export DOCKER_HOST=tcp://192.168.59.103:2376

S

1P address of docker vi:
102.168.59.103

setting environment variables ...
iriting C:\Users\ahmetb\.boot2docker\certs\boot2docker-vm\ca.pem
i \Users\ahmetb\ . boot2docker\certs\boot 2docker-vm\cert .pem
:\Users\ahmetb\ . boot2docker\certs\boot2docker-vm\key . pem
export DOCKER_TLS_VERTFY=1
export DOCKER_HOST=tcp://192.168.59.163:2376
export DOCKER_CERT_PATH="C:\\Users\\ahmetb\\.boot2docker\\certs\\boot2docker-vm'

docker version
lient version: 1.6.6-rc2

lient APT version: 1.18

o version (client): go1.4.2

it commit (client): cSee14
0S/Arch (client): windows/amde4
fserver version: 1.6.6-rc2

it commit (server): cSee149
0S/Arch (server): linux/amde4

_images/register_nic.png
iy auza 4-1-113-10..v86-204.ab0 u ..t as
quit [Excess ¥lood]

[09:33] == kqexg [~kqexge ~ ra.bourg-552-1-113-104.v86-204.abo.wanadoo.fr] has
joined #freenode

[09:33] == mibofra [~mibofra@151.52.133.157] has joined #freenode
[09:33] == 1ily [6ee8fdzblgateway/web/freenode/ip.110.232.253.43] has
#£reenode

[09:33] == jarbuer [580555c98gateway/web/cgi-irc/kiwiirc.con/ip.88.5.
has joined #freenode

[09:33] == Kelvar [~ravlekfunaffiliated/bopert]) has quit [Quit: Ktes
[09:33] == turtlemansan [-turtlemanunaffiliated/turtlemansam] has g
turtle's out!]

[09:33] == 1ily [6ee8fdZbgatevay/web/freenode/ip.110.232.253
#£reenode []

Register your
nickname.

+thomas
+tomaw.

fmsa nickserv moxiegirl REGISTER NsqHqoBQPZh4NHcwuaP mary@docker.com|

_images/hub.png
Search... o Browse Repos Documentation Community Help () docsuser v

Your Recently Updated Repositories

) docsuser v

Yesterday Yesterday 1 month ago
Summary private & repository public
o —— A non-automated
Repositories
Error repository
Starred
e e

oo b oo w
Manage
Settings
Enterprise Licenses Contributed Repositories Starred Repositories

docsorg/private & ox Browse repositories in the Registry
Private Repositories docsorg/public o
I docsorg/test & 0%
(used 1 of 50)
\ -

Activity Feed
Hub Enterprise () + docsuser created the repository docsuser/public 1 month ago

Register here for the
limited early access

versen:

_images/docker-filesystems-debian.png

_images/windows-boot2docker-cmd.png
[c:\>set PATH=%PATHY;"c: \Progran Files (x86)\Git\bin"

c:\>boot2docker start
aiting for VM and Docker daemon to start...

riting C:\Users\ahmetb\.boot2docker\certs\bootadocker-vm\ca.pem
riting C:\Users\ahmetb\.boot2docker\certs\bootadocker-vm\cert.pem
riting C:\Users\ahmetb\.boot2docker\certs\bootadocker-vm\key.pem

o connect the Docker client to the Docker daemon, please set:
1f you are running inside Windows Command Prompt (cmd.exe), copy and paste the
ollowing commands to your terminal to set the environment variables:

set DOCKER_HOST=tcp://192.168.59.163:2376

set DOCKER_CERT_PATH=C: \Users\ahmetb\ .boot2docker\certs\boot2docker-vm

set DOCKER_TLS_VERTFY=1

[1f you are running inside Powershell, copy or paste the following commands
0 your shell or run "boot2docker shellinit | Invoke-Expression” to set the
environment variables

$ENV:DOCKER_HOST = "tcp://192.168.59.103:2376"

$ENV:DOCKER_CERT_PATH = "C:\Users\ahmetb\ .boot2docker\certs\boot2docker-vn"

$Env:DOCKER_TLS_VERTFY

[c:\>set DOCKER_HOST=tcp://192.168.59.163:2376

c:\>set DOCKER_CERT_PATH=C:\Users\ahmetb\ .boot2docker\certs\boot2docker-vm

c:\>set DOCKER_TLS_VERTFY=1

\>docker ps
CREATED

_images/latest_commits.png
Y moxiegirl / docker @unwatch~ 1 deStar 0 YFork 4037

forked rom dockeridockar
Docker - the open-source application container engine http://www.docker.com — Edit
 Code |
13,415 commits 16 branches 86 reloases 787 contributors
11 Pull Requests O
Your recenty pushed branchos:
‘ 1 11038-fix-rhel-link (less than a minute ago) 1) Compare & pull request ‘ 4 Pulse
3 Ly Graphs
¥ branch: master~ | docker / +
This branch is 16 commits bohind docker:master 11 pul Request) Compare | 9 gings
Merge pull request #10831 from MalteJ/ipvé-ndp-proxy =
(B8 itrazetie authored a day ago latest comnit 9324cdace7 [| HTTPSclone UL
. api pass --change changes to the import job 3days ago https://github. con

You can clone with HTTPS, SSH,

_images/git_bash.png
i 'git help git’ to display the help index.
fun ‘31t help Scomand> o display help for specific comands.

_images/include_gcc.png
Edit System Variable

project/software-required.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Get the required software for Linux or OS X

This page explains how to get the software you need to use a Linux or OS X
machine for Docker development. Before you begin contributing you must have:

		a GitHub account

		git

		make

		docker

You’ll notice that go, the language that Docker is written in, is not listed.
That’s because you don’t need it installed; Docker’s development environment
provides it for you. You’ll learn more about the development environment later.

Get a GitHub account

To contribute to the Docker project, you will need a GitHub account. A free account is
fine. All the Docker project repositories are public and visible to everyone.

You should also have some experience using both the GitHub application and git
on the command line.

Install git

Install git on your local system. You can check if git is on already on your
system and properly installed with the following command:

$ git --version

This documentation is written using git version 2.2.2. Your version may be
different depending on your OS.

Install make

Install make. You can check if make is on your system with the following
command:

$ make -v

This documentation is written using GNU Make 3.81. Your version may be different
depending on your OS.

Install or upgrade Docker

If you haven’t already, install the Docker software using the
instructions for your operating system.
If you have an existing installation, check your version and make sure you have
the latest Docker.

To check if docker is already installed on Linux:

$ docker --version
Docker version 1.5.0, build a8a31ef

On Mac OS X or Windows, you should have installed Docker Toolbox which includes
Docker. You’ll need to verify both Docker Machine and Docker. This
documentation was written on OS X using the following versions.

$ docker-machine --version
docker-machine version 0.3.0 (0a251fe)

$ docker --version
Docker version 1.7.0, build a8a31ef

Linux users and sudo

This guide assumes you have added your user to the docker group on your system.
To check, list the group’s contents:

$ getent group docker
docker:x:999:ubuntu

If the command returns no matches, you have two choices. You can preface this
guide’s docker commands with sudo as you work. Alternatively, you can add
your user to the docker group as follows:

$ sudo usermod -aG docker ubuntu

You must log out and log back in for this modification to take effect.

Where to go next

In the next section, you’ll learn how to set up and configure Git for
contributing to Docker.

 © Copyright .
 Created using Sphinx 1.3.1.

project/find-an-issue.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Find and claim an issue

On this page, you choose what you want to work on. As a contributor you can work
on whatever you want. If you are new to contributing, you should start by
working with our known issues.

Understand the issue types

An existing issue is something reported by a Docker user. As issues come in,
our maintainers triage them. Triage is its own topic. For now, it is important
for you to know that triage includes ranking issues according to difficulty.

Triaged issues have one of these labels:

 		Level
 		Experience level guideline

 		exp/beginner
 		You have made less than 10 contributions in your life time to any open source project.

 		exp/novice
 		You have made more than 10 contributions to an open source project or at least 5 contributions to Docker.

 		exp/proficient
 		You have made more than 5 contributions to Docker which amount to at least 200 code lines or 1000 documentation lines.

 		exp/expert
 		You have made less than 20 commits to Docker which amount to 500-1000 code lines or 1000-3000 documentation lines.

 		exp/master
 		You have made more than 20 commits to Docker and greater than 1000 code lines or 3000 documentation lines.

As the table states, these labels are meant as guidelines. You might have
written a whole plugin for Docker in a personal project and never contributed to
Docker. With that kind of experience, you could take on an exp/expert or exp/master level task.

Claim a beginner or novice issue

In this section, you find and claim an open documentation lines issue.

		Go to the docker/docker repository.

		Click on the “Issues” link.

A list of the open issues appears.

[image: Open issues]

		Look for the exp/beginner items on the list.

		Click on the “labels” dropdown and select exp/beginner.

The system filters to show only open exp/beginner issues.

		Open an issue that interests you.

The comments on the issues can tell you both the problem and the potential
solution.

		Make sure that no other user has chosen to work on the issue.

We don’t allow external contributors to assign issues to themselves. So, you
need to read the comments to find if a user claimed the issue by leaving a
#dibs comment on the issue.

		When you find an open issue that both interests you and is unclaimed, add a
#dibs comment.

[image: Easy issue]

This example uses issue 11038. Your issue # will be different depending on
what you claimed. After a moment, Gordon the Docker bot, changes the issue
status to claimed.

		Make a note of the issue number; you’ll need it later.

Sync your fork and create a new branch

If you have followed along in this guide, you forked the docker/docker
repository. Maybe that was an hour ago or a few days ago. In any case, before
you start working on your issue, sync your repository with the upstream
docker/docker master. Syncing ensures your repository has the latest
changes.

To sync your repository:

		Open a terminal on your local host.

		Change directory to the docker-fork root.

 $ cd ~/repos/docker-fork

		Checkout the master branch.

 $ git checkout master
 Switched to branch 'master'
 Your branch is up-to-date with 'origin/master'.

Recall that origin/master is a branch on your remote GitHub repository.

		Make sure you have the upstream remote docker/docker by listing them.

 $ git remote -v
 origin https://github.com/moxiegirl/docker.git (fetch)
 origin https://github.com/moxiegirl/docker.git (push)
 upstream https://github.com/docker/docker.git (fetch)
 upstream https://github.com/docker/docker.git (push)

If the upstream is missing, add it.

 $ git remote add upstream https://github.com/docker/docker.git

		Fetch all the changes from the upstream master branch.

 $ git fetch upstream master
 remote: Counting objects: 141, done.
 remote: Compressing objects: 100% (29/29), done.
 remote: Total 141 (delta 52), reused 46 (delta 46), pack-reused 66
 Receiving objects: 100% (141/141), 112.43 KiB | 0 bytes/s, done.
 Resolving deltas: 100% (79/79), done.
 From github.com:docker/docker
 * branch master -> FETCH_HEAD

This command says get all the changes from the master branch belonging to
the upstream remote.

		Rebase your local master with the upstream/master.

 $ git rebase upstream/master
 First, rewinding head to replay your work on top of it...
 Fast-forwarded master to upstream/master.

This command applies all the commits from the upstream master to your local
master.

		Check the status of your local branch.

$ git status
On branch master
Your branch is ahead of 'origin/master' by 38 commits.
 (use "git push" to publish your local commits)
nothing to commit, working directory clean

Your local repository now has all the changes from the upstream remote. You
need to push the changes to your own remote fork which is origin master.

		Push the rebased master to origin master.

 $ git push origin master
 Username for 'https://github.com': moxiegirl
 Password for 'https://moxiegirl@github.com':
 Counting objects: 223, done.
 Compressing objects: 100% (38/38), done.
 Writing objects: 100% (69/69), 8.76 KiB | 0 bytes/s, done.
 Total 69 (delta 53), reused 47 (delta 31)
 To https://github.com/moxiegirl/docker.git
 8e107a9..5035fa1 master -> master

		Create a new feature branch to work on your issue.

Your branch name should have the format XXXX-descriptive where XXXX is
the issue number you are working on. For example:

 $ git checkout -b 11038-fix-rhel-link
 Switched to a new branch '11038-fix-rhel-link'

Your branch should be up-to-date with the upstream/master. Why? Because you
branched off a freshly synced master. Let’s check this anyway in the next
step.

		Rebase your branch from upstream/master.

 $ git rebase upstream/master
 Current branch 11038-fix-rhel-link is up to date.

At this point, your local branch, your remote repository, and the Docker
repository all have identical code. You are ready to make changes for your
issue.

Where to go next

At this point, you know what you want to work on and you have a branch to do
your work in. Go onto the next section to learn how to work on your
changes.

 © Copyright .
 Created using Sphinx 1.3.1.

project/coding-style.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Coding style checklist

This checklist summarizes the material you experienced working through make a
code contribution and advanced
contributing. The checklist applies to both
program code and documentation code.

Change and commit code

		Fork the docker/docker repository.

		Make changes on your fork in a feature branch. Name your branch XXXX-something
where XXXX is the issue number you are working on.

		Run gofmt -s -w file.go on each changed file before
committing your changes. Most editors have plug-ins that do this automatically.

		Update the documentation when creating or modifying features.

		Commits that fix or close an issue should reference them in the commit message
Closes #XXXX or Fixes #XXXX. Mentions help by automatically closing the
issue on a merge.

		After every commit, run the test suite and ensure it is passing.

		Sync and rebase frequently as you code to keep up with docker master.

		Set your git signature and make sure you sign each commit.

		Do not add yourself to the AUTHORS file. This file is autogenerated from the
Git history.

Tests and testing

		Submit unit tests for your changes.

		Make use of the builtin Go test framework built.

		Use existing Docker test files (name_test.go) for inspiration.

		Run the full test suite on your
branch before submitting a pull request.

		Run make docs to build the documentation and then check it locally.

		Use an online grammar
checker or similar to test you documentation changes for clarity,
concision, and correctness.

Pull requests

		Sync and cleanly rebase on top of Docker’s master without multiple branches
mixed into the PR.

		Before the pull request, squash your commits into logical units of work using
git rebase -i and git push -f.

		Include documentation changes in the same commit so that a revert would
remove all traces of the feature or fix.

		Reference each issue in your pull request description (#XXXX)

Respond to pull requests reviews

		Docker maintainers use LGTM (looks-good-to-me) in PR comments
to indicate acceptance.

		Code review comments may be added to your pull request. Discuss, then make
the suggested modifications and push additional commits to your feature
branch.

		Incorporate changes on your feature branch and push to your fork. This
automatically updates your open pull request.

		Post a comment after pushing to alert reviewers to PR changes; pushing a
change does not send notifications.

		A change requires LGTMs from an absolute majority maintainers of an
affected component. For example, if you change docs/ and registry/ code,
an absolute majority of the docs/ and the registry/ maintainers must
approve your PR.

Merges after pull requests

		After a merge, a master build [https://master.dockerproject.org/] is
available almost immediately.

		If you made a documentation change, you can see it at
docs.master.dockerproject.org [http://docs.master.dockerproject.org/].

 © Copyright .
 Created using Sphinx 1.3.1.

project/set-up-dev-env.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Work with a development container

In this section, you learn to develop like a member of Docker’s core team.
The docker repository includes a Dockerfile at its root. This file defines
Docker’s development environment. The Dockerfile lists the environment’s
dependencies: system libraries and binaries, Go environment, Go dependencies,
etc.

Docker’s development environment is itself, ultimately a Docker container.
You use the docker repository and its Dockerfile to create a Docker image,
run a Docker container, and develop code in the container. Docker itself builds,
tests, and releases new Docker versions using this container.

If you followed the procedures that
set up Git for contributing, you should have a fork of the docker/docker
repository. You also created a branch called dry-run-test. In this section,
you continue working with your fork on this branch.

Clean your host of Docker artifacts

Docker developers run the latest stable release of the Docker software (with Boot2Docker if their machine is Mac OS X). They clean their local
hosts of unnecessary Docker artifacts such as stopped containers or unused
images. Cleaning unnecessary artifacts isn’t strictly necessary, but it is
good practice, so it is included here.

To remove unnecessary artifacts,

		Verify that you have no unnecessary containers running on your host.

 $ docker ps

You should see something similar to the following:

 		CONTAINER ID
 		IMAGE
 		COMMAND
 		CREATED
 		STATUS
 		PORTS
 		NAMES

There are no running containers on this host. If you have running but unused
containers, stop and then remove them with the docker stop and docker rm
commands.

		Verify that your host has no dangling images.

 $ docker images

You should see something similar to the following:

 		REPOSITORY
 		TAG
 		IMAGE ID
 		CREATED
 		VIRTUAL SIZE

This host has no images. You may have one or more dangling images. A
dangling image is not used by a running container and is not an ancestor of
another image on your system. A fast way to remove dangling containers is
the following:

 $ docker rmi -f $(docker images -q -a -f dangling=true)

This command uses docker images to list all images (-a flag) by numeric
IDs (-q flag) and filter them to find dangling images (-f dangling=true).
Then, the docker rmi command forcibly (-f flag) removes
the resulting list. To remove just one image, use the docker rmi ID
command.

Build an image

If you followed the last procedure, your host is clean of unnecessary images
and containers. In this section, you build an image from the Docker development
environment.

		Open a terminal.

Mac users, use docker-machine status to make sure your VM is running. You
may need to run eval "$(docker-machine env your_vm_name)" to initialize your
shell environment.

		Change into the root of your forked repository.

 $ cd ~/repos/docker-fork

If you are following along with this guide, you created a dry-run-test
branch when you set up Git for
contributing.

		Ensure you are on your dry-run-test branch.

 $ git checkout dry-run-test

If you get a message that the branch doesn’t exist, add the -b flag (git checkout -b dry-run-test) so the
command both creates the branch and checks it out.

		Compile your development environment container into an image.

 $ docker build -t dry-run-test .

The docker build command returns informational message as it runs. The
first build may take a few minutes to create an image. Using the
instructions in the Dockerfile, the build may need to download source and
other images. A successful build returns a final status message similar to
the following:

 Successfully built 676815d59283

		List your Docker images again.

 $ docker images

You should see something similar to this:

 		REPOSTITORY
 		TAG
 		IMAGE ID
 		CREATED
 		VIRTUAL SIZE

 		dry-run-test
 		latest
 		663fbee70028
 		About a minute ago
 		

 		ubuntu
 		trusty
 		2d24f826cb16
 		2 days ago
 		188.3 MB

 		ubuntu
 		trusty-20150218.1
 		2d24f826cb16
 		2 days ago
 		188.3 MB

 		ubuntu
 		14.04
 		2d24f826cb16
 		2 days ago
 		188.3 MB

 		ubuntu
 		14.04.2
 		2d24f826cb16
 		2 days ago
 		188.3 MB

 		ubuntu
 		latest
 		2d24f826cb16
 		2 days ago
 		188.3 MB

Locate your new dry-run-test image in the list. You should also see a
number of ubuntu images. The build process creates these. They are the
ancestors of your new Docker development image. When you next rebuild your
image, the build process reuses these ancestors images if they exist.

Keeping the ancestor images improves the build performance. When you rebuild
the child image, the build process uses the local ancestors rather than
retrieving them from the Hub. The build process gets new ancestors only if
DockerHub has updated versions.

Start a container and run a test

At this point, you have created a new Docker development environment image. Now,
you’ll use this image to create a Docker container to develop in. Then, you’ll
build and run a docker binary in your container.

		Open two additional terminals on your host.

At this point, you’ll have about three terminals open.

[image: Multiple terminals]

Mac OS X users, make sure you run eval "$(docker-machine env your_vm_name)" in
any new terminals.

		In a terminal, create a new container from your dry-run-test image.

 $ docker run --privileged --rm -ti dry-run-test /bin/bash
 root@5f8630b873fe:/go/src/github.com/docker/docker#

The command creates a container from your dry-run-test image. It opens an
interactive terminal (-ti) running a /bin/bash shell. The
--privileged flag gives the container access to kernel features and device
access. This flag allows you to run a container in a container.
Finally, the -rm flag instructs Docker to remove the container when you
exit the /bin/bash shell.

The container includes the source of your image repository in the
/go/src/github.com/docker/docker directory. Try listing the contents to
verify they are the same as that of your docker-fork repo.

[image: List example]

		Investigate your container bit.

If you do a go version you’ll find the go language is part of the
container.

 root@31ed86e9ddcf:/go/src/github.com/docker/docker# go version
 go version go1.4.2 linux/amd64

Similarly, if you do a docker version you find the container
has no docker binary.

 root@31ed86e9ddcf:/go/src/github.com/docker/docker# docker version
 bash: docker: command not found

You will create one in the next steps.

		From the /go/src/github.com/docker/docker directory make a docker binary
with the make.sh script.

 root@5f8630b873fe:/go/src/github.com/docker/docker# hack/make.sh binary

You only call hack/make.sh to build a binary inside a Docker
development container as you are now. On your host, you’ll use make
commands (more about this later).

As it makes the binary, the make.sh script reports the build’s progress.
When the command completes successfully, you should see the following
output:

—> Making bundle: binary (in bundles/1.5.0-dev/binary)
Created binary: /go/src/github.com/docker/docker/bundles/1.5.0-dev/binary/docker-1.5.0-dev

		List all the contents of the binary directory.

 root@5f8630b873fe:/go/src/github.com/docker/docker# ls bundles/1.5.0-dev/binary/
 docker docker-1.5.0-dev docker-1.5.0-dev.md5 docker-1.5.0-dev.sha256

You should see that binary directory, just as it sounds, contains the
made binaries.

		Copy the docker binary to the /usr/bin of your container.

 root@5f8630b873fe:/go/src/github.com/docker/docker# cp bundles/1.5.0-dev/binary/docker /usr/bin

		Inside your container, check your Docker version.

 root@5f8630b873fe:/go/src/github.com/docker/docker# docker --version
 Docker version 1.5.0-dev, build 6e728fb

Inside the container you are running a development version. This is the version
on the current branch. It reflects the value of the VERSION file at the
root of your docker-fork repository.

		Start a docker daemon running inside your container.

 root@5f8630b873fe:/go/src/github.com/docker/docker# docker daemon -D

The -dD flag starts the daemon in debug mode. You’ll find this useful
when debugging your code.

		Bring up one of the terminals on your local host.

		List your containers and look for the container running the dry-run-test image.

$ docker ps

 		CONTAINER ID
 		IMAGE
 		COMMAND
 		CREATED
 		STATUS
 		PORTS
 		NAMES

 		474f07652525
 		dry-run-test:latest
 		"hack/dind /bin/bash
 		14 minutes ago
 		Up 14 minutes
 		
 		tender_shockley

In this example, the container’s name is tender_shockley; yours will be
different.

		From the terminal, start another shell on your Docker development container.

$ docker exec -it tender_shockley bash

At this point, you have two terminals both with a shell open into your
development container. One terminal is running a debug session. The other
terminal is displaying a bash prompt.

		At the prompt, test the Docker client by running the hello-world container.

root@9337c96e017a:/go/src/github.com/docker/docker# docker run hello-world

You should see the image load and return. Meanwhile, you
can see the calls made via the debug session in your other terminal.

[image: List example]

Restart a container with your source

At this point, you have experienced the “Docker inception” technique. That is,
you have:

		built a Docker image from the Docker repository

		created and started a Docker development container from that image

		built a Docker binary inside of your Docker development container

		launched a docker daemon using your newly compiled binary

		called the docker client to run a hello-world container inside
your development container

When you really get to developing code though, you’ll want to iterate code
changes and builds inside the container. For that you need to mount your local
Docker repository source into your Docker container. Try that now.

		If you haven’t already, exit out of BASH shells in your running Docker
container.

If you have followed this guide exactly, exiting out your BASH shells stops
the running container. You can use the docker ps command to verify the
development container is stopped. All of your terminals should be at the
local host prompt.

		Choose a terminal and make sure you are in your docker-fork repository.

 $ pwd
 /Users/mary/go/src/github.com/moxiegirl/docker-fork

Your location will be different because it reflects your environment.

		Create a container using dry-run-test, but this time, mount your repository
onto the /go directory inside the container.

 $ docker run --privileged --rm -ti -v `pwd`:/go/src/github.com/docker/docker dry-run-test /bin/bash

When you pass pwd, docker resolves it to your current directory.

		From inside the container, list your binary directory.

 root@074626fc4b43:/go/src/github.com/docker/docker# ls bundles/1.5.0-dev/binary
 ls: cannot access binary: No such file or directory

Your dry-run-test image does not retain any of the changes you made inside
the container. This is the expected behavior for a container.

		In a fresh terminal on your local host, change to the docker-fork root.

 $ cd ~/repos/docker-fork/

		Create a fresh binary, but this time, use the make command.

 $ make BINDDIR=. binary

The BINDDIR flag is only necessary on Mac OS X but it won’t hurt to pass
it on Linux command line. The make command, like the make.sh script
inside the container, reports its progress. When the make succeeds, it
returns the location of the new binary.

		Back in the terminal running the container, list your binary directory.

 root@074626fc4b43:/go/src/github.com/docker/docker# ls bundles/1.5.0-dev/binary
 docker docker-1.5.0-dev docker-1.5.0-dev.md5 docker-1.5.0-dev.sha256

The compiled binaries created from your repository on your local host are
now available inside your running Docker development container.

		Repeat the steps you ran in the previous procedure.

		copy the binary inside the development container using
cp bundles/1.5.0-dev/binary/docker /usr/bin

		start docker daemon -D to launch the Docker daemon inside the container

		run docker ps on local host to get the development container’s name

		connect to your running container docker exec -it container_name bash

		use the docker run hello-world command to create and run a container
inside your development container

Where to go next

Congratulations, you have successfully achieved Docker inception. At this point,
you’ve set up your development environment and verified almost all the essential
processes you need to contribute. Of course, before you start contributing,
you’ll need to learn one more piece of the development environment, the test
framework.

 © Copyright .
 Created using Sphinx 1.3.1.

extend/plugins_volume.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Write a volume plugin

Docker volume plugins enable Docker deployments to be integrated with external
storage systems, such as Amazon EBS, and enable data volumes to persist beyond
the lifetime of a single Docker host. See the plugin documentation
for more information.

Command-line changes

A volume plugin makes use of the -vand --volume-driver flag on the docker run command. The -v flag accepts a volume name and the --volume-driver flag a driver type, for example:

$ docker run -ti -v volumename:/data --volume-driver=flocker busybox sh

This command passes the volumename through to the volume plugin as a
user-given name for the volume. The volumename must not begin with a /.

By having the user specify a volumename, a plugin can associate the volume
with an external volume beyond the lifetime of a single container or container
host. This can be used, for example, to move a stateful container from one
server to another.

By specifying a volumedriver in conjunction with a volumename, users can use plugins such as Flocker [https://clusterhq.com/docker-plugin/] to manage volumes external to a single host, such as those on EBS.

Create a VolumeDriver

The container creation endpoint (/containers/create) accepts a VolumeDriver
field of type string allowing to specify the name of the driver. It’s default
value of "local" (the default driver for local volumes).

Volume plugin protocol

If a plugin registers itself as a VolumeDriver when activated, then it is
expected to provide writeable paths on the host filesystem for the Docker
daemon to provide to containers to consume.

The Docker daemon handles bind-mounting the provided paths into user
containers.

/VolumeDriver.Create

Request:

{
 "Name": "volume_name"
}

Instruct the plugin that the user wants to create a volume, given a user
specified volume name. The plugin does not need to actually manifest the
volume on the filesystem yet (until Mount is called).

Response:

{
 "Err": null
}

Respond with a string error if an error occurred.

/VolumeDriver.Remove

Request:

{
 "Name": "volume_name"
}

Delete the specified volume from disk. This request is issued when a user invokes docker rm -v to remove volumes associated with a container.

Response:

{
 "Err": null
}

Respond with a string error if an error occurred.

/VolumeDriver.Mount

Request:

{
 "Name": "volume_name"
}

Docker requires the plugin to provide a volume, given a user specified volume
name. This is called once per container start.

Response:

{
 "Mountpoint": "/path/to/directory/on/host",
 "Err": null
}

Respond with the path on the host filesystem where the volume has been made
available, and/or a string error if an error occurred.

/VolumeDriver.Path

Request:

{
 "Name": "volume_name"
}

Docker needs reminding of the path to the volume on the host.

Response:

{
 "Mountpoint": "/path/to/directory/on/host",
 "Err": null
}

Respond with the path on the host filesystem where the volume has been made
available, and/or a string error if an error occurred.

/VolumeDriver.Unmount

Request:

{
 "Name": "volume_name"
}

Indication that Docker no longer is using the named volume. This is called once
per container stop. Plugin may deduce that it is safe to deprovision it at
this point.

Response:

{
 "Err": null
}

Respond with a string error if an error occurred.

 © Copyright .
 Created using Sphinx 1.3.1.

examples/nodejs_web_app.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Dockerizing a Node.js web app

Note:

		If you don’t like sudo then see Giving non-root
access

The goal of this example is to show you how you can build your own
Docker images from a parent image using a Dockerfile
. We will do that by making a simple Node.js hello world web
application running on CentOS. You can get the full source code at
https://github.com/enokd/docker-node-hello/.

Create Node.js app

First, create a directory src where all the files
would live. Then create a package.json file that
describes your app and its dependencies:

{
 "name": "docker-centos-hello",
 "private": true,
 "version": "0.0.1",
 "description": "Node.js Hello world app on CentOS using docker",
 "author": "Daniel Gasienica <daniel@gasienica.ch>",
 "dependencies": {
 "express": "3.2.4"
 }
}

Then, create an index.js file that defines a web
app using the Express.js [http://expressjs.com/] framework:

var express = require('express');

// Constants
var PORT = 8080;

// App
var app = express();
app.get('/', function (req, res) {
 res.send('Hello world\n');
});

app.listen(PORT);
console.log('Running on http://localhost:' + PORT);

In the next steps, we’ll look at how you can run this app inside a
CentOS container using Docker. First, you’ll need to build a Docker
image of your app.

Creating a Dockerfile

Create an empty file called Dockerfile:

touch Dockerfile

Open the Dockerfile in your favorite text editor

Define the parent image you want to use to build your own image on
top of. Here, we’ll use
CentOS [https://registry.hub.docker.com/_/centos/] (tag: centos6)
available on the Docker Hub [https://hub.docker.com/]:

FROM centos:centos6

Since we’re building a Node.js app, you’ll have to install Node.js as
well as npm on your CentOS image. Node.js is required to run your app
and npm to install your app’s dependencies defined in
package.json. To install the right package for
CentOS, we’ll use the instructions from the [Node.js wiki](
https://github.com/joyent/node/wiki/Installing-Node.js-
via-package-manager#rhelcentosscientific-linux-6):

Enable EPEL for Node.js
RUN rpm -Uvh http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
Install Node.js and npm
RUN yum install -y npm

To bundle your app’s source code inside the Docker image, use the COPY
instruction:

Bundle app source
COPY . /src

Install your app dependencies using the npm binary:

Install app dependencies
RUN cd /src; npm install

Your app binds to port 8080 so you’ll use theEXPOSE instruction to have
it mapped by the docker daemon:

EXPOSE 8080

Last but not least, define the command to run your app using CMD which
defines your runtime, i.e. node, and the path to our app, i.e. src/index.js
(see the step where we added the source to the container):

CMD ["node", "/src/index.js"]

Your Dockerfile should now look like this:

FROM centos:centos6

Enable EPEL for Node.js
RUN rpm -Uvh http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
Install Node.js and npm
RUN yum install -y npm

Bundle app source
COPY . /src
Install app dependencies
RUN cd /src; npm install

EXPOSE 8080
CMD ["node", "/src/index.js"]

Building your image

Go to the directory that has your Dockerfile and run the following command
to build a Docker image. The -t flag lets you tag your image so it’s easier
to find later using the docker images command:

$ docker build -t <your username>/centos-node-hello .

Your image will now be listed by Docker:

$ docker images

Example
REPOSITORY TAG ID CREATED
centos centos6 539c0211cd76 8 weeks ago
<your username>/centos-node-hello latest d64d3505b0d2 2 hours ago

Run the image

Running your image with -d runs the container in detached mode, leaving the
container running in the background. The -p flag redirects a public port to
a private port in the container. Run the image you previously built:

$ docker run -p 49160:8080 -d <your username>/centos-node-hello

Print the output of your app:

Get container ID
$ docker ps

Print app output
$ docker logs <container id>

Example
Running on http://localhost:8080

Test

To test your app, get the port of your app that Docker mapped:

$ docker ps

Example
ID IMAGE COMMAND ... PORTS
ecce33b30ebf <your username>/centos-node-hello:latest node /src/index.js 49160->8080

In the example above, Docker mapped the 8080 port of the container to 49160.

Now you can call your app using curl (install if needed via:
sudo apt-get install curl):

$ curl -i localhost:49160

HTTP/1.1 200 OK
X-Powered-By: Express
Content-Type: text/html; charset=utf-8
Content-Length: 12
Date: Sun, 02 Jun 2013 03:53:22 GMT
Connection: keep-alive

Hello world

If you use Docker Machine on OS X, the port is actually mapped to the Docker
host VM, and you should use the following command:

$ curl $(docker-machine ip VM_NAME):49160

We hope this tutorial helped you get up and running with Node.js and
CentOS on Docker. You can get the full source code at
https://github.com/enokd/docker-node-hello/.

 © Copyright .
 Created using Sphinx 1.3.1.

examples/running_redis_service.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Dockerizing a Redis service

Very simple, no frills, Redis service attached to a web application
using a link.

Create a Docker container for Redis

Firstly, we create a Dockerfile for our new Redis
image.

FROM ubuntu:14.04
RUN apt-get update && apt-get install -y redis-server
EXPOSE 6379
ENTRYPOINT ["/usr/bin/redis-server"]

Next we build an image from our Dockerfile.
Replace <your username> with your own user name.

$ docker build -t <your username>/redis .

Run the service

Use the image we’ve just created and name your container redis.

Running the service with -d runs the container in detached mode, leaving
the container running in the background.

Importantly, we’re not exposing any ports on our container. Instead
we’re going to use a container link to provide access to our Redis
database.

$ docker run --name redis -d <your username>/redis

Create your web application container

Next we can create a container for our application. We’re going to use
the -link flag to create a link to the redis container we’ve just
created with an alias of db. This will create a secure tunnel to the
redis container and expose the Redis instance running inside that
container to only this container.

$ docker run --link redis:db -i -t ubuntu:14.04 /bin/bash

Once inside our freshly created container we need to install Redis to
get the redis-cli binary to test our connection.

$ sudo apt-get update
$ sudo apt-get install redis-server
$ sudo service redis-server stop

As we’ve used the --link redis:db option, Docker
has created some environment variables in our web application container.

$ env | grep DB_

Should return something similar to this with your values
DB_NAME=/violet_wolf/db
DB_PORT_6379_TCP_PORT=6379
DB_PORT=tcp://172.17.0.33:6379
DB_PORT_6379_TCP=tcp://172.17.0.33:6379
DB_PORT_6379_TCP_ADDR=172.17.0.33
DB_PORT_6379_TCP_PROTO=tcp

We can see that we’ve got a small list of environment variables prefixed
with DB. The DB comes from the link alias specified when we launched
the container. Let’s use the DB_PORT_6379_TCP_ADDR variable to connect to
our Redis container.

$ redis-cli -h $DB_PORT_6379_TCP_ADDR
$ redis 172.17.0.33:6379>
$ redis 172.17.0.33:6379> set docker awesome
OK
$ redis 172.17.0.33:6379> get docker
"awesome"
$ redis 172.17.0.33:6379> exit

We could easily use this or other environment variables in our web
application to make a connection to our redis
container.

 © Copyright .
 Created using Sphinx 1.3.1.

examples/mongodb.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Dockerizing MongoDB

Introduction

In this example, we are going to learn how to build a Docker image with
MongoDB pre-installed. We’ll also see how to push that image to the
Docker Hub registry [https://hub.docker.com] and share it with others!

Note:

This guide will show the mechanics of building a MongoDB container, but
you will probably want to use the official image on Docker Hub [https://registry.hub.docker.com/_/mongo/]

Using Docker and containers for deploying MongoDB [https://www.mongodb.org/]
instances will bring several benefits, such as:

		Easy to maintain, highly configurable MongoDB instances;

		Ready to run and start working within milliseconds;

		Based on globally accessible and shareable images.

Note:

If you do not like sudo, you might want to check out:
Giving non-root access.

Creating a Dockerfile for MongoDB

Let’s create our Dockerfile and start building it:

$ nano Dockerfile

Although optional, it is handy to have comments at the beginning of a
Dockerfile explaining its purpose:

Dockerizing MongoDB: Dockerfile for building MongoDB images
Based on ubuntu:latest, installs MongoDB following the instructions from:
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/

Tip: Dockerfiles are flexible. However, they need to follow a certain
format. The first item to be defined is the name of an image, which becomes
the parent of your Dockerized MongoDB image.

We will build our image using the latest version of Ubuntu from the
Docker Hub Ubuntu [https://registry.hub.docker.com/_/ubuntu/] repository.

Format: FROM repository[:version]
FROM ubuntu:latest

Continuing, we will declare the MAINTAINER of the Dockerfile:

Format: MAINTAINER Name <email@addr.ess>
MAINTAINER M.Y. Name <myname@addr.ess>

Note: Although Ubuntu systems have MongoDB packages, they are likely to
be outdated. Therefore in this example, we will use the official MongoDB
packages.

We will begin with importing the MongoDB public GPG key. We will also create
a MongoDB repository file for the package manager.

Installation:
Import MongoDB public GPG key AND create a MongoDB list file
RUN apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10
RUN echo "deb http://repo.mongodb.org/apt/ubuntu "$(lsb_release -sc)"/mongodb-org/3.0 multiverse" | tee /etc/apt/sources.list.d/mongodb-org-3.0.list

After this initial preparation we can update our packages and install MongoDB.

Update apt-get sources AND install MongoDB
RUN apt-get update && apt-get install -y mongodb-org

Tip: You can install a specific version of MongoDB by using a list
of required packages with versions, e.g.:

RUN apt-get update && apt-get install -y mongodb-org=3.0.1 mongodb-org-server=3.0.1 mongodb-org-shell=3.0.1 mongodb-org-mongos=3.0.1 mongodb-org-tools=3.0.1

MongoDB requires a data directory. Let’s create it as the final step of our
installation instructions.

Create the MongoDB data directory
RUN mkdir -p /data/db

Lastly we set the ENTRYPOINT which will tell Docker to run mongod inside
the containers launched from our MongoDB image. And for ports, we will use
the EXPOSE instruction.

Expose port 27017 from the container to the host
EXPOSE 27017

Set usr/bin/mongod as the dockerized entry-point application
ENTRYPOINT ["/usr/bin/mongod"]

Now save the file and let’s build our image.

Note:

The full version of this Dockerfile can be found here.

Building the MongoDB Docker image

With our Dockerfile, we can now build the MongoDB image using Docker. Unless
experimenting, it is always a good practice to tag Docker images by passing the
--tag option to docker build command.

Format: docker build --tag/-t <user-name>/<repository> .
Example:
$ docker build --tag my/repo .

Once this command is issued, Docker will go through the Dockerfile and build
the image. The final image will be tagged my/repo.

Pushing the MongoDB image to Docker Hub

All Docker image repositories can be hosted and shared on
Docker Hub [https://hub.docker.com] with the docker push command. For this,
you need to be logged-in.

Log-in
$ docker login
Username:
..

Push the image
Format: docker push <user-name>/<repository>
$ docker push my/repo
The push refers to a repository [my/repo] (len: 1)
Sending image list
Pushing repository my/repo (1 tags)
..

Using the MongoDB image

Using the MongoDB image we created, we can run one or more MongoDB instances
as daemon process(es).

Basic way
Usage: docker run --name <name for container> -d <user-name>/<repository>
$ docker run -p 27017:27017 --name mongo_instance_001 -d my/repo

Dockerized MongoDB, lean and mean!
Usage: docker run --name <name for container> -d <user-name>/<repository> --noprealloc --smallfiles
$ docker run -p 27017:27017 --name mongo_instance_001 -d my/repo --noprealloc --smallfiles

Checking out the logs of a MongoDB container
Usage: docker logs <name for container>
$ docker logs mongo_instance_001

Playing with MongoDB
Usage: mongo --port <port you get from `docker ps`>
$ mongo --port 27017

If using docker-machine
Usage: mongo --port <port you get from `docker ps`> --host <ip address from `docker-machine ip VM_NAME`>
$ mongo --port 27017 --host 192.168.59.103

Tip:
If you want to run two containers on the same engine, then you will need to map
the exposed port to two different ports on the host

Start two containers and map the ports
$ docker run -p 28001:27017 --name mongo_instance_001 -d my/repo
$ docker run -p 28002:27017 --name mongo_instance_002 -d my/repo

Now you can connect to each MongoDB instance on the two ports
$ mongo --port 28001
$ mongo --port 28002

		Linking containers

		Cross-host linking containers

		Creating an Automated Build

 © Copyright .
 Created using Sphinx 1.3.1.

examples/postgresql_service.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Dockerizing PostgreSQL

Note:

		If you don’t like sudo then see Giving non-root
access

Installing PostgreSQL on Docker

Assuming there is no Docker image that suits your needs on the Docker
Hub [http://hub.docker.com], you can create one yourself.

Start by creating a new Dockerfile:

Note:
This PostgreSQL setup is for development-only purposes. Refer to the
PostgreSQL documentation to fine-tune these settings so that it is
suitably secure.

#
example Dockerfile for https://docs.docker.com/examples/postgresql_service/
#

FROM ubuntu
MAINTAINER SvenDowideit@docker.com

Add the PostgreSQL PGP key to verify their Debian packages.
It should be the same key as https://www.postgresql.org/media/keys/ACCC4CF8.asc
RUN apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 --recv-keys B97B0AFCAA1A47F044F244A07FCC7D46ACCC4CF8

Add PostgreSQL's repository. It contains the most recent stable release
of PostgreSQL, ``9.3``.
RUN echo "deb http://apt.postgresql.org/pub/repos/apt/ precise-pgdg main" > /etc/apt/sources.list.d/pgdg.list

Install ``python-software-properties``, ``software-properties-common`` and PostgreSQL 9.3
There are some warnings (in red) that show up during the build. You can hide
them by prefixing each apt-get statement with DEBIAN_FRONTEND=noninteractive
RUN apt-get update && apt-get install -y python-software-properties software-properties-common postgresql-9.3 postgresql-client-9.3 postgresql-contrib-9.3

Note: The official Debian and Ubuntu images automatically ``apt-get clean``
after each ``apt-get``

Run the rest of the commands as the ``postgres`` user created by the ``postgres-9.3`` package when it was ``apt-get installed``
USER postgres

Create a PostgreSQL role named ``docker`` with ``docker`` as the password and
then create a database `docker` owned by the ``docker`` role.
Note: here we use ``&&\`` to run commands one after the other - the ``\``
allows the RUN command to span multiple lines.
RUN /etc/init.d/postgresql start &&\
 psql --command "CREATE USER docker WITH SUPERUSER PASSWORD 'docker';" &&\
 createdb -O docker docker

Adjust PostgreSQL configuration so that remote connections to the
database are possible.
RUN echo "host all all 0.0.0.0/0 md5" >> /etc/postgresql/9.3/main/pg_hba.conf

And add ``listen_addresses`` to ``/etc/postgresql/9.3/main/postgresql.conf``
RUN echo "listen_addresses='*'" >> /etc/postgresql/9.3/main/postgresql.conf

Expose the PostgreSQL port
EXPOSE 5432

Add VOLUMEs to allow backup of config, logs and databases
VOLUME ["/etc/postgresql", "/var/log/postgresql", "/var/lib/postgresql"]

Set the default command to run when starting the container
CMD ["/usr/lib/postgresql/9.3/bin/postgres", "-D", "/var/lib/postgresql/9.3/main", "-c", "config_file=/etc/postgresql/9.3/main/postgresql.conf"]

Build an image from the Dockerfile assign it a name.

$ docker build -t eg_postgresql .

And run the PostgreSQL server container (in the foreground):

$ docker run --rm -P --name pg_test eg_postgresql

There are 2 ways to connect to the PostgreSQL server. We can use Link
Containers, or we can access it from our host
(or the network).

Note:
The --rm removes the container and its image when
the container exits successfully.

Using container linking

Containers can be linked to another container’s ports directly using
-link remote_name:local_alias in the client’s
docker run. This will set a number of environment
variables that can then be used to connect:

$ docker run --rm -t -i --link pg_test:pg eg_postgresql bash

postgres@7ef98b1b7243:/$ psql -h $PG_PORT_5432_TCP_ADDR -p $PG_PORT_5432_TCP_PORT -d docker -U docker --password

Connecting from your host system

Assuming you have the postgresql-client installed, you can use the
host-mapped port to test as well. You need to use docker ps
to find out what local host port the container is mapped to
first:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
5e24362f27f6 eg_postgresql:latest /usr/lib/postgresql/ About an hour ago Up About an hour 0.0.0.0:49153->5432/tcp pg_test
$ psql -h localhost -p 49153 -d docker -U docker --password

Testing the database

Once you have authenticated and have a docker =#
prompt, you can create a table and populate it.

psql (9.3.1)
Type "help" for help.

$ docker=# CREATE TABLE cities (
docker(# name varchar(80),
docker(# location point
docker(#);
CREATE TABLE
$ docker=# INSERT INTO cities VALUES ('San Francisco', '(-194.0, 53.0)');
INSERT 0 1
$ docker=# select * from cities;
 name | location
---------------+-----------
 San Francisco | (-194,53)
(1 row)

Using the container volumes

You can use the defined volumes to inspect the PostgreSQL log files and
to backup your configuration and data:

$ docker run --rm --volumes-from pg_test -t -i busybox sh

/ # ls
bin etc lib linuxrc mnt proc run sys usr
dev home lib64 media opt root sbin tmp var
/ # ls /etc/postgresql/9.3/main/
environment pg_hba.conf postgresql.conf
pg_ctl.conf pg_ident.conf start.conf
/tmp # ls /var/log
ldconfig postgresql

 © Copyright .
 Created using Sphinx 1.3.1.

examples/running_riak_service.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Dockerizing a Riak service

The goal of this example is to show you how to build a Docker image with
Riak pre-installed.

Creating a Dockerfile

Create an empty file called Dockerfile:

$ touch Dockerfile

Next, define the parent image you want to use to build your image on top
of. We’ll use Ubuntu [https://registry.hub.docker.com/_/ubuntu/] (tag:
trusty), which is available on Docker Hub [https://hub.docker.com]:

Riak
#
VERSION 0.1.1

Use the Ubuntu base image provided by dotCloud
FROM ubuntu:trusty
MAINTAINER Hector Castro hector@basho.com

After that, we install the curl which is used to download the repository setup
script and we download the setup script and run it.

Install Riak repository before we do apt-get update, so that update happens
in a single step
RUN apt-get install -q -y curl && \
 curl -sSL https://packagecloud.io/install/repositories/basho/riak/script.deb | sudo bash

Then we install and setup a few dependencies:

		supervisor is used manage the Riak processes

		riak=2.0.5-1 is the Riak package coded to version 2.0.5

Install and setup project dependencies
RUN apt-get update && \
 apt-get install -y supervisor riak=2.0.5-1

RUN mkdir -p /var/log/supervisor

RUN locale-gen en_US en_US.UTF-8

COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf

After that, we modify Riak’s configuration:

Configure Riak to accept connections from any host
RUN sed -i "s|listener.http.internal = 127.0.0.1:8098|listener.http.internal = 0.0.0.0:8098|" /etc/riak/riak.conf
RUN sed -i "s|listener.protobuf.internal = 127.0.0.1:8087|listener.protobuf.internal = 0.0.0.0:8087|" /etc/riak/riak.conf

Then, we expose the Riak Protocol Buffers and HTTP interfaces:

Expose Riak Protocol Buffers and HTTP interfaces
EXPOSE 8087 8098

Finally, run supervisord so that Riak is started:

CMD ["/usr/bin/supervisord"]

Create a supervisord configuration file

Create an empty file called supervisord.conf. Make
sure it’s at the same directory level as your Dockerfile:

touch supervisord.conf

Populate it with the following program definitions:

[supervisord]
nodaemon=true

[program:riak]
command=bash -c "/usr/sbin/riak console"
numprocs=1
autostart=true
autorestart=true
user=riak
environment=HOME="/var/lib/riak"
stdout_logfile=/var/log/supervisor/%(program_name)s.log
stderr_logfile=/var/log/supervisor/%(program_name)s.log

Build the Docker image for Riak

Now you should be able to build a Docker image for Riak:

$ docker build -t "<yourname>/riak" .

Next steps

Riak is a distributed database. Many production deployments consist of
at least five nodes [http://basho.com/why-your-riak-cluster-should-have-at-least-five-nodes/].
See the docker-riak [https://github.com/hectcastro/docker-riak] project
details on how to deploy a Riak cluster using Docker and Pipework.

 © Copyright .
 Created using Sphinx 1.3.1.

examples/apt-cacher-ng.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Dockerizing an apt-cacher-ng service

Note:

		If you don’t like sudo then see Giving non-root
access.

		If you’re using OS X or docker via TCP then you shouldn’t use
sudo.

When you have multiple Docker servers, or build unrelated Docker
containers which can’t make use of the Docker build cache, it can be
useful to have a caching proxy for your packages. This container makes
the second download of any package almost instant.

Use the following Dockerfile:

#
Build: docker build -t apt-cacher .
Run: docker run -d -p 3142:3142 --name apt-cacher-run apt-cacher
#
and then you can run containers with:
docker run -t -i --rm -e http_proxy http://dockerhost:3142/ debian bash
#
FROM ubuntu
MAINTAINER SvenDowideit@docker.com

VOLUME ["/var/cache/apt-cacher-ng"]
RUN apt-get update && apt-get install -y apt-cacher-ng

EXPOSE 3142
CMD chmod 777 /var/cache/apt-cacher-ng && /etc/init.d/apt-cacher-ng start && tail -f /var/log/apt-cacher-ng/*

To build the image using:

$ docker build -t eg_apt_cacher_ng .

Then run it, mapping the exposed port to one on the host

$ docker run -d -p 3142:3142 --name test_apt_cacher_ng eg_apt_cacher_ng

To see the logfiles that are tailed in the default command, you can
use:

$ docker logs -f test_apt_cacher_ng

To get your Debian-based containers to use the proxy, you can do one of
three things

		Add an apt Proxy setting
echo 'Acquire::http { Proxy "http://dockerhost:3142"; };' >> /etc/apt/conf.d/01proxy

		Set an environment variable:
http_proxy=http://dockerhost:3142/

		Change your sources.list entries to start with
http://dockerhost:3142/

Option 1 injects the settings safely into your apt configuration in
a local version of a common base:

FROM ubuntu
RUN echo 'Acquire::http { Proxy "http://dockerhost:3142"; };' >> /etc/apt/apt.conf.d/01proxy
RUN apt-get update && apt-get install -y vim git

docker build -t my_ubuntu .

Option 2 is good for testing, but will break other HTTP clients
which obey http_proxy, such as curl, wget and others:

$ docker run --rm -t -i -e http_proxy=http://dockerhost:3142/ debian bash

Option 3 is the least portable, but there will be times when you
might need to do it and you can do it from your Dockerfile
too.

Apt-cacher-ng has some tools that allow you to manage the repository,
and they can be used by leveraging the VOLUME
instruction, and the image we built to run the service:

$ docker run --rm -t -i --volumes-from test_apt_cacher_ng eg_apt_cacher_ng bash

$$ /usr/lib/apt-cacher-ng/distkill.pl
Scanning /var/cache/apt-cacher-ng, please wait...
Found distributions:
bla, taggedcount: 0
 1. precise-security (36 index files)
 2. wheezy (25 index files)
 3. precise-updates (36 index files)
 4. precise (36 index files)
 5. wheezy-updates (18 index files)

Found architectures:
 6. amd64 (36 index files)
 7. i386 (24 index files)

WARNING: The removal action may wipe out whole directories containing
 index files. Select d to see detailed list.

(Number nn: tag distribution or architecture nn; 0: exit; d: show details; r: remove tagged; q: quit): q

Finally, clean up after your test by stopping and removing the
container, and then removing the image.

$ docker stop test_apt_cacher_ng
$ docker rm test_apt_cacher_ng
$ docker rmi eg_apt_cacher_ng

 © Copyright .
 Created using Sphinx 1.3.1.

examples/index.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Examples

This section contains the following:

		Dockerizing MongoDB

		Dockerizing PostgreSQL

		Dockerizing a CouchDB service

		Dockerizing a Node.js web app

		Dockerizing a Redis service

		Dockerizing an apt-cacher-ng service

		Dockerizing applications: A ‘Hello world’

 © Copyright .
 Created using Sphinx 1.3.1.

examples/running_ssh_service.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Dockerizing an SSH daemon service

Build an eg_sshd image

The following Dockerfile sets up an SSHd service in a container that you
can use to connect to and inspect other container’s volumes, or to get
quick access to a test container.

sshd
#
VERSION 0.0.2

FROM ubuntu:14.04
MAINTAINER Sven Dowideit <SvenDowideit@docker.com>

RUN apt-get update && apt-get install -y openssh-server
RUN mkdir /var/run/sshd
RUN echo 'root:screencast' | chpasswd
RUN sed -i 's/PermitRootLogin without-password/PermitRootLogin yes/' /etc/ssh/sshd_config

SSH login fix. Otherwise user is kicked off after login
RUN sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd

ENV NOTVISIBLE "in users profile"
RUN echo "export VISIBLE=now" >> /etc/profile

EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]

Build the image using:

$ docker build -t eg_sshd .

Run a test_sshd container

Then run it. You can then use docker port to find out what host port
the container’s port 22 is mapped to:

$ docker run -d -P --name test_sshd eg_sshd
$ docker port test_sshd 22
0.0.0.0:49154

And now you can ssh as root on the container’s IP address (you can find it
with docker inspect) or on port 49154 of the Docker daemon’s host IP address
(ip address or ifconfig can tell you that) or localhost if on the
Docker daemon host:

$ ssh root@192.168.1.2 -p 49154
The password is ``screencast``.
$$

Environment variables

Using the sshd daemon to spawn shells makes it complicated to pass environment
variables to the user’s shell via the normal Docker mechanisms, as sshd scrubs
the environment before it starts the shell.

If you’re setting values in the Dockerfile using ENV, you’ll need to push them
to a shell initialization file like the /etc/profile example in the Dockerfile
above.

If you need to passdocker run -e ENV=value values, you will need to write a
short script to do the same before you start sshd -D and then replace the
CMD with that script.

Clean up

Finally, clean up after your test by stopping and removing the
container, and then removing the image.

$ docker stop test_sshd
$ docker rm test_sshd
$ docker rmi eg_sshd

 © Copyright .
 Created using Sphinx 1.3.1.

extend/index.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Extending Docker

Currently, you can extend Docker by adding a plugin. This section contains the following topics:

		Understand Docker plugins

		Write a volume plugin

		Docker plugin API

 © Copyright .
 Created using Sphinx 1.3.1.

articles/https/README.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

 This is an initial attempt to make it easier to test the examples in the https.md
doc

at this point, it has to be a manual thing, and I’ve been running it in boot2docker

so my process is

$ boot2docker ssh
$$ git clone https://github.com/docker/docker
$$ cd docker/docs/articles/https
$$ make cert
lots of things to see and manually answer, as openssl wants to be interactive
NOTE: make sure you enter the hostname (boot2docker in my case) when prompted for Computer Name)
$$ sudo make run

start another terminal

$ boot2docker ssh
$$ cd docker/docs/articles/https
$$ make client

the last will connect first with --tls and then with --tlsverify

both should succeed

 © Copyright .
 Created using Sphinx 1.3.1.

extend/plugin_api.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Plugin API

Docker plugins are out-of-process extensions which add capabilities to the
Docker Engine.

This page is intended for people who want to develop their own Docker plugin.
If you just want to learn about or use Docker plugins, look
here.

What plugins are

A plugin is a process running on the same docker host as the docker daemon,
which registers itself by placing a file in one of the plugin directories described in Plugin discovery.

Plugins have human-readable names, which are short, lowercase strings. For
example, flocker or weave.

Plugins can run inside or outside containers. Currently running them outside
containers is recommended.

Plugin discovery

Docker discovers plugins by looking for them in the plugin directory whenever a
user or container tries to use one by name.

There are three types of files which can be put in the plugin directory.

		.sock files are UNIX domain sockets.

		.spec files are text files containing a URL, such as unix:///other.sock.

		.json files are text files containing a full json specification for the plugin.

UNIX domain socket files must be located under /run/docker/plugins, whereas
spec files can be located either under /etc/docker/plugins or /usr/lib/docker/plugins.

The name of the file (excluding the extension) determines the plugin name.

For example, the flocker plugin might create a UNIX socket at
/run/docker/plugins/flocker.sock.

You can define each plugin into a separated subdirectory if you want to isolate definitions from each other.
For example, you can create the flocker socket under /run/docker/plugins/flocker/flocker.sock and only
mount /run/docker/plugins/flocker inside the flocker container.

Docker always searches for unix sockets in /run/docker/plugins first. It checks for spec or json files under
/etc/docker/plugins and /usr/lib/docker/plugins if the socket doesn’t exist. The directory scan stops as
soon as it finds the first plugin definition with the given name.

JSON specification

This is the JSON format for a plugin:

{
 "Name": "plugin-example",
 "Addr": "https://example.com/docker/plugin",
 "TLSConfig": {
 "InsecureSkipVerify": false,
 "CAFile": "/usr/shared/docker/certs/example-ca.pem",
 "CertFile": "/usr/shared/docker/certs/example-cert.pem",
 "KeyFile": "/usr/shared/docker/certs/example-key.pem",
 }
}

The TLSConfig field is optional and TLS will only be verified if this configuration is present.

Plugin lifecycle

Plugins should be started before Docker, and stopped after Docker. For
example, when packaging a plugin for a platform which supports systemd, you
might use systemd dependencies [http://www.freedesktop.org/software/systemd/man/systemd.unit.html#Before=] to
manage startup and shutdown order.

When upgrading a plugin, you should first stop the Docker daemon, upgrade the
plugin, then start Docker again.

Plugin activation

When a plugin is first referred to – either by a user referring to it by name
(e.g. docker run --volume-driver=foo) or a container already configured to
use a plugin being started – Docker looks for the named plugin in the plugin
directory and activates it with a handshake. See Handshake API below.

Plugins are not activated automatically at Docker daemon startup. Rather,
they are activated only lazily, or on-demand, when they are needed.

API design

The Plugin API is RPC-style JSON over HTTP, much like webhooks.

Requests flow from the Docker daemon to the plugin. So the plugin needs to
implement an HTTP server and bind this to the UNIX socket mentioned in the
“plugin discovery” section.

All requests are HTTP POST requests.

The API is versioned via an Accept header, which currently is always set to
application/vnd.docker.plugins.v1+json.

Handshake API

Plugins are activated via the following “handshake” API call.

/Plugin.Activate

Request: empty body

Response:

{
 "Implements": ["VolumeDriver"]
}

Responds with a list of Docker subsystems which this plugin implements.
After activation, the plugin will then be sent events from this subsystem.

Plugin retries

Attempts to call a method on a plugin are retried with an exponential backoff
for up to 30 seconds. This may help when packaging plugins as containers, since
it gives plugin containers a chance to start up before failing any user
containers which depend on them.

 © Copyright .
 Created using Sphinx 1.3.1.

examples/couchdb_data_volumes.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Dockerizing a CouchDB service

Note:

		If you don’t like sudo then see Giving non-root
access

Here’s an example of using data volumes to share the same data between
two CouchDB containers. This could be used for hot upgrades, testing
different versions of CouchDB on the same data, etc.

Create first database

Note that we’re marking /var/lib/couchdb as a data volume.

$ COUCH1=$(docker run -d -p 5984 -v /var/lib/couchdb shykes/couchdb:2013-05-03)

Add data to the first database

We’re assuming your Docker host is reachable at localhost. If not,
replace localhost with the public IP of your Docker host.

$ HOST=localhost
$ URL="http://$HOST:$(docker port $COUCH1 5984 | grep -o '[1-9][0-9]*$')/_utils/"
$ echo "Navigate to $URL in your browser, and use the couch interface to add data"

Create second database

This time, we’re requesting shared access to $COUCH1‘s volumes.

$ COUCH2=$(docker run -d -p 5984 --volumes-from $COUCH1 shykes/couchdb:2013-05-03)

Browse data on the second database

$ HOST=localhost
$ URL="http://$HOST:$(docker port $COUCH2 5984 | grep -o '[1-9][0-9]*$')/_utils/"
$ echo "Navigate to $URL in your browser. You should see the same data as in the first database"'!'

Congratulations, you are now running two Couchdb containers, completely
isolated from each other except for their data.

 © Copyright .
 Created using Sphinx 1.3.1.

_images/build-trigger.png
Build Triggers
Trigger your Automated Build by sending a POST to a specific endpoint.

We throttle build requests so that you can't overload the system. If you already have a build request pending,
or if you submitted too many requests in a short period of ime, your request will be ignored. See the tigger
logs below to see f your request was created or not

Trigger Status
Status: m
Trigger be579c82-7cOe-11ed-81c4-0242ac110020
Token:
Trigger https:/iregistry.hub.docker com/u/svendowideititesthookftrigger/be579c82-7c0e-11ed-
URL: 81c4-0242ac110020/
Example

§ curl —~data "builé-true® X POST https://registry.hub.docker . con/a/svendowideit/ Sesthook/rigger/beSTIcE2-Tcde- e
P

Last 10 Trigger Logs

DatelTime IPAddress Status Status description Build Request

Dec. 52014, 2:49am. 20320617138 tiggered Build Triggered brntrmsxwS2udgevdwpwt

_images/three_terms.png

_images/gordon.jpeg

_images/docker_pull_chart.png
$ docker pull samalba/busybox

_images/proposal.png
Talk to the.
‘community about
your idea.

Pull requested
accepted.

Workflow for Implementation Implementation
design work pull request to pull request to

docker/docker. docker/docker.

_images/list_example.png
© ® @ docker-fork — root@4db45a4792a0: /go/src/github.com/docker/docker — docker — 80x24

nary nespers ~/go/src/github.con/moxiegirl/docker-fork dry-run-tests
docker run —privileged ——rn ~ti dry-runtests /bin/bash

rooteddbi5a4792a0: /go/3rc/github. con/docker /docker# 1s

AUTHORS Makefile builder docs integration project volumes

CHANGELOG.md NOTICE builtins engine integration-cli registry

CONTRIBUTING.nd QUOTE.nd contrib events Links runconti

Dockerfile README.nd dacnon graph nat trust

License VERSION docker hack opts utils

HAINTAINERS api dockerinit inage pkg vendor

rooteadbi5ad792a0: /g0/src/github. con/docker/dockers I

_images/newsite_view.png
om1 26

eoce
€« c

[} dockerhost:48166

[192.168.59.103:49166

my new site

_images/issue_list.png
O This repository Search Explore Gist Blog Help W moxieg ++ [&% B

docker / docker @unwatch~ 1634 JrStar 19428 Y Fork 4031

EEY rovvvens oo mesones Fiters + | O isissue isiopen [newisaue |

©
O @ 7770pen + 4,134 Closed Author~ Labels~ Milestones~ Assignee~ Sort~ o) I
O @ Docker Registry API (v1) Client Library improvement whito-belt i

#1050 opened 2 hours ago by bdehamer

O © "pidof -c" error sysvinit centos/rhel [T EIEETl BT FTIE
#11049 opened 3 hours ago by razelle

3
O © Proposal: Handling of permission bits for image context created via Windows festure .
#11047 opened 4 hours ago by ahmetalpbalkan

_images/branch-sig.png
Q This repository Search Explore Gist Blog Help W moxegl ++ Cf % B I
Y moxiegirl / docker @Unwatch~ 1 AStar 0 YFork 4008
forked from dockeridockar

Docker - the open-source application container engine http:/www.docker.com — Edit

<> Code
13,323 commits 14 branches 86 releases 783 contributors

I Pull Requests O

Yourrecenty pushed branches:
12 dry-run-tests (3 minutes ago) Compare & pull request

P branch: dry-runtests ~ docker / +

 Settings

$8H clone URL
‘This branch is 1 commit ahead of docker:master I Pull Request (%) Compare.

gitegithub. con:no» | B

This is my first dry-run-test of contributing Vo can o i TP, S50

Signed-of f-by: Mary Anthony <nary.anthonyedocker. co> or Subversion. @
"W, moxiegirl authored 5 minutes ago latest commit 1ab0d23523 B (@ Clone in Desktop
- api Merge pull request #10730 from mattyw/fix-10728 3days ago % Download ziP

8 builder Rename Destroy to Rim to be consistent with CLI. 3hours ago

' https://github.com/moxiegirl/docker .

_images/docker_push_chart.png
$ docker push samalba/busybox —-registry
registry.docker.io

_images/bad_host.png
® © @ | [\ nepocalnostiaatszyis - x |

& - € [[) localhost:49157 wo@A A4

[

This webpage is not available

_images/fixes_num.png
~ I

Write Preview D Markdown su £ Editin fullscreen "
v Able to merge. e

Change https > http in 6.5 docs

‘These branches can be

Hard coded https was causing a problem for a user. Filed a ticket with Zen. I'l change them to http and allow automatially merged.

the destination server to redirect as needed. Both protocols work for me. Fixes #11038

Signed-off-by: Mary Anthony <mary.anthony @docker.com>

Attach images by dragging & dropping, selecting them, or pasting from the ciipboard. m

_images/irc_chat.png
@v Status Messages * #docker * #docker-dev *

[Docker: Open platform for distributed applications | htto://docker.com | https//aithub.com/docker/docker | Current Status: http://status.docker.com/ | Logged at
hitps://botbot. me/freenode/docker | https://aroups.gooale.com/forum)2fromaroups# forum/docker-user | Registration with NickServ required to participate:

hitps://freenode.net/feq.shiml £userregistration]
dockerfile from/thru the base image huh

09] <comm6d> ok nevermind
10] <comn64> but, what if I wanted to use multiple FROMs, could I ? how?
blaflamme’ [~blaflamme@24-142-92-250.dr.cgocable.ca] has joined #docker
dreancat4 (~dreamcat4@62.49.10.154] has quit [Ping timeout: 250 seconds]
savantgarde [~savantgar@g8-105-75-213.dynamic.ds1.as9105.con] has quit [Ping timeout: 256 seconds]
elbaschid (~elbaschid@S0106602ad0702ad5. ve. shavcable.net] has joined #docker
JusticeFries [~textualfc-107-2-139-89.hsdl.co.comcast.net] has left #docker ["Textual IRC Client:
. textualapp.com’]
pedunmy [~quasseléunaffiliated/podunmy] has quit [Remote host closed the connection]
Gondoi [~gondoi82001:4B00:780e:510:bE97:b49%: ££04:6237] has quit [Ping timeout: 256 seconds]
elbaschid (~elbaschid€S0106602ad0702a45. ve. shavcable.net] has quit [Client Quit]
rgoodwin [~rgoodwing2001:4800:780e:510:316¢:b219:££04:781c] has quit [Ping timeout: 250 seconds]
thumpba (~thumpba38.104.231.214] has joined #docker
23] <moxiegirl > comméd: hetps://docs.docker.con/reference/builder/#fron
23] <moxiegirl_> Says you can use multiple FROM statements.
30] <gchristensen> comméd, moxiegirl ~-- if you use multiple FROM statements, it doesn't merge -- it
creates a new image. FROM foo ADD . FRON bar ADD . creates two images: a foo image with ., and a bar image
with .
[10:30] <gchristensen> not one image which is foo + bar + .
<moxiegirl > gohristensen: ah, interesting the documentation doesn't mention that.
<moxiegirl > At least not at that point
[10:33] <gchristensen> "The FROM instruction sets the Base Image for subsequent instructions' "FROM can appear
multiple times within a single Dockerfile in order to create multiple images. Simply make a note of the last
image ID output by the commit before each new FROM command.’
[10:33] <gchristensen> not extremely obvious, but sort of there

<moxiegirl > Ah, I like extremely obvious :-P X

<moxiegirl_> Base image implies that I'm building onto something
<gchristensen> moxiegirl : I'm sure a small PR would be appreciated :)

@crosbymichael
@keeb
@ldlework
@programmerg
@samalba
@shykes
@tibor
@vieux
OxSeb
3onyc
Candyi_
Cor_
Zemd_
_ds82
Cflake
Cikke_
a-m-d
aanand
aepzak
laarobc
jabbe
aberdine
aboudreault
‘accelerate

_images/docker-filesystems-debianrw.png

_images/fork_docker.png
) | misrepostoy searen

=

Docker - the open-source application container engine http:/Awww.docker.com

Explore Gist Blog Help

W moxegil 4+ [& B
docker / docker

@Watch~ 163 HStar 1935 YFork 4010

Click the Fork button.

<> Code
13,332 commits 11 branches

86 releases
@ Issues 021
P oranch: master~ docker / +
1 Pull Requests 131
Merge pullrequest #1092 from cpuguyB3/10685_check nil_volume ==
[itrazette authored 26 minutes ago latest commit ae9@@lfbdc 5 4~ Pulse

o [Iy

P

_images/gh-check-admin-org-dh-app-access.png
- docsorg

Organization profile
Billing

Applications.
Third-party access

Webhooks

Teams z =Auditlog ¥ Settings

& People

Review third-party application access request

Docker Hub Registry v Approved

Docker Hub Registy
docker & docker @ httpsiiregistry.hub.docker... ./ approval requested by docsuser

Denying access will remove this application’s abilty to access private data in the docsorg organization
Deny access

® Applications acton your behalf o access your data based on the permissions you grant them. Organizations
coniol which applications are alowed to access heir private data. Applications authorized by members vill
always have access to public data in your organization. Read about third-party access.

_images/copy_url.png
‘This branch is 14 commits behind docker:master

Merge pull request #1045 from delftswa2014/daemon-rm =

[T e r— latest comit esbarz7

. api Merge pull request #10730 from mattywifix-10728

8 builder Rename Destroy to R to be consistent with CLI.

. buitins Removing -X flag option and autogenerated code to create Dockerversio...

. contrib Merge pul request #0418 from bobrik/overlay-kerel-checks

8 daemon Rename Destroy to R to be consistent with CLI.

8 docker Removing -X flag option and autogenerated code to create Dockerversio.

8 dockerinit pkgreexec: move reexec code to a new package

4~ Pulse

I Pull Request (%) Compare

Click this to copy to
your system clipboard.

You can clone with HTTPS, SSH,
or Subversion. @
Click these links to

change the protocol.

@ Clone in Desktop

&> Download ZIP

3 months ago
[=S

_images/search.png
Edocker wmmisoocer usecses Tym Epon msmiaves [oow | ([N

Official Repositories

The Official Ubuntu base image

@WORDPRESS

&3 redis ubuntu®

reference/commandline/rm.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

rm

Usage: docker rm [OPTIONS] CONTAINER [CONTAINER...]

Remove one or more containers

 -f, --force=false Force the removal of a running container (uses SIGKILL)
 -l, --link=false Remove the specified link
 -v, --volumes=false Remove the volumes associated with the container

Examples

$ docker rm /redis
/redis

This will remove the container referenced under the link
/redis.

$ docker rm --link /webapp/redis
/webapp/redis

This will remove the underlying link between /webapp and the /redis
containers removing all network communication.

$ docker rm --force redis
redis

The main process inside the container referenced under the link /redis will receive
SIGKILL, then the container will be removed.

$ docker rm $(docker ps -a -q)

This command will delete all stopped containers. The command
docker ps -a -q will return all existing container IDs and pass them to
the rm command which will delete them. Any running containers will not be
deleted.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/cli.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Using the command line

Note: If you are using a remote Docker daemon, such as Boot2Docker,
then do not type the sudo before the docker commands shown in the
documentation’s examples.

To list available commands, either run docker with no parameters
or execute docker help:

$ docker
 Usage: docker [OPTIONS] COMMAND [arg...]
 docker daemon [--help | ...]
 docker [-h | --help | -v | --version]

 -H, --host=[]: The socket(s) to bind to in daemon mode, specified using one or more tcp://host:port, unix:///path/to/socket, fd://* or fd://socketfd.

 A self-sufficient runtime for Linux containers.

 ...

Depending on your Docker system configuration, you may be required to preface
each docker command with sudo. To avoid having to use sudo with the
docker command, your system administrator can create a Unix group called
docker and add users to it.

For more information about installing Docker or sudo configuration, refer to
the installation instructions for your operating system.

Environment variables

For easy reference, the following list of environment variables are supported
by the docker command line:

		DOCKER_CONFIG The location of your client configuration files.

		DOCKER_CERT_PATH The location of your authentication keys.

		DOCKER_DRIVER The graph driver to use.

		DOCKER_HOST Daemon socket to connect to.

		DOCKER_NOWARN_KERNEL_VERSION Prevent warnings that your Linux kernel is
unsuitable for Docker.

		DOCKER_RAMDISK If set this will disable ‘pivot_root’.

		DOCKER_TLS_VERIFY When set Docker uses TLS and verifies the remote.

		DOCKER_CONTENT_TRUST When set Docker uses notary to sign and verify images.
Equates to --disable-content-trust=false for build, create, pull, push, run.

		DOCKER_TMPDIR Location for temporary Docker files.

Because Docker is developed using ‘Go’, you can also use any environment
variables used by the ‘Go’ runtime. In particular, you may find these useful:

		HTTP_PROXY

		HTTPS_PROXY

		NO_PROXY

These Go environment variables are case-insensitive. See the
Go specification [http://golang.org/pkg/net/http/] for details on these
variables.

Configuration files

By default, the Docker command line stores its configuration files in a
directory called .docker within your HOME directory. However, you can
specify a different location via the DOCKER_CONFIG environment variable
or the --config command line option. If both are specified, then the
--config option overrides the DOCKER_CONFIG environment variable.
For example:

docker --config ~/testconfigs/ ps

Instructs Docker to use the configuration files in your ~/testconfigs/
directory when running the ps command.

Docker manages most of the files in the configuration directory
and you should not modify them. However, you can modify the
config.json file to control certain aspects of how the docker
command behaves.

Currently, you can modify the docker command behavior using environment
variables or command-line options. You can also use options within
config.json to modify some of the same behavior. When using these
mechanisms, you must keep in mind the order of precedence among them. Command
line options override environment variables and environment variables override
properties you specify in a config.json file.

The config.json file stores a JSON encoding of several properties:

The property HttpHeaders specifies a set of headers to include in all messages
sent from the Docker client to the daemon. Docker does not try to interpret or
understand these header; it simply puts them into the messages. Docker does
not allow these headers to change any headers it sets for itself.

The property psFormat specifies the default format for docker ps output.
When the --format flag is not provided with the docker ps command,
Docker’s client uses this property. If this property is not set, the client
falls back to the default table format. For a list of supported formatting
directives, see the Formatting section in the docker ps documentation

Following is a sample config.json file:

{
 "HttpHeaders": {
 "MyHeader": "MyValue"
 },
 "psFormat": "table {{.ID}}\\t{{.Image}}\\t{{.Command}}\\t{{.Labels}}"
}

Help

To list the help on any command just execute the command, followed by the
--help option.

$ docker run --help

Usage: docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

Run a command in a new container

 -a, --attach=[] Attach to STDIN, STDOUT or STDERR
 -c, --cpu-shares=0 CPU shares (relative weight)
...

Option types

Single character command line options can be combined, so rather than
typing docker run -i -t --name test busybox sh,
you can write docker run -it --name test busybox sh.

Boolean

Boolean options take the form -d=false. The value you see in the help text is
the default value which is set if you do not specify that flag. If you
specify a Boolean flag without a value, this will set the flag to true,
irrespective of the default value.

For example, running docker run -d will set the value to true, so your
container will run in “detached” mode, in the background.

Options which default to true (e.g., docker build --rm=true) can only be
set to the non-default value by explicitly setting them to false:

$ docker build --rm=false .

Multi

You can specify options like -a=[] multiple times in a single command line,
for example in these commands:

$ docker run -a stdin -a stdout -i -t ubuntu /bin/bash
$ docker run -a stdin -a stdout -a stderr ubuntu /bin/ls

Sometimes, multiple options can call for a more complex value string as for
-v:

$ docker run -v /host:/container example/mysql

Note:
Do not use the -t and -a stderr options together due to
limitations in the pty implementation. All stderr in pty mode
simply goes to stdout.

Strings and Integers

Options like --name="" expect a string, and they
can only be specified once. Options like -c=0
expect an integer, and they can only be specified once.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/export.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

export

Usage: docker export [OPTIONS] CONTAINER

 Export the contents of a filesystem to a tar archive (streamed to STDOUT by default).

 -o, --output="" Write to a file, instead of STDOUT

 Produces a tarred repository to the standard output stream.

For example:

$ docker export red_panda > latest.tar

Or

$ docker export --output="latest.tar" red_panda

The docker export command does not export the contents of volumes associated
with the container. If a volume is mounted on top of an existing directory in
the container, docker export will export the contents of the underlying
directory, not the contents of the volume.

Refer to Backup, restore, or migrate data
volumes in
the user guide for examples on exporting data in a volume.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/inspect.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

inspect

Usage: docker inspect [OPTIONS] CONTAINER|IMAGE [CONTAINER|IMAGE...]

Return low-level information on a container or image

 -f, --format="" Format the output using the given go template

 --type=container|image Return JSON for specified type, permissible
 values are "image" or "container"

By default, this will render all results in a JSON array. If a format is
specified, the given template will be executed for each result.

Go’s text/template [http://golang.org/pkg/text/template/] package
describes all the details of the format.

Examples

Get an instance’s IP address:

For the most part, you can pick out any field from the JSON in a fairly
straightforward manner.

$ docker inspect --format='{{.NetworkSettings.IPAddress}}' $INSTANCE_ID

Get an instance’s MAC Address:

For the most part, you can pick out any field from the JSON in a fairly
straightforward manner.

$ docker inspect --format='{{.NetworkSettings.MacAddress}}' $INSTANCE_ID

Get an instance’s log path:

$ docker inspect --format='{{.LogPath}}' $INSTANCE_ID

List All Port Bindings:

One can loop over arrays and maps in the results to produce simple text
output:

$ docker inspect --format='{{range $p, $conf := .NetworkSettings.Ports}} {{$p}} -> {{(index $conf 0).HostPort}} {{end}}' $INSTANCE_ID

Find a Specific Port Mapping:

The .Field syntax doesn’t work when the field name begins with a
number, but the template language’s index function does. The
.NetworkSettings.Ports section contains a map of the internal port
mappings to a list of external address/port objects, so to grab just the
numeric public port, you use index to find the specific port map, and
then index 0 contains the first object inside of that. Then we ask for
the HostPort field to get the public address.

$ docker inspect --format='{{(index (index .NetworkSettings.Ports "8787/tcp") 0).HostPort}}' $INSTANCE_ID

Get config:

The .Field syntax doesn’t work when the field contains JSON data, but
the template language’s custom json function does. The .config
section contains complex JSON object, so to grab it as JSON, you use
json to convert the configuration object into JSON.

$ docker inspect --format='{{json .config}}' $INSTANCE_ID

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/tag.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

tag

Usage: docker tag [OPTIONS] IMAGE[:TAG] [REGISTRYHOST/][USERNAME/]NAME[:TAG]

Tag an image into a repository

 -f, --force=false Force

You can group your images together using names and tags, and then upload them
to Share Images via Repositories.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/create.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

create

Creates a new container.

Usage: docker create [OPTIONS] IMAGE [COMMAND] [ARG...]

Create a new container

 -a, --attach=[] Attach to STDIN, STDOUT or STDERR
 --add-host=[] Add a custom host-to-IP mapping (host:ip)
 --blkio-weight=0 Block IO weight (relative weight)
 -c, --cpu-shares=0 CPU shares (relative weight)
 --cap-add=[] Add Linux capabilities
 --cap-drop=[] Drop Linux capabilities
 --cgroup-parent="" Optional parent cgroup for the container
 --cidfile="" Write the container ID to the file
 --cpu-period=0 Limit CPU CFS (Completely Fair Scheduler) period
 --cpu-quota=0 Limit CPU CFS (Completely Fair Scheduler) quota
 --cpuset-cpus="" CPUs in which to allow execution (0-3, 0,1)
 --cpuset-mems="" Memory nodes (MEMs) in which to allow execution (0-3, 0,1)
 --device=[] Add a host device to the container
 --dns=[] Set custom DNS servers
 --dns-search=[] Set custom DNS search domains
 -e, --env=[] Set environment variables
 --entrypoint="" Overwrite the default ENTRYPOINT of the image
 --env-file=[] Read in a file of environment variables
 --expose=[] Expose a port or a range of ports
 -h, --hostname="" Container host name
 --help=false Print usage
 -i, --interactive=false Keep STDIN open even if not attached
 --ipc="" IPC namespace to use
 -l, --label=[] Set metadata on the container (e.g., --label=com.example.key=value)
 --label-file=[] Read in a line delimited file of labels
 --link=[] Add link to another container
 --log-driver="" Logging driver for container
 --log-opt=[] Log driver specific options
 --lxc-conf=[] Add custom lxc options
 -m, --memory="" Memory limit
 --mac-address="" Container MAC address (e.g. 92:d0:c6:0a:29:33)
 --memory-swap="" Total memory (memory + swap), '-1' to disable swap
 --memory-swappiness="" Tune a container's memory swappiness behavior. Accepts an integer between 0 and 100.
 --name="" Assign a name to the container
 --net="bridge" Set the Network mode for the container
 --oom-kill-disable=false Whether to disable OOM Killer for the container or not
 -P, --publish-all=false Publish all exposed ports to random ports
 -p, --publish=[] Publish a container's port(s) to the host
 --pid="" PID namespace to use
 --privileged=false Give extended privileges to this container
 --read-only=false Mount the container's root filesystem as read only
 --restart="no" Restart policy (no, on-failure[:max-retry], always)
 --security-opt=[] Security options
 -t, --tty=false Allocate a pseudo-TTY
 --disable-content-trust=true Skip image verification
 -u, --user="" Username or UID
 --ulimit=[] Ulimit options
 --uts="" UTS namespace to use
 -v, --volume=[] Bind mount a volume
 --volumes-from=[] Mount volumes from the specified container(s)
 -w, --workdir="" Working directory inside the container

The docker create command creates a writeable container layer over the
specified image and prepares it for running the specified command. The
container ID is then printed to STDOUT. This is similar to docker run -d
except the container is never started. You can then use the
docker start <container_id> command to start the container at any point.

This is useful when you want to set up a container configuration ahead of time
so that it is ready to start when you need it. The initial status of the
new container is created.

Please see the run command section and the Docker run reference for more details.

Examples

$ docker create -t -i fedora bash
6d8af538ec541dd581ebc2a24153a28329acb5268abe5ef868c1f1a261221752
$ docker start -a -i 6d8af538ec5
bash-4.2#

As of v1.4.0 container volumes are initialized during the docker create phase
(i.e., docker run too). For example, this allows you to create the data
volume container, and then use it from another container:

$ docker create -v /data --name data ubuntu
240633dfbb98128fa77473d3d9018f6123b99c454b3251427ae190a7d951ad57
$ docker run --rm --volumes-from data ubuntu ls -la /data
total 8
drwxr-xr-x 2 root root 4096 Dec 5 04:10 .
drwxr-xr-x 48 root root 4096 Dec 5 04:11 ..

Similarly, create a host directory bind mounted volume container, which can
then be used from the subsequent container:

$ docker create -v /home/docker:/docker --name docker ubuntu
9aa88c08f319cd1e4515c3c46b0de7cc9aa75e878357b1e96f91e2c773029f03
$ docker run --rm --volumes-from docker ubuntu ls -la /docker
total 20
drwxr-sr-x 5 1000 staff 180 Dec 5 04:00 .
drwxr-xr-x 48 root root 4096 Dec 5 04:13 ..
-rw-rw-r-- 1 1000 staff 3833 Dec 5 04:01 .ash_history
-rw-r--r-- 1 1000 staff 446 Nov 28 11:51 .ashrc
-rw-r--r-- 1 1000 staff 25 Dec 5 04:00 .gitconfig
drwxr-sr-x 3 1000 staff 60 Dec 1 03:28 .local
-rw-r--r-- 1 1000 staff 920 Nov 28 11:51 .profile
drwx--S--- 2 1000 staff 460 Dec 5 00:51 .ssh
drwxr-xr-x 32 1000 staff 1140 Dec 5 04:01 docker

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/rmi.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

rmi

Usage: docker rmi [OPTIONS] IMAGE [IMAGE...]

Remove one or more images

 -f, --force=false Force removal of the image
 --no-prune=false Do not delete untagged parents

You can remove an image using its short or long ID, its tag, or its digest. If
an image has one or more tag or digest reference, you must remove all of them
before the image is removed.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
test1 latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)
test latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)
test2 latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)

$ docker rmi fd484f19954f
Error: Conflict, cannot delete image fd484f19954f because it is tagged in multiple repositories, use -f to force
2013/12/11 05:47:16 Error: failed to remove one or more images

$ docker rmi test1
Untagged: test1:latest
$ docker rmi test2
Untagged: test2:latest

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
test latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)
$ docker rmi test
Untagged: test:latest
Deleted: fd484f19954f4920da7ff372b5067f5b7ddb2fd3830cecd17b96ea9e286ba5b8

If you use the -f flag and specify the image’s short or long ID, then this
command untags and removes all images that match the specified ID.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
test1 latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)
test latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)
test2 latest fd484f19954f 23 seconds ago 7 B (virtual 4.964 MB)

$ docker rmi -f fd484f19954f
Untagged: test1:latest
Untagged: test:latest
Untagged: test2:latest
Deleted: fd484f19954f4920da7ff372b5067f5b7ddb2fd3830cecd17b96ea9e286ba5b8

An image pulled by digest has no tag associated with it:

$ docker images --digests
REPOSITORY TAG DIGEST IMAGE ID CREATED VIRTUAL SIZE
localhost:5000/test/busybox <none> sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf 4986bf8c1536 9 weeks ago 2.43 MB

To remove an image using its digest:

$ docker rmi localhost:5000/test/busybox@sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf
Untagged: localhost:5000/test/busybox@sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf
Deleted: 4986bf8c15363d1c5d15512d5266f8777bfba4974ac56e3270e7760f6f0a8125
Deleted: ea13149945cb6b1e746bf28032f02e9b5a793523481a0a18645fc77ad53c4ea2
Deleted: df7546f9f060a2268024c8a230d8639878585defcc1bc6f79d2728a13957871b

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/ps.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

ps

Usage: docker ps [OPTIONS]

List containers

 -a, --all=false Show all containers (default shows just running)
 --before="" Show only container created before Id or Name
 -f, --filter=[] Filter output based on conditions provided
 -l, --latest=false Show the latest created container, include non-running
 -n=-1 Show n last created containers, include non-running
 --no-trunc=false Don't truncate output
 -q, --quiet=false Only display numeric IDs
 -s, --size=false Display total file sizes
 --since="" Show created since Id or Name, include non-running
 --format=[] Pretty-print containers using a Go template

Running docker ps --no-trunc showing 2 linked containers.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4c01db0b339c ubuntu:12.04 bash 17 seconds ago Up 16 seconds 3300-3310/tcp webapp
d7886598dbe2 crosbymichael/redis:latest /redis-server --dir 33 minutes ago Up 33 minutes 6379/tcp redis,webapp/db

docker ps will show only running containers by default. To see all containers:
docker ps -a

docker ps will group exposed ports into a single range if possible. E.g., a container that exposes TCP ports 100, 101, 102 will display 100-102/tcp in the PORTS column.

Filtering

The filtering flag (-f or --filter) format is a key=value pair. If there is more
than one filter, then pass multiple flags (e.g. --filter "foo=bar" --filter "bif=baz")

The currently supported filters are:

		id (container’s id)

		label (label=<key> or label=<key>=<value>)

		name (container’s name)

		exited (int - the code of exited containers. Only useful with --all)

		status (created|restarting|running|paused|exited)

Successfully exited containers

$ docker ps -a --filter 'exited=0'
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
ea09c3c82f6e registry:latest /srv/run.sh 2 weeks ago Exited (0) 2 weeks ago 127.0.0.1:5000->5000/tcp desperate_leakey
106ea823fe4e fedora:latest /bin/sh -c 'bash -l' 2 weeks ago Exited (0) 2 weeks ago determined_albattani
48ee228c9464 fedora:20 bash 2 weeks ago Exited (0) 2 weeks ago tender_torvalds

This shows all the containers that have exited with status of ‘0’

Formatting

The formatting option (--format) will pretty-print container output using a Go template.

Valid placeholders for the Go template are listed below:

Placeholder | Description
—- | —-
.ID | Container ID
.Image | Image ID
.Command | Quoted command
.CreatedAt | Time when the container was created.
.RunningFor | Elapsed time since the container was started.
.Ports | Exposed ports.
.Status | Container status.
.Size | Container disk size.
.Labels | All labels asigned to the container.
.Label | Value of a specific label for this container. For example {{.Label "com.docker.swarm.cpu"}}

When using the --format option, the ps command will either output the data exactly as the template
declares or, when using the table directive, will include column headers as well.

The following example uses a template without headers and outputs the ID and Command
entries separated by a colon for all running containers:

$ docker ps --format "{{.ID}}: {{.Command}}"
a87ecb4f327c: /bin/sh -c #(nop) MA
01946d9d34d8: /bin/sh -c #(nop) MA
c1d3b0166030: /bin/sh -c yum -y up
41d50ecd2f57: /bin/sh -c #(nop) MA

To list all running containers with their labels in a table format you can use:

$ docker ps --format "table {{.ID}}\t{{.Labels}}"
CONTAINER ID LABELS
a87ecb4f327c com.docker.swarm.node=ubuntu,com.docker.swarm.storage=ssd
01946d9d34d8
c1d3b0166030 com.docker.swarm.node=debian,com.docker.swarm.cpu=6
41d50ecd2f57 com.docker.swarm.node=fedora,com.docker.swarm.cpu=3,com.docker.swarm.storage=ssd

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/images.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

images

Usage: docker images [OPTIONS] [REPOSITORY]

List images

 -a, --all=false Show all images (default hides intermediate images)
 --digests=false Show digests
 -f, --filter=[] Filter output based on conditions provided
 --help=false Print usage
 --no-trunc=false Don't truncate output
 -q, --quiet=false Only show numeric IDs

The default docker images will show all top level
images, their repository and tags, and their virtual size.

Docker images have intermediate layers that increase reusability,
decrease disk usage, and speed up docker build by
allowing each step to be cached. These intermediate layers are not shown
by default.

The VIRTUAL SIZE is the cumulative space taken up by the image and all
its parent images. This is also the disk space used by the contents of the
Tar file created when you docker save an image.

An image will be listed more than once if it has multiple repository names
or tags. This single image (identifiable by its matching IMAGE ID)
uses up the VIRTUAL SIZE listed only once.

Listing the most recently created images

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
<none> <none> 77af4d6b9913 19 hours ago 1.089 GB
committ latest b6fa739cedf5 19 hours ago 1.089 GB
<none> <none> 78a85c484f71 19 hours ago 1.089 GB
docker latest 30557a29d5ab 20 hours ago 1.089 GB
<none> <none> 5ed6274db6ce 24 hours ago 1.089 GB
postgres 9 746b819f315e 4 days ago 213.4 MB
postgres 9.3 746b819f315e 4 days ago 213.4 MB
postgres 9.3.5 746b819f315e 4 days ago 213.4 MB
postgres latest 746b819f315e 4 days ago 213.4 MB

Listing the full length image IDs

$ docker images --no-trunc
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
<none> <none> 77af4d6b9913e693e8d0b4b294fa62ade6054e6b2f1ffb617ac955dd63fb0182 19 hours ago 1.089 GB
committest latest b6fa739cedf5ea12a620a439402b6004d057da800f91c7524b5086a5e4749c9f 19 hours ago 1.089 GB
<none> <none> 78a85c484f71509adeaace20e72e941f6bdd2b25b4c75da8693efd9f61a37921 19 hours ago 1.089 GB
docker latest 30557a29d5abc51e5f1d5b472e79b7e296f595abcf19fe6b9199dbbc809c6ff4 20 hours ago 1.089 GB
<none> <none> 0124422dd9f9cf7ef15c0617cda3931ee68346455441d66ab8bdc5b05e9fdce5 20 hours ago 1.089 GB
<none> <none> 18ad6fad340262ac2a636efd98a6d1f0ea775ae3d45240d3418466495a19a81b 22 hours ago 1.082 GB
<none> <none> f9f1e26352f0a3ba6a0ff68167559f64f3e21ff7ada60366e2d44a04befd1d3a 23 hours ago 1.089 GB
tryout latest 2629d1fa0b81b222fca63371ca16cbf6a0772d07759ff80e8d1369b926940074 23 hours ago 131.5 MB
<none> <none> 5ed6274db6ceb2397844896966ea239290555e74ef307030ebb01ff91b1914df 24 hours ago 1.089 GB

Listing image digests

Images that use the v2 or later format have a content-addressable identifier
called a digest. As long as the input used to generate the image is
unchanged, the digest value is predictable. To list image digest values, use
the --digests flag:

$ docker images --digests
REPOSITORY TAG DIGEST IMAGE ID CREATED VIRTUAL SIZE
localhost:5000/test/busybox <none> sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf 4986bf8c1536 9 weeks ago 2.43 MB

When pushing or pulling to a 2.0 registry, the push or pull command
output includes the image digest. You can pull using a digest value. You can
also reference by digest in create, run, and rmi commands, as well as the
FROM image reference in a Dockerfile.

Filtering

The filtering flag (-f or --filter) format is of “key=value”. If there is more
than one filter, then pass multiple flags (e.g., --filter "foo=bar" --filter "bif=baz")

The currently supported filters are:

		dangling (boolean - true or false)

		label (label=<key> or label=<key>=<value>)

Untagged images

$ docker images --filter "dangling=true"

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
<none> <none> 8abc22fbb042 4 weeks ago 0 B
<none> <none> 48e5f45168b9 4 weeks ago 2.489 MB
<none> <none> bf747efa0e2f 4 weeks ago 0 B
<none> <none> 980fe10e5736 12 weeks ago 101.4 MB
<none> <none> dea752e4e117 12 weeks ago 101.4 MB
<none> <none> 511136ea3c5a 8 months ago 0 B

This will display untagged images, that are the leaves of the images tree (not
intermediary layers). These images occur when a new build of an image takes the
repo:tag away from the image ID, leaving it untagged. A warning will be issued
if trying to remove an image when a container is presently using it.
By having this flag it allows for batch cleanup.

Ready for use by docker rmi ..., like:

$ docker rmi $(docker images -f "dangling=true" -q)

8abc22fbb042
48e5f45168b9
bf747efa0e2f
980fe10e5736
dea752e4e117
511136ea3c5a

NOTE: Docker will warn you if any containers exist that are using these untagged images.

 © Copyright .
 Created using Sphinx 1.3.1.

userguide/dockerizing.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Dockerizing applications: A “Hello world”

So what’s this Docker thing all about?

Docker allows you to run applications inside containers. Running an
application inside a container takes a single command: docker run.

Note: if you are using a remote Docker daemon, such as Boot2Docker,
then do not type the sudo before the docker commands shown in the
documentation’s examples.

Hello world

Let’s try it now.

$ docker run ubuntu:14.04 /bin/echo 'Hello world'
Hello world

And you just launched your first container!

So what just happened? Let’s step through what the docker run command
did.

First we specified the docker binary and the command we wanted to
execute, run. The docker run combination runs containers.

Next we specified an image: ubuntu:14.04. This is the source of the container
we ran. Docker calls this an image. In this case we used an Ubuntu 14.04
operating system image.

When you specify an image, Docker looks first for the image on your
Docker host. If it can’t find it then it downloads the image from the public
image registry: Docker Hub [https://hub.docker.com].

Next we told Docker what command to run inside our new container:

/bin/echo 'Hello world'

When our container was launched Docker created a new Ubuntu 14.04
environment and then executed the /bin/echo command inside it. We saw
the result on the command line:

Hello world

So what happened to our container after that? Well Docker containers
only run as long as the command you specify is active. Here, as soon as
Hello world was echoed, the container stopped.

An interactive container

Let’s try the docker run command again, this time specifying a new
command to run in our container.

$ docker run -t -i ubuntu:14.04 /bin/bash
root@af8bae53bdd3:/#

Here we’ve again specified the docker run command and launched an
ubuntu:14.04 image. But we’ve also passed in two flags: -t and -i.
The -t flag assigns a pseudo-tty or terminal inside our new container
and the -i flag allows us to make an interactive connection by
grabbing the standard in (STDIN) of the container.

We’ve also specified a new command for our container to run:
/bin/bash. This will launch a Bash shell inside our container.

So now when our container is launched we can see that we’ve got a
command prompt inside it:

root@af8bae53bdd3:/#

Let’s try running some commands inside our container:

root@af8bae53bdd3:/# pwd
/
root@af8bae53bdd3:/# ls
bin boot dev etc home lib lib64 media mnt opt proc root run sbin srv sys tmp usr var

You can see we’ve run the pwd to show our current directory and can
see we’re in the / root directory. We’ve also done a directory listing
of the root directory which shows us what looks like a typical Linux
file system.

You can play around inside this container and when you’re done you can
use the exit command or enter Ctrl-D to finish.

root@af8bae53bdd3:/# exit

As with our previous container, once the Bash shell process has
finished, the container is stopped.

A daemonized Hello world

Now a container that runs a command and then exits has some uses but
it’s not overly helpful. Let’s create a container that runs as a daemon,
like most of the applications we’re probably going to run with Docker.

Again we can do this with the docker run command:

$ docker run -d ubuntu:14.04 /bin/sh -c "while true; do echo hello world; sleep 1; done"
1e5535038e285177d5214659a068137486f96ee5c2e85a4ac52dc83f2ebe4147

Wait, what? Where’s our “hello world” output? Let’s look at what we’ve run here.
It should look pretty familiar. We ran docker run but this time we
specified a flag: -d. The -d flag tells Docker to run the container
and put it in the background, to daemonize it.

We also specified the same image: ubuntu:14.04.

Finally, we specified a command to run:

/bin/sh -c "while true; do echo hello world; sleep 1; done"

This is the (hello) world’s silliest daemon: a shell script that echoes
hello world forever.

So why aren’t we seeing any hello world‘s? Instead Docker has returned
a really long string:

1e5535038e285177d5214659a068137486f96ee5c2e85a4ac52dc83f2ebe4147

This really long string is called a container ID. It uniquely
identifies a container so we can work with it.

Note:
The container ID is a bit long and unwieldy and a bit later
on we’ll see a shorter ID and some ways to name our containers to make
working with them easier.

We can use this container ID to see what’s happening with our hello world daemon.

Firstly let’s make sure our container is running. We can
do that with the docker ps command. The docker ps command queries
the Docker daemon for information about all the containers it knows
about.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
1e5535038e28 ubuntu:14.04 /bin/sh -c 'while tr 2 minutes ago Up 1 minute insane_babbage

Here we can see our daemonized container. The docker ps has returned some useful
information about it, starting with a shorter variant of its container ID:
1e5535038e28.

We can also see the image we used to build it, ubuntu:14.04, the command it
is running, its status and an automatically assigned name,
insane_babbage.

Note:
Docker automatically names any containers you start, a
little later on we’ll see how you can specify your own names.

Okay, so we now know it’s running. But is it doing what we asked it to do? To see this
we’re going to look inside the container using the docker logs
command. Let’s use the container name Docker assigned.

$ docker logs insane_babbage
hello world
hello world
hello world
. . .

The docker logs command looks inside the container and returns its standard
output: in this case the output of our command hello world.

Awesome! Our daemon is working and we’ve just created our first
Dockerized application!

Now we’ve established we can create our own containers let’s tidy up
after ourselves and stop our daemonized container. To do this we use the
docker stop command.

$ docker stop insane_babbage
insane_babbage

The docker stop command tells Docker to politely stop the running
container. If it succeeds it will return the name of the container it
has just stopped.

Let’s check it worked with the docker ps command.

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Excellent. Our container has been stopped.

Next steps

Now we’ve seen how simple it is to get started with Docker. Let’s learn how to
do some more advanced tasks.

Go to Working With Containers.

 © Copyright .
 Created using Sphinx 1.3.1.

installation/rhel.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Red Hat Enterprise Linux

Docker is supported on the following versions of RHEL:

		Red Hat Enterprise Linux 7

This page instructs you to install using Docker-managed release packages and
installation mechanisms. Using these packages ensures you get the latest release
of Docker. If you wish to install using Red Hat-managed packages, consult your
Red Hat release documentation for information on Red Hat’s Docker support.

Prerequisites

Docker requires a 64-bit installation regardless of your Red Hat version. Docker
requires that your kernel must be 3.10 at minimum, which Red Hat 7 runs.

To check your current kernel version, open a terminal and use uname -r to
display your kernel version:

$ uname -r
3.10.0-229.el7.x86_64

Finally, is it recommended that you fully update your system. Please keep in
mind that your system should be fully patched to fix any potential kernel bugs.
Any reported kernel bugs may have already been fixed on the latest kernel
packages.

Install Docker Engine

There are two ways to install Docker Engine. You can use curl with the get.docker.com site. This method runs an installation script which installs via the yum package manager. Or you can install with the yum package manager directly yourself.

Install with the script

You use the same installation procedure for all versions of CentOS.

		Log into your machine as a user with sudo or root privileges.

		Make sure your existing yum packages are up-to-date.

 $ sudo yum update

		Run the Docker installation script.

 $ curl -sSL https://get.docker.com/ | sh

		Start the Docker daemon.

 $ sudo service docker start

		Verify docker is installed correctly by running a test image in a container.

 $ sudo docker run hello-world
 Unable to find image 'hello-world:latest' locally
 latest: Pulling from hello-world
 a8219747be10: Pull complete
 91c95931e552: Already exists
 hello-world:latest: The image you are pulling has been verified. Important: image verification is a tech preview feature and should not be relied on to provide security.
 Digest: sha256:aa03e5d0d5553b4c3473e89c8619cf79df368babd1.7.1cf5daeb82aab55838d
 Status: Downloaded newer image for hello-world:latest
 Hello from Docker.
 This message shows that your installation appears to be working correctly.

 To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (Assuming it was not already locally available.)
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

 To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

 For more examples and ideas, visit:
 http://docs.docker.com/userguide/

Install without the script

		Log into your machine as a user with sudo or root privileges.

		Make sure your existing yum packages are up-to-date.

 $ sudo yum update

		Add the yum repo yourself.

For RHEL 7 run:

 $ cat >/etc/yum.repos.d/docker.repo <<-EOF
 [dockerrepo]
 name=Docker Repository
 baseurl=https://yum.dockerproject.org/repo/main/centos/7
 enabled=1
 gpgcheck=1
 gpgkey=https://yum.dockerproject.org/gpg
 EOF

		Install the Docker package.

 $ sudo yum install docker-engine

		Start the Docker daemon.

 $ sudo service docker start

		Verify docker is installed correctly by running a test image in a container.

 $ sudo docker run hello-world

Create a docker group

The docker daemon binds to a Unix socket instead of a TCP port. By default
that Unix socket is owned by the user root and other users can access it with
sudo. For this reason, docker daemon always runs as the root user.

To avoid having to use sudo when you use the docker command, create a Unix
group called docker and add users to it. When the docker daemon starts, it
makes the ownership of the Unix socket read/writable by the docker group.

Warning: The docker group is equivalent to the root user; For details
on how this impacts security in your system, see Docker Daemon Attack
Surface for details.

To create the docker group and add your user:

		Log into your machine as a user with sudo or root privileges.

		Create the docker group and add your user.

sudo usermod -aG docker your_username

		Log out and log back in.

This ensures your user is running with the correct permissions.

		Verify your work by running docker without sudo.

 $ docker run hello-world

Start the docker daemon at boot

To ensure Docker starts when you boot your system, do the following:

$ sudo chkconfig docker on

If you need to add an HTTP Proxy, set a different directory or partition for the
Docker runtime files, or make other customizations, read our Systemd article to
learn how to customize your Systemd Docker daemon options.

Uninstall

You can uninstall the Docker software with yum.

		List the package you have installed.

 $ yum list installed | grep docker
 yum list installed | grep docker
 docker-engine.x86_64 1.7.1-0.1.el7
 @/docker-engine-1.7.1-0.1.el7.x86_64

		Remove the package.

 $ sudo yum -y remove docker-engine.x86_64

This command does not remove images, containers, volumes, or user created
configuration files on your host.

		To delete all images, containers, and volumes run the following command:

 $ rm -rf /var/lib/docker

		Locate and delete any user-created configuration files.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/logout.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

logout

Usage: docker logout [SERVER]

Log out from a Docker registry, if no server is
specified "https://index.docker.io/v1/" is the default.

For example:

$ docker logout localhost:8080

 © Copyright .
 Created using Sphinx 1.3.1.

installation/azure.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Microsoft Azure

Creating a Docker host machine on Azure

Please check out to the following detailed tutorials on Microsoft Azure [http://azure.microsoft.com/]
website to find out different ways to create a Docker-ready Linux virtual
machines on Azure:

		Docker Virtual Machine Extensions on Azure [http://azure.microsoft.com/en-us/documentation/articles/virtual-machines-docker-vm-extension/]
		How to use the Docker VM Extension from Azure Cross-Platform Interface [http://azure.microsoft.com/documentation/articles/virtual-machines-docker-with-xplat-cli/]

		How to use the Docker VM Extension with the Azure Portal [http://azure.microsoft.com/documentation/articles/virtual-machines-docker-with-portal/]

		Using Docker Machine with Azure [http://azure.microsoft.com/en-us/documentation/articles/virtual-machines-docker-machine/]

What next?

Continue with the User Guide.

 © Copyright .
 Created using Sphinx 1.3.1.

userguide/dockerrepos.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Get started with Docker Hub

So far you’ve learned how to use the command line to run Docker on your local host.
You’ve learned how to pull down images to build containers
from existing images and you’ve learned how to create your own images.

Next, you’re going to learn how to use the Docker Hub [https://hub.docker.com] to
simplify and enhance your Docker workflows.

The Docker Hub [https://hub.docker.com] is a public registry maintained by Docker,
Inc. It contains over 15,000 images you can download and use to build containers. It also
provides authentication, work group structure, workflow tools like webhooks and build
triggers, and privacy tools like private repositories for storing images you don’t want
to share publicly.

Docker commands and Docker Hub

Docker itself provides access to Docker Hub services via the docker search,
pull, login, and push commands. This page will show you how these commands work.

Account creation and login

Typically, you’ll want to start by creating an account on Docker Hub (if you haven’t
already) and logging in. You can create your account directly on
Docker Hub [https://hub.docker.com/account/signup/], or by running:

$ docker login

This will prompt you for a user name, which will become the public namespace for your
public repositories.
If your user name is available, Docker will prompt you to enter a password and your
e-mail address. It will then automatically log you in. You can now commit and
push your own images up to your repos on Docker Hub.

Note:
Your authentication credentials will be stored in the ~/.docker/config.json
authentication file in your home directory.

Searching for images

You can search the Docker Hub [https://hub.docker.com] registry via its search
interface or by using the command line interface. Searching can find images by image
name, user name, or description:

$ docker search centos
NAME DESCRIPTION STARS OFFICIAL TRUSTED
centos Official CentOS 6 Image as of 12 April 2014 88
tianon/centos CentOS 5 and 6, created using rinse instea... 21
...

There you can see two example results: centos and tianon/centos. The second
result shows that it comes from the public repository of a user, named
tianon/, while the first result, centos, doesn’t explicitly list a
repository which means that it comes from the trusted top-level namespace for
Official Repositories. The / character separates
a user’s repository from the image name.

Once you’ve found the image you want, you can download it with docker pull <imagename>:

$ docker pull centos
Pulling repository centos
0b443ba03958: Download complete
539c0211cd76: Download complete
511136ea3c5a: Download complete
7064731afe90: Download complete

Status: Downloaded newer image for centos

You now have an image from which you can run containers.

Contributing to Docker Hub

Anyone can pull public images from the Docker Hub [https://hub.docker.com]
registry, but if you would like to share your own images, then you must
register first, as we saw in the first section of the Docker User
Guide.

Pushing a repository to Docker Hub

In order to push a repository to its registry, you need to have named an image
or committed your container to a named image as we saw
here.

Now you can push this repository to the registry designated by its name or tag.

$ docker push yourname/newimage

The image will then be uploaded and available for use by your team-mates and/or the
community.

Features of Docker Hub

Let’s take a closer look at some of the features of Docker Hub. You can find more
information here [https://docs.docker.com/docker-hub/].

		Private repositories

		Organizations and teams

		Automated Builds

		Webhooks

Private repositories

Sometimes you have images you don’t want to make public and share with
everyone. So Docker Hub allows you to have private repositories. You can
sign up for a plan here [https://registry.hub.docker.com/plans/].

Organizations and teams

One of the useful aspects of private repositories is that you can share
them only with members of your organization or team. Docker Hub lets you
create organizations where you can collaborate with your colleagues and
manage private repositories. You can learn how to create and manage an organization
here [https://registry.hub.docker.com/account/organizations/].

Automated Builds

Automated Builds automate the building and updating of images from
GitHub [https://www.github.com] or Bitbucket [http://bitbucket.com], directly on Docker
Hub. It works by adding a commit hook to your selected GitHub or Bitbucket repository,
triggering a build and update when you push a commit.

To setup an Automated Build

		Create a Docker Hub account [https://hub.docker.com/] and login.

		Link your GitHub or Bitbucket account through the “Link Accounts” [https://registry.hub.docker.com/account/accounts/] menu.

		Configure an Automated Build [https://registry.hub.docker.com/builds/add/].

		Pick a GitHub or Bitbucket project that has a Dockerfile that you want to build.

		Pick the branch you want to build (the default is the master branch).

		Give the Automated Build a name.

		Assign an optional Docker tag to the Build.

		Specify where the Dockerfile is located. The default is /.

Once the Automated Build is configured it will automatically trigger a
build and, in a few minutes, you should see your new Automated Build on the Docker Hub [https://hub.docker.com]
Registry. It will stay in sync with your GitHub and Bitbucket repository until you
deactivate the Automated Build.

To check the output and status of your Automated Build repositories, click on a repository name within the “Your Repositories” page [https://registry.hub.docker.com/repos/]. Automated Builds are indicated by a check-mark icon next to the repository name. Within the repository details page, you may click on the “Build Details” tab to view the status and output of all builds triggered by the Docker Hub.

Once you’ve created an Automated Build you can deactivate or delete it. You
cannot, however, push to an Automated Build with the docker push command.
You can only manage it by committing code to your GitHub or Bitbucket
repository.

You can create multiple Automated Builds per repository and configure them
to point to specific Dockerfile‘s or Git branches.

Build triggers

Automated Builds can also be triggered via a URL on Docker Hub. This
allows you to rebuild an Automated build image on demand.

Webhooks

Webhooks are attached to your repositories and allow you to trigger an
event when an image or updated image is pushed to the repository. With
a webhook you can specify a target URL and a JSON payload that will be
delivered when the image is pushed.

See the Docker Hub documentation for more information on
webhooks [https://docs.docker.com/docker-hub/repos/#webhooks]

Next steps

Go and use Docker!

 © Copyright .
 Created using Sphinx 1.3.1.

docker-hub/home.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

The Docker Hub Registry help

Introduction

For your questions about the Docker Hub [https://hub.docker.com] registry you
can use this documentation.

If you can not find something you are looking for, please feel free to
contact us [https://docker.com/resources/support/].

 © Copyright .
 Created using Sphinx 1.3.1.

userguide/level2.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

 Back

#Dockerfile tutorial

Test your Dockerfile knowledge - Level 2

Questions:

What is the Dockerfile instruction to specify the base image?

 The right answer was FROM

 Which Dockerfile instruction sets the default command for your image?

 The right answer was ENTRYPOINT or CMD

 What is the character used to add comments in Dockerfiles?

 The right answer was #

 Which Dockerfile instruction sets the username to use when running the image?

 The right answer was USER

 What is the Dockerfile instruction to execute any command on the current image and commit the results?

 The right answer was RUN

 Which Dockerfile instruction sets ports to be exposed when running the image?

 The right answer was EXPOSE

 What is the Dockerfile instruction to specify the maintainer of the Dockerfile?

 The right answer was MAINTAINER

 Which Dockerfile instruction lets you trigger a command as soon as the container starts?

 The right answer was ENTRYPOINT or CMD

<div class="alert alert-success" id="all_good" style="display:none;">Congratulations, you made no mistake!

Tell the world Tweet

And try the next challenge: Fill the Dockerfile
</div>
<div class="alert alert-error" id="no_good" style="display:none;">Your Dockerfile skills are not yet perfect, try to take the time to read this tutorial again.</div>
<div class="alert alert-block" id="some_good" style="display:none;">You're almost there! Read carefully the sections corresponding to your errors, and take the test again!</div>
</p>
<button class="btn btn-primary" id="check_level2_questions">Check your answers</button>

Fill the Dockerfile

Your best friend Roberto Hashioka sent you a Dockerfile, but some parts were lost in the ocean. Can you find the missing parts?

Redis
#
VERSION 0.42
#
use the ubuntu base image provided by dotCloud
 ub

MAINT Ro Ha roberto.hashioka@dotcloud.com

make sure the package repository is up to date
 echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/sources.list
 apt-get update

install wget (required for redis installation)
 apt-get install -y wget

install make (required for redis installation)
 apt-get install -y make

install gcc (required for redis installation)
RUN apt-get install -y

install apache2
 wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable && make && make install

launch redis when starting the image
 ["redis-server"]

run as user daemon
 daemon

expose port 6379
 6379

Congratulations, you successfully restored Roberto's Dockerfile! You are ready to containerize the world!.

 Tell the world! Tweet

Wooops, there are one or more errors in the Dockerfile. Try again.

Check the Dockerfile

What’s next?

Thanks for going through our tutorial! We will be posting Level 3 in the future.

To improve your Dockerfile writing skills even further, visit the Dockerfile best practices page.

Back to the Docs!

 © Copyright .
 Created using Sphinx 1.3.1.

installation/cruxlinux.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

CRUX Linux

Installing on CRUX Linux can be handled via the contrib ports from
James Mills [http://prologic.shortcircuit.net.au/] and are included in the
official contrib [http://crux.nu/portdb/?a=repo&q=contrib] ports:

		docker

The docker port will build and install the latest tagged version of Docker.

Installation

Assuming you have contrib enabled, update your ports tree and install docker:

$ sudo prt-get depinst docker

Kernel requirements

To have a working CRUX+Docker Host you must ensure your Kernel has
the necessary modules enabled for the Docker Daemon to function correctly.

Please read the README:

$ sudo prt-get readme docker

The docker port installs the contrib/check-config.sh script
provided by the Docker contributors for checking your kernel
configuration as a suitable Docker host.

To check your Kernel configuration run:

$ /usr/share/docker/check-config.sh

Starting Docker

There is a rc script created for Docker. To start the Docker service:

$ sudo /etc/rc.d/docker start

To start on system boot:

		Edit /etc/rc.conf

		Put docker into the SERVICES=(...) array after net.

Images

There is a CRUX image maintained by James Mills [http://prologic.shortcircuit.net.au/]
as part of the Docker “Official Library” of images. To use this image simply pull it
or use it as part of your FROM line in your Dockerfile(s).

$ docker pull crux
$ docker run -i -t crux

There are also user contributed CRUX based image(s) [https://registry.hub.docker.com/repos/crux/] on the Docker Hub.

Uninstallation

To uninstall the Docker package:

$ sudo prt-get remove docker

The above command will not remove images, containers, volumes, or user created
configuration files on your host. If you wish to delete all images, containers,
and volumes run the following command:

$ rm -rf /var/lib/docker

You must delete the user created configuration files manually.

Issues

If you have any issues please file a bug with the
CRUX Bug Tracker [http://crux.nu/bugs/].

Support

For support contact the CRUX Mailing List [http://crux.nu/Main/MailingLists]
or join CRUX’s IRC Channels [http://crux.nu/Main/IrcChannels]. on the
FreeNode [http://freenode.net/] IRC Network.

 © Copyright .
 Created using Sphinx 1.3.1.

userguide/level1.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

 Back

Dockerfile tutorial

Test your Dockerfile knowledge - Level 1

Questions

 What is the Dockerfile instruction to specify the base image ?

 The right answer was FROM

 What is the Dockerfile instruction to execute any commands on the current image and commit the results?

 The right answer was RUN

 What is the Dockerfile instruction to specify the maintainer of the Dockerfile?

 The right answer was MAINTAINER

 What is the character used to add comment in Dockerfiles?

 The right answer was #

Congratulations, you made no mistake!

 Tell the world Tweet

 And try the next challenge: Fill the Dockerfile

 Your Dockerfile skills are not yet perfect, try to take the time to read this tutorial again.

 You're almost there! Read carefully the sections corresponding to your errors, and take the test again!

 Check your answers

Fill the Dockerfile

Your best friend Eric Bardin sent you a Dockerfile, but some parts were lost in the ocean. Can you find the missing parts?

This is a Dockerfile to create an image with Memcached and Emacs installed.

VERSION 1.0

use the ubuntu base image provided by dotCloud
 ub

 E B, eric.bardin@dotcloud.com

make sure the package repository is up to date
 echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/sources.list
 apt-get update

install memcached
RUN apt-get install -y

install emacs
 apt-get install -y emacs23

Congratulations, you successfully restored Eric's Dockerfile! You are ready to containerize the world!.

Tell the world! Tweet

Wooops, there are one or more errors in the Dockerfile. Try again.

Check the Dockerfile

What’s next?

In the next level, we will go into more detail about how to specify which command should be executed when the container starts,
which user to use, and how expose a particular port.

Back
Go to the next level

 © Copyright .
 Created using Sphinx 1.3.1.

docker-hub/repos.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Your Hub repositories

Docker Hub repositories make it possible for you to share images with co-workers,
customers or the Docker community at large. If you’re building your images internally,
either on your own Docker daemon, or using your own Continuous integration services,
you can push them to a Docker Hub repository that you add to your Docker Hub user or
organization account.

Alternatively, if the source code for your Docker image is on GitHub or Bitbucket,
you can use an “Automated build” repository, which is built by the Docker Hub
services. See the automated builds documentation to read about
the extra functionality provided by those services.

[image: repositories]

Your Docker Hub repositories have a number of useful features.

Stars

Your repositories can be starred and you can star repositories in
return. Stars are a way to show that you like a repository. They are
also an easy way of bookmarking your favorites.

Comments

You can interact with other members of the Docker community and maintainers by
leaving comments on repositories. If you find any comments that are not
appropriate, you can flag them for review.

Collaborators and their role

A collaborator is someone you want to give access to a private
repository. Once designated, they can push and pull to your
repositories. They will not be allowed to perform any administrative
tasks such as deleting the repository or changing its status from
private to public.

Note:
A collaborator cannot add other collaborators. Only the owner of
the repository has administrative access.

You can also assign more granular collaborator rights (“Read”, “Write”, or “Admin”)
on Docker Hub by using organizations and groups. For more information
see the accounts documentation.

Private repositories

Private repositories allow you to have repositories that contain images
that you want to keep private, either to your own account or within an
organization or group.

To work with a private repository on Docker
Hub [https://hub.docker.com], you will need to add one via the Add
Repository [https://registry.hub.docker.com/account/repositories/add/]
link. You get one private repository for free with your Docker Hub
account. If you need more accounts you can upgrade your Docker
Hub [https://registry.hub.docker.com/plans/] plan.

Once the private repository is created, you can push and pull images
to and from it using Docker.

Note: You need to be signed in and have access to work with a
private repository.

Private repositories are just like public ones. However, it isn’t
possible to browse them or search their content on the public registry.
They do not get cached the same way as a public repository either.

It is possible to give access to a private repository to those whom you
designate (i.e., collaborators) from its Settings page. From there, you
can also switch repository status (public to private, or
vice-versa). You will need to have an available private repository slot
open before you can do such a switch. If you don’t have any available,
you can always upgrade your Docker
Hub [https://registry.hub.docker.com/plans/] plan.

Webhooks

A webhook is an HTTP call-back triggered by a specific event.
You can use a Hub repository webhook to notify people, services, and other
applications after a new image is pushed to your repository (this also happens
for Automated builds). For example, you can trigger an automated test or
deployment to happen as soon as the image is available.

To get started adding webhooks, go to the desired repository in the Hub,
and click “Webhooks” under the “Settings” box.
A webhook is called only after a successful push is
made. The webhook calls are HTTP POST requests with a JSON payload
similar to the example shown below.

Example webhook JSON payload:

{
 "callback_url": "https://registry.hub.docker.com/u/svendowideit/busybox/hook/2141bc0cdec4hebec411i4c1g40242eg110020/",
 "push_data": {
 "images": [
 "27d47432a69bca5f2700e4dff7de0388ed65f9d3fb1ec645e2bc24c223dc1cc3",
 "51a9c7c1f8bb2fa19bcd09789a34e63f35abb80044bc10196e304f6634cc582c",
 ...
],
 "pushed_at": 1.417566822e+09,
 "pusher": "svendowideit"
 },
 "repository": {
 "comment_count": 0,
 "date_created": 1.417566665e+09,
 "description": "",
 "full_description": "webhook triggered from a 'docker push'",
 "is_official": false,
 "is_private": false,
 "is_trusted": false,
 "name": "busybox",
 "namespace": "svendowideit",
 "owner": "svendowideit",
 "repo_name": "svendowideit/busybox",
 "repo_url": "https://registry.hub.docker.com/u/svendowideit/busybox/",
 "star_count": 0,
 "status": "Active"
}

<TODO: does it tell you what tag was updated?>

For testing, you can try an HTTP request tool like requestb.in [http://requestb.in/].

Note: The Docker Hub servers use an elastic IP range, so you can’t
filter requests by IP.

Webhook chains

Webhook chains allow you to chain calls to multiple services. For example,
you can use this to trigger a deployment of your container only after
it has been successfully tested, then update a separate Changelog once the
deployment is complete.
After clicking the “Add webhook” button, simply add as many URLs as necessary
in your chain.

The first webhook in a chain will be called after a successful push. Subsequent
URLs will be contacted after the callback has been validated.

Validating a callback

In order to validate a callback in a webhook chain, you need to

		Retrieve the callback_url value in the request’s JSON payload.

		Send a POST request to this URL containing a valid JSON body.

Note: A chain request will only be considered complete once the last
callback has been validated.

To help you debug or simply view the results of your webhook(s),
view the “History” of the webhook available on its settings page.

Callback JSON data

The following parameters are recognized in callback data:

		state (required): Accepted values are success, failure and error.
If the state isn’t success, the webhook chain will be interrupted.

		description: A string containing miscellaneous information that will be
available on the Docker Hub. Maximum 255 characters.

		context: A string containing the context of the operation. Can be retrieved
from the Docker Hub. Maximum 100 characters.

		target_url: The URL where the results of the operation can be found. Can be
retrieved on the Docker Hub.

Example callback payload:

{
 "state": "success",
 "description": "387 tests PASSED",
 "context": "Continuous integration by Acme CI",
 "target_url": "http://ci.acme.com/results/afd339c1c3d27"
}

Mark as unlisted

By marking a repository as unlisted, you can create a publicly pullable repository
which will not be in the Hub or commandline search. This allows you to have a limited
release, but does not restrict access to anyone that is told, or guesses the repository
name.

 © Copyright .
 Created using Sphinx 1.3.1.

userguide/usingdocker.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Working with containers

In the last section of the Docker User Guide
we launched our first containers. We launched two containers using the
docker run command.

		Containers we ran interactively in the foreground.

		One container we ran daemonized in the background.

In the process we learned about several Docker commands:

		docker ps - Lists containers.

		docker logs - Shows us the standard output of a container.

		docker stop - Stops running containers.

Tip:
Another way to learn about docker commands is our
interactive tutorial [https://www.docker.com/tryit/].

The docker client is pretty simple. Each action you can take
with Docker is a command and each command can take a series of
flags and arguments.

Usage: [sudo] docker [command] [flags] [arguments] ..
Example:
$ docker run -i -t ubuntu /bin/bash

Let’s see this in action by using the docker version command to return
version information on the currently installed Docker client and daemon.

$ docker version

This command will not only provide you the version of Docker client and
daemon you are using, but also the version of Go (the programming
language powering Docker).

Client version: 0.8.0
Go version (client): go1.2

Git commit (client): cc3a8c8
Server version: 0.8.0

Git commit (server): cc3a8c8
Go version (server): go1.2

Last stable version: 0.8.0

Get Docker command help

You can display the help for specific Docker commands. The help details the
options and their usage. To see a list of all the possible commands, use the
following:

$ docker --help

To see usage for a specific command, specify the command with the --help flag:

$ docker attach --help

Usage: docker attach [OPTIONS] CONTAINER

Attach to a running container

 --help=false Print usage
 --no-stdin=false Do not attach stdin
 --sig-proxy=true Proxy all received signals to the process

Note:
For further details and examples of each command, see the
command reference in this guide.

Running a web application in Docker

So now we’ve learnt a bit more about the docker client let’s move onto
the important stuff: running more containers. So far none of the
containers we’ve run did anything particularly useful, so let’s
change that by running an example web application in Docker.

For our web application we’re going to run a Python Flask application.
Let’s start with a docker run command.

$ docker run -d -P training/webapp python app.py

Let’s review what our command did. We’ve specified two flags: -d and
-P. We’ve already seen the -d flag which tells Docker to run the
container in the background. The -P flag is new and tells Docker to
map any required network ports inside our container to our host. This
lets us view our web application.

We’ve specified an image: training/webapp. This image is a
pre-built image we’ve created that contains a simple Python Flask web
application.

Lastly, we’ve specified a command for our container to run: python app.py. This launches our web application.

Note:
You can see more detail on the docker run command in the command
reference and the Docker Run
Reference.

Viewing our web application container

Now let’s see our running container using the docker ps command.

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
bc533791f3f5 training/webapp:latest python app.py 5 seconds ago Up 2 seconds 0.0.0.0:49155->5000/tcp nostalgic_morse

You can see we’ve specified a new flag, -l, for the docker ps
command. This tells the docker ps command to return the details of the
last container started.

Note:
By default, the docker ps command only shows information about running
containers. If you want to see stopped containers too use the -a flag.

We can see the same details we saw when we first Dockerized a
container with one important addition in the PORTS
column.

PORTS
0.0.0.0:49155->5000/tcp

When we passed the -P flag to the docker run command Docker mapped any
ports exposed in our image to our host.

Note:
We’ll learn more about how to expose ports in Docker images when
we learn how to build images.

In this case Docker has exposed port 5000 (the default Python Flask
port) on port 49155.

Network port bindings are very configurable in Docker. In our last example the
-P flag is a shortcut for -p 5000 that maps port 5000 inside the container
to a high port (from ephemeral port range which typically ranges from 32768
to 61000) on the local Docker host. We can also bind Docker containers to
specific ports using the -p flag, for example:

$ docker run -d -p 80:5000 training/webapp python app.py

This would map port 5000 inside our container to port 80 on our local
host. You might be asking about now: why wouldn’t we just want to always
use 1:1 port mappings in Docker containers rather than mapping to high
ports? Well 1:1 mappings have the constraint of only being able to map
one of each port on your local host. Let’s say you want to test two
Python applications: both bound to port 5000 inside their own containers.
Without Docker’s port mapping you could only access one at a time on the
Docker host.

So let’s now browse to port 49155 in a web browser to
see the application.

[image: Viewing the web application].

Our Python application is live!

Note:
If you have been using a virtual machine on OS X, Windows or Linux,
you’ll need to get the IP of the virtual host instead of using localhost.
You can do this by running the docker-machine ip your_vm_name from your command line or terminal application, for example:

$ docker-machine ip my-docker-vm
192.168.99.100

In this case you’d browse to http://192.168.99.100:49155 for the above example.

A network port shortcut

Using the docker ps command to return the mapped port is a bit clumsy so
Docker has a useful shortcut we can use: docker port. To use docker port we
specify the ID or name of our container and then the port for which we need the
corresponding public-facing port.

$ docker port nostalgic_morse 5000
0.0.0.0:49155

In this case we’ve looked up what port is mapped externally to port 5000 inside
the container.

Viewing the web application’s logs

Let’s also find out a bit more about what’s happening with our application and
use another of the commands we’ve learnt, docker logs.

$ docker logs -f nostalgic_morse
* Running on http://0.0.0.0:5000/
10.0.2.2 - - [23/May/2014 20:16:31] "GET / HTTP/1.1" 200 -
10.0.2.2 - - [23/May/2014 20:16:31] "GET /favicon.ico HTTP/1.1" 404 -

This time though we’ve added a new flag, -f. This causes the docker logs command to act like the tail -f command and watch the
container’s standard out. We can see here the logs from Flask showing
the application running on port 5000 and the access log entries for it.

Looking at our web application container’s processes

In addition to the container’s logs we can also examine the processes
running inside it using the docker top command.

$ docker top nostalgic_morse
PID USER COMMAND
854 root python app.py

Here we can see our python app.py command is the only process running inside
the container.

Inspecting our web application container

Lastly, we can take a low-level dive into our Docker container using the
docker inspect command. It returns a JSON hash of useful configuration
and status information about Docker containers.

$ docker inspect nostalgic_morse

Let’s see a sample of that JSON output.

[{
 "ID": "bc533791f3f500b280a9626688bc79e342e3ea0d528efe3a86a51ecb28ea20",
 "Created": "2014-05-26T05:52:40.808952951Z",
 "Path": "python",
 "Args": [
 "app.py"
],
 "Config": {
 "Hostname": "bc533791f3f5",
 "Domainname": "",
 "User": "",
. . .

We can also narrow down the information we want to return by requesting a
specific element, for example to return the container’s IP address we would:

$ docker inspect -f '{{ .NetworkSettings.IPAddress }}' nostalgic_morse
172.17.0.5

Stopping our web application container

Okay we’ve seen web application working. Now let’s stop it using the
docker stop command and the name of our container: nostalgic_morse.

$ docker stop nostalgic_morse
nostalgic_morse

We can now use the docker ps command to check if the container has
been stopped.

$ docker ps -l

Restarting our web application container

Oops! Just after you stopped the container you get a call to say another
developer needs the container back. From here you have two choices: you
can create a new container or restart the old one. Let’s look at
starting our previous container back up.

$ docker start nostalgic_morse
nostalgic_morse

Now quickly run docker ps -l again to see the running container is
back up or browse to the container’s URL to see if the application
responds.

Note:
Also available is the docker restart command that runs a stop and
then start on the container.

Removing our web application container

Your colleague has let you know that they’ve now finished with the container
and won’t need it again. So let’s remove it using the docker rm command.

$ docker rm nostalgic_morse
Error: Impossible to remove a running container, please stop it first or use -f
2014/05/24 08:12:56 Error: failed to remove one or more containers

What happened? We can’t actually remove a running container. This protects
you from accidentally removing a running container you might need. Let’s try
this again by stopping the container first.

$ docker stop nostalgic_morse
nostalgic_morse
$ docker rm nostalgic_morse
nostalgic_morse

And now our container is stopped and deleted.

Note:
Always remember that deleting a container is final!

Next steps

Until now we’ve only used images that we’ve downloaded from
Docker Hub [https://hub.docker.com]. Next, let’s get introduced to
building and sharing our own images.

Go to Working with Docker Images.

 © Copyright .
 Created using Sphinx 1.3.1.

docker-hub/builds.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Automated Builds on Docker Hub

About Automated Builds

Automated Builds are a special feature of Docker Hub which allow you to
use Docker Hub’s [https://hub.docker.com] build clusters to automatically
create images from a GitHub or Bitbucket repository containing a Dockerfile
The system will clone your repository and build the image described by the
Dockerfile using the directory the Dockerfile is in (and subdirectories)
as the build context. The resulting automated image will then be uploaded
to the Docker Hub registry and marked as an Automated Build.

Automated Builds have several advantages:

		Users of your Automated Build can trust that the resulting
image was built exactly as specified.

		The Dockerfile will be available to anyone with access to
your repository on the Docker Hub registry.

		Because the process is automated, Automated Builds help to
make sure that your repository is always up to date.

		Not having to push local Docker images to Docker Hub saves
you both network bandwidth and time.

Automated Builds are supported for both public and private repositories
on both GitHub [http://github.com] and Bitbucket [https://bitbucket.org/].

To use Automated Builds, you must have an account on Docker Hub [https://docs.docker.com/userguide/dockerhub/#creating-a-docker-hub-account]
and on GitHub and/or Bitbucket. In either case, the account needs
to be properly validated and activated before you can link to it.

The first time you to set up an Automated Build, your
Docker Hub [https://hub.docker.com] account will need to be linked to
a GitHub or Bitbucket account.
This will allow the registry to see your repositories.

If you have previously linked your Docker Hub account, and want to view or modify
that link, click on the “Manage - Settings” link in the sidebar, and then
“Linked Accounts” in your Settings sidebar.

Automated Builds from GitHub

If you’ve previously linked your Docker Hub account to your GitHub account,
you’ll be able to skip to the Creating an Automated Build.

Linking your Docker Hub account to a GitHub account

Note:
Automated Builds currently require read and write access since
Docker Hub [https://hub.docker.com] needs to setup a GitHub service
hook. We have no choice here, this is how GitHub manages permissions, sorry!
We do guarantee nothing else will be touched in your account.

To get started, log into your Docker Hub account and click the
“+ Add Repository” button at the upper right of the screen. Then select
Automated Build [https://registry.hub.docker.com/builds/add/].

Select the GitHub service [https://registry.hub.docker.com/associate/github/].

When linking to GitHub, you’ll need to select either “Public and Private”,
or “Limited” linking.

The “Public and Private” option is the easiest to use,
as it grants the Docker Hub full access to all of your repositories. GitHub
also allows you to grant access to repositories belonging to your GitHub
organizations.

By choosing the “Limited” linking, your Docker Hub account only gets permission
to access your public data and public repositories.

Follow the onscreen instructions to authorize and link your
GitHub account to Docker Hub. Once it is linked, you’ll be able to
choose a source repository from which to create the Automatic Build.

You will be able to review and revoke Docker Hub’s access by visiting the
GitHub User’s Applications settings [https://github.com/settings/applications].

Note: If you delete the GitHub account linkage that is used for one of your
automated build repositories, the previously built images will still be available.
If you re-link to that GitHub account later, the automated build can be started
using the “Start Build” button on the Hub, or if the webhook on the GitHub repository
still exists, will be triggered by any subsequent commits.

Auto builds and limited linked GitHub accounts.

If you selected to link your GitHub account with only a “Limited” link, then
after creating your automated build, you will need to either manually trigger a
Docker Hub build using the “Start a Build” button, or add the GitHub webhook
manually, as described in GitHub Service Hooks.

Changing the GitHub user link

If you want to remove, or change the level of linking between your GitHub account
and the Docker Hub, you need to do this in two places.

First, remove the “Linked Account” from your Docker Hub “Settings”.
Then go to your GitHub account’s Personal settings, and in the “Applications”
section, “Revoke access”.

You can now re-link your account at any time.

GitHub organizations

GitHub organizations and private repositories forked from organizations will be
made available to auto build using the “Docker Hub Registry” application, which
needs to be added to the organization - and then will apply to all users.

To check, or request access, go to your GitHub user’s “Setting” page, select the
“Applications” section from the left side bar, then click the “View” button for
“Docker Hub Registry”.

[image: Check User access to GitHub]

The organization’s administrators may need to go to the Organization’s “Third
party access” screen in “Settings” to Grant or Deny access to the Docker Hub
Registry application. This change will apply to all organization members.

[image: Check Docker Hub application access to Organization]

More detailed access controls to specific users and GitHub repositories would be
managed using the GitHub People and Teams interfaces.

Creating an Automated Build

You can create an Automated Build [https://registry.hub.docker.com/builds/github/select/] from any of your
public or private GitHub repositories that have a Dockerfile.

Once you’ve selected the source repository, you can then configure:

		The Hub user/org the repository is built to - either your Hub account name,
or the name of any Hub organizations your account is in

		The Docker repository name the image is built to

		If the Docker repository should be “Public” or “Private”
You can change the accessibility options after the repository has been created.
If you add a Private repository to a Hub user, then you can only add other users
as collaborators, and those users will be able to view and pull all images in that
repository. To configure more granular access permissions, such as using groups of
users or allow different users access to different image tags, then you need
to add the Private repository to a Hub organization that your user has Administrator
privilege on.

		If you want the GitHub to notify the Docker Hub when a commit is made, and thus trigger
a rebuild of all the images in this automated build.

You can also select one or more

		The git branch/tag, which repository sub-directory to use as the context

		The Docker image tag name

You can set a description for the repository by clicking “Description” link in the righthand side bar after the automated build - note that the “Full Description” will be over-written next build from the README.md file.
has been created.

GitHub private submodules

If your GitHub repository contains links to private submodules, you’ll get an
error message in your build.

Normally, the Docker Hub sets up a deploy key in your GitHub repository.
Unfortunately, GitHub only allows a repository deploy key to access a single repository.

To work around this, you need to create a dedicated user account in GitHub and attach
the automated build’s deploy key that account. This dedicated build account
can be limited to read-only access to just the repositories required to build.

 		Step
 		Screenshot
 		Description

 		1.
 		[image:]
 		First, create the new account in GitHub. It should be given read-only
 access to the main repository and all submodules that are needed.

 		2.
 		[image:]
 		This can be accomplished by adding the account to a read-only team in
 the organization(s) where the main GitHub repository and all submodule
 repositories are kept.

 		3.
 		[image:]
 		Next, remove the deploy key from the main GitHub repository. This can be done in the GitHub repository's "Deploy keys" Settings section.

 		4.
 		[image:]
 		Your automated build's deploy key is in the "Build Details" menu
 under "Deploy keys".

 		5.
 		[image:]
 		In your dedicated GitHub User account, add the deploy key from your
 Docker Hub Automated Build.

GitHub service hooks

The GitHub Service hook allows GitHub to notify the Docker Hub when something has
been committed to that git repository. You will need to add the Service Hook manually
if your GitHub account is “Limited” linked to the Docker Hub.

Follow the steps below to configure the GitHub Service hooks for your Automated Build:

 		Step
 		Screenshot
 		Description

 		1.
 		[image:]
 		Log in to GitHub.com, and go to your Repository page. Click on "Settings" on
 the right side of the page. You must have admin privileges to the repository in order to do this.

 		2.
 		[image: Webhooks & Services]
 		Click on "Webhooks & Services" on the left side of the page.

 		3.
 		[image: Find the service labeled Docker]
 		Find the service labeled "Docker" (or click on "Add service") and click on it.

 		4.
 		[image: Activate Service Hooks]
 		Make sure the "Active" checkbox is selected and click the "Update service" button to save your changes.

Automated Builds with Bitbucket

In order to setup an Automated Build, you need to first link your
Docker Hub [https://hub.docker.com] account with a Bitbucket account.
This will allow the registry to see your repositories.

To get started, log into your Docker Hub account and click the
“+ Add Repository” button at the upper right of the screen. Then
select Automated Build [https://registry.hub.docker.com/builds/add/].

Select the Bitbucket source [https://registry.hub.docker.com/associate/bitbucket/].

Then follow the onscreen instructions to authorize and link your
Bitbucket account to Docker Hub. Once it is linked, you’ll be able
to choose a repository from which to create the Automatic Build.

Creating an Automated Build

You can create an Automated Build [https://registry.hub.docker.com/builds/bitbucket/select/] from any of your
public or private Bitbucket repositories with a Dockerfile.

Adding a Hook

When you link your Docker Hub account, a POST hook should get automatically
added to your Bitbucket repository. Follow the steps below to confirm or modify the
Bitbucket hooks for your Automated Build:

 		Step
 		Screenshot
 		Description

 		1.
 		[image: Settings]
 		Log in to Bitbucket.org and go to your Repository page. Click on "Settings" on
 the far left side of the page, under "Navigation". You must have admin privileges
 to the repository in order to do this.

 		2.
 		[image: Hooks]
 		Click on "Hooks" on the near left side of the page, under "Settings".

 		3.
 		[image: Docker Post Hook]		You should now see a list of hooks associated with the repo, including a POST hook that points at
 registry.hub.docker.com/hooks/bitbucket.

The Dockerfile and Automated Builds

During the build process, Docker will copy the contents of your Dockerfile.
It will also add it to the Docker Hub [https://hub.docker.com] for the Docker
community (for public repositories) or approved team members/orgs (for private
repositories) to see on the repository page.

README.md

If you have a README.md file in your repository, it will be used as the
repository’s full description.The build process will look for a
README.md in the same directory as your Dockerfile.

Warning:
If you change the full description after a build, it will be
rewritten the next time the Automated Build has been built. To make changes,
modify the README.md from the Git repository.

Remote Build triggers

If you need a way to trigger Automated Builds outside of GitHub or Bitbucket,
you can set up a build trigger. When you turn on the build trigger for an
Automated Build, it will give you a URL to which you can send POST requests.
This will trigger the Automated Build, much as with a GitHub webhook.

Build triggers are available under the Settings menu of each Automated Build
repository on the Docker Hub.

[image: Build trigger screen]

You can use curl to trigger a build:

$ curl --data "build=true" -X POST https://registry.hub.docker.com/u/svendowideit/testhook/trigger/be579c
82-7c0e-11e4-81c4-0242ac110020/
OK

Note:
You can only trigger one build at a time and no more than one
every five minutes. If you already have a build pending, or if you
recently submitted a build request, those requests will be ignored.
To verify everything is working correctly, check the logs of last
ten triggers on the settings page .

Webhooks

Automated Builds also include a Webhooks feature. Webhooks can be called
after a successful repository push is made. This includes when a new tag is added
to an existing image.

The webhook call will generate a HTTP POST with the following JSON
payload:

{
 "callback_url": "https://registry.hub.docker.com/u/svendowideit/testhook/hook/2141b5bi5i5b02bec211i4eeih0242eg11000a/",
 "push_data": {
 "images": [
 "27d47432a69bca5f2700e4dff7de0388ed65f9d3fb1ec645e2bc24c223dc1cc3",
 "51a9c7c1f8bb2fa19bcd09789a34e63f35abb80044bc10196e304f6634cc582c",
 ...
],
 "pushed_at": 1.417566161e+09,
 "pusher": "trustedbuilder"
 },
 "repository": {
 "comment_count": 0,
 "date_created": 1.417494799e+09,
 "description": "",
 "dockerfile": "#\n# BUILD\u0009\u0009docker build -t svendowideit/apt-cacher .\n# RUN\u0009\u0009docker run -d -p 3142:3142 -name apt-cacher-run apt-cacher\n#\n# and then you can run containers with:\n# \u0009\u0009docker run -t -i -rm -e http_proxy http://192.168.1.2:3142/ debian bash\n#\nFROM\u0009\u0009ubuntu\nMAINTAINER\u0009SvenDowideit@home.org.au\n\n\nVOLUME\u0009\u0009[\"/var/cache/apt-cacher-ng\"]\nRUN\u0009\u0009apt-get update ; apt-get install -yq apt-cacher-ng\n\nEXPOSE \u0009\u00093142\nCMD\u0009\u0009chmod 777 /var/cache/apt-cacher-ng ; /etc/init.d/apt-cacher-ng start ; tail -f /var/log/apt-cacher-ng/*\n",
 "full_description": "Docker Hub based automated build from a GitHub repo",
 "is_official": false,
 "is_private": true,
 "is_trusted": true,
 "name": "testhook",
 "namespace": "svendowideit",
 "owner": "svendowideit",
 "repo_name": "svendowideit/testhook",
 "repo_url": "https://registry.hub.docker.com/u/svendowideit/testhook/",
 "star_count": 0,
 "status": "Active"
 }
}

Webhooks are available under the Settings menu of each Repository.Use a tool like requestb.in [http://requestb.in/] to test your webhook.

Note: The Docker Hub servers use an elastic IP range, so you can’t
filter requests by IP.

Webhook chains

Webhook chains allow you to chain calls to multiple services. For example,
you can use this to trigger a deployment of your container only after
it has been successfully tested, then update a separate Changelog once the
deployment is complete.
After clicking the “Add webhook” button, simply add as many URLs as necessary
in your chain.

The first webhook in a chain will be called after a successful push. Subsequent
URLs will be contacted after the callback has been validated.

Validating a callback

In order to validate a callback in a webhook chain, you need to

		Retrieve the callback_url value in the request’s JSON payload.

		Send a POST request to this URL containing a valid JSON body.

Note: A chain request will only be considered complete once the last
callback has been validated.

To help you debug or simply view the results of your webhook(s),
view the “History” of the webhook available on its settings page.

Callback JSON data

The following parameters are recognized in callback data:

		state (required): Accepted values are success, failure and error.
If the state isn’t success, the webhook chain will be interrupted.

		description: A string containing miscellaneous information that will be
available on the Docker Hub. Maximum 255 characters.

		context: A string containing the context of the operation. Can be retrieved
from the Docker Hub. Maximum 100 characters.

		target_url: The URL where the results of the operation can be found. Can be
retrieved on the Docker Hub.

Example callback payload:

{
 "state": "success",
 "description": "387 tests PASSED",
 "context": "Continuous integration by Acme CI",
 "target_url": "http://ci.acme.com/results/afd339c1c3d27"
}

Repository links

Repository links are a way to associate one Automated Build with
another. If one gets updated, the linking system triggers a rebuild
for the other Automated Build. This makes it easy to keep all your
Automated Builds up to date.

To add a link, go to the repository for the Automated Build you want to
link to and click on Repository Links under the Settings menu at
right. Then, enter the name of the repository that you want have linked.

Warning:
You can add more than one repository link, however, you should
do so very carefully. Creating a two way relationship between Automated Builds will
cause an endless build loop.

 © Copyright .
 Created using Sphinx 1.3.1.

misc/faq.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Frequently Asked Questions (FAQ)

If you don’t see your question here, feel free to submit new ones to
docs@docker.com. Or, you can fork the
repo [https://github.com/docker/docker] and contribute them yourself by editing
the documentation sources.

How much does Docker cost?

Docker is 100% free. It is open source, so you can use it without paying.

What open source license are you using?

We are using the Apache License Version 2.0, see it here:
https://github.com/docker/docker/blob/master/LICENSE

Does Docker run on Mac OS X or Windows?

Docker currently runs only on Linux, but you can use VirtualBox to run Docker in
a virtual machine on your box, and get the best of both worlds. Check out the
Mac OS X and Microsoft
Windows installation guides. The small Linux
distribution boot2docker can be run inside virtual machines on these two
operating systems.

Note: if you are using a remote Docker daemon on a VM through Docker
Machine, then do not type the sudo before the docker commands shown in
the documentation’s examples.

How do containers compare to virtual machines?

They are complementary. VMs are best used to allocate chunks of hardware
resources. Containers operate at the process level, which makes them very
lightweight and perfect as a unit of software delivery.

What does Docker add to just plain LXC?

Docker is not a replacement for LXC. “LXC” refers to capabilities of the Linux
kernel (specifically namespaces and control groups) which allow sandboxing
processes from one another, and controlling their resource allocations. On top
of this low-level foundation of kernel features, Docker offers a high-level tool
with several powerful functionalities:

		Portable deployment across machines. Docker defines a format for bundling
an application and all its dependencies into a single object which can be
transferred to any Docker-enabled machine, and executed there with the
guarantee that the execution environment exposed to the application will be the
same. LXC implements process sandboxing, which is an important pre-requisite
for portable deployment, but that alone is not enough for portable deployment.
If you sent me a copy of your application installed in a custom LXC
configuration, it would almost certainly not run on my machine the way it does
on yours, because it is tied to your machine’s specific configuration:
networking, storage, logging, distro, etc. Docker defines an abstraction for
these machine-specific settings, so that the exact same Docker container can
run - unchanged - on many different machines, with many different
configurations.

		Application-centric. Docker is optimized for the deployment of
applications, as opposed to machines. This is reflected in its API, user
interface, design philosophy and documentation. By contrast, the lxc helper
scripts focus on containers as lightweight machines - basically servers that
boot faster and need less RAM. We think there’s more to containers than just
that.

		Automatic build. Docker includes a tool for developers to automatically
assemble a container from their source
code, with full control over application
dependencies, build tools, packaging etc. They are free to use make, maven,
chef, puppet, salt, Debian packages, RPMs, source tarballs, or any
combination of the above, regardless of the configuration of the machines.

		Versioning. Docker includes git-like capabilities for tracking successive
versions of a container, inspecting the diff between versions, committing new
versions, rolling back etc. The history also includes how a container was
assembled and by whom, so you get full traceability from the production server
all the way back to the upstream developer. Docker also implements incremental
uploads and downloads, similar to git pull, so new versions of a container
can be transferred by only sending diffs.

		Component re-use. Any container can be used as a “base image” to create more specialized components. This can
be done manually or as part of an automated build. For example you can prepare
the ideal Python environment, and use it as a base for 10 different
applications. Your ideal PostgreSQL setup can be re-used for all your future
projects. And so on.

		Sharing. Docker has access to a public registry [https://hub.docker.com]
where thousands of people have uploaded useful containers: anything from Redis,
CouchDB, PostgreSQL to IRC bouncers to Rails app servers to Hadoop to base
images for various Linux distros. The
registry also
includes an official “standard library” of useful containers maintained by the
Docker team. The registry itself is open-source, so anyone can deploy their own
registry to store and transfer private containers, for internal server
deployments for example.

		Tool ecosystem. Docker defines an API for automating and customizing the
creation and deployment of containers. There are a huge number of tools
integrating with Docker to extend its capabilities. PaaS-like deployment
(Dokku, Deis, Flynn), multi-node orchestration (Maestro, Salt, Mesos, Openstack
Nova), management dashboards (docker-ui, Openstack Horizon, Shipyard),
configuration management (Chef, Puppet), continuous integration (Jenkins,
Strider, Travis), etc. Docker is rapidly establishing itself as the standard
for container-based tooling.

What is different between a Docker container and a VM?

There’s a great StackOverflow answer showing the differences [http://stackoverflow.com/questions/16047306/how-is-docker-io-different-from-a-normal-virtual-machine].

Do I lose my data when the container exits?

Not at all! Any data that your application writes to disk gets preserved in its
container until you explicitly delete the container. The file system for the
container persists even after the container halts.

How far do Docker containers scale?

Some of the largest server farms in the world today are based on containers.
Large web deployments like Google and Twitter, and platform providers such as
Heroku and dotCloud all run on container technology, at a scale of hundreds of
thousands or even millions of containers running in parallel.

How do I connect Docker containers?

Currently the recommended way to link containers is via the link primitive. You
can see details of how to work with links here.

Also useful for more flexible service portability is the Ambassador linking
pattern.

How do I run more than one process in a Docker container?

Any capable process supervisor such as http://supervisord.org/, runit, s6, or daemontools can do the trick. Docker
will start up the process management daemon which will then fork to run
additional processes. As long as the processor manager daemon continues to run,
the container will continue to as well. You can see a more substantial example
that uses supervisord here.

What platforms does Docker run on?

Linux:

		Ubuntu 12.04, 13.04 et al

		Fedora 19/20+

		RHEL 6.5+

		CentOS 6+

		Gentoo

		ArchLinux

		openSUSE 12.3+

		CRUX 3.0+

Cloud:

		Amazon EC2

		Google Compute Engine

		Rackspace

How do I report a security issue with Docker?

You can learn about the project’s security policy
here [https://www.docker.com/security/] and report security issues to this
mailbox.

Why do I need to sign my commits to Docker with the DCO?

Please read our blog post [http://blog.docker.com/2014/01/docker-code-contributions-require-developer-certificate-of-origin/] on the introduction of the DCO.

When building an image, should I prefer system libraries or bundled ones?

This is a summary of a discussion on the docker-dev mailing list [https://groups.google.com/forum/#!topic/docker-dev/L2RBSPDu1L0].

Virtually all programs depend on third-party libraries. Most frequently, they
will use dynamic linking and some kind of package dependency, so that when
multiple programs need the same library, it is installed only once.

Some programs, however, will bundle their third-party libraries, because they
rely on very specific versions of those libraries. For instance, Node.js bundles
OpenSSL; MongoDB bundles V8 and Boost (among others).

When creating a Docker image, is it better to use the bundled libraries, or
should you build those programs so that they use the default system libraries
instead?

The key point about system libraries is not about saving disk or memory space.
It is about security. All major distributions handle security seriously, by
having dedicated security teams, following up closely with published
vulnerabilities, and disclosing advisories themselves. (Look at the Debian
Security Information [https://www.debian.org/security/] for an example of those
procedures.) Upstream developers, however, do not always implement similar
practices.

Before setting up a Docker image to compile a program from source, if you want
to use bundled libraries, you should check if the upstream authors provide a
convenient way to announce security vulnerabilities, and if they update their
bundled libraries in a timely manner. If they don’t, you are exposing yourself
(and the users of your image) to security vulnerabilities.

Likewise, before using packages built by others, you should check if the
channels providing those packages implement similar security best practices.
Downloading and installing an “all-in-one” .deb or .rpm sounds great at first,
except if you have no way to figure out that it contains a copy of the OpenSSL
library vulnerable to the Heartbleed [http://heartbleed.com/] bug.

Why is DEBIAN_FRONTEND=noninteractive discouraged in Dockerfiles?

When building Docker images on Debian and Ubuntu you may have seen errors like:

unable to initialize frontend: Dialog

These errors don’t stop the image from being built but inform you that the
installation process tried to open a dialog box, but was unable to. Generally,
these errors are safe to ignore.

Some people circumvent these errors by changing the DEBIAN_FRONTEND
environment variable inside the Dockerfile using:

ENV DEBIAN_FRONTEND=noninteractive

This prevents the installer from opening dialog boxes during installation which
stops the errors.

While this may sound like a good idea, it may have side effects. The
DEBIAN_FRONTEND environment variable will be inherited by all images and
containers built from your image, effectively changing their behavior. People
using those images will run into problems when installing software
interactively, because installers will not show any dialog boxes.

Because of this, and because setting DEBIAN_FRONTEND to noninteractive is
mainly a ‘cosmetic’ change, we discourage changing it.

If you really need to change its setting, make sure to change it back to its
default value [https://www.debian.org/releases/stable/i386/ch05s03.html.en]
afterwards.

Why do I get Connection reset by peer when making a request to a service running in a container?

Typically, this message is returned if the service is already bound to your
localhost. As a result, requests coming to the container from outside are
dropped. To correct this problem, change the service’s configuration on your
localhost so that the service accepts requests from all IPs. If you aren’t sure
how to do this, check the documentation for your OS.

Where can I find more answers?

You can find more answers on:

		Docker user mailinglist [https://groups.google.com/d/forum/docker-user]

		Docker developer mailinglist [https://groups.google.com/d/forum/docker-dev]

		IRC, docker on freenode

		GitHub [https://github.com/docker/docker]

		Ask questions on Stackoverflow [http://stackoverflow.com/search?q=docker]

		Join the conversation on Twitter [http://twitter.com/docker]

Looking for something else to read? Checkout the User Guide.

 © Copyright .
 Created using Sphinx 1.3.1.

installation/frugalware.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

FrugalWare

Installing on FrugalWare is handled via the official packages:

		lxc-docker i686 [http://www.frugalware.org/packages/200141]

		lxc-docker x86_64 [http://www.frugalware.org/packages/200130]

The lxc-docker package will install the latest tagged version of Docker.

Dependencies

Docker depends on several packages which are specified as dependencies
in the packages. The core dependencies are:

		systemd

		lvm2

		sqlite3

		libguestfs

		lxc

		iproute2

		bridge-utils

Installation

A simple

$ sudo pacman -S lxc-docker

is all that is needed.

Starting Docker

There is a systemd service unit created for Docker. To start Docker as
service:

$ sudo systemctl start lxc-docker

To start on system boot:

$ sudo systemctl enable lxc-docker

Custom daemon options

If you need to add an HTTP Proxy, set a different directory or partition for the
Docker runtime files, or make other customizations, read our systemd article to
learn how to customize your systemd Docker daemon options.

Uninstallation

To uninstall the Docker package:

$ sudo pacman -R lxc-docker

To uninstall the Docker package and dependencies that are no longer needed:

$ sudo pacman -Rns lxc-docker

The above commands will not remove images, containers, volumes, or user created
configuration files on your host. If you wish to delete all images, containers,
and volumes run the following command:

$ rm -rf /var/lib/docker

You must delete the user created configuration files manually.

 © Copyright .
 Created using Sphinx 1.3.1.

misc/deprecated.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Deprecated Features

The following list of features are deprecated.

Old Command Line Options

Deprecated In Release: v1.8.0

Target For Removal In Release: v1.10

The flags -d and --daemon are deprecated in favor of the daemon subcommand:

docker daemon -H ...

The following single-dash (-opt) variant of certain command line options
are deprecated and replaced with double-dash options (--opt):

docker attach -nostdin
docker attach -sig-proxy
docker build -no-cache
docker build -rm
docker commit -author
docker commit -run
docker events -since
docker history -notrunc
docker images -notrunc
docker inspect -format
docker ps -beforeId
docker ps -notrunc
docker ps -sinceId
docker rm -link
docker run -cidfile
docker run -cpuset
docker run -dns
docker run -entrypoint
docker run -expose
docker run -link
docker run -lxc-conf
docker run -n
docker run -privileged
docker run -volumes-from
docker search -notrunc
docker search -stars
docker search -t
docker search -trusted
docker tag -force

The following double-dash options are deprecated and have no replacement:

docker run --networking
docker ps --since-id
docker ps --before-id
docker search --trusted

 © Copyright .
 Created using Sphinx 1.3.1.

installation/debian.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Debian

Docker is supported on the following versions of Debian:

		Debian 8.0 Jessie (64-bit)

		Debian 7.7 Wheezy (64-bit)

Debian Jessie 8.0 (64-bit)

Debian 8 comes with a 3.16.0 Linux kernel, the docker.io package can be found in the jessie-backports repository. Reasoning behind this can be found here. Instructions how to enable the backports repository can be found here.

Note:
Debian contains a much older KDE3/GNOME2 package called docker, so the
package and the executable are called docker.io.

Installation

Make sure you enabled the jessie-backports repository, as stated above.

To install the latest Debian package (may not be the latest Docker release):

$ sudo apt-get update
$ sudo apt-get install docker.io

To verify that everything has worked as expected:

$ sudo docker run --rm hello-world

This command downloads and runs the hello-world image in a container. When the
container runs, it prints an informational message. Then, it exits.

If you need to add an HTTP Proxy, set a different directory or partition for the
Docker runtime files, or make other customizations, read our Systemd article to
learn how to customize your Systemd Docker daemon options.

Note:
If you want to enable memory and swap accounting see
this.

Uninstallation

To uninstall the Docker package:

$ sudo apt-get purge docker.io

To uninstall the Docker package and dependencies that are no longer needed:

$ sudo apt-get autoremove --purge docker.io

The above commands will not remove images, containers, volumes, or user created
configuration files on your host. If you wish to delete all images, containers,
and volumes run the following command:

$ rm -rf /var/lib/docker

You must delete the user created configuration files manually.

Debian Wheezy/Stable 7.x (64-bit)

Docker requires Kernel 3.8+, while Wheezy ships with Kernel 3.2 (for more details
on why 3.8 is required, see discussion on
bug #407 [https://github.com/docker/docker/issues/407]).

Fortunately, wheezy-backports currently has Kernel 3.16
 [https://packages.debian.org/search?suite=wheezy-backports§ion=all&arch=any&searchon=names&keywords=linux-image-amd64],
which is officially supported by Docker.

Installation

		Install Kernel from wheezy-backports

Add the following line to your /etc/apt/sources.list

deb http://http.debian.net/debian wheezy-backports main

then install the linux-image-amd64 package (note the use of
-t wheezy-backports)

 $ sudo apt-get update
 $ sudo apt-get install -t wheezy-backports linux-image-amd64

		Restart your system. This is necessary for Debian to use your new kernel.

		Install Docker using the get.docker.com script:

curl -sSL https://get.docker.com/ | sh

Note: If your company is behind a filtering proxy, you may find that the
apt-key
command fails for the Docker repo during installation. To work around this,
add the key directly using the following:

 $ wget -qO- https://get.docker.com/gpg | sudo apt-key add -

Uninstallation

To uninstall the Docker package:

$ sudo apt-get purge docker-engine

To uninstall the Docker package and dependencies that are no longer needed:

$ sudo apt-get autoremove --purge docker-engine

The above commands will not remove images, containers, volumes, or user created
configuration files on your host. If you wish to delete all images, containers,
and volumes run the following command:

$ rm -rf /var/lib/docker

You must delete the user created configuration files manually.

Giving non-root access

The docker daemon always runs as the root user and the docker
daemon binds to a Unix socket instead of a TCP port. By default that
Unix socket is owned by the user root, and so, by default, you can
access it with sudo.

If you (or your Docker installer) create a Unix group called docker
and add users to it, then the docker daemon will make the ownership of
the Unix socket read/writable by the docker group when the daemon
starts. The docker daemon must always run as the root user, but if you
run the docker client as a user in the docker group then you don’t
need to add sudo to all the client commands. From Docker 0.9.0 you can
use the -G flag to specify an alternative group.

Warning:
The docker group (or the group specified with the -G flag) is
root-equivalent; see Docker Daemon Attack Surface details.

Example:

Add the docker group if it doesn't already exist.
$ sudo groupadd docker

Add the connected user "${USER}" to the docker group.
Change the user name to match your preferred user.
You may have to logout and log back in again for
this to take effect.
$ sudo gpasswd -a ${USER} docker

Restart the Docker daemon.
$ sudo service docker restart

What next?

Continue with the User Guide.

 © Copyright .
 Created using Sphinx 1.3.1.

userguide/dockervolumes.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Managing data in containers

So far we’ve been introduced to some basic Docker
concepts, seen how to work with Docker
images as well as learned about networking
and links between containers. In this section
we’re going to discuss how you can manage data inside and between your
Docker containers.

We’re going to look at the two primary ways you can manage data in
Docker.

		Data volumes, and

		Data volume containers.

Data volumes

A data volume is a specially-designated directory within one or more
containers that bypasses the Union File
System. Data volumes provide several
useful features for persistent or shared data:

		Volumes are initialized when a container is created. If the container’s
base image contains data at the specified mount point, that existing data is
copied into the new volume upon volume initialization.

		Data volumes can be shared and reused among containers.

		Changes to a data volume are made directly.

		Changes to a data volume will not be included when you update an image.

		Data volumes persist even if the container itself is deleted.

Data volumes are designed to persist data, independent of the container’s life
cycle. Docker therefore never automatically delete volumes when you remove
a container, nor will it “garbage collect” volumes that are no longer
referenced by a container.

Adding a data volume

You can add a data volume to a container using the -v flag with the
docker create and docker run command. You can use the -v multiple times
to mount multiple data volumes. Let’s mount a single volume now in our web
application container.

$ docker run -d -P --name web -v /webapp training/webapp python app.py

This will create a new volume inside a container at /webapp.

Note:
You can also use the VOLUME instruction in a Dockerfile to add one or
more new volumes to any container created from that image.

Docker volumes default to mount in read-write mode, but you can also set it to be mounted read-only.

$ docker run -d -P --name web -v /opt/webapp:ro training/webapp python app.py

Locating a volume

You can locate the volume on the host by utilizing the ‘docker inspect’ command.

$ docker inspect web

The output will provide details on the container configurations including the
volumes. The output should look something similar to the following:

...
"Volumes": {
 "/webapp": "/var/lib/docker/volumes/fac362...80535"
},
"VolumesRW": {
 "/webapp": true
}
...

You will notice in the above ‘Volumes’ is specifying the location on the host and
‘VolumesRW’ is specifying that the volume is read/write.

Mount a host directory as a data volume

In addition to creating a volume using the -v flag you can also mount a
directory from your Docker daemon’s host into a container.

Note:
If you are using Boot2Docker, your Docker daemon only has limited access to
your OS X/Windows filesystem. Boot2Docker tries to auto-share your /Users
(OS X) or C:\Users (Windows) directory - and so you can mount files or directories
using docker run -v /Users/<path>:/<container path> ... (OS X) or
docker run -v /c/Users/<path>:/<container path ... (Windows). All other paths
come from the Boot2Docker virtual machine’s filesystem.

$ docker run -d -P --name web -v /src/webapp:/opt/webapp training/webapp python app.py

This will mount the host directory, /src/webapp, into the container at
/opt/webapp.

Note:
If the path /opt/webapp already exists inside the container’s image, its
contents will be replaced by the contents of /src/webapp on the host to stay
consistent with the expected behavior of mount

When using Boot2Docker on Windows through git bash, there might be an issue with the
way the source directory name is parsed. You can fix it by using a double slash at
the beginning of the source directory name as explained in issue #12751 [https://github.com/docker/docker/issues/12751]

This is very useful for testing, for example we can
mount our source code inside the container and see our application at work as
we change the source code. The directory on the host must be specified as an
absolute path and if the directory doesn’t exist Docker will automatically
create it for you.

Note:
This is not available from a Dockerfile due to the portability
and sharing purpose of built images. The host directory is, by its nature,
host-dependent, so a host directory specified in a Dockerfile probably
wouldn’t work on all hosts.

Docker volumes default to mount in read-write mode, but you can also set it to be mounted read-only.

$ docker run -d -P --name web -v /src/webapp:/opt/webapp:ro training/webapp python app.py

Here we’ve mounted the same /src/webapp directory but we’ve added the ro
option to specify that the mount should be read-only.

Mount a host file as a data volume

The -v flag can also be used to mount a single file - instead of just
directories - from the host machine.

$ docker run --rm -it -v ~/.bash_history:/.bash_history ubuntu /bin/bash

This will drop you into a bash shell in a new container, you will have your bash
history from the host and when you exit the container, the host will have the
history of the commands typed while in the container.

Note:
Many tools used to edit files including vi and sed --in-place may result
in an inode change. Since Docker v1.1.0, this will produce an error such as
“sed: cannot rename ./sedKdJ9Dy: Device or resource busy”. In the case where
you want to edit the mounted file, it is often easiest to instead mount the
parent directory.

Creating and mounting a data volume container

If you have some persistent data that you want to share between
containers, or want to use from non-persistent containers, it’s best to
create a named Data Volume Container, and then to mount the data from
it.

Let’s create a new named container with a volume to share.
While this container doesn’t run an application, it reuses the training/postgres
image so that all containers are using layers in common, saving disk space.

$ docker create -v /dbdata --name dbdata training/postgres /bin/true

You can then use the --volumes-from flag to mount the /dbdata volume in another container.

$ docker run -d --volumes-from dbdata --name db1 training/postgres

And another:

$ docker run -d --volumes-from dbdata --name db2 training/postgres

In this case, if the postgres image contained a directory called /dbdata
then mounting the volumes from the dbdata container hides the
/dbdata files from the postgres image. The result is only the files
from the dbdata container are visible.

You can use multiple --volumes-from parameters to bring together multiple data
volumes from multiple containers.

You can also extend the chain by mounting the volume that came from the
dbdata container in yet another container via the db1 or db2 containers.

$ docker run -d --name db3 --volumes-from db1 training/postgres

If you remove containers that mount volumes, including the initial dbdata
container, or the subsequent containers db1 and db2, the volumes will not
be deleted. To delete the volume from disk, you must explicitly call
docker rm -v against the last container with a reference to the volume. This
allows you to upgrade, or effectively migrate data volumes between containers.

Note: Docker will not warn you when removing a container without
providing the -v option to delete its volumes. If you remove containers
without using the -v option, you may end up with “dangling” volumes;
volumes that are no longer referenced by a container.
Dangling volumes are difficult to get rid of and can take up a large amount
of disk space. We’re working on improving volume management and you can check
progress on this in pull request #14214 [https://github.com/docker/docker/pull/14214]

Backup, restore, or migrate data volumes

Another useful function we can perform with volumes is use them for
backups, restores or migrations. We do this by using the
--volumes-from flag to create a new container that mounts that volume,
like so:

$ docker run --volumes-from dbdata -v $(pwd):/backup ubuntu tar cvf /backup/backup.tar /dbdata

Here we’ve launched a new container and mounted the volume from the
dbdata container. We’ve then mounted a local host directory as
/backup. Finally, we’ve passed a command that uses tar to backup the
contents of the dbdata volume to a backup.tar file inside our
/backup directory. When the command completes and the container stops
we’ll be left with a backup of our dbdata volume.

You could then restore it to the same container, or another that you’ve made
elsewhere. Create a new container.

$ docker run -v /dbdata --name dbdata2 ubuntu /bin/bash

Then un-tar the backup file in the new container’s data volume.

$ docker run --volumes-from dbdata2 -v $(pwd):/backup ubuntu cd /dbdata && tar xvf /backup/backup.tar

You can use the techniques above to automate backup, migration and
restore testing using your preferred tools.

Next steps

Now we’ve learned a bit more about how to use Docker we’re going to see how to
combine Docker with the services available on
Docker Hub [https://hub.docker.com] including Automated Builds and private
repositories.

Go to Working with Docker Hub.

 © Copyright .
 Created using Sphinx 1.3.1.

installation/binaries.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Binaries

This instruction set is meant for hackers who want to try out Docker
on a variety of environments.

Before following these directions, you should really check if a packaged
version of Docker is already available for your distribution. We have
packages for many distributions, and more keep showing up all the time!

Check runtime dependencies

To run properly, docker needs the following software to be installed at
runtime:

		iptables version 1.4 or later

		Git version 1.7 or later

		procps (or similar provider of a “ps” executable)

		XZ Utils 4.9 or later

		a properly mounted [https://github.com/tianon/cgroupfs-mount/blob/master/cgroupfs-mount]
cgroupfs hierarchy (having a single, all-encompassing “cgroup” mount
point is [https://github.com/docker/docker/issues/2683]
not [https://github.com/docker/docker/issues/3485]
sufficient [https://github.com/docker/docker/issues/4568])

Check kernel dependencies

Docker in daemon mode has specific kernel requirements. For details,
check your distribution in Installation.

A 3.10 Linux kernel is the minimum requirement for Docker.
Kernels older than 3.10 lack some of the features required to run Docker
containers. These older versions are known to have bugs which cause data loss
and frequently panic under certain conditions.

The latest minor version (3.x.y) of the 3.10 (or a newer maintained version)
Linux kernel is recommended. Keeping the kernel up to date with the latest
minor version will ensure critical kernel bugs get fixed.

Warning:
Installing custom kernels and kernel packages is probably not
supported by your Linux distribution’s vendor. Please make sure to
ask your vendor about Docker support first before attempting to
install custom kernels on your distribution.

Warning:
Installing a newer kernel might not be enough for some distributions
which provide packages which are too old or incompatible with
newer kernels.

Note that Docker also has a client mode, which can run on virtually any
Linux kernel (it even builds on OS X!).

Enable AppArmor and SELinux when possible

Please use AppArmor or SELinux if your Linux distribution supports
either of the two. This helps improve security and blocks certain
types of exploits. Your distribution’s documentation should provide
detailed steps on how to enable the recommended security mechanism.

Some Linux distributions enable AppArmor or SELinux by default and
they run a kernel which doesn’t meet the minimum requirements (3.10
or newer). Updating the kernel to 3.10 or newer on such a system
might not be enough to start Docker and run containers.
Incompatibilities between the version of AppArmor/SELinux user
space utilities provided by the system and the kernel could prevent
Docker from running, from starting containers or, cause containers to
exhibit unexpected behaviour.

Warning:
If either of the security mechanisms is enabled, it should not be
disabled to make Docker or its containers run. This will reduce
security in that environment, lose support from the distribution’s
vendor for the system, and might break regulations and security
policies in heavily regulated environments.

Get the Docker binary

You can download either the latest release binary or a specific version.
After downloading a binary file, you must set the file’s execute bit to run it.

To set the file’s execute bit on Linux and OS X:

$ chmod +x docker

To get the list of stable release version numbers from GitHub, view the
docker/docker releases page [https://github.com/docker/docker/releases].

Note

		You can get the MD5 and SHA256 hashes by appending .md5 and .sha256 to the URLs respectively

		You can get the compressed binaries by appending .tgz to the URLs

Get the Linux binary

To download the latest version for Linux, use the
following URLs:

https://get.docker.com/builds/Linux/i386/docker-latest

https://get.docker.com/builds/Linux/x86_64/docker-latest

To download a specific version for Linux, use the
following URL patterns:

https://get.docker.com/builds/Linux/i386/docker-<version>

https://get.docker.com/builds/Linux/x86_64/docker-<version>

For example:

https://get.docker.com/builds/Linux/i386/docker-1.6.0

https://get.docker.com/builds/Linux/x86_64/docker-1.6.0

Get the Mac OS X binary

The Mac OS X binary is only a client. You cannot use it to run the docker
daemon. To download the latest version for Mac OS X, use the following URLs:

https://get.docker.com/builds/Darwin/i386/docker-latest

https://get.docker.com/builds/Darwin/x86_64/docker-latest

To download a specific version for Mac OS X, use the
following URL patterns:

https://get.docker.com/builds/Darwin/i386/docker-<version>

https://get.docker.com/builds/Darwin/x86_64/docker-<version>

For example:

https://get.docker.com/builds/Darwin/i386/docker-1.6.0

https://get.docker.com/builds/Darwin/x86_64/docker-1.6.0

Get the Windows binary

You can only download the Windows client binary for version 1.6.0 onwards.
Moreover, the binary is only a client, you cannot use it to run the docker daemon.
To download the latest version for Windows, use the following URLs:

https://get.docker.com/builds/Windows/i386/docker-latest.exe

https://get.docker.com/builds/Windows/x86_64/docker-latest.exe

To download a specific version for Windows, use the following URL pattern:

https://get.docker.com/builds/Windows/i386/docker-<version>.exe

https://get.docker.com/builds/Windows/x86_64/docker-<version>.exe

For example:

https://get.docker.com/builds/Windows/i386/docker-1.6.0.exe

https://get.docker.com/builds/Windows/x86_64/docker-1.6.0.exe

Run the Docker daemon

start the docker in daemon mode from the directory you unpacked
$ sudo ./docker daemon &

Giving non-root access

The docker daemon always runs as the root user, and the docker
daemon binds to a Unix socket instead of a TCP port. By default that
Unix socket is owned by the user root, and so, by default, you can
access it with sudo.

If you (or your Docker installer) create a Unix group called docker
and add users to it, then the docker daemon will make the ownership of
the Unix socket read/writable by the docker group when the daemon
starts. The docker daemon must always run as the root user, but if you
run the docker client as a user in the docker group then you don’t
need to add sudo to all the client commands.

Warning:
The docker group (or the group specified with -G) is root-equivalent;
see Docker Daemon Attack Surface details.

Upgrades

To upgrade your manual installation of Docker, first kill the docker
daemon:

$ killall docker

Then follow the regular installation steps.

Run your first container!

check your docker version
$ sudo ./docker version

run a container and open an interactive shell in the container
$ sudo ./docker run -i -t ubuntu /bin/bash

Continue with the User Guide.

 © Copyright .
 Created using Sphinx 1.3.1.

misc/index.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

About Docker

Develop, Ship and Run Any Application, Anywhere

Docker [https://www.docker.com] is a platform for developers and sysadmins
to develop, ship, and run applications. Docker lets you quickly assemble
applications from components and eliminates the friction that can come when
shipping code. Docker lets you get your code tested and deployed into production
as fast as possible.

Docker consists of:

		The Docker Engine - our lightweight and powerful open source container
virtualization technology combined with a work flow for building
and containerizing your applications.

		Docker Hub [https://hub.docker.com] - our SaaS service for
sharing and managing your application stacks.

Why Docker?

Faster delivery of your applications

		We want your environment to work better. Docker containers,
and the work flow that comes with them, help your developers,
sysadmins, QA folks, and release engineers work together to get your code
into production and make it useful. We’ve created a standard
container format that lets developers care about their applications
inside containers while sysadmins and operators can work on running the
container in your deployment. This separation of duties streamlines and
simplifies the management and deployment of code.

		We make it easy to build new containers, enable rapid iteration of
your applications, and increase the visibility of changes. This
helps everyone in your organization understand how an application works
and how it is built.

		Docker containers are lightweight and fast! Containers have
sub-second launch times, reducing the cycle
time of development, testing, and deployment.

Deploy and scale more easily

		Docker containers run (almost) everywhere. You can deploy
containers on desktops, physical servers, virtual machines, into
data centers, and up to public and private clouds.

		Since Docker runs on so many platforms, it’s easy to move your
applications around. You can easily move an application from a
testing environment into the cloud and back whenever you need.

		Docker’s lightweight containers also make scaling up and
down fast and easy. You can quickly launch more containers when
needed and then shut them down easily when they’re no longer needed.

Get higher density and run more workloads

		Docker containers don’t need a hypervisor, so you can pack more of
them onto your hosts. This means you get more value out of every
server and can potentially reduce what you spend on equipment and
licenses.

Faster deployment makes for easier management

		As Docker speeds up your work flow, it gets easier to make lots
of small changes instead of huge, big bang updates. Smaller
changes mean reduced risk and more uptime.

About this guide

The Understanding Docker section will help you:

		See how Docker works at a high level

		Understand the architecture of Docker

		Discover Docker’s features;

		See how Docker compares to virtual machines

		See some common use cases.

Installation guides

The installation section will show you how to
install Docker on a variety of platforms.

Docker user guide

To learn about Docker in more detail and to answer questions about usage and
implementation, check out the Docker User Guide.

Release notes

A summary of the changes in each release in the current series can now be found
on the separate Release Notes page

Feature Deprecation Policy

As changes are made to Docker there may be times when existing features
will need to be removed or replaced with newer features. Before an existing
feature is removed it will be labeled as “deprecated” within the documentation
and will remain in Docker for, usually, at least 2 releases. After that time
it may be removed.

Users are expected to take note of the list of deprecated features each
release and plan their migration away from those features, and (if applicable)
towards the replacement features as soon as possible.

The complete list of deprecated features can be found on the
Deprecated Features page.

Licensing

Docker is licensed under the Apache License, Version 2.0. See
LICENSE [https://github.com/docker/docker/blob/master/LICENSE] for the full
license text.

 © Copyright .
 Created using Sphinx 1.3.1.

installation/softlayer.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

IBM SoftLayer

		Create an IBM SoftLayer account [https://www.softlayer.com/cloud-servers/].

		Log in to the SoftLayer Customer Portal [https://control.softlayer.com/].

		From the Devices menu select Device List [https://control.softlayer.com/devices]

		Click Order Devices on the top right of the window below the menu bar.

		Under Virtual Server click Hourly [https://manage.softlayer.com/Sales/orderHourlyComputingInstance]

		Create a new SoftLayer Virtual Server Instance (VSI) using the default
values for all the fields and choose:
		The desired location for Datacenter

		Ubuntu Linux 12.04 LTS Precise Pangolin - Minimal Install (64 bit)
for Operating System.

		Click the Continue Your Order button at the bottom right.

		Fill out VSI hostname and domain.

		Insert the required User Metadata and place the order.

		Then continue with the Ubuntu
instructions.

What next?

Continue with the User Guide.

 © Copyright .
 Created using Sphinx 1.3.1.

userguide/dockerimages.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Get started with images

In the introduction we’ve discovered that Docker
images are the basis of containers. In the
previous sections
we’ve used Docker images that already exist, for example the ubuntu
image and the training/webapp image.

We’ve also discovered that Docker stores downloaded images on the Docker
host. If an image isn’t already present on the host then it’ll be
downloaded from a registry: by default the
Docker Hub Registry [https://registry.hub.docker.com].

In this section we’re going to explore Docker images a bit more
including:

		Managing and working with images locally on your Docker host;

		Creating basic images;

		Uploading images to Docker Hub Registry [https://registry.hub.docker.com].

Listing images on the host

Let’s start with listing the images we have locally on our host. You can
do this using the docker images command like so:

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
training/webapp latest fc77f57ad303 3 weeks ago 280.5 MB
ubuntu 13.10 5e019ab7bf6d 4 weeks ago 180 MB
ubuntu saucy 5e019ab7bf6d 4 weeks ago 180 MB
ubuntu 12.04 74fe38d11401 4 weeks ago 209.6 MB
ubuntu precise 74fe38d11401 4 weeks ago 209.6 MB
ubuntu 12.10 a7cf8ae4e998 4 weeks ago 171.3 MB
ubuntu quantal a7cf8ae4e998 4 weeks ago 171.3 MB
ubuntu 14.04 99ec81b80c55 4 weeks ago 266 MB
ubuntu latest 99ec81b80c55 4 weeks ago 266 MB
ubuntu trusty 99ec81b80c55 4 weeks ago 266 MB
ubuntu 13.04 316b678ddf48 4 weeks ago 169.4 MB
ubuntu raring 316b678ddf48 4 weeks ago 169.4 MB
ubuntu 10.04 3db9c44f4520 4 weeks ago 183 MB
ubuntu lucid 3db9c44f4520 4 weeks ago 183 MB

We can see the images we’ve previously used in our user guide.
Each has been downloaded from Docker Hub [https://hub.docker.com] when we
launched a container using that image.

We can see three crucial pieces of information about our images in the listing.

		What repository they came from, for example ubuntu.

		The tags for each image, for example 14.04.

		The image ID of each image.

Note:
Previously, the docker images command supported the --tree and --dot
arguments, which displayed different visualizations of the image data. Docker
core removed this functionality in the 1.7 version. If you liked this
functionality, you can still find it in
the third-party dockviz tool [https://github.com/justone/dockviz].

A repository potentially holds multiple variants of an image. In the case of
our ubuntu image we can see multiple variants covering Ubuntu 10.04, 12.04,
12.10, 13.04, 13.10 and 14.04. Each variant is identified by a tag and you can
refer to a tagged image like so:

ubuntu:14.04

So when we run a container we refer to a tagged image like so:

$ docker run -t -i ubuntu:14.04 /bin/bash

If instead we wanted to run an Ubuntu 12.04 image we’d use:

$ docker run -t -i ubuntu:12.04 /bin/bash

If you don’t specify a variant, for example you just use ubuntu, then Docker
will default to using the ubuntu:latest image.

Tip:
We recommend you always use a specific tagged image, for example
ubuntu:12.04. That way you always know exactly what variant of an image is
being used.

Getting a new image

So how do we get new images? Well Docker will automatically download any image
we use that isn’t already present on the Docker host. But this can potentially
add some time to the launch of a container. If we want to pre-load an image we
can download it using the docker pull command. Let’s say we’d like to
download the centos image.

$ docker pull centos
Pulling repository centos
b7de3133ff98: Pulling dependent layers
5cc9e91966f7: Pulling fs layer
511136ea3c5a: Download complete
ef52fb1fe610: Download complete
. . .

Status: Downloaded newer image for centos

We can see that each layer of the image has been pulled down and now we
can run a container from this image and we won’t have to wait to
download the image.

$ docker run -t -i centos /bin/bash
bash-4.1#

Finding images

One of the features of Docker is that a lot of people have created Docker
images for a variety of purposes. Many of these have been uploaded to
Docker Hub [https://hub.docker.com]. We can search these images on the
Docker Hub [https://hub.docker.com] website.

[image: indexsearch]

We can also search for images on the command line using the docker search
command. Let’s say our team wants an image with Ruby and Sinatra installed on
which to do our web application development. We can search for a suitable image
by using the docker search command to find all the images that contain the
term sinatra.

$ docker search sinatra
NAME DESCRIPTION STARS OFFICIAL AUTOMATED
training/sinatra Sinatra training image 0 [OK]
marceldegraaf/sinatra Sinatra test app 0
mattwarren/docker-sinatra-demo 0 [OK]
luisbebop/docker-sinatra-hello-world 0 [OK]
bmorearty/handson-sinatra handson-ruby + Sinatra for Hands on with D... 0
subwiz/sinatra 0
bmorearty/sinatra 0
. . .

We can see we’ve returned a lot of images that use the term sinatra. We’ve
returned a list of image names, descriptions, Stars (which measure the social
popularity of images - if a user likes an image then they can “star” it), and
the Official and Automated build statuses.
Official Repositories are a carefully curated set
of Docker repositories supported by Docker, Inc. Automated repositories are
Automated Builds that allow you to
validate the source and content of an image.

We’ve reviewed the images available to use and we decided to use the
training/sinatra image. So far we’ve seen two types of images repositories,
images like ubuntu, which are called base or root images. These base images
are provided by Docker Inc and are built, validated and supported. These can be
identified by their single word names.

We’ve also seen user images, for example the training/sinatra image we’ve
chosen. A user image belongs to a member of the Docker community and is built
and maintained by them. You can identify user images as they are always
prefixed with the user name, here training, of the user that created them.

Pulling our image

We’ve identified a suitable image, training/sinatra, and now we can download it using the docker pull command.

$ docker pull training/sinatra

The team can now use this image by running their own containers.

$ docker run -t -i training/sinatra /bin/bash
root@a8cb6ce02d85:/#

Creating our own images

The team has found the training/sinatra image pretty useful but it’s not quite what
they need and we need to make some changes to it. There are two ways we can
update and create images.

		We can update a container created from an image and commit the results to an image.

		We can use a Dockerfile to specify instructions to create an image.

Updating and committing an image

To update an image we first need to create a container from the image
we’d like to update.

$ docker run -t -i training/sinatra /bin/bash
root@0b2616b0e5a8:/#

Note:
Take note of the container ID that has been created, 0b2616b0e5a8, as we’ll
need it in a moment.

Inside our running container let’s add the json gem.

root@0b2616b0e5a8:/# gem install json

Once this has completed let’s exit our container using the exit
command.

Now we have a container with the change we want to make. We can then
commit a copy of this container to an image using the docker commit
command.

$ docker commit -m "Added json gem" -a "Kate Smith" \
0b2616b0e5a8 ouruser/sinatra:v2
4f177bd27a9ff0f6dc2a830403925b5360bfe0b93d476f7fc3231110e7f71b1c

Here we’ve used the docker commit command. We’ve specified two flags: -m
and -a. The -m flag allows us to specify a commit message, much like you
would with a commit on a version control system. The -a flag allows us to
specify an author for our update.

We’ve also specified the container we want to create this new image from,
0b2616b0e5a8 (the ID we recorded earlier) and we’ve specified a target for
the image:

ouruser/sinatra:v2

Let’s break this target down. It consists of a new user, ouruser, that we’re
writing this image to. We’ve also specified the name of the image, here we’re
keeping the original image name sinatra. Finally we’re specifying a tag for
the image: v2.

We can then look at our new ouruser/sinatra image using the docker images
command.

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
training/sinatra latest 5bc342fa0b91 10 hours ago 446.7 MB
ouruser/sinatra v2 3c59e02ddd1a 10 hours ago 446.7 MB
ouruser/sinatra latest 5db5f8471261 10 hours ago 446.7 MB

To use our new image to create a container we can then:

$ docker run -t -i ouruser/sinatra:v2 /bin/bash
root@78e82f680994:/#

Building an image from a Dockerfile

Using the docker commit command is a pretty simple way of extending an image
but it’s a bit cumbersome and it’s not easy to share a development process for
images amongst a team. Instead we can use a new command, docker build, to
build new images from scratch.

To do this we create a Dockerfile that contains a set of instructions that
tell Docker how to build our image.

Let’s create a directory and a Dockerfile first.

$ mkdir sinatra
$ cd sinatra
$ touch Dockerfile

If you are using Boot2Docker on Windows, you may access your host
directory by cd to /c/Users/your_user_name.

Each instruction creates a new layer of the image. Let’s look at a simple
example now for building our own Sinatra image for our development team.

This is a comment
FROM ubuntu:14.04
MAINTAINER Kate Smith <ksmith@example.com>
RUN apt-get update && apt-get install -y ruby ruby-dev
RUN gem install sinatra

Let’s look at what our Dockerfile does. Each instruction prefixes a statement and is capitalized.

INSTRUCTION statement

Note:
We use # to indicate a comment

The first instruction FROM tells Docker what the source of our image is, in
this case we’re basing our new image on an Ubuntu 14.04 image.

Next we use the MAINTAINER instruction to specify who maintains our new image.

Lastly, we’ve specified two RUN instructions. A RUN instruction executes
a command inside the image, for example installing a package. Here we’re
updating our APT cache, installing Ruby and RubyGems and then installing the
Sinatra gem.

Note:
There are a lot more instructions available to us in a Dockerfile.

Now let’s take our Dockerfile and use the docker build command to build an image.

$ docker build -t ouruser/sinatra:v2 .
Sending build context to Docker daemon 2.048 kB
Sending build context to Docker daemon
Step 0 : FROM ubuntu:14.04
 ---> e54ca5efa2e9
Step 1 : MAINTAINER Kate Smith <ksmith@example.com>
 ---> Using cache
 ---> 851baf55332b
Step 2 : RUN apt-get update && apt-get install -y ruby ruby-dev
 ---> Running in 3a2558904e9b
Selecting previously unselected package libasan0:amd64.
(Reading database ... 11518 files and directories currently installed.)
Preparing to unpack .../libasan0_4.8.2-19ubuntu1_amd64.deb ...
Unpacking libasan0:amd64 (4.8.2-19ubuntu1) ...
Selecting previously unselected package libatomic1:amd64.
Preparing to unpack .../libatomic1_4.8.2-19ubuntu1_amd64.deb ...
Unpacking libatomic1:amd64 (4.8.2-19ubuntu1) ...
Selecting previously unselected package libgmp10:amd64.
Preparing to unpack .../libgmp10_2%3a5.1.3+dfsg-1ubuntu1_amd64.deb ...
Unpacking libgmp10:amd64 (2:5.1.3+dfsg-1ubuntu1) ...
Selecting previously unselected package libisl10:amd64.
Preparing to unpack .../libisl10_0.12.2-1_amd64.deb ...
Unpacking libisl10:amd64 (0.12.2-1) ...
Selecting previously unselected package libcloog-isl4:amd64.
Preparing to unpack .../libcloog-isl4_0.18.2-1_amd64.deb ...
Unpacking libcloog-isl4:amd64 (0.18.2-1) ...
Selecting previously unselected package libgomp1:amd64.
Preparing to unpack .../libgomp1_4.8.2-19ubuntu1_amd64.deb ...
Unpacking libgomp1:amd64 (4.8.2-19ubuntu1) ...
Selecting previously unselected package libitm1:amd64.
Preparing to unpack .../libitm1_4.8.2-19ubuntu1_amd64.deb ...
Unpacking libitm1:amd64 (4.8.2-19ubuntu1) ...
Selecting previously unselected package libmpfr4:amd64.
Preparing to unpack .../libmpfr4_3.1.2-1_amd64.deb ...
Unpacking libmpfr4:amd64 (3.1.2-1) ...
Selecting previously unselected package libquadmath0:amd64.
Preparing to unpack .../libquadmath0_4.8.2-19ubuntu1_amd64.deb ...
Unpacking libquadmath0:amd64 (4.8.2-19ubuntu1) ...
Selecting previously unselected package libtsan0:amd64.
Preparing to unpack .../libtsan0_4.8.2-19ubuntu1_amd64.deb ...
Unpacking libtsan0:amd64 (4.8.2-19ubuntu1) ...
Selecting previously unselected package libyaml-0-2:amd64.
Preparing to unpack .../libyaml-0-2_0.1.4-3ubuntu3_amd64.deb ...
Unpacking libyaml-0-2:amd64 (0.1.4-3ubuntu3) ...
Selecting previously unselected package libmpc3:amd64.
Preparing to unpack .../libmpc3_1.0.1-1ubuntu1_amd64.deb ...
Unpacking libmpc3:amd64 (1.0.1-1ubuntu1) ...
Selecting previously unselected package openssl.
Preparing to unpack .../openssl_1.0.1f-1ubuntu2.4_amd64.deb ...
Unpacking openssl (1.0.1f-1ubuntu2.4) ...
Selecting previously unselected package ca-certificates.
Preparing to unpack .../ca-certificates_20130906ubuntu2_all.deb ...
Unpacking ca-certificates (20130906ubuntu2) ...
Selecting previously unselected package manpages.
Preparing to unpack .../manpages_3.54-1ubuntu1_all.deb ...
Unpacking manpages (3.54-1ubuntu1) ...
Selecting previously unselected package binutils.
Preparing to unpack .../binutils_2.24-5ubuntu3_amd64.deb ...
Unpacking binutils (2.24-5ubuntu3) ...
Selecting previously unselected package cpp-4.8.
Preparing to unpack .../cpp-4.8_4.8.2-19ubuntu1_amd64.deb ...
Unpacking cpp-4.8 (4.8.2-19ubuntu1) ...
Selecting previously unselected package cpp.
Preparing to unpack .../cpp_4%3a4.8.2-1ubuntu6_amd64.deb ...
Unpacking cpp (4:4.8.2-1ubuntu6) ...
Selecting previously unselected package libgcc-4.8-dev:amd64.
Preparing to unpack .../libgcc-4.8-dev_4.8.2-19ubuntu1_amd64.deb ...
Unpacking libgcc-4.8-dev:amd64 (4.8.2-19ubuntu1) ...
Selecting previously unselected package gcc-4.8.
Preparing to unpack .../gcc-4.8_4.8.2-19ubuntu1_amd64.deb ...
Unpacking gcc-4.8 (4.8.2-19ubuntu1) ...
Selecting previously unselected package gcc.
Preparing to unpack .../gcc_4%3a4.8.2-1ubuntu6_amd64.deb ...
Unpacking gcc (4:4.8.2-1ubuntu6) ...
Selecting previously unselected package libc-dev-bin.
Preparing to unpack .../libc-dev-bin_2.19-0ubuntu6_amd64.deb ...
Unpacking libc-dev-bin (2.19-0ubuntu6) ...
Selecting previously unselected package linux-libc-dev:amd64.
Preparing to unpack .../linux-libc-dev_3.13.0-30.55_amd64.deb ...
Unpacking linux-libc-dev:amd64 (3.13.0-30.55) ...
Selecting previously unselected package libc6-dev:amd64.
Preparing to unpack .../libc6-dev_2.19-0ubuntu6_amd64.deb ...
Unpacking libc6-dev:amd64 (2.19-0ubuntu6) ...
Selecting previously unselected package ruby.
Preparing to unpack .../ruby_1%3a1.9.3.4_all.deb ...
Unpacking ruby (1:1.9.3.4) ...
Selecting previously unselected package ruby1.9.1.
Preparing to unpack .../ruby1.9.1_1.9.3.484-2ubuntu1_amd64.deb ...
Unpacking ruby1.9.1 (1.9.3.484-2ubuntu1) ...
Selecting previously unselected package libruby1.9.1.
Preparing to unpack .../libruby1.9.1_1.9.3.484-2ubuntu1_amd64.deb ...
Unpacking libruby1.9.1 (1.9.3.484-2ubuntu1) ...
Selecting previously unselected package manpages-dev.
Preparing to unpack .../manpages-dev_3.54-1ubuntu1_all.deb ...
Unpacking manpages-dev (3.54-1ubuntu1) ...
Selecting previously unselected package ruby1.9.1-dev.
Preparing to unpack .../ruby1.9.1-dev_1.9.3.484-2ubuntu1_amd64.deb ...
Unpacking ruby1.9.1-dev (1.9.3.484-2ubuntu1) ...
Selecting previously unselected package ruby-dev.
Preparing to unpack .../ruby-dev_1%3a1.9.3.4_all.deb ...
Unpacking ruby-dev (1:1.9.3.4) ...
Setting up libasan0:amd64 (4.8.2-19ubuntu1) ...
Setting up libatomic1:amd64 (4.8.2-19ubuntu1) ...
Setting up libgmp10:amd64 (2:5.1.3+dfsg-1ubuntu1) ...
Setting up libisl10:amd64 (0.12.2-1) ...
Setting up libcloog-isl4:amd64 (0.18.2-1) ...
Setting up libgomp1:amd64 (4.8.2-19ubuntu1) ...
Setting up libitm1:amd64 (4.8.2-19ubuntu1) ...
Setting up libmpfr4:amd64 (3.1.2-1) ...
Setting up libquadmath0:amd64 (4.8.2-19ubuntu1) ...
Setting up libtsan0:amd64 (4.8.2-19ubuntu1) ...
Setting up libyaml-0-2:amd64 (0.1.4-3ubuntu3) ...
Setting up libmpc3:amd64 (1.0.1-1ubuntu1) ...
Setting up openssl (1.0.1f-1ubuntu2.4) ...
Setting up ca-certificates (20130906ubuntu2) ...
debconf: unable to initialize frontend: Dialog
debconf: (TERM is not set, so the dialog frontend is not usable.)
debconf: falling back to frontend: Readline
debconf: unable to initialize frontend: Readline
debconf: (This frontend requires a controlling tty.)
debconf: falling back to frontend: Teletype
Setting up manpages (3.54-1ubuntu1) ...
Setting up binutils (2.24-5ubuntu3) ...
Setting up cpp-4.8 (4.8.2-19ubuntu1) ...
Setting up cpp (4:4.8.2-1ubuntu6) ...
Setting up libgcc-4.8-dev:amd64 (4.8.2-19ubuntu1) ...
Setting up gcc-4.8 (4.8.2-19ubuntu1) ...
Setting up gcc (4:4.8.2-1ubuntu6) ...
Setting up libc-dev-bin (2.19-0ubuntu6) ...
Setting up linux-libc-dev:amd64 (3.13.0-30.55) ...
Setting up libc6-dev:amd64 (2.19-0ubuntu6) ...
Setting up manpages-dev (3.54-1ubuntu1) ...
Setting up libruby1.9.1 (1.9.3.484-2ubuntu1) ...
Setting up ruby1.9.1-dev (1.9.3.484-2ubuntu1) ...
Setting up ruby-dev (1:1.9.3.4) ...
Setting up ruby (1:1.9.3.4) ...
Setting up ruby1.9.1 (1.9.3.484-2ubuntu1) ...
Processing triggers for libc-bin (2.19-0ubuntu6) ...
Processing triggers for ca-certificates (20130906ubuntu2) ...
Updating certificates in /etc/ssl/certs... 164 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d....done.
 ---> c55c31703134
Removing intermediate container 3a2558904e9b
Step 3 : RUN gem install sinatra
 ---> Running in 6b81cb6313e5
unable to convert "\xC3" to UTF-8 in conversion from ASCII-8BIT to UTF-8 to US-ASCII for README.rdoc, skipping
unable to convert "\xC3" to UTF-8 in conversion from ASCII-8BIT to UTF-8 to US-ASCII for README.rdoc, skipping
Successfully installed rack-1.5.2
Successfully installed tilt-1.4.1
Successfully installed rack-protection-1.5.3
Successfully installed sinatra-1.4.5
4 gems installed
Installing ri documentation for rack-1.5.2...
Installing ri documentation for tilt-1.4.1...
Installing ri documentation for rack-protection-1.5.3...
Installing ri documentation for sinatra-1.4.5...
Installing RDoc documentation for rack-1.5.2...
Installing RDoc documentation for tilt-1.4.1...
Installing RDoc documentation for rack-protection-1.5.3...
Installing RDoc documentation for sinatra-1.4.5...
 ---> 97feabe5d2ed
Removing intermediate container 6b81cb6313e5
Successfully built 97feabe5d2ed

We’ve specified our docker build command and used the -t flag to identify
our new image as belonging to the user ouruser, the repository name sinatra
and given it the tag v2.

We’ve also specified the location of our Dockerfile using the . to
indicate a Dockerfile in the current directory.

Note:
You can also specify a path to a Dockerfile.

Now we can see the build process at work. The first thing Docker does is
upload the build context: basically the contents of the directory you’re
building in. This is done because the Docker daemon does the actual
build of the image and it needs the local context to do it.

Next we can see each instruction in the Dockerfile being executed
step-by-step. We can see that each step creates a new container, runs
the instruction inside that container and then commits that change -
just like the docker commit work flow we saw earlier. When all the
instructions have executed we’re left with the 97feabe5d2ed image
(also helpfully tagged as ouruser/sinatra:v2) and all intermediate
containers will get removed to clean things up.

Note:
An image can’t have more than 127 layers regardless of the storage driver.
This limitation is set globally to encourage optimization of the overall
size of images.

We can then create a container from our new image.

$ docker run -t -i ouruser/sinatra:v2 /bin/bash
root@8196968dac35:/#

Note:
This is just a brief introduction to creating images. We’ve
skipped a whole bunch of other instructions that you can use. We’ll see more of
those instructions in later sections of the Guide or you can refer to the
Dockerfile reference for a
detailed description and examples of every instruction.
To help you write a clear, readable, maintainable Dockerfile, we’ve also
written a Dockerfile Best Practices guide.

More

To learn more, check out the Dockerfile tutorial.

Setting tags on an image

You can also add a tag to an existing image after you commit or build it. We
can do this using the docker tag command. Let’s add a new tag to our
ouruser/sinatra image.

$ docker tag 5db5f8471261 ouruser/sinatra:devel

The docker tag command takes the ID of the image, here 5db5f8471261, and our
user name, the repository name and the new tag.

Let’s see our new tag using the docker images command.

$ docker images ouruser/sinatra
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
ouruser/sinatra latest 5db5f8471261 11 hours ago 446.7 MB
ouruser/sinatra devel 5db5f8471261 11 hours ago 446.7 MB
ouruser/sinatra v2 5db5f8471261 11 hours ago 446.7 MB

Image Digests

Images that use the v2 or later format have a content-addressable identifier
called a digest. As long as the input used to generate the image is
unchanged, the digest value is predictable. To list image digest values, use
the --digests flag:

$ docker images --digests | head
REPOSITORY TAG DIGEST IMAGE ID CREATED VIRTUAL SIZE
ouruser/sinatra latest sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf 5db5f8471261 11 hours ago 446.7 MB

When pushing or pulling to a 2.0 registry, the push or pull command
output includes the image digest. You can pull using a digest value.

$ docker pull ouruser/sinatra@cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf

You can also reference by digest in create, run, and rmi commands, as well as the
FROM image reference in a Dockerfile.

Push an image to Docker Hub

Once you’ve built or created a new image you can push it to Docker
Hub [https://hub.docker.com] using the docker push command. This
allows you to share it with others, either publicly, or push it into a
private repository [https://registry.hub.docker.com/plans/].

$ docker push ouruser/sinatra
The push refers to a repository [ouruser/sinatra] (len: 1)
Sending image list
Pushing repository ouruser/sinatra (3 tags)
. . .

Remove an image from the host

You can also remove images on your Docker host in a way similar to
containers using the docker rmi command.

Let’s delete the training/sinatra image as we don’t need it anymore.

$ docker rmi training/sinatra
Untagged: training/sinatra:latest
Deleted: 5bc342fa0b91cabf65246837015197eecfa24b2213ed6a51a8974ae250fedd8d
Deleted: ed0fffdcdae5eb2c3a55549857a8be7fc8bc4241fb19ad714364cbfd7a56b22f
Deleted: 5c58979d73ae448df5af1d8142436d81116187a7633082650549c52c3a2418f0

Note: In order to remove an image from the host, please make sure
that there are no containers actively based on it.

Next steps

Until now we’ve seen how to build individual applications inside Docker
containers. Now learn how to build whole application stacks with Docker
by linking together multiple Docker containers.

Test your Dockerfile knowledge with the
Dockerfile tutorial.

Go to Linking Containers Together.

 © Copyright .
 Created using Sphinx 1.3.1.

userguide/dockerhub.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Getting started with Docker Hub

This section provides a quick introduction to the Docker Hub [https://hub.docker.com],
including how to create an account.

The Docker Hub [https://hub.docker.com] is a centralized resource for working with
Docker and its components. Docker Hub helps you collaborate with colleagues and get the
most out of Docker. To do this, it provides services such as:

		Docker image hosting.

		User authentication.

		Automated image builds and work-flow tools such as build triggers and web
hooks.

		Integration with GitHub and Bitbucket.

In order to use Docker Hub, you will first need to register and create an account. Don’t
worry, creating an account is simple and free.

Creating a Docker Hub account

There are two ways for you to register and create an account:

		Via the web, or

		Via the command line.

Register via the web

Fill in the sign-up form [https://hub.docker.com/account/signup/] by
choosing your user name and password and entering a valid email address. You can also
sign up for the Docker Weekly mailing list, which has lots of information about what’s
going on in the world of Docker.

[image: Register using the sign-up page]

Register via the command line

You can also create a Docker Hub account via the command line with the
docker login command.

$ docker login

Confirm your email

Once you’ve filled in the form, check your email for a welcome message asking for
confirmation so we can activate your account.

Login

After you complete the confirmation process, you can login using the web console:

[image: Login using the web console]

Or via the command line with the docker login command:

$ docker login

Your Docker Hub account is now active and ready to use.

Next steps

Next, let’s start learning how to Dockerize applications with our “Hello world”
exercise.

Go to Dockerizing Applications.

 © Copyright .
 Created using Sphinx 1.3.1.

installation/index.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Supported installation

Docker supports installation on the following:

		Amazon EC2 Installation

		Arch Linux

		Microsoft Azure platform

		Installation from binaries

		CentOS

		CRUX Linux

		Debian

		Fedora

		FrugalWare

		Gentoo

		Google Cloud Platform

		Install on Joyent Public Cloud

		Mac OS X

		Oracle Linux

		Rackspace Cloud

		Red Hat Enterprise Linux

		IBM SoftLayer

		openSUSE and SUSE Linux Enterprise

		Ubuntu

		Windows

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.5.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.5

1. Brief introduction

		The Remote API is replacing rcli

		Default port in the docker daemon is 2375

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout stdin
and stderr

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports":[{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "9cd87474be90",
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "3176a2479c92",
 "Image": "centos:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "fedora:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created containers, include non-running ones.

		since – Show only containers created since Id, include non-running ones.

		before – Show only containers created before Id, include non-running ones.

		size – 1/True/true or 0/False/false, Show the containers sizes

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Privileged": false,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Dns":null,
 "Image":"ubuntu",
 "Volumes":{},
 "VolumesFrom":"",
 "WorkingDir":""
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		config – the container’s configuration

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": {},
 "VolumesFrom": "",
 "WorkingDir":""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {}
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles":[
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes":[
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path":"/dev",
 "Kind":0
 },
 {
 "Path":"/dev/kmsg",
 "Kind":1
 },
 {
 "Path":"/test",
 "Kind":1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds":["/tmp:/tmp"],
 "LxcConf":[{"Key":"lxc.utsname","Value":"docker"}]
 }

Example response:

 HTTP/1.1 204 No Content
 Content-Type: text/plain

Json Parameters:

		hostConfig – the container’s host configuration (optional)

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Defaul
false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource":"test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/(format)

List images format could be json or viz (json default)

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Repository":"ubuntu",
 "Tag":"precise",
 "Id":"b750fe79269d",
 "Created":1364102658,
 "Size":24653,
 "VirtualSize":180116135
 },
 {
 "Repository":"ubuntu",
 "Tag":"12.04",
 "Id":"b750fe79269d",
 "Created":1364102658,
 "Size":24653,
 "VirtualSize":180116135
 }
]

Example request:

 GET /images/viz HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 digraph docker {
 "d82cbacda43a" -> "074be284591f"
 "1496068ca813" -> "08306dc45919"
 "08306dc45919" -> "0e7893146ac2"
 "b750fe79269d" -> "1496068ca813"
 base -> "27cf78414709" [style=invis]
 "f71189fff3de" -> "9a33b36209ed"
 "27cf78414709" -> "b750fe79269d"
 "0e7893146ac2" -> "d6434d954665"
 "d6434d954665" -> "d82cbacda43a"
 base -> "e9aa60c60128" [style=invis]
 "074be284591f" -> "f71189fff3de"
 "b750fe79269d" [label="b750fe79269d\nubuntu",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "e9aa60c60128" [label="e9aa60c60128\ncentos",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "9a33b36209ed" [label="9a33b36209ed\nfedora",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 base [style=invisible]
 }

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by defaul

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing i

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pulling..."}
 {"status":"Pulling", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Status Codes:

		200 – no error

		500 – server error

Insert a file in an image

POST /images/(name)/insert

Insert a file from url in the image name at path

Example request:

 POST /images/test/insert?path=/usr&url=myurl HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Inserting..."}
 {"status":"Inserting", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Query Parameters:

		url – The url from where the file is taken

		path – The path where the file is stored

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/centos/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id":"b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "parent":"27cf784147099545",
 "created":"2013-03-23T22:24:18.818426-07:00",
 "container":"3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "container_config":
 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":false,
 "AttachStderr":false,
 "PortSpecs":null,
 "Tty":true,
 "OpenStdin":true,
 "StdinOnce":false,
 "Env":null,
 "Cmd": ["/bin/bash"],
 "Dns":null,
 "Image":"centos",
 "Volumes":null,
 "VolumesFrom":"",
 "WorkingDir":""
 },
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/fedora/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id":"b750fe79269d",
 "Created":1364102658,
 "CreatedBy":"/bin/bash"
 },
 {
 "Id":"27cf78414709",
 "Created":1364068391,
 "CreatedBy":""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pushing..."}
 {"status":"Pushing", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

The `X-Registry-Auth` header can be used to
include a base64-encoded AuthConfig object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged":"3e2f21a89f"},
 {"Deleted":"3e2f21a89f"},
 {"Deleted":"53b4f83ac9"}
]

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com]

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Name":"cespare/sshd",
 "Description":""
 },
 {
 "Name":"johnfuller/sshd",
 "Description":""
 },
 {
 "Name":"dhrp/mongodb-sshd",
 "Description":""
 }
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK

 {{ STREAM }}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.
The archive must include a file called Dockerfile at its root. I
may include any number of other files, which will be accessible in
the build context (See the ADD build command).

The Content-type header should be set to "application/tar".

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – build source URI (git or HTTPS/HTTP)

		q – suppress verbose build output

		nocache – do not use the cache when building the image

		rm – remove intermediate containers after a successful build

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":"hannibal",
 "password:"xxxx",
 "email":"hannibal@a-team.com",
 "serveraddress":"https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "MemoryLimit":true,
 "SwapLimit":false,
 "IPv4Forwarding":true
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version":"0.2.2",
 "GitCommit":"5a2a5cc+CHANGES",
 "GoVersion":"go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&m=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Cmd": ["cat", "/world"],
 "PortSpecs":["22"]
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		m – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"create","id":"dfdf82bd3881","from":"ubuntu:latest","time":1374067924}
 {"status":"start","id":"dfdf82bd3881","from":"ubuntu:latest","time":1374067924}
 {"status":"stop","id":"dfdf82bd3881","from":"ubuntu:latest","time":1374067966}
 {"status":"destroy","id":"dfdf82bd3881","from":"ubuntu:latest","time":1374067970}

Query Parameters:

		since – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

3. Going further

3.1 Inside docker run

Here are the steps of docker run:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
Try to pull it - Then retry to create the container

		Start the container

		If you are not in detached mode:
Attach to the container, using logs=1 (to have stdout and stderr
from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/registry_api.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Registry API v1

Introduction

		This is the REST API for the Docker Registry 1.0

		It stores the images and the graph for a set of repositories

		It does not have user accounts data

		It has no notion of user accounts or authorization

		It delegates authentication and authorization to the Index Auth
service using tokens

		It supports different storage backends (S3, cloud files, local FS)

		It doesn’t have a local database

		The registry is open source: Docker Registry [https://github.com/docker/docker-registry]

We expect that there will be multiple registries out there. To help to
grasp the context, here are some examples of registries:

		sponsor registry: such a registry is provided by a third-party
hosting infrastructure as a convenience for their customers and the
Docker community as a whole. Its costs are supported by the third
party, but the management and operation of the registry are
supported by Docker. It features read/write access, and delegates
authentication and authorization to the Index.

		mirror registry: such a registry is provided by a third-party
hosting infrastructure but is targeted at their customers only. Some
mechanism (unspecified to date) ensures that public images are
pulled from a sponsor registry to the mirror registry, to make sure
that the customers of the third-party provider can docker pull
those images locally.

		vendor registry: such a registry is provided by a software
vendor, who wants to distribute Docker images. It would be operated
and managed by the vendor. Only users authorized by the vendor would
be able to get write access. Some images would be public (accessible
for anyone), others private (accessible only for authorized users).
Authentication and authorization would be delegated to the Index.
The goal of vendor registries is to let someone do docker pull basho/riak1.3 and automatically push from the vendor registry
(instead of a sponsor registry); i.e., get all the convenience of a
sponsor registry, while retaining control on the asset distribution.

		private registry: such a registry is located behind a firewall,
or protected by an additional security layer (HTTP authorization,
SSL client-side certificates, IP address authorization...). The
registry is operated by a private entity, outside of Docker’s
control. It can optionally delegate additional authorization to the
Index, but it is not mandatory.

Note:
Mirror registries and private registries which do not use the Index
don’t even need to run the registry code. They can be implemented by any
kind of transport implementing HTTP GET and PUT. Read-only registries
can be powered by a simple static HTTPS server.

Note:
The latter implies that while HTTP is the protocol of choice for a registry,
multiple schemes are possible (and in some cases, trivial):

		HTTP with GET (and PUT for read-write registries);

		local mount point;

		remote Docker addressed through SSH.

The latter would only require two new commands in Docker, e.g.,
registryget and registryput, wrapping access to the local filesystem
(and optionally doing consistency checks). Authentication and authorization
are then delegated to SSH (e.g., with public keys).

Note:
Private registry servers that expose an HTTP endpoint need to be secured with
TLS (preferably TLSv1.2, but at least TLSv1.0). Make sure to put the CA
certificate at /etc/docker/certs.d/my.registry.com:5000/ca.crt on the Docker
host, so that the daemon can securely access the private registry.
Support for SSLv3 and lower is not available due to security issues.

The default namespace for a private repository is library.

Endpoints

Images

Get image layer

GET /v1/images/(image_id)/layer

Get image layer for a given image_id

Example Request:

 GET /v1/images/088b4505aa3adc3d35e79c031fa126b403200f02f51920fbd9b7c503e87c7a2c/layer HTTP/1.1
 Host: registry-1.docker.io
 Accept: application/json
 Content-Type: application/json
 Authorization: Token signature=123abc,repository="foo/bar",access=read

Parameters:

		image_id – the id for the layer you want to get

Example Response:

 HTTP/1.1 200
 Vary: Accept
 X-Docker-Registry-Version: 0.6.0
 Cookie: (Cookie provided by the Registry)

 {layer binary data stream}

Status Codes:

		200 – OK

		401 – Requires authorization

		404 – Image not found

Put image layer

PUT /v1/images/(image_id)/layer

Put image layer for a given image_id

Example Request:

 PUT /v1/images/088b4505aa3adc3d35e79c031fa126b403200f02f51920fbd9b7c503e87c7a2c/layer HTTP/1.1
 Host: registry-1.docker.io
 Transfer-Encoding: chunked
 Authorization: Token signature=123abc,repository="foo/bar",access=write

 {layer binary data stream}

Parameters:

		image_id – the id for the layer you want to get

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json
 X-Docker-Registry-Version: 0.6.0

 ""

Status Codes:

		200 – OK

		401 – Requires authorization

		404 – Image not found

Image

Put image layer

PUT /v1/images/(image_id)/json

Put image for a given image_id

Example Request:

 PUT /v1/images/088b4505aa3adc3d35e79c031fa126b403200f02f51920fbd9b7c503e87c7a2c/json HTTP/1.1
 Host: registry-1.docker.io
 Accept: application/json
 Content-Type: application/json
 Cookie: (Cookie provided by the Registry)

 {
 id: "088b4505aa3adc3d35e79c031fa126b403200f02f51920fbd9b7c503e87c7a2c",
 parent: "aeee6396d62273d180a49c96c62e45438d87c7da4a5cf5d2be6bee4e21bc226f",
 created: "2013-04-30T17:46:10.843673+03:00",
 container: "8305672a76cc5e3d168f97221106ced35a76ec7ddbb03209b0f0d96bf74f6ef7",
 container_config: {
 Hostname: "host-test",
 User: "",
 Memory: 0,
 MemorySwap: 0,
 AttachStdin: false,
 AttachStdout: false,
 AttachStderr: false,
 Tty: false,
 OpenStdin: false,
 StdinOnce: false,
 Env: null,
 Cmd: [
 "/bin/bash",
 "-c",
 "apt-get -q -yy -f install libevent-dev"
],
 Dns: null,
 Image: "imagename/blah",
 Volumes: { },
 VolumesFrom: ""
 },
 docker_version: "0.1.7"
 }

Parameters:

		image_id – the id for the layer you want to get

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json
 X-Docker-Registry-Version: 0.6.0

 ""

Status Codes:

		200 – OK

		401 – Requires authorization

Get image layer

GET /v1/images/(image_id)/json

Get image for a given image_id

Example Request:

 GET /v1/images/088b4505aa3adc3d35e79c031fa126b403200f02f51920fbd9b7c503e87c7a2c/json HTTP/1.1
 Host: registry-1.docker.io
 Accept: application/json
 Content-Type: application/json
 Cookie: (Cookie provided by the Registry)

Parameters:

		image_id – the id for the layer you want to get

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json
 X-Docker-Registry-Version: 0.6.0
 X-Docker-Size: 456789
 X-Docker-Checksum: b486531f9a779a0c17e3ed29dae8f12c4f9e89cc6f0bc3c38722009fe6857087

 {
 id: "088b4505aa3adc3d35e79c031fa126b403200f02f51920fbd9b7c503e87c7a2c",
 parent: "aeee6396d62273d180a49c96c62e45438d87c7da4a5cf5d2be6bee4e21bc226f",
 created: "2013-04-30T17:46:10.843673+03:00",
 container: "8305672a76cc5e3d168f97221106ced35a76ec7ddbb03209b0f0d96bf74f6ef7",
 container_config: {
 Hostname: "host-test",
 User: "",
 Memory: 0,
 MemorySwap: 0,
 AttachStdin: false,
 AttachStdout: false,
 AttachStderr: false,
 Tty: false,
 OpenStdin: false,
 StdinOnce: false,
 Env: null,
 Cmd: [
 "/bin/bash",
 "-c",
 "apt-get -q -yy -f install libevent-dev"
],
 Dns: null,
 Image: "imagename/blah",
 Volumes: { },
 VolumesFrom: ""
 },
 docker_version: "0.1.7"
 }

Status Codes:

		200 – OK

		401 – Requires authorization

		404 – Image not found

Ancestry

Get image ancestry

GET /v1/images/(image_id)/ancestry

Get ancestry for an image given an image_id

Example Request:

 GET /v1/images/088b4505aa3adc3d35e79c031fa126b403200f02f51920fbd9b7c503e87c7a2c/ancestry HTTP/1.1
 Host: registry-1.docker.io
 Accept: application/json
 Content-Type: application/json
 Cookie: (Cookie provided by the Registry)

Parameters:

		image_id – the id for the layer you want to get

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json
 X-Docker-Registry-Version: 0.6.0

 ["088b4502f51920fbd9b7c503e87c7a2c05aa3adc3d35e79c031fa126b403200f",
 "aeee63968d87c7da4a5cf5d2be6bee4e21bc226fd62273d180a49c96c62e4543",
 "bfa4c5326bc764280b0863b46a4b20d940bc1897ef9c1dfec060604bdc383280",
 "6ab5893c6927c15a15665191f2c6cf751f5056d8b95ceee32e43c5e8a3648544"]

Status Codes:

		200 – OK

		401 – Requires authorization

		404 – Image not found

Tags

List repository tags

GET /v1/repositories/(namespace)/(repository)/tags

Get all of the tags for the given repo.

Example Request:

 GET /v1/repositories/reynholm/help-system-server/tags HTTP/1.1
 Host: registry-1.docker.io
 Accept: application/json
 Content-Type: application/json
 X-Docker-Registry-Version: 0.6.0
 Cookie: (Cookie provided by the Registry)

Parameters:

		namespace – namespace for the repo

		repository – name for the repo

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json
 X-Docker-Registry-Version: 0.6.0

 {
 "latest": "9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f",
 "0.1.1": "b486531f9a779a0c17e3ed29dae8f12c4f9e89cc6f0bc3c38722009fe6857087"
 }

Status Codes:

		200 – OK

		401 – Requires authorization

		404 – Repository not found

Get image id for a particular tag

GET /v1/repositories/(namespace)/(repository)/tags/(tag*)

Get a tag for the given repo.

Example Request:

 GET /v1/repositories/reynholm/help-system-server/tags/latest HTTP/1.1
 Host: registry-1.docker.io
 Accept: application/json
 Content-Type: application/json
 X-Docker-Registry-Version: 0.6.0
 Cookie: (Cookie provided by the Registry)

Parameters:

		namespace – namespace for the repo

		repository – name for the repo

		tag – name of tag you want to get

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json
 X-Docker-Registry-Version: 0.6.0

 "9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f"

Status Codes:

		200 – OK

		401 – Requires authorization

		404 – Tag not found

Delete a repository tag

DELETE /v1/repositories/(namespace)/(repository)/tags/(tag*)

Delete the tag for the repo

Example Request:

 DELETE /v1/repositories/reynholm/help-system-server/tags/latest HTTP/1.1
 Host: registry-1.docker.io
 Accept: application/json
 Content-Type: application/json
 Cookie: (Cookie provided by the Registry)

Parameters:

		namespace – namespace for the repo

		repository – name for the repo

		tag – name of tag you want to delete

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json
 X-Docker-Registry-Version: 0.6.0

 ""

Status Codes:

		200 – OK

		401 – Requires authorization

		404 – Tag not found

Set a tag for a specified image id

PUT /v1/repositories/(namespace)/(repository)/tags/(tag*)

Put a tag for the given repo.

Example Request:

 PUT /v1/repositories/reynholm/help-system-server/tags/latest HTTP/1.1
 Host: registry-1.docker.io
 Accept: application/json
 Content-Type: application/json
 Cookie: (Cookie provided by the Registry)

 "9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f"

Parameters:

		namespace – namespace for the repo

		repository – name for the repo

		tag – name of tag you want to add

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json
 X-Docker-Registry-Version: 0.6.0

 ""

Status Codes:

		200 – OK

		400 – Invalid data

		401 – Requires authorization

		404 – Image not found

Repositories

Delete a repository

DELETE /v1/repositories/(namespace)/(repository)/

Delete a repository

Example Request:

 DELETE /v1/repositories/reynholm/help-system-server/ HTTP/1.1
 Host: registry-1.docker.io
 Accept: application/json
 Content-Type: application/json
 Cookie: (Cookie provided by the Registry)

 ""

Parameters:

		namespace – namespace for the repo

		repository – name for the repo

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json
 X-Docker-Registry-Version: 0.6.0

 ""

Status Codes:

		200 – OK

		401 – Requires authorization

		404 – Repository not found

Search

If you need to search the index, this is the endpoint you would use.

GET /v1/search

Search the Index given a search term. It accepts

[GET](http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.3)
only.

Example request:

 GET /v1/search?q=search_term&page=1&n=25 HTTP/1.1
 Host: index.docker.io
 Accept: application/json

Query Parameters:

		q – what you want to search for

		n - number of results you want returned per page (default: 25, min:1, max:100)

		page - page number of results

Example response:

 HTTP/1.1 200 OK
 Vary: Accept
 Content-Type: application/json

 {"num_pages": 1,
 "num_results": 3,
 "results" : [
 {"name": "ubuntu", "description": "An ubuntu image..."},
 {"name": "centos", "description": "A centos image..."},
 {"name": "fedora", "description": "A fedora image..."}
],
 "page_size": 25,
 "query":"search_term",
 "page": 1
 }

Response Items:

		num_pages - Total number of pages returned by query

		num_results - Total number of results returned by query

		results - List of results for the current page

		page_size - How many results returned per page

		query - Your search term

		page - Current page number

Status Codes:

		200 – no error

		500 – server error

Status

Status check for registry

GET /v1/_ping

Check status of the registry. This endpoint is also used to
determine if the registry supports SSL.

Example Request:

 GET /v1/_ping HTTP/1.1
 Host: registry-1.docker.io
 Accept: application/json
 Content-Type: application/json

 ""

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json
 X-Docker-Registry-Version: 0.6.0

 ""

Status Codes:

		200 – OK

Authorization

This is where we describe the authorization process, including the
tokens and cookies.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/glossary.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Glossary

A list of terms used around the Docker project.

aufs

aufs (advanced multi layered unification filesystem) is a Linux filesystem that
Docker supports as a storage backend. It implements the
union mount [http://en.wikipedia.org/wiki/Union_mount] for Linux file systems.

boot2docker

boot2docker [http://boot2docker.io/] is a lightweight Linux distribution made
specifically to run Docker containers. The boot2docker management tool for Mac and Windows was deprecated and replaced by docker-machine which you can install with the Docker Toolbox.

btrfs

btrfs (B-tree file system) is a Linux filesystem that Docker
supports as a storage backend. It is a copy-on-write [http://en.wikipedia.org/wiki/Copy-on-write]
filesystem.

build

build is the process of building Docker images using a Dockerfile.
The build uses a Dockerfile and a “context”. The context is the set of files in the
directory in which the image is built.

cgroups

cgroups is a Linux kernel feature that limits, accounts for, and isolates
the resource usage (CPU, memory, disk I/O, network, etc.) of a collection
of processes. Docker relies on cgroups to control and isolate resource limits.

Also known as : control groups

Compose

Compose [https://github.com/docker/compose] is a tool for defining and
running complex applications with Docker. With compose, you define a
multi-container application in a single file, then spin your
application up in a single command which does everything that needs to
be done to get it running.

Also known as : docker-compose, fig

container

A container is a runtime instance of a docker image.

A Docker container consists of

		A Docker image

		Execution environment

		A standard set of instructions

The concept is borrowed from Shipping Containers, which define a standard to ship
goods globally. Docker defines a standard to ship software.

data volume

A data volume is a specially-designated directory within one or more containers
that bypasses the Union File System. Data volumes are designed to persist data,
independent of the container’s life cycle. Docker therefore never automatically
delete volumes when you remove a container, nor will it “garbage collect”
volumes that are no longer referenced by a container.

Docker

The term Docker can refer to

		The Docker project as a whole, which is a platform for developers and sysadmins to
develop, ship, and run applications

		The docker daemon process running on the host which manages images and containers

Docker Hub

The Docker Hub [https://hub.docker.com/] is a centralized resource for working with
Docker and its components. It provides the following services:

		Docker image hosting

		User authentication

		Automated image builds and work-flow tools such as build triggers and web hooks

		Integration with GitHub and Bitbucket

Dockerfile

A Dockerfile is a text document that contains all the commands you would
normally execute manually in order to build a Docker image. Docker can
build images automatically by reading the instructions from a Dockerfile.

filesystem

A file system is the method an operating system uses to name files
and assign them locations for efficient storage and retrieval.

Examples :

		Linux : ext4, aufs, btrfs, zfs

		Windows : NTFS

		OS X : HFS+

image

Docker images are the basis of containers. An Image is an
ordered collection of root filesystem changes and the corresponding
execution parameters for use within a container runtime. An image typically
contains a union of layered filesystems stacked on top of each other. An image
does not have state and it never changes.

libcontainer

libcontainer provides a native Go implementation for creating containers with
namespaces, cgroups, capabilities, and filesystem access controls. It allows
you to manage the lifecycle of the container performing additional operations
after the container is created.

link

links provide an interface to connect Docker containers running on the same host
to each other without exposing the hosts’ network ports. When you set up a link,
you create a conduit between a source container and a recipient container.
The recipient can then access select data about the source. To create a link,
you can use the --link flag.

Machine

Machine [https://github.com/docker/machine] is a Docker tool which
makes it really easy to create Docker hosts on your computer, on
cloud providers and inside your own data center. It creates servers,
installs Docker on them, then configures the Docker client to talk to them.

Also known as : docker-machine

overlay

OverlayFS is a filesystem service for Linux which implements a
union mount [http://en.wikipedia.org/wiki/Union_mount] for other file systems.
It is supported by the Docker daemon as a storage driver.

registry

A Registry is a hosted service containing repositories of images
which responds to the Registry API.

The default registry can be accessed using a browser at Docker Hub
or using the docker search command.

repository

A repository is a set of Docker images. A repository can be shared by pushing it
to a registry server. The different images in the repository can be
labeled using tags.

Here is an example of the shared nginx repository [https://registry.hub.docker.com/_/nginx/]
and its tags [https://registry.hub.docker.com/_/nginx/tags/manage/]

Swarm

Swarm [https://github.com/docker/swarm] is a native clustering tool for Docker.
Swarm pools together several Docker hosts and exposes them as a single virtual
Docker host. It serves the standard Docker API, so any tool that already works
with Docker can now transparently scale up to multiple hosts.

Also known as : docker-swarm

tag

A tag is a label applied to a Docker image in a repository.
tags are how various images in a repository are distinguished from each other.

Note : This label is not related to the key=value labels set for docker daemon

Toolbox

Docker Toolbox is the installer for Mac and Windows users.

Union file system

Union file systems, or UnionFS, are file systems that operate by creating layers, making them
very lightweight and fast. Docker uses union file systems to provide the building
blocks for containers.

Virtual Machine

A Virtual Machine is a program that emulates a complete computer and imitates dedicated hardware.
It shares physical hardware resources with other users but isolates the operating system. The
end user has the same experience on a Virtual Machine as they would have on dedicated hardware.

Compared to to containers, a Virtual Machine is heavier to run, provides more isolation,
gets its own set of resources and does minimal sharing.

Also known as : VM

 © Copyright .
 Created using Sphinx 1.3.1.

reference/run.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker run referenceDocker runs processes in isolated containers. When an operator
executes docker run, she starts a process with its own file system,
its own networking, and its own isolated process tree. The
Image which starts the process may define
defaults related to the binary to run, the networking to expose, and
more, but docker run gives final control to the operator who starts
the container from the image. That’s the main reason
run has more options than any
other docker command.

General form

The basic docker run command takes this form:

$ docker run [OPTIONS] IMAGE[:TAG|@DIGEST] [COMMAND] [ARG...]

To learn how to interpret the types of [OPTIONS],
see Option types.

The run options control the image’s runtime behavior in a container. These
settings affect:

		detached or foreground running

		container identification

		network settings

		runtime constraints on CPU and memory

		privileges and LXC configuration

An image developer may set defaults for these same settings when they create the
image using the docker build command. Operators, however, can override all
defaults set by the developer using the run options. And, operators can also
override nearly all the defaults set by the Docker runtime itself.

Finally, depending on your Docker system configuration, you may be required to
preface each docker command with sudo. To avoid having to use sudo with
the docker command, your system administrator can create a Unix group called
docker and add users to it. For more information about this configuration,
refer to the Docker installation documentation for your operating system.

Operator exclusive options

Only the operator (the person executing docker run) can set the
following options.

		Detached vs Foreground
		Detached (-d)

		Foreground

		Container Identification
		Name (–name)

		PID Equivalent

		IPC Settings (–ipc)

		Network Settings

		Restart Policies (–restart)

		Clean Up (–rm)

		Runtime Constraints on CPU and Memory

		Runtime Privilege, Linux Capabilities, and LXC Configuration

Detached vs foreground

When starting a Docker container, you must first decide if you want to
run the container in the background in a “detached” mode or in the
default foreground mode:

-d=false: Detached mode: Run container in the background, print new container id

Detached (-d)

In detached mode (-d=true or just -d), all I/O should be done
through network connections or shared volumes because the container is
no longer listening to the command line where you executed docker run.
You can reattach to a detached container with docker
attach. If you choose to run a
container in the detached mode, then you cannot use the --rm option.

Foreground

In foreground mode (the default when -d is not specified), docker run can start the process in the container and attach the console to
the process’s standard input, output, and standard error. It can even
pretend to be a TTY (this is what most command line executables expect)
and pass along signals. All of that is configurable:

-a=[] : Attach to `STDIN`, `STDOUT` and/or `STDERR`
-t=false : Allocate a pseudo-tty
--sig-proxy=true: Proxify all received signal to the process (non-TTY mode only)
-i=false : Keep STDIN open even if not attached

If you do not specify -a then Docker will [attach all standard
streams](https://github.com/docker/docker/blob/
75a7f4d90cde0295bcfb7213004abce8d4779b75/commands.go#L1797). You can
specify to which of the three standard streams (STDIN, STDOUT,
STDERR) you’d like to connect instead, as in:

$ docker run -a stdin -a stdout -i -t ubuntu /bin/bash

For interactive processes (like a shell), you must use -i -t together in
order to allocate a tty for the container process. -i -t is often written -it
as you’ll see in later examples. Specifying -t is forbidden when the client
standard output is redirected or piped, such as in:
echo test | docker run -i busybox cat.

Note: A process running as PID 1 inside a container is treated
specially by Linux: it ignores any signal with the default action.
So, the process will not terminate on SIGINT or SIGTERM unless it is
coded to do so.

Container identification

Name (–name)

The operator can identify a container in three ways:

		UUID long identifier
(“f78375b1c487e03c9438c729345e54db9d20cfa2ac1fc3494b6eb60872e74778”)

		UUID short identifier (“f78375b1c487”)

		Name (“evil_ptolemy”)

The UUID identifiers come from the Docker daemon, and if you do not
assign a name to the container with --name then the daemon will also
generate a random string name too. The name can become a handy way to
add meaning to a container since you can use this name when defining
links (or any
other place you need to identify a container). This works for both
background and foreground Docker containers.

PID equivalent

Finally, to help with automation, you can have Docker write the
container ID out to a file of your choosing. This is similar to how some
programs might write out their process ID to a file (you’ve seen them as
PID files):

--cidfile="": Write the container ID to the file

Image[:tag]

While not strictly a means of identifying a container, you can specify a version of an
image you’d like to run the container with by adding image[:tag] to the command. For
example, docker run ubuntu:14.04.

Image[@digest]

Images using the v2 or later image format have a content-addressable identifier
called a digest. As long as the input used to generate the image is unchanged,
the digest value is predictable and referenceable.

PID settings (–pid)

--pid="" : Set the PID (Process) Namespace mode for the container,
 'host': use the host's PID namespace inside the container

By default, all containers have the PID namespace enabled.

PID namespace provides separation of processes. The PID Namespace removes the
view of the system processes, and allows process ids to be reused including
pid 1.

In certain cases you want your container to share the host’s process namespace,
basically allowing processes within the container to see all of the processes
on the system. For example, you could build a container with debugging tools
like strace or gdb, but want to use these tools when debugging processes
within the container.

$ docker run --pid=host rhel7 strace -p 1234

This command would allow you to use strace inside the container on pid 1234 on
the host.

UTS settings (–uts)

--uts="" : Set the UTS namespace mode for the container,
 'host': use the host's UTS namespace inside the container

The UTS namespace is for setting the hostname and the domain that is visible
to running processes in that namespace. By default, all containers, including
those with --net=host, have their own UTS namespace. The host setting will
result in the container using the same UTS namespace as the host.

You may wish to share the UTS namespace with the host if you would like the
hostname of the container to change as the hostname of the host changes. A
more advanced use case would be changing the host’s hostname from a container.

Note: --uts="host" gives the container full access to change the
hostname of the host and is therefore considered insecure.

IPC settings (–ipc)

--ipc="" : Set the IPC mode for the container,
 'container:<name|id>': reuses another container's IPC namespace
 'host': use the host's IPC namespace inside the container

By default, all containers have the IPC namespace enabled.

IPC (POSIX/SysV IPC) namespace provides separation of named shared memory
segments, semaphores and message queues.

Shared memory segments are used to accelerate inter-process communication at
memory speed, rather than through pipes or through the network stack. Shared
memory is commonly used by databases and custom-built (typically C/OpenMPI,
C++/using boost libraries) high performance applications for scientific
computing and financial services industries. If these types of applications
are broken into multiple containers, you might need to share the IPC mechanisms
of the containers.

Network settings

--dns=[] : Set custom dns servers for the container
--net="bridge" : Set the Network mode for the container
 'bridge': creates a new network stack for the container on the docker bridge
 'none': no networking for this container
 'container:<name|id>': reuses another container network stack
 'host': use the host network stack inside the container
--add-host="" : Add a line to /etc/hosts (host:IP)
--mac-address="" : Sets the container's Ethernet device's MAC address

By default, all containers have networking enabled and they can make any
outgoing connections. The operator can completely disable networking
with docker run --net none which disables all incoming and outgoing
networking. In cases like this, you would perform I/O through files or
STDIN and STDOUT only.

Publishing ports and linking to other containers will not work
when --net is anything other than the default (bridge).

Your container will use the same DNS servers as the host by default, but
you can override this with --dns.

By default, the MAC address is generated using the IP address allocated to the
container. You can set the container’s MAC address explicitly by providing a
MAC address via the --mac-address parameter (format:12:34:56:78:9a:bc).

Supported networking modes are:

 		Mode
 		Description

 		none
 		
 No networking in the container.

 		bridge (default)
 		
 Connect the container to the bridge via veth interfaces.

 		host
 		
 Use the host's network stack inside the container.

 		container:<name|id>
 		
 Use the network stack of another container, specified via
 its *name* or *id*.

Mode: none

With the networking mode set to none a container will not have a
access to any external routes. The container will still have a
loopback interface enabled in the container but it does not have any
routes to external traffic.

Mode: bridge

With the networking mode set to bridge a container will use docker’s
default networking setup. A bridge is setup on the host, commonly named
docker0, and a pair of veth interfaces will be created for the
container. One side of the veth pair will remain on the host attached
to the bridge while the other side of the pair will be placed inside the
container’s namespaces in addition to the loopback interface. An IP
address will be allocated for containers on the bridge’s network and
traffic will be routed though this bridge to the container.

Mode: host

With the networking mode set to host a container will share the host’s
network stack and all interfaces from the host will be available to the
container. The container’s hostname will match the hostname on the host
system. Note that --add-host --hostname --dns --dns-search and
--mac-address is invalid in host netmode.

Compared to the default bridge mode, the host mode gives significantly
better networking performance since it uses the host’s native networking stack
whereas the bridge has to go through one level of virtualization through the
docker daemon. It is recommended to run containers in this mode when their
networking performance is critical, for example, a production Load Balancer
or a High Performance Web Server.

Note: --net="host" gives the container full access to local system
services such as D-bus and is therefore considered insecure.

Mode: container

With the networking mode set to container a container will share the
network stack of another container. The other container’s name must be
provided in the format of --net container:<name|id>. Note that --add-host
--hostname --dns --dns-search and --mac-address is invalid
in container netmode, and --publish --publish-all --expose are also
invalid in container netmode.

Example running a Redis container with Redis binding to localhost then
running the redis-cli command and connecting to the Redis server over the
localhost interface.

$ docker run -d --name redis example/redis --bind 127.0.0.1
$ # use the redis container's network stack to access localhost
$ docker run --rm -it --net container:redis example/redis-cli -h 127.0.0.1

Managing /etc/hosts

Your container will have lines in /etc/hosts which define the hostname of the
container itself as well as localhost and a few other common things. The
--add-host flag can be used to add additional lines to /etc/hosts.

$ docker run -it --add-host db-static:86.75.30.9 ubuntu cat /etc/hosts
172.17.0.22 09d03f76bf2c
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
86.75.30.9 db-static

Restart policies (–restart)

Using the --restart flag on Docker run you can specify a restart policy for
how a container should or should not be restarted on exit.

When a restart policy is active on a container, it will be shown as either Up
or Restarting in docker ps. It can also be
useful to use docker events to see the
restart policy in effect.

Docker supports the following restart policies:

 		Policy
 		Result

 		no
 		
 Do not automatically restart the container when it exits. This is the
 default.

 		

 on-failure[:max-retries]

 		
 Restart only if the container exits with a non-zero exit status.
 Optionally, limit the number of restart retries the Docker
 daemon attempts.

 		always
 		
 Always restart the container regardless of the exit status.
 When you specify always, the Docker daemon will try to restart
 the container indefinitely.

An ever increasing delay (double the previous delay, starting at 100
milliseconds) is added before each restart to prevent flooding the server.
This means the daemon will wait for 100 ms, then 200 ms, 400, 800, 1600,
and so on until either the on-failure limit is hit, or when you docker stop
or docker rm -f the container.

If a container is successfully restarted (the container is started and runs
for at least 10 seconds), the delay is reset to its default value of 100 ms.

You can specify the maximum amount of times Docker will try to restart the
container when using the on-failure policy. The default is that Docker
will try forever to restart the container. The number of (attempted) restarts
for a container can be obtained via docker inspect. For example, to get the number of restarts
for container “my-container”;

$ docker inspect -f "{{ .RestartCount }}" my-container
2

Or, to get the last time the container was (re)started;

$ docker inspect -f "{{ .State.StartedAt }}" my-container
2015-03-04T23:47:07.691840179Z

You cannot set any restart policy in combination with
“clean up (–rm)”. Setting both --restart and --rm
results in an error.

Examples

$ docker run --restart=always redis

This will run the redis container with a restart policy of always
so that if the container exits, Docker will restart it.

$ docker run --restart=on-failure:10 redis

This will run the redis container with a restart policy of on-failure
and a maximum restart count of 10. If the redis container exits with a
non-zero exit status more than 10 times in a row Docker will abort trying to
restart the container. Providing a maximum restart limit is only valid for the
on-failure policy.

Clean up (–rm)

By default a container’s file system persists even after the container
exits. This makes debugging a lot easier (since you can inspect the
final state) and you retain all your data by default. But if you are
running short-term foreground processes, these container file
systems can really pile up. If instead you’d like Docker to
automatically clean up the container and remove the file system when
the container exits, you can add the --rm flag:

--rm=false: Automatically remove the container when it exits (incompatible with -d)

Security configuration

--security-opt="label:user:USER" : Set the label user for the container
--security-opt="label:role:ROLE" : Set the label role for the container
--security-opt="label:type:TYPE" : Set the label type for the container
--security-opt="label:level:LEVEL" : Set the label level for the container
--security-opt="label:disable" : Turn off label confinement for the container
--security-opt="apparmor:PROFILE" : Set the apparmor profile to be applied
 to the container

You can override the default labeling scheme for each container by specifying
the --security-opt flag. For example, you can specify the MCS/MLS level, a
requirement for MLS systems. Specifying the level in the following command
allows you to share the same content between containers.

$ docker run --security-opt label:level:s0:c100,c200 -i -t fedora bash

An MLS example might be:

$ docker run --security-opt label:level:TopSecret -i -t rhel7 bash

To disable the security labeling for this container versus running with the
--permissive flag, use the following command:

$ docker run --security-opt label:disable -i -t fedora bash

If you want a tighter security policy on the processes within a container,
you can specify an alternate type for the container. You could run a container
that is only allowed to listen on Apache ports by executing the following
command:

$ docker run --security-opt label:type:svirt_apache_t -i -t centos bash

Note:

You would have to write policy defining a svirt_apache_t type.

Specifying custom cgroups

Using the --cgroup-parent flag, you can pass a specific cgroup to run a
container in. This allows you to create and manage cgroups on their own. You can
define custom resources for those cgroups and put containers under a common
parent group.

Runtime constraints on resources

The operator can also adjust the performance parameters of the
container:

-m, --memory="": Memory limit (format: <number><optional unit>, where unit = b, k, m or g)
--memory-swap="": Total memory limit (memory + swap, format: <number><optional unit>, where unit = b, k, m or g)
-c, --cpu-shares=0: CPU shares (relative weight)
--cpu-period=0: Limit the CPU CFS (Completely Fair Scheduler) period
--cpuset-cpus="": CPUs in which to allow execution (0-3, 0,1)
--cpuset-mems="": Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effective on NUMA systems.
--cpu-quota=0: Limit the CPU CFS (Completely Fair Scheduler) quota
--blkio-weight=0: Block IO weight (relative weight) accepts a weight value between 10 and 1000.
--oom-kill-disable=true|false: Whether to disable OOM Killer for the container or not.
--memory-swappiness="": Tune a container's memory swappiness behavior. Accepts an integer between 0 and 100.

Memory constraints

We have four ways to set memory usage:

 		Option
 		Result

 		
 memory=inf, memory-swap=inf (default)

 		
 There is no memory limit for the container. The container can use
 as much memory as needed.

 		memory=L<inf, memory-swap=inf
 		
 (specify memory and set memory-swap as -1) The container is
 not allowed to use more than L bytes of memory, but can use as much swap
 as is needed (if the host supports swap memory).

 		memory=L<inf, memory-swap=2*L
 		
 (specify memory without memory-swap) The container is not allowed to
 use more than L bytes of memory, swap *plus* memory usage is double
 of that.

 		
 memory=L<inf, memory-swap=S<inf, L<=S

 		
 (specify both memory and memory-swap) The container is not allowed to
 use more than L bytes of memory, swap *plus* memory usage is limited
 by S.

Examples:

$ docker run -ti ubuntu:14.04 /bin/bash

We set nothing about memory, this means the processes in the container can use
as much memory and swap memory as they need.

$ docker run -ti -m 300M --memory-swap -1 ubuntu:14.04 /bin/bash

We set memory limit and disabled swap memory limit, this means the processes in
the container can use 300M memory and as much swap memory as they need (if the
host supports swap memory).

$ docker run -ti -m 300M ubuntu:14.04 /bin/bash

We set memory limit only, this means the processes in the container can use
300M memory and 300M swap memory, by default, the total virtual memory size
(–memory-swap) will be set as double of memory, in this case, memory + swap
would be 2*300M, so processes can use 300M swap memory as well.

$ docker run -ti -m 300M --memory-swap 1G ubuntu:14.04 /bin/bash

We set both memory and swap memory, so the processes in the container can use
300M memory and 700M swap memory.

By default, kernel kills processes in a container if an out-of-memory (OOM)
error occurs. To change this behaviour, use the --oom-kill-disable option.
Only disable the OOM killer on containers where you have also set the
-m/--memory option. If the -m flag is not set, this can result in the host
running out of memory and require killing the host’s system processes to free
memory.

Examples:

The following example limits the memory to 100M and disables the OOM killer for
this container:

$ docker run -ti -m 100M --oom-kill-disable ubuntu:14.04 /bin/bash

The following example, illustrates a dangerous way to use the flag:

$ docker run -ti --oom-kill-disable ubuntu:14.04 /bin/bash

The container has unlimited memory which can cause the host to run out memory
and require killing system processes to free memory.

Swappiness constraint

By default, a container’s kernel can swap out a percentage of anonymous pages.
To set this percentage for a container, specify a --memory-swappiness value
between 0 and 100. A value of 0 turns off anonymous page swapping. A value of
100 sets all anonymous pages as swappable. By default, if you are not using
--memory-swappiness, memory swappiness value will be inherited from the parent.

For example, you can set:

$ docker run -ti --memory-swappiness=0 ubuntu:14.04 /bin/bash

Setting the --memory-swappiness option is helpful when you want to retain the
container’s working set and to avoid swapping performance penalties.

CPU share constraint

By default, all containers get the same proportion of CPU cycles. This proportion
can be modified by changing the container’s CPU share weighting relative
to the weighting of all other running containers.

To modify the proportion from the default of 1024, use the -c or --cpu-shares
flag to set the weighting to 2 or higher.

The proportion will only apply when CPU-intensive processes are running.
When tasks in one container are idle, other containers can use the
left-over CPU time. The actual amount of CPU time will vary depending on
the number of containers running on the system.

For example, consider three containers, one has a cpu-share of 1024 and
two others have a cpu-share setting of 512. When processes in all three
containers attempt to use 100% of CPU, the first container would receive
50% of the total CPU time. If you add a fourth container with a cpu-share
of 1024, the first container only gets 33% of the CPU. The remaining containers
receive 16.5%, 16.5% and 33% of the CPU.

On a multi-core system, the shares of CPU time are distributed over all CPU
cores. Even if a container is limited to less than 100% of CPU time, it can
use 100% of each individual CPU core.

For example, consider a system with more than three cores. If you start one
container {C0} with -c=512 running one process, and another container
{C1} with -c=1024 running two processes, this can result in the following
division of CPU shares:

PID container CPU CPU share
100 {C0} 0 100% of CPU0
101 {C1} 1 100% of CPU1
102 {C1} 2 100% of CPU2

CPU period constraint

The default CPU CFS (Completely Fair Scheduler) period is 100ms. We can use
--cpu-period to set the period of CPUs to limit the container’s CPU usage.
And usually --cpu-period should work with --cpu-quota.

Examples:

$ docker run -ti --cpu-period=50000 --cpu-quota=25000 ubuntu:14.04 /bin/bash

If there is 1 CPU, this means the container can get 50% CPU worth of run-time every 50ms.

For more information, see the CFS documentation on bandwidth limiting [https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt].

Cpuset constraint

We can set cpus in which to allow execution for containers.

Examples:

$ docker run -ti --cpuset-cpus="1,3" ubuntu:14.04 /bin/bash

This means processes in container can be executed on cpu 1 and cpu 3.

$ docker run -ti --cpuset-cpus="0-2" ubuntu:14.04 /bin/bash

This means processes in container can be executed on cpu 0, cpu 1 and cpu 2.

We can set mems in which to allow execution for containers. Only effective
on NUMA systems.

Examples:

$ docker run -ti --cpuset-mems="1,3" ubuntu:14.04 /bin/bash

This example restricts the processes in the container to only use memory from
memory nodes 1 and 3.

$ docker run -ti --cpuset-mems="0-2" ubuntu:14.04 /bin/bash

This example restricts the processes in the container to only use memory from
memory nodes 0, 1 and 2.

CPU quota constraint

The --cpu-quota flag limits the container’s CPU usage. The default 0 value
allows the container to take 100% of a CPU resource (1 CPU). The CFS (Completely Fair
Scheduler) handles resource allocation for executing processes and is default
Linux Scheduler used by the kernel. Set this value to 50000 to limit the container
to 50% of a CPU resource. For multiple CPUs, adjust the --cpu-quota as necessary.
For more information, see the CFS documentation on bandwidth limiting [https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt].

Block IO bandwidth (Blkio) constraint

By default, all containers get the same proportion of block IO bandwidth
(blkio). This proportion is 500. To modify this proportion, change the
container’s blkio weight relative to the weighting of all other running
containers using the --blkio-weight flag.

The --blkio-weight flag can set the weighting to a value between 10 to 1000.
For example, the commands below create two containers with different blkio
weight:

$ docker run -ti --name c1 --blkio-weight 300 ubuntu:14.04 /bin/bash
$ docker run -ti --name c2 --blkio-weight 600 ubuntu:14.04 /bin/bash

If you do block IO in the two containers at the same time, by, for example:

$ time dd if=/mnt/zerofile of=test.out bs=1M count=1024 oflag=direct

You’ll find that the proportion of time is the same as the proportion of blkio
weights of the two containers.

Note: The blkio weight setting is only available for direct IO. Buffered IO
is not currently supported.

Additional groups

--group-add: Add Linux capabilities

By default, the docker container process runs with the supplementary groups looked
up for the specified user. If one wants to add more to that list of groups, then
one can use this flag:

$ docker run -ti --rm --group-add audio --group-add dbus --group-add 777 busybox id
uid=0(root) gid=0(root) groups=10(wheel),29(audio),81(dbus),777

Runtime privilege, Linux capabilities, and LXC configuration

--cap-add: Add Linux capabilities
--cap-drop: Drop Linux capabilities
--privileged=false: Give extended privileges to this container
--device=[]: Allows you to run devices inside the container without the --privileged flag.
--lxc-conf=[]: Add custom lxc options

By default, Docker containers are “unprivileged” and cannot, for
example, run a Docker daemon inside a Docker container. This is because
by default a container is not allowed to access any devices, but a
“privileged” container is given access to all devices (see lxc-template.go [https://github.com/docker/docker/blob/master/daemon/execdriver/lxc/lxc_template.go]
and documentation on cgroups devices [https://www.kernel.org/doc/Documentation/cgroups/devices.txt]).

When the operator executes docker run --privileged, Docker will enable
to access to all devices on the host as well as set some configuration
in AppArmor or SELinux to allow the container nearly all the same access to the
host as processes running outside containers on the host. Additional
information about running with --privileged is available on the
Docker Blog [http://blog.docker.com/2013/09/docker-can-now-run-within-docker/].

If you want to limit access to a specific device or devices you can use
the --device flag. It allows you to specify one or more devices that
will be accessible within the container.

$ docker run --device=/dev/snd:/dev/snd ...

By default, the container will be able to read, write, and mknod these devices.
This can be overridden using a third :rwm set of options to each --device flag:

$ docker run --device=/dev/sda:/dev/xvdc --rm -it ubuntu fdisk /dev/xvdc

Command (m for help): q
$ docker run --device=/dev/sda:/dev/xvdc:r --rm -it ubuntu fdisk /dev/xvdc
You will not be able to write the partition table.

Command (m for help): q

$ docker run --device=/dev/sda:/dev/xvdc:w --rm -it ubuntu fdisk /dev/xvdc
 crash....

$ docker run --device=/dev/sda:/dev/xvdc:m --rm -it ubuntu fdisk /dev/xvdc
fdisk: unable to open /dev/xvdc: Operation not permitted

In addition to --privileged, the operator can have fine grain control over the
capabilities using --cap-add and --cap-drop. By default, Docker has a default
list of capabilities that are kept. The following table lists the Linux capability options which can be added or dropped.

Capability Key	Capability Description
————–	———————-
SETPCAP	Modify process capabilities.
SYS_MODULE	Load and unload kernel modules.
SYS_RAWIO	Perform I/O port operations (iopl(2) and ioperm(2)).
SYS_PACCT	Use acct(2), switch process accounting on or off.
SYS_ADMIN	Perform a range of system administration operations.
SYS_NICE	Raise process nice value (nice(2), setpriority(2)) and change the nice value for arbitrary processes.
SYS_RESOURCE	Override resource Limits.
SYS_TIME	Set system clock (settimeofday(2), stime(2), adjtimex(2)); set real-time (hardware) clock.
SYS_TTY_CONFIG	Use vhangup(2); employ various privileged ioctl(2) operations on virtual terminals.
MKNOD	Create special files using mknod(2).
AUDIT_WRITE	Write records to kernel auditing log.
AUDIT_CONTROL	Enable and disable kernel auditing; change auditing filter rules; retrieve auditing status and filtering rules.
MAC_OVERRIDE	Allow MAC configuration or state changes. Implemented for the Smack LSM.
MAC_ADMIN	Override Mandatory Access Control (MAC). Implemented for the Smack Linux Security Module (LSM).
NET_ADMIN	Perform various network-related operations.
SYSLOG	Perform privileged syslog(2) operations.
CHOWN	Make arbitrary changes to file UIDs and GIDs (see chown(2)).
NET_RAW	Use RAW and PACKET sockets.
DAC_OVERRIDE	Bypass file read, write, and execute permission checks.
FOWNER	Bypass permission checks on operations that normally require the file system UID of the process to match the UID of the file.
DAC_READ_SEARCH	Bypass file read permission checks and directory read and execute permission checks.
FSETID	Don’t clear set-user-ID and set-group-ID permission bits when a file is modified.
KILL	Bypass permission checks for sending signals.
SETGID	Make arbitrary manipulations of process GIDs and supplementary GID list.
SETUID	Make arbitrary manipulations of process UIDs.
LINUX_IMMUTABLE	Set the FS_APPEND_FL and FS_IMMUTABLE_FL i-node flags.
NET_BIND_SERVICE	Bind a socket to internet domain privileged ports (port numbers less than 1024).
NET_BROADCAST	Make socket broadcasts, and listen to multicasts.
IPC_LOCK	Lock memory (mlock(2), mlockall(2), mmap(2), shmctl(2)).
IPC_OWNER	Bypass permission checks for operations on System V IPC objects.
SYS_CHROOT	Use chroot(2), change root directory.
SYS_PTRACE	Trace arbitrary processes using ptrace(2).
SYS_BOOT	Use reboot(2) and kexec_load(2), reboot and load a new kernel for later execution.
LEASE	Establish leases on arbitrary files (see fcntl(2)).
SETFCAP	Set file capabilities.
WAKE_ALARM	Trigger something that will wake up the system.
BLOCK_SUSPEND	Employ features that can block system suspend.

Further reference information is available on the capabilities(7) - Linux man page [http://linux.die.net/man/7/capabilities]

Both flags support the value all, so if the
operator wants to have all capabilities but MKNOD they could use:

$ docker run --cap-add=ALL --cap-drop=MKNOD ...

For interacting with the network stack, instead of using --privileged they
should use --cap-add=NET_ADMIN to modify the network interfaces.

$ docker run -t -i --rm ubuntu:14.04 ip link add dummy0 type dummy
RTNETLINK answers: Operation not permitted
$ docker run -t -i --rm --cap-add=NET_ADMIN ubuntu:14.04 ip link add dummy0 type dummy

To mount a FUSE based filesystem, you need to combine both --cap-add and
--device:

$ docker run --rm -it --cap-add SYS_ADMIN sshfs sshfs sven@10.10.10.20:/home/sven /mnt
fuse: failed to open /dev/fuse: Operation not permitted
$ docker run --rm -it --device /dev/fuse sshfs sshfs sven@10.10.10.20:/home/sven /mnt
fusermount: mount failed: Operation not permitted
$ docker run --rm -it --cap-add SYS_ADMIN --device /dev/fuse sshfs
sshfs sven@10.10.10.20:/home/sven /mnt
The authenticity of host '10.10.10.20 (10.10.10.20)' can't be established.
ECDSA key fingerprint is 25:34:85:75:25:b0:17:46:05:19:04:93:b5:dd:5f:c6.
Are you sure you want to continue connecting (yes/no)? yes
sven@10.10.10.20's password:
root@30aa0cfaf1b5:/# ls -la /mnt/src/docker
total 1516
drwxrwxr-x 1 1000 1000 4096 Dec 4 06:08 .
drwxrwxr-x 1 1000 1000 4096 Dec 4 11:46 ..
-rw-rw-r-- 1 1000 1000 16 Oct 8 00:09 .dockerignore
-rwxrwxr-x 1 1000 1000 464 Oct 8 00:09 .drone.yml
drwxrwxr-x 1 1000 1000 4096 Dec 4 06:11 .git
-rw-rw-r-- 1 1000 1000 461 Dec 4 06:08 .gitignore
....

If the Docker daemon was started using the lxc exec-driver
(docker -d --exec-driver=lxc) then the operator can also specify LXC options
using one or more --lxc-conf parameters. These can be new parameters or
override existing parameters from the lxc-template.go [https://github.com/docker/docker/blob/master/daemon/execdriver/lxc/lxc_template.go].
Note that in the future, a given host’s docker daemon may not use LXC, so this
is an implementation-specific configuration meant for operators already
familiar with using LXC directly.

Note:
If you use --lxc-conf to modify a container’s configuration which is also
managed by the Docker daemon, then the Docker daemon will not know about this
modification, and you will need to manage any conflicts yourself. For example,
you can use --lxc-conf to set a container’s IP address, but this will not be
reflected in the /etc/hosts file.

Logging drivers (–log-driver)

The container can have a different logging driver than the Docker daemon. Use
the --log-driver=VALUE with the docker run command to configure the
container’s logging driver. The following options are supported:

none	Disables any logging for the container. docker logs won’t be available with this driver.
————-	——-
json-file	Default logging driver for Docker. Writes JSON messages to file. No logging options are supported for this driver.
syslog	Syslog logging driver for Docker. Writes log messages to syslog.
journald	Journald logging driver for Docker. Writes log messages to journald.
gelf	Graylog Extended Log Format (GELF) logging driver for Docker. Writes log messages to a GELF endpoint likeGraylog or Logstash.
fluentd	Fluentd logging driver for Docker. Writes log messages to fluentd (forward input).

The `docker logs`command is available only for the `json-file` logging

driver. For detailed information on working with logging drivers, see
Configure a logging driver.

Logging driver: fluentd

Fluentd logging driver for Docker. Writes log messages to fluentd (forward input). docker logs
command is not available for this logging driver.

Some options are supported by specifying --log-opt as many as needed, like --log-opt fluentd-address=localhost:24224 --log-opt fluentd-tag=docker.{{.Name}}.

		fluentd-address: specify host:port to connect [localhost:24224]

		fluentd-tag: specify tag for fluentd message, which interpret some markup, ex {{.ID}}, {{.FullID}} or {{.Name}} [docker.{{.ID}}]

Overriding Dockerfile image defaults

When a developer builds an image from a Dockerfile
or when she commits it, the developer can set a number of default parameters
that take effect when the image starts up as a container.

Four of the Dockerfile commands cannot be overridden at runtime: FROM,
MAINTAINER, RUN, and ADD. Everything else has a corresponding override
in docker run. We’ll go through what the developer might have set in each
Dockerfile instruction and how the operator can override that setting.

		CMD (Default Command or Options)

		ENTRYPOINT (Default Command to Execute at Runtime)

		EXPOSE (Incoming Ports)

		ENV (Environment Variables)

		VOLUME (Shared Filesystems)

		USER

		WORKDIR

CMD (default command or options)

Recall the optional COMMAND in the Docker
commandline:

$ docker run [OPTIONS] IMAGE[:TAG|@DIGEST] [COMMAND] [ARG...]

This command is optional because the person who created the IMAGE may
have already provided a default COMMAND using the Dockerfile CMD
instruction. As the operator (the person running a container from the
image), you can override that CMD instruction just by specifying a new
COMMAND.

If the image also specifies an ENTRYPOINT then the CMD or COMMAND
get appended as arguments to the ENTRYPOINT.

ENTRYPOINT (default command to execute at runtime)

--entrypoint="": Overwrite the default entrypoint set by the image

The ENTRYPOINT of an image is similar to a COMMAND because it
specifies what executable to run when the container starts, but it is
(purposely) more difficult to override. The ENTRYPOINT gives a
container its default nature or behavior, so that when you set an
ENTRYPOINT you can run the container as if it were that binary,
complete with default options, and you can pass in more options via the
COMMAND. But, sometimes an operator may want to run something else
inside the container, so you can override the default ENTRYPOINT at
runtime by using a string to specify the new ENTRYPOINT. Here is an
example of how to run a shell in a container that has been set up to
automatically run something else (like /usr/bin/redis-server):

$ docker run -i -t --entrypoint /bin/bash example/redis

or two examples of how to pass more parameters to that ENTRYPOINT:

$ docker run -i -t --entrypoint /bin/bash example/redis -c ls -l
$ docker run -i -t --entrypoint /usr/bin/redis-cli example/redis --help

EXPOSE (incoming ports)

The Dockerfile doesn’t give much control over networking, only providing
the EXPOSE instruction to give a hint to the operator about what
incoming ports might provide services. The following options work with
or override the Dockerfile’s exposed defaults:

--expose=[]: Expose a port or a range of ports from the container
 without publishing it to your host
-P=false : Publish all exposed ports to the host interfaces
-p=[] : Publish a container᾿s port or a range of ports to the host
 format: ip:hostPort:containerPort | ip::containerPort | hostPort:containerPort | containerPort
 Both hostPort and containerPort can be specified as a range of ports.
 When specifying ranges for both, the number of container ports in the range must match the number of host ports in the range. (e.g., `-p 1234-1236:1234-1236/tcp`)
 (use 'docker port' to see the actual mapping)
--link="" : Add link to another container (<name or id>:alias or <name or id>)

As mentioned previously, EXPOSE (and --expose) makes ports available
in a container for incoming connections. The port number on the
inside of the container (where the service listens) does not need to be
the same number as the port exposed on the outside of the container
(where clients connect), so inside the container you might have an HTTP
service listening on port 80 (and so you EXPOSE 80 in the Dockerfile),
but outside the container the port might be 42800.

To help a new client container reach the server container’s internal
port operator --expose‘d by the operator or EXPOSE‘d by the
developer, the operator has three choices: start the server container
with -P or -p, or start the client container with --link.

If the operator uses -P or -p then Docker will make the exposed port
accessible on the host and the ports will be available to any client that can
reach the host. When using -P, Docker will bind the exposed port to a random
port on the host within an ephemeral port range defined by
/proc/sys/net/ipv4/ip_local_port_range. To find the mapping between the host
ports and the exposed ports, use docker port.

If the operator uses --link when starting the new client container,
then the client container can access the exposed port via a private
networking interface. Docker will set some environment variables in the
client container to help indicate which interface and port to use.

ENV (environment variables)

When a new container is created, Docker will set the following environment
variables automatically:

 		Variable
 		Value

 		HOME
 		
 Set based on the value of USER

 		HOSTNAME
 		
 The hostname associated with the container

 		PATH
 		
 Includes popular directories, such as :

 /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 		TERM
 		xterm if the container is allocated a pseudo-TTY

The container may also include environment variables defined
as a result of the container being linked with another container. See
the Container Links
section for more details.

Additionally, the operator can set any environment variable in the
container by using one or more -e flags, even overriding those mentioned
above, or already defined by the developer with a Dockerfile ENV:

$ docker run -e "deep=purple" --rm ubuntu /bin/bash -c export
declare -x HOME="/"
declare -x HOSTNAME="85bc26a0e200"
declare -x OLDPWD
declare -x PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
declare -x PWD="/"
declare -x SHLVL="1"
declare -x container="lxc"
declare -x deep="purple"

Similarly the operator can set the hostname with -h.

--link <name or id>:alias also sets environment variables, using the alias string to
define environment variables within the container that give the IP and PORT
information for connecting to the service container. Let’s imagine we have a
container running Redis:

Start the service container, named redis-name
$ docker run -d --name redis-name dockerfiles/redis
4241164edf6f5aca5b0e9e4c9eccd899b0b8080c64c0cd26efe02166c73208f3

The redis-name container exposed port 6379
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4241164edf6f $ dockerfiles/redis:latest /redis-stable/src/re 5 seconds ago Up 4 seconds 6379/tcp redis-name

Note that there are no public ports exposed since we didn᾿t use -p or -P
$ docker port 4241164edf6f 6379
2014/01/25 00:55:38 Error: No public port '6379' published for 4241164edf6f

Yet we can get information about the Redis container’s exposed ports
with --link. Choose an alias that will form a
valid environment variable!

$ docker run --rm --link redis-name:redis_alias --entrypoint /bin/bash dockerfiles/redis -c export
declare -x HOME="/"
declare -x HOSTNAME="acda7f7b1cdc"
declare -x OLDPWD
declare -x PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
declare -x PWD="/"
declare -x REDIS_ALIAS_NAME="/distracted_wright/redis"
declare -x REDIS_ALIAS_PORT="tcp://172.17.0.32:6379"
declare -x REDIS_ALIAS_PORT_6379_TCP="tcp://172.17.0.32:6379"
declare -x REDIS_ALIAS_PORT_6379_TCP_ADDR="172.17.0.32"
declare -x REDIS_ALIAS_PORT_6379_TCP_PORT="6379"
declare -x REDIS_ALIAS_PORT_6379_TCP_PROTO="tcp"
declare -x SHLVL="1"
declare -x container="lxc"

And we can use that information to connect from another container as a client:

$ docker run -i -t --rm --link redis-name:redis_alias --entrypoint /bin/bash dockerfiles/redis -c '/redis-stable/src/redis-cli -h $REDIS_ALIAS_PORT_6379_TCP_ADDR -p $REDIS_ALIAS_PORT_6379_TCP_PORT'
172.17.0.32:6379>

Docker will also map the private IP address to the alias of a linked
container by inserting an entry into /etc/hosts. You can use this
mechanism to communicate with a linked container by its alias:

$ docker run -d --name servicename busybox sleep 30
$ docker run -i -t --link servicename:servicealias busybox ping -c 1 servicealias

If you restart the source container (servicename in this case), the recipient
container’s /etc/hosts entry will be automatically updated.

Note:
Unlike host entries in the /etc/hosts file, IP addresses stored in the
environment variables are not automatically updated if the source container is
restarted. We recommend using the host entries in /etc/hosts to resolve the
IP address of linked containers.

VOLUME (shared filesystems)

-v=[]: Create a bind mount with: [host-dir:]container-dir[:rw|ro].
 If 'host-dir' is missing, then docker creates a new volume.
 If neither 'rw' or 'ro' is specified then the volume is mounted
 in read-write mode.
--volumes-from="": Mount all volumes from the given container(s)

The volumes commands are complex enough to have their own documentation
in section Managing data in
containers. A developer can define
one or more VOLUME‘s associated with an image, but only the operator
can give access from one container to another (or from a container to a
volume mounted on the host).

USER

The default user within a container is root (id = 0), but if the
developer created additional users, those are accessible too. The
developer can set a default user to run the first process with the
Dockerfile USER instruction, but the operator can override it:

-u="": Username or UID

Note: if you pass numeric uid, it must be in range 0-2147483647.

WORKDIR

The default working directory for running binaries within a container is the
root directory (/), but the developer can set a different default with the
Dockerfile WORKDIR command. The operator can override this with:

-w="": Working directory inside the container

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.8.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.8

1. Brief introduction

		The Remote API has replaced rcli

		The daemon listens on unix:///var/run/docker.sock but you can bind
Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout, stdin
and stderr

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "base:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Image": "base:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Image": "base:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "base:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created containers, include non-running ones.

		since – Show only containers created since Id, include non-running ones.

		before – Show only containers created before Id, include non-running ones.

		size – 1/True/true or 0/False/false, Show the containers sizes

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "CpuShares":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Dns":null,
 "Image":"base",
 "Volumes":{
 "/tmp": {}
 },
 "VolumesFrom":"",
 "WorkingDir":"",
 "ExposedPorts":{
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		Hostname – Container host name

		User – Username or UID

		Memory – Memory Limit in bytes

		CpuShares – CPU shares (relative weight)

		AttachStdin – 1/True/true or 0/False/false, attach to
standard input. Default false

		AttachStdout – 1/True/true or 0/False/false, attach to
standard output. Default false

		AttachStderr – 1/True/true or 0/False/false, attach to
standard error. Default false

		Tty – 1/True/true or 0/False/false, allocate a pseudo-tty.
Default false

		OpenStdin – 1/True/true or 0/False/false, keep stdin open
even if not attached. Default false

Query Parameters:

		name – Assign the specified name to the container. Mus
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "base",
 "Volumes": {},
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {},
 "HostConfig": {
 "Binds": null,
 "ContainerIDFile": "",
 "LxcConf": [],
 "Privileged": false,
 "PortBindings": {
 "80/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "49153"
 }
]
 },
 "Links": null,
 "PublishAllPorts": false
 }
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds":["/tmp:/tmp"],
 "LxcConf":[{"Key":"lxc.utsname","Value":"docker"}],
 "PortBindings":{ "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts":false,
 "Privileged":false
 }

Example response:

 HTTP/1.1 204 No Content
 Content-Type: text/plain

Json Parameters:

		Binds – Create a bind mount to a directory or file with
[host-path]:[container-path]:[rw|ro]. If a directory
“container-path” is missing, then docker creates a new volume.

		LxcConf – Map of custom lxc options

		PortBindings – Expose ports from the container, optionally
publishing them via the HostPort flag

		PublishAllPorts – 1/True/true or 0/False/false, publish all
exposed ports to the host interfaces. Default false

		Privileged – 1/True/true or 0/False/false, give extended
privileges to this container. Default false

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Defaul
false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1)

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing i

Example request:

 POST /images/create?fromImage=base HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pulling..."}
 {"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
 {"error": "Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Insert a file in an image

POST /images/(name)/insert

Insert a file from url in the image name at path

Example request:

 POST /images/test/insert?path=/usr&url=myurl HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Inserting..."}
 {"status":"Inserting", "progress":"1/? (n/a)", "progressDetail":{"current":1}}
 {"error":"Invalid..."}
 ...

Query Parameters:

		url – The url from where the file is taken

		path – The path where the file is stored

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/base/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id":"b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "parent":"27cf784147099545",
 "created":"2013-03-23T22:24:18.818426-07:00",
 "container":"3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "container_config":
 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":false,
 "AttachStderr":false,
 "PortSpecs":null,
 "Tty":true,
 "OpenStdin":true,
 "StdinOnce":false,
 "Env":null,
 "Cmd": ["/bin/bash"],
 "Dns":null,
 "Image":"base",
 "Volumes":null,
 "VolumesFrom":"",
 "WorkingDir":""
 },
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/base/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pushing..."}
 {"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
 {"error": "Invalid..."}
 ...

Request Headers:

		X-Registry-Auth – include a base64-encoded AuthConfig
object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"stream": "Step 1..."}
 {"stream": "..."}
 {"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a file called `Dockerfile`
at its root. It may include any number of other files,
which will be accessible in the build context (See the [*ADD build
command*](/reference/builder/#dockerbuilder)).

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – build source URI (git or HTTPS/HTTP)

		q – suppress verbose build output

		nocache – do not use the cache when building the image

Request Headers:

		Content-type – should be set to
"application/tar".

		X-Registry-Auth – base64-encoded AuthConfig objec

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "MemoryLimit":true,
 "SwapLimit":false,
 "IPv4Forwarding":true
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version":"0.2.2",
 "GitCommit":"5a2a5cc+CHANGES",
 "GoVersion":"go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&m=message&repo=myrepo HTTP/1.1

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		m – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

		run – config automatically applied when the image is run.
(ex: {“Cmd”: [“cat”, “/world”], “PortSpecs”:[“22”]})

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get events from docker, either in real time via streaming,
or via polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "base:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "base:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "base:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "base:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images and tags in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository
specified by name.
See the image tarball format for more details.

Example request

 GET /images/ubuntu/get

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into the docker repository.

See the image tarball format for more details.

Example request

 POST /images/load

 Tarball in body

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing three files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file will contain aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, there will also be a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

3. Going further

3.1 Inside docker run

Here are the steps of docker run:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
- Try to pull it
- Then retry to create the container

		Start the container

		If you are not in detached mode:
- Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
- Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/unpause.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

unpause

Usage: docker unpause CONTAINER [CONTAINER...]

Unpause all processes within a container

The docker unpause command uses the cgroups freezer to un-suspend all
processes in a container.

See the
cgroups freezer documentation [https://www.kernel.org/doc/Documentation/cgroups/freezer-subsystem.txt]
for further details.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/stop.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

stop

Usage: docker stop [OPTIONS] CONTAINER [CONTAINER...]

Stop a running container by sending SIGTERM and then SIGKILL after a
grace period

 -t, --time=10 Seconds to wait for stop before killing it

The main process inside the container will receive SIGTERM, and after a grace
period, SIGKILL.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/history.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

history

Usage: docker history [OPTIONS] IMAGE

Show the history of an image

 -H, --human=true Print sizes and dates in human readable format
 --no-trunc=false Don't truncate output
 -q, --quiet=false Only show numeric IDs

To see how the docker:latest image was built:

$ docker history docker
IMAGE CREATED CREATED BY SIZE COMMENT
3e23a5875458 8 days ago /bin/sh -c #(nop) ENV LC_ALL=C.UTF-8 0 B
8578938dd170 8 days ago /bin/sh -c dpkg-reconfigure locales && loc 1.245 MB
be51b77efb42 8 days ago /bin/sh -c apt-get update && apt-get install 338.3 MB
4b137612be55 6 weeks ago /bin/sh -c #(nop) ADD jessie.tar.xz in / 121 MB
750d58736b4b 6 weeks ago /bin/sh -c #(nop) MAINTAINER Tianon Gravi <ad 0 B
511136ea3c5a 9 months ago 0 B Imported from -

To see how the docker:apache image was added to a container’s base image:

$ docker history docker:scm
IMAGE CREATED CREATED BY SIZE COMMENT
2ac9d1098bf1 3 months ago /bin/bash 241.4 MB Added Apache to Fedora base image
88b42ffd1f7c 5 months ago /bin/sh -c #(nop) ADD file:1fd8d7f9f6557cafc7 373.7 MB
c69cab00d6ef 5 months ago /bin/sh -c #(nop) MAINTAINER Lokesh Mandvekar 0 B
511136ea3c5a 19 months ago 0 B Imported from -

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/save.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

save

Usage: docker save [OPTIONS] IMAGE [IMAGE...]

Save an image(s) to a tar archive (streamed to STDOUT by default)

 -o, --output="" Write to a file, instead of STDOUT

Produces a tarred repository to the standard output stream.
Contains all parent layers, and all tags + versions, or specified repo:tag, for
each argument provided.

It is used to create a backup that can then be used with docker load

$ docker save busybox > busybox.tar
$ ls -sh busybox.tar
2.7M busybox.tar
$ docker save --output busybox.tar busybox
$ ls -sh busybox.tar
2.7M busybox.tar
$ docker save -o fedora-all.tar fedora
$ docker save -o fedora-latest.tar fedora:latest

It is even useful to cherry-pick particular tags of an image repository

$ docker save -o ubuntu.tar ubuntu:lucid ubuntu:saucy

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/port.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

port

Usage: docker port CONTAINER [PRIVATE_PORT[/PROTO]]

List port mappings for the CONTAINER, or lookup the public-facing port that is
NAT-ed to the PRIVATE_PORT

You can find out all the ports mapped by not specifying a PRIVATE_PORT, or
just a specific mapping:

$ docker ps test
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
b650456536c7 busybox:latest top 54 minutes ago Up 54 minutes 0.0.0.0:1234->9876/tcp, 0.0.0.0:4321->7890/tcp test
$ docker port test
7890/tcp -> 0.0.0.0:4321
9876/tcp -> 0.0.0.0:1234
$ docker port test 7890/tcp
0.0.0.0:4321
$ docker port test 7890/udp
2014/06/24 11:53:36 Error: No public port '7890/udp' published for test
$ docker port test 7890
0.0.0.0:4321

 © Copyright .
 Created using Sphinx 1.3.1.

reference/builder.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Dockerfile reference

Docker can build images automatically by reading the instructions
from a Dockerfile. A Dockerfile is a text document that contains all
the commands you would normally execute manually in order to build a
Docker image. By calling docker build from your terminal, you can have
Docker build your image step by step, executing the instructions
successively.

This page discusses the specifics of all the instructions you can use in your
Dockerfile. To further help you write a clear, readable, maintainable
Dockerfile, we’ve also written a Dockerfile Best Practices
guide. Lastly, you can test your
Dockerfile knowledge with the Dockerfile tutorial.

Usage

To build an image from a source repository,
create a description file called Dockerfile at the root of your repository.
This file will describe the steps to assemble the image.

Then call docker build with the path of your source repository as the argument
(for example, .):

$ docker build .

The path to the source repository defines where to find the context of
the build. The build is run by the Docker daemon, not by the CLI, so the
whole context must be transferred to the daemon. The Docker CLI reports
“Sending build context to Docker daemon” when the context is sent to the daemon.

Warning
Avoid using your root directory, /, as the root of the source repository. The
docker build command will use whatever directory contains the Dockerfile as the build
context (including all of its subdirectories). The build context will be sent to the
Docker daemon before building the image, which means if you use / as the source
repository, the entire contents of your hard drive will get sent to the daemon (and
thus to the machine running the daemon). You probably don’t want that.

In most cases, it’s best to put each Dockerfile in an empty directory. Then,
only add the files needed for building the Dockerfile to the directory. To
increase the build’s performance, you can exclude files and directories by
adding a .dockerignore file to the directory. For information about how to
create a .dockerignore file on this page.

You can specify a repository and tag at which to save the new image if
the build succeeds:

$ docker build -t shykes/myapp .

The Docker daemon will run your steps one-by-one, committing the result
to a new image if necessary, before finally outputting the ID of your
new image. The Docker daemon will automatically clean up the context you
sent.

Note that each instruction is run independently, and causes a new image
to be created - so RUN cd /tmp will not have any effect on the next
instructions.

Whenever possible, Docker will re-use the intermediate images,
accelerating docker build significantly (indicated by Using cache -
see the Dockerfile Best Practices
guide for more information):

$ docker build -t SvenDowideit/ambassador .
Uploading context 10.24 kB
Uploading context
Step 1 : FROM docker-ut
 ---> cbba202fe96b
Step 2 : MAINTAINER SvenDowideit@home.org.au
 ---> Using cache
 ---> 51182097be13
Step 3 : CMD env | grep _TCP= | sed 's/.*_PORT_\([0-9]*\)_TCP=tcp:\/\/\(.*\):\(.*\)/socat TCP4-LISTEN:\1,fork,reuseaddr TCP4:\2:\3 \&/' | sh && top
 ---> Using cache
 ---> 1a5ffc17324d
Successfully built 1a5ffc17324d

When you’re done with your build, you’re ready to look into Pushing a
repository to its registry.

Format

Here is the format of the Dockerfile:

Comment
INSTRUCTION arguments

The Instruction is not case-sensitive, however convention is for them to
be UPPERCASE in order to distinguish them from arguments more easily.

Docker runs the instructions in a Dockerfile in order. The
first instruction must be `FROM` in order to specify the Base
Image from which you are building.

Docker will treat lines that begin with # as a
comment. A # marker anywhere else in the line will
be treated as an argument. This allows statements like:

Comment
RUN echo 'we are running some # of cool things'

Here is the set of instructions you can use in a Dockerfile for building
images.

Environment replacement

Note: prior to 1.3, Dockerfile environment variables were handled
similarly, in that they would be replaced as described below. However, there
was no formal definition on as to which instructions handled environment
replacement at the time. After 1.3 this behavior will be preserved and
canonical.

Environment variables (declared with the ENV statement) can also be
used in certain instructions as variables to be interpreted by the
Dockerfile. Escapes are also handled for including variable-like syntax
into a statement literally.

Environment variables are notated in the Dockerfile either with
$variable_name or ${variable_name}. They are treated equivalently and the
brace syntax is typically used to address issues with variable names with no
whitespace, like ${foo}_bar.

The ${variable_name} syntax also supports a few of the standard bash
modifiers as specified below:

		${variable:-word} indicates that if variable is set then the result
will be that value. If variable is not set then word will be the result.

		${variable:+word} indicates that if variable is set then word will be
the result, otherwise the result is the empty string.

In all cases, word can be any string, including additional environment
variables.

Escaping is possible by adding a \ before the variable: \$foo or \${foo},
for example, will translate to $foo and ${foo} literals respectively.

Example (parsed representation is displayed after the #):

FROM busybox
ENV foo /bar
WORKDIR ${foo} # WORKDIR /bar
ADD . $foo # ADD . /bar
COPY \$foo /quux # COPY $foo /quux

Environment variables are supported by the following list of instructions in
the Dockerfile:

		ADD

		COPY

		ENV

		EXPOSE

		USER

		WORKDIR

		VOLUME

as well as:

		ONBUILD (when combined with one of the supported instructions above)

Note:
prior to 1.4, ONBUILD instructions did NOT support environment
variable, even when combined with any of the instructions listed above.

Environment variable substitution will use the same value for each variable
throughout the entire command. In other words, in this example:

ENV abc=hello
ENV abc=bye def=$abc
ENV ghi=$abc

will result in def having a value of hello, not bye. However,
ghi will have a value of bye because it is not part of the same command
that set abc to bye.

.dockerignore file

If a file named .dockerignore exists in the root of PATH, then Docker
interprets it as a newline-separated list of exclusion patterns. Docker excludes
files or directories relative to PATH that match these exclusion patterns. If
there are any .dockerignore files in PATH subdirectories, Docker treats
them as normal files.

Filepaths in .dockerignore are absolute with the current directory as the
root. Wildcards are allowed but the search is not recursive. Globbing (file name
expansion) is done using Go’s
filepath.Match [http://golang.org/pkg/path/filepath#Match] rules.

You can specify exceptions to exclusion rules. To do this, simply prefix a
pattern with an ! (exclamation mark) in the same way you would in a
.gitignore file. Currently there is no support for regular expressions.
Formats like [^temp*] are ignored.

The following is an example .dockerignore file:

 /temp
 //temp*
 temp?
 *.md
 !LICENSE.md

This file causes the following build behavior:

Rule	Behavior
—————-	——
/temp	Exclude all files with names starting withtemp in any subdirectory below the root directory. For example, a file named/somedir/temporary.txt is ignored.
//temp*	Exclude files starting with name temp from any subdirectory that is two levels below the root directory. For example, the file /somedir/subdir/temporary.txt is ignored.
temp?	Exclude the files that match the pattern in the root directory. For example, the files tempa, tempb in the root directory are ignored.
*.md	Exclude all markdown files in the root directory.
!LICENSE.md	Exception to the Markdown files exclusion is this file, LICENSE.md, Include this file in the build.

The placement of ! exception rules influences the matching algorithm; the
last line of the .dockerignore that matches a particular file determines
whether it is included or excluded. In the above example, the LICENSE.md file
matches both the *.md and !LICENSE.md rule. If you reverse the lines in the
example:

 /temp
 //temp*
 temp?
 !LICENSE.md
 *.md

The build would exclude LICENSE.md because the last *.md rule adds all
Markdown files in the root directory back onto the ignore list. The
!LICENSE.md rule has no effect because the subsequent *.md rule overrides
it.

You can even use the .dockerignore file to ignore the Dockerfile and
.dockerignore files. This is useful if you are copying files from the root of
the build context into your new container but do not want to include the
Dockerfile or .dockerignore files (e.g. ADD . /someDir/).

FROM

FROM <image>

Or

FROM <image>:<tag>

Or

FROM <image>@<digest>

The FROM instruction sets the Base Image
for subsequent instructions. As such, a valid Dockerfile must have FROM as
its first instruction. The image can be any valid image – it is especially easy
to start by pulling an image from the Public Repositories.

FROM must be the first non-comment instruction in the Dockerfile.

FROM can appear multiple times within a single Dockerfile in order to create
multiple images. Simply make a note of the last image ID output by the commit
before each new FROM command.

The tag or digest values are optional. If you omit either of them, the builder
assumes a latest by default. The builder returns an error if it cannot match
the tag value.

MAINTAINER

MAINTAINER <name>

The MAINTAINER instruction allows you to set the Author field of the
generated images.

RUN

RUN has 2 forms:

		RUN <command> (the command is run in a shell - /bin/sh -c - shell form)

		RUN ["executable", "param1", "param2"] (exec form)

The RUN instruction will execute any commands in a new layer on top of the
current image and commit the results. The resulting committed image will be
used for the next step in the Dockerfile.

Layering RUN instructions and generating commits conforms to the core
concepts of Docker where commits are cheap and containers can be created from
any point in an image’s history, much like source control.

The exec form makes it possible to avoid shell string munging, and to RUN
commands using a base image that does not contain /bin/sh.

Note:
To use a different shell, other than ‘/bin/sh’, use the exec form
passing in the desired shell. For example,
RUN ["/bin/bash", "-c", "echo hello"]

Note:
The exec form is parsed as a JSON array, which means that
you must use double-quotes (”) around words not single-quotes (‘).

Note:
Unlike the shell form, the exec form does not invoke a command shell.
This means that normal shell processing does not happen. For example,
RUN ["echo", "$HOME"] will not do variable substitution on $HOME.
If you want shell processing then either use the shell form or execute
a shell directly, for example: RUN ["sh", "-c", "echo", "$HOME"].

The cache for RUN instructions isn’t invalidated automatically during
the next build. The cache for an instruction like
RUN apt-get dist-upgrade -y will be reused during the next build. The
cache for RUN instructions can be invalidated by using the --no-cache
flag, for example docker build --no-cache.

See the Dockerfile Best Practices
guide for more information.

The cache for RUN instructions can be invalidated by ADD instructions. See
below for details.

Known issues (RUN)

		Issue 783 [https://github.com/docker/docker/issues/783] is about file
permissions problems that can occur when using the AUFS file system. You
might notice it during an attempt to rm a file, for example.

For systems that have recent aufs version (i.e., dirperm1 mount option can
be set), docker will attempt to fix the issue automatically by mounting
the layers with dirperm1 option. More details on dirperm1 option can be
found at aufs man page [http://aufs.sourceforge.net/aufs3/man.html]

If your system doesn’t have support for dirperm1, the issue describes a workaround.

CMD

The CMD instruction has three forms:

		CMD ["executable","param1","param2"] (exec form, this is the preferred form)

		CMD ["param1","param2"] (as default parameters to ENTRYPOINT)

		CMD command param1 param2 (shell form)

There can only be one CMD instruction in a Dockerfile. If you list more than one CMD
then only the last CMD will take effect.

The main purpose of a CMD is to provide defaults for an executing
container. These defaults can include an executable, or they can omit
the executable, in which case you must specify an ENTRYPOINT
instruction as well.

Note:
If CMD is used to provide default arguments for the ENTRYPOINT
instruction, both the CMD and ENTRYPOINT instructions should be specified
with the JSON array format.

Note:
The exec form is parsed as a JSON array, which means that
you must use double-quotes (”) around words not single-quotes (‘).

Note:
Unlike the shell form, the exec form does not invoke a command shell.
This means that normal shell processing does not happen. For example,
CMD ["echo", "$HOME"] will not do variable substitution on $HOME.
If you want shell processing then either use the shell form or execute
a shell directly, for example: CMD ["sh", "-c", "echo", "$HOME"].

When used in the shell or exec formats, the CMD instruction sets the command
to be executed when running the image.

If you use the shell form of the CMD, then the <command> will execute in
/bin/sh -c:

FROM ubuntu
CMD echo "This is a test." | wc -

If you want to run your <command> without a shell then you must
express the command as a JSON array and give the full path to the executable.
This array form is the preferred format of CMD. Any additional parameters
must be individually expressed as strings in the array:

FROM ubuntu
CMD ["/usr/bin/wc","--help"]

If you would like your container to run the same executable every time, then
you should consider using ENTRYPOINT in combination with CMD. See
ENTRYPOINT.

If the user specifies arguments to docker run then they will override the
default specified in CMD.

Note:
don’t confuse RUN with CMD. RUN actually runs a command and commits
the result; CMD does not execute anything at build time, but specifies
the intended command for the image.

LABEL

LABEL <key>=<value> <key>=<value> <key>=<value> ...

The LABEL instruction adds metadata to an image. A LABEL is a
key-value pair. To include spaces within a LABEL value, use quotes and
backslashes as you would in command-line parsing.

LABEL "com.example.vendor"="ACME Incorporated"

An image can have more than one label. To specify multiple labels, separate each
key-value pair with whitespace.

LABEL com.example.label-with-value="foo"
LABEL version="1.0"
LABEL description="This text illustrates \
that label-values can span multiple lines."

Docker recommends combining labels in a single LABEL instruction where
possible. Each LABEL instruction produces a new layer which can result in an
inefficient image if you use many labels. This example results in four image
layers.

LABEL multi.label1="value1" multi.label2="value2" other="value3"

Labels are additive including LABELs in FROM images. As the system
encounters and then applies a new label, new keys override any previous labels
with identical keys.

To view an image’s labels, use the docker inspect command.

"Labels": {
 "com.example.vendor": "ACME Incorporated"
 "com.example.label-with-value": "foo",
 "version": "1.0",
 "description": "This text illustrates that label-values can span multiple lines.",
 "multi.label1": "value1",
 "multi.label2": "value2",
 "other": "value3"
},

EXPOSE

EXPOSE <port> [<port>...]

The EXPOSE instructions informs Docker that the container will listen on the
specified network ports at runtime. Docker uses this information to interconnect
containers using links (see the Docker User
Guide) and to determine which ports to expose to the
host when using the -P flag.

Note:
EXPOSE doesn’t define which ports can be exposed to the host or make ports
accessible from the host by default. To expose ports to the host, at runtime,
use the -p flag or
the -P flag.

ENV

ENV <key> <value>
ENV <key>=<value> ...

The ENV instruction sets the environment variable <key> to the value
<value>. This value will be in the environment of all “descendent” Dockerfile
commands and can be replaced inline in many as well.

The ENV instruction has two forms. The first form, ENV <key> <value>,
will set a single variable to a value. The entire string after the first
space will be treated as the <value> - including characters such as
spaces and quotes.

The second form, ENV <key>=<value> ..., allows for multiple variables to
be set at one time. Notice that the second form uses the equals sign (=)
in the syntax, while the first form does not. Like command line parsing,
quotes and backslashes can be used to include spaces within values.

For example:

ENV myName="John Doe" myDog=Rex\ The\ Dog \
 myCat=fluffy

and

ENV myName John Doe
ENV myDog Rex The Dog
ENV myCat fluffy

will yield the same net results in the final container, but the first form
does it all in one layer.

The environment variables set using ENV will persist when a container is run
from the resulting image. You can view the values using docker inspect, and
change them using docker run --env <key>=<value>.

Note:
Environment persistence can cause unexpected effects. For example,
setting ENV DEBIAN_FRONTEND noninteractive may confuse apt-get
users on a Debian-based image. To set a value for a single command, use
RUN <key>=<value> <command>.

ADD

ADD has two forms:

		ADD <src>... <dest>

		ADD ["<src>",... "<dest>"] (this form is required for paths containing
whitespace)

The ADD instruction copies new files, directories or remote file URLs from <src>
and adds them to the filesystem of the container at the path <dest>.

Multiple <src> resource may be specified but if they are files or
directories then they must be relative to the source directory that is
being built (the context of the build).

Each <src> may contain wildcards and matching will be done using Go’s
filepath.Match [http://golang.org/pkg/path/filepath#Match] rules.
For most command line uses this should act as expected, for example:

ADD hom* /mydir/ # adds all files starting with "hom"
ADD hom?.txt /mydir/ # ? is replaced with any single character

The <dest> is an absolute path, or a path relative to WORKDIR, into which
the source will be copied inside the destination container.

ADD test aDir/ # adds "test" to `WORKDIR`/aDir/

All new files and directories are created with a UID and GID of 0.

In the case where <src> is a remote file URL, the destination will
have permissions of 600. If the remote file being retrieved has an HTTP
Last-Modified header, the timestamp from that header will be used
to set the mtime on the destination file. However, like any other file
processed during an ADD, mtime will not be included in the determination
of whether or not the file has changed and the cache should be updated.

Note:
If you build by passing a Dockerfile through STDIN (docker build - < somefile), there is no build context, so the Dockerfile
can only contain a URL based ADD instruction. You can also pass a
compressed archive through STDIN: (docker build - < archive.tar.gz),
the Dockerfile at the root of the archive and the rest of the
archive will get used at the context of the build.

Note:
If your URL files are protected using authentication, you
will need to use RUN wget, RUN curl or use another tool from
within the container as the ADD instruction does not support
authentication.

Note:
The first encountered ADD instruction will invalidate the cache for all
following instructions from the Dockerfile if the contents of <src> have
changed. This includes invalidating the cache for RUN instructions.
See the Dockerfile Best Practices
guide for more information.

The copy obeys the following rules:

		The <src> path must be inside the context of the build;
you cannot ADD ../something /something, because the first step of a
docker build is to send the context directory (and subdirectories) to the
docker daemon.

		If <src> is a URL and <dest> does not end with a trailing slash, then a
file is downloaded from the URL and copied to <dest>.

		If <src> is a URL and <dest> does end with a trailing slash, then the
filename is inferred from the URL and the file is downloaded to
<dest>/<filename>. For instance, ADD http://example.com/foobar / would
create the file /foobar. The URL must have a nontrivial path so that an
appropriate filename can be discovered in this case (http://example.com
will not work).

		If <src> is a directory, the entire contents of the directory are copied,
including filesystem metadata.

Note:
The directory itself is not copied, just its contents.

		If <src> is a local tar archive in a recognized compression format
(identity, gzip, bzip2 or xz) then it is unpacked as a directory. Resources
from remote URLs are not decompressed. When a directory is copied or
unpacked, it has the same behavior as tar -x: the result is the union of:
		Whatever existed at the destination path and

		The contents of the source tree, with conflicts resolved in favor
of “2.” on a file-by-file basis.

		If <src> is any other kind of file, it is copied individually along with
its metadata. In this case, if <dest> ends with a trailing slash /, it
will be considered a directory and the contents of <src> will be written
at <dest>/base(<src>).

		If multiple <src> resources are specified, either directly or due to the
use of a wildcard, then <dest> must be a directory, and it must end with
a slash /.

		If <dest> does not end with a trailing slash, it will be considered a
regular file and the contents of <src> will be written at <dest>.

		If <dest> doesn’t exist, it is created along with all missing directories
in its path.

COPY

COPY has two forms:

		COPY <src>... <dest>

		COPY ["<src>",... "<dest>"] (this form is required for paths containing
whitespace)

The COPY instruction copies new files or directories from <src>
and adds them to the filesystem of the container at the path <dest>.

Multiple <src> resource may be specified but they must be relative
to the source directory that is being built (the context of the build).

Each <src> may contain wildcards and matching will be done using Go’s
filepath.Match [http://golang.org/pkg/path/filepath#Match] rules.
For most command line uses this should act as expected, for example:

COPY hom* /mydir/ # adds all files starting with "hom"
COPY hom?.txt /mydir/ # ? is replaced with any single character

The <dest> is an absolute path, or a path relative to WORKDIR, into which
the source will be copied inside the destination container.

COPY test aDir/ # adds "test" to `WORKDIR`/aDir/

All new files and directories are created with a UID and GID of 0.

Note:
If you build using STDIN (docker build - < somefile), there is no
build context, so COPY can’t be used.

The copy obeys the following rules:

		The <src> path must be inside the context of the build;
you cannot COPY ../something /something, because the first step of a
docker build is to send the context directory (and subdirectories) to the
docker daemon.

		If <src> is a directory, the entire contents of the directory are copied,
including filesystem metadata.

Note:
The directory itself is not copied, just its contents.

		If <src> is any other kind of file, it is copied individually along with
its metadata. In this case, if <dest> ends with a trailing slash /, it
will be considered a directory and the contents of <src> will be written
at <dest>/base(<src>).

		If multiple <src> resources are specified, either directly or due to the
use of a wildcard, then <dest> must be a directory, and it must end with
a slash /.

		If <dest> does not end with a trailing slash, it will be considered a
regular file and the contents of <src> will be written at <dest>.

		If <dest> doesn’t exist, it is created along with all missing directories
in its path.

ENTRYPOINT

ENTRYPOINT has two forms:

		ENTRYPOINT ["executable", "param1", "param2"]
(the preferred exec form)

		ENTRYPOINT command param1 param2
(shell form)

An ENTRYPOINT allows you to configure a container that will run as an executable.

For example, the following will start nginx with its default content, listening
on port 80:

docker run -i -t --rm -p 80:80 nginx

Command line arguments to docker run <image> will be appended after all
elements in an exec form ENTRYPOINT, and will override all elements specified
using CMD.
This allows arguments to be passed to the entry point, i.e., docker run <image> -d
will pass the -d argument to the entry point.
You can override the ENTRYPOINT instruction using the docker run --entrypoint
flag.

The shell form prevents any CMD or run command line arguments from being
used, but has the disadvantage that your ENTRYPOINT will be started as a
subcommand of /bin/sh -c, which does not pass signals.
This means that the executable will not be the container’s PID 1 - and
will not receive Unix signals - so your executable will not receive a
SIGTERM from docker stop <container>.

Only the last ENTRYPOINT instruction in the Dockerfile will have an effect.

Exec form ENTRYPOINT example

You can use the exec form of ENTRYPOINT to set fairly stable default commands
and arguments and then use either form of CMD to set additional defaults that
are more likely to be changed.

FROM ubuntu
ENTRYPOINT ["top", "-b"]
CMD ["-c"]

When you run the container, you can see that top is the only process:

$ docker run -it --rm --name test top -H
top - 08:25:00 up 7:27, 0 users, load average: 0.00, 0.01, 0.05
Threads: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.1 us, 0.1 sy, 0.0 ni, 99.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 2056668 total, 1616832 used, 439836 free, 99352 buffers
KiB Swap: 1441840 total, 0 used, 1441840 free. 1324440 cached Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1 root 20 0 19744 2336 2080 R 0.0 0.1 0:00.04 top

To examine the result further, you can use docker exec:

$ docker exec -it test ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 2.6 0.1 19752 2352 ? Ss+ 08:24 0:00 top -b -H
root 7 0.0 0.1 15572 2164 ? R+ 08:25 0:00 ps aux

And you can gracefully request top to shut down using docker stop test.

The following Dockerfile shows using the ENTRYPOINT to run Apache in the
foreground (i.e., as PID 1):

FROM debian:stable
RUN apt-get update && apt-get install -y --force-yes apache2
EXPOSE 80 443
VOLUME ["/var/www", "/var/log/apache2", "/etc/apache2"]
ENTRYPOINT ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

If you need to write a starter script for a single executable, you can ensure that
the final executable receives the Unix signals by using exec and gosu
commands:

#!/bin/bash
set -e

if ["$1" = 'postgres']; then
 chown -R postgres "$PGDATA"

 if [-z "$(ls -A "$PGDATA")"]; then
 gosu postgres initdb
 fi

 exec gosu postgres "$@"
fi

exec "$@"

Lastly, if you need to do some extra cleanup (or communicate with other containers)
on shutdown, or are co-ordinating more than one executable, you may need to ensure
that the ENTRYPOINT script receives the Unix signals, passes them on, and then
does some more work:

#!/bin/sh
Note: I've written this using sh so it works in the busybox container too

USE the trap if you need to also do manual cleanup after the service is stopped,
or need to start multiple services in the one container
trap "echo TRAPed signal" HUP INT QUIT KILL TERM

start service in background here
/usr/sbin/apachectl start

echo "[hit enter key to exit] or run 'docker stop <container>'"
read

stop service and clean up here
echo "stopping apache"
/usr/sbin/apachectl stop

echo "exited $0"

If you run this image with docker run -it --rm -p 80:80 --name test apache,
you can then examine the container’s processes with docker exec, or docker top,
and then ask the script to stop Apache:

$ docker exec -it test ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.1 0.0 4448 692 ? Ss+ 00:42 0:00 /bin/sh /run.sh 123 cmd cmd2
root 19 0.0 0.2 71304 4440 ? Ss 00:42 0:00 /usr/sbin/apache2 -k start
www-data 20 0.2 0.2 360468 6004 ? Sl 00:42 0:00 /usr/sbin/apache2 -k start
www-data 21 0.2 0.2 360468 6000 ? Sl 00:42 0:00 /usr/sbin/apache2 -k start
root 81 0.0 0.1 15572 2140 ? R+ 00:44 0:00 ps aux
$ docker top test
PID USER COMMAND
10035 root {run.sh} /bin/sh /run.sh 123 cmd cmd2
10054 root /usr/sbin/apache2 -k start
10055 33 /usr/sbin/apache2 -k start
10056 33 /usr/sbin/apache2 -k start
$ /usr/bin/time docker stop test
test
real 0m 0.27s
user 0m 0.03s
sys 0m 0.03s

Note: you can over ride the ENTRYPOINT setting using --entrypoint,
but this can only set the binary to exec (no sh -c will be used).

Note:
The exec form is parsed as a JSON array, which means that
you must use double-quotes (”) around words not single-quotes (‘).

Note:
Unlike the shell form, the exec form does not invoke a command shell.
This means that normal shell processing does not happen. For example,
ENTRYPOINT ["echo", "$HOME"] will not do variable substitution on $HOME.
If you want shell processing then either use the shell form or execute
a shell directly, for example: ENTRYPOINT ["sh", "-c", "echo", "$HOME"].
Variables that are defined in the Dockerfileusing ENV, will be substituted by
the Dockerfile parser.

Shell form ENTRYPOINT example

You can specify a plain string for the ENTRYPOINT and it will execute in /bin/sh -c.
This form will use shell processing to substitute shell environment variables,
and will ignore any CMD or docker run command line arguments.
To ensure that docker stop will signal any long running ENTRYPOINT executable
correctly, you need to remember to start it with exec:

FROM ubuntu
ENTRYPOINT exec top -b

When you run this image, you’ll see the single PID 1 process:

$ docker run -it --rm --name test top
Mem: 1704520K used, 352148K free, 0K shrd, 0K buff, 140368121167873K cached
CPU: 5% usr 0% sys 0% nic 94% idle 0% io 0% irq 0% sirq
Load average: 0.08 0.03 0.05 2/98 6
 PID PPID USER STAT VSZ %VSZ %CPU COMMAND
 1 0 root R 3164 0% 0% top -b

Which will exit cleanly on docker stop:

$ /usr/bin/time docker stop test
test
real 0m 0.20s
user 0m 0.02s
sys 0m 0.04s

If you forget to add exec to the beginning of your ENTRYPOINT:

FROM ubuntu
ENTRYPOINT top -b
CMD --ignored-param1

You can then run it (giving it a name for the next step):

$ docker run -it --name test top --ignored-param2
Mem: 1704184K used, 352484K free, 0K shrd, 0K buff, 140621524238337K cached
CPU: 9% usr 2% sys 0% nic 88% idle 0% io 0% irq 0% sirq
Load average: 0.01 0.02 0.05 2/101 7
 PID PPID USER STAT VSZ %VSZ %CPU COMMAND
 1 0 root S 3168 0% 0% /bin/sh -c top -b cmd cmd2
 7 1 root R 3164 0% 0% top -b

You can see from the output of top that the specified ENTRYPOINT is not PID 1.

If you then run docker stop test, the container will not exit cleanly - the
stop command will be forced to send a SIGKILL after the timeout:

$ docker exec -it test ps aux
PID USER COMMAND
 1 root /bin/sh -c top -b cmd cmd2
 7 root top -b
 8 root ps aux
$ /usr/bin/time docker stop test
test
real 0m 10.19s
user 0m 0.04s
sys 0m 0.03s

VOLUME

VOLUME ["/data"]

The VOLUME instruction creates a mount point with the specified name
and marks it as holding externally mounted volumes from native host or other
containers. The value can be a JSON array, VOLUME ["/var/log/"], or a plain
string with multiple arguments, such as VOLUME /var/log or VOLUME /var/log /var/db. For more information/examples and mounting instructions via the
Docker client, refer to
Share Directories via Volumes
documentation.

The docker run command initializes the newly created volume with any data
that exists at the specified location within the base image. For example,
consider the following Dockerfile snippet:

FROM ubuntu
RUN mkdir /myvol
RUN echo "hello world" > /myvol/greeting
VOLUME /myvol

This Dockerfile results in an image that causes docker run, to
create a new mount point at /myvol and copy the greeting file
into the newly created volume.

Note:
The list is parsed as a JSON array, which means that
you must use double-quotes (”) around words not single-quotes (‘).

USER

USER daemon

The USER instruction sets the user name or UID to use when running the image
and for any RUN, CMD and ENTRYPOINT instructions that follow it in the
Dockerfile.

WORKDIR

WORKDIR /path/to/workdir

The WORKDIR instruction sets the working directory for any RUN, CMD,
ENTRYPOINT, COPY and ADD instructions that follow it in the Dockerfile.

It can be used multiple times in the one Dockerfile. If a relative path
is provided, it will be relative to the path of the previous WORKDIR
instruction. For example:

WORKDIR /a
WORKDIR b
WORKDIR c
RUN pwd

The output of the final pwd command in this Dockerfile would be
/a/b/c.

The WORKDIR instruction can resolve environment variables previously set using
ENV. You can only use environment variables explicitly set in the Dockerfile.
For example:

ENV DIRPATH /path
WORKDIR $DIRPATH/$DIRNAME

The output of the final pwd command in this Dockerfile would be
/path/$DIRNAME

ONBUILD

ONBUILD [INSTRUCTION]

The ONBUILD instruction adds to the image a trigger instruction to
be executed at a later time, when the image is used as the base for
another build. The trigger will be executed in the context of the
downstream build, as if it had been inserted immediately after the
FROM instruction in the downstream Dockerfile.

Any build instruction can be registered as a trigger.

This is useful if you are building an image which will be used as a base
to build other images, for example an application build environment or a
daemon which may be customized with user-specific configuration.

For example, if your image is a reusable Python application builder, it
will require application source code to be added in a particular
directory, and it might require a build script to be called after
that. You can’t just call ADD and RUN now, because you don’t yet
have access to the application source code, and it will be different for
each application build. You could simply provide application developers
with a boilerplate Dockerfile to copy-paste into their application, but
that is inefficient, error-prone and difficult to update because it
mixes with application-specific code.

The solution is to use ONBUILD to register advance instructions to
run later, during the next build stage.

Here’s how it works:

		When it encounters an ONBUILD instruction, the builder adds a
trigger to the metadata of the image being built. The instruction
does not otherwise affect the current build.

		At the end of the build, a list of all triggers is stored in the
image manifest, under the key OnBuild. They can be inspected with
the docker inspect command.

		Later the image may be used as a base for a new build, using the
FROM instruction. As part of processing the FROM instruction,
the downstream builder looks for ONBUILD triggers, and executes
them in the same order they were registered. If any of the triggers
fail, the FROM instruction is aborted which in turn causes the
build to fail. If all triggers succeed, the FROM instruction
completes and the build continues as usual.

		Triggers are cleared from the final image after being executed. In
other words they are not inherited by “grand-children” builds.

For example you might add something like this:

[...]
ONBUILD ADD . /app/src
ONBUILD RUN /usr/local/bin/python-build --dir /app/src
[...]

Warning: Chaining ONBUILD instructions using ONBUILD ONBUILD isn’t allowed.

Warning: The ONBUILD instruction may not trigger FROM or MAINTAINER instructions.

Dockerfile examples

Nginx
#
VERSION 0.0.1

FROM ubuntu
MAINTAINER Victor Vieux <victor@docker.com>

LABEL Description="This image is used to start the foobar executable" Vendor="ACME Products" Version="1.0"
RUN apt-get update && apt-get install -y inotify-tools nginx apache2 openssh-server

Firefox over VNC
#
VERSION 0.3

FROM ubuntu

Install vnc, xvfb in order to create a 'fake' display and firefox
RUN apt-get update && apt-get install -y x11vnc xvfb firefox
RUN mkdir ~/.vnc
Setup a password
RUN x11vnc -storepasswd 1234 ~/.vnc/passwd
Autostart firefox (might not be the best way, but it does the trick)
RUN bash -c 'echo "firefox" >> /.bashrc'

EXPOSE 5900
CMD ["x11vnc", "-forever", "-usepw", "-create"]

Multiple images example
#
VERSION 0.1

FROM ubuntu
RUN echo foo > bar
Will output something like ===> 907ad6c2736f

FROM ubuntu
RUN echo moo > oink
Will output something like ===> 695d7793cbe4

You᾿ll now have two images, 907ad6c2736f with /bar, and 695d7793cbe4 with
/oink.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/top.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

top

Usage: docker top CONTAINER [ps OPTIONS]

Display the running processes of a container

 © Copyright .
 Created using Sphinx 1.3.1.

README.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Documentation

The source for Docker documentation is in this directory. Our
documentation uses extended Markdown, as implemented by
MkDocs [http://mkdocs.org]. The current release of the Docker documentation
resides on https://docs.docker.com.

Understanding the documentation branches and processes

Docker has two primary branches for documentation:

Branch	Description	URL (published via commit-hook)
———-	——————————–	——————————————————————————
docs	Official release documentation	https://docs.docker.com
master	Merged but unreleased development work	http://docs.master.dockerproject.org

Additions and updates to upcoming releases are made in a feature branch off of
the master branch. The Docker maintainers also support a docs branch that
contains the last release of documentation.

After a release, documentation updates are continually merged into master as
they occur. This work includes new documentation for forthcoming features, bug
fixes, and other updates. Docker’s CI system automatically builds and updates
the master documentation after each merge and posts it to
http://docs.master.dockerproject.org.

Periodically, the Docker maintainers update docs.docker.com between official
releases of Docker. They do this by cherry-picking commits from master,
merging them into docs, and then publishing the result.

In the rare case where a change is not forward-compatible, changes may be made
on other branches by special arrangement with the Docker maintainers.

Quickstart for documentation contributors

If you are a new or beginner contributor, we encourage you to read through the
our detailed contributors
guide [https://docs.docker.com/project/who-written-for/]. The guide explains in
detail, with examples, how to contribute. If you are an experienced contributor
this quickstart should be enough to get you started.

The following is the essential workflow for contributing to the documentation:

		Fork the docker/docker repository.

		Clone the repository to your local machine.

		Select an issue from docker/docker to work on or submit a proposal of your
own.

		Create a feature branch from master in which to work.

By basing from master your work is automatically included in the next
release. It also allows docs maintainers to easily cherry-pick your changes
into the docs release branch.

		Modify existing or add new .md files to the docs directory.

If you add a new document (.md) file, you must also add it to the
appropriate section of the docs/mkdocs.yml file in this repository.

		As you work, build the documentation site locally to see your changes.

The docker/docker repository contains a Dockerfile and a Makefile.
Together, these create a development environment in which you can build and
run a container running the Docker documentation website. To build the
documentation site, enter make docs at the root of your docker/docker
fork:

$ make docs
.... (lots of output)
docker run --rm -it -e AWS_S3_BUCKET -p 8000:8000 "docker-docs:master" mkdocs serve
Running at: http://0.0.0.0:8000/
Live reload enabled.
Hold ctrl+c to quit.

The build creates an image containing all the required tools, adds the local
`docs/` directory and generates the HTML files. Then, it runs a Docker
container with this image.

The container exposes port 8000 on the localhost so that you can connect and
see your changes. If you are running Boot2Docker, use the `boot2docker ip`
to get the address of your server.

		Check your writing for style and mechanical errors.

Use our documentation style
guide [https://docs.docker.com/project/doc-style/] to check style. There are
several good grammar and spelling online
checkers [http://www.hemingwayapp.com/] that can check your writing
mechanics.

		Squash your commits on your branch.

		Make a pull request from your fork back to Docker’s master branch.

		Work with the reviewers until your change is approved and merged.

Debugging and testing

If you have any issues you need to debug, you can use make docs-shell and then
run mkdocs serve. You can use make docs-test to generate a report of missing
links that are referenced in the documentation

—

there should be none.

Style guide

If you have questions about how to write for Docker’s documentation, please see
the style guide. The style guide provides
guidance about grammar, syntax, formatting, styling, language, or tone. If
something isn’t clear in the guide, please submit an issue to let us know or
submit a pull request to help us improve it.

Publishing documentation (for Docker maintainers)

To publish Docker’s documentation you need to have Docker up and running on your
machine. You’ll also need a docs/awsconfig file containing the settings you
need to access the AWS bucket you’ll be deploying to.

The process for publishing is to build first to an AWS bucket, verify the build,
and then publish the final release.

		Have Docker installed and running on your machine.

		Ask the core maintainers for the awsconfig file.

		Copy the awsconfig file to the docs/ directory.

The awsconfig file contains the profiles of the S3 buckets for our
documentation sites. (If needed, the release script creates an S3 bucket and
pushes the files to it.) Each profile has this format:

 [profile dowideit-docs]
 aws_access_key_id = IHOIUAHSIDH234rwf....
 aws_secret_access_key = OIUYSADJHLKUHQWIUHE......
 region = ap-southeast-2

The profile name must be the same as the name of the bucket you are
deploying to.

		Call the make from the docker directory.

 $ make AWS_S3_BUCKET=dowideit-docs docs-release

This publishes only to the http://bucket-url/v1.2/ version of the
documentation.

		If you’re publishing the current release’s documentation, you need to also
update the root docs pages by running

$ make AWS_S3_BUCKET=dowideit-docs BUILD_ROOT=yes docs-release

Errors publishing using Boot2Docker

Sometimes, in a Boot2Docker environment, the publishing procedure returns this
error:

Post http:///var/run/docker.sock/build?rm=1&t=docker-docs%3Apost-1.2.0-docs_update-2:
dial unix /var/run/docker.sock: no such file or directory.

If this happens, set the Docker host. Run the following command to set the
variables in your shell:

 $ eval "$(boot2docker shellinit)"

Cherry-picking documentation changes to update an existing release.

Whenever the core team makes a release, they publish the documentation based on
the release branch. At that time, the release branch is copied into the
docs branch. The documentation team makes updates between Docker releases by
cherry-picking changes from master into any of the documentation branches.
Typically, we cherry-pick into the docs branch.

For example, to update the current release’s docs, do the following:

		Go to your docker/docker fork and get the latest from master.

 $ git fetch upstream

		Checkout a new branch based on upstream/docs.

You should give your new branch a descriptive name.

 $ git checkout -b post-1.2.0-docs-update-1 upstream/docs

		In a browser window, open [https://github.com/docker/docker/commits/master].

		Locate the merges you want to publish.

You should only cherry-pick individual commits; do not cherry-pick merge
commits. To minimize merge conflicts, start with the oldest commit and work
your way forward in time.

		Copy the commit SHA from GitHub.

		Cherry-pick the commit.

 $ git cherry-pick -x fe845c4

		Repeat until you have cherry-picked everything you want to merge.

		Push your changes to your fork.

 $ git push origin post-1.2.0-docs-update-1

		Make a pull request to merge into the docs branch.

Do NOT merge into master.

		Have maintainers review your pull request.

		Once the PR has the needed “LGTMs”, merge it on GitHub.

		Return to your local fork and make sure you are still on the docs branch.

$ git checkout docs

		Fetch your merged pull request from docs.

$ git fetch upstream/docs

		Ensure your branch is clean and set to the latest.

$ git reset --hard upstream/docs

		Copy the awsconfig file into the docs directory.

		Make the beta documentation

$ make AWS_S3_BUCKET=beta-docs.docker.io BUILD_ROOT=yes docs-release

		Open the beta
website [http://beta-docs.docker.io.s3-website-us-west-2.amazonaws.com/] site
and make sure what you published is correct.

		When you’re happy with your content, publish the docs to our live site:

$ make AWS_S3_BUCKET=docs.docker.com BUILD_ROOT=yes

DISTRIBUTION_ID=C2K6......FL2F docs-release

		Test the uncached version of the live docs at [http://docs.docker.com.s3-website-us-east-1.amazonaws.com/]

Caching and the docs

New docs do not appear live on the site until the cache (a complex, distributed
CDN system) is flushed. The make docs-release command flushes the cache if
the DISTRIBUTION_ID is set to the Cloudfront distribution ID. The cache flush
can take at least 15 minutes to run and you can check its progress with the CDN
Cloudfront Purge Tool Chrome app.

Removing files from the docs.docker.com site

Sometimes it becomes necessary to remove files from the historical published documentation.
The most reliable way to do this is to do it directly using aws s3 commands running in a
docs container:

Start the docs container like make docs-shell, but bind mount in your awsconfig:

docker run --rm -it -v $(CURDIR)/docs/awsconfig:/docs/awsconfig docker-docs:master bash

and then the following example shows deleting 2 documents from s3, and then requesting the
CloudFlare cache to invalidate them:

export BUCKET BUCKET=docs.docker.com
export AWS_CONFIG_FILE=$(pwd)/awsconfig
aws s3 --profile $BUCKET ls s3://$BUCKET
aws s3 --profile $BUCKET rm s3://$BUCKET/v1.0/reference/api/docker_io_oauth_api/index.html
aws s3 --profile $BUCKET rm s3://$BUCKET/v1.1/reference/api/docker_io_oauth_api/index.html

aws configure set preview.cloudfront true
export DISTRIBUTION_ID=YUTIYUTIUTIUYTIUT
aws cloudfront create-invalidation --profile docs.docker.com --distribution-id $DISTRIBUTION_ID --invalidation-batch '{"Paths":{"Quantity":1, "Items":["/v1.0/reference/api/docker_io_oauth_api/"]},"CallerReference":"6Mar2015sventest1"}'
aws cloudfront create-invalidation --profile docs.docker.com --distribution-id $DISTRIBUTION_ID --invalidation-batch '{"Paths":{"Quantity":1, "Items":["/v1.1/reference/api/docker_io_oauth_api/"]},"CallerReference":"6Mar2015sventest1"}'

Generate the man pages

For information on generating man pages (short for manual page), see the man
page directory [https://github.com/docker/docker/tree/master/docker] in this
project.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/push.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

push

Usage: docker push NAME[:TAG]

Push an image or a repository to the registry

--disable-content-trust=true Skip image signing

Use docker push to share your images to the Docker Hub [https://hub.docker.com]
registry or to a self-hosted one.

 © Copyright .
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/events.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

events

Usage: docker events [OPTIONS]

Get real time events from the server

 -f, --filter=[] Filter output based on conditions provided
 --since="" Show all events created since timestamp
 --until="" Stream events until this timestamp

Docker containers will report the following events:

create, destroy, die, export, kill, oom, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

The --since and --until parameters can be Unix timestamps, RFC3339
dates or Go duration strings (e.g. 10m, 1h30m) computed relative to
client machine’s time. If you do not provide the –since option, the command
returns only new and/or live events.

Filtering

The filtering flag (-f or --filter) format is of “key=value”. If you would
like to use multiple filters, pass multiple flags (e.g.,
--filter "foo=bar" --filter "bif=baz")

Using the same filter multiple times will be handled as a OR; for example
--filter container=588a23dac085 --filter container=a8f7720b8c22 will display
events for container 588a23dac085 OR container a8f7720b8c22

Using multiple filters will be handled as a AND; for example
--filter container=588a23dac085 --filter event=start will display events for
container container 588a23dac085 AND the event type is start

The currently supported filters are:

		container

		event

		image

Examples

You’ll need two shells for this example.

Shell 1: Listening for events:

$ docker events

Shell 2: Start and Stop containers:

$ docker start 4386fb97867d
$ docker stop 4386fb97867d
$ docker stop 7805c1d35632

Shell 1: (Again .. now showing events):

2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) start
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) stop

Show events in the past from a specified time:

$ docker events --since 1378216169
2014-03-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-03-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) stop

$ docker events --since '2013-09-03'
2014-09-03T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) start
2014-09-03T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-09-03T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) stop

$ docker events --since '2013-09-03T15:49:29'
2014-09-03T15:49:29.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-09-03T15:49:29.999999999Z07:00 7805c1d35632: (from redis:2.8) stop

This example outputs all events that were generated in the last 3 minutes,
relative to the current time on the client machine:

$ docker events --since '3m'
2015-05-12T11:51:30.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2015-05-12T15:52:12.999999999Z07:00 4 4386fb97867d: (from ubuntu-1:14.04) stop
2015-05-12T15:53:45.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2015-05-12T15:54:03.999999999Z07:00 7805c1d35632: (from redis:2.8) stop

Filter events:

$ docker events --filter 'event=stop'
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-09-03T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) stop

$ docker events --filter 'image=ubuntu-1:14.04'
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) start
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop

$ docker events --filter 'container=7805c1d35632'
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-09-03T15:49:29.999999999Z07:00 7805c1d35632: (from redis:2.8) stop

$ docker events --filter 'container=7805c1d35632' --filter 'container=4386fb97867d'
2014-09-03T15:49:29.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-09-03T15:49:29.999999999Z07:00 7805c1d35632: (from redis:2.8) stop

$ docker events --filter 'container=7805c1d35632' --filter 'event=stop'
2014-09-03T15:49:29.999999999Z07:00 7805c1d35632: (from redis:2.8) stop

$ docker events --filter 'container=container_1' --filter 'container=container_2'
2014-09-03T15:49:29.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) die
2014-05-10T17:42:14.999999999Z07:00 4386fb97867d: (from ubuntu-1:14.04) stop
2014-05-10T17:42:14.999999999Z07:00 7805c1d35632: (from redis:2.8) die
2014-09-03T15:49:29.999999999Z07:00 7805c1d35632: (from redis:2.8) stop

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/search.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

search

Usage: docker search [OPTIONS] TERM

Search the Docker Hub for images

 --automated=false Only show automated builds
 --no-trunc=false Don't truncate output
 -s, --stars=0 Only displays with at least x stars

Search Docker Hub [https://hub.docker.com] for images

See Find Public Images on Docker Hub for
more details on finding shared images from the command line.

Note:
Search queries will only return up to 25 results

 © Copyright .
 Created using Sphinx 1.3.1.

installation/oracle.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Oracle Linux 6 and 7

You do not require an Oracle Linux Support subscription to install Docker on
Oracle Linux.

For Oracle Linux customers with an active support subscription:
Docker is available in either the ol6_x86_64_addons or ol7_x86_64_addons
channel for Oracle Linux 6 and Oracle Linux 7 on the Unbreakable Linux Network
(ULN) [https://linux.oracle.com].

For Oracle Linux users without an active support subscription:
Docker is available in the appropriate ol6_addons or ol7_addons repository
on Oracle Public Yum [http://public-yum.oracle.com].

Docker requires the use of the Unbreakable Enterprise Kernel Release 3 (3.8.13)
or higher on Oracle Linux. This kernel supports the Docker btrfs storage engine
on both Oracle Linux 6 and 7.

Due to current Docker limitations, Docker is only able to run only on the x86_64
architecture.

To enable the addons channel via the Unbreakable Linux Network:

		Enable either the ol6_x86_64_addons or ol7_x86_64_addons channel
via the ULN web interface.
Consult the Unbreakable Linux Network User’s
Guide [http://docs.oracle.com/cd/E52668_01/E39381/html/index.html] for
documentation on subscribing to channels.

To enable the addons repository via Oracle Public Yum:

The latest release of Oracle Linux 6 and 7 are automatically configured to use
the Oracle Public Yum repositories during installation. However, the addons
repository is not enabled by default.

To enable the addons repository:

		Edit either /etc/yum.repos.d/public-yum-ol6.repo or
/etc/yum.repos.d/public-yum-ol7.repo
and set enabled=1 in the [ol6_addons] or the [ol7_addons] stanza.

Installation

		Ensure the appropriate addons channel or repository has been enabled.

		Use yum to install the Docker package:

 $ sudo yum install docker

Starting Docker

		Now that it’s installed, start the Docker daemon:

		On Oracle Linux 6:

 $ sudo service docker start

		On Oracle Linux 7:

 $ sudo systemctl start docker.service

		If you want the Docker daemon to start automatically at boot:

		On Oracle Linux 6:

 $ sudo chkconfig docker on

		On Oracle Linux 7:

 $ sudo systemctl enable docker.service

Done!

Custom daemon options

If you need to add an HTTP Proxy, set a different directory or partition for the
Docker runtime files, or make other customizations, read our systemd article to
learn how to customize your systemd Docker daemon options.

Using the btrfs storage engine

Docker on Oracle Linux 6 and 7 supports the use of the btrfs storage engine.
Before enabling btrfs support, ensure that /var/lib/docker is stored on a
btrfs-based filesystem. Review Chapter
5 [http://docs.oracle.com/cd/E37670_01/E37355/html/ol_btrfs.html] of the Oracle
Linux Administrator’s Solution
Guide [http://docs.oracle.com/cd/E37670_01/E37355/html/index.html] for details
on how to create and mount btrfs filesystems.

To enable btrfs support on Oracle Linux:

		Ensure that /var/lib/docker is on a btrfs filesystem.

		Edit /etc/sysconfig/docker and add -s btrfs to the OTHER_ARGS field.

		Restart the Docker daemon:

You can now continue with the Docker User Guide.

Uninstallation

To uninstall the Docker package:

$ sudo yum -y remove docker

The above command will not remove images, containers, volumes, or user created
configuration files on your host. If you wish to delete all images, containers,
and volumes run the following command:

$ rm -rf /var/lib/docker

You must delete the user created configuration files manually.

Known issues

Docker unmounts btrfs filesystem on shutdown

If you’re running Docker using the btrfs storage engine and you stop the Docker
service, it will unmount the btrfs filesystem during the shutdown process. You
should ensure the filesystem is mounted properly prior to restarting the Docker
service.

On Oracle Linux 7, you can use a systemd.mount definition and modify the
Docker systemd.service to depend on the btrfs mount defined in systemd.

SElinux support on Oracle Linux 7

SElinux must be set to Permissive or Disabled in /etc/sysconfig/selinux to
use the btrfs storage engine on Oracle Linux 7.

Further issues?

If you have a current Basic or Premier Support Subscription for Oracle Linux,
you can report any issues you have with the installation of Docker via a Service
Request at My Oracle Support [http://support.oracle.com].

If you do not have an Oracle Linux Support Subscription, you can use the Oracle
Linux
Forum [https://community.oracle.com/community/server_%26_storage_systems/linux/oracle_linux] for community-based support.

 © Copyright .
 Created using Sphinx 1.3.1.

terms/filesystem.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

File system

Introduction

[image:]

In order for a Linux system to run, it typically needs two file
systems [http://en.wikipedia.org/wiki/Filesystem]:

		boot file system (bootfs)

		root file system (rootfs)

The boot file system contains the bootloader and the kernel. The
user never makes any changes to the boot file system. In fact, soon
after the boot process is complete, the entire kernel is in memory, and
the boot file system is unmounted to free up the RAM associated with the
initrd disk image.

The root file system includes the typical directory structure we
associate with Unix-like operating systems:
/dev, /proc, /bin, /etc, /lib, /usr, and /tmp plus all the configuration
files, binaries and libraries required to run user applications (like bash,
ls, and so forth).

While there can be important kernel differences between different Linux
distributions, the contents and organization of the root file system are
usually what make your software packages dependent on one distribution
versus another. Docker can help solve this problem by running multiple
distributions at the same time.

[image:]

 © Copyright .
 Created using Sphinx 1.3.1.

installation/windows.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Windows

Note:
Docker has been tested on Windows 7 and 8.1; it may also run on older versions.
Your processor needs to support hardware virtualization.

The Docker Engine uses Linux-specific kernel features, so to run it on Windows
we need to use a lightweight virtual machine (VM). You use the Windows Docker
Client to control the virtualized Docker Engine to build, run, and manage
Docker containers.

To make this process easier, we’ve designed a helper application called
Boot2Docker [https://github.com/boot2docker/boot2docker] which creates a Linux virtual
machine on Windows to run Docker on a Linux operating system.

Although you will be using Windows Docker client, the docker engine hosting the
containers will still be running on Linux. Until the Docker engine for Windows
is developed, you can launch only Linux containers from your Windows machine.

[image: Windows Architecture Diagram]

Demonstration

Installation

		Download the latest release of the
Docker for Windows Installer [https://github.com/boot2docker/windows-installer/releases/latest].

		Run the installer, which will install Docker Client for Windows, VirtualBox,
Git for Windows (MSYS-git), the boot2docker Linux ISO, and the Boot2Docker
management tool.
[image:]

		Run the Boot2Docker Start shortcut from your Desktop or “Program Files →
Boot2Docker for Windows”.
The Start script will ask you to enter an ssh key passphrase - the simplest
(but least secure) is to just hit [Enter].

		The Boot2Docker Start will start a unix shell already configured to manage
Docker running inside the virtual machine. Run docker version to see
if it is working correctly:

[image:]

Running Docker

Note: if you are using a remote Docker daemon, such as Boot2Docker,
then do not type the sudo before the docker commands shown in the
documentation’s examples.

Boot2Docker Start will automatically start a shell with environment variables
correctly set so you can start using Docker right away:

Let’s try the hello-world example image. Run

$ docker run hello-world

This should download the very small hello-world image and print a
Hello from Docker. message.

Using Docker from Windows Command Line Prompt (cmd.exe)

Launch a Windows Command Line Prompt (cmd.exe).

Boot2Docker command requires ssh.exe to be in the PATH, therefore we need to
include bin folder of the Git installation (which has ssh.exe) to the %PATH%
environment variable by running:

set PATH=%PATH%;"c:\Program Files (x86)\Git\bin"

and then we can run the boot2docker start command to start the Boot2Docker VM.
(Run boot2docker init command if you get an error saying machine does not
exist.) Then copy the instructions for cmd.exe to set the environment variables
to your console window and you are ready to run docker commands such as
docker ps:

[image:]

Using Docker from PowerShell

Launch a PowerShell window, then add ssh.exe to your PATH:

$Env:Path = "${Env:Path};c:\Program Files (x86)\Git\bin"

and after running the boot2docker start command it will print PowerShell
commands to set the environment variables to connect to the Docker daemon
running inside the VM. Run these commands and you are ready to run docker
commands such as docker ps:

[image:]

NOTE: You can alternatively run boot2docker shellinit | Invoke-Expression
command to set the environment variables instead of copying and pasting on
PowerShell.

Further Details

The Boot2Docker management tool provides several commands:

$ boot2docker
Usage: boot2docker.exe [<options>] {help|init|up|ssh|save|down|poweroff|reset|restart|config|status|info|ip|shellinit|delete|download|upgrade|version} [<args>]

Upgrading

		Download the latest release of the Docker for Windows Installer [https://github.com/boot2docker/windows-installer/releases/latest]

		Run the installer, which will update the Boot2Docker management tool.

		To upgrade your existing virtual machine, open a terminal and run:

 boot2docker stop
 boot2docker download
 boot2docker start

Container port redirection

If you are curious, the username for the boot2docker default user is docker
and the password is tcuser.

The latest version of boot2docker sets up a host only network adaptor which
provides access to the container’s ports.

If you run a container with an exposed port:

docker run --rm -i -t -p 80:80 nginx

Then you should be able to access that nginx server using the IP address reported
to you using:

boot2docker ip

Typically, it is 192.168.59.103, but it could get changed by VirtualBox’s DHCP
implementation.

For further information or to report issues, please see the Boot2Docker site [http://boot2docker.io]

Login with PUTTY instead of using the CMD

Boot2Docker generates and uses the public/private key pair in your %USERPROFILE%\.ssh
directory so to log in you need to use the private key from this same directory.

The private key needs to be converted into the format PuTTY uses.

You can do this with
puttygen [http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html]:

		Open puttygen.exe and load (“File”->”Load” menu) the private key from
%USERPROFILE%\.ssh\id_boot2docker

		then click: “Save Private Key”.

		Then use the saved file to login with PuTTY using docker@127.0.0.1:2022.

Uninstallation

You can uninstall Boot2Docker using Window’s standard process for removing programs.
This process does not remove the docker-install.exe file. You must delete that file
yourself.

References

If you have Docker hosts running and if you don’t wish to do a
Boot2Docker installation, you can install the docker.exe using
unofficial Windows package manager Chocolately. For information
on how to do this, see Docker package on Chocolatey [http://chocolatey.org/packages/docker].

 © Copyright .
 Created using Sphinx 1.3.1.

terms/repository.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Repository

Introduction

A repository is a set of images either on your local Docker server, or
shared, by pushing it to a Registry
server.

Images can be associated with a repository (or multiple) by giving them
an image name using one of three different commands:

		At build time (e.g., docker build -t IMAGENAME),

		When committing a container (e.g.,
docker commit CONTAINERID IMAGENAME) or

		When tagging an image id with an image name (e.g.,
docker tag IMAGEID IMAGENAME).

A Fully Qualified Image Name (FQIN) can be made up of 3 parts:

[registry_hostname[:port]/][user_name/](repository_name:version_tag)

username and registry_hostname default to an empty string. When
registry_hostname is an empty string, then docker push will push to
index.docker.io:80.

If you create a new repository which you want to share, you will need to
set at least the user_name, as the default blank user_name prefix is
reserved for Official Repositories.

For more information see Working with
Repositories

 © Copyright .
 Created using Sphinx 1.3.1.

installation/ubuntulinux.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Ubuntu

Docker is supported on these Ubuntu operating systems:

		Ubuntu Vivid 15.04

		Ubuntu Trusty 14.04 (LTS)

		Ubuntu Precise 12.04 (LTS)

This page instructs you to install using Docker-managed release packages and
installation mechanisms. Using these packages ensures you get the latest release
of Docker. If you wish to install using Ubuntu-managed packages, consult your
Ubuntu documentation.

Prerequisites

Docker requires a 64-bit installation regardless of your Ubuntu version.
Additionally, your kernel must be 3.10 at minimum. The latest 3.10 minor version
or a newer maintained version are also acceptable.

Kernels older than 3.10 lack some of the features required to run Docker
containers. These older versions are known to have bugs which cause data loss
and frequently panic under certain conditions.

To check your current kernel version, open a terminal and use uname -r to display
your kernel version:

$ uname -r
3.11.0-15-generic

Caution Some Ubuntu OS versions require a version higher than 3.10 to
run Docker, see the prerequisites on this page that apply to your Ubuntu
version.

For Vivid 15.04

There are no prerequisites for this version.

For Trusty 14.04

There are no prerequisites for this version.

For Precise 12.04 (LTS)

For Ubuntu Precise, Docker requires the 3.13 kernel version. If your kernel
version is older than 3.13, you must upgrade it. Refer to this table to see
which packages are required for your environment:

 		linux-image-generic-lts-trusty 		Generic
Linux kernel image. This kernel has AUFS built in. This is required to run
Docker.

 		linux-headers-generic-lts-trusty
		Allows packages such as ZFS and VirtualBox guest additions
which depend on them. If you didn't install the headers for your existing
kernel, then you can skip these headers for the"trusty" kernel. If you're
unsure, you should include this package for safety.

 		xserver-xorg-lts-trusty 		Optional in non-graphical environments without Unity/Xorg.
Required when running Docker on machine with a graphical environment.To learn more about the reasons for these packages, read the installation
instructions for backported kernels, specifically the LTS
Enablement Stack — refer to note 5 under each version.

 		libgl1-mesa-glx-lts-trusty

 To upgrade your kernel and install the additional packages, do the following:

		Open a terminal on your Ubuntu host.

		Update your package manager.

 $ sudo apt-get update

		Install both the required and optional packages.

 $ sudo apt-get install linux-image-generic-lts-trusty

Depending on your environment, you may install more as described in the preceding table.

		Reboot your host.

 $ sudo reboot

		After your system reboots, go ahead and install Docker.

Installation

Make sure you have installed the prerequisites for your Ubuntu version. Then,
install Docker using the following:

		Log into your Ubuntu installation as a user with sudo privileges.

		Verify that you have wget installed.

 $ which wget

If wget isn’t installed, install it after updating your manager:

 $ sudo apt-get update
 $ sudo apt-get install wget

		Get the latest Docker package.

 $ wget -qO- https://get.docker.com/ | sh

The system prompts you for your sudo password. Then, it downloads and
installs Docker and its dependencies.

Note: If your company is behind a filtering proxy, you may find that the
apt-key
command fails for the Docker repo during installation. To work around this,
add the key directly using the following:

 $ wget -qO- https://get.docker.com/gpg | sudo apt-key add -

		Verify docker is installed correctly.

 $ sudo docker run hello-world

This command downloads a test image and runs it in a container.

Optional configurations for Docker on Ubuntu

This section contains optional procedures for configuring your Ubuntu to work
better with Docker.

		Create a docker group

		Adjust memory and swap accounting

		Enable UFW forwarding

		Configure a DNS server for use by Docker

		Configure Docker to start on boot

Create a Docker group

The docker daemon binds to a Unix socket instead of a TCP port. By default
that Unix socket is owned by the user root and other users can access it with
sudo. For this reason, docker daemon always runs as the root user.

To avoid having to use sudo when you use the docker command, create a Unix
group called docker and add users to it. When the docker daemon starts, it
makes the ownership of the Unix socket read/writable by the docker group.

Warning: The docker group is equivalent to the root user; For details
on how this impacts security in your system, see Docker Daemon Attack
Surface for details.

To create the docker group and add your user:

		Log into Ubuntu as a user with sudo privileges.

This procedure assumes you log in as the ubuntu user.

		Create the docker group and add your user.

 $ sudo usermod -aG docker ubuntu

		Log out and log back in.

This ensures your user is running with the correct permissions.

		Verify your work by running docker without sudo.

 $ docker run hello-world

If this fails with a message similar to this:

 Cannot connect to the Docker daemon. Is 'docker daemon' running on this host?

Check that the DOCKER_HOST environment variable is not set for your shell.
If it is, unset it.

Adjust memory and swap accounting

When users run Docker, they may see these messages when working with an image:

WARNING: Your kernel does not support cgroup swap limit. WARNING: Your
kernel does not support swap limit capabilities. Limitation discarded.

To prevent these messages, enable memory and swap accounting on your system. To
enable these on system using GNU GRUB (GNU GRand Unified Bootloader), do the
following.

		Log into Ubuntu as a user with sudo privileges.

		Edit the /etc/default/grub file.

		Set the GRUB_CMDLINE_LINUX value as follows:

 GRUB_CMDLINE_LINUX="cgroup_enable=memory swapaccount=1"

		Save and close the file.

		Update GRUB.

 $ sudo update-grub

		Reboot your system.

Enable UFW forwarding

If you use UFW (Uncomplicated Firewall) [https://help.ubuntu.com/community/UFW]
on the same host as you run Docker, you’ll need to do additional configuration.
Docker uses a bridge to manage container networking. By default, UFW drops all
forwarding traffic. As a result, for Docker to run when UFW is
enabled, you must set UFW’s forwarding policy appropriately.

Also, UFW’s default set of rules denies all incoming traffic. If you want to be able
to reach your containers from another host then you should also allow incoming
connections on the Docker port (default 2375).

To configure UFW and allow incoming connections on the Docker port:

		Log into Ubuntu as a user with sudo privileges.

		Verify that UFW is installed and enabled.

 $ sudo ufw status

		Open the /etc/default/ufw file for editing.

 $ sudo nano /etc/default/ufw

		Set the DEFAULT_FORWARD_POLICY policy to:

 DEFAULT_FORWARD_POLICY="ACCEPT"

		Save and close the file.

		Reload UFW to use the new setting.

 $ sudo ufw reload

		Allow incoming connections on the Docker port.

 $ sudo ufw allow 2375/tcp

Configure a DNS server for use by Docker

Systems that run Ubuntu or an Ubuntu derivative on the desktop typically use
127.0.0.1 as the default nameserver in /etc/resolv.conf file. The
NetworkManager also sets up dnsmasq to use the real DNS servers of the
connection and sets up nameserver 127.0.0.1 in /etc/resolv.conf.

When starting containers on desktop machines with these configurations, Docker
users see this warning:

WARNING: Local (127.0.0.1) DNS resolver found in resolv.conf and containers
can't use it. Using default external servers : [8.8.8.8 8.8.4.4]

The warning occurs because Docker containers can’t use the local DNS nameserver.
Instead, Docker defaults to using an external nameserver.

To avoid this warning, you can specify a DNS server for use by Docker
containers. Or, you can disable dnsmasq in NetworkManager. Though, disabling
dnsmasq might make DNS resolution slower on some networks.

To specify a DNS server for use by Docker:

		Log into Ubuntu as a user with sudo privileges.

		Open the /etc/default/docker file for editing.

 $ sudo nano /etc/default/docker

		Add a setting for Docker.

 DOCKER_OPTS="--dns 8.8.8.8"

Replace 8.8.8.8 with a local DNS server such as 192.168.1.1. You can also
specify multiple DNS servers. Separated them with spaces, for example:

 --dns 8.8.8.8 --dns 192.168.1.1

Warning: If you’re doing this on a laptop which connects to various
networks, make sure to choose a public DNS server.

		Save and close the file.

		Restart the Docker daemon.

 $ sudo restart docker

Or, as an alternative to the previous procedure, disable dnsmasq in
NetworkManager (this might slow your network).

		Open the /etc/NetworkManager/NetworkManager.conf file for editing.

 $ sudo nano /etc/NetworkManager/NetworkManager.conf

		Comment out the dns=dsnmasq line:

 dns=dnsmasq

		Save and close the file.

		Restart both the NetworkManager and Docker.

 $ sudo restart network-manager $ sudo restart docker

Configure Docker to start on boot

Ubuntu uses systemd as its boot and service manager 15.04 onwards and upstart
for versions 14.10 and below.

For 15.04 and up, to configure the docker daemon to start on boot, run

$ sudo systemctl enable docker

For 14.10 and below the above installation method automatically configures upstart
to start the docker daemon on boot

Upgrade Docker

To install the latest version of Docker with wget:

$ wget -qO- https://get.docker.com/ | sh

Uninstallation

To uninstall the Docker package:

$ sudo apt-get purge docker-engine

To uninstall the Docker package and dependencies that are no longer needed:

$ sudo apt-get autoremove --purge docker-engine

The above commands will not remove images, containers, volumes, or user created
configuration files on your host. If you wish to delete all images, containers,
and volumes run the following command:

$ rm -rf /var/lib/docker

You must delete the user created configuration files manually.

 © Copyright .
 Created using Sphinx 1.3.1.

misc/release-notes.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Deprecated Features

To see the complete list of deprecated features please see the
Deprecated Features page.

Removed Features

The following features have been removed in this release:

		None!

Release notes version 1.6.0

(2015-04-16)

You can view release notes for earlier version of Docker by selecting the
desired version from the drop-down list at the top right of this page. For the
formal release announcement, see the Docker
blog [https://blog.docker.com/2015/04/docker-release-1-6/].

Docker Engine 1.6.0 features

For a complete list of engine patches, fixes, and other improvements, see the
merge PR on GitHub [https://github.com/docker/docker/pull/11635]. You’ll also
find a changelog in the project
repository [https://github.com/docker/docker/blob/master/CHANGELOG.md].

Docker Engine 1.6.0 features

For a complete list of engine patches, fixes, and other improvements, see the
merge PR on GitHub [https://github.com/docker/docker/pull/11635]. You’ll also
find a changelog in the project
repository [https://github.com/docker/docker/blob/master/CHANGELOG.md].

Feature	Description
——————————	———–
Container and Image Labels	Labels allow you to attach user-defined metadata to containers and images that can be used by your tools. For additional information on using labels, see Apply custom metadata [https://docs.docker.com/userguide/labels-custom-metadata/#add-labels-to-images-the-label-instruction] in the documentation.
Windows Client preview	The Windows Client can be used just like the Mac OS X client is today with a remote host. Our testing infrastructure was scaled out to accommodate Windows Client testing on every PR to the Engine. See the Azure blog for details on using this new client [http://azure.microsoft.com/blog/2015/04/16/docker-client-for-windows-is-now-available].
Logging drivers	The new logging driver follows the exec driver and storage driver concepts already available in Engine today. There is a new option --log-driver to docker run command. See the run reference for a description on how to use this option [https://docs.docker.com/reference/run/#logging-drivers-log-driver].
Image digests	When you pull, build, or run images, you specify them in the form namespace/repository:tag, or even just repository. In this release, you are now able to pull, run, build and refer to images by a new content addressable identifier called a “digest” with the syntax namespace/repo@digest. See the the command line reference for examples of using the digest [https://docs.docker.com/reference/commandline/cli/#listing-image-digests].
Custom cgroups	Containers are made from a combination of namespaces, capabilities, and cgroups. Docker already supports custom namespaces and capabilities. Additionally, in this release we’ve added support for custom cgroups. Using the --cgroup-parent flag, you can pass a specific cgroup to run a container in. See the command line reference for more information [https://docs.docker.com/reference/commandline/cli/#create].
Ulimits	You can now specify the default ulimit settings for all containers when configuring the daemon. For example:docker -d --default-ulimit nproc=1024:2048 See Default Ulimits [https://docs.docker.com/reference/commandline/cli/#default-ulimits] in this documentation.
Commit and import Dockerfile	You can now make changes to images on the fly without having to re-build the entire image. The feature commit --change and import --change allows you to apply standard changes to a new image. These are expressed in the Dockerfile syntax and used to modify the image. For details on how to use these, see the commit [https://docs.docker.com/reference/commandline/cli/#commit] and import [https://docs.docker.com/reference/commandline/cli/#import].

Known issues in Engine

This section lists significant known issues present in Docker as of release date.
For an exhaustive list of issues, see the issues list on the project
repository [https://github.com/docker/docker/issues/].

		Unexpected File Permissions in Containers
An idiosyncrasy in AUFS prevented permissions from propagating predictably
between upper and lower layers. This caused issues with accessing private
keys, database instances, etc. This issue was closed in this release:
GitHub Issue 783 [https://github.com/docker/docker/issues/783].

		Docker Hub incompatible with Safari 8
Docker Hub had multiple issues displaying on Safari 8, the default browser for
OS X 10.10 (Yosemite). Most notably, changes in the way Safari handled cookies
means that the user was repeatedly logged out.
Recently, Safari fixed the bug that was causing all the issues. If you upgrade
to Safari 8.0.5 which was just released last week and see if that fixes your
issues. You might have to flush your cookies if it doesn’t work right away.
For more information, see the Docker forum
post [https://forums.docker.com/t/new-safari-in-yosemite-issue/300].

Docker Registry 2.0 features

This release includes Registry 2.0. The Docker Registry is a central server for
pushing and pulling images. In this release, it was completely rewritten in Go
around a new set of distribution APIs

		Webhook notifications: You can now configure the Registry to send Webhooks
when images are pushed. Spin off a CI build, send a notification to IRC –
whatever you want! Included in the documentation is a detailed notification
specification [https://docs.docker.com/registry/notifications/].

		Native TLS support: This release makes it easier to secure a registry with
TLS. This documentation includes expanded examples of secure
deployments [https://docs.docker.com/registry/deploying/].

		New Distribution APIs: This release includes an expanded set of new
distribution APIs. You can read the detailed specification
here [https://docs.docker.com/registry/spec/api/].

Docker Compose 1.2

For a complete list of compose patches, fixes, and other improvements, see the
changelog in the project
repository [https://github.com/docker/compose/blob/master/CHANGES.md]. The
project also makes a set of release
notes [https://github.com/docker/compose/releases/tag/1.2.0] on the project.

		extends: You can use extends to share configuration between services
with the keyword “extends”. With extends, you can refer to a service defined
elsewhere and include its configuration in a locally-defined service, while also
adding or overriding configuration as necessary. The documentation describes
[how to use extends in your
configuration](https://docs.docker.com/compose/extends/#extending-services-in-
compose).

		Relative directory handling may cause breaking change: Compose now treats
directories passed to build, filenames passed to env_file and volume host
paths passed to volumes as relative to the configuration file’s directory.
Previously, they were treated as relative to the directory where you were
running docker-compose. In the majority of cases, the location of the
configuration file and where you ran docker-compose were the same directory.
Now, you can use the -f|--file argument to specify a configuration file in
another directory.

Docker Swarm 0.2

You’ll find the release for download on
GitHub [https://github.com/docker/swarm/releases/tag/v0.2.0] and the
documentation here [https://docs.docker.com/swarm/]. This release includes the
following features:

		Spread strategy: A new strategy for scheduling containers on your cluster
which evenly spreads them over available nodes.

		More Docker commands supported: More progress has been made towards
supporting the complete Docker API, such as pulling and inspecting images.

		Clustering drivers: There are not any third-party drivers yet, but the
first steps have been made towards making a pluggable driver interface that will
make it possible to use Swarm with clustering systems such as Mesos.

Docker Machine 0.2 Pre-release

You’ll find the release for download on
GitHub [https://github.com/docker/machine/releases] and the documentation
here [https://docs.docker.com/machine/]. For a complete list of machine changes
see [the changelog in the project
repository](https://github.com/docker/machine/blob/master/CHANGES.md#020-2015-03
-22).

		Cleaner driver interface: It is now much easier to write drivers for providers.

		More reliable and consistent provisioning: Provisioning servers is now
handled centrally by Machine instead of letting each driver individually do it.

		Regenerate TLS certificates: A new command has been added to regenerate a
host’s TLS certificates for good security practice and for if a host’s IP
address changes.

Docker Hub Enterprise & Commercially Supported Docker Engine

See the DHE and CS Docker Engine release notes.

 © Copyright .
 Created using Sphinx 1.3.1.

installation/centos.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

CentOS

Docker is supported on the following versions of CentOS:

		CentOS 7.X

Installation on other binary compatible EL7 distributions such as Scientific
Linux might succeed, but Docker does not test or support Docker on these
distributions.

This page instructs you to install using Docker-managed release packages and
installation mechanisms. Using these packages ensures you get the latest release
of Docker. If you wish to install using CentOS-managed packages, consult your
CentOS documentation.

Prerequisites

Docker requires a 64-bit installation regardless of your CentOS version. Also,
your kernel must be 3.10 at minimum, which CentOS 7 runs.

To check your current kernel version, open a terminal and use uname -r to
display your kernel version:

$ uname -r
3.10.0-229.el7.x86_64

Finally, is it recommended that you fully update your system. Please keep in
mind that your system should be fully patched to fix any potential kernel bugs.
Any reported kernel bugs may have already been fixed on the latest kernel
packages.

Install

There are two ways to install Docker Engine. You can use curl with the get.docker.com site. This method runs an installation script which installs via the yum package manager. Or you can install with the yum package manager directly yourself.

Install with the script

		Log into your machine as a user with sudo or root privileges.

		Make sure your existing yum packages are up-to-date.

 $ sudo yum update

		Run the Docker installation script.

 $ curl -sSL https://get.docker.com/ | sh

 This script adds the `docker.repo` repository and installs Docker.

		Start the Docker daemon.

 $ sudo service docker start

		Verify docker is installed correctly by running a test image in a container.

 $ sudo docker run hello-world
 Unable to find image 'hello-world:latest' locally
 latest: Pulling from hello-world
 a8219747be10: Pull complete
 91c95931e552: Already exists
 hello-world:latest: The image you are pulling has been verified. Important: image verification is a tech preview feature and should not be relied on to provide security.
 Digest: sha256:aa03e5d0d5553b4c3473e89c8619cf79df368babd1.7.1cf5daeb82aab55838d
 Status: Downloaded newer image for hello-world:latest
 Hello from Docker.
 This message shows that your installation appears to be working correctly.

 To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (Assuming it was not already locally available.)
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

 To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

 For more examples and ideas, visit:
 http://docs.docker.com/userguide/

Install without the script

		Log into your machine as a user with sudo or root privileges.

		Make sure your existing yum packages are up-to-date.

 $ sudo yum update

		Add the yum repo yourself.

For CentOS 7 run:

 $ cat >/etc/yum.repos.d/docker.repo <<-EOF
 [dockerrepo]
 name=Docker Repository
 baseurl=https://yum.dockerproject.org/repo/main/centos/7
 enabled=1
 gpgcheck=1
 gpgkey=https://yum.dockerproject.org/gpg
 EOF

		Install the Docker package.

 $ sudo yum install docker-engine

		Start the Docker daemon.

 $ sudo service docker start

		Verify docker is installed correctly by running a test image in a container.

 $ sudo docker run hello-world

Create a docker group

The docker daemon binds to a Unix socket instead of a TCP port. By default
that Unix socket is owned by the user root and other users can access it with
sudo. For this reason, docker daemon always runs as the root user.

To avoid having to use sudo when you use the docker command, create a Unix
group called docker and add users to it. When the docker daemon starts, it
makes the ownership of the Unix socket read/writable by the docker group.

Warning: The docker group is equivalent to the root user; For details
on how this impacts security in your system, see Docker Daemon Attack
Surface for details.

To create the docker group and add your user:

		Log into Centos as a user with sudo privileges.

		Create the docker group and add your user.

sudo usermod -aG docker your_username

		Log out and log back in.

This ensures your user is running with the correct permissions.

		Verify your work by running docker without sudo.

 $ docker run hello-world

Start the docker daemon at boot

To ensure Docker starts when you boot your system, do the following:

 $ sudo chkconfig docker on

If you need to add an HTTP Proxy, set a different directory or partition for the
Docker runtime files, or make other customizations, read our Systemd article to
learn how to customize your Systemd Docker daemon options.

Uninstall

You can uninstall the Docker software with yum.

		List the package you have installed.

 $ yum list installed | grep docker
 yum list installed | grep docker
 docker-engine.x86_64 1.7.1-1.el7
 @/docker-engine-1.7.1-1.el7.x86_64.rpm

		Remove the package.

 $ sudo yum -y remove docker-engine.x86_64

This command does not remove images, containers, volumes, or user-created
configuration files on your host.

		To delete all images, containers, and volumes, run the following command:

 $ rm -rf /var/lib/docker

		Locate and delete any user-created configuration files.

 © Copyright .
 Created using Sphinx 1.3.1.

misc/search.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Search

Please activate JavaScript to enable the search functionality.

How To Search

From here you can search these documents. Enter your search words into
the box below and click “search”. Note that the search function will
automatically search for all of the words. Pages containing fewer words
won’t appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

installation/google.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Google Cloud Platform

QuickStart with Container-optimized Google Compute Engine images

		Go to Google Cloud Console [https://cloud.google.com/console] and create a new Cloud Project with
Compute Engine enabled [https://developers.google.com/compute/docs/signup]

		Download and configure the Google Cloud SDK [https://developers.google.com/cloud/sdk] to use your
project with the following commands:

 $ curl -sSL https://sdk.cloud.google.com | bash
 $ gcloud auth login
 $ gcloud config set project <google-cloud-project-id>

		Start a new instance using the latest Container-optimized image [https://developers.google.com/compute/docs/containers#container-optimized_google_compute_engine_images]:
(select a zone close to you and the desired instance size)

 $ gcloud compute instances create docker-playground \
 --image container-vm \
 --zone us-central1-a \
 --machine-type f1-micro

		Connect to the instance using SSH:

 $ gcloud compute ssh --zone us-central1-a docker-playground
 docker-playground:~$ sudo docker run hello-world

Hello from Docker.
This message shows that your installation appears to be working correctly.
...

Read more about deploying Containers on Google Cloud Platform [https://developers.google.com/compute/docs/containers].

 © Copyright .
 Created using Sphinx 1.3.1.

installation/gentoolinux.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Gentoo

Installing Docker on Gentoo Linux can be accomplished using one of two ways: the official way and the docker-overlay way.

Official project page of Gentoo Docker [https://wiki.gentoo.org/wiki/Project:Docker] team.

Official way

The first and recommended way if you are looking for a stableexperience is to use the official app-emulation/docker package directlyfrom the tree.

If any issues arise from this ebuild including, missing kernel
configuration flags or dependencies, open a bug
on the Gentoo Bugzilla [https://bugs.gentoo.org] assigned to docker AT gentoo DOT org
or join and ask in the official
IRC [http://webchat.freenode.net?channels=%23gentoo-containers&uio=d4] channel on the Freenode network.

docker-overlay way

If you’re looking for a -bin ebuild, a live ebuild, or a bleeding edge
ebuild, use the provided overlay, docker-overlay [https://github.com/tianon/docker-overlay]
which can be added using app-portage/layman. The most accurate and
up-to-date documentation for properly installing and using the overlay
can be found in the overlay [https://github.com/tianon/docker-overlay/blob/master/README.md#using-this-overlay].

If any issues arise from this ebuild or the resulting binary, including
and especially missing kernel configuration flags or dependencies,
open an issue [https://github.com/tianon/docker-overlay/issues] on
the docker-overlay repository or ping tianon directly in the #docker
IRC channel on the Freenode network.

Installation

Available USE flags

USE Flag	Default	Description
————-	:——-:	:————
aufs		Enables dependencies for the “aufs” graph driver, including necessary kernel flags.
btrfs		Enables dependencies for the “btrfs” graph driver, including necessary kernel flags.
contrib	Yes	Install additional contributed scripts and components.
device-mapper	Yes	Enables dependencies for the “devicemapper” graph driver, including necessary kernel flags.
doc		Add extra documentation (API, Javadoc, etc). It is recommended to enable per package instead of globally.
lxc		Enables dependencies for the “lxc” execution driver.
vim-syntax		Pulls in related vim syntax scripts.
zsh-completion		Enable zsh completion support.

USE flags are described in detail on tianon’s
blog [https://tianon.github.io/post/2014/05/17/docker-on-gentoo.html].

The package should properly pull in all the necessary dependencies and
prompt for all necessary kernel options.

$ sudo emerge -av app-emulation/docker

Note: Sometimes there is a disparity between the latest versions
in the official Gentoo tree and the docker-overlay.Please be patient, and the latest version should propagate shortly.

Starting Docker

Ensure that you are running a kernel that includes all the necessary
modules and configuration (and optionally for device-mapper
and AUFS or Btrfs, depending on the storage driver you’ve decided to use).

To use Docker, the docker daemon must be running as root.To use Docker as a non-root user, add yourself to the docker
group by running the following command:

$ sudo usermod -a -G docker user

OpenRC

To start the docker daemon:

$ sudo /etc/init.d/docker start

To start on system boot:

$ sudo rc-update add docker default

systemd

To start the docker daemon:

$ sudo systemctl start docker

To start on system boot:

$ sudo systemctl enable docker

If you need to add an HTTP Proxy, set a different directory or partition for the
Docker runtime files, or make other customizations, read our systemd article to
learn how to customize your systemd Docker daemon options.

Uninstallation

To uninstall the Docker package:

$ sudo emerge -cav app-emulation/docker

To uninstall the Docker package and dependencies that are no longer needed:

$ sudo emerge -C app-emulation/docker

The above commands will not remove images, containers, volumes, or user created
configuration files on your host. If you wish to delete all images, containers,
and volumes run the following command:

$ rm -rf /var/lib/docker

You must delete the user created configuration files manually.

 © Copyright .
 Created using Sphinx 1.3.1.

installation/SUSE.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

openSUSE

Docker is available in openSUSE 12.3 and later. Please note that due
to its current limitations Docker is able to run only 64 bit architecture.

Docker is not part of the official repositories of openSUSE 12.3 and
openSUSE 13.1. Hence it is necessary to add the Virtualization
repository [https://build.opensuse.org/project/show/Virtualization] from
OBS [https://build.opensuse.org/] to install the docker package.

Execute one of the following commands to add the Virtualization repository:

openSUSE 12.3
$ sudo zypper ar -f http://download.opensuse.org/repositories/Virtualization/openSUSE_12.3/ Virtualization

openSUSE 13.1
$ sudo zypper ar -f http://download.opensuse.org/repositories/Virtualization/openSUSE_13.1/ Virtualization

No extra repository is required for openSUSE 13.2 and later.

SUSE Linux Enterprise

Docker is available in SUSE Linux Enterprise 12 and later. Please note that
due to its current limitations Docker is able to run only on 64 bit
architecture.

Installation

Install the Docker package.

$ sudo zypper in docker

Now that it’s installed, let’s start the Docker daemon.

$ sudo systemctl start docker

If we want Docker to start at boot, we should also:

$ sudo systemctl enable docker

The docker package creates a new group named docker. Users, other than
root user, need to be part of this group in order to interact with the
Docker daemon. You can add users with:

$ sudo /usr/sbin/usermod -a -G docker <username>

To verify that everything has worked as expected:

$ sudo docker run --rm -i -t opensuse /bin/bash

This should download and import the opensuse image, and then start bash in
a container. To exit the container type exit.

If you want your containers to be able to access the external network you must
enable the net.ipv4.ip_forward rule.
This can be done using YaST by browsing to the
Network Devices -> Network Settings -> Routing menu and ensuring that the
Enable IPv4 Forwarding box is checked.

This option cannot be changed when networking is handled by the Network Manager.
In such cases the /etc/sysconfig/SuSEfirewall2 file needs to be edited by
hand to ensure the FW_ROUTE flag is set to yes like so:

FW_ROUTE="yes"

Done!

Custom daemon options

If you need to add an HTTP Proxy, set a different directory or partition for the
Docker runtime files, or make other customizations, read our systemd article to
learn how to customize your systemd Docker daemon options.

Uninstallation

To uninstall the Docker package:

$ sudo zypper rm docker

The above command will not remove images, containers, volumes, or user created
configuration files on your host. If you wish to delete all images, containers,
and volumes run the following command:

$ rm -rf /var/lib/docker

You must delete the user created configuration files manually.

What’s next

Continue with the User Guide.

 © Copyright .
 Created using Sphinx 1.3.1.

installation/rackspace.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Rackspace Cloud

Installing Docker on Ubuntu provided by Rackspace is pretty
straightforward, and you should mostly be able to follow the
Ubuntu installation guide.

However, there is one caveat:

If you are using any Linux not already shipping with the 3.8 kernel you
will need to install it. And this is a little more difficult on
Rackspace.

Rackspace boots their servers using grub’s menu.lst
and does not like non virtual packages (e.g., Xen compatible)
kernels there, although they do work. This results in
update-grub not having the expected result, and
you will need to set the kernel manually.

Do not attempt this on a production machine!

update apt
$ apt-get update

install the new kernel
$ apt-get install linux-generic-lts-raring

Great, now you have the kernel installed in /boot/, next you need to
make it boot next time.

find the exact names
$ find /boot/ -name '*3.8*'

this should return some results

Now you need to manually edit /boot/grub/menu.lst,
you will find a section at the bottom with the existing options. Copy
the top one and substitute the new kernel into that. Make sure the new
kernel is on top, and double check the kernel and initrd lines point to
the right files.

Take special care to double check the kernel and initrd entries.

now edit /boot/grub/menu.lst
$ vi /boot/grub/menu.lst

It will probably look something like this:

End Default Options

title Ubuntu 12.04.2 LTS, kernel 3.8.x generic
root (hd0)
kernel /boot/vmlinuz-3.8.0-19-generic root=/dev/xvda1 ro quiet splash console=hvc0
initrd /boot/initrd.img-3.8.0-19-generic

title Ubuntu 12.04.2 LTS, kernel 3.2.0-38-virtual
root (hd0)
kernel /boot/vmlinuz-3.2.0-38-virtual root=/dev/xvda1 ro quiet splash console=hvc0
initrd /boot/initrd.img-3.2.0-38-virtual

title Ubuntu 12.04.2 LTS, kernel 3.2.0-38-virtual (recovery mode)
root (hd0)
kernel /boot/vmlinuz-3.2.0-38-virtual root=/dev/xvda1 ro quiet splash single
initrd /boot/initrd.img-3.2.0-38-virtual

Reboot the server (either via command line or console)

reboot

Verify the kernel was updated

$ uname -a
Linux docker-12-04 3.8.0-19-generic #30~precise1-Ubuntu SMP Wed May 1 22:26:36 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux

nice! 3.8.

Now you can finish with the Ubuntu
instructions.

 © Copyright .
 Created using Sphinx 1.3.1.

installation/joyent.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Install on Joyent Public Cloud

		Sign in to the Joyent customer portal [https://my.joyent.com/]

		Create a Docker host [https://docs.joyent.com/jpc/managing-docker-containers/creating-a-docker-host].

Start and manage containers

		Start containers in the web UI [https://docs.joyent.com/jpc/managing-docker-containers/starting-a-container]

		Configure the Docker CLI on your laptop [https://docs.joyent.com/jpc/managing-docker-containers/access-your-jpc-docker-hosts-from-the-docker-cli] to connect to the remote host to launch and manage containers.

		SSH into the Docker host.

		Launch containers using the Docker CLI.

Where to go next

Continue with the Docker user guide, read Joyent’s getting started blog post [https://www.joyent.com/blog/first-steps-with-joyents-container-service], and full documentation [https://docs.joyent.com/jpc/managing-docker-containers].

 © Copyright .
 Created using Sphinx 1.3.1.

installation/mac.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Mac OS X

You can install Docker using Boot2Docker to run docker commands at your command-line.
Choose this installation if you are familiar with the command-line or plan to
contribute to the Docker project on GitHub.

[image: Download Kitematic] [https://kitematic.com/download]

Alternatively, you may want to try Kitematic, an application that lets you set up Docker and
run containers using a graphical user interface (GUI).

Command-line Docker with Boot2Docker

Because the Docker daemon uses Linux-specific kernel features, you can’t run
Docker natively in OS X. Instead, you must install the Boot2Docker application.
The application includes a VirtualBox Virtual Machine (VM), Docker itself, and the
Boot2Docker management tool.

The Boot2Docker management tool is a lightweight Linux virtual machine made
specifically to run the Docker daemon on Mac OS X. The VirtualBox VM runs
completely from RAM, is a small ~24MB download, and boots in approximately 5s.

Requirements

Your Mac must be running OS X 10.6 “Snow Leopard” or newer to run Boot2Docker.

Learn the key concepts before installing

In a Docker installation on Linux, your machine is both the localhost and the
Docker host. In networking, localhost means your computer. The Docker host is
the machine on which the containers run.

On a typical Linux installation, the Docker client, the Docker daemon, and any
containers run directly on your localhost. This means you can address ports on a
Docker container using standard localhost addressing such as localhost:8000 or
0.0.0.0:8376.

[image: Linux Architecture Diagram]

In an OS X installation, the docker daemon is running inside a Linux virtual
machine provided by Boot2Docker.

[image: OSX Architecture Diagram]

In OS X, the Docker host address is the address of the Linux VM.
When you start the boot2docker process, the VM is assigned an IP address. Under
boot2docker ports on a container map to ports on the VM. To see this in
practice, work through the exercises on this page.

Installation

		Go to the boot2docker/osx-installer [https://github.com/boot2docker/osx-installer/releases/latest] release page.

		Download Boot2Docker by clicking Boot2Docker-x.x.x.pkg in the “Downloads”
section.

		Install Boot2Docker by double-clicking the package.

The installer places Boot2Docker and VirtualBox in your “Applications” folder.

The installation places the docker and boot2docker binaries in your
/usr/local/bin directory.

Start the Boot2Docker Application

To run a Docker container, you first start the boot2docker VM and then issue
docker commands to create, load, and manage containers. You can launch
boot2docker from your Applications folder or from the command line.

NOTE: Boot2Docker is designed as a development tool. You should not use
it in production environments.

From the Applications folder

When you launch the “Boot2Docker” application from your “Applications” folder, the
application:

		opens a terminal window

		creates a $HOME/.boot2docker directory

		creates a VirtualBox ISO and certs

		starts a VirtualBox VM running the docker daemon

Once the launch completes, you can run docker commands. A good way to verify
your setup succeeded is to run the hello-world container.

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
511136ea3c5a: Pull complete
31cbccb51277: Pull complete
e45a5af57b00: Pull complete
hello-world:latest: The image you are pulling has been verified.
Important: image verification is a tech preview feature and should not be
relied on to provide security.
Status: Downloaded newer image for hello-world:latest
Hello from Docker.
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (Assuming it was not already locally available.)
3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

For more examples and ideas, visit:
http://docs.docker.com/userguide/

A more typical way to start and stop boot2docker is using the command line.

From your command line

Initialize and run boot2docker from the command line, do the following:

		Create a new Boot2Docker VM.

 $ boot2docker init

This creates a new virtual machine. You only need to run this command once.

		Start the boot2docker VM.

 $ boot2docker start

		Display the environment variables for the Docker client.

 $ boot2docker shellinit
 Writing /Users/mary/.boot2docker/certs/boot2docker-vm/ca.pem
 Writing /Users/mary/.boot2docker/certs/boot2docker-vm/cert.pem
 Writing /Users/mary/.boot2docker/certs/boot2docker-vm/key.pem
 export DOCKER_HOST=tcp://192.168.59.103:2376
 export DOCKER_CERT_PATH=/Users/mary/.boot2docker/certs/boot2docker-vm
 export DOCKER_TLS_VERIFY=1

The specific paths and address on your machine will be different.

		To set the environment variables in your shell do the following:

 $ eval "$(boot2docker shellinit)"

You can also set them manually by using the export commands boot2docker
returns.

		Run the hello-world container to verify your setup.

 $ docker run hello-world

Basic Boot2Docker exercises

At this point, you should have boot2docker running and the docker client
environment initialized. To verify this, run the following commands:

$ boot2docker status
$ docker version

Work through this section to try some practical container tasks using boot2docker VM.

Access container ports

		Start an NGINX container on the DOCKER_HOST.

 $ docker run -d -P --name web nginx

Normally, the docker run commands starts a container, runs it, and then
exits. The -d flag keeps the container running in the background
after the docker run command completes. The -P flag publishes exposed ports from the
container to your local host; this lets you access them from your Mac.

		Display your running container with docker ps command

 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
 5fb65ff765e9 nginx:latest "nginx -g 'daemon of 3 minutes ago Up 3 minutes 0.0.0.0:49156->443/tcp, 0.0.0.0:49157->80/tcp web

At this point, you can see nginx is running as a daemon.

		View just the container’s ports.

 $ docker port web
 443/tcp -> 0.0.0.0:49156
 80/tcp -> 0.0.0.0:49157

This tells you that the web container’s port 80 is mapped to port
49157 on your Docker host.

		Enter the http://localhost:49157 address (localhost is 0.0.0.0) in your browser:

[image: Bad Address]

This didn’t work. The reason it doesn’t work is your DOCKER_HOST address is
not the localhost address (0.0.0.0) but is instead the address of the
boot2docker VM.

		Get the address of the boot2docker VM.

 $ boot2docker ip
 192.168.59.103

		Enter the http://192.168.59.103:49157 address in your browser:

[image: Correct Addressing]

Success!

		To stop and then remove your running nginx container, do the following:

 $ docker stop web
 $ docker rm web

Mount a volume on the container

When you start boot2docker, it automatically shares your /Users directory
with the VM. You can use this share point to mount directories onto your container.
The next exercise demonstrates how to do this.

		Change to your user $HOME directory.

 $ cd $HOME

		Make a new site directory.

 $ mkdir site

		Change into the site directory.

 $ cd site

		Create a new index.html file.

 $ echo "my new site" > index.html

		Start a new nginx container and replace the html folder with your site directory.

 $ docker run -d -P -v $HOME/site:/usr/share/nginx/html --name mysite nginx

		Get the mysite container’s port.

 $ docker port mysite
 80/tcp -> 0.0.0.0:49166
 443/tcp -> 0.0.0.0:49165

		Open the site in a browser:

[image: My site page]

		Try adding a page to your $HOME/site in real time.

 $ echo "This is cool" > cool.html

		Open the new page in the browser.

[image: Cool page]

		Stop and then remove your running mysite container.

 $ docker stop mysite
 $ docker rm mysite

Upgrade Boot2Docker

If you running Boot2Docker 1.4.1 or greater, you can upgrade Boot2Docker from
the command line. If you are running an older version, you should use the
package provided by the boot2docker repository.

From the command line

To upgrade from 1.4.1 or greater, you can do this:

		Open a terminal on your local machine.

		Stop the boot2docker application.

 $ boot2docker stop

		Run the upgrade command.

 $ boot2docker upgrade

Use the installer

To upgrade any version of Boot2Docker, do this:

		Open a terminal on your local machine.

		Stop the boot2docker application.

 $ boot2docker stop

		Go to the boot2docker/osx-installer [https://github.com/boot2docker/osx-installer/releases/latest] release page.

		Download Boot2Docker by clicking Boot2Docker-x.x.x.pkg in the “Downloads”
section.

		Install Boot2Docker by double-clicking the package.

The installer places Boot2Docker in your “Applications” folder.

Uninstallation

		Go to the boot2docker/osx-installer [https://github.com/boot2docker/osx-installer/releases/latest] release page.

		Download the source code by clicking Source code (zip) or
Source code (tar.gz) in the “Downloads” section.

		Extract the source code.

		Open a terminal on your local machine.

		Change to the directory where you extracted the source code:

 $ cd <path to extracted source code>

		Make sure the uninstall.sh script is executable:

 $ chmod +x uninstall.sh

		Run the uninstall.sh script:

 $./uninstall.sh

Learning more and acknowledgement

Use boot2docker help to list the full command line reference. For more
information about using SSH or SCP to access the Boot2Docker VM, see the README
at Boot2Docker repository [https://github.com/boot2docker/boot2docker].

Thanks to Chris Jones whose blog [http://viget.com/extend/how-to-use-docker-on-os-x-the-missing-guide]inspired me to redo this page.

Continue with the Docker User Guide.

 © Copyright .
 Created using Sphinx 1.3.1.

installation/amazon.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Amazon EC2

You can install Docker on any AWS EC2 Amazon Machine Image (AMI) which runs an
operating system that Docker supports. Amazon’s website includes specific
instructions for installing on Amazon
Linux [http://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html#install_docker]. To install on
another AMI, follow the instructions for its specific operating
system in this installation guide.

For detailed information on Amazon AWS support for Docker, refer to Amazon’s
documentation [http://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html].

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/attach.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

attach

Usage: docker attach [OPTIONS] CONTAINER

Attach to a running container

 --no-stdin=false Do not attach STDIN
 --sig-proxy=true Proxy all received signals to the process

The docker attach command allows you to attach to a running container using
the container’s ID or name, either to view its ongoing output or to control it
interactively. You can attach to the same contained process multiple times
simultaneously, screen sharing style, or quickly view the progress of your
daemonized process.

You can detach from the container and leave it running with CTRL-p CTRL-q
(for a quiet exit) or with CTRL-c if --sig-proxy is false.

If --sig-proxy is true (the default),CTRL-c sends a SIGINT to the
container.

Note:
A process running as PID 1 inside a container is treated specially by
Linux: it ignores any signal with the default action. So, the process
will not terminate on SIGINT or SIGTERM unless it is coded to do
so.

It is forbidden to redirect the standard input of a docker attach command
while attaching to a tty-enabled container (i.e.: launched with -t).

Examples

$ docker run -d --name topdemo ubuntu /usr/bin/top -b
$ docker attach topdemo
top - 02:05:52 up 3:05, 0 users, load average: 0.01, 0.02, 0.05
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.1%us, 0.2%sy, 0.0%ni, 99.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 373572k total, 355560k used, 18012k free, 27872k buffers
Swap: 786428k total, 0k used, 786428k free, 221740k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1 root 20 0 17200 1116 912 R 0 0.3 0:00.03 top

 top - 02:05:55 up 3:05, 0 users, load average: 0.01, 0.02, 0.05
 Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
 Cpu(s): 0.0%us, 0.2%sy, 0.0%ni, 99.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
 Mem: 373572k total, 355244k used, 18328k free, 27872k buffers
 Swap: 786428k total, 0k used, 786428k free, 221776k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1 root 20 0 17208 1144 932 R 0 0.3 0:00.03 top

 top - 02:05:58 up 3:06, 0 users, load average: 0.01, 0.02, 0.05
 Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
 Cpu(s): 0.2%us, 0.3%sy, 0.0%ni, 99.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
 Mem: 373572k total, 355780k used, 17792k free, 27880k buffers
 Swap: 786428k total, 0k used, 786428k free, 221776k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1 root 20 0 17208 1144 932 R 0 0.3 0:00.03 top
^C$
$ echo $?
0
$ docker ps -a | grep topdemo
7998ac8581f9 ubuntu:14.04 "/usr/bin/top -b" 38 seconds ago Exited (0) 21 seconds ago topdemo

And in this second example, you can see the exit code returned by the bash
process is returned by the docker attach command to its caller too:

$ docker run --name test -d -it debian
275c44472aebd77c926d4527885bb09f2f6db21d878c75f0a1c212c03d3bcfab
$ docker attach test
$$ exit 13
exit
$ echo $?
13
$ docker ps -a | grep test
275c44472aeb debian:7 "/bin/bash" 26 seconds ago Exited (13) 17 seconds ago test

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/stats.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

stats

Usage: docker stats CONTAINER [CONTAINER...]

Display a live stream of one or more containers' resource usage statistics

 --help=false Print usage
 --no-stream=false Disable streaming stats and only pull the first result

Running docker stats on multiple containers

$ docker stats redis1 redis2
CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O
redis1 0.07% 796 KB/64 MB 1.21% 788 B/648 B
redis2 0.07% 2.746 MB/64 MB 4.29% 1.266 KB/648 B

The docker stats command will only return a live stream of data for running
containers. Stopped containers will not return any data.

Note:
If you want more detailed information about a container’s resource
usage, use the API endpoint.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/login.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

login

Usage: docker login [OPTIONS] [SERVER]

Register or log in to a Docker registry server, if no server is
specified "https://index.docker.io/v1/" is the default.

 -e, --email="" Email
 -p, --password="" Password
 -u, --username="" Username

If you want to login to a self-hosted registry you can specify this by
adding the server name.

example:
$ docker login localhost:8080

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/pause.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

pause

Usage: docker pause CONTAINER [CONTAINER...]

Pause all processes within a container

The docker pause command uses the cgroups freezer to suspend all processes in
a container. Traditionally, when suspending a process the SIGSTOP signal is
used, which is observable by the process being suspended. With the cgroups freezer
the process is unaware, and unable to capture, that it is being suspended,
and subsequently resumed.

See the
cgroups freezer documentation [https://www.kernel.org/doc/Documentation/cgroups/freezer-subsystem.txt]
for further details.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/wait.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

wait

Usage: docker wait CONTAINER [CONTAINER...]

Block until a container stops, then print its exit code.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/version.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

version

Usage: docker version

Show the Docker version information.

 -f, --format="" Format the output using the given go template

By default, this will render all version information in an easy to read
layout. If a format is specified, the given template will be executed instead.

Go’s text/template [http://golang.org/pkg/text/template/] package
describes all the details of the format.

Examples

Default output:

$ docker version
Client:
 Version: 1.8.0
 API version: 1.20
 Go version: go1.4.2
 Git commit: f5bae0a
 Built: Tue Jun 23 17:56:00 UTC 2015
 OS/Arch: linux/amd64

Server:
 Version: 1.8.0
 API version: 1.20
 Go version: go1.4.2
 Git commit: f5bae0a
 Built: Tue Jun 23 17:56:00 UTC 2015
 OS/Arch: linux/amd64

Get server version:

$ docker version --format '{{.Server.Version}}'
1.8.0

Dump raw data:

$ docker version --format '{{json .}}'
{"Client":{"Version":"1.8.0","ApiVersion":"1.20","GitCommit":"f5bae0a","GoVersion":"go1.4.2","Os":"linux","Arch":"amd64","BuildTime":"Tue Jun 23 17:56:00 UTC 2015"},"ServerOK":true,"Server":{"Version":"1.8.0","ApiVersion":"1.20","GitCommit":"f5bae0a","GoVersion":"go1.4.2","Os":"linux","Arch":"amd64","KernelVersion":"3.13.2-gentoo","BuildTime":"Tue Jun 23 17:56:00 UTC 2015"}}

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/pull.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

pull

Usage: docker pull [OPTIONS] NAME[:TAG] | [REGISTRY_HOST[:REGISTRY_PORT]/]NAME[:TAG]

Pull an image or a repository from the registry

 -a, --all-tags=false Download all tagged images in the repository
 --disable-content-trust=true Skip image verification

Most of your images will be created on top of a base image from the
Docker Hub [https://hub.docker.com] registry.

Docker Hub [https://hub.docker.com] contains many pre-built images that you
can pull and try without needing to define and configure your own.

It is also possible to manually specify the path of a registry to pull from.
For example, if you have set up a local registry, you can specify its path to
pull from it. A repository path is similar to a URL, but does not contain
a protocol specifier (https://, for example).

To download a particular image, or set of images (i.e., a repository),
use docker pull:

$ docker pull debian
will pull the debian:latest image and its intermediate layers
$ docker pull debian:testing
will pull the image named debian:testing and any intermediate
layers it is based on.
$ docker pull debian@sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf
will pull the image from the debian repository with the digest
sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf
and any intermediate layers it is based on.
(Typically the empty `scratch` image, a MAINTAINER layer,
and the un-tarred base).
$ docker pull --all-tags centos
will pull all the images from the centos repository
$ docker pull registry.hub.docker.com/debian
manually specifies the path to the default Docker registry. This could
be replaced with the path to a local registry to pull from another source.
sudo docker pull myhub.com:8080/test-image

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/kill.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

kill

Usage: docker kill [OPTIONS] CONTAINER [CONTAINER...]

Kill a running container using SIGKILL or a specified signal

 -s, --signal="KILL" Signal to send to the container

The main process inside the container will be sent SIGKILL, or any
signal specified with option --signal.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/load.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

load

Usage: docker load [OPTIONS]

Load an image from a tar archive or STDIN

 -i, --input="" Read from a tar archive file, instead of STDIN. The tarball may be compressed with gzip, bzip, or xz

Loads a tarred repository from a file or the standard input stream.
Restores both images and tags.

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
$ docker load < busybox.tar.gz
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
busybox latest 769b9341d937 7 weeks ago 2.489 MB
$ docker load --input fedora.tar
$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
busybox latest 769b9341d937 7 weeks ago 2.489 MB
fedora rawhide 0d20aec6529d 7 weeks ago 387 MB
fedora 20 58394af37342 7 weeks ago 385.5 MB
fedora heisenbug 58394af37342 7 weeks ago 385.5 MB
fedora latest 58394af37342 7 weeks ago 385.5 MB

 © Copyright .
 Created using Sphinx 1.3.1.

articles/certificates.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Using certificates for repository client verification

In Running Docker with HTTPS, you learned that, by default,
Docker runs via a non-networked Unix socket and TLS must be enabled in order
to have the Docker client and the daemon communicate securely over HTTPS.

Now, you will see how to allow the Docker registry (i.e., a server) to
verify that the Docker daemon (i.e., a client) has the right to access the
images being hosted with certificate-based client-server authentication.

We will show you how to install a Certificate Authority (CA) root certificate
for the registry and how to set the client TLS certificate for verification.

Understanding the configuration

A custom certificate is configured by creating a directory under
/etc/docker/certs.d using the same name as the registry’s hostname (e.g.,
localhost). All *.crt files are added to this directory as CA roots.

Note:
In the absence of any root certificate authorities, Docker
will use the system default (i.e., host’s root CA set).

The presence of one or more <filename>.key/cert pairs indicates to Docker
that there are custom certificates required for access to the desired
repository.

Note:
If there are multiple certificates, each will be tried in alphabetical
order. If there is an authentication error (e.g., 403, 404, 5xx, etc.), Docker
will continue to try with the next certificate.

Our example is set up like this:

/etc/docker/certs.d/ <-- Certificate directory
└── localhost <-- Hostname
 ├── client.cert <-- Client certificate
 ├── client.key <-- Client key
 └── localhost.crt <-- Registry certificate

Creating the client certificates

You will use OpenSSL’s genrsa and req commands to first generate an RSA
key and then use the key to create the certificate.

$ openssl genrsa -out client.key 4096
$ openssl req -new -x509 -text -key client.key -out client.cert

Warning::
Using TLS and managing a CA is an advanced topic.
You should be familiar with OpenSSL, x509, and TLS before
attempting to use them in production.

Warning:
These TLS commands will only generate a working set of certificates on Linux.
The version of OpenSSL in Mac OS X is incompatible with the type of
certificate Docker requires.

Testing the verification setup

You can test this setup by using Apache to host a Docker registry.
For this purpose, you can copy a registry tree (containing images) inside
the Apache root.

Note:
You can find such an example here [http://people.gnome.org/~alexl/v1.tar.gz] - which contains the busybox image.

Once you set up the registry, you can use the following Apache configuration
to implement certificate-based protection.

This must be in the root context, otherwise it causes a re-negotiation
which is not supported by the TLS implementation in go
SSLVerifyClient optional_no_ca

<Location /v1>
Action cert-protected /cgi-bin/cert.cgi
SetHandler cert-protected

Header set x-docker-registry-version "0.6.2"
SetEnvIf Host (.*) custom_host=$1
Header set X-Docker-Endpoints "%{custom_host}e"
</Location>

Save the above content as /etc/httpd/conf.d/registry.conf, and
continue with creating a cert.cgi file under /var/www/cgi-bin/.

#!/bin/bash
if ["$HTTPS" != "on"]; then
 echo "Status: 403 Not using SSL"
 echo "x-docker-registry-version: 0.6.2"
 echo
 exit 0
fi
if ["$SSL_CLIENT_VERIFY" == "NONE"]; then
 echo "Status: 403 Client certificate invalid"
 echo "x-docker-registry-version: 0.6.2"
 echo
 exit 0
fi
echo "Content-length: $(stat --printf='%s' $PATH_TRANSLATED)"
echo "x-docker-registry-version: 0.6.2"
echo "X-Docker-Endpoints: $SERVER_NAME"
echo "X-Docker-Size: 0"
echo

cat $PATH_TRANSLATED

This CGI script will ensure that all requests to /v1 without a valid
certificate will be returned with a 403 (i.e., HTTP forbidden) error.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment.png

_static/plus.png

articles/basics.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Get started with containers

This guide assumes you have a working installation of Docker. To verify Docker is
installed, use the following command:

Check that you have a working install
$ docker info

If you get docker: command not found or something like
/var/lib/docker/repositories: permission denied you may have an
incomplete Docker installation or insufficient privileges to access
Docker on your machine. Please

Additionally, depending on your Docker system configuration, you may be required
to preface each docker command with sudo. To avoid having to use sudo with
the docker command, your system administrator can create a Unix group called
docker and add users to it.

For more information about installing Docker or sudo configuration, refer to
the installation instructions for your operating system.

Download a pre-built image

Download an ubuntu image
$ docker pull ubuntu

This will find the ubuntu image by name on
Docker Hub
and download it from Docker Hub [https://hub.docker.com] to a local
image cache.

Note:
When the image is successfully downloaded, you see a 12 character
hash 539c0211cd76: Download complete which is the
short form of the image ID. These short image IDs are the first 12
characters of the full image ID - which can be found using
docker inspect or docker images --no-trunc=true.

Note: if you are using a remote Docker daemon, such as Boot2Docker,
then do not type the sudo before the docker commands shown in the
documentation’s examples.

Running an interactive shell

To run an interactive shell in the Ubuntu image:

$ docker run -i -t ubuntu /bin/bash

The -i flag starts an interactive container. The -t flag creates a pseudo-TTY that attaches stdin and stdout.

To detach the tty without exiting the shell, use the escape sequence Ctrl-p + Ctrl-q. The container will continue to exist in a stopped state once exited. To list all containers, stopped and running use the docker ps -a command.

Bind Docker to another host/port or a Unix socket

Warning:
Changing the default docker daemon binding to a
TCP port or Unix docker user group will increase your security risks
by allowing non-root users to gain root access on the host. Make sure
you control access to docker. If you are binding
to a TCP port, anyone with access to that port has full Docker access;
so it is not advisable on an open network.

With -H it is possible to make the Docker daemon to listen on a
specific IP and port. By default, it will listen on
unix:///var/run/docker.sock to allow only local connections by the
root user. You could set it to 0.0.0.0:2375 or a specific host IP
to give access to everybody, but that is not recommended because
then it is trivial for someone to gain root access to the host where the
daemon is running.

Similarly, the Docker client can use -H to connect to a custom port.

-H accepts host and port assignment in the following format:

tcp://[host][:port][path] or unix://path

For example:

		tcp://host:2375 -> TCP connection on
host:2375

		tcp://host:2375/path -> TCP connection on
host:2375 and prepend path to all requests

		unix://path/to/socket -> Unix socket located
at path/to/socket

-H, when empty, will default to the same value as
when no -H was passed in.

-H also accepts short form for TCP bindings:

host[:port] or :port

Run Docker in daemon mode:

$ sudo <path to>/docker daemon -H 0.0.0.0:5555 &

Download an ubuntu image:

$ docker -H :5555 pull ubuntu

You can use multiple -H, for example, if you want to listen on both
TCP and a Unix socket

Run docker in daemon mode
$ sudo <path to>/docker daemon -H tcp://127.0.0.1:2375 -H unix:///var/run/docker.sock &
Download an ubuntu image, use default Unix socket
$ docker pull ubuntu
OR use the TCP port
$ docker -H tcp://127.0.0.1:2375 pull ubuntu

Starting a long-running worker process

Start a very useful long-running process
$ JOB=$(docker run -d ubuntu /bin/sh -c "while true; do echo Hello world; sleep 1; done")

Collect the output of the job so far
$ docker logs $JOB

Kill the job
$ docker kill $JOB

Listing containers

$ docker ps # Lists only running containers
$ docker ps -a # Lists all containers

Controlling containers

Start a new container
$ JOB=$(docker run -d ubuntu /bin/sh -c "while true; do echo Hello world; sleep 1; done")

Stop the container
$ docker stop $JOB

Start the container
$ docker start $JOB

Restart the container
$ docker restart $JOB

SIGKILL a container
$ docker kill $JOB

Remove a container
$ docker stop $JOB # Container must be stopped to remove it
$ docker rm $JOB

Bind a service on a TCP port

Bind port 4444 of this container, and tell netcat to listen on it
$ JOB=$(docker run -d -p 4444 ubuntu:12.10 /bin/nc -l 4444)

Which public port is NATed to my container?
$ PORT=$(docker port $JOB 4444 | awk -F: '{ print $2 }')

Connect to the public port
$ echo hello world | nc 127.0.0.1 $PORT

Verify that the network connection worked
$ echo "Daemon received: $(docker logs $JOB)"

Committing (saving) a container state

Save your containers state to an image, so the state can be
re-used.

When you commit your container, Docker only stores the diff (difference) between the source image and the current state of the container’s image. To list images you already have, use the docker images command.

Commit your container to a new named image
$ docker commit <container> <some_name>

List your images
$ docker images

You now have an image state from which you can create new instances.

Read more about Share Images via
Repositories or
continue to the complete Command
Line

 © Copyright .
 Created using Sphinx 1.3.1.

articles/configuring.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Configuring and running Docker on various distributions

After successfully installing Docker, the docker daemon runs with its default
configuration.

In a production environment, system administrators typically configure the
docker daemon to start and stop according to an organization’s requirements. In most
cases, the system administrator configures a process manager such as SysVinit, Upstart,
or systemd to manage the docker daemon’s start and stop.

Running the docker daemon directly

The docker daemon can be run directly using the -d option. By default it listens on
the Unix socket unix:///var/run/docker.sock

$ docker daemon

INFO[0000] +job init_networkdriver()
INFO[0000] +job serveapi(unix:///var/run/docker.sock)
INFO[0000] Listening for HTTP on unix (/var/run/docker.sock)
...
...

Configuring the docker daemon directly

If you’re running the docker daemon directly by running docker daemon instead
of using a process manager, you can append the configuration options to the docker run
command directly. Other options can be passed to the docker daemon to configure it.

Some of the daemon’s options are:

Flag	Description
———————–	———————————————————–
-D, --debug=false	Enable or disable debug mode. By default, this is false.
-H,--host=[]	Daemon socket(s) to connect to.
--tls=false	Enable or disable TLS. By default, this is false.

Here is a an example of running the docker daemon with configuration options:

$ docker daemon -D --tls=true --tlscert=/var/docker/server.pem --tlskey=/var/docker/serverkey.pem -H tcp://192.168.59.3:2376

These options :

		Enable -D (debug) mode

		Set tls to true with the server certificate and key specified using --tlscert and --tlskey respectively

		Listen for connections on tcp://192.168.59.3:2376

The command line reference has the complete list of daemon flags
with explanations.

Ubuntu

As of 14.04, Ubuntu uses Upstart as a process manager. By default, Upstart jobs
are located in /etc/init and the docker Upstart job can be found at /etc/init/docker.conf.

After successfully installing Docker for Ubuntu,
you can check the running status using Upstart in this way:

$ sudo status docker

docker start/running, process 989

Running Docker

You can start/stop/restart the docker daemon using

$ sudo start docker

$ sudo stop docker

$ sudo restart docker

Configuring Docker

You configure the docker daemon in the /etc/default/docker file on your
system. You do this by specifying values in a DOCKER_OPTS variable.

To configure Docker options:

		Log into your host as a user with sudo or root privileges.

		If you don’t have one, create the /etc/default/docker file on your host. Depending on how
you installed Docker, you may already have this file.

		Open the file with your favorite editor.

$ sudo vi /etc/default/docker

		Add a DOCKER_OPTS variable with the following options. These options are appended to the
docker daemon’s run command.

 DOCKER_OPTS="-D --tls=true --tlscert=/var/docker/server.pem --tlskey=/var/docker/serverkey.pem -H tcp://192.168.59.3:2376"

These options :

		Enable -D (debug) mode

		Set tls to true with the server certificate and key specified using --tlscert and --tlskey respectively

		Listen for connections on tcp://192.168.59.3:2376

The command line reference has the complete list of daemon flags
with explanations.

		Save and close the file.

		Restart the docker daemon.

$ sudo restart docker

		Verify that the docker daemon is running as specified with the ps command.

$ ps aux | grep docker | grep -v grep

Logs

By default logs for Upstart jobs are located in /var/log/upstart and the logs for docker daemon
can be located at /var/log/upstart/docker.log

$ tail -f /var/log/upstart/docker.log
INFO[0000] Loading containers: done.
INFO[0000] docker daemon: 1.6.0 4749651; execdriver: native-0.2; graphdriver: aufs
INFO[0000] +job acceptconnections()
INFO[0000] -job acceptconnections() = OK (0)
INFO[0000] Daemon has completed initialization

CentOS / Red Hat Enterprise Linux / Fedora

As of 7.x, CentOS and RHEL use systemd as the process manager. As of 21, Fedora uses
systemd as its process manager.

After successfully installing Docker for CentOS/[Red Hat Enterprise Linux]
(/installation/rhel/)/Fedora, you can check the running status in this way:

$ sudo systemctl status docker

Running Docker

You can start/stop/restart the docker daemon using

$ sudo systemctl start docker

$ sudo systemctl stop docker

$ sudo systemctl restart docker

If you want Docker to start at boot, you should also:

$ sudo systemctl enable docker

Configuring Docker

You configure the docker daemon in the /etc/sysconfig/docker file on your
host. You do this by specifying values in a variable. For CentOS 7.x and RHEL 7.x, the name
of the variable is OPTIONS and for CentOS 6.x and RHEL 6.x, the name of the variable is
other_args. For this section, we will use CentOS 7.x as an example to configure the docker
daemon.

By default, systemd services are located either in /etc/systemd/service, /lib/systemd/system
or /usr/lib/systemd/system. The docker.service file can be found in either of these three
directories depending on your host.

To configure Docker options:

		Log into your host as a user with sudo or root privileges.

		If you don’t have one, create the /etc/sysconfig/docker file on your host. Depending on how
you installed Docker, you may already have this file.

		Open the file with your favorite editor.

$ sudo vi /etc/sysconfig/docker

		Add a OPTIONS variable with the following options. These options are appended to the
command that starts the docker daemon.

 OPTIONS="-D --tls=true --tlscert=/var/docker/server.pem --tlskey=/var/docker/serverkey.pem -H tcp://192.168.59.3:2376"

These options :

		Enable -D (debug) mode

		Set tls to true with the server certificate and key specified using --tlscert and --tlskey respectively

		Listen for connections on tcp://192.168.59.3:2376

The command line reference has the complete list of daemon flags
with explanations.

		Save and close the file.

		Restart the docker daemon.

$ sudo systemctl restart docker

		Verify that the docker daemon is running as specified with the ps command.

$ ps aux | grep docker | grep -v grep

Logs

systemd has its own logging system called the journal. The logs for the docker daemon can
be viewed using journalctl -u docker

$ sudo journalctl -u docker
May 06 00:22:05 localhost.localdomain systemd[1]: Starting Docker Application Container Engine...
May 06 00:22:05 localhost.localdomain docker[2495]: time="2015-05-06T00:22:05Z" level="info" msg="+job serveapi(unix:///var/run/docker.sock)"
May 06 00:22:05 localhost.localdomain docker[2495]: time="2015-05-06T00:22:05Z" level="info" msg="Listening for HTTP on unix (/var/run/docker.sock)"
May 06 00:22:06 localhost.localdomain docker[2495]: time="2015-05-06T00:22:06Z" level="info" msg="+job init_networkdriver()"
May 06 00:22:06 localhost.localdomain docker[2495]: time="2015-05-06T00:22:06Z" level="info" msg="-job init_networkdriver() = OK (0)"
May 06 00:22:06 localhost.localdomain docker[2495]: time="2015-05-06T00:22:06Z" level="info" msg="Loading containers: start."
May 06 00:22:06 localhost.localdomain docker[2495]: time="2015-05-06T00:22:06Z" level="info" msg="Loading containers: done."
May 06 00:22:06 localhost.localdomain docker[2495]: time="2015-05-06T00:22:06Z" level="info" msg="docker daemon: 1.5.0-dev fc0329b/1.5.0; execdriver: native-0.2; graphdriver: devicemapper"
May 06 00:22:06 localhost.localdomain docker[2495]: time="2015-05-06T00:22:06Z" level="info" msg="+job acceptconnections()"
May 06 00:22:06 localhost.localdomain docker[2495]: time="2015-05-06T00:22:06Z" level="info" msg="-job acceptconnections() = OK (0)"

Note: Using and configuring journal is an advanced topic and is beyond the scope of this article.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down-pressed.png

articles/systemd.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Control and configure Docker with systemd

Many Linux distributions use systemd to start the Docker daemon. This document
shows a few examples of how to customise Docker’s settings.

Starting the Docker daemon

Once Docker is installed, you will need to start the Docker daemon.

$ sudo systemctl start docker
or on older distributions, you may need to use
$ sudo service docker start

If you want Docker to start at boot, you should also:

$ sudo systemctl enable docker
or on older distributions, you may need to use
$ sudo chkconfig docker on

Custom Docker daemon options

There are a number of ways to configure the daemon flags and environment variables
for your Docker daemon.

If the docker.service file is set to use an EnvironmentFile
(often pointing to /etc/sysconfig/docker) then you can modify the
referenced file.

Check if the docker.service uses an EnvironmentFile:

$ sudo systemctl show docker | grep EnvironmentFile
EnvironmentFile=-/etc/sysconfig/docker (ignore_errors=yes)

Alternatively, find out where the service file is located, and look for the
property:

$ sudo systemctl status docker | grep Loaded
 Loaded: loaded (/usr/lib/systemd/system/docker.service; enabled)
$ sudo grep EnvironmentFile /usr/lib/systemd/system/docker.service
EnvironmentFile=-/etc/sysconfig/docker

You can customize the Docker daemon options using override files as explained in the
HTTP Proxy example below. The files located in /usr/lib/systemd/system
or /lib/systemd/system contain the default options and should not be edited.

Runtime directory and storage driver

You may want to control the disk space used for Docker images, containers
and volumes by moving it to a separate partition.

In this example, we’ll assume that your docker.service file looks something like:

[Unit]
Description=Docker Application Container Engine
Documentation=https://docs.docker.com
After=network.target docker.socket
Requires=docker.socket

[Service]
Type=notify
EnvironmentFile=-/etc/sysconfig/docker
ExecStart=/usr/bin/docker daemon -H fd:// $OPTIONS
LimitNOFILE=1048576
LimitNPROC=1048576

[Install]
Also=docker.socket

This will allow us to add extra flags to the /etc/sysconfig/docker file by
setting OPTIONS:

OPTIONS="--graph /mnt/docker-data --storage-driver btrfs"

You can also set other environment variables in this file, for example, the
HTTP_PROXY environment variables described below.

HTTP proxy

This example overrides the default docker.service file.

If you are behind a HTTP proxy server, for example in corporate settings,
you will need to add this configuration in the Docker systemd service file.

First, create a systemd drop-in directory for the docker service:

mkdir /etc/systemd/system/docker.service.d

Now create a file called /etc/systemd/system/docker.service.d/http-proxy.conf
that adds the HTTP_PROXY environment variable:

[Service]
Environment="HTTP_PROXY=http://proxy.example.com:80/"

If you have internal Docker registries that you need to contact without
proxying you can specify them via the NO_PROXY environment variable:

Environment="HTTP_PROXY=http://proxy.example.com:80/" "NO_PROXY=localhost,127.0.0.0/8,docker-registry.somecorporation.com"

Flush changes:

$ sudo systemctl daemon-reload

Verify that the configuration has been loaded:

$ sudo systemctl show docker --property Environment
Environment=HTTP_PROXY=http://proxy.example.com:80/

Restart Docker:

$ sudo systemctl restart docker

Manually creating the systemd unit files

When installing the binary without a package, you may want
to integrate Docker with systemd. For this, simply install the two unit files
(service and socket) from the github
repository [https://github.com/docker/docker/tree/master/contrib/init/systemd]
to /etc/systemd/system.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up-pressed.png

articles/networking.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Network configuration

Summary

When Docker starts, it creates a virtual interface named docker0 on
the host machine. It randomly chooses an address and subnet from the
private range defined by RFC 1918 [http://tools.ietf.org/html/rfc1918]
that are not in use on the host machine, and assigns it to docker0.
Docker made the choice 172.17.42.1/16 when I started it a few minutes
ago, for example — a 16-bit netmask providing 65,534 addresses for the
host machine and its containers. The MAC address is generated using the
IP address allocated to the container to avoid ARP collisions, using a
range from 02:42:ac:11:00:00 to 02:42:ac:11:ff:ff.

Note:
This document discusses advanced networking configuration
and options for Docker. In most cases you won’t need this information.
If you’re looking to get started with a simpler explanation of Docker
networking and an introduction to the concept of container linking see
the Docker User Guide.

But docker0 is no ordinary interface. It is a virtual Ethernet
bridge that automatically forwards packets between any other network
interfaces that are attached to it. This lets containers communicate
both with the host machine and with each other. Every time Docker
creates a container, it creates a pair of “peer” interfaces that are
like opposite ends of a pipe — a packet sent on one will be received on
the other. It gives one of the peers to the container to become its
eth0 interface and keeps the other peer, with a unique name like
vethAQI2QT, out in the namespace of the host machine. By binding
every veth* interface to the docker0 bridge, Docker creates a
virtual subnet shared between the host machine and every Docker
container.

The remaining sections of this document explain all of the ways that you
can use Docker options and — in advanced cases — raw Linux networking
commands to tweak, supplement, or entirely replace Docker’s default
networking configuration.

Quick guide to the options

Here is a quick list of the networking-related Docker command-line
options, in case it helps you find the section below that you are
looking for.

Some networking command-line options can only be supplied to the Docker
server when it starts up, and cannot be changed once it is running:

		-b BRIDGE or --bridge=BRIDGE — see
Building your own bridge

		--bip=CIDR — see
Customizing docker0

		--default-gateway=IP_ADDRESS — see
How Docker networks a container

		--default-gateway-v6=IP_ADDRESS — see
IPv6

		--fixed-cidr — see
Customizing docker0

		--fixed-cidr-v6 — see
IPv6

		-H SOCKET... or --host=SOCKET... —
This might sound like it would affect container networking,
but it actually faces in the other direction:
it tells the Docker server over what channels
it should be willing to receive commands
like “run container” and “stop container.”

		--icc=true|false — see
Communication between containers

		--ip=IP_ADDRESS — see
Binding container ports

		--ipv6=true|false — see
IPv6

		--ip-forward=true|false — see
Communication between containers and the wider world

		--iptables=true|false — see
Communication between containers

		--mtu=BYTES — see
Customizing docker0

		--userland-proxy=true|false — see
Binding container ports

There are two networking options that can be supplied either at startup
or when docker run is invoked. When provided at startup, set the
default value that docker run will later use if the options are not
specified:

		--dns=IP_ADDRESS... — see
Configuring DNS

		--dns-search=DOMAIN... — see
Configuring DNS

Finally, several networking options can only be provided when calling
docker run because they specify something specific to one container:

		-h HOSTNAME or --hostname=HOSTNAME — see
Configuring DNS and
How Docker networks a container

		--link=CONTAINER_NAME_or_ID:ALIAS — see
Configuring DNS and
Communication between containers

		--net=bridge|none|container:NAME_or_ID|host — see
How Docker networks a container

		--mac-address=MACADDRESS... — see
How Docker networks a container

		-p SPEC or --publish=SPEC — see
Binding container ports

		-P or --publish-all=true|false — see
Binding container ports

To supply networking options to the Docker server at startup, use the
DOCKER_OPTS variable in the Docker upstart configuration file. For Ubuntu, edit the
variable in /etc/default/docker or /etc/sysconfig/docker for CentOS.

The following example illustrates how to configure Docker on Ubuntu to recognize a
newly built bridge.

Edit the /etc/default/docker file:

$ echo 'DOCKER_OPTS="-b=bridge0"' >> /etc/default/docker

Then restart the Docker server.

$ sudo service docker start

For additional information on bridges, see building your own
bridge later on this page.

The following sections tackle all of the above topics in an order that we can move roughly from simplest to most complex.

Configuring DNS

[bookmark: dns]

How can Docker supply each container with a hostname and DNS
configuration, without having to build a custom image with the hostname
written inside? Its trick is to overlay three crucial /etc files
inside the container with virtual files where it can write fresh
information. You can see this by running mount inside a container:

$$ mount
...
/dev/disk/by-uuid/1fec...ebdf on /etc/hostname type ext4 ...
/dev/disk/by-uuid/1fec...ebdf on /etc/hosts type ext4 ...
/dev/disk/by-uuid/1fec...ebdf on /etc/resolv.conf type ext4 ...
...

This arrangement allows Docker to do clever things like keep
resolv.conf up to date across all containers when the host machine
receives new configuration over DHCP later. The exact details of how
Docker maintains these files inside the container can change from one
Docker version to the next, so you should leave the files themselves
alone and use the following Docker options instead.

Four different options affect container domain name services.

		-h HOSTNAME or --hostname=HOSTNAME — sets the hostname by which
the container knows itself. This is written into /etc/hostname,
into /etc/hosts as the name of the container’s host-facing IP
address, and is the name that /bin/bash inside the container will
display inside its prompt. But the hostname is not easy to see from
outside the container. It will not appear in docker ps nor in the
/etc/hosts file of any other container.

		--link=CONTAINER_NAME_or_ID:ALIAS — using this option as you run a
container gives the new container’s /etc/hosts an extra entry
named ALIAS that points to the IP address of the container identified by
CONTAINER_NAME_or_ID. This lets processes inside the new container
connect to the hostname ALIAS without having to know its IP. The
--link= option is discussed in more detail below, in the section
Communication between containers. Because
Docker may assign a different IP address to the linked containers
on restart, Docker updates the ALIAS entry in the /etc/hosts file
of the recipient containers.

		--dns=IP_ADDRESS... — sets the IP addresses added as server
lines to the container’s /etc/resolv.conf file. Processes in the
container, when confronted with a hostname not in /etc/hosts, will
connect to these IP addresses on port 53 looking for name resolution
services.

		--dns-search=DOMAIN... — sets the domain names that are searched
when a bare unqualified hostname is used inside of the container, by
writing search lines into the container’s /etc/resolv.conf.
When a container process attempts to access host and the search
domain example.com is set, for instance, the DNS logic will not
only look up host but also host.example.com.
Use --dns-search=. if you don’t wish to set the search domain.

Regarding DNS settings, in the absence of either the --dns=IP_ADDRESS...
or the --dns-search=DOMAIN... option, Docker makes each container’s
/etc/resolv.conf look like the /etc/resolv.conf of the host machine (where
the docker daemon runs). When creating the container’s /etc/resolv.conf,
the daemon filters out all localhost IP address nameserver entries from
the host’s original file.

Filtering is necessary because all localhost addresses on the host are
unreachable from the container’s network. After this filtering, if there
are no more nameserver entries left in the container’s /etc/resolv.conf
file, the daemon adds public Google DNS nameservers
(8.8.8.8 and 8.8.4.4) to the container’s DNS configuration. If IPv6 is
enabled on the daemon, the public IPv6 Google DNS nameservers will also
be added (2001:4860:4860::8888 and 2001:4860:4860::8844).

Note:
If you need access to a host’s localhost resolver, you must modify your
DNS service on the host to listen on a non-localhost address that is
reachable from within the container.

You might wonder what happens when the host machine’s
/etc/resolv.conf file changes. The docker daemon has a file change
notifier active which will watch for changes to the host DNS configuration.

Note:
The file change notifier relies on the Linux kernel’s inotify feature.
Because this feature is currently incompatible with the overlay filesystem
driver, a Docker daemon using “overlay” will not be able to take advantage
of the /etc/resolv.conf auto-update feature.

When the host file changes, all stopped containers which have a matching
resolv.conf to the host will be updated immediately to this newest host
configuration. Containers which are running when the host configuration
changes will need to stop and start to pick up the host changes due to lack
of a facility to ensure atomic writes of the resolv.conf file while the
container is running. If the container’s resolv.conf has been edited since
it was started with the default configuration, no replacement will be
attempted as it would overwrite the changes performed by the container.
If the options (--dns or --dns-search) have been used to modify the
default host configuration, then the replacement with an updated host’s
/etc/resolv.conf will not happen as well.

Note:
For containers which were created prior to the implementation of
the /etc/resolv.conf update feature in Docker 1.5.0: those
containers will not receive updates when the host resolv.conf
file changes. Only containers created with Docker 1.5.0 and above
will utilize this auto-update feature.

Communication between containers and the wider world

[bookmark: the-world]

Whether a container can talk to the world is governed by two factors.

		Is the host machine willing to forward IP packets? This is governed
by the ip_forward system parameter. Packets can only pass between
containers if this parameter is 1. Usually you will simply leave
the Docker server at its default setting --ip-forward=true and
Docker will go set ip_forward to 1 for you when the server
starts up. If you set --ip-forward=false and your system’s kernel
has it enabled, the --ip-forward=false option has no effect.
To check the setting on your kernel or to turn it on manually:

$ sysctl net.ipv4.conf.all.forwarding
net.ipv4.conf.all.forwarding = 0
$ sysctl net.ipv4.conf.all.forwarding=1
$ sysctl net.ipv4.conf.all.forwarding
net.ipv4.conf.all.forwarding = 1

Many using Docker will want ip_forward to be on, to at
least make communication possible between containers and
the wider world.

May also be needed for inter-container communication if you are
in a multiple bridge setup.

		Do your iptables allow this particular connection? Docker will
never make changes to your system iptables rules if you set
--iptables=false when the daemon starts. Otherwise the Docker
server will append forwarding rules to the DOCKER filter chain.

Docker will not delete or modify any pre-existing rules from the DOCKER
filter chain. This allows the user to create in advance any rules required
to further restrict access to the containers.

Docker’s forward rules permit all external source IPs by default. To allow
only a specific IP or network to access the containers, insert a negated
rule at the top of the DOCKER filter chain. For example, to restrict
external access such that only source IP 8.8.8.8 can access the
containers, the following rule could be added:

$ iptables -I DOCKER -i ext_if ! -s 8.8.8.8 -j DROP

Communication between containers

[bookmark: between-containers]

Whether two containers can communicate is governed, at the operating
system level, by two factors.

		Does the network topology even connect the containers’ network
interfaces? By default Docker will attach all containers to a
single docker0 bridge, providing a path for packets to travel
between them. See the later sections of this document for other
possible topologies.

		Do your iptables allow this particular connection? Docker will never
make changes to your system iptables rules if you set
--iptables=false when the daemon starts. Otherwise the Docker server
will add a default rule to the FORWARD chain with a blanket ACCEPT
policy if you retain the default --icc=true, or else will set the
policy to DROP if --icc=false.

It is a strategic question whether to leave --icc=true or change it to
--icc=false so that
iptables will protect other containers — and the main host — from
having arbitrary ports probed or accessed by a container that gets
compromised.

If you choose the most secure setting of --icc=false, then how can
containers communicate in those cases where you want them to provide
each other services?

The answer is the --link=CONTAINER_NAME_or_ID:ALIAS option, which was
mentioned in the previous section because of its effect upon name
services. If the Docker daemon is running with both --icc=false and
--iptables=true then, when it sees docker run invoked with the
--link= option, the Docker server will insert a pair of iptables
ACCEPT rules so that the new container can connect to the ports
exposed by the other container — the ports that it mentioned in the
EXPOSE lines of its Dockerfile. Docker has more documentation on
this subject — see the linking Docker containers
page for further details.

Note:
The value CONTAINER_NAME in --link= must either be an
auto-assigned Docker name like stupefied_pare or else the name you
assigned with --name= when you ran docker run. It cannot be a
hostname, which Docker will not recognize in the context of the
--link= option.

You can run the iptables command on your Docker host to see whether
the FORWARD chain has a default policy of ACCEPT or DROP:

When --icc=false, you should see a DROP rule:

$ sudo iptables -L -n
...
Chain FORWARD (policy ACCEPT)
target prot opt source destination
DOCKER all -- 0.0.0.0/0 0.0.0.0/0
DROP all -- 0.0.0.0/0 0.0.0.0/0
...

When a --link= has been created under --icc=false,
you should see port-specific ACCEPT rules overriding
the subsequent DROP policy for all other packets:

$ sudo iptables -L -n
...
Chain FORWARD (policy ACCEPT)
target prot opt source destination
DOCKER all -- 0.0.0.0/0 0.0.0.0/0
DROP all -- 0.0.0.0/0 0.0.0.0/0

Chain DOCKER (1 references)
target prot opt source destination
ACCEPT tcp -- 172.17.0.2 172.17.0.3 tcp spt:80
ACCEPT tcp -- 172.17.0.3 172.17.0.2 tcp dpt:80

Note:
Docker is careful that its host-wide iptables rules fully expose
containers to each other’s raw IP addresses, so connections from one
container to another should always appear to be originating from the
first container’s own IP address.

Binding container ports to the host

[bookmark: binding-ports]

By default Docker containers can make connections to the outside world,
but the outside world cannot connect to containers. Each outgoing
connection will appear to originate from one of the host machine’s own
IP addresses thanks to an iptables masquerading rule on the host
machine that the Docker server creates when it starts:

You can see that the Docker server creates a
masquerade rule that let containers connect
to IP addresses in the outside world:

$ sudo iptables -t nat -L -n
...
Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 172.17.0.0/16 0.0.0.0/0
...

But if you want containers to accept incoming connections, you will need
to provide special options when invoking docker run. These options
are covered in more detail in the Docker User Guide
page. There are two approaches.

First, you can supply -P or --publish-all=true|false to docker run which
is a blanket operation that identifies every port with an EXPOSE line in the
image’s Dockerfile or --expose <port> commandline flag and maps it to a
host port somewhere within an ephemeral port range. The docker port command
then needs to be used to inspect created mapping. The ephemeral port range is
configured by /proc/sys/net/ipv4/ip_local_port_range kernel parameter,
typically ranging from 32768 to 61000.

Mapping can be specified explicitly using -p SPEC or --publish=SPEC option.
It allows you to particularize which port on docker server - which can be any
port at all, not just one within the ephemeral port range — you want mapped
to which port in the container.

Either way, you should be able to peek at what Docker has accomplished
in your network stack by examining your NAT tables.

What your NAT rules might look like when Docker
is finished setting up a -P forward:

$ iptables -t nat -L -n
...
Chain DOCKER (2 references)
target prot opt source destination
DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:49153 to:172.17.0.2:80

What your NAT rules might look like when Docker
is finished setting up a -p 80:80 forward:

Chain DOCKER (2 references)
target prot opt source destination
DNAT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:80 to:172.17.0.2:80

You can see that Docker has exposed these container ports on 0.0.0.0,
the wildcard IP address that will match any possible incoming port on
the host machine. If you want to be more restrictive and only allow
container services to be contacted through a specific external interface
on the host machine, you have two choices. When you invoke docker run
you can use either -p IP:host_port:container_port or -p IP::port to
specify the external interface for one particular binding.

Or if you always want Docker port forwards to bind to one specific IP
address, you can edit your system-wide Docker server settings and add the
option --ip=IP_ADDRESS. Remember to restart your Docker server after
editing this setting.

Note:
With hairpin NAT enabled (--userland-proxy=false), containers port exposure
is achieved purely through iptables rules, and no attempt to bind the exposed
port is ever made. This means that nothing prevents shadowing a previously
listening service outside of Docker through exposing the same port for a
container. In such conflicting situation, Docker created iptables rules will
take precedence and route to the container.

The --userland-proxy parameter, true by default, provides a userland
implementation for inter-container and outside-to-container communication. When
disabled, Docker uses both an additional MASQUERADE iptable rule and the
net.ipv4.route_localnet kernel parameter which allow the host machine to
connect to a local container exposed port through the commonly used loopback
address: this alternative is preferred for performance reason.

Again, this topic is covered without all of these low-level networking
details in the Docker User Guide document if you
would like to use that as your port redirection reference instead.

IPv6

[bookmark: ipv6]

As we are running out of IPv4 addresses [http://en.wikipedia.org/wiki/IPv4_address_exhaustion]
the IETF has standardized an IPv4 successor, Internet Protocol Version 6 [http://en.wikipedia.org/wiki/IPv6]
, in RFC 2460 [https://www.ietf.org/rfc/rfc2460.txt]. Both protocols, IPv4 and
IPv6, reside on layer 3 of the OSI model [http://en.wikipedia.org/wiki/OSI_model].

IPv6 with Docker

By default, the Docker server configures the container network for IPv4 only.
You can enable IPv4/IPv6 dualstack support by running the Docker daemon with the
--ipv6 flag. Docker will set up the bridge docker0 with the IPv6
link-local address [http://en.wikipedia.org/wiki/Link-local_address] fe80::1.

By default, containers that are created will only get a link-local IPv6 address.
To assign globally routable IPv6 addresses to your containers you have to
specify an IPv6 subnet to pick the addresses from. Set the IPv6 subnet via the
--fixed-cidr-v6 parameter when starting Docker daemon:

docker daemon --ipv6 --fixed-cidr-v6="2001:db8:1::/64"

The subnet for Docker containers should at least have a size of /80. This way
an IPv6 address can end with the container’s MAC address and you prevent NDP
neighbor cache invalidation issues in the Docker layer.

With the --fixed-cidr-v6 parameter set Docker will add a new route to the
routing table. Further IPv6 routing will be enabled (you may prevent this by
starting Docker daemon with --ip-forward=false):

$ ip -6 route add 2001:db8:1::/64 dev docker0
$ sysctl net.ipv6.conf.default.forwarding=1
$ sysctl net.ipv6.conf.all.forwarding=1

All traffic to the subnet 2001:db8:1::/64 will now be routed
via the docker0 interface.

Be aware that IPv6 forwarding may interfere with your existing IPv6
configuration: If you are using Router Advertisements to get IPv6 settings for
your host’s interfaces you should set accept_ra to 2. Otherwise IPv6
enabled forwarding will result in rejecting Router Advertisements. E.g., if you
want to configure eth0 via Router Advertisements you should set:

$ sysctl net.ipv6.conf.eth0.accept_ra=2

[image:]

Every new container will get an IPv6 address from the defined subnet. Further
a default route will be added on eth0 in the container via the address
specified by the daemon option --default-gateway-v6 if present, otherwise
via fe80::1:

docker run -it ubuntu bash -c "ip -6 addr show dev eth0; ip -6 route show"

15: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500
 inet6 2001:db8:1:0:0:242:ac11:3/64 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::42:acff:fe11:3/64 scope link
 valid_lft forever preferred_lft forever

2001:db8:1::/64 dev eth0 proto kernel metric 256
fe80::/64 dev eth0 proto kernel metric 256
default via fe80::1 dev eth0 metric 1024

In this example the Docker container is assigned a link-local address with the
network suffix /64 (here: fe80::42:acff:fe11:3/64) and a globally routable
IPv6 address (here: 2001:db8:1:0:0:242:ac11:3/64). The container will create
connections to addresses outside of the 2001:db8:1::/64 network via the
link-local gateway at fe80::1 on eth0.

Often servers or virtual machines get a /64 IPv6 subnet assigned (e.g.
2001:db8:23:42::/64). In this case you can split it up further and provide
Docker a /80 subnet while using a separate /80 subnet for other
applications on the host:

[image:]

In this setup the subnet 2001:db8:23:42::/80 with a range from 2001:db8:23:42:0:0:0:0
to 2001:db8:23:42:0:ffff:ffff:ffff is attached to eth0, with the host listening
at 2001:db8:23:42::1. The subnet 2001:db8:23:42:1::/80 with an address range from
2001:db8:23:42:1:0:0:0 to 2001:db8:23:42:1:ffff:ffff:ffff is attached to
docker0 and will be used by containers.

Using NDP proxying

If your Docker host is only part of an IPv6 subnet but has not got an IPv6
subnet assigned you can use NDP proxying to connect your containers via IPv6 to
the internet.
For example your host has the IPv6 address 2001:db8::c001, is part of the
subnet 2001:db8::/64 and your IaaS provider allows you to configure the IPv6
addresses 2001:db8::c000 to 2001:db8::c00f:

$ ip -6 addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000
 inet6 2001:db8::c001/64 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::601:3fff:fea1:9c01/64 scope link
 valid_lft forever preferred_lft forever

Let’s split up the configurable address range into two subnets
2001:db8::c000/125 and 2001:db8::c008/125. The first one can be used by the
host itself, the latter by Docker:

docker daemon --ipv6 --fixed-cidr-v6 2001:db8::c008/125

You notice the Docker subnet is within the subnet managed by your router that
is connected to eth0. This means all devices (containers) with the addresses
from the Docker subnet are expected to be found within the router subnet.
Therefore the router thinks it can talk to these containers directly.

[image:]

As soon as the router wants to send an IPv6 packet to the first container it
will transmit a neighbor solicitation request, asking, who has
2001:db8::c009? But it will get no answer because no one on this subnet has
this address. The container with this address is hidden behind the Docker host.
The Docker host has to listen to neighbor solicitation requests for the container
address and send a response that itself is the device that is responsible for
the address. This is done by a Kernel feature called NDP Proxy. You can
enable it by executing

$ sysctl net.ipv6.conf.eth0.proxy_ndp=1

Now you can add the container’s IPv6 address to the NDP proxy table:

$ ip -6 neigh add proxy 2001:db8::c009 dev eth0

This command tells the Kernel to answer to incoming neighbor solicitation requests
regarding the IPv6 address 2001:db8::c009 on the device eth0. As a
consequence of this all traffic to this IPv6 address will go into the Docker
host and it will forward it according to its routing table via the docker0
device to the container network:

$ ip -6 route show
2001:db8::c008/125 dev docker0 metric 1
2001:db8::/64 dev eth0 proto kernel metric 256

You have to execute the ip -6 neigh add proxy ... command for every IPv6
address in your Docker subnet. Unfortunately there is no functionality for
adding a whole subnet by executing one command. An alternative approach would be to
use an NDP proxy daemon such as ndppd [https://github.com/DanielAdolfsson/ndppd].

Docker IPv6 cluster

Switched network environment

Using routable IPv6 addresses allows you to realize communication between
containers on different hosts. Let’s have a look at a simple Docker IPv6 cluster
example:

[image:]

The Docker hosts are in the 2001:db8:0::/64 subnet. Host1 is configured
to provide addresses from the 2001:db8:1::/64 subnet to its containers. It
has three routes configured:

		Route all traffic to 2001:db8:0::/64 via eth0

		Route all traffic to 2001:db8:1::/64 via docker0

		Route all traffic to 2001:db8:2::/64 via Host2 with IP 2001:db8::2

Host1 also acts as a router on OSI layer 3. When one of the network clients
tries to contact a target that is specified in Host1’s routing table Host1 will
forward the traffic accordingly. It acts as a router for all networks it knows:
2001:db8::/64, 2001:db8:1::/64 and 2001:db8:2::/64.

On Host2 we have nearly the same configuration. Host2’s containers will get
IPv6 addresses from 2001:db8:2::/64. Host2 has three routes configured:

		Route all traffic to 2001:db8:0::/64 via eth0

		Route all traffic to 2001:db8:2::/64 via docker0

		Route all traffic to 2001:db8:1::/64 via Host1 with IP 2001:db8:0::1

The difference to Host1 is that the network 2001:db8:2::/64 is directly
attached to the host via its docker0 interface whereas it reaches
2001:db8:1::/64 via Host1’s IPv6 address 2001:db8::1.

This way every container is able to contact every other container. The
containers Container1-* share the same subnet and contact each other directly.
The traffic between Container1-* and Container2-* will be routed via Host1
and Host2 because those containers do not share the same subnet.

In a switched environment every host has to know all routes to every subnet. You
always have to update the hosts’ routing tables once you add or remove a host
to the cluster.

Every configuration in the diagram that is shown below the dashed line is
handled by Docker: The docker0 bridge IP address configuration, the route to
the Docker subnet on the host, the container IP addresses and the routes on the
containers. The configuration above the line is up to the user and can be
adapted to the individual environment.

Routed network environment

In a routed network environment you replace the layer 2 switch with a layer 3
router. Now the hosts just have to know their default gateway (the router) and
the route to their own containers (managed by Docker). The router holds all
routing information about the Docker subnets. When you add or remove a host to
this environment you just have to update the routing table in the router - not
on every host.

[image:]

In this scenario containers of the same host can communicate directly with each
other. The traffic between containers on different hosts will be routed via
their hosts and the router. For example packet from Container1-1 to
Container2-1 will be routed through Host1, Router and Host2 until it
arrives at Container2-1.

To keep the IPv6 addresses short in this example a /48 network is assigned to
every host. The hosts use a /64 subnet of this for its own services and one
for Docker. When adding a third host you would add a route for the subnet
2001:db8:3::/48 in the router and configure Docker on Host3 with
--fixed-cidr-v6=2001:db8:3:1::/64.

Remember the subnet for Docker containers should at least have a size of /80.
This way an IPv6 address can end with the container’s MAC address and you
prevent NDP neighbor cache invalidation issues in the Docker layer. So if you
have a /64 for your whole environment use /78 subnets for the hosts and
/80 for the containers. This way you can use 4096 hosts with 16 /80 subnets
each.

Every configuration in the diagram that is visualized below the dashed line is
handled by Docker: The docker0 bridge IP address configuration, the route to
the Docker subnet on the host, the container IP addresses and the routes on the
containers. The configuration above the line is up to the user and can be
adapted to the individual environment.

Customizing docker0

[bookmark: docker0]

By default, the Docker server creates and configures the host system’s
docker0 interface as an Ethernet bridge inside the Linux kernel that
can pass packets back and forth between other physical or virtual
network interfaces so that they behave as a single Ethernet network.

Docker configures docker0 with an IP address, netmask and IP
allocation range. The host machine can both receive and send packets to
containers connected to the bridge, and gives it an MTU — the maximum
transmission unit or largest packet length that the interface will
allow — of either 1,500 bytes or else a more specific value copied from
the Docker host’s interface that supports its default route. These
options are configurable at server startup:

		--bip=CIDR — supply a specific IP address and netmask for the
docker0 bridge, using standard CIDR notation like
192.168.1.5/24.

		--fixed-cidr=CIDR — restrict the IP range from the docker0 subnet,
using the standard CIDR notation like 172.167.1.0/28. This range must
be and IPv4 range for fixed IPs (ex: 10.20.0.0/16) and must be a subset
of the bridge IP range (docker0 or set using --bridge). For example
with --fixed-cidr=192.168.1.0/25, IPs for your containers will be chosen
from the first half of 192.168.1.0/24 subnet.

		--mtu=BYTES — override the maximum packet length on docker0.

Once you have one or more containers up and running, you can confirm
that Docker has properly connected them to the docker0 bridge by
running the brctl command on the host machine and looking at the
interfaces column of the output. Here is a host with two different
containers connected:

Display bridge info

$ sudo brctl show
bridge name bridge id STP enabled interfaces
docker0 8000.3a1d7362b4ee no veth65f9
 vethdda6

If the brctl command is not installed on your Docker host, then on
Ubuntu you should be able to run sudo apt-get install bridge-utils to
install it.

Finally, the docker0 Ethernet bridge settings are used every time you
create a new container. Docker selects a free IP address from the range
available on the bridge each time you docker run a new container, and
configures the container’s eth0 interface with that IP address and the
bridge’s netmask. The Docker host’s own IP address on the bridge is
used as the default gateway by which each container reaches the rest of
the Internet.

The network, as seen from a container

$ docker run -i -t --rm base /bin/bash

$$ ip addr show eth0
24: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
 link/ether 32:6f:e0:35:57:91 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.3/16 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::306f:e0ff:fe35:5791/64 scope link
 valid_lft forever preferred_lft forever

$$ ip route
default via 172.17.42.1 dev eth0
172.17.0.0/16 dev eth0 proto kernel scope link src 172.17.0.3

$$ exit

Remember that the Docker host will not be willing to forward container
packets out on to the Internet unless its ip_forward system setting is
1 — see the section above on Communication between
containers for details.

Building your own bridge

[bookmark: bridge-building]

If you want to take Docker out of the business of creating its own
Ethernet bridge entirely, you can set up your own bridge before starting
Docker and use -b BRIDGE or --bridge=BRIDGE to tell Docker to use
your bridge instead. If you already have Docker up and running with its
old docker0 still configured, you will probably want to begin by
stopping the service and removing the interface:

Stopping Docker and removing docker0

$ sudo service docker stop
$ sudo ip link set dev docker0 down
$ sudo brctl delbr docker0
$ sudo iptables -t nat -F POSTROUTING

Then, before starting the Docker service, create your own bridge and
give it whatever configuration you want. Here we will create a simple
enough bridge that we really could just have used the options in the
previous section to customize docker0, but it will be enough to
illustrate the technique.

Create our own bridge

$ sudo brctl addbr bridge0
$ sudo ip addr add 192.168.5.1/24 dev bridge0
$ sudo ip link set dev bridge0 up

Confirming that our bridge is up and running

$ ip addr show bridge0
4: bridge0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state UP group default
 link/ether 66:38:d0:0d:76:18 brd ff:ff:ff:ff:ff:ff
 inet 192.168.5.1/24 scope global bridge0
 valid_lft forever preferred_lft forever

Tell Docker about it and restart (on Ubuntu)

$ echo 'DOCKER_OPTS="-b=bridge0"' >> /etc/default/docker
$ sudo service docker start

Confirming new outgoing NAT masquerade is set up

$ sudo iptables -t nat -L -n
...
Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 192.168.5.0/24 0.0.0.0/0

The result should be that the Docker server starts successfully and is
now prepared to bind containers to the new bridge. After pausing to
verify the bridge’s configuration, try creating a container — you will
see that its IP address is in your new IP address range, which Docker
will have auto-detected.

Just as we learned in the previous section, you can use the brctl show
command to see Docker add and remove interfaces from the bridge as you
start and stop containers, and can run ip addr and ip route inside a
container to see that it has been given an address in the bridge’s IP
address range and has been told to use the Docker host’s IP address on
the bridge as its default gateway to the rest of the Internet.

How Docker networks a container

[bookmark: container-networking]

While Docker is under active development and continues to tweak and
improve its network configuration logic, the shell commands in this
section are rough equivalents to the steps that Docker takes when
configuring networking for each new container.

Let’s review a few basics.

To communicate using the Internet Protocol (IP), a machine needs access
to at least one network interface at which packets can be sent and
received, and a routing table that defines the range of IP addresses
reachable through that interface. Network interfaces do not have to be
physical devices. In fact, the lo loopback interface available on
every Linux machine (and inside each Docker container) is entirely
virtual — the Linux kernel simply copies loopback packets directly from
the sender’s memory into the receiver’s memory.

Docker uses special virtual interfaces to let containers communicate
with the host machine — pairs of virtual interfaces called “peers” that
are linked inside of the host machine’s kernel so that packets can
travel between them. They are simple to create, as we will see in a
moment.

The steps with which Docker configures a container are:

		Create a pair of peer virtual interfaces.

		Give one of them a unique name like veth65f9, keep it inside of
the main Docker host, and bind it to docker0 or whatever bridge
Docker is supposed to be using.

		Toss the other interface over the wall into the new container (which
will already have been provided with an lo interface) and rename
it to the much prettier name eth0 since, inside of the container’s
separate and unique network interface namespace, there are no
physical interfaces with which this name could collide.

		Set the interface’s MAC address according to the --mac-address
parameter or generate a random one.

		Give the container’s eth0 a new IP address from within the
bridge’s range of network addresses. The default route is set to the
IP address passed to the Docker daemon using the --default-gateway
option if specified, otherwise to the IP address that the Docker host
owns on the bridge. The MAC address is generated from the IP address
unless otherwise specified. This prevents ARP cache invalidation
problems, when a new container comes up with an IP used in the past by
another container with another MAC.

With these steps complete, the container now possesses an eth0
(virtual) network card and will find itself able to communicate with
other containers and the rest of the Internet.

You can opt out of the above process for a particular container by
giving the --net= option to docker run, which takes four possible
values.

		--net=bridge — The default action, that connects the container to
the Docker bridge as described above.

		--net=host — Tells Docker to skip placing the container inside of
a separate network stack. In essence, this choice tells Docker to
not containerize the container’s networking! While container
processes will still be confined to their own filesystem and process
list and resource limits, a quick ip addr command will show you
that, network-wise, they live “outside” in the main Docker host and
have full access to its network interfaces. Note that this does
not let the container reconfigure the host network stack — that
would require --privileged=true — but it does let container
processes open low-numbered ports like any other root process.
It also allows the container to access local network services
like D-bus. This can lead to processes in the container being
able to do unexpected things like
restart your computer [https://github.com/docker/docker/issues/6401].
You should use this option with caution.

		--net=container:NAME_or_ID — Tells Docker to put this container’s
processes inside of the network stack that has already been created
inside of another container. The new container’s processes will be
confined to their own filesystem and process list and resource
limits, but will share the same IP address and port numbers as the
first container, and processes on the two containers will be able to
connect to each other over the loopback interface.

		--net=none — Tells Docker to put the container inside of its own
network stack but not to take any steps to configure its network,
leaving you free to build any of the custom configurations explored
in the last few sections of this document.

To get an idea of the steps that are necessary if you use --net=none
as described in that last bullet point, here are the commands that you
would run to reach roughly the same configuration as if you had let
Docker do all of the configuration:

At one shell, start a container and
leave its shell idle and running

$ docker run -i -t --rm --net=none base /bin/bash
root@63f36fc01b5f:/#

At another shell, learn the container process ID
and create its namespace entry in /var/run/netns/
for the "ip netns" command we will be using below

$ docker inspect -f '{{.State.Pid}}' 63f36fc01b5f
2778
$ pid=2778
$ sudo mkdir -p /var/run/netns
$ sudo ln -s /proc/$pid/ns/net /var/run/netns/$pid

Check the bridge's IP address and netmask

$ ip addr show docker0
21: docker0: ...
inet 172.17.42.1/16 scope global docker0
...

Create a pair of "peer" interfaces A and B,
bind the A end to the bridge, and bring it up

$ sudo ip link add A type veth peer name B
$ sudo brctl addif docker0 A
$ sudo ip link set A up

Place B inside the container's network namespace,
rename to eth0, and activate it with a free IP

$ sudo ip link set B netns $pid
$ sudo ip netns exec $pid ip link set dev B name eth0
$ sudo ip netns exec $pid ip link set eth0 address 12:34:56:78:9a:bc
$ sudo ip netns exec $pid ip link set eth0 up
$ sudo ip netns exec $pid ip addr add 172.17.42.99/16 dev eth0
$ sudo ip netns exec $pid ip route add default via 172.17.42.1

At this point your container should be able to perform networking
operations as usual.

When you finally exit the shell and Docker cleans up the container, the
network namespace is destroyed along with our virtual eth0 — whose
destruction in turn destroys interface A out in the Docker host and
automatically un-registers it from the docker0 bridge. So everything
gets cleaned up without our having to run any extra commands! Well,
almost everything:

Clean up dangling symlinks in /var/run/netns

find -L /var/run/netns -type l -delete

Also note that while the script above used modern ip command instead
of old deprecated wrappers like ipconfig and route, these older
commands would also have worked inside of our container. The ip addr
command can be typed as ip a if you are in a hurry.

Finally, note the importance of the ip netns exec command, which let
us reach inside and configure a network namespace as root. The same
commands would not have worked if run inside of the container, because
part of safe containerization is that Docker strips container processes
of the right to configure their own networks. Using ip netns exec is
what let us finish up the configuration without having to take the
dangerous step of running the container itself with --privileged=true.

Tools and examples

Before diving into the following sections on custom network topologies,
you might be interested in glancing at a few external tools or examples
of the same kinds of configuration. Here are two:

		Jérôme Petazzoni has created a pipework shell script to help you
connect together containers in arbitrarily complex scenarios:
https://github.com/jpetazzo/pipework

		Brandon Rhodes has created a whole network topology of Docker
containers for the next edition of Foundations of Python Network
Programming that includes routing, NAT’d firewalls, and servers that
offer HTTP, SMTP, POP, IMAP, Telnet, SSH, and FTP:
https://github.com/brandon-rhodes/fopnp/tree/m/playground

Both tools use networking commands very much like the ones you saw in
the previous section, and will see in the following sections.

Building a point-to-point connection

[bookmark: point-to-point]

By default, Docker attaches all containers to the virtual subnet
implemented by docker0. You can create containers that are each
connected to some different virtual subnet by creating your own bridge
as shown in Building your own bridge, starting each
container with docker run --net=none, and then attaching the
containers to your bridge with the shell commands shown in How Docker
networks a container.

But sometimes you want two particular containers to be able to
communicate directly without the added complexity of both being bound to
a host-wide Ethernet bridge.

The solution is simple: when you create your pair of peer interfaces,
simply throw both of them into containers, and configure them as
classic point-to-point links. The two containers will then be able to
communicate directly (provided you manage to tell each container the
other’s IP address, of course). You might adjust the instructions of
the previous section to go something like this:

Start up two containers in two terminal windows

$ docker run -i -t --rm --net=none base /bin/bash
root@1f1f4c1f931a:/#

$ docker run -i -t --rm --net=none base /bin/bash
root@12e343489d2f:/#

Learn the container process IDs
and create their namespace entries

$ docker inspect -f '{{.State.Pid}}' 1f1f4c1f931a
2989
$ docker inspect -f '{{.State.Pid}}' 12e343489d2f
3004
$ sudo mkdir -p /var/run/netns
$ sudo ln -s /proc/2989/ns/net /var/run/netns/2989
$ sudo ln -s /proc/3004/ns/net /var/run/netns/3004

Create the "peer" interfaces and hand them out

$ sudo ip link add A type veth peer name B

$ sudo ip link set A netns 2989
$ sudo ip netns exec 2989 ip addr add 10.1.1.1/32 dev A
$ sudo ip netns exec 2989 ip link set A up
$ sudo ip netns exec 2989 ip route add 10.1.1.2/32 dev A

$ sudo ip link set B netns 3004
$ sudo ip netns exec 3004 ip addr add 10.1.1.2/32 dev B
$ sudo ip netns exec 3004 ip link set B up
$ sudo ip netns exec 3004 ip route add 10.1.1.1/32 dev B

The two containers should now be able to ping each other and make
connections successfully. Point-to-point links like this do not depend
on a subnet nor a netmask, but on the bare assertion made by ip route
that some other single IP address is connected to a particular network
interface.

Note that point-to-point links can be safely combined with other kinds
of network connectivity — there is no need to start the containers with
--net=none if you want point-to-point links to be an addition to the
container’s normal networking instead of a replacement.

A final permutation of this pattern is to create the point-to-point link
between the Docker host and one container, which would allow the host to
communicate with that one container on some single IP address and thus
communicate “out-of-band” of the bridge that connects the other, more
usual containers. But unless you have very specific networking needs
that drive you to such a solution, it is probably far preferable to use
--icc=false to lock down inter-container communication, as we explored
earlier.

Editing networking config files

Starting with Docker v.1.2.0, you can now edit /etc/hosts, /etc/hostname
and /etc/resolve.conf in a running container. This is useful if you need
to install bind or other services that might override one of those files.

Note, however, that changes to these files will not be saved by
docker commit, nor will they be saved during docker run.
That means they won’t be saved in the image, nor will they persist when a
container is restarted; they will only “stick” in a running container.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/minus.png

articles/ambassador_pattern_linking.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Link via an ambassador container

Introduction

Rather than hardcoding network links between a service consumer and
provider, Docker encourages service portability, for example instead of:

(consumer) --> (redis)

Requiring you to restart the consumer to attach it to a different
redis service, you can add ambassadors:

(consumer) --> (redis-ambassador) --> (redis)

Or

(consumer) --> (redis-ambassador) ---network---> (redis-ambassador) --> (redis)

When you need to rewire your consumer to talk to a different Redis
server, you can just restart the redis-ambassador container that the
consumer is connected to.

This pattern also allows you to transparently move the Redis server to a
different docker host from the consumer.

Using the svendowideit/ambassador container, the link wiring is
controlled entirely from the docker run parameters.

Two host example

Start actual Redis server on one Docker host

big-server $ docker run -d --name redis crosbymichael/redis

Then add an ambassador linked to the Redis server, mapping a port to the
outside world

big-server $ docker run -d --link redis:redis --name redis_ambassador -p 6379:6379 svendowideit/ambassador

On the other host, you can set up another ambassador setting environment
variables for each remote port we want to proxy to the big-server

client-server $ docker run -d --name redis_ambassador --expose 6379 -e REDIS_PORT_6379_TCP=tcp://192.168.1.52:6379 svendowideit/ambassador

Then on the client-server host, you can use a Redis client container
to talk to the remote Redis server, just by linking to the local Redis
ambassador.

client-server $ docker run -i -t --rm --link redis_ambassador:redis relateiq/redis-cli
redis 172.17.0.160:6379> ping
PONG

How it works

The following example shows what the svendowideit/ambassador container
does automatically (with a tiny amount of sed)

On the Docker host (192.168.1.52) that Redis will run on:

start actual redis server
$ docker run -d --name redis crosbymichael/redis

get a redis-cli container for connection testing
$ docker pull relateiq/redis-cli

test the redis server by talking to it directly
$ docker run -t -i --rm --link redis:redis relateiq/redis-cli
redis 172.17.0.136:6379> ping
PONG
^D

add redis ambassador
$ docker run -t -i --link redis:redis --name redis_ambassador -p 6379:6379 busybox sh

In the redis_ambassador container, you can see the linked Redis
containers env:

$ env
REDIS_PORT=tcp://172.17.0.136:6379
REDIS_PORT_6379_TCP_ADDR=172.17.0.136
REDIS_NAME=/redis_ambassador/redis
HOSTNAME=19d7adf4705e
REDIS_PORT_6379_TCP_PORT=6379
HOME=/
REDIS_PORT_6379_TCP_PROTO=tcp
container=lxc
REDIS_PORT_6379_TCP=tcp://172.17.0.136:6379
TERM=xterm
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
PWD=/

This environment is used by the ambassador socat script to expose Redis
to the world (via the -p 6379:6379 port mapping):

$ docker rm redis_ambassador
$ sudo ./contrib/mkimage-unittest.sh
$ docker run -t -i --link redis:redis --name redis_ambassador -p 6379:6379 docker-ut sh

$ socat TCP4-LISTEN:6379,fork,reuseaddr TCP4:172.17.0.136:6379

Now ping the Redis server via the ambassador:

Now go to a different server:

$ sudo ./contrib/mkimage-unittest.sh
$ docker run -t -i --expose 6379 --name redis_ambassador docker-ut sh

$ socat TCP4-LISTEN:6379,fork,reuseaddr TCP4:192.168.1.52:6379

And get the redis-cli image so we can talk over the ambassador bridge.

$ docker pull relateiq/redis-cli
$ docker run -i -t --rm --link redis_ambassador:redis relateiq/redis-cli
redis 172.17.0.160:6379> ping
PONG

The svendowideit/ambassador Dockerfile

The svendowideit/ambassador image is a small busybox image with
socat built in. When you start the container, it uses a small sed
script to parse out the (possibly multiple) link environment variables
to set up the port forwarding. On the remote host, you need to set the
variable using the -e command line option.

--expose 1234 -e REDIS_PORT_1234_TCP=tcp://192.168.1.52:6379

Will forward the local 1234 port to the remote IP and port, in this
case 192.168.1.52:6379.

#
#
first you need to build the docker-ut image
using ./contrib/mkimage-unittest.sh
then
docker build -t SvenDowideit/ambassador .
docker tag SvenDowideit/ambassador ambassador
then to run it (on the host that has the real backend on it)
docker run -t -i --link redis:redis --name redis_ambassador -p 6379:6379 ambassador
on the remote host, you can set up another ambassador
docker run -t -i --name redis_ambassador --expose 6379 sh

FROM docker-ut
MAINTAINER SvenDowideit@home.org.au

CMD env | grep _TCP= | sed 's/.*_PORT_\([0-9]*\)_TCP=tcp:\/\/\(.*\):\(.*\)/socat TCP4-LISTEN:\1,fork,reuseaddr TCP4:\2:\3 \&/' | sh && top

 © Copyright .
 Created using Sphinx 1.3.1.

extend/plugins.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Understand Docker plugins

You can extend the capabilities of the Docker Engine by loading third-party
plugins.

Types of plugins

Plugins extend Docker’s functionality. They come in specific types. For
example, a volume plugin might enable Docker
volumes to persist across multiple Docker hosts.

Currently Docker supports volume and network driver plugins. In the future it
will support additional plugin types.

Installing a plugin

Follow the instructions in the plugin’s documentation.

Finding a plugin

The following plugins exist:

		The Flocker plugin [https://clusterhq.com/docker-plugin/] is a volume plugin
which provides multi-host portable volumes for Docker, enabling you to run
databases and other stateful containers and move them around across a cluster
of machines.

		The GlusterFS plugin [https://github.com/calavera/docker-volume-glusterfs] is
another volume plugin that provides multi-host volumes management for Docker
using GlusterFS.

		The Keywhiz plugin [https://github.com/calavera/docker-volume-keywhiz] is
a plugin that provides credentials and secret management using Keywhiz as
a central repository.

		The REX-Ray plugin [https://github.com/emccode/rexraycli] is a volume plugin
which is written in Go and provides advanced storage functionality for many
platforms including EC2, OpenStack, XtremIO, and ScaleIO.

Troubleshooting a plugin

If you are having problems with Docker after loading a plugin, ask the authors
of the plugin for help. The Docker team may not be able to assist you.

Writing a plugin

If you are interested in writing a plugin for Docker, or seeing how they work
under the hood, see the docker plugins reference.

 © Copyright .
 Created using Sphinx 1.3.1.

articles/https.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Protect the Docker daemon socket

By default, Docker runs via a non-networked Unix socket. It can also
optionally communicate using a HTTP socket.

If you need Docker to be reachable via the network in a safe manner, you can
enable TLS by specifying the tlsverify flag and pointing Docker’s
tlscacert flag to a trusted CA certificate.

In the daemon mode, it will only allow connections from clients
authenticated by a certificate signed by that CA. In the client mode,
it will only connect to servers with a certificate signed by that CA.

Warning:
Using TLS and managing a CA is an advanced topic. Please familiarize yourself
with OpenSSL, x509 and TLS before using it in production.

Warning:
These TLS commands will only generate a working set of certificates on Linux.
Mac OS X comes with a version of OpenSSL that is incompatible with the
certificates that Docker requires.

Create a CA, server and client keys with OpenSSL

Note: replace all instances of $HOST in the following example with the
DNS name of your Docker daemon’s host.

First generate CA private and public keys:

$ openssl genrsa -aes256 -out ca-key.pem 4096
Generating RSA private key, 4096 bit long modulus
..++
........++
e is 65537 (0x10001)
Enter pass phrase for ca-key.pem:
Verifying - Enter pass phrase for ca-key.pem:
$ openssl req -new -x509 -days 365 -key ca-key.pem -sha256 -out ca.pem
Enter pass phrase for ca-key.pem:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:Queensland
Locality Name (eg, city) []:Brisbane
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Docker Inc
Organizational Unit Name (eg, section) []:Boot2Docker
Common Name (e.g. server FQDN or YOUR name) []:$HOST
Email Address []:Sven@home.org.au

Now that we have a CA, you can create a server key and certificate
signing request (CSR). Make sure that “Common Name” (i.e., server FQDN or YOUR
name) matches the hostname you will use to connect to Docker:

Note: replace all instances of $HOST in the following example with the
DNS name of your Docker daemon’s host.

$ openssl genrsa -out server-key.pem 4096
Generating RSA private key, 4096 bit long modulus
...++
...++
e is 65537 (0x10001)
$ openssl req -subj "/CN=$HOST" -sha256 -new -key server-key.pem -out server.csr

Next, we’re going to sign the public key with our CA:

Since TLS connections can be made via IP address as well as DNS name, they need
to be specified when creating the certificate. For example, to allow connections
using 10.10.10.20 and 127.0.0.1:

$ echo subjectAltName = IP:10.10.10.20,IP:127.0.0.1 > extfile.cnf

$ openssl x509 -req -days 365 -sha256 -in server.csr -CA ca.pem -CAkey ca-key.pem \
 -CAcreateserial -out server-cert.pem -extfile extfile.cnf
Signature ok
subject=/CN=your.host.com
Getting CA Private Key
Enter pass phrase for ca-key.pem:

For client authentication, create a client key and certificate signing
request:

$ openssl genrsa -out key.pem 4096
Generating RSA private key, 4096 bit long modulus
...++
................++
e is 65537 (0x10001)
$ openssl req -subj '/CN=client' -new -key key.pem -out client.csr

To make the key suitable for client authentication, create an extensions
config file:

$ echo extendedKeyUsage = clientAuth > extfile.cnf

Now sign the public key:

$ openssl x509 -req -days 365 -sha256 -in client.csr -CA ca.pem -CAkey ca-key.pem \
 -CAcreateserial -out cert.pem -extfile extfile.cnf
Signature ok
subject=/CN=client
Getting CA Private Key
Enter pass phrase for ca-key.pem:

After generating cert.pem and server-cert.pem you can safely remove the
two certificate signing requests:

$ rm -v client.csr server.csr

With a default umask of 022, your secret keys will be world-readable and
writable for you and your group.

In order to protect your keys from accidental damage, you will want to remove their
write permissions. To make them only readable by you, change file modes as follows:

$ chmod -v 0400 ca-key.pem key.pem server-key.pem

Certificates can be world-readable, but you might want to remove write access to
prevent accidental damage:

$ chmod -v 0444 ca.pem server-cert.pem cert.pem

Now you can make the Docker daemon only accept connections from clients
providing a certificate trusted by our CA:

$ docker daemon --tlsverify --tlscacert=ca.pem --tlscert=server-cert.pem --tlskey=server-key.pem \
 -H=0.0.0.0:2376

To be able to connect to Docker and validate its certificate, you now
need to provide your client keys, certificates and trusted CA:

Note: replace all instances of $HOST in the following example with the
DNS name of your Docker daemon’s host.

$ docker --tlsverify --tlscacert=ca.pem --tlscert=cert.pem --tlskey=key.pem \
 -H=$HOST:2376 version

Note:
Docker over TLS should run on TCP port 2376.

Warning:
As shown in the example above, you don’t have to run the docker client
with sudo or the docker group when you use certificate authentication.
That means anyone with the keys can give any instructions to your Docker
daemon, giving them root access to the machine hosting the daemon. Guard
these keys as you would a root password!

Secure by default

If you want to secure your Docker client connections by default, you can move
the files to the .docker directory in your home directory – and set the
DOCKER_HOST and DOCKER_TLS_VERIFY variables as well (instead of passing
-H=tcp://$HOST:2376 and --tlsverify on every call).

$ mkdir -pv ~/.docker
$ cp -v {ca,cert,key}.pem ~/.docker
$ export DOCKER_HOST=tcp://$HOST:2376 DOCKER_TLS_VERIFY=1

Docker will now connect securely by default:

$ docker ps

Other modes

If you don’t want to have complete two-way authentication, you can run
Docker in various other modes by mixing the flags.

Daemon modes

		tlsverify, tlscacert, tlscert, tlskey set: Authenticate clients

		tls, tlscert, tlskey: Do not authenticate clients

Client modes

		tls: Authenticate server based on public/default CA pool

		tlsverify, tlscacert: Authenticate server based on given CA

		tls, tlscert, tlskey: Authenticate with client certificate, do not
authenticate server based on given CA

		tlsverify, tlscacert, tlscert, tlskey: Authenticate with client
certificate and authenticate server based on given CA

If found, the client will send its client certificate, so you just need
to drop your keys into ~/.docker/{ca,cert,key}.pem. Alternatively,
if you want to store your keys in another location, you can specify that
location using the environment variable DOCKER_CERT_PATH.

$ export DOCKER_CERT_PATH=~/.docker/zone1/
$ docker --tlsverify ps

Connecting to the secure Docker port using curl

To use curl to make test API requests, you need to use three extra command line
flags:

$ curl https://$HOST:2376/images/json \
 --cert ~/.docker/cert.pem \
 --key ~/.docker/key.pem \
 --cacert ~/.docker/ca.pem

 © Copyright .
 Created using Sphinx 1.3.1.

introduction/understanding-docker.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Understand the architecture

What is Docker?

Docker is an open platform for developing, shipping, and running applications.
Docker is designed to deliver your applications faster. With Docker you can
separate your applications from your infrastructure AND treat your
infrastructure like a managed application. Docker helps you ship code faster,
test faster, deploy faster, and shorten the cycle between writing code and
running code.

Docker does this by combining a lightweight container virtualization platform
with workflows and tooling that help you manage and deploy your applications.

At its core, Docker provides a way to run almost any application securely
isolated in a container. The isolation and security allow you to run many
containers simultaneously on your host. The lightweight nature of containers,
which run without the extra load of a hypervisor, means you can get more out of
your hardware.

Surrounding the container virtualization are tooling and a platform which can
help you in several ways:

		getting your applications (and supporting components) into Docker containers

		distributing and shipping those containers to your teams for further development
and testing

		deploying those applications to your production environment,
whether it be in a local data center or the Cloud.

What can I use Docker for?

Faster delivery of your applications

Docker is perfect for helping you with the development lifecycle. Docker
allows your developers to develop on local containers that contain your
applications and services. It can then integrate into a continuous integration and
deployment workflow.

For example, your developers write code locally and share their development stack via
Docker with their colleagues. When they are ready, they push their code and the
stack they are developing onto a test environment and execute any required
tests. From the testing environment, you can then push the Docker images into
production and deploy your code.

Deploying and scaling more easily

Docker’s container-based platform allows for highly portable workloads. Docker
containers can run on a developer’s local host, on physical or virtual machines
in a data center, or in the Cloud.

Docker’s portability and lightweight nature also make dynamically managing
workloads easy. You can use Docker to quickly scale up or tear down applications
and services. Docker’s speed means that scaling can be near real time.

Achieving higher density and running more workloads

Docker is lightweight and fast. It provides a viable, cost-effective alternative
to hypervisor-based virtual machines. This is especially useful in high density
environments: for example, building your own Cloud or Platform-as-a-Service. But
it is also useful for small and medium deployments where you want to get more
out of the resources you have.

What are the major Docker components?

Docker has two major components:

		Docker: the open source container virtualization platform.

		Docker Hub [https://hub.docker.com]: our Software-as-a-Service
platform for sharing and managing Docker containers.

Note: Docker is licensed under the open source Apache 2.0 license.

What is Docker’s architecture?

Docker uses a client-server architecture. The Docker client talks to the
Docker daemon, which does the heavy lifting of building, running, and
distributing your Docker containers. Both the Docker client and the daemon can
run on the same system, or you can connect a Docker client to a remote Docker
daemon. The Docker client and daemon communicate via sockets or through a
RESTful API.

[image: Docker Architecture Diagram]

The Docker daemon

As shown in the diagram above, the Docker daemon runs on a host machine. The
user does not directly interact with the daemon, but instead through the Docker
client.

The Docker client

The Docker client, in the form of the docker binary, is the primary user
interface to Docker. It accepts commands from the user and communicates back and
forth with a Docker daemon.

Inside Docker

To understand Docker’s internals, you need to know about three components:

		Docker images.

		Docker registries.

		Docker containers.

Docker images

A Docker image is a read-only template. For example, an image could contain an Ubuntu
operating system with Apache and your web application installed. Images are used to create
Docker containers. Docker provides a simple way to build new images or update existing
images, or you can download Docker images that other people have already created.
Docker images are the build component of Docker.

Docker registries

Docker registries hold images. These are public or private stores from which you upload
or download images. The public Docker registry is called
Docker Hub [http://hub.docker.com]. It provides a huge collection of existing
images for your use. These can be images you create yourself or you
can use images that others have previously created. Docker registries are the
distribution component of Docker.

Docker containers

Docker containers are similar to a directory. A Docker container holds everything that
is needed for an application to run. Each container is created from a Docker
image. Docker containers can be run, started, stopped, moved, and deleted. Each
container is an isolated and secure application platform. Docker containers are the
run component of Docker.

So how does Docker work?

So far, we’ve learned that:

		You can build Docker images that hold your applications.

		You can create Docker containers from those Docker images to run your
applications.

		You can share those Docker images via
Docker Hub [https://hub.docker.com] or your own registry.

Let’s look at how these elements combine together to make Docker work.

How does a Docker image work?

We’ve already seen that Docker images are read-only templates from which Docker
containers are launched. Each image consists of a series of layers. Docker
makes use of union file systems [http://en.wikipedia.org/wiki/UnionFS] to
combine these layers into a single image. Union file systems allow files and
directories of separate file systems, known as branches, to be transparently
overlaid, forming a single coherent file system.

One of the reasons Docker is so lightweight is because of these layers. When you
change a Docker image—for example, update an application to a new version— a new layer
gets built. Thus, rather than replacing the whole image or entirely
rebuilding, as you may do with a virtual machine, only that layer is added or
updated. Now you don’t need to distribute a whole new image, just the update,
making distributing Docker images faster and simpler.

Every image starts from a base image, for example ubuntu, a base Ubuntu image,
or fedora, a base Fedora image. You can also use images of your own as the
basis for a new image, for example if you have a base Apache image you could use
this as the base of all your web application images.

Note: Docker usually gets these base images from
Docker Hub [https://hub.docker.com].

Docker images are then built from these base images using a simple, descriptive
set of steps we call instructions. Each instruction creates a new layer in our
image. Instructions include actions like:

		Run a command.

		Add a file or directory.

		Create an environment variable.

		What process to run when launching a container from this image.

These instructions are stored in a file called a Dockerfile. Docker reads this
Dockerfile when you request a build of an image, executes the instructions, and
returns a final image.

How does a Docker registry work?

The Docker registry is the store for your Docker images. Once you build a Docker
image you can push it to a public registry Docker Hub [https://hub.docker.com] or to
your own registry running behind your firewall.

Using the Docker client, you can search for already published images and then
pull them down to your Docker host to build containers from them.

Docker Hub [https://hub.docker.com] provides both public and private storage
for images. Public storage is searchable and can be downloaded by anyone.
Private storage is excluded from search results and only you and your users can
pull images down and use them to build containers. You can sign up for a storage plan
here [https://hub.docker.com/plans].

How does a container work?

A container consists of an operating system, user-added files, and meta-data. As
we’ve seen, each container is built from an image. That image tells Docker
what the container holds, what process to run when the container is launched, and
a variety of other configuration data. The Docker image is read-only. When
Docker runs a container from an image, it adds a read-write layer on top of the
image (using a union file system as we saw earlier) in which your application can
then run.

What happens when you run a container?

Either by using the docker binary or via the API, the Docker client tells the Docker
daemon to run a container.

$ docker run -i -t ubuntu /bin/bash

Let’s break down this command. The Docker client is launched using the docker
binary with the run option telling it to launch a new container. The bare
minimum the Docker client needs to tell the Docker daemon to run the container
is:

		What Docker image to build the container from, here ubuntu, a base Ubuntu
image;

		The command you want to run inside the container when it is launched,
here /bin/bash, to start the Bash shell inside the new container.

So what happens under the hood when we run this command?

In order, Docker does the following:

		Pulls the ubuntu image: Docker checks for the presence of the ubuntu
image and, if it doesn’t exist locally on the host, then Docker downloads it from
Docker Hub [https://hub.docker.com]. If the image already exists, then Docker
uses it for the new container.

		Creates a new container: Once Docker has the image, it uses it to create a
container.

		Allocates a filesystem and mounts a read-write layer: The container is created in
the file system and a read-write layer is added to the image.

		Allocates a network / bridge interface: Creates a network interface that allows the
Docker container to talk to the local host.

		Sets up an IP address: Finds and attaches an available IP address from a pool.

		Executes a process that you specify: Runs your application, and;

		Captures and provides application output: Connects and logs standard input, outputs
and errors for you to see how your application is running.

You now have a running container! From here you can manage your container, interact with
your application and then, when finished, stop and remove your container.

The underlying technology

Docker is written in Go and makes use of several Linux kernel features to
deliver the functionality we’ve seen.

Namespaces

Docker takes advantage of a technology called namespaces to provide the
isolated workspace we call the container. When you run a container, Docker
creates a set of namespaces for that container.

This provides a layer of isolation: each aspect of a container runs in its own
namespace and does not have access outside it.

Some of the namespaces that Docker uses are:

		The pid namespace: Used for process isolation (PID: Process ID).

		The net namespace: Used for managing network interfaces (NET:
Networking).

		The ipc namespace: Used for managing access to IPC
resources (IPC: InterProcess Communication).

		The mnt namespace: Used for managing mount-points (MNT: Mount).

		The uts namespace: Used for isolating kernel and version identifiers. (UTS: Unix
Timesharing System).

Control groups

Docker also makes use of another technology called cgroups or control groups.
A key to running applications in isolation is to have them only use the
resources you want. This ensures containers are good multi-tenant citizens on a
host. Control groups allow Docker to share available hardware resources to
containers and, if required, set up limits and constraints. For example,
limiting the memory available to a specific container.

Union file systems

Union file systems, or UnionFS, are file systems that operate by creating layers,
making them very lightweight and fast. Docker uses union file systems to provide
the building blocks for containers. Docker can make use of several union file system variants
including: AUFS, btrfs, vfs, and DeviceMapper.

Container format

Docker combines these components into a wrapper we call a container format. The
default container format is called libcontainer. Docker also supports
traditional Linux containers using LXC [https://linuxcontainers.org/]. In the
future, Docker may support other container formats, for example, by integrating with
BSD Jails or Solaris Zones.

Next steps

Installing Docker

Visit the installation section.

The Docker user guide

Learn Docker in depth.

 © Copyright .
 Created using Sphinx 1.3.1.

articles/puppet.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Using Puppet

Note: Please note this is a community contributed installation path. The
only official installation is using the
Ubuntu installation
path. This version may sometimes be out of date.

Requirements

To use this guide you’ll need a working installation of Puppet from
Puppet Labs [https://puppetlabs.com] .

The module also currently uses the official PPA so only works with
Ubuntu.

Installation

The module is available on the Puppet
Forge [https://forge.puppetlabs.com/garethr/docker/] and can be
installed using the built-in module tool.

$ puppet module install garethr/docker

It can also be found on
GitHub [https://github.com/garethr/garethr-docker] if you would rather
download the source.

Usage

The module provides a puppet class for installing Docker and two defined
types for managing images and containers.

Installation

include 'docker'

Images

The next step is probably to install a Docker image. For this, we have a
defined type which can be used like so:

docker::image { 'ubuntu': }

This is equivalent to running:

$ docker pull ubuntu

Note that it will only be downloaded if an image of that name does not
already exist. This is downloading a large binary so on first run can
take a while. For that reason this define turns off the default 5 minute
timeout for the exec type. Note that you can also remove images you no
longer need with:

docker::image { 'ubuntu':
 ensure => 'absent',
}

Containers

Now you have an image where you can run commands within a container
managed by Docker.

docker::run { 'helloworld':
 image => 'ubuntu',
 command => '/bin/sh -c "while true; do echo hello world; sleep 1; done"',
}

This is equivalent to running the following command, but under upstart:

$ docker run -d ubuntu /bin/sh -c "while true; do echo hello world; sleep 1; done"

Run also contains a number of optional parameters:

docker::run { 'helloworld':
 image => 'ubuntu',
 command => '/bin/sh -c "while true; do echo hello world; sleep 1; done"',
 ports => ['4444', '4555'],
 volumes => ['/var/lib/couchdb', '/var/log'],
 volumes_from => '6446ea52fbc9',
 memory_limit => 10485760, # bytes
 username => 'example',
 hostname => 'example.com',
 env => ['FOO=BAR', 'FOO2=BAR2'],
 dns => ['8.8.8.8', '8.8.4.4'],
}

Note:
The ports, env, dns and volumes attributes can be set with either a single
string or as above with an array of values.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up.png

articles/cfengine_process_management.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Process management with CFEngine

Create Docker containers with managed processes.

Docker monitors one process in each running container and the container
lives or dies with that process. By introducing CFEngine inside Docker
containers, we can alleviate a few of the issues that may arise:

		It is possible to easily start multiple processes within a
container, all of which will be managed automatically, with the
normal docker run command.

		If a managed process dies or crashes, CFEngine will start it again
within 1 minute.

		The container itself will live as long as the CFEngine scheduling
daemon (cf-execd) lives. With CFEngine, we are able to decouple the
life of the container from the uptime of the service it provides.

How it works

CFEngine, together with the cfe-docker integration policies, are
installed as part of the Dockerfile. This builds CFEngine into our
Docker image.

The Dockerfile’s ENTRYPOINT takes an arbitrary
amount of commands (with any desired arguments) as parameters. When we
run the Docker container these parameters get written to CFEngine
policies and CFEngine takes over to ensure that the desired processes
are running in the container.

CFEngine scans the process table for the basename of the commands given
to the ENTRYPOINT and runs the command to start the process if the basename
is not found. For example, if we start the container with
docker run "/path/to/my/application parameters", CFEngine will look for a
process named application and run the command. If an entry for application
is not found in the process table at any point in time, CFEngine will execute
/path/to/my/application parameters to start the application once again. The
check on the process table happens every minute.

Note that it is therefore important that the command to start your
application leaves a process with the basename of the command. This can
be made more flexible by making some minor adjustments to the CFEngine
policies, if desired.

Usage

This example assumes you have Docker installed and working. We will
install and manage apache2 and sshd
in a single container.

There are three steps:

		Install CFEngine into the container.

		Copy the CFEngine Docker process management policy into the
containerized CFEngine installation.

		Start your application processes as part of the docker run command.

Building the image

The first two steps can be done as part of a Dockerfile, as follows.

FROM ubuntu
MAINTAINER Eystein Måløy Stenberg <eytein.stenberg@gmail.com>

RUN apt-get update && apt-get install -y wget lsb-release unzip ca-certificates

install latest CFEngine
RUN wget -qO- http://cfengine.com/pub/gpg.key | apt-key add -
RUN echo "deb http://cfengine.com/pub/apt $(lsb_release -cs) main" > /etc/apt/sources.list.d/cfengine-community.list
RUN apt-get update && apt-get install -y cfengine-community

install cfe-docker process management policy
RUN wget https://github.com/estenberg/cfe-docker/archive/master.zip -P /tmp/ && unzip /tmp/master.zip -d /tmp/
RUN cp /tmp/cfe-docker-master/cfengine/bin/* /var/cfengine/bin/
RUN cp /tmp/cfe-docker-master/cfengine/inputs/* /var/cfengine/inputs/
RUN rm -rf /tmp/cfe-docker-master /tmp/master.zip

apache2 and openssh are just for testing purposes, install your own apps here
RUN apt-get update && apt-get install -y openssh-server apache2
RUN mkdir -p /var/run/sshd
RUN echo "root:password" | chpasswd # need a password for ssh

ENTRYPOINT ["/var/cfengine/bin/docker_processes_run.sh"]

By saving this file as Dockerfile to a working directory, you can then build
your image with the docker build command, e.g.,
docker build -t managed_image.

Testing the container

Start the container with apache2 and sshd running and managed, forwarding
a port to our SSH instance:

$ docker run -p 127.0.0.1:222:22 -d managed_image "/usr/sbin/sshd" "/etc/init.d/apache2 start"

We now clearly see one of the benefits of the cfe-docker integration: it
allows to start several processes as part of a normal docker run command.

We can now log in to our new container and see that both apache2 and sshd
are running. We have set the root password to “password” in the Dockerfile
above and can use that to log in with ssh:

ssh -p222 root@127.0.0.1

ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 07:48 ? 00:00:00 /bin/bash /var/cfengine/bin/docker_processes_run.sh /usr/sbin/sshd /etc/init.d/apache2 start
root 18 1 0 07:48 ? 00:00:00 /var/cfengine/bin/cf-execd -F
root 20 1 0 07:48 ? 00:00:00 /usr/sbin/sshd
root 32 1 0 07:48 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 34 32 0 07:48 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 35 32 0 07:48 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 36 32 0 07:48 ? 00:00:00 /usr/sbin/apache2 -k start
root 93 20 0 07:48 ? 00:00:00 sshd: root@pts/0
root 105 93 0 07:48 pts/0 00:00:00 -bash
root 112 105 0 07:49 pts/0 00:00:00 ps -ef

If we stop apache2, it will be started again within a minute by
CFEngine.

service apache2 status
 Apache2 is running (pid 32).
service apache2 stop
 * Stopping web server apache2 ... waiting [OK]
service apache2 status
 Apache2 is NOT running.
... wait up to 1 minute...
service apache2 status
 Apache2 is running (pid 173).

Adapting to your applications

To make sure your applications get managed in the same manner, there are
just two things you need to adjust from the above example:

		In the Dockerfile used above, install your applications instead of
apache2 and sshd.

		When you start the container with docker run,
specify the command line arguments to your applications rather than
apache2 and sshd.

 © Copyright .
 Created using Sphinx 1.3.1.

articles/dsc.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Using PowerShell DSC

Windows PowerShell Desired State Configuration (DSC) is a configuration
management tool that extends the existing functionality of Windows PowerShell.
DSC uses a declarative syntax to define the state in which a target should be
configured. More information about PowerShell DSC can be found at
http://technet.microsoft.com/en-us/library/dn249912.aspx.

Requirements

To use this guide you’ll need a Windows host with PowerShell v4.0 or newer.

The included DSC configuration script also uses the official PPA so
only an Ubuntu target is supported. The Ubuntu target must already have the
required OMI Server and PowerShell DSC for Linux providers installed. More
information can be found at https://github.com/MSFTOSSMgmt/WPSDSCLinux.
The source repository listed below also includes PowerShell DSC for Linux
installation and init scripts along with more detailed installation information.

Installation

The DSC configuration example source is available in the following repository:
https://github.com/anweiss/DockerClientDSC. It can be cloned with:

$ git clone https://github.com/anweiss/DockerClientDSC.git

Usage

The DSC configuration utilizes a set of shell scripts to determine whether or
not the specified Docker components are configured on the target node(s). The
source repository also includes a script (RunDockerClientConfig.ps1) that can
be used to establish the required CIM session(s) and execute the
Set-DscConfiguration cmdlet.

More detailed usage information can be found at
https://github.com/anweiss/DockerClientDSC.

Install Docker

The Docker installation configuration is equivalent to running:

apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 --recv-keys\
36A1D7869245C8950F966E92D8576A8BA88D21E9
sh -c "echo deb https://apt.dockerproject.org/repo ubuntu-trusty main\
> /etc/apt/sources.list.d/docker.list"
apt-get update
apt-get install docker-engine

Ensure that your current working directory is set to the DockerClientDSC
source and load the DockerClient configuration into the current PowerShell
session

. .\DockerClient.ps1

Generate the required DSC configuration .mof file for the targeted node

DockerClient -Hostname "myhost"

A sample DSC configuration data file has also been included and can be modified
and used in conjunction with or in place of the Hostname parameter:

DockerClient -ConfigurationData .\DockerConfigData.psd1

Start the configuration application process on the targeted node

.\RunDockerClientConfig.ps1 -Hostname "myhost"

The RunDockerClientConfig.ps1 script can also parse a DSC configuration data
file and execute configurations against multiple nodes as such:

.\RunDockerClientConfig.ps1 -ConfigurationData .\DockerConfigData.psd1

Images

Image configuration is equivalent to running: docker pull [image] or
docker rmi -f [IMAGE].

Using the same steps defined above, execute DockerClient with the Image
parameter and apply the configuration:

DockerClient -Hostname "myhost" -Image "node"
.\RunDockerClientConfig.ps1 -Hostname "myhost"

You can also configure the host to pull multiple images:

DockerClient -Hostname "myhost" -Image "node","mongo"
.\RunDockerClientConfig.ps1 -Hostname "myhost"

To remove images, use a hashtable as follows:

DockerClient -Hostname "myhost" -Image @{Name="node"; Remove=$true}
.\RunDockerClientConfig.ps1 -Hostname $hostname

Containers

Container configuration is equivalent to running:

docker run -d --name="[containername]" -p '[port]' -e '[env]' --link '[link]'\
'[image]' '[command]'

or

docker rm -f [containername]

To create or remove containers, you can use the Container parameter with one
or more hashtables. The hashtable(s) passed to this parameter can have the
following properties:

		Name (required)

		Image (required unless Remove property is set to $true)

		Port

		Env

		Link

		Command

		Remove

For example, create a hashtable with the settings for your container:

$webContainer = @{Name="web"; Image="anweiss/docker-platynem"; Port="80:80"}

Then, using the same steps defined above, execute
DockerClient with the -Image and -Container parameters:

DockerClient -Hostname "myhost" -Image node -Container $webContainer
.\RunDockerClientConfig.ps1 -Hostname "myhost"

Existing containers can also be removed as follows:

$containerToRemove = @{Name="web"; Remove=$true}
DockerClient -Hostname "myhost" -Container $containerToRemove
.\RunDockerClientConfig.ps1 -Hostname "myhost"

Here is a hashtable with all of the properties that can be used to create a
container:

$containerProps = @{Name="web"; Image="node:latest"; Port="80:80"; `
Env="PORT=80"; Link="db:db"; Command="grunt"}

 © Copyright .
 Created using Sphinx 1.3.1.

articles/baseimages.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Create a base image

So you want to create your own Base Image? Great!

The specific process will depend heavily on the Linux distribution you
want to package. We have some examples below, and you are encouraged to
submit pull requests to contribute new ones.

Create a full image using tar

In general, you’ll want to start with a working machine that is running
the distribution you’d like to package as a base image, though that is
not required for some tools like Debian’s
Debootstrap [https://wiki.debian.org/Debootstrap], which you can also
use to build Ubuntu images.

It can be as simple as this to create an Ubuntu base image:

$ sudo debootstrap raring raring > /dev/null
$ sudo tar -C raring -c . | docker import - raring
a29c15f1bf7a
$ docker run raring cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=13.04
DISTRIB_CODENAME=raring
DISTRIB_DESCRIPTION="Ubuntu 13.04"

There are more example scripts for creating base images in the Docker
GitHub Repo:

		BusyBox [https://github.com/docker/docker/blob/master/contrib/mkimage-busybox.sh]

		CentOS / Scientific Linux CERN (SLC) on Debian/Ubuntu [https://github.com/docker/docker/blob/master/contrib/mkimage-rinse.sh] or
on CentOS/RHEL/SLC/etc. [https://github.com/docker/docker/blob/master/contrib/mkimage-yum.sh]

		Debian / Ubuntu [https://github.com/docker/docker/blob/master/contrib/mkimage-debootstrap.sh]

Creating a simple base image using scratch

You can use Docker’s reserved, minimal image, scratch, as a starting point for building containers. Using the scratch “image” signals to the build process that you want the next command in the Dockerfile to be the first filesystem layer in your image.

While scratch appears in Docker’s repository on the hub, you can’t pull it, run it, or tag any image with the name scratch. Instead, you can refer to it in your Dockerfile. For example, to create a minimal container using scratch:

FROM scratch
ADD hello /
CMD ["/hello"]

This example creates the hello-world image used in the tutorials.
If you want to test it out, you can clone the image repo [https://github.com/docker-library/hello-world]

More resources

There are lots more resources available to help you write your ‘Dockerfile`.

		There’s a complete guide to all the instructions available for use in a Dockerfile in the reference section.

		To help you write a clear, readable, maintainable Dockerfile, we’ve also
written a Dockerfile Best Practices guide.

		If your goal is to create a new Official Repository, be sure to read up on Docker’s Official Repositories.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/file.png

reference/commandline/rename.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

rename

Usage: docker rename OLD_NAME NEW_NAME

rename a existing container to a NEW_NAME

The docker rename command allows the container to be renamed to a different name.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/cp.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

cp

Copy files/folders between a container and the local filesystem.

Usage: docker cp [options] CONTAINER:PATH LOCALPATH|-
 docker cp [options] LOCALPATH|- CONTAINER:PATH

--help Print usage statement

In the first synopsis form, the docker cp utility copies the contents of
PATH from the filesystem of CONTAINER to the LOCALPATH (or stream as
a tar archive to STDOUT if - is specified).

In the second synopsis form, the contents of LOCALPATH (or a tar archive
streamed from STDIN if - is specified) are copied from the local machine to
PATH in the filesystem of CONTAINER.

You can copy to or from either a running or stopped container. The PATH can
be a file or directory. The docker cp command assumes all CONTAINER:PATH
values are relative to the / (root) directory of the container. This means
supplying the initial forward slash is optional; The command sees
compassionate_darwin:/tmp/foo/myfile.txt and
compassionate_darwin:tmp/foo/myfile.txt as identical. If a LOCALPATH value
is not absolute, is it considered relative to the current working directory.

Behavior is similar to the common Unix utility cp -a in that directories are
copied recursively with permissions preserved if possible. Ownership is set to
the user and primary group on the receiving end of the transfer. For example,
files copied to a container will be created with UID:GID of the root user.
Files copied to the local machine will be created with the UID:GID of the
user which invoked the docker cp command.

Assuming a path separator of /, a first argument of SRC_PATH and second
argument of DST_PATH, the behavior is as follows:

		SRC_PATH specifies a file
		DST_PATH does not exist
		the file is saved to a file created at DST_PATH

		DST_PATH does not exist and ends with /
		Error condition: the destination directory must exist.

		DST_PATH exists and is a file
		the destination is overwritten with the contents of the source file

		DST_PATH exists and is a directory
		the file is copied into this directory using the basename from
SRC_PATH

		SRC_PATH specifies a directory
		DST_PATH does not exist
		DST_PATH is created as a directory and the contents of the source
directory are copied into this directory

		DST_PATH exists and is a file
		Error condition: cannot copy a directory to a file

		DST_PATH exists and is a directory
		SRC_PATH does not end with /.
		the source directory is copied into this directory

		SRC_PAPTH does end with /.
		the content of the source directory is copied into this
directory

The command requires SRC_PATH and DST_PATH to exist according to the above
rules. If SRC_PATH is local and is a symbolic link, the symbolic link, not
the target, is copied.

A colon (:) is used as a delimiter between CONTAINER and PATH, but :
could also be in a valid LOCALPATH, like file:name.txt. This ambiguity is
resolved by requiring a LOCALPATH with a : to be made explicit with a
relative or absolute path, for example:

`/path/to/file:name.txt` or `./file:name.txt`

It is not possible to copy certain system files such as resources under
/proc, /sys, /dev, and mounts created by the user in the container.

Using - as the first argument in place of a LOCALPATH will stream the
contents of STDIN as a tar archive which will be extracted to the PATH in
the filesystem of the destination container. In this case, PATH must specify
a directory.

Using - as the second argument in place of a LOCALPATH will stream the
contents of the resource from the source container as a tar archive to
STDOUT.

 © Copyright .
 Created using Sphinx 1.3.1.

project/software-req-win.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Get the required software for Windows

This page explains how to get the software you need to use a a Windows Server
2012 or Windows 8 machine for Docker development. Before you begin contributing
you must have:

		a GitHub account

		Git for Windows (msysGit)

		TDM-GCC, a compiler suite for Windows

		MinGW (tar and xz)

		Go language

Note: This installation procedure refers to the C:\ drive. If you system’s main drive
is D:\ you’ll need to substitute that in where appropriate in these
instructions.

Get a GitHub account

To contribute to the Docker project, you will need a GitHub account. A free account is
fine. All the Docker project repositories are public and visible to everyone.

You should also have some experience using both the GitHub application and git
on the command line.

Install Git for Windows

Git for Windows includes several tools including msysGit, which is a build
environment. The environment contains the tools you need for development such as
Git and a Git Bash shell.

		Browse to the Git for Windows [https://msysgit.github.io/] download page.

		Click Download.

Windows prompts you to save the file to your machine.

		Run the saved file.

The system displays the Git Setup wizard.

		Click the Next button to move through the wizard and accept all the defaults.

		Click Finish when you are done.

Installing TDM-GCC

TDM-GCC is a compiler suite for Windows. You’ll use this suite to compile the
Docker Go code as you develop.

		Browse to
tdm-gcc download page [http://tdm-gcc.tdragon.net/download].

		Click on the latest 64-bit version of the package.

Windows prompts you to save the file to your machine

		Set up the suite by running the downloaded file.

The system opens the TDM-GCC Setup wizard.

		Click Create.

		Click the Next button to move through the wizard and accept all the defaults.

		Click Finish when you are done.

Installing MinGW (tar and xz)

MinGW is a minimalist port of the GNU Compiler Collection (GCC). In this
procedure, you first download and install the MinGW installation manager. Then,
you use the manager to install the tar and xz tools from the collection.

		Browse to MinGW
SourceForge [http://sourceforge.net/projects/mingw/].

		Click Download.

Windows prompts you to save the file to your machine

		Run the downloaded file.

The system opens the MinGW Installation Manager Setup Tool

		Choose Install install the MinGW Installation Manager.

		Press Continue.

The system installs and then opens the MinGW Installation Manager.

		Press Continue after the install completes to open the manager.

		Select All Packages > MSYS Base System from the left hand menu.

The system displays the available packages.

		Click on the the msys-tar bin package and choose Mark for Installation.

		Click on the msys-xz bin package and choose Mark for Installation.

		Select Installation > Apply Changes, to install the selected packages.

The system displays the Schedule of Pending Actions Dialog.

[image: windows-mingw]

		Press Apply

MingGW installs the packages for you.

		Close the dialog and the MinGW Installation Manager.

Set up your environment variables

You’ll need to add the compiler to your Path environment variable.

		Open the Control Panel.

		Choose System and Security > System.

		Click the Advanced system settings link in the sidebar.

The system opens the System Properties dialog.

		Select the Advanced tab.

		Click Environment Variables.

The system opens the Environment Variables dialog dialog.

		Locate the System variables area and scroll to the Path
variable.

[image: windows-mingw]

		Click Edit to edit the variable (you can also double-click it).

The system opens the Edit System Variable dialog.

		Make sure the Path includes C:\TDM-GCC64\bin

[image: include gcc]

If you don’t see C:\TDM-GCC64\bin, add it.

		Press OK to close this dialog.

		Press OK twice to close out of the remaining dialogs.

Install Go and cross-compile it

In this section, you install the Go language. Then, you build the source so that it can cross-compile for linux/amd64 architectures.

		Open Go Language download [http://golang.org/dl/] page in your browser.

		Locate and click the latest .msi installer.

The system prompts you to save the file.

		Run the installer.

The system opens the Go Programming Language Setup dialog.

		Select all the defaults to install.

		Press Finish to close the installation dialog.

		Start a command prompt.

		Change to the Go src directory.

 cd c:\Go\src

		Set the following Go variables

 c:\Go\src> set GOOS=linux
 c:\Go\src> set GOARCH=amd64

		Compile the source.

 c:\Go\src> make.bat

Compiling the source also adds a number of variables to your Windows environment.

Get the Docker repository

In this step, you start a Git bash terminal and get the Docker source code
from GitHub.

		Locate the Git Bash program and start it.

Recall that Git Bash came with the Git for Windows installation. Git
Bash just as it sounds allows you to run a Bash terminal on Windows.

[image: Git Bash]

		Change to the root directory.

 $ cd /c/

		Make a gopath directory.

 $ mkdir gopath

		Go get the docker/docker repository.

 $ go.exe get github.com/docker/docker package github.com/docker/docker
 imports github.com/docker/docker
 imports github.com/docker/docker: no buildable Go source files in C:\gopath\src\github.com\docker\docker

In the next steps, you create environment variables for you Go paths.

		Open the Control Panel on your system.

		Choose System and Security > System.

		Click the Advanced system settings link in the sidebar.

The system opens the System Properties dialog.

		Select the Advanced tab.

		Click Environment Variables.

The system opens the Environment Variables dialog dialog.

		Locate the System variables area and scroll to the Path
variable.

		Click New.

Now you are going to create some new variables. These paths you’ll create in the next procedure; but you can set them now.

		Enter GOPATH for the Variable Name.

		For the Variable Value enter the following:

C:\gopath;C:\gopath\src\github.com\docker\docker\vendor

		Press OK to close this dialog.

The system adds GOPATH to the list of System Variables.

		Press OK twice to close out of the remaining dialogs.

Where to go next

In the next section, you’ll learn how to set up and configure Git for
contributing to Docker.

 © Copyright .
 Created using Sphinx 1.3.1.

project/make-a-contribution.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Understand how to contribute

Contributing is a process where you work with Docker maintainers and the
community to improve Docker. The maintainers are experienced contributors
who specialize in one or more Docker components. Maintainers play a big role
in reviewing contributions.

There is a formal process for contributing. We try to keep our contribution
process simple so you’ll want to contribute frequently.

The basic contribution workflow

In this guide, you work through Docker’s basic contribution workflow by fixing a
single beginner issue in the docker/docker repository. The workflow
for fixing simple issues looks like this:

[image: Simple process]

All Docker repositories have code and documentation. You use this same workflow
for either content type. For example, you can find and fix doc or code issues.
Also, you can propose a new Docker feature or propose a new Docker tutorial.

Some workflow stages do have slight differences for code or documentation
contributions. When you reach that point in the flow, we make sure to tell you.

Where to go next

Now that you know a little about the contribution process, go to the next section
to find an issue you want to work on.

 © Copyright .
 Created using Sphinx 1.3.1.

project/who-written-for.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

README first

This section of the documentation contains a guide for Docker users who want to
contribute code or documentation to the Docker project. As a community, we
share rules of behavior and interaction. Make sure you are familiar with the community guidelines before continuing.

Where and what you can contribute

The Docker project consists of not just one but several repositories on GitHub.
So, in addition to the docker/docker repository, there is the
docker/compose repo, the docker/machine repo, and several more.
Contribute to any of these and you contribute to the Docker project.

Not all Docker repositories use the Go language. Also, each repository has its
own focus area. So, if you are an experienced contributor, think about
contributing to a Docker repository that has a language or a focus area you are
familiar with.

If you are new to the open source community, to Docker, or to formal
programming, you should start out contributing to the docker/docker
repository. Why? Because this guide is written for that repository specifically.

Finally, code or documentation isn’t the only way to contribute. You can report
an issue, add to discussions in our community channel, write a blog post, or
take a usability test. You can even propose your own type of contribution.
Right now we don’t have a lot written about this yet, so just email
mailto:feedback@docker.com if this type of contributing interests you.

A turtle is involved

[image: Gordon]

Enough said.

How to use this guide

This is written for the distracted, the overworked, the sloppy reader with fair
git skills and a failing memory for the GitHub GUI. The guide attempts to
explain how to use the Docker environment as precisely, predictably, and
procedurally as possible.

Users who are new to the Docker development environment should start by setting
up their environment. Then, they should try a simple code change. After that,
you should find something to work on or propose at totally new change.

If you are a programming prodigy, you still may find this documentation useful.
Please feel free to skim past information you find obvious or boring.

How to get started

Start by getting the software you need to contribute.

 © Copyright .
 Created using Sphinx 1.3.1.

project/doc-style.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker documentation: style & grammar conventions

Style standards

Over time, different publishing communities have written standards for the style
and grammar they prefer in their publications. These standards are called
style guides [http://en.wikipedia.org/wiki/Style_guide]. Generally, Docker’s
documentation uses the standards described in the
Associated Press’s (AP) style guide [http://en.wikipedia.org/wiki/AP_Stylebook].
If a question about syntactical, grammatical, or lexical practice comes up,
refer to the AP guide first. If you don’t have a copy of (or online subscription
to) the AP guide, you can almost always find an answer to a specific question by
searching the web. If you can’t find an answer, please ask a
maintainer [https://github.com/docker/docker/blob/master/docs/MAINTAINERS] and
we will find the answer.

That said, please don’t get too hung up on using correct style. We’d rather have
you submit good information that doesn’t conform to the guide than no
information at all. Docker’s tech writers are always happy to help you with the
prose, and we promise not to judge or use a red pen!

Note:
The documentation is written with paragraphs wrapped at 80 column lines to
make it easier for terminal use. You can probably set up your favorite text
editor to do this automatically for you.

Prose style

In general, try to write simple, declarative prose. We prefer short,
single-clause sentences and brief three-to-five sentence paragraphs. Try to
choose vocabulary that is straightforward and precise. Avoid creating new terms,
using obscure terms or, in particular, using a lot of jargon. For example, use
“use” instead of leveraging “leverage”.

That said, don’t feel like you have to write for localization or for
English-as-a-second-language (ESL) speakers specifically. Assume you are writing
for an ordinary speaker of English with a basic university education. If your
prose is simple, clear, and straightforward it will translate readily.

One way to think about this is to assume Docker’s users are generally university
educated and read at at least a “16th” grade level (meaning they have a
university degree). You can use a readability
tester [https://readability-score.com/] to help guide your judgement. For
example, the readability score for the phrase “Containers should be ephemeral”
is around the 13th grade level (first year at university), and so is acceptable.

In all cases, we prefer clear, concise communication over stilted, formal
language. Don’t feel like you have to write documentation that “sounds like
technical writing.”

Metaphor and figurative language

One exception to the “don’t write directly for ESL” rule is to avoid the use of
metaphor or other
figurative language [http://en.wikipedia.org/wiki/Literal_and_figurative_language] to
describe things. There are too many cultural and social issues that can prevent
a reader from correctly interpreting a metaphor.

Specific conventions

Below are some specific recommendations (and a few deviations) from AP style
that we use in our docs.

Contractions

As long as your prose does not become too slangy or informal, it’s perfectly
acceptable to use contractions in our documentation. Make sure to use
apostrophes correctly.

Use of dashes in a sentence.

Dashes refers to the en dash (–) and the em dash (—). Dashes can be used to
separate parenthetical material.

Usage Example: This is an example of a Docker client – which uses the Big Widget
to run – and does x, y, and z.

Use dashes cautiously and consider whether commas or parentheses would work just
as well. We always emphasize short, succinct sentences.

More info from the always handy Grammar Girl site [http://www.quickanddirtytips.com/education/grammar/dashes-parentheses-and-commas].

Pronouns

It’s okay to use first and second person pronouns, especially if it lets you avoid a passive construction. Specifically, always use “we” to
refer to Docker and “you” to refer to the user. For example, “We built the
exec command so you can resize a TTY session.” That said, in general, try to write simple, imperative sentences that avoid the use of pronouns altogether. Say “Now, enter your SSH key” rather than “You can now enter your SSH key.”

As much as possible, avoid using gendered pronouns (“he” and “she”, etc.).
Either recast the sentence so the pronoun is not needed or, less preferably,
use “they” instead. If you absolutely can’t get around using a gendered pronoun,
pick one and stick to it. Which one you choose is up to you. One common
convention is to use the pronoun of the author’s gender, but if you prefer to
default to “he” or “she”, that’s fine too.

Capitalization

In general

Only proper nouns should be capitalized in body text. In general, strive to be
as strict as possible in applying this rule. Avoid using capitals for emphasis
or to denote “specialness”.

The word “Docker” should always be capitalized when referring to either the
company or the technology. The only exception is when the term appears in a code
sample.

Starting sentences

Because code samples should always be written exactly as they would appear
on-screen, you should avoid starting sentences with a code sample.

In headings

Headings take sentence capitalization, meaning that only the first letter is
capitalized (and words that would normally be capitalized in a sentence, e.g.,
“Docker”). Do not use Title Case (i.e., capitalizing every word) for headings. Generally, we adhere to AP style
for titles [http://www.quickanddirtytips.com/education/grammar/capitalizing-titles].

Periods

We prefer one space after a period at the end of a sentence, not two.

See lists below for how to punctuate list items.

Abbreviations and acronyms

		Exempli gratia (e.g.) and id est (i.e.): these should always have periods and
are always followed by a comma.

		Acronyms are pluralized by simply adding “s”, e.g., PCs, OSs.

		On first use on a given page, the complete term should be used, with the
abbreviation or acronym in parentheses. E.g., Red Hat Enterprise Linux (RHEL).
The exception is common, non-technical acronyms like AKA or ASAP. Note that
acronyms other than i.e. and e.g. are capitalized.

		Other than “e.g.” and “i.e.” (as discussed above), acronyms do not take
periods, PC not P.C.

Lists

When writing lists, keep the following in mind:

Use bullets when the items being listed are independent of each other and the
order of presentation is not important.

Use numbers for steps that have to happen in order or if you have mentioned the
list in introductory text. For example, if you wrote “There are three config
settings available for SSL, as follows:”, you would number each config setting
in the subsequent list.

In all lists, if an item is a complete sentence, it should end with a
period. Otherwise, we prefer no terminal punctuation for list items.
Each item in a list should start with a capital.

Numbers

Write out numbers in body text and titles from one to ten. From 11 on, use numerals.

Notes

Use notes sparingly and only to bring things to the reader’s attention that are
critical or otherwise deserving of being called out from the body text. Please
format all notes as follows:

> **Note:**
> One line of note text
> another line of note text

Avoid excess use of “i.e.”

Minimize your use of “i.e.”. It can add an unnecessary interpretive burden on
the reader. Avoid writing “This is a thing, i.e., it is like this”. Just
say what it is: “This thing is …”

Preferred usages

Login vs. log in.

A “login” is a noun (one word), as in “Enter your login”. “Log in” is a compound
verb (two words), as in “Log in to the terminal”.

Oxford comma

One way in which we differ from AP style is that Docker’s docs use the Oxford
comma [http://en.wikipedia.org/wiki/Serial_comma] in all cases. That’s our
position on this controversial topic, we won’t change our mind, and that’s that!

Code and UI text styling

We require code font styling (monospace, sans-serif) for all text that refers
to a command or other input or output from the CLI. This includes file paths
(e.g., /etc/hosts/docker.conf). If you enclose text in backticks (`) markdown
will style the text as code.

Text from a CLI should be quoted verbatim, even if it contains errors or its
style contradicts this guide. You can add “(sic)” after the quote to indicate
the errors are in the quote and are not errors in our docs.

Text taken from a GUI (e.g., menu text or button text) should appear in “double
quotes”. The text should take the exact same capitalisation, etc. as appears in
the GUI. E.g., Click “Continue” to save the settings.

Text that refers to a keyboard command or hotkey is capitalized (e.g., Ctrl-D).

When writing CLI examples, give the user hints by making the examples resemble
exactly what they see in their shell:

		Indent shell examples by 4 spaces so they get rendered as code blocks.

		Start typed commands with $ (dollar space), so that they are easily
differentiated from program output.

		Program output has no prefix.

		Comments begin with # (hash space).

		In-container shell commands, begin with $$ (dollar dollar space).

Please test all code samples to ensure that they are correct and functional so
that users can successfully cut-and-paste samples directly into the CLI.

Pull requests

The pull request (PR) process is in place so that we can ensure changes made to
the docs are the best changes possible. A good PR will do some or all of the
following:

		Explain why the change is needed

		Point out potential issues or questions

		Ask for help from experts in the company or the community

		Encourage feedback from core developers and others involved in creating the
software being documented.

Writing a PR that is singular in focus and has clear objectives will encourage
all of the above. Done correctly, the process allows reviewers (maintainers and
community members) to validate the claims of the documentation and identify
potential problems in communication or presentation.

Commit messages

In order to write clear, useful commit messages, please follow these
recommendations [http://robots.thoughtbot.com/5-useful-tips-for-a-better-commit-message].

Links

For accessibility and usability reasons, avoid using phrases such as “click
here” for link text. Recast your sentence so that the link text describes the
content of the link, as we did in the
“Commit messages” section above.

You can use relative links (../linkeditem) to link to other pages in Docker’s
documentation.

Graphics

When you need to add a graphic, try to make the file-size as small as possible.
If you need help reducing file-size of a high-resolution image, feel free to
contact us for help.
Usually, graphics should go in the same directory as the .md file that
references them, or in a subdirectory for images if one already exists.

The preferred file format for graphics is PNG, but GIF and JPG are also
acceptable.

If you are referring to a specific part of the UI in an image, use
call-outs (circles and arrows or lines) to highlight what you’re referring to.
Line width for call-outs should not exceed five pixels. The preferred color for
call-outs is red.

Be sure to include descriptive alt-text for the graphic. This greatly helps
users with accessibility issues.

Lastly, be sure you have permission to use any included graphics.

 © Copyright .
 Created using Sphinx 1.3.1.

project/advanced-contributing.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Advanced contributing

In this section, you learn about the more advanced contributions you can make.
They are advanced because they have a more involved workflow or require greater
programming experience. Don’t be scared off though, if you like to stretch and
challenge yourself, this is the place for you.

This section gives generalized instructions for advanced contributions. You’ll
read about the workflow but there are not specific descriptions of commands.
Your goal should be to understand the processes described.

At this point, you should have read and worked through the earlier parts of
the project contributor guide. You should also have
 made at least one project contribution.

Refactor or cleanup proposal

A refactor or cleanup proposal changes Docker’s internal structure without
altering the external behavior. To make this type of proposal:

		Fork docker/docker.

		Make your changes in a feature branch.

		Sync and rebase with master as you work.

		Run the full test suite.

		Submit your code through a pull request (PR).

The PR’s title should have the format:

Cleanup: short title

If your changes required logic changes, note that in your request.

		Work through Docker’s review process until merge.

Design proposal

A design proposal solves a problem or adds a feature to the Docker software.
The process for submitting design proposals requires two pull requests, one
for the design and one for the implementation.

[image: Simple process]

The important thing to notice is that both the design pull request and the
implementation pull request go through a review. In other words, there is
considerable time commitment in a design proposal; so, you might want to pair
with someone on design work.

The following provides greater detail on the process:

		Come up with an idea.

Ideas usually come from limitations users feel working with a product. So,
take some time to really use Docker. Try it on different platforms; explore
how it works with different web applications. Go to some community events
and find out what other users want.

		Review existing issues and proposals to make sure no other user is proposing a similar idea.

The design proposals are all online in our GitHub pull requests.

		Talk to the community about your idea.

We have lots of community forums
where you can get feedback on your idea. Float your idea in a forum or two
to get some commentary going on it.

		Fork docker/docker and clone the repo to your local host.

		Create a new Markdown file in the area you wish to change.

For example, if you want to redesign our daemon create a new file under the
daemon/ folder.

		Name the file descriptively, for example redesign-daemon-proposal.md.

		Write a proposal for your change into the file.

This is a Markdown file that describes your idea. Your proposal
should include information like:

		Why is this change needed or what are the use cases?

		What are the requirements this change should meet?

		What are some ways to design/implement this feature?

		Which design/implementation do you think is best and why?

		What are the risks or limitations of your proposal?

This is your chance to convince people your idea is sound.

		Submit your proposal in a pull request to docker/docker.

The title should have the format:

Proposal: short title

The body of the pull request should include a brief summary of your change
and then say something like “See the file for a complete description”.

		Refine your proposal through review.

The maintainers and the community review your proposal. You’ll need to
answer questions and sometimes explain or defend your approach. This is
chance for everyone to both teach and learn.

		Pull request accepted.

Your request may also be rejected. Not every idea is a good fit for Docker.
Let’s assume though your proposal succeeded.

		Implement your idea.

Implementation uses all the standard practices of any contribution.

		fork docker/docker

		create a feature branch

		sync frequently back to master

		test as you go and full test before a PR

If you run into issues, the community is there to help.

		When you have a complete implementation, submit a pull request back to docker/docker.

		Review and iterate on your code.

If you are making a large code change, you can expect greater scrutiny
during this phase.

		Acceptance and merge!

About the advanced process

Docker is a large project. Our core team gets a great many design proposals.
Design proposal discussions can span days, weeks, and longer. The number of comments can reach the 100s.
In that situation, following the discussion flow and the decisions reached is crucial.

Making a pull request with a design proposal simplifies this process:

		you can leave comments on specific design proposal line

		replies around line are easy to track

		as a proposal changes and is updated, pages reset as line items resolve

		GitHub maintains the entire history

While proposals in pull requests do not end up merged into a master repository, they provide a convenient tool for managing the design process.

 © Copyright .
 Created using Sphinx 1.3.1.

project/create-pr.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Create a pull request (PR)

A pull request (PR) sends your changes to the Docker maintainers for review. You
create a pull request on GitHub. A pull request “pulls” changes from your forked
repository into the docker/docker repository.

You can see the
list of active pull requests to Docker on GitHub.

Check your work

Before you create a pull request, check your work.

		In a terminal window, go to the root of your docker-fork repository.

 $ cd ~/repos/docker-fork

		Checkout your feature branch.

 $ git checkout 11038-fix-rhel-link
 Switched to branch '11038-fix-rhel-link'

		Run the full test suite on your branch.

 $ make test

All the tests should pass. If they don’t, find out why and correct the
situation.

		Optionally, if modified the documentation, build the documentation:

 $ make docs

		Commit and push any changes that result from your checks.

Rebase your branch

Always rebase and squash your commits before making a pull request.

		Checkout your feature branch in your local docker-fork repository.

This is the branch associated with your request.

		Fetch any last minute changes from docker/docker.

 $ git fetch upstream master
 From github.com:docker/docker
 * branch master -> FETCH_HEAD

		Start an interactive rebase.

 $ git rebase -i upstream/master

		Rebase opens an editor with a list of commits.

 pick 1a79f55 Tweak some of the other text for grammar
 pick 53e4983 Fix a link
 pick 3ce07bb Add a new line about RHEL

		Replace the pick keyword with squash on all but the first commit.

 pick 1a79f55 Tweak some of the other text for grammar
 squash 53e4983 Fix a link
 squash 3ce07bb Add a new line about RHEL

After you save the changes and quit from the editor, git starts
the rebase, reporting the progress along the way. Sometimes
your changes can conflict with the work of others. If git
encounters a conflict, it stops the rebase, and prints guidance
for how to correct the conflict.

		Edit and save your commit message.

 $ git commit -s

Make sure your message includes your signature.

		Force push any changes to your fork on GitHub.

 $ git push -f origin 11038-fix-rhel-link

Create a PR on GitHub

You create and manage PRs on GitHub:

		Open your browser to your fork on GitHub.

You should see the latest activity from your branch.

[image: Latest commits]

		Click “Compare & pull request.”

The system displays the pull request dialog.

[image: PR dialog]

The pull request compares your changes to the master branch on the
docker/docker repository.

		Edit the dialog’s description and add a reference to the issue you are fixing.

GitHub helps you out by searching for the issue as you type.

[image: Fixes issue]

		Scroll down and verify the PR contains the commits and changes you expect.

For example, is the file count correct? Are the changes in the files what
you expect?

[image: Commits]

		Press “Create pull request”.

The system creates the request and opens it for you in the docker/docker
repository.

[image: Pull request made]

Where to go next

Congratulations, you’ve created your first pull request to Docker. The next
step is for you learn how to participate in your PR’s
review.

 © Copyright .
 Created using Sphinx 1.3.1.

project/get-help.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Where to chat or get help

There are several communications channels you can use to chat with Docker
community members and developers.

 		Internet Relay Chat (IRC)
 		

 IRC a direct line to our most knowledgeable Docker users.
 The #docker and #docker-dev group on
 irc.freenode.net. IRC was first created in 1988.
 So, it is a rich chat protocol but it can overwhelm new users. You can search
 our chat archives.

 Read our IRC quickstart guide below for an easy way to get started.

 		Google Groups
 		
 There are two groups.
 Docker-user
 is for people using Docker containers.
 The docker-dev
 group is for contributors and other people contributing to the Docker
 project.

 		Twitter
 		
 You can follow Docker's twitter
 to get updates on our products. You can also tweet us questions or just
 share blogs or stories.

 		Stack Overflow
 		
 Stack Overflow has over 7000K Docker questions listed. We regularly
 monitor Docker questions
 and so do many other knowledgeable Docker users.

IRC Quickstart

IRC can also be overwhelming for new users. This quickstart shows you
the easiest way to connect to IRC.

		In your browser open http://webchat.freenode.net

[image: Login screen]

		Fill out the form.

 		Nickname
 		The short name you want to be known as in IRC.

 		Channels
 		#docker

 		reCAPTCHA
 		Use the value provided.

		Click “Connect”.

The system connects you to chat. You’ll see a lot of text. At the bottom of
the display is a command line. Just above the command line the system asks
you to register.

[image: Login screen]

		In the command line, register your nickname.

 /msg NickServ REGISTER password youremail@example.com

[image: Login screen]

The IRC system sends an email to the address you
enter. The email contains instructions for completing your registration.

		Open your mail client and look for the email.

[image: Login screen]

		Back in the browser, complete the registration according to the email.

 /msg NickServ VERIFY REGISTER moxiegirl_ acljtppywjnr

		Join the #docker group using the following command.

 /j #docker

You can also join the #docker-dev group.

 /j #docker-dev

		To ask questions to the channel just type messages in the command line.

[image: Login screen]

		To quit, close the browser window.

Tips and learning more about IRC

Next time you return to log into chat, you’ll need to re-enter your password
on the command line using this command:

/msg NickServ identify <password>

If you forget or lose your password see the FAQ on
freenode.net to learn how to recover it.

This quickstart was meant to get you up and into IRC very quickly. If you find
IRC useful there is a lot more to learn. Drupal, another open source project,
actually has
written a lot of good documentation about using IRC for their project
(thanks Drupal!).

 © Copyright .
 Created using Sphinx 1.3.1.

static_files/README.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Static files dir

Files you put in /static_files/ will be copied to the web visible /_static/

Be careful not to override pre-existing static files from the template.

Generally, layout related files should go in the /theme directory.

If you want to add images to your particular documentation page. Just put them next to
your .rst source file and reference them relatively.

 © Copyright .
 Created using Sphinx 1.3.1.

articles/b2d_volume_resize.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Getting “no space left on device” errors with Boot2Docker?

If you’re using Boot2Docker with a large number of images, or the images you’re
working with are very large, your pulls might start failing with “no space left
on device” errors when the Boot2Docker volume fills up. There are two solutions
you can try.

Solution 1: Add the DiskImage property in boot2docker profile

The boot2docker command reads its configuration from the $BOOT2DOCKER_PROFILE if set, or $BOOT2DOCKER_DIR/profile or $HOME/.boot2docker/profile (on Windows this is %USERPROFILE%/.boot2docker/profile).

		View the existing configuration, use the boot2docker config command.

 $ boot2docker config
 # boot2docker profile filename: /Users/mary/.boot2docker/profile
 Init = false
 Verbose = false
 Driver = "virtualbox"
 Clobber = true
 ForceUpgradeDownload = false
 SSH = "ssh"
 SSHGen = "ssh-keygen"
 SSHKey = "/Users/mary/.ssh/id_boot2docker"
 VM = "boot2docker-vm"
 Dir = "/Users/mary/.boot2docker"
 ISOURL = "https://api.github.com/repos/boot2docker/boot2docker/releases"
 ISO = "/Users/mary/.boot2docker/boot2docker.iso"
 DiskSize = 20000
 Memory = 2048
 CPUs = 8
 SSHPort = 2022
 DockerPort = 0
 HostIP = "192.168.59.3"
 DHCPIP = "192.168.59.99"
 NetMask = [255, 255, 255, 0]
 LowerIP = "192.168.59.103"
 UpperIP = "192.168.59.254"
 DHCPEnabled = true
 Serial = false
 SerialFile = "/Users/mary/.boot2docker/boot2docker-vm.sock"
 Waittime = 300
 Retries = 75

The configuration shows you where boot2docker is looking for the profile file. It also output the settings that are in use.

		Initialise a default file to customize using boot2docker config > ~/.boot2docker/profile command.

		Add the following lines to $HOME/.boot2docker/profile:

 # Disk image size in MB
 DiskSize = 50000

		Run the following sequence of commands to restart Boot2Docker with the new settings.

 $ boot2docker poweroff
 $ boot2docker destroy
 $ boot2docker init
 $ boot2docker up

Solution 2: Increase the size of boot2docker volume

This solution increases the volume size by first cloning it, then resizing it
using a disk partitioning tool. We recommend
GParted [http://gparted.sourceforge.net/download.php/index.php]. The tool comes
as a bootable ISO, is a free download, and works well with VirtualBox.

		Stop Boot2Docker

Issue the command to stop the Boot2Docker VM on the command line:

 $ boot2docker stop

		Clone the VMDK image to a VDI image

Boot2Docker ships with a VMDK image, which can’t be resized by VirtualBox’s
native tools. We will instead create a VDI volume and clone the VMDK volume to
it.

		Using the command line VirtualBox tools, clone the VMDK image to a VDI image:

 $ vboxmanage clonehd /full/path/to/boot2docker-hd.vmdk /full/path/to/<newVDIimage>.vdi --format VDI --variant Standard

		Resize the VDI volume

Choose a size that will be appropriate for your needs. If you’re spinning up a
lot of containers, or your containers are particularly large, larger will be
better:

 $ vboxmanage modifyhd /full/path/to/<newVDIimage>.vdi --resize <size in MB>

		Download a disk partitioning tool ISO

To resize the volume, we’ll use GParted [http://gparted.sourceforge.net/download.php/].
Once you’ve downloaded the tool, add the ISO to the Boot2Docker VM IDE bus.
You might need to create the bus before you can add the ISO.

Note:
It’s important that you choose a partitioning tool that is available as an ISO so
that the Boot2Docker VM can be booted with it.

 		[image:]

 		[image:]

		Add the new VDI image

In the settings for the Boot2Docker image in VirtualBox, remove the VMDK image
from the SATA controller and add the VDI image.

[image:]

		Verify the boot order

In the System settings for the Boot2Docker VM, make sure that CD/DVD is
at the top of the Boot Order list.

[image:]

		Boot to the disk partitioning ISO

Manually start the Boot2Docker VM in VirtualBox, and the disk partitioning ISO
should start up. Using GParted, choose the GParted Live (default settings)
option. Choose the default keyboard, language, and XWindows settings, and the
GParted tool will start up and display the VDI volume you created. Right click
on the VDI and choose Resize/Move.

[image:]

		Drag the slider representing the volume to the maximum available size.

		Click Resize/Move followed by Apply.

[image:]

		Quit GParted and shut down the VM.

		Remove the GParted ISO from the IDE controller for the Boot2Docker VM in
VirtualBox.

		Start the Boot2Docker VM

Fire up the Boot2Docker VM manually in VirtualBox. The VM should log in
automatically, but if it doesn’t, the credentials are docker/tcuser. Using
the df -h command, verify that your changes took effect.

[image:]

You’re done!

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-close.png

articles/runmetrics.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Runtime metrics

Docker stats

You can use the docker stats command to live stream a container’s
runtime metrics. The command supports CPU, memory usage, memory limit,
and network IO metrics.

The following is a sample output from the docker stats command

$ docker stats redis1 redis2
CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O
redis1 0.07% 796 KB/64 MB 1.21% 788 B/648 B
redis2 0.07% 2.746 MB/64 MB 4.29% 1.266 KB/648 B

The docker stats reference page has
more details about the docker stats command.

Control groups

Linux Containers rely on control groups [https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt]
which not only track groups of processes, but also expose metrics about
CPU, memory, and block I/O usage. You can access those metrics and
obtain network usage metrics as well. This is relevant for “pure” LXC
containers, as well as for Docker containers.

Control groups are exposed through a pseudo-filesystem. In recent
distros, you should find this filesystem under /sys/fs/cgroup. Under
that directory, you will see multiple sub-directories, called devices,
freezer, blkio, etc.; each sub-directory actually corresponds to a different
cgroup hierarchy.

On older systems, the control groups might be mounted on /cgroup, without
distinct hierarchies. In that case, instead of seeing the sub-directories,
you will see a bunch of files in that directory, and possibly some directories
corresponding to existing containers.

To figure out where your control groups are mounted, you can run:

$ grep cgroup /proc/mounts

Enumerating cgroups

You can look into /proc/cgroups to see the different control group subsystems
known to the system, the hierarchy they belong to, and how many groups they contain.

You can also look at /proc/<pid>/cgroup to see which control groups a process
belongs to. The control group will be shown as a path relative to the root of
the hierarchy mountpoint; e.g., / means “this process has not been assigned into
a particular group”, while /lxc/pumpkin means that the process is likely to be
a member of a container named pumpkin.

Finding the cgroup for a given container

For each container, one cgroup will be created in each hierarchy. On
older systems with older versions of the LXC userland tools, the name of
the cgroup will be the name of the container. With more recent versions
of the LXC tools, the cgroup will be lxc/<container_name>.

For Docker containers using cgroups, the container name will be the full
ID or long ID of the container. If a container shows up as ae836c95b4c3
in docker ps, its long ID might be something like
ae836c95b4c3c9e9179e0e91015512da89fdec91612f63cebae57df9a5444c79. You can
look it up with docker inspect or docker ps --no-trunc.

Putting everything together to look at the memory metrics for a Docker
container, take a look at /sys/fs/cgroup/memory/lxc/<longid>/.

Metrics from cgroups: memory, CPU, block I/O

For each subsystem (memory, CPU, and block I/O), you will find one or
more pseudo-files containing statistics.

Memory metrics: memory.stat

Memory metrics are found in the “memory” cgroup. Note that the memory
control group adds a little overhead, because it does very fine-grained
accounting of the memory usage on your host. Therefore, many distros
chose to not enable it by default. Generally, to enable it, all you have
to do is to add some kernel command-line parameters:
cgroup_enable=memory swapaccount=1.

The metrics are in the pseudo-file memory.stat.
Here is what it will look like:

cache 11492564992
rss 1930993664
mapped_file 306728960
pgpgin 406632648
pgpgout 403355412
swap 0
pgfault 728281223
pgmajfault 1724
inactive_anon 46608384
active_anon 1884520448
inactive_file 7003344896
active_file 4489052160
unevictable 32768
hierarchical_memory_limit 9223372036854775807
hierarchical_memsw_limit 9223372036854775807
total_cache 11492564992
total_rss 1930993664
total_mapped_file 306728960
total_pgpgin 406632648
total_pgpgout 403355412
total_swap 0
total_pgfault 728281223
total_pgmajfault 1724
total_inactive_anon 46608384
total_active_anon 1884520448
total_inactive_file 7003344896
total_active_file 4489052160
total_unevictable 32768

The first half (without the total_ prefix) contains statistics relevant
to the processes within the cgroup, excluding sub-cgroups. The second half
(with the total_ prefix) includes sub-cgroups as well.

Some metrics are “gauges”, i.e., values that can increase or decrease
(e.g., swap, the amount of swap space used by the members of the cgroup).
Some others are “counters”, i.e., values that can only go up, because
they represent occurrences of a specific event (e.g., pgfault, which
indicates the number of page faults which happened since the creation of
the cgroup; this number can never decrease).

		cache:the amount of memory used by the processes of this control group
that can be associated precisely with a block on a block device.
When you read from and write to files on disk, this amount will
increase. This will be the case if you use “conventional” I/O
(open, read,
write syscalls) as well as mapped files (with
mmap). It also accounts for the memory used by
tmpfs mounts, though the reasons are unclear.

		rss:the amount of memory that doesn’t correspond to anything on disk:
stacks, heaps, and anonymous memory maps.

		mapped_file:indicates the amount of memory mapped by the processes in the
control group. It doesn’t give you information about how much
memory is used; it rather tells you how it is used.

		pgfault and pgmajfault:indicate the number of times that a process of the cgroup triggered
a “page fault” and a “major fault”, respectively. A page fault
happens when a process accesses a part of its virtual memory space
which is nonexistent or protected. The former can happen if the
process is buggy and tries to access an invalid address (it will
then be sent a SIGSEGV signal, typically
killing it with the famous Segmentation fault
message). The latter can happen when the process reads from a memory
zone which has been swapped out, or which corresponds to a mapped
file: in that case, the kernel will load the page from disk, and let
the CPU complete the memory access. It can also happen when the
process writes to a copy-on-write memory zone: likewise, the kernel
will preempt the process, duplicate the memory page, and resume the
write operation on the process` own copy of the page. “Major” faults
happen when the kernel actually has to read the data from disk. When
it just has to duplicate an existing page, or allocate an empty
page, it’s a regular (or “minor”) fault.

		swap:the amount of swap currently used by the processes in this cgroup.

		active_anon and inactive_anon:the amount of anonymous memory that has been identified has
respectively active and inactive by the kernel. “Anonymous”
memory is the memory that is not linked to disk pages. In other
words, that’s the equivalent of the rss counter described above. In
fact, the very definition of the rss counter is active_anon +
inactive_anon - tmpfs (where tmpfs is the amount of memory
used up by tmpfs filesystems mounted by this
control group). Now, what’s the difference between “active” and
“inactive”? Pages are initially “active”; and at regular intervals,
the kernel sweeps over the memory, and tags some pages as
“inactive”. Whenever they are accessed again, they are immediately
retagged “active”. When the kernel is almost out of memory, and time
comes to swap out to disk, the kernel will swap “inactive” pages.

		active_file and inactive_file:cache memory, with active and inactive similar to the anon
memory above. The exact formula is cache = active_file +
inactive_file + tmpfs. The exact rules used by the kernel
to move memory pages between active and inactive sets are different
from the ones used for anonymous memory, but the general principle
is the same. Note that when the kernel needs to reclaim memory, it
is cheaper to reclaim a clean (=non modified) page from this pool,
since it can be reclaimed immediately (while anonymous pages and
dirty/modified pages have to be written to disk first).

		unevictable:the amount of memory that cannot be reclaimed; generally, it will
account for memory that has been “locked” with mlock.
It is often used by crypto frameworks to make sure that
secret keys and other sensitive material never gets swapped out to
disk.

		memory and memsw limits:These are not really metrics, but a reminder of the limits applied
to this cgroup. The first one indicates the maximum amount of
physical memory that can be used by the processes of this control
group; the second one indicates the maximum amount of RAM+swap.

Accounting for memory in the page cache is very complex. If two
processes in different control groups both read the same file
(ultimately relying on the same blocks on disk), the corresponding
memory charge will be split between the control groups. It’s nice, but
it also means that when a cgroup is terminated, it could increase the
memory usage of another cgroup, because they are not splitting the cost
anymore for those memory pages.

CPU metrics: cpuacct.stat

Now that we’ve covered memory metrics, everything else will look very
simple in comparison. CPU metrics will be found in the
cpuacct controller.

For each container, you will find a pseudo-file cpuacct.stat,
containing the CPU usage accumulated by the processes of the container,
broken down between user and system time. If you’re not familiar
with the distinction, user is the time during which the processes were
in direct control of the CPU (i.e., executing process code), and system
is the time during which the CPU was executing system calls on behalf of
those processes.

Those times are expressed in ticks of 1/100th of a second. Actually,
they are expressed in “user jiffies”. There are USER_HZ
“jiffies” per second, and on x86 systems,
USER_HZ is 100. This used to map exactly to the
number of scheduler “ticks” per second; but with the advent of higher
frequency scheduling, as well as tickless kernels [http://lwn.net/Articles/549580/], the number of kernel ticks
wasn’t relevant anymore. It stuck around anyway, mainly for legacy and
compatibility reasons.

Block I/O metrics

Block I/O is accounted in the blkio controller.
Different metrics are scattered across different files. While you can
find in-depth details in the blkio-controller [https://www.kernel.org/doc/Documentation/cgroups/blkio-controller.txt]
file in the kernel documentation, here is a short list of the most
relevant ones:

		blkio.sectors:contain the number of 512-bytes sectors read and written by the
processes member of the cgroup, device by device. Reads and writes
are merged in a single counter.

		blkio.io_service_bytes:indicates the number of bytes read and written by the cgroup. It has
4 counters per device, because for each device, it differentiates
between synchronous vs. asynchronous I/O, and reads vs. writes.

		blkio.io_serviced:the number of I/O operations performed, regardless of their size. It
also has 4 counters per device.

		blkio.io_queued:indicates the number of I/O operations currently queued for this
cgroup. In other words, if the cgroup isn’t doing any I/O, this will
be zero. Note that the opposite is not true. In other words, if
there is no I/O queued, it does not mean that the cgroup is idle
(I/O-wise). It could be doing purely synchronous reads on an
otherwise quiescent device, which is therefore able to handle them
immediately, without queuing. Also, while it is helpful to figure
out which cgroup is putting stress on the I/O subsystem, keep in
mind that is is a relative quantity. Even if a process group does
not perform more I/O, its queue size can increase just because the
device load increases because of other devices.

Network metrics

Network metrics are not exposed directly by control groups. There is a
good explanation for that: network interfaces exist within the context
of network namespaces. The kernel could probably accumulate metrics
about packets and bytes sent and received by a group of processes, but
those metrics wouldn’t be very useful. You want per-interface metrics
(because traffic happening on the local lo
interface doesn’t really count). But since processes in a single cgroup
can belong to multiple network namespaces, those metrics would be harder
to interpret: multiple network namespaces means multiple lo
interfaces, potentially multiple eth0
interfaces, etc.; so this is why there is no easy way to gather network
metrics with control groups.

Instead we can gather network metrics from other sources:

IPtables

IPtables (or rather, the netfilter framework for which iptables is just
an interface) can do some serious accounting.

For instance, you can setup a rule to account for the outbound HTTP
traffic on a web server:

$ iptables -I OUTPUT -p tcp --sport 80

There is no -j or -g flag,
so the rule will just count matched packets and go to the following
rule.

Later, you can check the values of the counters, with:

$ iptables -nxvL OUTPUT

Technically, -n is not required, but it will
prevent iptables from doing DNS reverse lookups, which are probably
useless in this scenario.

Counters include packets and bytes. If you want to setup metrics for
container traffic like this, you could execute a for
loop to add two iptables rules per
container IP address (one in each direction), in the FORWARD
chain. This will only meter traffic going through the NAT
layer; you will also have to add traffic going through the userland
proxy.

Then, you will need to check those counters on a regular basis. If you
happen to use collectd, there is a nice plugin [https://collectd.org/wiki/index.php/Plugin:IPTables]
to automate iptables counters collection.

Interface-level counters

Since each container has a virtual Ethernet interface, you might want to
check directly the TX and RX counters of this interface. You will notice
that each container is associated to a virtual Ethernet interface in
your host, with a name like vethKk8Zqi. Figuring
out which interface corresponds to which container is, unfortunately,
difficult.

But for now, the best way is to check the metrics from within the
containers. To accomplish this, you can run an executable from the host
environment within the network namespace of a container using ip-netns
magic.

The ip-netns exec command will let you execute any
program (present in the host system) within any network namespace
visible to the current process. This means that your host will be able
to enter the network namespace of your containers, but your containers
won’t be able to access the host, nor their sibling containers.
Containers will be able to “see” and affect their sub-containers,
though.

The exact format of the command is:

$ ip netns exec <nsname> <command...>

For example:

$ ip netns exec mycontainer netstat -i

ip netns finds the “mycontainer” container by
using namespaces pseudo-files. Each process belongs to one network
namespace, one PID namespace, one mnt namespace,
etc., and those namespaces are materialized under
/proc/<pid>/ns/. For example, the network
namespace of PID 42 is materialized by the pseudo-file
/proc/42/ns/net.

When you run ip netns exec mycontainer ..., it
expects /var/run/netns/mycontainer to be one of
those pseudo-files. (Symlinks are accepted.)

In other words, to execute a command within the network namespace of a
container, we need to:

		Find out the PID of any process within the container that we want to investigate;

		Create a symlink from /var/run/netns/<somename> to /proc/<thepid>/ns/net

		Execute ip netns exec <somename>

Please review Enumerating Cgroups to learn how to find
the cgroup of a process running in the container of which you want to
measure network usage. From there, you can examine the pseudo-file named
tasks, which contains the PIDs that are in the
control group (i.e., in the container). Pick any one of them.

Putting everything together, if the “short ID” of a container is held in
the environment variable $CID, then you can do this:

$ TASKS=/sys/fs/cgroup/devices/$CID*/tasks
$ PID=$(head -n 1 $TASKS)
$ mkdir -p /var/run/netns
$ ln -sf /proc/$PID/ns/net /var/run/netns/$CID
$ ip netns exec $CID netstat -i

Tips for high-performance metric collection

Note that running a new process each time you want to update metrics is
(relatively) expensive. If you want to collect metrics at high
resolutions, and/or over a large number of containers (think 1000
containers on a single host), you do not want to fork a new process each
time.

Here is how to collect metrics from a single process. You will have to
write your metric collector in C (or any language that lets you do
low-level system calls). You need to use a special system call,
setns(), which lets the current process enter any
arbitrary namespace. It requires, however, an open file descriptor to
the namespace pseudo-file (remember: that’s the pseudo-file in
/proc/<pid>/ns/net).

However, there is a catch: you must not keep this file descriptor open.
If you do, when the last process of the control group exits, the
namespace will not be destroyed, and its network resources (like the
virtual interface of the container) will stay around for ever (or until
you close that file descriptor).

The right approach would be to keep track of the first PID of each
container, and re-open the namespace pseudo-file each time.

Collecting metrics when a container exits

Sometimes, you do not care about real time metric collection, but when a
container exits, you want to know how much CPU, memory, etc. it has
used.

Docker makes this difficult because it relies on lxc-start, which
carefully cleans up after itself, but it is still possible. It is
usually easier to collect metrics at regular intervals (e.g., every
minute, with the collectd LXC plugin) and rely on that instead.

But, if you’d still like to gather the stats when a container stops,
here is how:

For each container, start a collection process, and move it to the
control groups that you want to monitor by writing its PID to the tasks
file of the cgroup. The collection process should periodically re-read
the tasks file to check if it’s the last process of the control group.
(If you also want to collect network statistics as explained in the
previous section, you should also move the process to the appropriate
network namespace.)

When the container exits, lxc-start will try to
delete the control groups. It will fail, since the control group is
still in use; but that’s fine. You process should now detect that it is
the only one remaining in the group. Now is the right time to collect
all the metrics you need!

Finally, your process should move itself back to the root control group,
and remove the container control group. To remove a control group, just
rmdir its directory. It’s counter-intuitive to
rmdir a directory as it still contains files; but
remember that this is a pseudo-filesystem, so usual rules don’t apply.
After the cleanup is done, the collection process can exit safely.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

articles/dockerfile_best-practices.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Best practices for writing Dockerfiles

Overview

Docker can build images automatically by reading the instructions from a
Dockerfile, a text file that contains all the commands, in order, needed to
build a given image. Dockerfiles adhere to a specific format and use a
specific set of instructions. You can learn the basics on the
Dockerfile Reference [https://docs.docker.com/reference/builder/] page. If
you’re new to writing Dockerfiles, you should start there.

This document covers the best practices and methods recommended by Docker,
Inc. and the Docker community for creating easy-to-use, effective
Dockerfiles. We strongly suggest you follow these recommendations (in fact,
if you’re creating an Official Image, you must adhere to these practices).

You can see many of these practices and recommendations in action in the buildpack-deps Dockerfile [https://github.com/docker-library/buildpack-deps/blob/master/jessie/Dockerfile].

Note: for more detailed explanations of any of the Dockerfile commands
mentioned here, visit the Dockerfile Reference [https://docs.docker.com/reference/builder/] page.

General guidelines and recommendations

Containers should be ephemeral

The container produced by the image your Dockerfile defines should be as
ephemeral as possible. By “ephemeral,” we mean that it can be stopped and
destroyed and a new one built and put in place with an absolute minimum of
set-up and configuration.

Use a .dockerignore file

In most cases, it’s best to put each Dockerfile in an empty directory. Then,
add to that directory only the files needed for building the Dockerfile. To
increase the build’s performance, you can exclude files and directories by
adding a .dockerignore file to that directory as well. This file supports
exclusion patterns similar to .gitignore files. For information on creating one,
see the .dockerignore file.

Avoid installing unnecessary packages

In order to reduce complexity, dependencies, file sizes, and build times, you
should avoid installing extra or unnecessary packages just because they
might be “nice to have.” For example, you don’t need to include a text editor
in a database image.

Run only one process per container

In almost all cases, you should only run a single process in a single
container. Decoupling applications into multiple containers makes it much
easier to scale horizontally and reuse containers. If that service depends on
another service, make use of container linking [https://docs.docker.com/userguide/dockerlinks/].

Minimize the number of layers

You need to find the balance between readability (and thus long-term
maintainability) of the Dockerfile and minimizing the number of layers it
uses. Be strategic and cautious about the number of layers you use.

Sort multi-line arguments

Whenever possible, ease later changes by sorting multi-line arguments
alphanumerically. This will help you avoid duplication of packages and make the
list much easier to update. This also makes PRs a lot easier to read and
review. Adding a space before a backslash (\) helps as well.

Here’s an example from the buildpack-deps image [https://github.com/docker-library/buildpack-deps]:

RUN apt-get update && apt-get install -y \
 bzr \
 cvs \
 git \
 mercurial \
 subversion

Build cache

During the process of building an image Docker will step through the
instructions in your Dockerfile executing each in the order specified.
As each instruction is examined Docker will look for an existing image in its
cache that it can reuse, rather than creating a new (duplicate) image.
If you do not want to use the cache at all you can use the --no-cache=true
option on the docker build command.

However, if you do let Docker use its cache then it is very important to
understand when it will, and will not, find a matching image. The basic rules
that Docker will follow are outlined below:

		Starting with a base image that is already in the cache, the next
instruction is compared against all child images derived from that base
image to see if one of them was built using the exact same instruction. If
not, the cache is invalidated.

		In most cases simply comparing the instruction in the Dockerfile with one
of the child images is sufficient. However, certain instructions require
a little more examination and explanation.

		For the ADD and COPY instructions, the contents of the file(s)
in the image are examined and a checksum is calculated for each file.
The last-modified and last-accessed times of the file(s) are not considered in
these checksums. During the cache lookup, the checksum is compared against the
checksum in the existing images. If anything has changed in the file(s), such
as the contents and metadata, then the cache is invalidated.

		Aside from the ADD and COPY commands cache checking will not look at the
files in the container to determine a cache match. For example, when processing
a RUN apt-get -y update command the files updated in the container
will not be examined to determine if a cache hit exists. In that case just
the command string itself will be used to find a match.

Once the cache is invalidated, all subsequent Dockerfile commands will
generate new images and the cache will not be used.

The Dockerfile instructions

Below you’ll find recommendations for the best way to write the
various instructions available for use in a Dockerfile.

FROM

Dockerfile reference for the FROM instruction [https://docs.docker.com/reference/builder/#from]

Whenever possible, use current Official Repositories as the basis for your
image. We recommend the Debian image [https://registry.hub.docker.com/_/debian/]
since it’s very tightly controlled and kept extremely minimal (currently under
100 mb), while still being a full distribution.

RUN

Dockerfile reference for the RUN instruction [https://docs.docker.com/reference/builder/#run]

As always, to make your Dockerfile more readable, understandable, and
maintainable, put long or complex RUN statements on multiple lines separated
with backslashes.

Probably the most common use-case for RUN is an application of apt-get.
When using apt-get, here are a few things to keep in mind:

		Don’t do RUN apt-get update on a single line. This will cause
caching issues if the referenced archive gets updated, which will make your
subsequent apt-get install fail without comment.

		Avoid RUN apt-get upgrade or dist-upgrade, since many of the “essential”
packages from the base images will fail to upgrade inside an unprivileged
container. If a base package is out of date, you should contact its
maintainers. If you know there’s a particular package, foo, that needs to be
updated, use apt-get install -y foo and it will update automatically.

		Do write instructions like:

 RUN apt-get update && apt-get install -y \
 package-bar \
 package-baz \
 package-foo

Writing the instruction this way not only makes it easier to read
and maintain, but also, by including apt-get update, ensures that the cache
will naturally be busted and the latest versions will be installed with no
further coding or manual intervention required.

		Further natural cache-busting can be realized by version-pinning packages
(e.g., package-foo=1.3.*). This will force retrieval of that version
regardless of what’s in the cache.
Writing your apt-get code this way will greatly ease maintenance and reduce
failures due to unanticipated changes in required packages.

Example

Below is a well-formed RUN instruction that demonstrates the above
recommendations. Note that the last package, s3cmd, specifies a version
1.1.0*. If the image previously used an older version, specifying the new one
will cause a cache bust of apt-get update and ensure the installation of
the new version (which in this case had a new, required feature).

RUN apt-get update && apt-get install -y \
 aufs-tools \
 automake \
 btrfs-tools \
 build-essential \
 curl \
 dpkg-sig \
 git \
 iptables \
 libapparmor-dev \
 libcap-dev \
 libsqlite3-dev \
 lxc=1.0* \
 mercurial \
 parallel \
 reprepro \
 ruby1.9.1 \
 ruby1.9.1-dev \
 s3cmd=1.1.0*

Writing the instruction this way also helps you avoid potential duplication of
a given package because it is much easier to read than an instruction like:

RUN apt-get install -y package-foo && apt-get install -y package-bar

CMD

Dockerfile reference for the CMD instruction [https://docs.docker.com/reference/builder/#cmd]

The CMD instruction should be used to run the software contained by your
image, along with any arguments. CMD should almost always be used in the
form of CMD [“executable”, “param1”, “param2”…]. Thus, if the image is for a
service (Apache, Rails, etc.), you would run something like
CMD ["apache2","-DFOREGROUND"]. Indeed, this form of the instruction is
recommended for any service-based image.

In most other cases, CMD should be given an interactive shell (bash, python,
perl, etc), for example, CMD ["perl", "-de0"], CMD ["python"], or
CMD [“php”, “-a”]. Using this form means that when you execute something like
docker run -it python, you’ll get dropped into a usable shell, ready to go.
CMD should rarely be used in the manner of CMD [“param”, “param”] in
conjunction with ENTRYPOINT [https://docs.docker.com/reference/builder/#entrypoint], unless
you and your expected users are already quite familiar with how ENTRYPOINT
works.

EXPOSE

Dockerfile reference for the EXPOSE instruction [https://docs.docker.com/reference/builder/#expose]

The EXPOSE instruction indicates the ports on which a container will listen
for connections. Consequently, you should use the common, traditional port for
your application. For example, an image containing the Apache web server would
use EXPOSE 80, while an image containing MongoDB would use EXPOSE 27017 and
so on.

For external access, your users can execute docker run with a flag indicating
how to map the specified port to the port of their choice.
For container linking, Docker provides environment variables for the path from
the recipient container back to the source (ie, MYSQL_PORT_3306_TCP).

ENV

Dockerfile reference for the ENV instruction [https://docs.docker.com/reference/builder/#env]

In order to make new software easier to run, you can use ENV to update the
PATH environment variable for the software your container installs. For
example, ENV PATH /usr/local/nginx/bin:$PATH will ensure that CMD [“nginx”]
just works.

The ENV instruction is also useful for providing required environment
variables specific to services you wish to containerize, such as Postgres’s
PGDATA.

Lastly, ENV can also be used to set commonly used version numbers so that
version bumps are easier to maintain, as seen in the following example:

ENV PG_MAJOR 9.3
ENV PG_VERSION 9.3.4
RUN curl -SL http://example.com/postgres-$PG_VERSION.tar.xz | tar -xJC /usr/src/postgress && …
ENV PATH /usr/local/postgres-$PG_MAJOR/bin:$PATH

Similar to having constant variables in a program (as opposed to hard-coding
values), this approach lets you change a single ENV instruction to
auto-magically bump the version of the software in your container.

ADD or COPY

Dockerfile reference for the ADD instruction [https://docs.docker.com/reference/builder/#add]

Dockerfile reference for the COPY instruction [https://docs.docker.com/reference/builder/#copy]

Although ADD and COPY are functionally similar, generally speaking, COPY
is preferred. That’s because it’s more transparent than ADD. COPY only
supports the basic copying of local files into the container, while ADD has
some features (like local-only tar extraction and remote URL support) that are
not immediately obvious. Consequently, the best use for ADD is local tar file
auto-extraction into the image, as in ADD rootfs.tar.xz /.

If you have multiple Dockerfile steps that use different files from your
context, COPY them individually, rather than all at once. This will ensure that
each step’s build cache is only invalidated (forcing the step to be re-run) if the
specifically required files change.

For example:

COPY requirements.txt /tmp/
RUN pip install /tmp/requirements.txt
COPY . /tmp/

Results in fewer cache invalidations for the RUN step, than if you put the
COPY . /tmp/ before it.

Because image size matters, using ADD to fetch packages from remote URLs is
strongly discouraged; you should use curl or wget instead. That way you can
delete the files you no longer need after they’ve been extracted and you won’t
have to add another layer in your image. For example, you should avoid doing
things like:

ADD http://example.com/big.tar.xz /usr/src/things/
RUN tar -xJf /usr/src/things/big.tar.xz -C /usr/src/things
RUN make -C /usr/src/things all

And instead, do something like:

RUN mkdir -p /usr/src/things \
 && curl -SL http://example.com/big.tar.xz \
 | tar -xJC /usr/src/things \
 && make -C /usr/src/things all

For other items (files, directories) that do not require ADD’s tar
auto-extraction capability, you should always use COPY.

ENTRYPOINT

Dockerfile reference for the ENTRYPOINT instruction [https://docs.docker.com/reference/builder/#entrypoint]

The best use for ENTRYPOINT is to set the image’s main command, allowing that
image to be run as though it was that command (and then use CMD as the
default flags).

Let’s start with an example of an image for the command line tool s3cmd:

ENTRYPOINT ["s3cmd"]
CMD ["--help"]

Now the image can be run like this to show the command’s help:

$ docker run s3cmd

Or using the right parameters to execute a command:

$ docker run s3cmd ls s3://mybucket

This is useful because the image name can double as a reference to the binary as
shown in the command above.

The ENTRYPOINT instruction can also be used in combination with a helper
script, allowing it to function in a similar way to the command above, even
when starting the tool may require more than one step.

For example, the Postgres Official Image [https://registry.hub.docker.com/_/postgres/]
uses the following script as its ENTRYPOINT:

#!/bin/bash
set -e

if ["$1" = 'postgres']; then
 chown -R postgres "$PGDATA"

 if [-z "$(ls -A "$PGDATA")"]; then
 gosu postgres initdb
 fi

 exec gosu postgres "$@"
fi

exec "$@"

Note:
This script uses the exec Bash command [http://wiki.bash-hackers.org/commands/builtin/exec]
so that the final running application becomes the container’s PID 1. This allows
the application to receive any Unix signals sent to the container.
See the ENTRYPOINT [https://docs.docker.com/reference/builder/#entrypoint]
help for more details.

The helper script is copied into the container and run via ENTRYPOINT on
container start:

COPY ./docker-entrypoint.sh /
ENTRYPOINT ["/docker-entrypoint.sh"]

This script allows the user to interact with Postgres in several ways.

It can simply start Postgres:

$ docker run postgres

Or, it can be used to run Postgres and pass parameters to the server:

$ docker run postgres postgres --help

Lastly, it could also be used to start a totally different tool, such as Bash:

$ docker run --rm -it postgres bash

VOLUME

Dockerfile reference for the VOLUME instruction [https://docs.docker.com/reference/builder/#volume]

The VOLUME instruction should be used to expose any database storage area,
configuration storage, or files/folders created by your docker container. You
are strongly encouraged to use VOLUME for any mutable and/or user-serviceable
parts of your image.

USER

Dockerfile reference for the USER instruction [https://docs.docker.com/reference/builder/#user]

If a service can run without privileges, use USER to change to a non-root
user. Start by creating the user and group in the Dockerfile with something
like RUN groupadd -r postgres && useradd -r -g postgres postgres.

Note: Users and groups in an image get a non-deterministic
UID/GID in that the “next” UID/GID gets assigned regardless of image
rebuilds. So, if it’s critical, you should assign an explicit UID/GID.

You should avoid installing or using sudo since it has unpredictable TTY and
signal-forwarding behavior that can cause more problems than it solves. If
you absolutely need functionality similar to sudo (e.g., initializing the
daemon as root but running it as non-root), you may be able to use
“gosu” [https://github.com/tianon/gosu].

Lastly, to reduce layers and complexity, avoid switching USER back
and forth frequently.

WORKDIR

Dockerfile reference for the WORKDIR instruction [https://docs.docker.com/reference/builder/#workdir]

For clarity and reliability, you should always use absolute paths for your
WORKDIR. Also, you should use WORKDIR instead of proliferating
instructions like RUN cd … && do-something, which are hard to read,
troubleshoot, and maintain.

ONBUILD

Dockerfile reference for the ONBUILD instruction [https://docs.docker.com/reference/builder/#onbuild]

An ONBUILD command executes after the current Dockerfile build completes.
ONBUILD executes in any child image derived FROM the current image. Think
of the ONBUILD command as an instruction the parent Dockerfile gives
to the child Dockerfile.

A Docker build executes ONBUILD commands before any command in a child
Dockerfile.

ONBUILD is useful for images that are going to be built FROM a given
image. For example, you would use ONBUILD for a language stack image that
builds arbitrary user software written in that language within the
Dockerfile, as you can see in Ruby’s ONBUILD variants [https://github.com/docker-library/ruby/blob/master/2.1/onbuild/Dockerfile].

Images built from ONBUILD should get a separate tag, for example:
ruby:1.9-onbuild or ruby:2.0-onbuild.

Be careful when putting ADD or COPY in ONBUILD. The “onbuild” image will
fail catastrophically if the new build’s context is missing the resource being
added. Adding a separate tag, as recommended above, will help mitigate this by
allowing the Dockerfile author to make a choice.

Examples for Official Repositories

These Official Repositories have exemplary Dockerfiles:

		Go [https://registry.hub.docker.com/_/golang/]

		Perl [https://registry.hub.docker.com/_/perl/]

		Hy [https://registry.hub.docker.com/_/hylang/]

		Rails [https://registry.hub.docker.com/_/rails]

Additional resources:

		Dockerfile Reference [https://docs.docker.com/reference/builder/]

		More about Base Images [https://docs.docker.com/articles/baseimages/]

		More about Automated Builds [https://docs.docker.com/docker-hub/builds/]

		Guidelines for Creating Official
Repositories [https://docs.docker.com/docker-hub/official_repos/]

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down.png

articles/using_supervisord.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Using Supervisor with Docker

Note:

		If you don’t like sudo then see Giving non-root
access

Traditionally a Docker container runs a single process when it is
launched, for example an Apache daemon or a SSH server daemon. Often
though you want to run more than one process in a container. There are a
number of ways you can achieve this ranging from using a simple Bash
script as the value of your container’s CMD instruction to installing
a process management tool.

In this example we’re going to make use of the process management tool,
Supervisor [http://supervisord.org/], to manage multiple processes in
our container. Using Supervisor allows us to better control, manage, and
restart the processes we want to run. To demonstrate this we’re going to
install and manage both an SSH daemon and an Apache daemon.

Creating a Dockerfile

Let’s start by creating a basic Dockerfile for our
new image.

FROM ubuntu:13.04
MAINTAINER examples@docker.com

Installing Supervisor

We can now install our SSH and Apache daemons as well as Supervisor in
our container.

RUN apt-get update && apt-get install -y openssh-server apache2 supervisor
RUN mkdir -p /var/lock/apache2 /var/run/apache2 /var/run/sshd /var/log/supervisor

Here we’re installing the openssh-server,
apache2 and supervisor
(which provides the Supervisor daemon) packages. We’re also creating four
new directories that are needed to run our SSH daemon and Supervisor.

Adding Supervisor’s configuration file

Now let’s add a configuration file for Supervisor. The default file is
called supervisord.conf and is located in
/etc/supervisor/conf.d/.

COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf

Let’s see what is inside our supervisord.conf
file.

[supervisord]
nodaemon=true

[program:sshd]
command=/usr/sbin/sshd -D

[program:apache2]
command=/bin/bash -c "source /etc/apache2/envvars && exec /usr/sbin/apache2 -DFOREGROUND"

The supervisord.conf configuration file contains
directives that configure Supervisor and the processes it manages. The
first block [supervisord] provides configuration
for Supervisor itself. We’re using one directive, nodaemon
which tells Supervisor to run interactively rather than
daemonize.

The next two blocks manage the services we wish to control. Each block
controls a separate process. The blocks contain a single directive,
command, which specifies what command to run to
start each process.

Exposing ports and running Supervisor

Now let’s finish our Dockerfile by exposing some
required ports and specifying the CMD instruction
to start Supervisor when our container launches.

EXPOSE 22 80
CMD ["/usr/bin/supervisord"]

Here We’ve exposed ports 22 and 80 on the container and we’re running
the /usr/bin/supervisord binary when the container
launches.

Building our image

We can now build our new image.

$ docker build -t <yourname>/supervisord .

Running our Supervisor container

Once We’ve got a built image we can launch a container from it.

$ docker run -p 22 -p 80 -t -i <yourname>/supervisord
2013-11-25 18:53:22,312 CRIT Supervisor running as root (no user in config file)
2013-11-25 18:53:22,312 WARN Included extra file "/etc/supervisor/conf.d/supervisord.conf" during parsing
2013-11-25 18:53:22,342 INFO supervisord started with pid 1
2013-11-25 18:53:23,346 INFO spawned: 'sshd' with pid 6
2013-11-25 18:53:23,349 INFO spawned: 'apache2' with pid 7
. . .

We’ve launched a new container interactively using the docker run command.
That container has run Supervisor and launched the SSH and Apache daemons with
it. We’ve specified the -p flag to expose ports 22 and 80. From here we can
now identify the exposed ports and connect to one or both of the SSH and Apache
daemons.

 © Copyright .
 Created using Sphinx 1.3.1.

articles/chef.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Using Chef

Note:
Please note this is a community contributed installation path. The only
official installation is using the
Ubuntu installation
path. This version may sometimes be out of date.

Requirements

To use this guide you’ll need a working installation of
Chef [http://www.getchef.com/]. This cookbook supports a variety of
operating systems.

Installation

The cookbook is available on the Chef Community
Site [http://community.opscode.com/cookbooks/docker] and can be
installed using your favorite cookbook dependency manager.

The source can be found on
GitHub [https://github.com/bflad/chef-docker].

Usage

The cookbook provides recipes for installing Docker, configuring init
for Docker, and resources for managing images and containers. It
supports almost all Docker functionality.

Installation

include_recipe 'docker'

Images

The next step is to pull a Docker image. For this, we have a resource:

docker_image 'samalba/docker-registry'

This is equivalent to running:

$ docker pull samalba/docker-registry

There are attributes available to control how long the cookbook will
allow for downloading (5 minute default).

To remove images you no longer need:

docker_image 'samalba/docker-registry' do
 action :remove
end

Containers

Now you have an image where you can run commands within a container
managed by Docker.

docker_container 'samalba/docker-registry' do
 detach true
 port '5000:5000'
 env 'SETTINGS_FLAVOR=local'
 volume '/mnt/docker:/docker-storage'
end

This is equivalent to running the following command, but under upstart:

$ docker run --detach=true --publish='5000:5000' --env='SETTINGS_FLAVOR=local' --volume='/mnt/docker:/docker-storage' samalba/docker-registry

The resources will accept a single string or an array of values for any
Docker flags that allow multiple values.

 © Copyright .
 Created using Sphinx 1.3.1.

articles/security.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker security

There are three major areas to consider when reviewing Docker security:

		the intrinsic security of the kernel and its support for
namespaces and cgroups;

		the attack surface of the Docker daemon itself;

		loopholes in the container configuration profile, either by default,
or when customized by users.

		the “hardening” security features of the kernel and how they
interact with containers.

Kernel namespaces

Docker containers are very similar to LXC containers, and they have
similar security features. When you start a container with
docker run, behind the scenes Docker creates a set of namespaces and control
groups for the container.

Namespaces provide the first and most straightforward form of
isolation: processes running within a container cannot see, and even
less affect, processes running in another container, or in the host
system.

Each container also gets its own network stack, meaning that a
container doesn’t get privileged access to the sockets or interfaces
of another container. Of course, if the host system is setup
accordingly, containers can interact with each other through their
respective network interfaces — just like they can interact with
external hosts. When you specify public ports for your containers or use
links
then IP traffic is allowed between containers. They can ping each other,
send/receive UDP packets, and establish TCP connections, but that can be
restricted if necessary. From a network architecture point of view, all
containers on a given Docker host are sitting on bridge interfaces. This
means that they are just like physical machines connected through a
common Ethernet switch; no more, no less.

How mature is the code providing kernel namespaces and private
networking? Kernel namespaces were introduced between kernel version
2.6.15 and
2.6.26 [http://lxc.sourceforge.net/index.php/about/kernel-namespaces/].
This means that since July 2008 (date of the 2.6.26 release, now 5 years
ago), namespace code has been exercised and scrutinized on a large
number of production systems. And there is more: the design and
inspiration for the namespaces code are even older. Namespaces are
actually an effort to reimplement the features of OpenVZ [http://en.wikipedia.org/wiki/OpenVZ] in such a way that they could be
merged within the mainstream kernel. And OpenVZ was initially released
in 2005, so both the design and the implementation are pretty mature.

Control groups

Control Groups are another key component of Linux Containers. They
implement resource accounting and limiting. They provide many
useful metrics, but they also help ensure that each container gets
its fair share of memory, CPU, disk I/O; and, more importantly, that a
single container cannot bring the system down by exhausting one of those
resources.

So while they do not play a role in preventing one container from
accessing or affecting the data and processes of another container, they
are essential to fend off some denial-of-service attacks. They are
particularly important on multi-tenant platforms, like public and
private PaaS, to guarantee a consistent uptime (and performance) even
when some applications start to misbehave.

Control Groups have been around for a while as well: the code was
started in 2006, and initially merged in kernel 2.6.24.

Docker daemon attack surface

Running containers (and applications) with Docker implies running the
Docker daemon. This daemon currently requires root privileges, and you
should therefore be aware of some important details.

First of all, only trusted users should be allowed to control your
Docker daemon. This is a direct consequence of some powerful Docker
features. Specifically, Docker allows you to share a directory between
the Docker host and a guest container; and it allows you to do so
without limiting the access rights of the container. This means that you
can start a container where the /host directory will be the / directory
on your host; and the container will be able to alter your host filesystem
without any restriction. This is similar to how virtualization systems
allow filesystem resource sharing. Nothing prevents you from sharing your
root filesystem (or even your root block device) with a virtual machine.

This has a strong security implication: for example, if you instrument Docker
from a web server to provision containers through an API, you should be
even more careful than usual with parameter checking, to make sure that
a malicious user cannot pass crafted parameters causing Docker to create
arbitrary containers.

For this reason, the REST API endpoint (used by the Docker CLI to
communicate with the Docker daemon) changed in Docker 0.5.2, and now
uses a UNIX socket instead of a TCP socket bound on 127.0.0.1 (the
latter being prone to cross-site-scripting attacks if you happen to run
Docker directly on your local machine, outside of a VM). You can then
use traditional UNIX permission checks to limit access to the control
socket.

You can also expose the REST API over HTTP if you explicitly decide to do so.
However, if you do that, being aware of the above mentioned security
implication, you should ensure that it will be reachable only from a
trusted network or VPN; or protected with e.g., stunnel and client SSL
certificates. You can also secure them with HTTPS and
certificates.

The daemon is also potentially vulnerable to other inputs, such as image
loading from either disk with ‘docker load’, or from the network with
‘docker pull’. This has been a focus of improvement in the community,
especially for ‘pull’ security. While these overlap, it should be noted
that ‘docker load’ is a mechanism for backup and restore and is not
currently considered a secure mechanism for loading images. As of
Docker 1.3.2, images are now extracted in a chrooted subprocess on
Linux/Unix platforms, being the first-step in a wider effort toward
privilege separation.

Eventually, it is expected that the Docker daemon will run restricted
privileges, delegating operations well-audited sub-processes,
each with its own (very limited) scope of Linux capabilities,
virtual network setup, filesystem management, etc. That is, most likely,
pieces of the Docker engine itself will run inside of containers.

Finally, if you run Docker on a server, it is recommended to run
exclusively Docker in the server, and move all other services within
containers controlled by Docker. Of course, it is fine to keep your
favorite admin tools (probably at least an SSH server), as well as
existing monitoring/supervision processes (e.g., NRPE, collectd, etc).

Linux kernel capabilities

By default, Docker starts containers with a restricted set of
capabilities. What does that mean?

Capabilities turn the binary “root/non-root” dichotomy into a
fine-grained access control system. Processes (like web servers) that
just need to bind on a port below 1024 do not have to run as root: they
can just be granted the net_bind_service capability instead. And there
are many other capabilities, for almost all the specific areas where root
privileges are usually needed.

This means a lot for container security; let’s see why!

Your average server (bare metal or virtual machine) needs to run a bunch
of processes as root. Those typically include SSH, cron, syslogd;
hardware management tools (e.g., load modules), network configuration
tools (e.g., to handle DHCP, WPA, or VPNs), and much more. A container is
very different, because almost all of those tasks are handled by the
infrastructure around the container:

		SSH access will typically be managed by a single server running on
the Docker host;

		cron, when necessary, should run as a user
process, dedicated and tailored for the app that needs its
scheduling service, rather than as a platform-wide facility;

		log management will also typically be handed to Docker, or by
third-party services like Loggly or Splunk;

		hardware management is irrelevant, meaning that you never need to
run udevd or equivalent daemons within
containers;

		network management happens outside of the containers, enforcing
separation of concerns as much as possible, meaning that a container
should never need to perform ifconfig,
route, or ip commands (except when a container
is specifically engineered to behave like a router or firewall, of
course).

This means that in most cases, containers will not need “real” root
privileges at all. And therefore, containers can run with a reduced
capability set; meaning that “root” within a container has much less
privileges than the real “root”. For instance, it is possible to:

		deny all “mount” operations;

		deny access to raw sockets (to prevent packet spoofing);

		deny access to some filesystem operations, like creating new device
nodes, changing the owner of files, or altering attributes (including
the immutable flag);

		deny module loading;

		and many others.

This means that even if an intruder manages to escalate to root within a
container, it will be much harder to do serious damage, or to escalate
to the host.

This won’t affect regular web apps; but malicious users will find that
the arsenal at their disposal has shrunk considerably! By default Docker
drops all capabilities except those
needed [https://github.com/docker/docker/blob/master/daemon/execdriver/native/template/default_template.go],
a whitelist instead of a blacklist approach. You can see a full list of
available capabilities in Linux
manpages [http://man7.org/linux/man-pages/man7/capabilities.7.html].

One primary risk with running Docker containers is that the default set
of capabilities and mounts given to a container may provide incomplete
isolation, either independently, or when used in combination with
kernel vulnerabilities.

Docker supports the addition and removal of capabilities, allowing use
of a non-default profile. This may make Docker more secure through
capability removal, or less secure through the addition of capabilities.
The best practice for users would be to remove all capabilities except
those explicitly required for their processes.

Other kernel security features

Capabilities are just one of the many security features provided by
modern Linux kernels. It is also possible to leverage existing,
well-known systems like TOMOYO, AppArmor, SELinux, GRSEC, etc. with
Docker.

While Docker currently only enables capabilities, it doesn’t interfere
with the other systems. This means that there are many different ways to
harden a Docker host. Here are a few examples.

		You can run a kernel with GRSEC and PAX. This will add many safety
checks, both at compile-time and run-time; it will also defeat many
exploits, thanks to techniques like address randomization. It doesn’t
require Docker-specific configuration, since those security features
apply system-wide, independent of containers.

		If your distribution comes with security model templates for
Docker containers, you can use them out of the box. For instance, we
ship a template that works with AppArmor and Red Hat comes with SELinux
policies for Docker. These templates provide an extra safety net (even
though it overlaps greatly with capabilities).

		You can define your own policies using your favorite access control
mechanism.

Just like there are many third-party tools to augment Docker containers
with e.g., special network topologies or shared filesystems, you can
expect to see tools to harden existing Docker containers without
affecting Docker’s core.

Recent improvements in Linux namespaces will soon allow to run
full-featured containers without root privileges, thanks to the new user
namespace. This is covered in detail here [http://s3hh.wordpress.com/2013/07/19/creating-and-using-containers-without-privilege/].
Moreover, this will solve the problem caused by sharing filesystems
between host and guest, since the user namespace allows users within
containers (including the root user) to be mapped to other users in the
host system.

Today, Docker does not directly support user namespaces, but they
may still be utilized by Docker containers on supported kernels,
by directly using the clone syscall, or utilizing the ‘unshare’
utility. Using this, some users may find it possible to drop
more capabilities from their process as user namespaces provide
an artificial capabilities set. Likewise, however, this artificial
capabilities set may require use of ‘capsh’ to restrict the
user-namespace capabilities set when using ‘unshare’.

Eventually, it is expected that Docker will have direct, native support
for user-namespaces, simplifying the process of hardening containers.

Conclusions

Docker containers are, by default, quite secure; especially if you take
care of running your processes inside the containers as non-privileged
users (i.e., non-root).

You can add an extra layer of safety by enabling AppArmor, SELinux,
GRSEC, or your favorite hardening solution.

Last but not least, if you see interesting security features in other
containerization systems, these are simply kernels features that may
be implemented in Docker as well. We welcome users to submit issues,
pull requests, and communicate via the mailing list.

References:

		Docker Containers: How Secure Are They? (2013) [http://blog.docker.com/2013/08/containers-docker-how-secure-are-they/].

		On the Security of Containers (2014) [https://medium.com/@ewindisch/on-the-security-of-containers-2c60ffe25a9e].

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-bright.png

userguide/labels-custom-metadata.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Apply custom metadata

You can apply metadata to your images, containers, or daemons via
labels. Metadata can serve a wide range of uses. Use labels to add notes or
licensing information to an image or to identify a host.

A label is a <key> / <value> pair. Docker stores the label values as
strings. You can specify multiple labels but each <key> / <value> must be
unique to avoid overwriting. If you specify the same key several times but with
different values, newer labels overwrite previous labels. Docker uses
the last key=value you supply.

Note: Support for daemon-labels was added in Docker 1.4.1. Labels on
containers and images are new in Docker 1.6.0

Label keys (namespaces)

Docker puts no hard restrictions on the label key you. However, labels with
simple keys can conflict. For example, you can categorize your images by using a
chip “architecture” label:

LABEL architecture="amd64"

LABEL architecture="ARMv7"

But a user can label images by building architectural style:

LABEL architecture="Art Nouveau"

To prevent naming conflicts, Docker namespaces label keys using a reverse domain
notation. Use the following guidelines to name your keys:

		All (third-party) tools should prefix their keys with the
reverse DNS notation of a domain controlled by the author. For
example, com.example.some-label.

		The com.docker.*, io.docker.* and org.dockerproject.* namespaces are
reserved for Docker’s internal use.

		Keys should only consist of lower-cased alphanumeric characters,
dots and dashes (for example, [a-z0-9-.])

		Keys should start and end with an alpha numeric character

		Keys may not contain consecutive dots or dashes.

		Keys without namespace (dots) are reserved for CLI use. This allows end-
users to add metadata to their containers and images without having to type
cumbersome namespaces on the command-line.

These are guidelines and Docker does not enforce them. Failing following these
guidelines can result in conflicting labels. If you’re building a tool that uses
labels, you should use namespaces for your label keys.

Store structured data in labels

Label values can contain any data type that can be stored as a string. For
example, consider this JSON:

{
 "Description": "A containerized foobar",
 "Usage": "docker run --rm example/foobar [args]",
 "License": "GPL",
 "Version": "0.0.1-beta",
 "aBoolean": true,
 "aNumber" : 0.01234,
 "aNestedArray": ["a", "b", "c"]
}

You can store this struct in a label by serializing it to a string first:

LABEL com.example.image-specs="{\"Description\":\"A containerized foobar\",\"Usage\":\"docker run --rm example\\/foobar [args]\",\"License\":\"GPL\",\"Version\":\"0.0.1-beta\",\"aBoolean\":true,\"aNumber\":0.01234,\"aNestedArray\":[\"a\",\"b\",\"c\"]}"

While it is possible to store structured data in label values, Docker treats
this data as a ‘regular’ string. This means that Docker doesn’t offer ways to
query (filter) based on nested properties. If your tool needs to filter on
nested properties, the tool itself should implement this.

Add labels to images; the LABEL instruction

Adding labels to an image:

LABEL [<namespace>.]<key>[=<value>] ...

The LABEL instruction adds a label to your image, optionally setting its value.
Use surrounding quotes or backslashes for labels that contain
white space character:

LABEL vendor=ACME\ Incorporated
LABEL com.example.version.is-beta
LABEL com.example.version="0.0.1-beta"
LABEL com.example.release-date="2015-02-12"

The LABEL instruction supports setting multiple labels in a single instruction
using this notation:

LABEL com.example.version="0.0.1-beta" com.example.release-date="2015-02-12"

Wrapping is allowed by using a backslash (\) as continuation marker:

LABEL vendor=ACME\ Incorporated \
 com.example.is-beta \
 com.example.version="0.0.1-beta" \
 com.example.release-date="2015-02-12"

Docker recommends you add multiple labels in a single LABEL instruction. Using
individual instructions for each label can result in an inefficient image. This
is because each LABEL instruction in a Dockerfile produces a new IMAGE layer.

You can view the labels via the docker inspect command:

$ docker inspect 4fa6e0f0c678

...
"Labels": {
 "vendor": "ACME Incorporated",
 "com.example.is-beta": "",
 "com.example.version": "0.0.1-beta",
 "com.example.release-date": "2015-02-12"
}
...

Inspect labels on container
$ docker inspect -f "{{json .Config.Labels }}" 4fa6e0f0c678

{"Vendor":"ACME Incorporated","com.example.is-beta":"","com.example.version":"0.0.1-beta","com.example.release-date":"2015-02-12"}

Inspect labels on images
$ docker inspect -f "{{json .ContainerConfig.Labels }}" myimage

Query labels

Besides storing metadata, you can filter images and containers by label. To list all
running containers that the com.example.is-beta label:

List all running containers that have a `com.example.is-beta` label
$ docker ps --filter "label=com.example.is-beta"

List all running containers with a color label of blue:

$ docker ps --filter "label=color=blue"

List all images with vendor ACME:

$ docker images --filter "label=vendor=ACME"

Daemon labels

docker daemon \
 --dns 8.8.8.8 \
 --dns 8.8.4.4 \
 -H unix:///var/run/docker.sock \
 --label com.example.environment="production" \
 --label com.example.storage="ssd"

These labels appear as part of the docker info output for the daemon:

docker -D info
Containers: 12
Images: 672
Storage Driver: aufs
 Root Dir: /var/lib/docker/aufs
 Backing Filesystem: extfs
 Dirs: 697
Execution Driver: native-0.2
Logging Driver: json-file
Kernel Version: 3.13.0-32-generic
Operating System: Ubuntu 14.04.1 LTS
CPUs: 1
Total Memory: 994.1 MiB
Name: docker.example.com
ID: RC3P:JTCT:32YS:XYSB:YUBG:VFED:AAJZ:W3YW:76XO:D7NN:TEVU:UCRW
Debug mode (server): false
Debug mode (client): true
File Descriptors: 11
Goroutines: 14
EventsListeners: 0
Init Path: /usr/bin/docker
Docker Root Dir: /var/lib/docker
WARNING: No swap limit support
Labels:
 com.example.environment=production
 com.example.storage=ssd

 © Copyright .
 Created using Sphinx 1.3.1.

docker-hub/accounts.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Accounts on Docker Hub

Docker Hub accounts

You can search for Docker images and pull them from Docker
Hub [https://hub.docker.com] without signing in or even having an
account. However, in order to push images, leave comments or to star
a repository, you are going to need a Docker
Hub [https://hub.docker.com] account.

Registration for a Docker Hub account

You can get a Docker Hub [https://hub.docker.com] account by
signing up for one here [https://hub.docker.com/account/signup/]. A valid
email address is required to register, which you will need to verify for
account activation.

Email activation process

You need to have at least one verified email address to be able to use your
Docker Hub [https://hub.docker.com] account. If you can’t find the validation email,
you can request another by visiting the Resend Email Confirmation [https://hub.docker.com/account/resend-email-confirmation/] page.

Password reset process

If you can’t access your account for some reason, you can reset your password
from the Password Reset [https://hub.docker.com/account/forgot-password/]
page.

Organizations and groups

A Docker Hub organization contains public and private repositories just like
a user account. Access to push, pull or create these organisation owned repositories
is allocated by defining groups of users and then assigning group rights to
specific repositories. This allows you to distribute limited access
Docker images, and to select which Docker Hub users can publish new images.

Creating and viewing organizations

You can see what organizations you belong to and add new organizations [https://hub.docker.com/account/organizations/] from the Account Settings
tab. They are also listed below your user name on your repositories page
and in your account profile.

[image: organizations]

Organization groups

Users in the Owners group of an organization can create and modify the
membership of groups.

Unless they are the organization’s Owner, users can only see groups of which they
are members.

[image: groups]

Repository group permissions

Use organization groups to manage the users that can interact with your repositories.

You must be in an organization’s Owners group to create a new group, Hub
repository, or automated build. As an Owner, you then delegate the following
repository access rights to groups:

Access Right	Description
————–	———-
Read	Users with this right can view, search, and pull a private repository.
Write	Users with this right can push to non-automated repositories on the Docker Hub.
Admin	Users with this right can modify a repository’s “Description”, “Collaborators” rights. They can also mark a repository as unlisted, change its “Public/Private” status and “Delete” the repository. Finally, Admin rights are required to read the build log on a repo.

Regardless of their actual access rights, users with unverified email addresses
have Read access to the repository. Once they have verified their address,
they have their full access rights as granted on the organization.

 © Copyright .
 Created using Sphinx 1.3.1.

userguide/index.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Welcome to the Docker user guide

In the Introduction you got a taste of what Docker is and how it
works. In this guide we’re going to take you through the fundamentals of
using Docker and integrating it into your environment.

We’ll teach you how to use Docker to:

		Dockerize your applications.

		Run your own containers.

		Build Docker images.

		Share your Docker images with others.

		And a whole lot more!

We’ve broken this guide into major sections that take you through
the Docker life cycle:

Getting started with Docker Hub

How do I use Docker Hub?

Docker Hub is the central hub for Docker. It hosts public Docker images
and provides services to help you build and manage your Docker
environment. To learn more:

Go to Using Docker Hub.

Dockerizing applications: A “Hello world”

How do I run applications inside containers?

Docker offers a container-based virtualization platform to power your
applications. To learn how to Dockerize applications and run them:

Go to Dockerizing Applications.

Working with containers

How do I manage my containers?

Once you get a grip on running your applications in Docker containers
we’re going to show you how to manage those containers. To find out
about how to inspect, monitor and manage containers:

Go to Working With Containers.

Working with Docker images

How can I access, share and build my own images?

Once you’ve learnt how to use Docker it’s time to take the next step and
learn how to build your own application images with Docker.

Go to Working with Docker Images.

Linking containers together

Until now we’ve seen how to build individual applications inside Docker
containers. Now learn how to build whole application stacks with Docker
by linking together multiple Docker containers.

Go to Linking Containers Together.

Managing data in containers

Now we know how to link Docker containers together the next step is
learning how to manage data, volumes and mounts inside our containers.

Go to Managing Data in Containers.

Working with Docker Hub

Now we’ve learned a bit more about how to use Docker we’re going to see
how to combine Docker with the services available on Docker Hub including
Trusted Builds and private repositories.

Go to Working with Docker Hub.

Docker Compose

Docker Compose allows you to define a application’s components – their containers,
configuration, links and volumes – in a single file. Then a single command
will set everything up and start your application running.

Go to Docker Compose user guide.

Docker Machine

Docker Machine helps you get Docker Engines up and running quickly. Machine
can set up hosts for Docker Engines on your computer, on cloud providers,
and/or in your data center, and then configure your Docker client to securely
talk to them.

Go to Docker Machine user guide.

Docker Swarm

Docker Swarm pools several Docker Engines together and exposes them as a single
virtual Docker Engine. It serves the standard Docker API, so any tool that already
works with Docker can now transparently scale up to multiple hosts.

Go to Docker Swarm user guide.

Getting help

		Docker homepage [http://www.docker.com/]

		Docker Hub [https://hub.docker.com]

		Docker blog [http://blog.docker.com/]

		Docker documentation [https://docs.docker.com/]

		Docker Getting Started Guide [http://www.docker.com/gettingstarted/]

		Docker code on GitHub [https://github.com/docker/docker]

		Docker mailing
list [https://groups.google.com/forum/#!forum/docker-user]

		Docker on IRC: irc.freenode.net and channel #docker

		Docker on Twitter [http://twitter.com/docker]

		Get Docker help [http://stackoverflow.com/search?q=docker] on
StackOverflow

		Docker.com [http://www.docker.com/]

 © Copyright .
 Created using Sphinx 1.3.1.

docker-hub/official_repos.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Official Repositories on Docker Hub

The Docker Official Repositories [http://registry.hub.docker.com/official] are
a curated set of Docker repositories that are promoted on Docker Hub. They are
designed to:

		Provide essential base OS repositories (for example,
ubuntu [https://registry.hub.docker.com/_/ubuntu/],
centos [https://registry.hub.docker.com/_/centos/]) that serve as the
starting point for the majority of users.

		Provide drop-in solutions for popular programming language runtimes, data
stores, and other services, similar to what a Platform-as-a-Service (PAAS)
would offer.

		Exemplify Dockerfile best practices
and provide clear documentation to serve as a reference for other Dockerfile
authors.

		Ensure that security updates are applied in a timely manner. This is
particularly important as many Official Repositories are some of the most
popular on Docker Hub.

		Provide a channel for software vendors to redistribute up-to-date and
supported versions of their products. Organization accounts on Docker Hub can
also serve this purpose, without the careful review or restrictions on what
can be published.

Docker, Inc. sponsors a dedicated team that is responsible for reviewing and
publishing all Official Repositories content. This team works in collaboration
with upstream software maintainers, security experts, and the broader Docker
community.

While it is preferable to have upstream software authors maintaining their
corresponding Official Repositories, this is not a strict requirement. Creating
and maintaining images for Official Repositories is a public process. It takes
place openly on GitHub where participation is encouraged. Anyone can provide
feedback, contribute code, suggest process changes, or even propose a new
Official Repository.

Should I use Official Repositories?

New Docker users are encouraged to use the Official Repositories in their
projects. These repositories have clear documentation, promote best practices,
and are designed for the most common use cases. Advanced users are encouraged to
review the Official Repositories as part of their Dockerfile learning process.

A common rationale for diverging from Official Repositories is to optimize for
image size. For instance, many of the programming language stack images contain
a complete build toolchain to support installation of modules that depend on
optimized code. An advanced user could build a custom image with just the
necessary pre-compiled libraries to save space.

A number of language stacks such as
python [https://registry.hub.docker.com/_/python/] and
ruby [https://registry.hub.docker.com/_/ruby/] have -slim tag variants
designed to fill the need for optimization. Even when these “slim” variants are
insufficient, it is still recommended to inherit from an Official Repository
base OS image to leverage the ongoing maintenance work, rather than duplicating
these efforts.

How can I get involved?

All Official Repositories contain a User Feedback section in their
documentation which covers the details for that specific repository. In most
cases, the GitHub repository which contains the Dockerfiles for an Official
Repository also has an active issue tracker. General feedback and support
questions should be directed to #docker-library on Freenode IRC.

How do I create a new Official Repository?

From a high level, an Official Repository starts out as a proposal in the form
of a set of GitHub pull requests. You’ll find detailed and objective proposal
requirements in the following GitHub repositories:

		docker-library/official-images [https://github.com/docker-library/official-images]

		docker-library/docs [https://github.com/docker-library/docs]

The Official Repositories team, with help from community contributors, formally
review each proposal and provide feedback to the author. This initial review
process may require a bit of back and forth before the proposal is accepted.

There are also subjective considerations during the review process. These
subjective concerns boil down to the basic question: “is this image generally
useful?” For example, the python [https://registry.hub.docker.com/_/python/]
Official Repository is “generally useful” to the large Python developer
community, whereas an obscure text adventure game written in Python last week is
not.

When a new proposal is accepted, the author becomes responsible for keeping
their images up-to-date and responding to user feedback. The Official
Repositories team becomes responsible for publishing the images and
documentation on Docker Hub. Updates to the Official Repository follow the same
pull request process, though with less review. The Official Repositories team
ultimately acts as a gatekeeper for all changes, which helps mitigate the risk
of quality and security issues from being introduced.

Note: If you are interested in proposing an Official Repository, but would
like to discuss it with Docker, Inc. privately first, please send your
inquiries to partners@docker.com. There is no fast-track or pay-for-status
option.

 © Copyright .
 Created using Sphinx 1.3.1.

articles/host_integration.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Automatically start containers

As of Docker 1.2,
restart policies are the
built-in Docker mechanism for restarting containers when they exit. If set,
restart policies will be used when the Docker daemon starts up, as typically
happens after a system boot. Restart policies will ensure that linked containers
are started in the correct order.

If restart policies don’t suit your needs (i.e., you have non-Docker processes
that depend on Docker containers), you can use a process manager like
upstart [http://upstart.ubuntu.com/],
systemd [http://freedesktop.org/wiki/Software/systemd/] or
supervisor [http://supervisord.org/] instead.

Using a process manager

Docker does not set any restart policies by default, but be aware that they will
conflict with most process managers. So don’t set restart policies if you are
using a process manager.

Note: Prior to Docker 1.2, restarting of Docker containers had to be
explicitly disabled. Refer to the
previous version of this article for the
details on how to do that.

When you have finished setting up your image and are happy with your
running container, you can then attach a process manager to manage it.
When you run docker start -a, Docker will automatically attach to the
running container, or start it if needed and forward all signals so that
the process manager can detect when a container stops and correctly
restart it.

Here are a few sample scripts for systemd and upstart to integrate with
Docker.

Examples

The examples below show configuration files for two popular process managers,
upstart and systemd. In these examples, we’ll assume that we have already
created a container to run Redis with --name=redis_server. These files define
a new service that will be started after the docker daemon service has started.

upstart

description "Redis container"
author "Me"
start on filesystem and started docker
stop on runlevel [!2345]
respawn
script
 /usr/bin/docker start -a redis_server
end script

systemd

[Unit]
Description=Redis container
Requires=docker.service
After=docker.service

[Service]
Restart=always
ExecStart=/usr/bin/docker start -a redis_server
ExecStop=/usr/bin/docker stop -t 2 redis_server

[Install]
WantedBy=local.target

If you need to pass options to the redis container (such as --env),
then you’ll need to use docker run rather than docker start. This will
create a new container every time the service is started, which will be stopped
and removed when the service is stopped.

[Service]
...
ExecStart=/usr/bin/docker run --env foo=bar --name redis_server redis
ExecStop=/usr/bin/docker stop -t 2 redis_server ; /usr/bin/docker rm -f redis_server
...

 © Copyright .
 Created using Sphinx 1.3.1.

docker-hub/index.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Hub

The Docker Hub [https://hub.docker.com] provides a cloud-based platform service
for distributed applications, including container image distribution and change
management, user and team collaboration, and lifecycle workflow automation.

[image: DockerHub]

Finding and pulling images

Find out how to use the Docker Hub to find and pull Docker
images to run or build upon.

Accounts

Learn how to create a Docker Hub
account and manage your organizations and groups.

Your Repositories

Find out how to share your Docker images in Docker Hub
repositories and how to store and manage private images.

Automated builds

Learn how to automate your build and deploy pipeline with Automated
Builds

 © Copyright .
 Created using Sphinx 1.3.1.

userguide/dockerlinks.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Linking containers together

In the Using Docker section, you saw how you can
connect to a service running inside a Docker container via a network
port. But a port connection is only one way you can interact with services and
applications running inside Docker containers. In this section, we’ll briefly revisit
connecting via a network port and then we’ll introduce you to another method of access:
container linking.

Connect using network port mapping

In the Using Docker section, you created a
container that ran a Python Flask application:

$ docker run -d -P training/webapp python app.py

Note:
Containers have an internal network and an IP address
(as we saw when we used the docker inspect command to show the container’s
IP address in the Using Docker section).
Docker can have a variety of network configurations. You can see more
information on Docker networking here.

When that container was created, the -P flag was used to automatically map
any network port inside it to a random high port within an ephemeral port
range on your Docker host. Next, when docker ps was run, you saw that port
5000 in the container was bound to port 49155 on the host.

$ docker ps nostalgic_morse
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
bc533791f3f5 training/webapp:latest python app.py 5 seconds ago Up 2 seconds 0.0.0.0:49155->5000/tcp nostalgic_morse

You also saw how you can bind a container’s ports to a specific port using
the -p flag. Here port 80 of the host is mapped to port 5000 of the
container:

$ docker run -d -p 80:5000 training/webapp python app.py

And you saw why this isn’t such a great idea because it constrains you to
only one container on that specific port.

There are also a few other ways you can configure the -p flag. By
default the -p flag will bind the specified port to all interfaces on
the host machine. But you can also specify a binding to a specific
interface, for example only to the localhost.

$ docker run -d -p 127.0.0.1:80:5000 training/webapp python app.py

This would bind port 5000 inside the container to port 80 on the
localhost or 127.0.0.1 interface on the host machine.

Or, to bind port 5000 of the container to a dynamic port but only on the
localhost, you could use:

$ docker run -d -p 127.0.0.1::5000 training/webapp python app.py

You can also bind UDP ports by adding a trailing /udp. For example:

$ docker run -d -p 127.0.0.1:80:5000/udp training/webapp python app.py

You also learned about the useful docker port shortcut which showed us the
current port bindings. This is also useful for showing you specific port
configurations. For example, if you’ve bound the container port to the
localhost on the host machine, then the docker port output will reflect that.

$ docker port nostalgic_morse 5000
127.0.0.1:49155

Note:
The -p flag can be used multiple times to configure multiple ports.

Connect with the linking system

Network port mappings are not the only way Docker containers can connect
to one another. Docker also has a linking system that allows you to link
multiple containers together and send connection information from one to another.
When containers are linked, information about a source container can be sent to a
recipient container. This allows the recipient to see selected data describing
aspects of the source container.

The importance of naming

To establish links, Docker relies on the names of your containers.
You’ve already seen that each container you create has an automatically
created name; indeed you’ve become familiar with our old friend
nostalgic_morse during this guide. You can also name containers
yourself. This naming provides two useful functions:

		It can be useful to name containers that do specific functions in a way
that makes it easier for you to remember them, for example naming a
container containing a web application web.

		It provides Docker with a reference point that allows it to refer to other
containers, for example, you can specify to link the container web to container db.

You can name your container by using the --name flag, for example:

$ docker run -d -P --name web training/webapp python app.py

This launches a new container and uses the --name flag to
name the container web. You can see the container’s name using the
docker ps command.

$ docker ps -l
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
aed84ee21bde training/webapp:latest python app.py 12 hours ago Up 2 seconds 0.0.0.0:49154->5000/tcp web

You can also use docker inspect to return the container’s name.

Note:
Container names have to be unique. That means you can only call
one container web. If you want to re-use a container name you must delete
the old container (with docker rm) before you can create a new
container with the same name. As an alternative you can use the --rm
flag with the docker run command. This will delete the container
immediately after it is stopped.

Communication across links

Links allow containers to discover each other and securely transfer information about one
container to another container. When you set up a link, you create a conduit between a
source container and a recipient container. The recipient can then access select data
about the source. To create a link, you use the --link flag. First, create a new
container, this time one containing a database.

$ docker run -d --name db training/postgres

This creates a new container called db from the training/postgres
image, which contains a PostgreSQL database.

Now, you need to delete the web container you created previously so you can replace it
with a linked one:

$ docker rm -f web

Now, create a new web container and link it with your db container.

$ docker run -d -P --name web --link db:db training/webapp python app.py

This will link the new web container with the db container you created
earlier. The --link flag takes the form:

--link <name or id>:alias

Where name is the name of the container we’re linking to and alias is an
alias for the link name. You’ll see how that alias gets used shortly.
The --link flag also takes the form:

--link <name or id>

In which case the alias will match the name. You could have written the previous
example as:

$ docker run -d -P --name web --link db training/webapp python app.py

Next, inspect your linked containers with docker inspect:

$ docker inspect -f "{{ .HostConfig.Links }}" web
[/db:/web/db]

You can see that the web container is now linked to the db container
web/db. Which allows it to access information about the db container.

So what does linking the containers actually do? You’ve learned that a link allows a
source container to provide information about itself to a recipient container. In
our example, the recipient, web, can access information about the source db. To do
this, Docker creates a secure tunnel between the containers that doesn’t need to
expose any ports externally on the container; you’ll note when we started the
db container we did not use either the -P or -p flags. That’s a big benefit of
linking: we don’t need to expose the source container, here the PostgreSQL database, to
the network.

Docker exposes connectivity information for the source container to the
recipient container in two ways:

		Environment variables,

		Updating the /etc/hosts file.

Environment variables

Docker creates several environment variables when you link containers. Docker
automatically creates environment variables in the target container based on
the --link parameters. It will also expose all environment variables
originating from Docker from the source container. These include variables from:

		the ENV commands in the source container’s Dockerfile

		the -e, --env and --env-file options on the docker run
command when the source container is started

These environment variables enable programmatic discovery from within the
target container of information related to the source container.

Warning:
It is important to understand that all environment variables originating
from Docker within a container are made available to any container
that links to it. This could have serious security implications if sensitive
data is stored in them.

Docker sets an <alias>_NAME environment variable for each target container
listed in the --link parameter. For example, if a new container called
web is linked to a database container called db via --link db:webdb,
then Docker creates a WEBDB_NAME=/web/webdb variable in the web container.

Docker also defines a set of environment variables for each port exposed by the
source container. Each variable has a unique prefix in the form:

<name>_PORT_<port>_<protocol>

The components in this prefix are:

		the alias <name> specified in the --link parameter (for example, webdb)

		the <port> number exposed

		a <protocol> which is either TCP or UDP

Docker uses this prefix format to define three distinct environment variables:

		The prefix_ADDR variable contains the IP Address from the URL, for
example WEBDB_PORT_8080_TCP_ADDR=172.17.0.82.

		The prefix_PORT variable contains just the port number from the URL for
example WEBDB_PORT_8080_TCP_PORT=8080.

		The prefix_PROTO variable contains just the protocol from the URL for
example WEBDB_PORT_8080_TCP_PROTO=tcp.

If the container exposes multiple ports, an environment variable set is
defined for each one. This means, for example, if a container exposes 4 ports
that Docker creates 12 environment variables, 3 for each port.

Additionally, Docker creates an environment variable called <alias>_PORT.
This variable contains the URL of the source container’s first exposed port.
The ‘first’ port is defined as the exposed port with the lowest number.
For example, consider the WEBDB_PORT=tcp://172.17.0.82:8080 variable. If
that port is used for both tcp and udp, then the tcp one is specified.

Finally, Docker also exposes each Docker originated environment variable
from the source container as an environment variable in the target. For each
variable Docker creates an <alias>_ENV_<name> variable in the target
container. The variable’s value is set to the value Docker used when it
started the source container.

Returning back to our database example, you can run the env
command to list the specified container’s environment variables.

 $ docker run --rm --name web2 --link db:db training/webapp env
 . . .
 DB_NAME=/web2/db
 DB_PORT=tcp://172.17.0.5:5432
 DB_PORT_5432_TCP=tcp://172.17.0.5:5432
 DB_PORT_5432_TCP_PROTO=tcp
 DB_PORT_5432_TCP_PORT=5432
 DB_PORT_5432_TCP_ADDR=172.17.0.5
 . . .

You can see that Docker has created a series of environment variables with
useful information about the source db container. Each variable is prefixed
with
DB_, which is populated from the alias you specified above. If the alias
were db1, the variables would be prefixed with DB1_. You can use these
environment variables to configure your applications to connect to the database
on the db container. The connection will be secure and private; only the
linked web container will be able to talk to the db container.

Important notes on Docker environment variables

Unlike host entries in the /etc/hosts file,
IP addresses stored in the environment variables are not automatically updated
if the source container is restarted. We recommend using the host entries in
/etc/hosts to resolve the IP address of linked containers.

These environment variables are only set for the first process in the
container. Some daemons, such as sshd, will scrub them when spawning shells
for connection.

Updating the /etc/hosts file

In addition to the environment variables, Docker adds a host entry for the
source container to the /etc/hosts file. Here’s an entry for the web
container:

$ docker run -t -i --rm --link db:webdb training/webapp /bin/bash
root@aed84ee21bde:/opt/webapp# cat /etc/hosts
172.17.0.7 aed84ee21bde
. . .
172.17.0.5 webdb 6e5cdeb2d300 db

You can see two relevant host entries. The first is an entry for the web
container that uses the Container ID as a host name. The second entry uses the
link alias to reference the IP address of the db container. In addition to
the alias you provide, the linked container’s name–if unique from the alias
provided to the --link parameter–and the linked container’s hostname will
also be added in /etc/hosts for the linked container’s IP address. You can ping
that host now via any of these entries:

root@aed84ee21bde:/opt/webapp# apt-get install -yqq inetutils-ping
root@aed84ee21bde:/opt/webapp# ping webdb
PING webdb (172.17.0.5): 48 data bytes
56 bytes from 172.17.0.5: icmp_seq=0 ttl=64 time=0.267 ms
56 bytes from 172.17.0.5: icmp_seq=1 ttl=64 time=0.250 ms
56 bytes from 172.17.0.5: icmp_seq=2 ttl=64 time=0.256 ms

Note:
In the example, you’ll note you had to install ping because it was not included
in the container initially.

Here, you used the ping command to ping the db container using its host entry,
which resolves to 172.17.0.5. You can use this host entry to configure an application
to make use of your db container.

Note:
You can link multiple recipient containers to a single source. For
example, you could have multiple (differently named) web containers attached to your
db container.

If you restart the source container, the linked containers /etc/hosts files
will be automatically updated with the source container’s new IP address,
allowing linked communication to continue.

$ docker restart db
db
$ docker run -t -i --rm --link db:db training/webapp /bin/bash
root@aed84ee21bde:/opt/webapp# cat /etc/hosts
172.17.0.7 aed84ee21bde
. . .
172.17.0.9 db

Next step

Now that you know how to link Docker containers together, the next step is
learning how to manage data, volumes and mounts inside your containers.

Go to Managing Data in Containers.

 © Copyright .
 Created using Sphinx 1.3.1.

docker-hub/userguide.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Using the Docker Hub

Docker Hub is used to find and pull Docker images to run or build upon, and to
distribute and build images for other users to use.

[image: your profile]

Finding repositories and images

There are two ways you can search for public repositories and images available
on the Docker Hub. You can use the “Search” tool on the Docker Hub website, or
you can search for all the repositories and images using the Docker commandline
tool:

$ docker search ubuntu

Both will show you a list of the currently available public repositories on the
Docker Hub which match the provided keyword.

If a repository is private or marked as unlisted, it won’t be in the repository
search results. To see all the repositories you have access to and their statuses,
you can look at your profile page on Docker Hub [https://hub.docker.com].

Pulling, running and building images

You can find more information on working with Docker images.

Official Repositories

The Docker Hub contains a number of Official
Repositories [http://registry.hub.docker.com/official]. These are
certified repositories from vendors and contributors to Docker. They
contain Docker images from vendors like Canonical, Oracle, and Red Hat
that you can use to build applications and services.

If you use Official Repositories you know you’re using an optimized and
up-to-date image to power your applications.

Note:
If you would like to contribute an Official Repository for your
organization, see Official Repositories on Docker
Hub for more information.

Building and shipping your own repositories and images

The Docker Hub provides you and your team with a place to build and ship Docker images.

Collections of Docker images are managed using repositories -

You can configure two types of repositories to manage on the Docker Hub:
Repositories, which allow you to push images to the Hub from your local Docker daemon,
and Automated Builds, which allow you to configure GitHub or Bitbucket to
trigger the Hub to rebuild repositories when changes are made to the repository.

 © Copyright .
 Created using Sphinx 1.3.1.

articles/registry_mirror.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Run a local registry mirror

Why?

If you have multiple instances of Docker running in your environment
(e.g., multiple physical or virtual machines, all running the Docker
daemon), each time one of them requires an image that it doesn’t have
it will go out to the internet and fetch it from the public Docker
registry. By running a local registry mirror, you can keep most of the
image fetch traffic on your local network.

How does it work?

The first time you request an image from your local registry mirror,
it pulls the image from the public Docker registry and stores it locally
before handing it back to you. On subsequent requests, the local registry
mirror is able to serve the image from its own storage.

How do I set up a local registry mirror?

There are two steps to set up and use a local registry mirror.

Step 1: Configure your Docker daemons to use the local registry mirror

You will need to pass the --registry-mirror option to your Docker daemon on
startup:

docker daemon --registry-mirror=http://<my-docker-mirror-host>

For example, if your mirror is serving on http://10.0.0.2:5000, you would run:

docker daemon --registry-mirror=http://10.0.0.2:5000

NOTE:
Depending on your local host setup, you may be able to add the
--registry-mirror options to the DOCKER_OPTS variable in
/etc/default/docker.

Step 2: Run the local registry mirror

You will need to start a local registry mirror service. The
registry image [https://registry.hub.docker.com/_/registry/] provides this
functionality. For example, to run a local registry mirror that serves on
port 5000 and mirrors the content at registry-1.docker.io:

docker run -p 5000:5000 \
 -e STANDALONE=false \
 -e MIRROR_SOURCE=https://registry-1.docker.io \
 -e MIRROR_SOURCE_INDEX=https://index.docker.io \
 registry

Test it out

With your mirror running, pull an image that you haven’t pulled before (using
time to time it):

$ time docker pull node:latest
Pulling repository node
[...]

real 1m14.078s
user 0m0.176s
sys 0m0.120s

Now, remove the image from your local machine:

$ docker rmi node:latest

Finally, re-pull the image:

$ time docker pull node:latest
Pulling repository node
[...]

real 0m51.376s
user 0m0.120s
sys 0m0.116s

The second time around, the local registry mirror served the image from storage,
avoiding a trip out to the internet to refetch it.

 © Copyright .
 Created using Sphinx 1.3.1.

project/review-pr.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Participate in the PR review

Creating a pull request is nearly the end of the contribution process. At this
point, your code is reviewed both by our continuous integration (CI) systems and
by our maintainers.

The CI system is an automated system. The maintainers are human beings that also
work on Docker. You need to understand and work with both the “bots” and the
“beings” to review your contribution.

How we process your review

First to review your pull request is Gordon. Gordon is fast. He checks your
pull request (PR) for common problems like a missing signature. If Gordon finds a
problem, he’ll send an email through your GitHub user account:

[image: Gordon]

Our build bot system starts building your changes while Gordon sends any emails.

The build system double-checks your work by compiling your code with Docker’s master
code. Building includes running the same tests you ran locally. If you forgot
to run tests or missed something in fixing problems, the automated build is our
safety check.

After Gordon and the bots, the “beings” review your work. Docker maintainers look
at your pull request and comment on it. The shortest comment you might see is
LGTM which means looks-good-to-me. If you get an LGTM, that
is a good thing, you passed that review.

For complex changes, maintainers may ask you questions or ask you to change
something about your submission. All maintainer comments on a PR go to the
email address associated with your GitHub account. Any GitHub user who
“participates” in a PR receives an email to. Participating means creating or
commenting on a PR.

Our maintainers are very experienced Docker users and open source contributors.
So, they value your time and will try to work efficiently with you by keeping
their comments specific and brief. If they ask you to make a change, you’ll
need to update your pull request with additional changes.

Update an existing pull request

To update your existing pull request:

		Checkout the PR branch in your local docker-fork repository.

This is the branch associated with your request.

		Change one or more files and then stage your changes.

The command syntax is:

 git add <path_or_filename>

		Commit the change.

 $ git commit --amend

Git opens an editor containing your last commit message.

		Adjust your last comment to reflect this new change.

 Added a new sentence per Anaud's suggestion

 Signed-off-by: Mary Anthony <mary@docker.com>

 # Please enter the commit message for your changes. Lines starting
 # with '#' will be ignored, and an empty message aborts the commit.
 # On branch 11038-fix-rhel-link
 # Your branch is up-to-date with 'origin/11038-fix-rhel-link'.
 #
 # Changes to be committed:
 # modified: docs/installation/mac.md
 # modified: docs/installation/rhel.md

		Force push the change to your origin.

The command syntax is:

 git push -f origin <branch_name>

		Open your browser to your pull request on GitHub.

You should see your pull request now contains your newly pushed code.

		Add a comment to your pull request.

GitHub only notifies PR participants when you comment. For example, you can
mention that you updated your PR. Your comment alerts the maintainers that
you made an update.

A change requires LGTMs from an absolute majority of an affected component’s
maintainers. For example, if you change docs/ and registry/ code, an
absolute majority of the docs/ and the registry/ maintainers must approve
your PR. Once you get approval, we merge your pull request into Docker’s
master code branch.

After the merge

It can take time to see a merged pull request in Docker’s official release.
A master build is available almost immediately though. Docker builds and
updates its development binaries after each merge to master.

		Browse to https://master.dockerproject.org/.

		Look for the binary appropriate to your system.

		Download and run the binary.

You might want to run the binary in a container though. This
will keep your local host environment clean.

		View any documentation changes at docs.master.dockerproject.org.

Once you’ve verified everything merged, feel free to delete your feature branch
from your fork. For information on how to do this,

see the GitHub help on deleting branches.

Where to go next

At this point, you have completed all the basic tasks in our contributors guide.
If you enjoyed contributing, let us know by completing another beginner
issue or two. We really appreciate the help.

If you are very experienced and want to make a major change, go on to
learn about advanced contributing.

 © Copyright .
 Created using Sphinx 1.3.1.

project/test-and-docs.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Run tests and test documentation

Contributing includes testing your changes. If you change the Docker code, you
may need to add a new test or modify an existing one. Your contribution could
even be adding tests to Docker. For this reason, you need to know a little
about Docker’s test infrastructure.

Many contributors contribute documentation only. Or, a contributor makes a code
contribution that changes how Docker behaves and that change needs
documentation. For these reasons, you also need to know how to build, view, and
test the Docker documentation.

In this section, you run tests in the dry-run-test branch of your Docker
fork. If you have followed along in this guide, you already have this branch.
If you don’t have this branch, you can create it or simply use another of your
branches.

Understand testing at Docker

Docker tests use the Go language’s test framework. In this framework, files
whose names end in _test.go contain test code; you’ll find test files like
this throughout the Docker repo. Use these files for inspiration when writing
your own tests. For information on Go’s test framework, see Go’s testing package
documentation and the go test help.

You are responsible for unit testing your contribution when you add new or
change existing Docker code. A unit test is a piece of code that invokes a
single, small piece of code (unit of work) to verify the unit works as
expected.

Depending on your contribution, you may need to add integration tests. These
are tests that combine two or more work units into one component. These work
units each have unit tests and then, together, integration tests that test the
interface between the components. The integration and integration-cli
directories in the Docker repository contain integration test code.

Testing is its own specialty. If you aren’t familiar with testing techniques,
there is a lot of information available to you on the Web. For now, you should
understand that, the Docker maintainers may ask you to write a new test or
change an existing one.

Run tests on your local host

Before submitting any code change, you should run the entire Docker test suite.
The Makefile contains a target for the entire test suite. The target’s name
is simply test. The make file contains several targets for testing:

 		Target
 		What this target does

 		test
 		Run all the tests.

 		test-unit
 		Run just the unit tests.

 		test-integration-cli
 		Run the test for the integration command line interface.

 		test-docker-py
 		Run the tests for Docker API client.

 		docs-test
 		Runs the documentation test build.

Run the entire test suite on your current repository:

		Open a terminal on your local host.

		Change to the root your Docker repository.

 $ cd docker-fork

		Make sure you are in your development branch.

 $ git checkout dry-run-test

		Run the make test command.

 $ make test

This command does several things, it creates a container temporarily for
testing. Inside that container, the make:

		creates a new binary

		cross-compiles all the binaries for the various operating systems

		runs all the tests in the system

It can take several minutes to run all the tests. When they complete
successfully, you see the output concludes with something like this:

 [PASSED]: top - sleep process should be listed in privileged mode
 [PASSED]: version - verify that it works and that the output is properly formatted
 PASS
 coverage: 70.8% of statements
 ---> Making bundle: test-docker-py (in bundles/1.5.0-dev/test-docker-py)
 +++ exec docker daemon --debug --host unix:///go/src/github.com/docker/docker/bundles/1.5.0-dev/test-docker-py/docker.sock --storage-driver vfs --exec-driver native --pidfile /go/src/github.com/docker/docker/bundles/1.5.0-dev/test-docker-py/docker.pid
 ...
 --
 Ran 65 tests in 89.266s

Run test targets inside the development container

If you are working inside a Docker development container, you use the
hack/make.sh script to run tests. The hack/make.sh script doesn’t
have a single target that runs all the tests. Instead, you provide a single
command line with multiple targets that does the same thing.

Try this now.

		Open a terminal and change to the docker-fork root.

		Start a Docker development image.

If you are following along with this guide, you should have a
dry-run-test image.

 $ docker run --privileged --rm -ti -v `pwd`:/go/src/github.com/docker/docker dry-run-test /bin/bash

		Run the tests using the hack/make.sh script.

 root@5f8630b873fe:/go/src/github.com/docker/docker# hack/make.sh dynbinary binary cross test-unit test-integration-cli test-docker-py

The tests run just as they did within your local host.

Of course, you can also run a subset of these targets too. For example, to run
just the unit tests:

root@5f8630b873fe:/go/src/github.com/docker/docker# hack/make.sh dynbinary binary cross test-unit

Most test targets require that you build these precursor targets first:
dynbinary binary cross

Running individual or multiple named tests

We use gocheck [https://labix.org/gocheck] for our integration-cli tests.
You can use the TESTFLAGS environment variable to run a single test. The
flag’s value is passed as arguments to the go test command. For example, from
your local host you can run the TestBuild test with this command:

$ TESTFLAGS='-check.f DockerSuite.TestBuild*' make test-integration-cli

To run the same test inside your Docker development container, you do this:

root@5f8630b873fe:/go/src/github.com/docker/docker# TESTFLAGS='-check.f TestBuild*' hack/make.sh binary test-integration-cli

Testing just the Windows client

This explains how to test the Windows client on a Windows server set up as a
development environment. You’ll use the Git Bash came with the Git for
Windows installation. Git Bash just as it sounds allows you to run a Bash
terminal on Windows.

		If you don’t have one, start a Git Bash terminal.

[image: Git Bash]

		Change to the docker source directory.

 $ cd /c/gopath/src/github.com/docker/docker

		Set DOCKER_CLIENTONLY as follows:

 $ export DOCKER_CLIENTONLY=1

This ensures you are building only the client binary instead of both the
binary and the daemon.

		Set DOCKER_TEST_HOST to the tcp://IP_ADDRESS:2376 value; substitute your
machine’s actual IP address, for example:

 $ export DOCKER_TEST_HOST=tcp://263.124.23.200:2376

		Make the binary and the test:

 $ hack/make.sh binary test-integration-cli

Many tests are skipped on Windows for various reasons. You see which tests
were skipped by re-running the make and passing in the
TESTFLAGS='-test.v' value.

You can now choose to make changes to the Docker source or the tests. If you
make any changes just run these commands again.

Build and test the documentation

The Docker documentation source files are under docs. The content is
written using extended Markdown. We use the static generator MkDocs to build Docker’s
documentation. Of course, you don’t need to install this generator
to build the documentation, it is included with container.

You should always check your documentation for grammar and spelling. The best
way to do this is with an online grammar checker.

When you change a documentation source file, you should test your change
locally to make sure your content is there and any links work correctly. You
can build the documentation from the local host. The build starts a container
and loads the documentation into a server. As long as this container runs, you
can browse the docs.

		In a terminal, change to the root of your docker-fork repository.

 $ cd ~/repos/docker-fork

		Make sure you are in your feature branch.

 $ git status
 On branch dry-run-test
 Your branch is up-to-date with 'origin/dry-run-test'.
 nothing to commit, working directory clean

		Build the documentation.

 $ make docs

When the build completes, you’ll see a final output message similar to the
following:

 Successfully built ee7fe7553123
 docker run --rm -it -e AWS_S3_BUCKET -e NOCACHE -p 8000:8000 "docker-docs:dry-run-test" mkdocs serve
 Running at: http://0.0.0.0:8000/
 Live reload enabled.
 Hold ctrl+c to quit.

		Enter the URL in your browser.

If you are running Boot2Docker, replace the default localhost address
(0.0.0.0) with your DOCKERHOST value. You can get this value at any time by
entering boot2docker ip at the command line.

		Once in the documentation, look for the red notice to verify you are seeing the correct build.

[image: Beta documentation]

		Navigate to your new or changed document.

		Review both the content and the links.

		Return to your terminal and exit out of the running documentation container.

Where to go next

Congratulations, you have successfully completed the basics you need to
understand the Docker test framework. In the next steps, you use what you have
learned so far to contribute to Docker by working on an
issue.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/run.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

run

Usage: docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

Run a command in a new container

 -a, --attach=[] Attach to STDIN, STDOUT or STDERR
 --add-host=[] Add a custom host-to-IP mapping (host:ip)
 --blkio-weight=0 Block IO weight (relative weight)
 -c, --cpu-shares=0 CPU shares (relative weight)
 --cap-add=[] Add Linux capabilities
 --cap-drop=[] Drop Linux capabilities
 --cgroup-parent="" Optional parent cgroup for the container
 --cidfile="" Write the container ID to the file
 --cpu-period=0 Limit CPU CFS (Completely Fair Scheduler) period
 --cpu-quota=0 Limit CPU CFS (Completely Fair Scheduler) quota
 --cpuset-cpus="" CPUs in which to allow execution (0-3, 0,1)
 --cpuset-mems="" Memory nodes (MEMs) in which to allow execution (0-3, 0,1)
 -d, --detach=false Run container in background and print container ID
 --device=[] Add a host device to the container
 --dns=[] Set custom DNS servers
 --dns-search=[] Set custom DNS search domains
 -e, --env=[] Set environment variables
 --entrypoint="" Overwrite the default ENTRYPOINT of the image
 --env-file=[] Read in a file of environment variables
 --expose=[] Expose a port or a range of ports
 --group-add=[] Add additional groups to run as
 -h, --hostname="" Container host name
 --help=false Print usage
 -i, --interactive=false Keep STDIN open even if not attached
 --ipc="" IPC namespace to use
 -l, --label=[] Set metadata on the container (e.g., --label=com.example.key=value)
 --label-file=[] Read in a file of labels (EOL delimited)
 --link=[] Add link to another container
 --log-driver="" Logging driver for container
 --log-opt=[] Log driver specific options
 --lxc-conf=[] Add custom lxc options
 -m, --memory="" Memory limit
 --mac-address="" Container MAC address (e.g. 92:d0:c6:0a:29:33)
 --memory-swap="" Total memory (memory + swap), '-1' to disable swap
 --memory-swappiness="" Tune a container's memory swappiness behavior. Accepts an integer between 0 and 100.
 --name="" Assign a name to the container
 --net="bridge" Set the Network mode for the container
 --oom-kill-disable=false Whether to disable OOM Killer for the container or not
 -P, --publish-all=false Publish all exposed ports to random ports
 -p, --publish=[] Publish a container's port(s) to the host
 --pid="" PID namespace to use
 --privileged=false Give extended privileges to this container
 --read-only=false Mount the container's root filesystem as read only
 --restart="no" Restart policy (no, on-failure[:max-retry], always)
 --rm=false Automatically remove the container when it exits
 --security-opt=[] Security Options
 --sig-proxy=true Proxy received signals to the process
 -t, --tty=false Allocate a pseudo-TTY
 -u, --user="" Username or UID (format: <name|uid>[:<group|gid>])
 --ulimit=[] Ulimit options
 --disable-content-trust=true Skip image verification
 --uts="" UTS namespace to use
 -v, --volume=[] Bind mount a volume
 --volumes-from=[] Mount volumes from the specified container(s)
 -w, --workdir="" Working directory inside the container

The docker run command first creates a writeable container layer over the
specified image, and then starts it using the specified command. That is,
docker run is equivalent to the API /containers/create then
/containers/(id)/start. A stopped container can be restarted with all its
previous changes intact using docker start. See docker ps -a to view a list
of all containers.

There is detailed information about docker run in the Docker run reference.

The docker run command can be used in combination with docker commit to
change the command that a container runs.

See the Docker User Guide for more detailed
information about the --expose, -p, -P and --link parameters,
and linking containers.

Examples

$ docker run --name test -it debian
root@d6c0fe130dba:/# exit 13
$ echo $?
13
$ docker ps -a | grep test
d6c0fe130dba debian:7 "/bin/bash" 26 seconds ago Exited (13) 17 seconds ago test

This example runs a container named test using the debian:latest
image. The -it instructs Docker to allocate a pseudo-TTY connected to
the container’s stdin; creating an interactive bash shell in the container.
In the example, the bash shell is quit by entering
exit 13. This exit code is passed on to the caller of
docker run, and is recorded in the test container’s metadata.

$ docker run --cidfile /tmp/docker_test.cid ubuntu echo "test"

This will create a container and print test to the console. The cidfile
flag makes Docker attempt to create a new file and write the container ID to it.
If the file exists already, Docker will return an error. Docker will close this
file when docker run exits.

$ docker run -t -i --rm ubuntu bash
root@bc338942ef20:/# mount -t tmpfs none /mnt
mount: permission denied

This will not work, because by default, most potentially dangerous kernel
capabilities are dropped; including cap_sys_admin (which is required to mount
filesystems). However, the --privileged flag will allow it to run:

$ docker run --privileged ubuntu bash
root@50e3f57e16e6:/# mount -t tmpfs none /mnt
root@50e3f57e16e6:/# df -h
Filesystem Size Used Avail Use% Mounted on
none 1.9G 0 1.9G 0% /mnt

The --privileged flag gives all capabilities to the container, and it also
lifts all the limitations enforced by the device cgroup controller. In other
words, the container can then do almost everything that the host can do. This
flag exists to allow special use-cases, like running Docker within Docker.

$ docker run -w /path/to/dir/ -i -t ubuntu pwd

The -w lets the command being executed inside directory given, here
/path/to/dir/. If the path does not exists it is created inside the container.

$ docker run -v `pwd`:`pwd` -w `pwd` -i -t ubuntu pwd

The -v flag mounts the current working directory into the container. The -w
lets the command being executed inside the current working directory, by
changing into the directory to the value returned by pwd. So this
combination executes the command using the container, but inside the
current working directory.

$ docker run -v /doesnt/exist:/foo -w /foo -i -t ubuntu bash

When the host directory of a bind-mounted volume doesn’t exist, Docker
will automatically create this directory on the host for you. In the
example above, Docker will create the /doesnt/exist
folder before starting your container.

$ docker run --read-only -v /icanwrite busybox touch /icanwrite here

Volumes can be used in combination with --read-only to control where
a container writes files. The --read-only flag mounts the container’s root
filesystem as read only prohibiting writes to locations other than the
specified volumes for the container.

$ docker run -t -i -v /var/run/docker.sock:/var/run/docker.sock -v ./static-docker:/usr/bin/docker busybox sh

By bind-mounting the docker unix socket and statically linked docker
binary (such as that provided by https://get.docker.com), you give the container the full access to create and
manipulate the host’s Docker daemon.

$ docker run -p 127.0.0.1:80:8080 ubuntu bash

This binds port 8080 of the container to port 80 on 127.0.0.1 of
the host machine. The Docker User Guide
explains in detail how to manipulate ports in Docker.

$ docker run --expose 80 ubuntu bash

This exposes port 80 of the container for use within a link without
publishing the port to the host system’s interfaces. The Docker User
Guide explains in detail how to manipulate
ports in Docker.

$ docker run -e MYVAR1 --env MYVAR2=foo --env-file ./env.list ubuntu bash

This sets environmental variables in the container. For illustration all three
flags are shown here. Where -e, --env take an environment variable and
value, or if no = is provided, then that variable’s current value is passed
through (i.e. $MYVAR1 from the host is set to $MYVAR1 in the container).
When no = is provided and that variable is not defined in the client’s
environment then that variable will be removed from the container’s list of
environment variables.
All three flags, -e, --env and --env-file can be repeated.

Regardless of the order of these three flags, the --env-file are processed
first, and then -e, --env flags. This way, the -e or --env will
override variables as needed.

$ cat ./env.list
TEST_FOO=BAR
$ docker run --env TEST_FOO="This is a test" --env-file ./env.list busybox env | grep TEST_FOO
TEST_FOO=This is a test

The --env-file flag takes a filename as an argument and expects each line
to be in the VAR=VAL format, mimicking the argument passed to --env. Comment
lines need only be prefixed with #

An example of a file passed with --env-file

$ cat ./env.list
TEST_FOO=BAR

this is a comment
TEST_APP_DEST_HOST=10.10.0.127
TEST_APP_DEST_PORT=8888
_TEST_BAR=FOO
TEST_APP_42=magic
helloWorld=true
123qwe=bar <- is not valid

pass through this variable from the caller
TEST_PASSTHROUGH
$ TEST_PASSTHROUGH=howdy docker run --env-file ./env.list busybox env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=5198e0745561
TEST_FOO=BAR
TEST_APP_DEST_HOST=10.10.0.127
TEST_APP_DEST_PORT=8888
_TEST_BAR=FOO
TEST_APP_42=magic
helloWorld=true
TEST_PASSTHROUGH=howdy
HOME=/root

$ docker run --env-file ./env.list busybox env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=5198e0745561
TEST_FOO=BAR
TEST_APP_DEST_HOST=10.10.0.127
TEST_APP_DEST_PORT=8888
_TEST_BAR=FOO
TEST_APP_42=magic
helloWorld=true
TEST_PASSTHROUGH=
HOME=/root

Note: Environment variables names must consist solely of letters, numbers,
and underscores - and cannot start with a number.

A label is a a key=value pair that applies metadata to a container. To label a container with two labels:

$ docker run -l my-label --label com.example.foo=bar ubuntu bash

The my-label key doesn’t specify a value so the label defaults to an empty
string(""). To add multiple labels, repeat the label flag (-l or --label).

The key=value must be unique to avoid overwriting the label value. If you
specify labels with identical keys but different values, each subsequent value
overwrites the previous. Docker uses the last key=value you supply.

Use the --label-file flag to load multiple labels from a file. Delimit each
label in the file with an EOL mark. The example below loads labels from a
labels file in the current directory:

$ docker run --label-file ./labels ubuntu bash

The label-file format is similar to the format for loading environment
variables. (Unlike environment variables, labels are not visible to processes
running inside a container.) The following example illustrates a label-file
format:

com.example.label1="a label"

this is a comment
com.example.label2=another\ label
com.example.label3

You can load multiple label-files by supplying multiple --label-file flags.

For additional information on working with labels, see Labels - custom
metadata in Docker in the Docker User
Guide.

$ docker run --link /redis:redis --name console ubuntu bash

The --link flag will link the container named /redis into the newly
created container with the alias redis. The new container can access the
network and environment of the redis container via environment variables.
The --link flag will also just accept the form <name or id> in which case
the alias will match the name. For instance, you could have written the previous
example as:

$ docker run --link redis --name console ubuntu bash

The --name flag will assign the name console to the newly created
container.

$ docker run --volumes-from 777f7dc92da7 --volumes-from ba8c0c54f0f2:ro -i -t ubuntu pwd

The --volumes-from flag mounts all the defined volumes from the referenced
containers. Containers can be specified by repetitions of the --volumes-from
argument. The container ID may be optionally suffixed with :ro or :rw to
mount the volumes in read-only or read-write mode, respectively. By default,
the volumes are mounted in the same mode (read write or read only) as
the reference container.

Labeling systems like SELinux require that proper labels are placed on volume
content mounted into a container. Without a label, the security system might
prevent the processes running inside the container from using the content. By
default, Docker does not change the labels set by the OS.

To change the label in the container context, you can add either of two suffixes
:z or :Z to the volume mount. These suffixes tell Docker to relabel file
objects on the shared volumes. The z option tells Docker that two containers
share the volume content. As a result, Docker labels the content with a shared
content label. Shared volume labels allow all containers to read/write content.
The Z option tells Docker to label the content with a private unshared label.
Only the current container can use a private volume.

The -a flag tells docker run to bind to the container’s STDIN, STDOUT
or STDERR. This makes it possible to manipulate the output and input as
needed.

$ echo "test" | docker run -i -a stdin ubuntu cat -

This pipes data into a container and prints the container’s ID by attaching
only to the container’s STDIN.

$ docker run -a stderr ubuntu echo test

This isn’t going to print anything unless there’s an error because we’ve
only attached to the STDERR of the container. The container’s logs
still store what’s been written to STDERR and STDOUT.

$ cat somefile | docker run -i -a stdin mybuilder dobuild

This is how piping a file into a container could be done for a build.
The container’s ID will be printed after the build is done and the build
logs could be retrieved using docker logs. This is
useful if you need to pipe a file or something else into a container and
retrieve the container’s ID once the container has finished running.

$ docker run --device=/dev/sdc:/dev/xvdc --device=/dev/sdd --device=/dev/zero:/dev/nulo -i -t ubuntu ls -l /dev/{xvdc,sdd,nulo}
brw-rw---- 1 root disk 8, 2 Feb 9 16:05 /dev/xvdc
brw-rw---- 1 root disk 8, 3 Feb 9 16:05 /dev/sdd
crw-rw-rw- 1 root root 1, 5 Feb 9 16:05 /dev/nulo

It is often necessary to directly expose devices to a container. The --device
option enables that. For example, a specific block storage device or loop
device or audio device can be added to an otherwise unprivileged container
(without the --privileged flag) and have the application directly access it.

By default, the container will be able to read, write and mknod these devices.
This can be overridden using a third :rwm set of options to each --device
flag:

$ docker run --device=/dev/sda:/dev/xvdc --rm -it ubuntu fdisk /dev/xvdc

Command (m for help): q
$ docker run --device=/dev/sda:/dev/xvdc:ro --rm -it ubuntu fdisk /dev/xvdc
You will not be able to write the partition table.

Command (m for help): q

$ docker run --device=/dev/sda:/dev/xvdc --rm -it ubuntu fdisk /dev/xvdc

Command (m for help): q

$ docker run --device=/dev/sda:/dev/xvdc:m --rm -it ubuntu fdisk /dev/xvdc
fdisk: unable to open /dev/xvdc: Operation not permitted

Note:
--device cannot be safely used with ephemeral devices. Block devices
that may be removed should not be added to untrusted containers with
--device.

A complete example:

$ docker run -d --name static static-web-files sh
$ docker run -d --expose=8098 --name riak riakserver
$ docker run -d -m 100m -e DEVELOPMENT=1 -e BRANCH=example-code -v $(pwd):/app/bin:ro --name app appserver
$ docker run -d -p 1443:443 --dns=10.0.0.1 --dns-search=dev.org -v /var/log/httpd --volumes-from static --link riak --link app -h www.sven.dev.org --name web webserver
$ docker run -t -i --rm --volumes-from web -w /var/log/httpd busybox tail -f access.log

This example shows five containers that might be set up to test a web
application change:

		Start a pre-prepared volume image static-web-files (in the background)
that has CSS, image and static HTML in it, (with a VOLUME instruction in
the Dockerfile to allow the web server to use those files);

		Start a pre-prepared riakserver image, give the container name riak and
expose port 8098 to any containers that link to it;

		Start the appserver image, restricting its memory usage to 100MB, setting
two environment variables DEVELOPMENT and BRANCH and bind-mounting the
current directory ($(pwd)) in the container in read-only mode as /app/bin;

		Start the webserver, mapping port 443 in the container to port 1443 on
the Docker server, setting the DNS server to 10.0.0.1 and DNS search
domain to dev.org, creating a volume to put the log files into (so we can
access it from another container), then importing the files from the volume
exposed by the static container, and linking to all exposed ports from
riak and app. Lastly, we set the hostname to web.sven.dev.org so its
consistent with the pre-generated SSL certificate;

		Finally, we create a container that runs tail -f access.log using the logs
volume from the web container, setting the workdir to /var/log/httpd. The
--rm option means that when the container exits, the container’s layer is
removed.

Restart policies

Use Docker’s --restart to specify a container’s restart policy. A restart
policy controls whether the Docker daemon restarts a container after exit.
Docker supports the following restart policies:

 		Policy
 		Result

 		no
 		
 Do not automatically restart the container when it exits. This is the
 default.

 		

 on-failure[:max-retries]

 		
 Restart only if the container exits with a non-zero exit status.
 Optionally, limit the number of restart retries the Docker
 daemon attempts.

 		always
 		
 Always restart the container regardless of the exit status.
 When you specify always, the Docker daemon will try to restart
 the container indefinitely.

$ docker run --restart=always redis

This will run the redis container with a restart policy of always
so that if the container exits, Docker will restart it.

More detailed information on restart policies can be found in the
Restart Policies (–restart)
section of the Docker run reference page.

Adding entries to a container hosts file

You can add other hosts into a container’s /etc/hosts file by using one or
more --add-host flags. This example adds a static address for a host named
docker:

$ docker run --add-host=docker:10.180.0.1 --rm -it debian
$$ ping docker
PING docker (10.180.0.1): 48 data bytes
56 bytes from 10.180.0.1: icmp_seq=0 ttl=254 time=7.600 ms
56 bytes from 10.180.0.1: icmp_seq=1 ttl=254 time=30.705 ms
^C--- docker ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 7.600/19.152/30.705/11.553 ms

Sometimes you need to connect to the Docker host from within your
container. To enable this, pass the Docker host’s IP address to
the container using the --add-host flag. To find the host’s address,
use the ip addr show command.

The flags you pass to ip addr show depend on whether you are
using IPv4 or IPv6 networking in your containers. Use the following
flags for IPv4 address retrieval for a network device named eth0:

$ HOSTIP=`ip -4 addr show scope global dev eth0 | grep inet | awk '{print \$2}' | cut -d / -f 1`
$ docker run --add-host=docker:${HOSTIP} --rm -it debian

For IPv6 use the -6 flag instead of the -4 flag. For other network
devices, replace eth0 with the correct device name (for example docker0
for the bridge device).

Setting ulimits in a container

Since setting ulimit settings in a container requires extra privileges not
available in the default container, you can set these using the --ulimit flag.
--ulimit is specified with a soft and hard limit as such:
<type>=<soft limit>[:<hard limit>], for example:

$ docker run --ulimit nofile=1024:1024 --rm debian ulimit -n
1024

Note:
If you do not provide a hard limit, the soft limit will be used
for both values. If no ulimits are set, they will be inherited from
the default ulimits set on the daemon. as option is disabled now.
In other words, the following script is not supported:
$ docker run -it --ulimit as=1024 fedora /bin/bash

The values are sent to the appropriate syscall as they are set.
Docker doesn’t perform any byte conversion. Take this into account when setting the values.

For nproc usage:

Be careful setting nproc with the ulimit flag as nproc is designed by Linux to set the
maximum number of processes available to a user, not to a container. For example, start four
containers with daemon user:

docker run -d -u daemon --ulimit nproc=3 busybox top
docker run -d -u daemon --ulimit nproc=3 busybox top
docker run -d -u daemon --ulimit nproc=3 busybox top
docker run -d -u daemon --ulimit nproc=3 busybox top

The 4th container fails and reports “[8] System error: resource temporarily unavailable” error.
This fails because the caller set nproc=3 resulting in the first three containers using up
the three processes quota set for the daemon user.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.0.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.0

1. Brief introduction

		The Remote API is replacing rcli

		Default port in the docker daemon is 2375

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout stdin
and stderr

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0"
 },
 {
 "Id": "9cd87474be90",
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0"
 },
 {
 "Id": "3176a2479c92",
 "Image": "centos:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0"
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "fedora:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0"
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default

		limit – Show limit last created
containers, include non-running ones.

		since – Show only containers created since Id, include
non-running ones.

		before – Show only containers created before Id, include
non-running ones.

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Dns":null,
 "Image":"ubuntu",
 "Volumes":{},
 "VolumesFrom":""
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		config – the container’s configuration

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": {},
 "VolumesFrom": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {}
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/e90e34656806/start HTTP/1.1

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Defaul
false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/(format)

List images format could be json or viz (json default)

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Repository":"ubuntu",
 "Tag":"precise",
 "Id":"b750fe79269d",
 "Created":1364102658
 },
 {
 "Repository":"ubuntu",
 "Tag":"12.04",
 "Id":"b750fe79269d",
 "Created":1364102658
 }
]

Example request:

 GET /images/viz HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 digraph docker {
 "d82cbacda43a" -> "074be284591f"
 "1496068ca813" -> "08306dc45919"
 "08306dc45919" -> "0e7893146ac2"
 "b750fe79269d" -> "1496068ca813"
 base -> "27cf78414709" [style=invis]
 "f71189fff3de" -> "9a33b36209ed"
 "27cf78414709" -> "b750fe79269d"
 "0e7893146ac2" -> "d6434d954665"
 "d6434d954665" -> "d82cbacda43a"
 base -> "e9aa60c60128" [style=invis]
 "074be284591f" -> "f71189fff3de"
 "b750fe79269d" [label="b750fe79269d\nubuntu",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "e9aa60c60128" [label="e9aa60c60128\ncentos",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "9a33b36209ed" [label="9a33b36209ed\nfedora",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 base [style=invisible]
 }

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by defaul

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing i

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Status Codes:

		200 – no error

		500 – server error

Insert a file in an image

POST /images/(name)/insert

Insert a file from url in the image name at path

Example request:

 POST /images/test/insert?path=/usr&url=myurl HTTP/1.1

Example response:

 HTTP/1.1 200 OK

 {{ TAR STREAM }}

Query Parameters:

		url – The url from where the file is taken

		path – The path where the file is stored

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/centos/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id":"b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "parent":"27cf784147099545",
 "created":"2013-03-23T22:24:18.818426-07:00",
 "container":"3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "container_config":
 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":false,
 "AttachStderr":false,
 "PortSpecs":null,
 "Tty":true,
 "OpenStdin":true,
 "StdinOnce":false,
 "Env":null,
 "Cmd": ["/bin/bash"],
 "Dns":null,
 "Image":"centos",
 "Volumes":null,
 "VolumesFrom":""
 }
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/fedora/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

> **Example request**:
>
> POST /images/test/push HTTP/1.1
>
> **Example response**:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such image

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com]

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Name":"cespare/sshd",
 "Description":""
 },
 {
 "Name":"johnfuller/sshd",
 "Description":""
 },
 {
 "Name":"dhrp/mongodb-sshd",
 "Description":""
 }
]

 :query term: term to search
 :statuscode 200: no error
 :statuscode 500: server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK

 {{ STREAM }}

Query Parameters:

		t – repository name to be applied to the resulting image in
case of success

Status Codes:

		200 – no error

		500 – server error

Get default username and email

GET /auth

Get the default username and email

Example request:

 GET /auth HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "username":"hannibal",
 "email":"hannibal@a-team.com"
 }

Status Codes:

		200 – no error

		500 – server error

Check auth configuration and store i

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":"hannibal",
 "password:"xxxx",
 "email":"hannibal@a-team.com"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "MemoryLimit":true,
 "SwapLimit":false
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version":"0.2.2",
 "GitCommit":"5a2a5cc+CHANGES",
 "GoVersion":"go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes
>
> Example request:

 POST /commit?container=44c004db4b17&m=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Cmd": ["cat", "/world"],
 "PortSpecs":["22"]
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		m – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

3. Going further

3.1 Inside docker run

As an example, the docker run command line makes the following API calls:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
		Try to pull it

		Then retry to create the container

		Start the container

		If you are not in detached mode:
		Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
		Display the container’s

3.2 Hijacking

In this first version of the API, some of the endpoints, like /attach,
/pull or /push uses hijacking to transport stdin, stdout and stderr on
the same socket. This might change in the future.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.13.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.13

1. Brief introduction

		The Remote API has replaced rcli.

		The daemon listens on unix:///var/run/docker.sock but you can
Bind Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport STDOUT,
STDIN and STDERR.

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Image": "ubuntu:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "ubuntu:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created containers, include non-running ones.

		since – Show only containers created since Id, include non-running ones.

		before – Show only containers created before Id, include non-running ones.

		size – 1/True/true or 0/False/false, Show the containers sizes

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "Domainname": "",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "CpuShares": 512,
 "Cpuset": "0,1",
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Image":"ubuntu",
 "Volumes":{
 "/tmp": {}
 },
 "WorkingDir":"",
 "NetworkDisabled": false,
 "ExposedPorts":{
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		config – the container’s configuration

Query Parameters:

		name – Assign the specified name to the container. Mus
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": {},
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {},
 "HostConfig": {
 "Binds": null,
 "ContainerIDFile": "",
 "LxcConf": [],
 "Privileged": false,
 "PortBindings": {
 "80/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "49153"
 }
]
 },
 "Links": ["/name:alias"],
 "PublishAllPorts": false
 }
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container logs

GET /containers/(id)/logs

Get stdout and stderr logs from the container id

Example request:

 GET /containers/4fa6e0f0c678/logs?stderr=1&stdout=1×tamps=1&follow=1&tail=10 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		follow – 1/True/true or 0/False/false, return stream. Default false

		stdout – 1/True/true or 0/False/false, show stdout log. Default false

		stderr – 1/True/true or 0/False/false, show stderr log. Default false

		timestamps – 1/True/true or 0/False/false, print timestamps for every
log line. Default false

		tail – Output specified number of lines at the end of logs: all or
<number>. Default all

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds":["/tmp:/tmp"],
 "Links":["redis3:redis"],
 "LxcConf":[{"Key":"lxc.utsname","Value":"docker"}],
 "PortBindings":{ "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts":false,
 "Privileged":false,
 "Dns": ["8.8.8.8"],
 "VolumesFrom": ["parent", "other:ro"]
 }

Example response:

 HTTP/1.1 204 No Content
 Content-Type: text/plain

Json Parameters:

		hostConfig – the container’s host configuration (optional)

Status Codes:

		204 – no error

		304 – container already started

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		304 – container already stopped

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like “SIGINT”.
When not set, SIGKILL is assumed and the call will wait for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Pause a container

POST /containers/(id)/pause

Pause the container id

Example request:

 POST /containers/e90e34656806/pause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Unpause a container

POST /containers/(id)/unpause

Unpause the container id

Example request:

 POST /containers/e90e34656806/unpause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream. Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach to stdin.
Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

		force – 1/True/true or 0/False/false, Removes the container
even if it was running. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, default false

		filters – a json encoded value of the filters (a map[string][]string) to process on the images list. Available filters:

		dangling=true

		filter - only return images with the specified name

Create an image

POST /images/create

Create an image, either by pulling it from the registry or by importing it

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pulling..."}
 {"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
 {"error": "Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/ubuntu/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Created": "2013-03-23T22:24:18.818426-07:00",
 "Container": "3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "ContainerConfig":
 {
 "Hostname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "PortSpecs": null,
 "Tty": true,
 "OpenStdin": true,
 "StdinOnce": false,
 "Env": null,
 "Cmd": ["/bin/bash"],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": null,
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Parent": "27cf784147099545",
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/ubuntu/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pushing..."}
 {"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
 {"error": "Invalid..."}
 ...

If you wish to push an image on to a private registry, that image must already have been tagged
into a repository which references that registry host name and port. This repository name should
then be used in the URL. This mirrors the flow of the CLI.

Example request:

 POST /images/registry.acme.com:5000/test/push HTTP/1.1

Query Parameters:

		tag – the tag to associate with the image on the registry, optional

Request Headers:

		X-Registry-Auth – include a base64-encoded AuthConfig object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Query Parameters:

		force – 1/True/true or 0/False/false, default false

		noprune – 1/True/true or 0/False/false, default false

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"stream": "Step 1..."}
 {"stream": "..."}
 {"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a file called `Dockerfile`
at its root. It may include any number of other files,
which will be accessible in the build context (See the [*ADD build
command*](/reference/builder/#dockerbuilder)).

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – git or HTTP/HTTPS URI build source

		q – suppress verbose build output

		nocache – do not use the cache when building the image

		rm - remove intermediate containers after a successful build (default behavior)

		forcerm - always remove intermediate containers (includes rm)

Request Headers:

		Content-type – should be set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers": 11,
 "Images": 16,
 "Driver": "btrfs",
 "ExecutionDriver": "native-0.1",
 "KernelVersion": "3.12.0-1-amd64"
 "Debug": false,
 "NFd": 11,
 "NGoroutines": 21,
 "NEventsListener": 0,
 "InitPath": "/usr/bin/docker",
 "IndexServerAddress": ["https://index.docker.io/v1/"],
 "MemoryLimit": true,
 "SwapLimit": false,
 "IPv4Forwarding": true
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "ApiVersion": "1.12",
 "Version": "0.2.2",
 "GitCommit": "5a2a5cc+CHANGES",
 "GoVersion": "go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Ping the docker server

GET /_ping

Ping the docker server

Example request:

 GET /_ping HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 OK

Status Codes:

		200 - no error

		500 - server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&comment=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "Cpuset": "0,1",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Volumes": {
 "/tmp": {}
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "ExposedPorts": {
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		comment – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get container events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

		until – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images and tags in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository
specified by name.

See the image tarball format for more details.

Example request

 GET /images/ubuntu/get

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into the docker repository.

See the image tarball format for more details.

Example request

 POST /images/load

 Tarball in body

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing three files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file will contain aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, there will also be a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

3. Going further

3.1 Inside docker run

As an example, the docker run command line makes the following API calls:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
		Try to pull it

		Then retry to create the container

		Start the container

		If you are not in detached mode:
		Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
		Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/registry_api_client_libraries.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Registry v1 API client libraries

These libraries have not been tested by the Docker maintainers for
compatibility. Please file issues with the library owners. If you find
more library implementations, please submit a PR with an update to this page
or open an issue in the Docker [https://github.com/docker/docker/issues]
project and we will add the libraries here.

 		Language/Framework
 		Name
 		Repository
 		Status

 		JavaScript (AngularJS) WebUI
 		docker-registry-frontend
 		https://github.com/kwk/docker-registry-frontend
 		Active

 		Go
 		docker-reg-client
 		https://github.com/CenturyLinkLabs/docker-reg-client
 		Active

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.6.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.6

1. Brief introduction

		The Remote API has replaced rcli

		The daemon listens on unix:///var/run/docker.sock but you can bind
Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout, stdin
and stderr

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "base:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Image": "base:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Image": "base:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "base:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created containers, include non-running ones.

		since – Show only containers created since Id, include non-running ones.

		before – Show only containers created before Id, include non-running ones.

		size – 1/True/true or 0/False/false, Show the containers sizes

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "ExposedPorts":{},
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Dns":null,
 "Image":"base",
 "Volumes":{},
 "VolumesFrom":"",
 "WorkingDir":""
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		config – the container’s configuration

Query Parameters:

		name – container name to use

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

More Complex Example request, in 2 steps. First, use create to
expose a Private Port, which can be bound back to a Public Port a
startup:

POST /containers/create HTTP/1.1
Content-Type: application/json

{
 "Cmd":[
 "/usr/sbin/sshd","-D"
],
 "Image":"image-with-sshd",
 "ExposedPorts":{"22/tcp":{}}
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

**Second, start (using the ID returned above) the image we just
created, mapping the ssh port 22 to something on the host**:

 POST /containers/e90e34656806/start HTTP/1.1
 Content-Type: application/json

 {
 "PortBindings": { "22/tcp": [{ "HostPort": "11022" }]}
 }

Example response:

 HTTP/1.1 204 No Content
 Content-Type: text/plain; charset=utf-8
 Content-Length: 0

Now you can ssh into your new container on port 11022.

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "ExposedPorts": {},
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "base",
 "Volumes": {},
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {}
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds":["/tmp:/tmp"],
 "LxcConf":[{"Key":"lxc.utsname","Value":"docker"}],
 "ContainerIDFile": "",
 "Privileged": false,
 "PortBindings": {"22/tcp": [{HostIp:"", HostPort:""}]},
 "Links": [],
 "PublishAllPorts": false
 }

Example response:

 HTTP/1.1 204 No Content
 Content-Type: text/plain

Json Parameters:

		hostConfig – the container’s host configuration (optional)

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		signal – Signal to send to the container (integer). When no
set, SIGKILL is assumed and the call will waits for the
container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Defaul
false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1)

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/(format)

List images format could be json or viz (json default)

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Repository":"base",
 "Tag":"ubuntu-12.10",
 "Id":"b750fe79269d",
 "Created":1364102658,
 "Size":24653,
 "VirtualSize":180116135
 },
 {
 "Repository":"base",
 "Tag":"ubuntu-quantal",
 "Id":"b750fe79269d",
 "Created":1364102658,
 "Size":24653,
 "VirtualSize":180116135
 }
]

Example request:

 GET /images/viz HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 digraph docker {
 "d82cbacda43a" -> "074be284591f"
 "1496068ca813" -> "08306dc45919"
 "08306dc45919" -> "0e7893146ac2"
 "b750fe79269d" -> "1496068ca813"
 base -> "27cf78414709" [style=invis]
 "f71189fff3de" -> "9a33b36209ed"
 "27cf78414709" -> "b750fe79269d"
 "0e7893146ac2" -> "d6434d954665"
 "d6434d954665" -> "d82cbacda43a"
 base -> "e9aa60c60128" [style=invis]
 "074be284591f" -> "f71189fff3de"
 "b750fe79269d" [label="b750fe79269d\nbase",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "e9aa60c60128" [label="e9aa60c60128\nbase2",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "9a33b36209ed" [label="9a33b36209ed\ntest",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 base [style=invisible]
 }

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by defaul

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing i

Example request:

 POST /images/create?fromImage=base HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pulling..."}
 {"status":"Pulling", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Status Codes:

		200 – no error

		500 – server error

Insert a file in an image

POST /images/(name)/insert

Insert a file from url in the image name at path

Example request:

 POST /images/test/insert?path=/usr&url=myurl HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Inserting..."}
 {"status":"Inserting", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Query Parameters:

		url – The url from where the file is taken

		path – The path where the file is stored

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/base/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id":"b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "parent":"27cf784147099545",
 "created":"2013-03-23T22:24:18.818426-07:00",
 "container":"3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "container_config":
 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":false,
 "AttachStderr":false,
 "ExposedPorts":{},
 "Tty":true,
 "OpenStdin":true,
 "StdinOnce":false,
 "Env":null,
 "Cmd": ["/bin/bash"],
 "Dns":null,
 "Image":"base",
 "Volumes":null,
 "VolumesFrom":"",
 "WorkingDir":""
 },
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/base/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

{"status":"Pushing..."} {"status":"Pushing", "progress":"1/? (n/a)"}
{"error":"Invalid..."} ...

> The `X-Registry-Auth` header can be used to
> include a base64-encoded AuthConfig object.

Status Codes:

		200 – no error :statuscode 404: no such image :statuscode
500: server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com]

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Name":"cespare/sshd",
 "Description":""
 },
 {
 "Name":"johnfuller/sshd",
 "Description":""
 },
 {
 "Name":"dhrp/mongodb-sshd",
 "Description":""
 }
]

 :query term: term to search
 :statuscode 200: no error
 :statuscode 500: server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK

 {{ STREAM }}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.
The archive must include a file called Dockerfile at its root. I
may include any number of other files, which will be accessible in
the build context (See the ADD build command).

The Content-type header should be set to "application/tar".

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – build source URI (git or HTTPS/HTTP)

		q – suppress verbose build output

		nocache – do not use the cache when building the image

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "MemoryLimit":true,
 "SwapLimit":false,
 "IPv4Forwarding":true
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version":"0.2.2",
 "GitCommit":"5a2a5cc+CHANGES",
 "GoVersion":"go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&m=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Cmd": ["cat", "/world"],
 "ExposedPorts":{"22/tcp":{}}
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		m – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "base:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "base:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "base:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "base:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

3. Going further

3.1 Inside docker run

Here are the steps of docker run :

		Create the container

		If the status code is 404, it means the image doesn’t exist:
- Try to pull it
- Then retry to create the container

		Start the container

		If you are not in detached mode:
- Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
- Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.2.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.2

1. Brief introduction

		The Remote API is replacing rcli

		Default port in the docker daemon is 2375

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout stdin
and stderr

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports":"",
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "9cd87474be90",
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports":"",
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "3176a2479c92",
 "Image": "centos:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":"",
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "fedora:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports":"",
 "SizeRw":12288,
 "SizeRootFs":0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default

		limit – Show limit last created
containers, include non-running ones.

		since – Show only containers created since Id, include
non-running ones.

		before – Show only containers created before Id, include
non-running ones.

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Dns":null,
 "Image":"ubuntu",
 "Volumes":{},
 "VolumesFrom":""
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		config – the container’s configuration

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": {},
 "VolumesFrom": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {}
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/e90e34656806/start HTTP/1.1

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Defaul
false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/(format)

List images format could be json or viz (json default)

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Repository":"ubuntu",
 "Tag":"precise",
 "Id":"b750fe79269d",
 "Created":1364102658,
 "Size":24653,
 "VirtualSize":180116135
 },
 {
 "Repository":"ubuntu",
 "Tag":"12.04",
 "Id":"b750fe79269d",
 "Created":1364102658,
 "Size":24653,
 "VirtualSize":180116135
 }
]

Example request:

 GET /images/viz HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 digraph docker {
 "d82cbacda43a" -> "074be284591f"
 "1496068ca813" -> "08306dc45919"
 "08306dc45919" -> "0e7893146ac2"
 "b750fe79269d" -> "1496068ca813"
 base -> "27cf78414709" [style=invis]
 "f71189fff3de" -> "9a33b36209ed"
 "27cf78414709" -> "b750fe79269d"
 "0e7893146ac2" -> "d6434d954665"
 "d6434d954665" -> "d82cbacda43a"
 base -> "e9aa60c60128" [style=invis]
 "074be284591f" -> "f71189fff3de"
 "b750fe79269d" [label="b750fe79269d\nubuntu",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "e9aa60c60128" [label="e9aa60c60128\ncentos",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "9a33b36209ed" [label="9a33b36209ed\nfedora",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 base [style=invisible]
 }

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by defaul

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing i

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pulling..."}
 {"status":"Pulling", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Status Codes:

		200 – no error

		500 – server error

Insert a file in an image

POST /images/(name)/insert

Insert a file from url in the image name at path

Example request:

 POST /images/test/insert?path=/usr&url=myurl HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Inserting..."}
 {"status":"Inserting", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Query Parameters:

		url – The url from where the file is taken

		path – The path where the file is stored

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/centos/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id":"b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "parent":"27cf784147099545",
 "created":"2013-03-23T22:24:18.818426-07:00",
 "container":"3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "container_config":
 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":false,
 "AttachStderr":false,
 "PortSpecs":null,
 "Tty":true,
 "OpenStdin":true,
 "StdinOnce":false,
 "Env":null,
 "Cmd": ["/bin/bash"],
 "Dns":null,
 "Image":"centos",
 "Volumes":null,
 "VolumesFrom":""
 },
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/fedora/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id":"b750fe79269d",
 "Tag":["ubuntu:latest"],
 "Created":1364102658,
 "CreatedBy":"/bin/bash"
 },
 {
 "Id":"27cf78414709",
 "Created":1364068391,
 "CreatedBy":""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

> **Example request**:
>
> POST /images/test/push HTTP/1.1
> {{ authConfig }}
>
> **Example response**:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pushing..."}
 {"status":"Pushing", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Status Codes:

		204 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com]

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Name":"cespare/sshd",
 "Description":""
 },
 {
 "Name":"johnfuller/sshd",
 "Description":""
 },
 {
 "Name":"dhrp/mongodb-sshd",
 "Description":""
 }
]

 :query term: term to search
 :statuscode 200: no error
 :statuscode 500: server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 {{ STREAM }}

Query Parameters:

		t – repository name to be applied to the resulting image in
case of success

		remote – resource to fetch, as URI

Status Codes:

		200 – no error

		500 – server error

{{ STREAM }} is the raw text output of the build command. It uses the
HTTP Hijack method in order to stream.

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":"hannibal",
 "password:"xxxx",
 "email":"hannibal@a-team.com"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Status": "Login Succeeded"
 }

Status Codes:

		200 – no error

		204 – no error

		401 – unauthorized

		403 – forbidden

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "MemoryLimit":true,
 "SwapLimit":false
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version":"0.2.2",
 "GitCommit":"5a2a5cc+CHANGES",
 "GoVersion":"go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&m=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Cmd": ["cat", "/world"],
 "PortSpecs":["22"]
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		m – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

3. Going further

3.1 Inside docker run

Here are the steps of docker run :

		Create the container

		If the status code is 404, it means the image doesn’t exist:
- Try to pull it
- Then retry to create the container

		Start the container

		If you are not in detached mode:
- Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
- Display the container’s

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

docker -d -H=”tcp://192.168.1.9:2375“
-api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_io_accounts_api.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

docker.io accounts API

Get a single user

GET /api/v1.1/users/:username/

Get profile info for the specified user.

Parameters:

		username – username of the user whose profile info is being
requested.

Request Headers:

		Authorization – required authentication credentials of
either type HTTP Basic or OAuth Bearer Token.

Status Codes:

		200 – success, user data returned.

		401 – authentication error.

		403 – permission error, authenticated user must be the user
whose data is being requested, OAuth access tokens must have
profile_read scope.

		404 – the specified username does not exist.

Example request:

 GET /api/v1.1/users/janedoe/ HTTP/1.1
 Host: www.docker.io
 Accept: application/json
 Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id": 2,
 "username": "janedoe",
 "url": "https://www.docker.io/api/v1.1/users/janedoe/",
 "date_joined": "2014-02-12T17:58:01.431312Z",
 "type": "User",
 "full_name": "Jane Doe",
 "location": "San Francisco, CA",
 "company": "Success, Inc.",
 "profile_url": "https://docker.io/",
 "gravatar_url": "https://secure.gravatar.com/avatar/0212b397124be4acd4e7dea9aa357.jpg?s=80&r=g&d=mm"
 "email": "jane.doe@example.com",
 "is_active": true
 }

Update a single user

PATCH /api/v1.1/users/:username/

Update profile info for the specified user.

Parameters:

		username – username of the user whose profile info is being
updated.

Json Parameters:

		full_name (string) – (optional) the new name of the user.

		location (string) – (optional) the new location.

		company (string) – (optional) the new company of the user.

		profile_url (string) – (optional) the new profile url.

		gravatar_email (string) – (optional) the new Gravatar
email address.

Request Headers:

		Authorization – required authentication credentials of
either type HTTP Basic or OAuth Bearer Token.

		Content-Type – MIME Type of post data. JSON, url-encoded
form data, etc.

Status Codes:

		200 – success, user data updated.

		400 – post data validation error.

		401 – authentication error.

		403 – permission error, authenticated user must be the user
whose data is being updated, OAuth access tokens must have
profile_write scope.

		404 – the specified username does not exist.

Example request:

 PATCH /api/v1.1/users/janedoe/ HTTP/1.1
 Host: www.docker.io
 Accept: application/json
 Authorization: Basic dXNlcm5hbWU6cGFzc3dvcmQ=

 {
 "location": "Private Island",
 "profile_url": "http://janedoe.com/",
 "company": "Retired",
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id": 2,
 "username": "janedoe",
 "url": "https://www.docker.io/api/v1.1/users/janedoe/",
 "date_joined": "2014-02-12T17:58:01.431312Z",
 "type": "User",
 "full_name": "Jane Doe",
 "location": "Private Island",
 "company": "Retired",
 "profile_url": "http://janedoe.com/",
 "gravatar_url": "https://secure.gravatar.com/avatar/0212b397124be4acd4e7dea9aa357.jpg?s=80&r=g&d=mm"
 "email": "jane.doe@example.com",
 "is_active": true
 }

List email addresses for a user

GET /api/v1.1/users/:username/emails/

List email info for the specified user.

Parameters:

		username – username of the user whose profile info is being
updated.

Request Headers:

		Authorization – required authentication credentials of
either type HTTP Basic or OAuth Bearer Token

Status Codes:

		200 – success, user data updated.

		401 – authentication error.

		403 – permission error, authenticated user must be the user
whose data is being requested, OAuth access tokens must have
email_read scope.

		404 – the specified username does not exist.

Example request:

 GET /api/v1.1/users/janedoe/emails/ HTTP/1.1
 Host: www.docker.io
 Accept: application/json
 Authorization: Bearer zAy0BxC1wDv2EuF3tGs4HrI6qJp6KoL7nM

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "email": "jane.doe@example.com",
 "verified": true,
 "primary": true
 }
]

Add email address for a user

POST /api/v1.1/users/:username/emails/

Add a new email address to the specified user’s account. The email
address must be verified separately, a confirmation email is not
automatically sent.

Json Parameters:

		email (string) – email address to be added.

Request Headers:

		Authorization – required authentication credentials of
either type HTTP Basic or OAuth Bearer Token.

		Content-Type – MIME Type of post data. JSON, url-encoded
form data, etc.

Status Codes:

		201 – success, new email added.

		400 – data validation error.

		401 – authentication error.

		403 – permission error, authenticated user must be the user
whose data is being requested, OAuth access tokens must have
email_write scope.

		404 – the specified username does not exist.

Example request:

 POST /api/v1.1/users/janedoe/emails/ HTTP/1.1
 Host: www.docker.io
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer zAy0BxC1wDv2EuF3tGs4HrI6qJp6KoL7nM

 {
 "email": "jane.doe+other@example.com"
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "email": "jane.doe+other@example.com",
 "verified": false,
 "primary": false
 }

Delete email address for a user

DELETE /api/v1.1/users/:username/emails/

Delete an email address from the specified user’s account. You
cannot delete a user’s primary email address.

Json Parameters:

		email (string) – email address to be deleted.

Request Headers:

		Authorization – required authentication credentials of
either type HTTP Basic or OAuth Bearer Token.

		Content-Type – MIME Type of post data. JSON, url-encoded
form data, etc.

Status Codes:

		204 – success, email address removed.

		400 – validation error.

		401 – authentication error.

		403 – permission error, authenticated user must be the user
whose data is being requested, OAuth access tokens must have
email_write scope.

		404 – the specified username or email address does not
exist.

Example request:

 DELETE /api/v1.1/users/janedoe/emails/ HTTP/1.1
 Host: www.docker.io
 Accept: application/json
 Content-Type: application/json
 Authorization: Bearer zAy0BxC1wDv2EuF3tGs4HrI6qJp6KoL7nM

 {
 "email": "jane.doe+other@example.com"
 }

Example response:

 HTTP/1.1 204 NO CONTENT
 Content-Length: 0

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.1.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.1

1. Brief introduction

		The Remote API is replacing rcli

		Default port in the docker daemon is 2375

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout stdin
and stderr

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0"
 },
 {
 "Id": "9cd87474be90",
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0"
 },
 {
 "Id": "3176a2479c92",
 "Image": "centos:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0"
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "fedora:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0"
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default

		limit – Show limit last created
containers, include non-running ones.

		since – Show only containers created since Id, include
non-running ones.

		before – Show only containers created before Id, include
non-running ones.

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Dns":null,
 "Image":"ubuntu",
 "Volumes":{},
 "VolumesFrom":""
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		config – the container’s configuration

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": {},
 "VolumesFrom": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {}
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/e90e34656806/start HTTP/1.1

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Defaul
false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/(format)

List images format could be json or viz (json default)

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Repository":"ubuntu",
 "Tag":"precise",
 "Id":"b750fe79269d",
 "Created":1364102658
 },
 {
 "Repository":"ubuntu",
 "Tag":"12.04",
 "Id":"b750fe79269d",
 "Created":1364102658
 }
]

Example request:

 GET /images/viz HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 digraph docker {
 "d82cbacda43a" -> "074be284591f"
 "1496068ca813" -> "08306dc45919"
 "08306dc45919" -> "0e7893146ac2"
 "b750fe79269d" -> "1496068ca813"
 base -> "27cf78414709" [style=invis]
 "f71189fff3de" -> "9a33b36209ed"
 "27cf78414709" -> "b750fe79269d"
 "0e7893146ac2" -> "d6434d954665"
 "d6434d954665" -> "d82cbacda43a"
 base -> "e9aa60c60128" [style=invis]
 "074be284591f" -> "f71189fff3de"
 "b750fe79269d" [label="b750fe79269d\nubuntu",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "e9aa60c60128" [label="e9aa60c60128\ncentos",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "9a33b36209ed" [label="9a33b36209ed\nfedora",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 base [style=invisible]
 }

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by defaul

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing i

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pulling..."}
 {"status":"Pulling", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Status Codes:

		200 – no error

		500 – server error

Insert a file in an image

POST /images/(name)/insert

Insert a file from url in the image name at path

Example request:

 POST /images/test/insert?path=/usr&url=myurl HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Inserting..."}
 {"status":"Inserting", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Query Parameters:

		url – The url from where the file is taken

		path – The path where the file is stored

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/centos/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id":"b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "parent":"27cf784147099545",
 "created":"2013-03-23T22:24:18.818426-07:00",
 "container":"3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "container_config":
 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":false,
 "AttachStderr":false,
 "PortSpecs":null,
 "Tty":true,
 "OpenStdin":true,
 "StdinOnce":false,
 "Env":null,
 "Cmd": ["/bin/bash"],
 "Dns":null,
 "Image":"centos",
 "Volumes":null,
 "VolumesFrom":""
 }
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/fedora/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

> **Example request**:
>
> POST /images/test/push HTTP/1.1
>
> **Example response**:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pushing..."}
 {"status":"Pushing", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such image

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com]

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Name":"cespare/sshd",
 "Description":""
 },
 {
 "Name":"johnfuller/sshd",
 "Description":""
 },
 {
 "Name":"dhrp/mongodb-sshd",
 "Description":""
 }
]

 :query term: term to search
 :statuscode 200: no error
 :statuscode 500: server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ STREAM }}

Example response:

 HTTP/1.1 200 OK

 {{ STREAM }}

Query Parameters:

		t – tag to be applied to the resulting image in case of
success

Status Codes:

		200 – no error

		500 – server error

Get default username and email

GET /auth

Get the default username and email

Example request:

 GET /auth HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "username":"hannibal",
 "email":"hannibal@a-team.com"
 }

Status Codes:

		200 – no error

		500 – server error

Check auth configuration and store i

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":"hannibal",
 "password:"xxxx",
 "email":"hannibal@a-team.com"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "MemoryLimit":true,
 "SwapLimit":false
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version":"0.2.2",
 "GitCommit":"5a2a5cc+CHANGES",
 "GoVersion":"go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&m=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Cmd": ["cat", "/world"],
 "PortSpecs":["22"]
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		m – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

3. Going further

3.1 Inside docker run

Here are the steps of docker run :

		Create the container

		If the status code is 404, it means the image doesn’t exist:
- Try to pull it
- Then retry to create the container

		Start the container

		If you are not in detached mode:
- Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
- Display the container’s

3.2 Hijacking

In this version of the API, /attach uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.3.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.3

1. Brief introduction

		The Remote API is replacing rcli

		Default port in the docker daemon is 2375

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout stdin
and stderr

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports":"",
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "9cd87474be90",
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports":"",
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "3176a2479c92",
 "Image": "centos:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":"",
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "fedora:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports":"",
 "SizeRw":12288,
 "SizeRootFs":0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created containers, include non-running ones.

		since – Show only containers created since Id, include non-running ones.

		before – Show only containers created before Id, include non-running ones.

		size – 1/True/true or 0/False/false, Show the containers sizes

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Dns":null,
 "Image":"ubuntu",
 "Volumes":{},
 "VolumesFrom":""
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		config – the container’s configuration

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": {},
 "VolumesFrom": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {}
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "PID":"11935",
 "Tty":"pts/2",
 "Time":"00:00:00",
 "Cmd":"sh"
 },
 {
 "PID":"12140",
 "Tty":"pts/2",
 "Time":"00:00:00",
 "Cmd":"sleep"
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds":["/tmp:/tmp"]
 }

Example response:

 HTTP/1.1 204 No Content
 Content-Type: text/plain

Json Parameters:

		hostConfig – the container’s host configuration (optional)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Defaul
false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/(format)

List images format could be json or viz (json default)

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Repository":"ubuntu",
 "Tag":"precise",
 "Id":"b750fe79269d",
 "Created":1364102658,
 "Size":24653,
 "VirtualSize":180116135
 },
 {
 "Repository":"ubuntu",
 "Tag":"12.04",
 "Id":"b750fe79269d",
 "Created":1364102658,
 "Size":24653,
 "VirtualSize":180116135
 }
]

Example request:

 GET /images/viz HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 digraph docker {
 "d82cbacda43a" -> "074be284591f"
 "1496068ca813" -> "08306dc45919"
 "08306dc45919" -> "0e7893146ac2"
 "b750fe79269d" -> "1496068ca813"
 base -> "27cf78414709" [style=invis]
 "f71189fff3de" -> "9a33b36209ed"
 "27cf78414709" -> "b750fe79269d"
 "0e7893146ac2" -> "d6434d954665"
 "d6434d954665" -> "d82cbacda43a"
 base -> "e9aa60c60128" [style=invis]
 "074be284591f" -> "f71189fff3de"
 "b750fe79269d" [label="b750fe79269d\nubuntu",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "e9aa60c60128" [label="e9aa60c60128\ncentos",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "9a33b36209ed" [label="9a33b36209ed\nfedora",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 base [style=invisible]
 }

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by defaul

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing i

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pulling..."}
 {"status":"Pulling", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Status Codes:

		200 – no error

		500 – server error

Insert a file in an image

POST /images/(name)/insert

Insert a file from url in the image name at path

Example request:

 POST /images/test/insert?path=/usr&url=myurl HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Inserting..."}
 {"status":"Inserting", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Query Parameters:

		url – The url from where the file is taken

		path – The path where the file is stored

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/centos/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id":"b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "parent":"27cf784147099545",
 "created":"2013-03-23T22:24:18.818426-07:00",
 "container":"3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "container_config":
 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":false,
 "AttachStderr":false,
 "PortSpecs":null,
 "Tty":true,
 "OpenStdin":true,
 "StdinOnce":false,
 "Env":null,
 "Cmd": ["/bin/bash"],
 "Dns":null,
 "Image":"centos",
 "Volumes":null,
 "VolumesFrom":""
 },
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/fedora/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

> **Example request**:
>
> POST /images/test/push HTTP/1.1
> {{ authConfig }}
>
> **Example response**:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pushing..."}
 {"status":"Pushing", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com]

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Name":"cespare/sshd",
 "Description":""
 },
 {
 "Name":"johnfuller/sshd",
 "Description":""
 },
 {
 "Name":"dhrp/mongodb-sshd",
 "Description":""
 }
]

 :query term: term to search
 :statuscode 200: no error
 :statuscode 500: server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK

 {{ STREAM }}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.
The archive must include a file called Dockerfile at its root. I
may include any number of other files, which will be accessible in
the build context (See the ADD build command).

The Content-type header should be set to "application/tar".

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – build source URI (git or HTTPS/HTTP)

		q – suppress verbose build output

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":"hannibal",
 "password:"xxxx",
 "email":"hannibal@a-team.com"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "MemoryLimit":true,
 "SwapLimit":false,
 "EventsListeners":"0",
 "LXCVersion":"0.7.5",
 "KernelVersion":"3.8.0-19-generic"
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version":"0.2.2",
 "GitCommit":"5a2a5cc+CHANGES",
 "GoVersion":"go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&m=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Cmd": ["cat", "/world"],
 "PortSpecs":["22"]
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		m – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"create","id":"dfdf82bd3881","time":1374067924}
 {"status":"start","id":"dfdf82bd3881","time":1374067924}
 {"status":"stop","id":"dfdf82bd3881","time":1374067966}
 {"status":"destroy","id":"dfdf82bd3881","time":1374067970}

Query Parameters:

		since – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

3. Going further

3.1 Inside docker run

Here are the steps of docker run :

		Create the container

		If the status code is 404, it means the image doesn’t exist:
- Try to pull it
- Then retry to create the container

		Start the container

		If you are not in detached mode:
- Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
- Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

docker -d -H=”192.168.1.9:2375” -api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.9.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.9

1. Brief introduction

		The Remote API has replaced rcli

		The daemon listens on unix:///var/run/docker.sock but you can bind
Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout, stdin
and stderr

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers.

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "base:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Image": "base:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Image": "base:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "base:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created containers, include non-running ones.

		since – Show only containers created since Id, include non-running ones.

		before – Show only containers created before Id, include non-running ones.

		size – 1/True/true or 0/False/false, Show the containers sizes

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "CpuShares":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Dns":null,
 "Image":"base",
 "Volumes":{
 "/tmp": {}
 },
 "VolumesFrom":"",
 "WorkingDir":"",
 "ExposedPorts":{
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		Hostname – Container host name

		User – Username or UID

		Memory – Memory Limit in bytes

		CpuShares – CPU shares (relative weight)

		AttachStdin – 1/True/true or 0/False/false, attach to
standard input. Default false

		AttachStdout – 1/True/true or 0/False/false, attach to
standard output. Default false

		AttachStderr – 1/True/true or 0/False/false, attach to
standard error. Default false

		Tty – 1/True/true or 0/False/false, allocate a pseudo-tty.
Default false

		OpenStdin – 1/True/true or 0/False/false, keep stdin open
even if not attached. Default false

Query Parameters:

		name – Assign the specified name to the container. Mus
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "base",
 "Volumes": {},
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {},
 "HostConfig": {
 "Binds": null,
 "ContainerIDFile": "",
 "LxcConf": [],
 "Privileged": false,
 "PortBindings": {
 "80/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "49153"
 }
]
 },
 "Links": null,
 "PublishAllPorts": false
 }
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds":["/tmp:/tmp"],
 "LxcConf":[{"Key":"lxc.utsname","Value":"docker"}],
 "PortBindings":{ "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts":false,
 "Privileged":false
 }

Example response:

 HTTP/1.1 204 No Content
 Content-Type: text/plain

Json Parameters:

		Binds – Create a bind mount to a directory or file with
[host-path]:[container-path]:[rw|ro]. If a directory
“container-path” is missing, then docker creates a new volume.

		LxcConf – Map of custom lxc options

		PortBindings – Expose ports from the container, optionally
publishing them via the HostPort flag

		PublishAllPorts – 1/True/true or 0/False/false, publish all
exposed ports to the host interfaces. Default false

		Privileged – 1/True/true or 0/False/false, give extended
privileges to this container. Default false

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like “SIGINT”.
When not set, SIGKILL is assumed and the call will wait for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Defaul
false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create, the
stream is the raw data from the process PTY and client’s stdin. When
the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1)

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List images

GET /images/json

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing i

Example request:

 POST /images/create?fromImage=base HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pulling..."}
 {"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
 {"error": "Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Insert a file in an image

POST /images/(name)/insert

Insert a file from url in the image name at path

Example request:

 POST /images/test/insert?path=/usr&url=myurl HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Inserting..."}
 {"status":"Inserting", "progress":"1/? (n/a)", "progressDetail":{"current":1}}
 {"error":"Invalid..."}
 ...

Query Parameters:

		url – The url from where the file is taken

		path – The path where the file is stored

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/base/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id":"b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "parent":"27cf784147099545",
 "created":"2013-03-23T22:24:18.818426-07:00",
 "container":"3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "container_config":
 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":false,
 "AttachStderr":false,
 "PortSpecs":null,
 "Tty":true,
 "OpenStdin":true,
 "StdinOnce":false,
 "Env":null,
 "Cmd": ["/bin/bash"],
 "Dns":null,
 "Image":"base",
 "Volumes":null,
 "VolumesFrom":"",
 "WorkingDir":""
 },
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/base/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pushing..."}
 {"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
 {"error": "Invalid..."}
 ...

Request Headers:

		X-Registry-Auth – include a base64-encoded AuthConfig
object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name*) : Remove the imagename` from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Build an image from Dockerfile

POST /build

Build an image from Dockerfile using a POST body.

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"stream": "Step 1..."}
 {"stream": "..."}
 {"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a file called `Dockerfile`

at its root. It may include any number of other files,
which will be accessible in the build context (See the ADD build
command).

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – build source URI (git or HTTPS/HTTP)

		q – suppress verbose build output

		nocache – do not use the cache when building the image

		rm – Remove intermediate containers after a successful build

Request Headers:

		Content-type – should be set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "MemoryLimit":true,
 "SwapLimit":false,
 "IPv4Forwarding":true
 }

Status Codes:

		200 – no error

		500 – server error

Show the Docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version":"0.2.2",
 "GitCommit":"5a2a5cc+CHANGES",
 "GoVersion":"go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&m=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Volumes":{
 "/tmp": {}
 },
 "WorkingDir":"",
 "DisableNetwork": false,
 "ExposedPorts":{
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		m – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "base:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "base:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "base:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "base:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images and tags in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository specified by name.

See the image tarball format for more details.

Example request

 GET /images/ubuntu/get

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into the docker repository.

See the image tarball format for more details.

Example request

 POST /images/load

 Tarball in body

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing three files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file will contain aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, there will also be a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

3. Going further

3.1 Inside docker run

Here are the steps of docker run :

		Create the container

		If the status code is 404, it means the image doesn’t exist:

		Try to pull it

		Then retry to create the container

		Start the container

		If you are not in detached mode:

		Attach to the container, using logs=1 (to have stdout and

		stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:

		Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.15.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.15

1. Brief introduction

		The Remote API has replaced rcli.

		The daemon listens on unix:///var/run/docker.sock but you can
Bind Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport STDOUT,
STDIN and STDERR.

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Names":["/boring_feynman"],
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Names":["/coolName"],
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Names":["/sleepy_dog"],
 "Image": "ubuntu:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Names":["/running_cat"],
 "Image": "ubuntu:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created
containers, include non-running ones.

		since – Show only containers created since Id, include
non-running ones.

		before – Show only containers created before Id, include
non-running ones.

		size – 1/True/true or 0/False/false, Show the containers
sizes

		filters - a json encoded value of the filters (a map[string][]string) to process on the containers list. Available filters:

		exited=<

int>

 – containers with exit code of <

int>

		status=(restarting|running|paused|exited)

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "Cpuset": "0,1",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Entrypoint": "",
 "Image": "ubuntu",
 "Volumes": {
 "/tmp": {}
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "MacAddress": "12:34:56:78:9a:bc",
 "ExposedPorts": {
 "22/tcp": {}
 },
 "SecurityOpts": [""],
 "HostConfig": {
 "Binds": ["/tmp:/tmp"],
 "Links": ["redis3:redis"],
 "LxcConf": {"lxc.utsname":"docker"},
 "PortBindings": { "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts": false,
 "Privileged": false,
 "Dns": ["8.8.8.8"],
 "DnsSearch": [""],
 "ExtraHosts": null,
 "VolumesFrom": ["parent", "other:ro"],
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"],
 "RestartPolicy": { "Name": "", "MaximumRetryCount": 0 },
 "NetworkMode": "bridge",
 "Devices": []
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id": "f91ddc4b01e079c4481a8340bbbeca4dbd33d6e4a10662e499f8eacbb5bf252b"
 "Warnings": []
 }

Json Parameters:

		Hostname - A string value containing the desired hostname to use for the
container.

		Domainname - A string value containing the desired domain name to use
for the container.

		User - A string value containing the user to use inside the container.

		Memory - Memory limit in bytes.

		MemorySwap- Total memory usage (memory + swap); set -1 to disable swap.

		CpuShares - An integer value containing the CPU Shares for container
(ie. the relative weight vs other containers).
CpuSet - String value containing the cgroups Cpuset to use.

		AttachStdin - Boolean value, attaches to stdin.

		AttachStdout - Boolean value, attaches to stdout.

		AttachStderr - Boolean value, attaches to stderr.

		Tty - Boolean value, Attach standard streams to a tty, including stdin if it is not closed.

		OpenStdin - Boolean value, opens stdin,

		StdinOnce - Boolean value, close stdin after the 1 attached client disconnects.

		Env - A list of environment variables in the form of VAR=value

		Cmd - Command to run specified as a string or an array of strings.

		Entrypoint - Set the entrypoint for the container a string or an array
of strings

		Image - String value containing the image name to use for the container

		Volumes – An object mapping mountpoint paths (strings) inside the
container to empty objects.

		WorkingDir - A string value containing the working dir for commands to
run in.

		NetworkDisabled - Boolean value, when true disables networking for the
container

		ExposedPorts - An object mapping ports to an empty object in the form of:
"ExposedPorts": { "<port>/<tcp|udp>: {}" }

		SecurityOpts: A list of string values to customize labels for MLS
systems, such as SELinux.

		HostConfig

		Binds – A list of volume bindings for this container. Each volume
binding is a string of the form container_path (to create a new
volume for the container), host_path:container_path (to bind-mount
a host path into the container), or host_path:container_path:ro
(to make the bind-mount read-only inside the container).

		Links - A list of links for the container. Each link entry should be
in the form of “container_name:alias”.

		LxcConf - LXC specific configurations. These configurations will only
work when using the lxc execution driver.

		PortBindings - A map of exposed container ports and the host port they
should map to. It should be specified in the form
{ <port>/<protocol>: [{ "HostPort": "<port>" }] }
Take note that port is specified as a string and not an integer value.

		PublishAllPorts - Allocates a random host port for all of a container’s
exposed ports. Specified as a boolean value.

		Privileged - Gives the container full access to the host. Specified as
a boolean value.

		Dns - A list of dns servers for the container to use.

		DnsSearch - A list of DNS search domains

		ExtraHosts - A list of hostnames/IP mappings to be added to the
container’s /etc/hosts file. Specified in the form ["hostname:IP"].

		VolumesFrom - A list of volumes to inherit from another container.
Specified in the form <container name>[:<ro|rw>]

		CapAdd - A list of kernel capabilities to add to the container.

		Capdrop - A list of kernel capabilities to drop from the container.

		RestartPolicy – The behavior to apply when the container exits. The
value is an object with a Name property of either "always" to
always restart or "on-failure" to restart only when the container
exit code is non-zero. If on-failure is used, MaximumRetryCount
controls the number of times to retry before giving up.
The default is not to restart. (optional)
An ever increasing delay (double the previous delay, starting at 100mS)
is added before each restart to prevent flooding the server.

		NetworkMode - Sets the networking mode for the container. Supported
values are: bridge, host, and container:<name|id>

		Devices - A list of devices to add to the container specified in the
form
{ "PathOnHost": "/dev/deviceName", "PathInContainer": "/dev/deviceName", "CgroupPermissions": "mrw"}

Query Parameters:

		name – Assign the specified name to the container. Must
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": {},
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {},
 "HostConfig": {
 "Binds": null,
 "ContainerIDFile": "",
 "LxcConf": [],
 "Privileged": false,
 "PortBindings": {
 "80/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "49153"
 }
]
 },
 "Links": ["/name:alias"],
 "PublishAllPorts": false,
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"]
 }
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container logs

GET /containers/(id)/logs

Get stdout and stderr logs from the container id

Example request:

 GET /containers/4fa6e0f0c678/logs?stderr=1&stdout=1×tamps=1&follow=1&tail=10 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		follow – 1/True/true or 0/False/false, return stream. Default false

		stdout – 1/True/true or 0/False/false, show stdout log. Default false

		stderr – 1/True/true or 0/False/false, show stderr log. Default false

		timestamps – 1/True/true or 0/False/false, print timestamps for
every log line. Default false

		tail – Output specified number of lines at the end of logs: all or <number>. Default all

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Resize a container TTY

GET /containers/(id)/resize?h=<height>&w=<width>

Resize the TTY of container id

Example request:

 GET /containers/4fa6e0f0c678/resize?h=40&w=80 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Length: 0
 Content-Type: text/plain; charset=utf-8

Status Codes:

		200 – no error

		404 – No such container

		500 – bad file descriptor

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds": ["/tmp:/tmp"],
 "Links": ["redis3:redis"],
 "LxcConf": {"lxc.utsname":"docker"},
 "PortBindings": { "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts": false,
 "Privileged": false,
 "Dns": ["8.8.8.8"],
 "DnsSearch": [""],
 "VolumesFrom": ["parent", "other:ro"],
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"],
 "RestartPolicy": { "Name": "", "MaximumRetryCount": 0 },
 "NetworkMode": "bridge",
 "Devices": []
 }

Example response:

 HTTP/1.1 204 No Content

Json Parameters:

		Binds – A list of volume bindings for this container. Each volume
binding is a string of the form container_path (to create a new
volume for the container), host_path:container_path (to bind-mount
a host path into the container), or host_path:container_path:ro
(to make the bind-mount read-only inside the container).

		Links - A list of links for the container. Each link entry should be of
of the form “container_name:alias”.

		LxcConf - LXC specific configurations. These configurations will only
work when using the lxc execution driver.

		PortBindings - A map of exposed container ports and the host port they
should map to. It should be specified in the form
{ <port>/<protocol>: [{ "HostPort": "<port>" }] }
Take note that port is specified as a string and not an integer value.

		PublishAllPorts - Allocates a random host port for all of a container’s
exposed ports. Specified as a boolean value.

		Privileged - Gives the container full access to the host. Specified as
a boolean value.

		Dns - A list of dns servers for the container to use.

		DnsSearch - A list of DNS search domains

		VolumesFrom - A list of volumes to inherit from another container.
Specified in the form <container name>[:<ro|rw>]

		CapAdd - A list of kernel capabilities to add to the container.

		Capdrop - A list of kernel capabilities to drop from the container.

		RestartPolicy – The behavior to apply when the container exits. The
value is an object with a Name property of either "always" to
always restart or "on-failure" to restart only when the container
exit code is non-zero. If on-failure is used, MaximumRetryCount
controls the number of times to retry before giving up.
The default is not to restart. (optional)
An ever increasing delay (double the previous delay, starting at 100mS)
is added before each restart to prevent flooding the server.

		NetworkMode - Sets the networking mode for the container. Supported
values are: bridge, host, and container:<name|id>

		Devices - A list of devices to add to the container specified in the
form
{ "PathOnHost": "/dev/deviceName", "PathInContainer": "/dev/deviceName", "CgroupPermissions": "mrw"}

Status Codes:

		204 – no error

		304 – container already started

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		304 – container already stopped

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like “SIGINT”.
When not set, SIGKILL is assumed and the call will waits for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Pause a container

POST /containers/(id)/pause

Pause the container id

Example request:

 POST /containers/e90e34656806/pause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Unpause a container

POST /containers/(id)/unpause

Unpause the container id

Example request:

 POST /containers/e90e34656806/unpause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

		force - 1/True/true or 0/False/false, Kill then remove the container.
Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, default false

		filters – a json encoded value of the filters (a map[string][]string) to process on the images list. Available filters:

		dangling=true

		filter - only return images with the specified name

Create an image

POST /images/create

Create an image, either by pulling it from the registry or by importing it

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pulling..."}
 {"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
 {"error": "Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import. The value may be a URL from which the image
can be retrieved or - to read the image from the request body.

		repo – repository

		tag – tag

		registry – the registry to pull from

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/ubuntu/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Created": "2013-03-23T22:24:18.818426-07:00",
 "Container": "3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "ContainerConfig":
 {
 "Hostname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "PortSpecs": null,
 "Tty": true,
 "OpenStdin": true,
 "StdinOnce": false,
 "Env": null,
 "Cmd": ["/bin/bash"],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": null,
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Parent": "27cf784147099545",
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/ubuntu/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pushing..."}
 {"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
 {"error": "Invalid..."}
 ...

If you wish to push an image on to a private registry, that image must already have been tagged
into a repository which references that registry host name and port. This repository name should
then be used in the URL. This mirrors the flow of the CLI.

Example request:

 POST /images/registry.acme.com:5000/test/push HTTP/1.1

Query Parameters:

		tag – the tag to associate with the image on the registry, optional

Request Headers:

		X-Registry-Auth – include a base64-encoded AuthConfig
object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Query Parameters:

		force – 1/True/true or 0/False/false, default false

		noprune – 1/True/true or 0/False/false, default false

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"stream": "Step 1..."}
 {"stream": "..."}
 {"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a file called `Dockerfile`
at its root. It may include any number of other files,
which will be accessible in the build context (See the [*ADD build
command*](/reference/builder/#dockerbuilder)).

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – git or HTTP/HTTPS URI build source

		q – suppress verbose build output

		nocache – do not use the cache when building the image

		rm - remove intermediate containers after a successful build (default behavior)

		forcerm - always remove intermediate containers (includes rm)

Request Headers:

		Content-type – should be set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers": 11,
 "Images": 16,
 "Driver": "btrfs",
 "ExecutionDriver": "native-0.1",
 "KernelVersion": "3.12.0-1-amd64"
 "Debug": false,
 "NFd": 11,
 "NGoroutines": 21,
 "NEventsListener": 0,
 "InitPath": "/usr/bin/docker",
 "IndexServerAddress": ["https://index.docker.io/v1/"],
 "MemoryLimit": true,
 "SwapLimit": false,
 "IPv4Forwarding": true
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "ApiVersion": "1.12",
 "Version": "0.2.2",
 "GitCommit": "5a2a5cc+CHANGES",
 "GoVersion": "go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Ping the docker server

GET /_ping

Ping the docker server

Example request:

 GET /_ping HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 OK

Status Codes:

		200 - no error

		500 - server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&comment=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "Cpuset": "0,1",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Volumes": {
 "/tmp": {}
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "ExposedPorts": {
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		comment – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get container events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

		until – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository specified
by name.

If name is a specific name and tag (e.g. ubuntu:latest), then only that image
(and its parents) are returned. If name is an image ID, similarly only that
image (and its parents) are returned, but with the exclusion of the
‘repositories’ file in the tarball, as there were no image names referenced.

See the image tarball format for more details.

Example request

 GET /images/ubuntu/get

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images.

GET /images/get

Get a tarball containing all images and metadata for one or more repositories.

For each value of the names parameter: if it is a specific name and tag (e.g.
ubuntu:latest), then only that image (and its parents) are returned; if it is
an image ID, similarly only that image (and its parents) are returned and there
would be no names referenced in the ‘repositories’ file for this image ID.

See the image tarball format for more details.

Example request

 GET /images/get?names=myname%2Fmyapp%3Alatest&names=busybox

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into the docker repository.
See the image tarball format for more details.

Example request

 POST /images/load

 Tarball in body

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing three files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file will contain aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, there will also be a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

Exec Create

POST /containers/(id)/exec

Sets up an exec instance in a running container id

Example request:

 POST /containers/e90e34656806/exec HTTP/1.1
 Content-Type: application/json

 {
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "Cmd": [
 "date"
],
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/json

 {
 "Id": "f90e34656806"
 }

Json Parameters:

		AttachStdin - Boolean value, attaches to stdin of the exec command.

		AttachStdout - Boolean value, attaches to stdout of the exec command.

		AttachStderr - Boolean value, attaches to stderr of the exec command.

		Tty - Boolean value to allocate a pseudo-TTY

		Cmd - Command to run specified as a string or an array of strings.

Status Codes:

		201 – no error

		404 – no such container

Exec Start

POST /exec/(id)/start

Starts a previously set up exec instance id. If detach is true, this API
returns after starting the exec command. Otherwise, this API sets up an
interactive session with the exec command.

Example request:

 POST /exec/e90e34656806/start HTTP/1.1
 Content-Type: application/json

 {
 "Detach": false,
 "Tty": false,
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/json

 {{ STREAM }}

Json Parameters:

		Detach - Detach from the exec command

		Tty - Boolean value to allocate a pseudo-TTY

Status Codes:

		201 – no error

		404 – no such exec instance

Stream details:
Similar to the stream behavior of POST /container/(id)/attach API

Exec Resize

POST /exec/(id)/resize

Resizes the tty session used by the exec command id.
This API is valid only if tty was specified as part of creating and starting the exec command.

Example request:

 POST /exec/e90e34656806/resize HTTP/1.1
 Content-Type: plain/text

Example response:

 HTTP/1.1 201 OK
 Content-Type: plain/text

Query Parameters:

		h – height of tty session

		w – width

Status Codes:

		201 – no error

		404 – no such exec instance

3. Going further

3.1 Inside docker run

As an example, the docker run command line makes the following API calls:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
		Try to pull it

		Then retry to create the container

		Start the container

		If you are not in detached mode:

		Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:

		Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.18.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.18

1. Brief introduction

		The Remote API has replaced rcli.

		The daemon listens on unix:///var/run/docker.sock but you can
Bind Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport STDOUT,
STDIN and STDERR.

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Names":["/boring_feynman"],
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Names":["/coolName"],
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Names":["/sleepy_dog"],
 "Image": "ubuntu:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Names":["/running_cat"],
 "Image": "ubuntu:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created
containers, include non-running ones.

		since – Show only containers created since Id, include
non-running ones.

		before – Show only containers created before Id, include
non-running ones.

		size – 1/True/true or 0/False/false, Show the containers
sizes

		filters - a json encoded value of the filters (a map[string][]string) to process on the containers list. Available filters:

		exited=<

int>

 – containers with exit code of <

int>

		status=(restarting|running|paused|exited)

		label=key or label="key=value" of a container label

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Entrypoint": "",
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "Volumes": {
 "/tmp": {}
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "MacAddress": "12:34:56:78:9a:bc",
 "ExposedPorts": {
 "22/tcp": {}
 },
 "HostConfig": {
 "Binds": ["/tmp:/tmp"],
 "Links": ["redis3:redis"],
 "LxcConf": {"lxc.utsname":"docker"},
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "CpusetCpus": "0,1",
 "PortBindings": { "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts": false,
 "Privileged": false,
 "ReadonlyRootfs": false,
 "Dns": ["8.8.8.8"],
 "DnsSearch": [""],
 "ExtraHosts": null,
 "VolumesFrom": ["parent", "other:ro"],
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"],
 "RestartPolicy": { "Name": "", "MaximumRetryCount": 0 },
 "NetworkMode": "bridge",
 "Devices": [],
 "Ulimits": [{}],
 "LogConfig": { "Type": "json-file", Config: {} },
 "SecurityOpt": [""],
 "CgroupParent": ""
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		Hostname - A string value containing the desired hostname to use for the
container.

		Domainname - A string value containing the desired domain name to use
for the container.

		User - A string value containing the user to use inside the container.

		Memory - Memory limit in bytes.

		MemorySwap- Total memory limit (memory + swap); set -1 to disable swap,
always use this with memory, and make the value larger than memory.

		CpuShares - An integer value containing the CPU Shares for container
(ie. the relative weight vs other containers).

		Cpuset - The same as CpusetCpus, but deprecated, please don’t use.

		CpusetCpus - String value containing the cgroups CpusetCpus to use.

		AttachStdin - Boolean value, attaches to stdin.

		AttachStdout - Boolean value, attaches to stdout.

		AttachStderr - Boolean value, attaches to stderr.

		Tty - Boolean value, Attach standard streams to a tty, including stdin if it is not closed.

		OpenStdin - Boolean value, opens stdin,

		StdinOnce - Boolean value, close stdin after the 1 attached client disconnects.

		Env - A list of environment variables in the form of VAR=value

		Labels - Adds a map of labels that to a container. To specify a map: {"key":"value"[,"key2":"value2"]}

		Cmd - Command to run specified as a string or an array of strings.

		Entrypoint - Set the entrypoint for the container a string or an array
of strings

		Image - String value containing the image name to use for the container

		Volumes – An object mapping mountpoint paths (strings) inside the
container to empty objects.

		WorkingDir - A string value containing the working dir for commands to
run in.

		NetworkDisabled - Boolean value, when true disables networking for the
container

		ExposedPorts - An object mapping ports to an empty object in the form of:
"ExposedPorts": { "<port>/<tcp|udp>: {}" }

		HostConfig
		Binds – A list of volume bindings for this container. Each volume
binding is a string of the form container_path (to create a new
volume for the container), host_path:container_path (to bind-mount
a host path into the container), or host_path:container_path:ro
(to make the bind-mount read-only inside the container).

		Links - A list of links for the container. Each link entry should be
in the form of container_name:alias.

		LxcConf - LXC specific configurations. These configurations will only
work when using the lxc execution driver.

		PortBindings - A map of exposed container ports and the host port they
should map to. It should be specified in the form
{ <port>/<protocol>: [{ "HostPort": "<port>" }] }
Take note that port is specified as a string and not an integer value.

		PublishAllPorts - Allocates a random host port for all of a container’s
exposed ports. Specified as a boolean value.

		Privileged - Gives the container full access to the host. Specified as
a boolean value.

		ReadonlyRootfs - Mount the container’s root filesystem as read only.
Specified as a boolean value.

		Dns - A list of dns servers for the container to use.

		DnsSearch - A list of DNS search domains

		ExtraHosts - A list of hostnames/IP mappings to be added to the
container’s /etc/hosts file. Specified in the form ["hostname:IP"].

		VolumesFrom - A list of volumes to inherit from another container.
Specified in the form <container name>[:<ro|rw>]

		CapAdd - A list of kernel capabilities to add to the container.

		Capdrop - A list of kernel capabilities to drop from the container.

		RestartPolicy – The behavior to apply when the container exits. The
value is an object with a Name property of either "always" to
always restart or "on-failure" to restart only when the container
exit code is non-zero. If on-failure is used, MaximumRetryCount
controls the number of times to retry before giving up.
The default is not to restart. (optional)
An ever increasing delay (double the previous delay, starting at 100mS)
is added before each restart to prevent flooding the server.

		NetworkMode - Sets the networking mode for the container. Supported
values are: bridge, host, and container:<name|id>

		Devices - A list of devices to add to the container specified in the
form
{ "PathOnHost": "/dev/deviceName", "PathInContainer": "/dev/deviceName", "CgroupPermissions": "mrw"}

		Ulimits - A list of ulimits to be set in the container, specified as
{ "Name": <name>, "Soft": <soft limit>, "Hard": <hard limit> }, for example:
Ulimits: { "Name": "nofile", "Soft": 1024, "Hard", 2048 }}

		SecurityOpt: A list of string values to customize labels for MLS
systems, such as SELinux.

		LogConfig - Log configuration for the container, specified as
{ "Type": "<driver_name>", "Config": {"key1": "val1"}}.
Available types: json-file, syslog, none.
json-file logging driver.

		CgroupParent - Path to cgroups under which the cgroup for the container will be created. If the path is not absolute, the path is considered to be relative to the cgroups path of the init process. Cgroups will be created if they do not already exist.

Query Parameters:

		name – Assign the specified name to the container. Must
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

{
 "AppArmorProfile": "",
 "Args": [
 "-c",
 "exit 9"
],
 "Config": {
 "AttachStderr": true,
 "AttachStdin": false,
 "AttachStdout": true,
 "Cmd": [
 "/bin/sh",
 "-c",
 "exit 9"
],
 "Domainname": "",
 "Entrypoint": null,
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
],
 "ExposedPorts": null,
 "Hostname": "ba033ac44011",
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "MacAddress": "",
 "NetworkDisabled": false,
 "OnBuild": null,
 "OpenStdin": false,
 "PortSpecs": null,
 "StdinOnce": false,
 "Tty": false,
 "User": "",
 "Volumes": null,
 "WorkingDir": ""
 },
 "Created": "2015-01-06T15:47:31.485331387Z",
 "Driver": "devicemapper",
 "ExecDriver": "native-0.2",
 "ExecIDs": null,
 "HostConfig": {
 "Binds": null,
 "CapAdd": null,
 "CapDrop": null,
 "ContainerIDFile": "",
 "CpusetCpus": "",
 "CpuShares": 0,
 "Devices": [],
 "Dns": null,
 "DnsSearch": null,
 "ExtraHosts": null,
 "IpcMode": "",
 "Links": null,
 "LxcConf": [],
 "Memory": 0,
 "MemorySwap": 0,
 "NetworkMode": "bridge",
 "PortBindings": {},
 "Privileged": false,
 "ReadonlyRootfs": false,
 "PublishAllPorts": false,
 "RestartPolicy": {
 "MaximumRetryCount": 2,
 "Name": "on-failure"
 },
 "LogConfig": {
 "Config": null,
 "Type": "json-file"
 },
 "SecurityOpt": null,
 "VolumesFrom": null,
 "Ulimits": [{}]
 },
 "HostnamePath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/hostname",
 "HostsPath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/hosts",
 "LogPath": "/var/lib/docker/containers/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b-json.log",
 "Id": "ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39",
 "Image": "04c5d3b7b0656168630d3ba35d8889bd0e9caafcaeb3004d2bfbc47e7c5d35d2",
 "MountLabel": "",
 "Name": "/boring_euclid",
 "NetworkSettings": {
 "Bridge": "",
 "Gateway": "",
 "IPAddress": "",
 "IPPrefixLen": 0,
 "MacAddress": "",
 "PortMapping": null,
 "Ports": null
 },
 "Path": "/bin/sh",
 "ProcessLabel": "",
 "ResolvConfPath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/resolv.conf",
 "RestartCount": 1,
 "State": {
 "Error": "",
 "ExitCode": 9,
 "FinishedAt": "2015-01-06T15:47:32.080254511Z",
 "OOMKilled": false,
 "Paused": false,
 "Pid": 0,
 "Restarting": false,
 "Running": false,
 "StartedAt": "2015-01-06T15:47:32.072697474Z"
 },
 "Volumes": {},
 "VolumesRW": {}
}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container logs

GET /containers/(id)/logs

Get stdout and stderr logs from the container id

Note:
This endpoint works only for containers with json-file logging driver.

Example request:

 GET /containers/4fa6e0f0c678/logs?stderr=1&stdout=1×tamps=1&follow=1&tail=10 HTTP/1.1

Example response:

 HTTP/1.1 101 UPGRADED
 Content-Type: application/vnd.docker.raw-stream
 Connection: Upgrade
 Upgrade: tcp

 {{ STREAM }}

Query Parameters:

		follow – 1/True/true or 0/False/false, return stream. Default false

		stdout – 1/True/true or 0/False/false, show stdout log. Default false

		stderr – 1/True/true or 0/False/false, show stderr log. Default false

		timestamps – 1/True/true or 0/False/false, print timestamps for
every log line. Default false

		tail – Output specified number of lines at the end of logs: all or <number>. Default all

Status Codes:

		101 – no error, hints proxy about hijacking

		200 – no error, no upgrade header found

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Values for Kind:

		0: Modify

		1: Add

		2: Delete

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container stats based on resource usage

GET /containers/(id)/stats

This endpoint returns a live stream of a container’s resource usage statistics.

Note: this functionality currently only works when using the libcontainer exec-driver.

Example request:

 GET /containers/redis1/stats HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "read" : "2015-01-08T22:57:31.547920715Z",
 "network" : {
 "rx_dropped" : 0,
 "rx_bytes" : 648,
 "rx_errors" : 0,
 "tx_packets" : 8,
 "tx_dropped" : 0,
 "rx_packets" : 8,
 "tx_errors" : 0,
 "tx_bytes" : 648
 },
 "memory_stats" : {
 "stats" : {
 "total_pgmajfault" : 0,
 "cache" : 0,
 "mapped_file" : 0,
 "total_inactive_file" : 0,
 "pgpgout" : 414,
 "rss" : 6537216,
 "total_mapped_file" : 0,
 "writeback" : 0,
 "unevictable" : 0,
 "pgpgin" : 477,
 "total_unevictable" : 0,
 "pgmajfault" : 0,
 "total_rss" : 6537216,
 "total_rss_huge" : 6291456,
 "total_writeback" : 0,
 "total_inactive_anon" : 0,
 "rss_huge" : 6291456,
 "hierarchical_memory_limit" : 67108864,
 "total_pgfault" : 964,
 "total_active_file" : 0,
 "active_anon" : 6537216,
 "total_active_anon" : 6537216,
 "total_pgpgout" : 414,
 "total_cache" : 0,
 "inactive_anon" : 0,
 "active_file" : 0,
 "pgfault" : 964,
 "inactive_file" : 0,
 "total_pgpgin" : 477
 },
 "max_usage" : 6651904,
 "usage" : 6537216,
 "failcnt" : 0,
 "limit" : 67108864
 },
 "blkio_stats" : {},
 "cpu_stats" : {
 "cpu_usage" : {
 "percpu_usage" : [
 16970827,
 1839451,
 7107380,
 10571290
],
 "usage_in_usermode" : 10000000,
 "total_usage" : 36488948,
 "usage_in_kernelmode" : 20000000
 },
 "system_cpu_usage" : 20091722000000000,
 "throttling_data" : {}
 }
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Resize a container TTY

POST /containers/(id)/resize?h=<height>&w=<width>

Resize the TTY for container with id. The container must be restarted for the resize to take effect.

Example request:

 POST /containers/4fa6e0f0c678/resize?h=40&w=80 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Length: 0
 Content-Type: text/plain; charset=utf-8

Status Codes:

		200 – no error

		404 – No such container

		500 – Cannot resize container

Start a container

POST /containers/(id)/start

Start the container id

Note:
For backwards compatibility, this endpoint accepts a HostConfig as JSON-encoded request body.
See create a container for details.

Example request:

 POST /containers/(id)/start HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		304 – container already started

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		304 – container already stopped

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like “SIGINT”.
When not set, SIGKILL is assumed and the call will waits for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Rename a container

POST /containers/(id)/rename

Rename the container id to a new_name

Example request:

 POST /containers/e90e34656806/rename?name=new_name HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		name – new name for the container

Status Codes:

		204 – no error

		404 – no such container

		409 - conflict name already assigned

		500 – server error

Pause a container

POST /containers/(id)/pause

Pause the container id

Example request:

 POST /containers/e90e34656806/pause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Unpause a container

POST /containers/(id)/unpause

Unpause the container id

Example request:

 POST /containers/e90e34656806/unpause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 101 UPGRADED
 Content-Type: application/vnd.docker.raw-stream
 Connection: Upgrade
 Upgrade: tcp

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		101 – no error, hints proxy about hijacking

		200 – no error, no upgrade header found

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

		force - 1/True/true or 0/False/false, Kill then remove the container.
Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Example request, with digest information:

 GET /images/json?digests=1 HTTP/1.1

Example response, with digest information:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Created": 1420064636,
 "Id": "4986bf8c15363d1c5d15512d5266f8777bfba4974ac56e3270e7760f6f0a8125",
 "ParentId": "ea13149945cb6b1e746bf28032f02e9b5a793523481a0a18645fc77ad53c4ea2",
 "RepoDigests": [
 "localhost:5000/test/busybox@sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf"
],
 "RepoTags": [
 "localhost:5000/test/busybox:latest",
 "playdate:latest"
],
 "Size": 0,
 "VirtualSize": 2429728
 }
]

The response shows a single image Id associated with two repositories
(RepoTags): localhost:5000/test/busybox: and playdate. A caller can use
either of the RepoTags values localhost:5000/test/busybox:latest or
playdate:latest to reference the image.

You can also use RepoDigests values to reference an image. In this response,
the array has only one reference and that is to the
localhost:5000/test/busybox repository; the playdate repository has no
digest. You can reference this digest using the value:
localhost:5000/test/busybox@sha256:cbbf2f9a99b47fc460d...

See the docker run and docker build commands for examples of digest and tag
references on the command line.

Query Parameters:

		all – 1/True/true or 0/False/false, default false

		filters – a json encoded value of the filters (a map[string][]string) to process on the images list. Available filters:

		dangling=true

		label=key or label="key=value" of an image label

		filter - only return images with the specified name

Build image from a Dockerfile

POST /build

Build an image from a Dockerfile

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"stream": "Step 1..."}
 {"stream": "..."}
 {"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The input stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a build instructions file, typically called
Dockerfile at the root of the archive. The dockerfile parameter may be
used to specify a different build instructions file by having its value be
the path to the alternate build instructions file to use.

The archive may include any number of other files,
which will be accessible in the build context (See the ADD build
command).

The build will also be canceled if the client drops the connection by quitting
or being killed.

Query Parameters:

		dockerfile - path within the build context to the Dockerfile. This is
ignored if remote is specified and points to an individual filename.

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – A Git repository URI or HTTP/HTTPS URI build source. If the
URI specifies a filename, the file’s contents are placed into a file
called Dockerfile.

		q – suppress verbose build output

		nocache – do not use the cache when building the image

		pull - attempt to pull the image even if an older image exists locally

		rm - remove intermediate containers after a successful build (default behavior)

		forcerm - always remove intermediate containers (includes rm)

		memory - set memory limit for build

		memswap - Total memory (memory + swap), -1 to disable swap

		cpushares - CPU shares (relative weight)

		cpusetcpus - CPUs in which to allow execution, e.g., 0-3, 0,1

Request Headers:

		Content-type – should be set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Create an image

POST /images/create

Create an image, either by pulling it from the registry or by importing it

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pulling..."}
 {"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
 {"error": "Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import. The value may be a URL from which the image
can be retrieved or - to read the image from the request body.

		repo – repository

		tag – tag

		registry – the registry to pull from

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/ubuntu/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Created": "2013-03-23T22:24:18.818426-07:00",
 "Container": "3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "ContainerConfig":
 {
 "Hostname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "PortSpecs": null,
 "Tty": true,
 "OpenStdin": true,
 "StdinOnce": false,
 "Env": null,
 "Cmd": ["/bin/bash"],
 "Dns": null,
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "Volumes": null,
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Parent": "27cf784147099545",
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/ubuntu/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pushing..."}
 {"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
 {"error": "Invalid..."}
 ...

If you wish to push an image on to a private registry, that image must already have been tagged
into a repository which references that registry host name and port. This repository name should
then be used in the URL. This mirrors the flow of the CLI.

Example request:

 POST /images/registry.acme.com:5000/test/push HTTP/1.1

Query Parameters:

		tag – the tag to associate with the image on the registry, optional

Request Headers:

		X-Registry-Auth – include a base64-encoded AuthConfig
object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Query Parameters:

		force – 1/True/true or 0/False/false, default false

		noprune – 1/True/true or 0/False/false, default false

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers": 11,
 "Debug": 0,
 "DockerRootDir": "/var/lib/docker",
 "Driver": "btrfs",
 "DriverStatus": [[""]],
 "ExecutionDriver": "native-0.1",
 "HttpProxy": "http://test:test@localhost:8080",
 "HttpsProxy": "https://test:test@localhost:8080",
 "ID": "7TRN:IPZB:QYBB:VPBQ:UMPP:KARE:6ZNR:XE6T:7EWV:PKF4:ZOJD:TPYS",
 "IPv4Forwarding": 1,
 "Images": 16,
 "IndexServerAddress": "https://index.docker.io/v1/",
 "InitPath": "/usr/bin/docker",
 "InitSha1": "",
 "KernelVersion": "3.12.0-1-amd64",
 "Labels": [
 "storage=ssd"
],
 "MemTotal": 2099236864,
 "MemoryLimit": 1,
 "NCPU": 1,
 "NEventsListener": 0,
 "NFd": 11,
 "NGoroutines": 21,
 "Name": "prod-server-42",
 "NoProxy": "9.81.1.160",
 "OperatingSystem": "Boot2Docker",
 "RegistryConfig": {
 "IndexConfigs": {
 "docker.io": {
 "Mirrors": null,
 "Name": "docker.io",
 "Official": true,
 "Secure": true
 }
 },
 "InsecureRegistryCIDRs": [
 "127.0.0.0/8"
]
 },
 "SwapLimit": 0,
 "SystemTime": "2015-03-10T11:11:23.730591467-07:00"
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version": "1.5.0",
 "Os": "linux",
 "KernelVersion": "3.18.5-tinycore64",
 "GoVersion": "go1.4.1",
 "GitCommit": "a8a31ef",
 "Arch": "amd64",
 "ApiVersion": "1.18"
 }

Status Codes:

		200 – no error

		500 – server error

Ping the docker server

GET /_ping

Ping the docker server

Example request:

 GET /_ping HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 OK

Status Codes:

		200 - no error

		500 - server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&comment=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Volumes": {
 "/tmp": {}
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "ExposedPorts": {
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		comment – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get container events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, exec_create, exec_start, export, kill, oom, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

		until – timestamp used for polling

		filters – a json encoded value of the filters (a map[string][]string) to process on the event list. Available filters:

		event=<

string>

 – event to filter

		image=<

string>

 – image to filter

		container=<

string>

 – container to filter

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository specified
by name.

If name is a specific name and tag (e.g. ubuntu:latest), then only that image
(and its parents) are returned. If name is an image ID, similarly only that
image (and its parents) are returned, but with the exclusion of the
‘repositories’ file in the tarball, as there were no image names referenced.

See the image tarball format for more details.

Example request

 GET /images/ubuntu/get

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images.

GET /images/get

Get a tarball containing all images and metadata for one or more repositories.

For each value of the names parameter: if it is a specific name and tag (e.g.
ubuntu:latest), then only that image (and its parents) are returned; if it is
an image ID, similarly only that image (and its parents) are returned and there
would be no names referenced in the ‘repositories’ file for this image ID.

See the image tarball format for more details.

Example request

 GET /images/get?names=myname%2Fmyapp%3Alatest&names=busybox

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into the docker repository.
See the image tarball format for more details.

Example request

 POST /images/load

 Tarball in body

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing three files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file will contain aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, there will also be a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

Exec Create

POST /containers/(id)/exec

Sets up an exec instance in a running container id

Example request:

 POST /containers/e90e34656806/exec HTTP/1.1
 Content-Type: application/json

 {
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "Cmd": [
 "date"
],
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/json

 {
 "Id": "f90e34656806"
 "Warnings":[]
 }

Json Parameters:

		AttachStdin - Boolean value, attaches to stdin of the exec command.

		AttachStdout - Boolean value, attaches to stdout of the exec command.

		AttachStderr - Boolean value, attaches to stderr of the exec command.

		Tty - Boolean value to allocate a pseudo-TTY

		Cmd - Command to run specified as a string or an array of strings.

Status Codes:

		201 – no error

		404 – no such container

Exec Start

POST /exec/(id)/start

Starts a previously set up exec instance id. If detach is true, this API
returns after starting the exec command. Otherwise, this API sets up an
interactive session with the exec command.

Example request:

 POST /exec/e90e34656806/start HTTP/1.1
 Content-Type: application/json

 {
 "Detach": false,
 "Tty": false,
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/json

 {{ STREAM }}

Json Parameters:

		Detach - Detach from the exec command

		Tty - Boolean value to allocate a pseudo-TTY

Status Codes:

		201 – no error

		404 – no such exec instance

Stream details:
Similar to the stream behavior of POST /container/(id)/attach API

Exec Resize

POST /exec/(id)/resize

Resizes the tty session used by the exec command id.
This API is valid only if tty was specified as part of creating and starting the exec command.

Example request:

 POST /exec/e90e34656806/resize HTTP/1.1
 Content-Type: text/plain

Example response:

 HTTP/1.1 201 OK
 Content-Type: text/plain

Query Parameters:

		h – height of tty session

		w – width

Status Codes:

		201 – no error

		404 – no such exec instance

Exec Inspect

GET /exec/(id)/json

Return low-level information about the exec command id.

Example request:

 GET /exec/11fb006128e8ceb3942e7c58d77750f24210e35f879dd204ac975c184b820b39/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: plain/text

 {
 "ID" : "11fb006128e8ceb3942e7c58d77750f24210e35f879dd204ac975c184b820b39",
 "Running" : false,
 "ExitCode" : 2,
 "ProcessConfig" : {
 "privileged" : false,
 "user" : "",
 "tty" : false,
 "entrypoint" : "sh",
 "arguments" : [
 "-c",
 "exit 2"
]
 },
 "OpenStdin" : false,
 "OpenStderr" : false,
 "OpenStdout" : false,
 "Container" : {
 "State" : {
 "Running" : true,
 "Paused" : false,
 "Restarting" : false,
 "OOMKilled" : false,
 "Pid" : 3650,
 "ExitCode" : 0,
 "Error" : "",
 "StartedAt" : "2014-11-17T22:26:03.717657531Z",
 "FinishedAt" : "0001-01-01T00:00:00Z"
 },
 "ID" : "8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c",
 "Created" : "2014-11-17T22:26:03.626304998Z",
 "Path" : "date",
 "Args" : [],
 "Config" : {
 "Hostname" : "8f177a186b97",
 "Domainname" : "",
 "User" : "",
 "AttachStdin" : false,
 "AttachStdout" : false,
 "AttachStderr" : false,
 "PortSpecs" : null,
 "ExposedPorts" : null,
 "Tty" : false,
 "OpenStdin" : false,
 "StdinOnce" : false,
 "Env" : ["PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"],
 "Cmd" : [
 "date"
],
 "Image" : "ubuntu",
 "Volumes" : null,
 "WorkingDir" : "",
 "Entrypoint" : null,
 "NetworkDisabled" : false,
 "MacAddress" : "",
 "OnBuild" : null,
 "SecurityOpt" : null
 },
 "Image" : "5506de2b643be1e6febbf3b8a240760c6843244c41e12aa2f60ccbb7153d17f5",
 "NetworkSettings" : {
 "IPAddress" : "172.17.0.2",
 "IPPrefixLen" : 16,
 "MacAddress" : "02:42:ac:11:00:02",
 "Gateway" : "172.17.42.1",
 "Bridge" : "docker0",
 "PortMapping" : null,
 "Ports" : {}
 },
 "ResolvConfPath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/resolv.conf",
 "HostnamePath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/hostname",
 "HostsPath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/hosts",
 "LogPath": "/var/lib/docker/containers/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b-json.log",
 "Name" : "/test",
 "Driver" : "aufs",
 "ExecDriver" : "native-0.2",
 "MountLabel" : "",
 "ProcessLabel" : "",
 "AppArmorProfile" : "",
 "RestartCount" : 0,
 "Volumes" : {},
 "VolumesRW" : {}
 }
 }

Status Codes:

		200 – no error

		404 – no such exec instance

		500 - server error

3. Going further

3.1 Inside docker run

As an example, the docker run command line makes the following API calls:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
		Try to pull it

		Then retry to create the container

		Start the container

		If you are not in detached mode:

		Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:

		Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket.

To hint potential proxies about connection hijacking, Docker client sends
connection upgrade headers similarly to websocket.

Upgrade: tcp
Connection: Upgrade

When Docker daemon detects the Upgrade header, it will switch its status code
from 200 OK to 101 UPGRADED and resend the same headers.

This might change in the future.

3.3 CORS Requests

To set cross origin requests to the remote api please give values to
“–api-cors-header” when running docker in daemon mode. Set * will allow all,
default or blank means CORS disabled

$ docker -d -H="192.168.1.9:2375" --api-cors-header="http://foo.bar"

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.16.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.16

1. Brief introduction

		The Remote API has replaced rcli.

		The daemon listens on unix:///var/run/docker.sock but you can
Bind Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport STDOUT,
STDIN and STDERR.

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Names":["/boring_feynman"],
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Names":["/coolName"],
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Names":["/sleep_dog"],
 "Image": "ubuntu:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Names":["/running_cat"],
 "Image": "ubuntu:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created
containers, include non-running ones.

		since – Show only containers created since Id, include
non-running ones.

		before – Show only containers created before Id, include
non-running ones.

		size – 1/True/true or 0/False/false, Show the containers
sizes

		filters - a json encoded value of the filters (a map[string][]string) to process on the containers list. Available filters:

		exited=<

int>

 – containers with exit code of <

int>

		status=(restarting|running|paused|exited)

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "Cpuset": "0,1",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Entrypoint": "",
 "Image": "ubuntu",
 "Volumes": {
 "/tmp": {}
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "MacAddress": "12:34:56:78:9a:bc",
 "ExposedPorts": {
 "22/tcp": {}
 },
 "SecurityOpts": [""],
 "HostConfig": {
 "Binds": ["/tmp:/tmp"],
 "Links": ["redis3:redis"],
 "LxcConf": {"lxc.utsname":"docker"},
 "PortBindings": { "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts": false,
 "Privileged": false,
 "Dns": ["8.8.8.8"],
 "DnsSearch": [""],
 "ExtraHosts": null,
 "VolumesFrom": ["parent", "other:ro"],
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"],
 "RestartPolicy": { "Name": "", "MaximumRetryCount": 0 },
 "NetworkMode": "bridge",
 "Devices": []
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		Hostname - A string value containing the desired hostname to use for the
container.

		Domainname - A string value containing the desired domain name to use
for the container.

		User - A string value containing the user to use inside the container.

		Memory - Memory limit in bytes.

		MemorySwap- Total memory usage (memory + swap); set -1 to disable swap.

		CpuShares - An integer value containing the CPU Shares for container
(ie. the relative weight vs other containers).
CpuSet - String value containing the cgroups Cpuset to use.

		AttachStdin - Boolean value, attaches to stdin.

		AttachStdout - Boolean value, attaches to stdout.

		AttachStderr - Boolean value, attaches to stderr.

		Tty - Boolean value, Attach standard streams to a tty, including stdin if it is not closed.

		OpenStdin - Boolean value, opens stdin,

		StdinOnce - Boolean value, close stdin after the 1 attached client disconnects.

		Env - A list of environment variables in the form of VAR=value

		Cmd - Command to run specified as a string or an array of strings.

		Entrypoint - Set the entrypoint for the container a string or an array
of strings

		Image - String value containing the image name to use for the container

		Volumes – An object mapping mountpoint paths (strings) inside the
container to empty objects.

		WorkingDir - A string value containing the working dir for commands to
run in.

		NetworkDisabled - Boolean value, when true disables networking for the
container

		ExposedPorts - An object mapping ports to an empty object in the form of:
"ExposedPorts": { "<port>/<tcp|udp>: {}" }

		SecurityOpts: A list of string values to customize labels for MLS
systems, such as SELinux.

		HostConfig

		Binds – A list of volume bindings for this container. Each volume
binding is a string of the form container_path (to create a new
volume for the container), host_path:container_path (to bind-mount
a host path into the container), or host_path:container_path:ro
(to make the bind-mount read-only inside the container).

		Links - A list of links for the container. Each link entry should be
in the form of “container_name:alias”.

		LxcConf - LXC specific configurations. These configurations will only
work when using the lxc execution driver.

		PortBindings - A map of exposed container ports and the host port they
should map to. It should be specified in the form
{ <port>/<protocol>: [{ "HostPort": "<port>" }] }
Take note that port is specified as a string and not an integer value.

		PublishAllPorts - Allocates a random host port for all of a container’s
exposed ports. Specified as a boolean value.

		Privileged - Gives the container full access to the host. Specified as
a boolean value.

		Dns - A list of dns servers for the container to use.

		DnsSearch - A list of DNS search domains

		ExtraHosts - A list of hostnames/IP mappings to be added to the
container’s /etc/hosts file. Specified in the form ["hostname:IP"].

		VolumesFrom - A list of volumes to inherit from another container.
Specified in the form <container name>[:<ro|rw>]

		CapAdd - A list of kernel capabilities to add to the container.

		Capdrop - A list of kernel capabilities to drop from the container.

		RestartPolicy – The behavior to apply when the container exits. The
value is an object with a Name property of either "always" to
always restart or "on-failure" to restart only when the container
exit code is non-zero. If on-failure is used, MaximumRetryCount
controls the number of times to retry before giving up.
The default is not to restart. (optional)
An ever increasing delay (double the previous delay, starting at 100mS)
is added before each restart to prevent flooding the server.

		NetworkMode - Sets the networking mode for the container. Supported
values are: bridge, host, and container:<name|id>

		Devices - A list of devices to add to the container specified in the
form
{ "PathOnHost": "/dev/deviceName", "PathInContainer": "/dev/deviceName", "CgroupPermissions": "mrw"}

Query Parameters:

		name – Assign the specified name to the container. Must
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": {},
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {},
 "HostConfig": {
 "Binds": null,
 "ContainerIDFile": "",
 "LxcConf": [],
 "Privileged": false,
 "PortBindings": {
 "80/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "49153"
 }
]
 },
 "Links": ["/name:alias"],
 "PublishAllPorts": false,
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"]
 }
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container logs

GET /containers/(id)/logs

Get stdout and stderr logs from the container id

Example request:

 GET /containers/4fa6e0f0c678/logs?stderr=1&stdout=1×tamps=1&follow=1&tail=10 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		follow – 1/True/true or 0/False/false, return stream. Default false

		stdout – 1/True/true or 0/False/false, show stdout log. Default false

		stderr – 1/True/true or 0/False/false, show stderr log. Default false

		timestamps – 1/True/true or 0/False/false, print timestamps for
every log line. Default false

		tail – Output specified number of lines at the end of logs: all or <number>. Default all

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Resize a container TTY

POST /containers/(id)/resize?h=<height>&w=<width>

Resize the TTY for container with id. The container must be restarted for the resize to take effect.

Example request:

 POST /containers/4fa6e0f0c678/resize?h=40&w=80 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Length: 0
 Content-Type: text/plain; charset=utf-8

Status Codes:

		200 – no error

		404 – No such container

		500 – Cannot resize container

Start a container

POST /containers/(id)/start

Start the container id

Note:
For backwards compatibility, this endpoint accepts a HostConfig as JSON-encoded request body.
See create a container for details.

Example request:

 POST /containers/(id)/start HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		304 – container already started

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		304 – container already stopped

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like “SIGINT”.
When not set, SIGKILL is assumed and the call will waits for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Pause a container

POST /containers/(id)/pause

Pause the container id

Example request:

 POST /containers/e90e34656806/pause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Unpause a container

POST /containers/(id)/unpause

Unpause the container id

Example request:

 POST /containers/e90e34656806/unpause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

		force - 1/True/true or 0/False/false, Kill then remove the container.
Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, default false

		filters – a json encoded value of the filters (a map[string][]string) to process on the images list. Available filters:

		dangling=true

		filter - only return images with the specified name

Create an image

POST /images/create

Create an image, either by pulling it from the registry or by importing it

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pulling..."}
 {"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
 {"error": "Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import. The value may be a URL from which the image
can be retrieved or - to read the image from the request body.

		repo – repository

		tag – tag

		registry – the registry to pull from

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/ubuntu/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Created": "2013-03-23T22:24:18.818426-07:00",
 "Container": "3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "ContainerConfig":
 {
 "Hostname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "PortSpecs": null,
 "Tty": true,
 "OpenStdin": true,
 "StdinOnce": false,
 "Env": null,
 "Cmd": ["/bin/bash"],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": null,
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Parent": "27cf784147099545",
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/ubuntu/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pushing..."}
 {"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
 {"error": "Invalid..."}
 ...

If you wish to push an image on to a private registry, that image must already have been tagged
into a repository which references that registry host name and port. This repository name should
then be used in the URL. This mirrors the flow of the CLI.

Example request:

 POST /images/registry.acme.com:5000/test/push HTTP/1.1

Query Parameters:

		tag – the tag to associate with the image on the registry, optional

Request Headers:

		X-Registry-Auth – include a base64-encoded AuthConfig
object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Query Parameters:

		force – 1/True/true or 0/False/false, default false

		noprune – 1/True/true or 0/False/false, default false

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"stream": "Step 1..."}
 {"stream": "..."}
 {"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a file called `Dockerfile`
at its root. It may include any number of other files,
which will be accessible in the build context (See the [*ADD build
command*](/reference/builder/#dockerbuilder)).

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – git or HTTP/HTTPS URI build source

		q – suppress verbose build output

		nocache – do not use the cache when building the image

		pull - attempt to pull the image even if an older image exists locally

		rm - remove intermediate containers after a successful build (default behavior)

		forcerm - always remove intermediate containers (includes rm)

Request Headers:

		Content-type – should be set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Driver":"btrfs",
 "DriverStatus": [[""]],
 "ExecutionDriver":"native-0.1",
 "KernelVersion":"3.12.0-1-amd64"
 "NCPU":1,
 "MemTotal":2099236864,
 "Name":"prod-server-42",
 "ID":"7TRN:IPZB:QYBB:VPBQ:UMPP:KARE:6ZNR:XE6T:7EWV:PKF4:ZOJD:TPYS",
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "NEventsListener":0,
 "InitPath":"/usr/bin/docker",
 "InitSha1":"",
 "IndexServerAddress":["https://index.docker.io/v1/"],
 "MemoryLimit":true,
 "SwapLimit":false,
 "IPv4Forwarding":true,
 "Labels":["storage=ssd"],
 "DockerRootDir": "/var/lib/docker",
 "OperatingSystem": "Boot2Docker",
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "ApiVersion": "1.12",
 "Version": "0.2.2",
 "GitCommit": "5a2a5cc+CHANGES",
 "GoVersion": "go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Ping the docker server

GET /_ping

Ping the docker server

Example request:

 GET /_ping HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 OK

Status Codes:

		200 - no error

		500 - server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&comment=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "Cpuset": "0,1",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Volumes": {
 "/tmp": {}
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "ExposedPorts": {
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		comment – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get container events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

		until – timestamp used for polling

		filters – a json encoded value of the filters (a map[string][]string) to process on the event list. Available filters:

		event=<

string>

 – event to filter

		image=<

string>

 – image to filter

		container=<

string>

 – container to filter

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository specified
by name.

If name is a specific name and tag (e.g. ubuntu:latest), then only that image
(and its parents) are returned. If name is an image ID, similarly only that
image (and its parents) are returned, but with the exclusion of the
‘repositories’ file in the tarball, as there were no image names referenced.

See the image tarball format for more details.

Example request

 GET /images/ubuntu/get

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images.

GET /images/get

Get a tarball containing all images and metadata for one or more repositories.

For each value of the names parameter: if it is a specific name and tag (e.g.
ubuntu:latest), then only that image (and its parents) are returned; if it is
an image ID, similarly only that image (and its parents) are returned and there
would be no names referenced in the ‘repositories’ file for this image ID.

See the image tarball format for more details.

Example request

 GET /images/get?names=myname%2Fmyapp%3Alatest&names=busybox

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into the docker repository.
See the image tarball format for more details.

Example request

 POST /images/load

 Tarball in body

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing three files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file will contain aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, there will also be a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

Exec Create

POST /containers/(id)/exec

Sets up an exec instance in a running container id

Example request:

 POST /containers/e90e34656806/exec HTTP/1.1
 Content-Type: application/json

 {
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "Cmd": [
 "date"
],
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/json

 {
 "Id": "f90e34656806"
 }

Json Parameters:

		AttachStdin - Boolean value, attaches to stdin of the exec command.

		AttachStdout - Boolean value, attaches to stdout of the exec command.

		AttachStderr - Boolean value, attaches to stderr of the exec command.

		Tty - Boolean value to allocate a pseudo-TTY

		Cmd - Command to run specified as a string or an array of strings.

Status Codes:

		201 – no error

		404 – no such container

Exec Start

POST /exec/(id)/start

Starts a previously set up exec instance id. If detach is true, this API
returns after starting the exec command. Otherwise, this API sets up an
interactive session with the exec command.

Example request:

 POST /exec/e90e34656806/start HTTP/1.1
 Content-Type: application/json

 {
 "Detach": false,
 "Tty": false,
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/json

 {{ STREAM }}

Json Parameters:

		Detach - Detach from the exec command

		Tty - Boolean value to allocate a pseudo-TTY

Status Codes:

		201 – no error

		404 – no such exec instance

Stream details:
Similar to the stream behavior of POST /container/(id)/attach API

Exec Resize

POST /exec/(id)/resize

Resizes the tty session used by the exec command id.
This API is valid only if tty was specified as part of creating and starting the exec command.

Example request:

 POST /exec/e90e34656806/resize HTTP/1.1
 Content-Type: plain/text

Example response:

 HTTP/1.1 201 OK
 Content-Type: plain/text

Query Parameters:

		h – height of tty session

		w – width

Status Codes:

		201 – no error

		404 – no such exec instance

Exec Inspect

GET /exec/(id)/json

Return low-level information about the exec command id.

Example request:

 GET /exec/11fb006128e8ceb3942e7c58d77750f24210e35f879dd204ac975c184b820b39/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: plain/text

 {
 "ID" : "11fb006128e8ceb3942e7c58d77750f24210e35f879dd204ac975c184b820b39",
 "Running" : false,
 "ExitCode" : 2,
 "ProcessConfig" : {
 "privileged" : false,
 "user" : "",
 "tty" : false,
 "entrypoint" : "sh",
 "arguments" : [
 "-c",
 "exit 2"
]
 },
 "OpenStdin" : false,
 "OpenStderr" : false,
 "OpenStdout" : false,
 "Container" : {
 "State" : {
 "Running" : true,
 "Paused" : false,
 "Restarting" : false,
 "OOMKilled" : false,
 "Pid" : 3650,
 "ExitCode" : 0,
 "Error" : "",
 "StartedAt" : "2014-11-17T22:26:03.717657531Z",
 "FinishedAt" : "0001-01-01T00:00:00Z"
 },
 "ID" : "8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c",
 "Created" : "2014-11-17T22:26:03.626304998Z",
 "Path" : "date",
 "Args" : [],
 "Config" : {
 "Hostname" : "8f177a186b97",
 "Domainname" : "",
 "User" : "",
 "Memory" : 0,
 "MemorySwap" : 0,
 "CpuShares" : 0,
 "Cpuset" : "",
 "AttachStdin" : false,
 "AttachStdout" : false,
 "AttachStderr" : false,
 "PortSpecs" : null,
 "ExposedPorts" : null,
 "Tty" : false,
 "OpenStdin" : false,
 "StdinOnce" : false,
 "Env" : ["PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"],
 "Cmd" : [
 "date"
],
 "Image" : "ubuntu",
 "Volumes" : null,
 "WorkingDir" : "",
 "Entrypoint" : null,
 "NetworkDisabled" : false,
 "MacAddress" : "",
 "OnBuild" : null,
 "SecurityOpt" : null
 },
 "Image" : "5506de2b643be1e6febbf3b8a240760c6843244c41e12aa2f60ccbb7153d17f5",
 "NetworkSettings" : {
 "IPAddress" : "172.17.0.2",
 "IPPrefixLen" : 16,
 "MacAddress" : "02:42:ac:11:00:02",
 "Gateway" : "172.17.42.1",
 "Bridge" : "docker0",
 "PortMapping" : null,
 "Ports" : {}
 },
 "ResolvConfPath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/resolv.conf",
 "HostnamePath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/hostname",
 "HostsPath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/hosts",
 "Name" : "/test",
 "Driver" : "aufs",
 "ExecDriver" : "native-0.2",
 "MountLabel" : "",
 "ProcessLabel" : "",
 "AppArmorProfile" : "",
 "RestartCount" : 0,
 "Volumes" : {},
 "VolumesRW" : {}
 }
 }

Status Codes:

		200 – no error

		404 – no such exec instance

		500 - server error

3. Going further

3.1 Inside docker run

As an example, the docker run command line makes the following API calls:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
		Try to pull it

		Then retry to create the container

		Start the container

		If you are not in detached mode:

		Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:

		Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/README.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

 This directory holds the authoritative specifications of APIs defined and implemented by Docker. Currently this includes:

		The remote API by which a docker node can be queried over HTTP

		The registry API by which a docker node can download and upload
images for storage and sharing

		The index search API by which a docker node can search the public
index for images to download

		The docker.io OAuth and accounts API which 3rd party services can
use to access account information

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.7.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.7

1. Brief introduction

		The Remote API has replaced rcli

		The daemon listens on unix:///var/run/docker.sock but you can bind
Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout, stdin
and stderr

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "base:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Image": "base:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Image": "base:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "base:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created containers, include non-running ones.

		since – Show only containers created since Id, include non-running ones.

		before – Show only containers created before Id, include non-running ones.

		size – 1/True/true or 0/False/false, Show the containers sizes

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Dns":null,
 "Image":"base",
 "Volumes":{
 "/tmp": {}
 },
 "VolumesFrom":"",
 "WorkingDir":"",
 "ExposedPorts":{
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		config – the container’s configuration

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "base",
 "Volumes": {},
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {}
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds":["/tmp:/tmp"],
 "LxcConf":[{"Key":"lxc.utsname","Value":"docker"}],
 "PortBindings":{ "22/tcp": [{ "HostPort": "11022" }] },
 "Privileged":false,
 "PublishAllPorts":false
 }

Binds need to reference Volumes that were defined during container
creation.

Example response:

 HTTP/1.1 204 No Content
 Content-Type: text/plain

Json Parameters:

		hostConfig – the container’s host configuration (optional)

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Defaul
false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1)

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing i

Example request:

 POST /images/create?fromImage=base HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pulling..."}
 {"status":"Pulling", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Insert a file in an image

POST /images/(name)/insert

Insert a file from url in the image name at path

Example request:

 POST /images/test/insert?path=/usr&url=myurl HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Inserting..."}
 {"status":"Inserting", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Query Parameters:

		url – The url from where the file is taken

		path – The path where the file is stored

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/base/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id":"b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "parent":"27cf784147099545",
 "created":"2013-03-23T22:24:18.818426-07:00",
 "container":"3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "container_config":
 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":false,
 "AttachStderr":false,
 "PortSpecs":null,
 "Tty":true,
 "OpenStdin":true,
 "StdinOnce":false,
 "Env":null,
 "Cmd": ["/bin/bash"],
 "Dns":null,
 "Image":"base",
 "Volumes":null,
 "VolumesFrom":"",
 "WorkingDir":""
 },
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/base/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pushing..."}
 {"status":"Pushing", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Request Headers:

		X-Registry-Auth – include a base64-encoded AuthConfig
object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {{ STREAM }}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a file called `Dockerfile`
at its root. It may include any number of other files,
which will be accessible in the build context (See the [*ADD build
command*](/builder/#dockerbuilder)).

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – build source URI (git or HTTPS/HTTP)

		q – suppress verbose build output

		nocache – do not use the cache when building the image

Request Headers:

		Content-type – should be set to
"application/tar".

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "MemoryLimit":true,
 "SwapLimit":false,
 "IPv4Forwarding":true
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version":"0.2.2",
 "GitCommit":"5a2a5cc+CHANGES",
 "GoVersion":"go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&m=message&repo=myrepo HTTP/1.1

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		m – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

		run – config automatically applied when the image is run.
(ex: {“Cmd”: [“cat”, “/world”], “PortSpecs”:[“22”]})

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "base:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "base:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "base:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "base:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images and tags in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository
specified by name.

Example request

 GET /images/ubuntu/get

Example response:

 .. sourcecode:: http

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream
 :statuscode 200: no error
 :statuscode 500: server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into the docker repository.

Example request

 POST /images/load

 Tarball in body

 Example response:

 .. sourcecode:: http

 HTTP/1.1 200 OK

 :statuscode 200: no error
 :statuscode 500: server error

3. Going further

3.1 Inside docker run

Here are the steps of docker run :

		Create the container

		If the status code is 404, it means the image doesn’t exist:
- Try to pull it
- Then retry to create the container

		Start the container

		If you are not in detached mode:
- Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
- Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker-io_api.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Hub API

		This is the REST API for Docker Hub [https://hub.docker.com].

		Authorization is done with basic auth over SSL

		Not all commands require authentication, only those noted as such.

Repositories

User repository

Create a user repository

PUT /v1/repositories/(namespace)/(repo_name)/

Create a user repository with the given namespace and repo_name.

Example Request:

 PUT /v1/repositories/foo/bar/ HTTP/1.1
 Host: index.docker.io
 Accept: application/json
 Content-Type: application/json
 Authorization: Basic akmklmasadalkm==
 X-Docker-Token: true

 [{"id": "9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f"}]

Parameters:

		namespace – the namespace for the repo

		repo_name – the name for the repo

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json
 WWW-Authenticate: Token signature=123abc,repository="foo/bar",access=write
 X-Docker-Token: signature=123abc,repository="foo/bar",access=write
 X-Docker-Endpoints: registry-1.docker.io [, registry-2.docker.io]

 ""

Status Codes:

		200 – Created

		400 – Errors (invalid json, missing or invalid fields, etc)

		401 – Unauthorized

		403 – Account is not Active

Delete a user repository

DELETE /v1/repositories/(namespace)/(repo_name)/

Delete a user repository with the given namespace and repo_name.

Example Request:

 DELETE /v1/repositories/foo/bar/ HTTP/1.1
 Host: index.docker.io
 Accept: application/json
 Content-Type: application/json
 Authorization: Basic akmklmasadalkm==
 X-Docker-Token: true

 ""

Parameters:

		namespace – the namespace for the repo

		repo_name – the name for the repo

Example Response:

 HTTP/1.1 202
 Vary: Accept
 Content-Type: application/json
 WWW-Authenticate: Token signature=123abc,repository="foo/bar",access=delete
 X-Docker-Token: signature=123abc,repository="foo/bar",access=delete
 X-Docker-Endpoints: registry-1.docker.io [, registry-2.docker.io]

 ""

Status Codes:

		200 – Deleted

		202 – Accepted

		400 – Errors (invalid json, missing or invalid fields, etc)

		401 – Unauthorized

		403 – Account is not Active

Library repository

Create a library repository

PUT /v1/repositories/(repo_name)/

Create a library repository with the given repo_name.
This is a restricted feature only available to docker admins.

When namespace is missing, it is assumed to be library

Example Request:

 PUT /v1/repositories/foobar/ HTTP/1.1
 Host: index.docker.io
 Accept: application/json
 Content-Type: application/json
 Authorization: Basic akmklmasadalkm==
 X-Docker-Token: true

 [{"id": "9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f"}]

Parameters:

		repo_name – the library name for the repo

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json
 WWW-Authenticate: Token signature=123abc,repository="library/foobar",access=write
 X-Docker-Token: signature=123abc,repository="foo/bar",access=write
 X-Docker-Endpoints: registry-1.docker.io [, registry-2.docker.io]

 ""

Status Codes:

		200 – Created

		400 – Errors (invalid json, missing or invalid fields, etc)

		401 – Unauthorized

		403 – Account is not Active

Delete a library repository

DELETE /v1/repositories/(repo_name)/

Delete a library repository with the given repo_name.
This is a restricted feature only available to docker admins.

When namespace is missing, it is assumed to be library

Example Request:

 DELETE /v1/repositories/foobar/ HTTP/1.1
 Host: index.docker.io
 Accept: application/json
 Content-Type: application/json
 Authorization: Basic akmklmasadalkm==
 X-Docker-Token: true

 ""

Parameters:

		repo_name – the library name for the repo

Example Response:

 HTTP/1.1 202
 Vary: Accept
 Content-Type: application/json
 WWW-Authenticate: Token signature=123abc,repository="library/foobar",access=delete
 X-Docker-Token: signature=123abc,repository="foo/bar",access=delete
 X-Docker-Endpoints: registry-1.docker.io [, registry-2.docker.io]

 ""

Status Codes:

		200 – Deleted

		202 – Accepted

		400 – Errors (invalid json, missing or invalid fields, etc)

		401 – Unauthorized

		403 – Account is not Active

Repository images

User repository images

Update user repository images

PUT /v1/repositories/(namespace)/(repo_name)/images

Update the images for a user repo.

Example Request:

 PUT /v1/repositories/foo/bar/images HTTP/1.1
 Host: index.docker.io
 Accept: application/json
 Content-Type: application/json
 Authorization: Basic akmklmasadalkm==

 [{"id": "9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f",
 "checksum": "b486531f9a779a0c17e3ed29dae8f12c4f9e89cc6f0bc3c38722009fe6857087"}]

Parameters:

		namespace – the namespace for the repo

		repo_name – the name for the repo

Example Response:

 HTTP/1.1 204
 Vary: Accept
 Content-Type: application/json

 ""

Status Codes:

		204 – Created

		400 – Errors (invalid json, missing or invalid fields, etc)

		401 – Unauthorized

		403 – Account is not Active or permission denied

List user repository images

GET /v1/repositories/(namespace)/(repo_name)/images

Get the images for a user repo.

Example Request:

 GET /v1/repositories/foo/bar/images HTTP/1.1
 Host: index.docker.io
 Accept: application/json

Parameters:

		namespace – the namespace for the repo

		repo_name – the name for the repo

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json

 [{"id": "9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f",
 "checksum": "b486531f9a779a0c17e3ed29dae8f12c4f9e89cc6f0bc3c38722009fe6857087"},
 {"id": "ertwetewtwe38722009fe6857087b486531f9a779a0c1dfddgfgsdgdsgds",
 "checksum": "34t23f23fc17e3ed29dae8f12c4f9e89cc6f0bsdfgfsdgdsgdsgerwgew"}]

Status Codes:

		200 – OK

		404 – Not found

Library repository images

Update library repository images

PUT /v1/repositories/(repo_name)/images

Update the images for a library repo.

Example Request:

 PUT /v1/repositories/foobar/images HTTP/1.1
 Host: index.docker.io
 Accept: application/json
 Content-Type: application/json
 Authorization: Basic akmklmasadalkm==

 [{"id": "9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f",
 "checksum": "b486531f9a779a0c17e3ed29dae8f12c4f9e89cc6f0bc3c38722009fe6857087"}]

Parameters:

		repo_name – the library name for the repo

Example Response:

 HTTP/1.1 204
 Vary: Accept
 Content-Type: application/json

 ""

Status Codes:

		204 – Created

		400 – Errors (invalid json, missing or invalid fields, etc)

		401 – Unauthorized

		403 – Account is not Active or permission denied

List library repository images

GET /v1/repositories/(repo_name)/images

Get the images for a library repo.

Example Request:

 GET /v1/repositories/foobar/images HTTP/1.1
 Host: index.docker.io
 Accept: application/json

Parameters:

		repo_name – the library name for the repo

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json

 [{"id": "9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f",
 "checksum": "b486531f9a779a0c17e3ed29dae8f12c4f9e89cc6f0bc3c38722009fe6857087"},
 {"id": "ertwetewtwe38722009fe6857087b486531f9a779a0c1dfddgfgsdgdsgds",
 "checksum": "34t23f23fc17e3ed29dae8f12c4f9e89cc6f0bsdfgfsdgdsgdsgerwgew"}]

Status Codes:

		200 – OK

		404 – Not found

Repository authorization

Library repository

Authorize a token for a library

PUT /v1/repositories/(repo_name)/auth

Authorize a token for a library repo

Example Request:

 PUT /v1/repositories/foobar/auth HTTP/1.1
 Host: index.docker.io
 Accept: application/json
 Authorization: Token signature=123abc,repository="library/foobar",access=write

Parameters:

		repo_name – the library name for the repo

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json

 "OK"

Status Codes:

		200 – OK

		403 – Permission denied

		404 – Not found

User repository

Authorize a token for a user repository

PUT /v1/repositories/(namespace)/(repo_name)/auth

Authorize a token for a user repo

Example Request:

 PUT /v1/repositories/foo/bar/auth HTTP/1.1
 Host: index.docker.io
 Accept: application/json
 Authorization: Token signature=123abc,repository="foo/bar",access=write

Parameters:

		namespace – the namespace for the repo

		repo_name – the name for the repo

Example Response:

 HTTP/1.1 200
 Vary: Accept
 Content-Type: application/json

 "OK"

Status Codes:

		200 – OK

		403 – Permission denied

		404 – Not found

Users

User login

GET /v1/users/

If you want to check your login, you can try this endpoint

Example Request:

 GET /v1/users/ HTTP/1.1
 Host: index.docker.io
 Accept: application/json
 Authorization: Basic akmklmasadalkm==

Example Response:

 HTTP/1.1 200 OK
 Vary: Accept
 Content-Type: application/json

 OK

Status Codes:

		200 – no error

		401 – Unauthorized

		403 – Account is not Active

User register

POST /v1/users/

Registering a new account.

Example request:

 POST /v1/users/ HTTP/1.1
 Host: index.docker.io
 Accept: application/json
 Content-Type: application/json

 {"email": "sam@docker.com",
 "password": "toto42",
 "username": "foobar"}

Json Parameters:

		email – valid email address, that needs to be confirmed

		username – min 4 character, max 30 characters, must match
the regular expression [a-z0-9_].

		password – min 5 characters

Example Response:

 HTTP/1.1 201 OK
 Vary: Accept
 Content-Type: application/json

 "User Created"

Status Codes:

		201 – User Created

		400 – Errors (invalid json, missing or invalid fields, etc)

Update user

PUT /v1/users/(username)/

Change a password or email address for given user. If you pass in an
email, it will add it to your account, it will not remove the old
one. Passwords will be updated.

It is up to the client to verify that that password that is sent is
the one that they want. Common approach is to have them type it
twice.

Example Request:

 PUT /v1/users/fakeuser/ HTTP/1.1
 Host: index.docker.io
 Accept: application/json
 Content-Type: application/json
 Authorization: Basic akmklmasadalkm==

 {"email": "sam@docker.com",
 "password": "toto42"}

Parameters:

		username – username for the person you want to update

Example Response:

 HTTP/1.1 204
 Vary: Accept
 Content-Type: application/json

 ""

Status Codes:

		204 – User Updated

		400 – Errors (invalid json, missing or invalid fields, etc)

		401 – Unauthorized

		403 – Account is not Active

		404 – User not found

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/hub_registry_spec.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

The Docker Hub and the Registry v1

The three roles

There are three major components playing a role in the Docker ecosystem.

Docker Hub

The Docker Hub is responsible for centralizing information about:

		User accounts

		Checksums of the images

		Public namespaces

The Docker Hub has different components:

		Web UI

		Meta-data store (comments, stars, list public repositories)

		Authentication service

		Tokenization

The Docker Hub is authoritative for that information.

There is only one instance of the Docker Hub, run and
managed by Docker Inc.

Docker Registry 1.0

The 1.0 registry has the following characteristics:

		It stores the images and the graph for a set of repositories

		It does not have user accounts data

		It has no notion of user accounts or authorization

		It delegates authentication and authorization to the Docker Hub Auth
service using tokens

		It supports different storage backends (S3, cloud files, local FS)

		It doesn’t have a local database

		Source Code [https://github.com/docker/docker-registry]

We expect that there will be multiple registries out there. To help you
grasp the context, here are some examples of registries:

		sponsor registry: such a registry is provided by a third-party
hosting infrastructure as a convenience for their customers and the
Docker community as a whole. Its costs are supported by the third
party, but the management and operation of the registry are
supported by Docker, Inc. It features read/write access, and delegates
authentication and authorization to the Docker Hub.

		mirror registry: such a registry is provided by a third-party
hosting infrastructure but is targeted at their customers only. Some
mechanism (unspecified to date) ensures that public images are
pulled from a sponsor registry to the mirror registry, to make sure
that the customers of the third-party provider can docker pull
those images locally.

		vendor registry: such a registry is provided by a software
vendor who wants to distribute docker images. It would be operated
and managed by the vendor. Only users authorized by the vendor would
be able to get write access. Some images would be public (accessible
for anyone), others private (accessible only for authorized users).
Authentication and authorization would be delegated to the Docker Hub.
The goal of vendor registries is to let someone do docker pull basho/riak1.3 and automatically push from the vendor registry
(instead of a sponsor registry); i.e., vendors get all the convenience of a
sponsor registry, while retaining control on the asset distribution.

		private registry: such a registry is located behind a firewall,
or protected by an additional security layer (HTTP authorization,
SSL client-side certificates, IP address authorization...). The
registry is operated by a private entity, outside of Docker’s
control. It can optionally delegate additional authorization to the
Docker Hub, but it is not mandatory.

Note: The latter implies that while HTTP is the protocol
of choice for a registry, multiple schemes are possible (and
in some cases, trivial):

		HTTP with GET (and PUT for read-write registries);

		local mount point;

		remote docker addressed through SSH.

The latter would only require two new commands in Docker, e.g.,
registryget and registryput,
wrapping access to the local filesystem (and optionally doing
consistency checks). Authentication and authorization are then delegated
to SSH (e.g., with public keys).

Docker

On top of being a runtime for LXC, Docker is the Registry client. It
supports:

		Push / Pull on the registry

		Client authentication on the Docker Hub

Workflow

Pull

[image:]

		Contact the Docker Hub to know where I should download “samalba/busybox”

		Docker Hub replies: a. samalba/busybox is on Registry A b. here are the
checksums for samalba/busybox (for all layers) c. token

		Contact Registry A to receive the layers for samalba/busybox (all of
them to the base image). Registry A is authoritative for “samalba/busybox”
but keeps a copy of all inherited layers and serve them all from the same
location.

		registry contacts Docker Hub to verify if token/user is allowed to download images

		Docker Hub returns true/false lettings registry know if it should proceed or error
out

		Get the payload for all layers

It’s possible to run:

$ docker pull https://<registry>/repositories/samalba/busybox

In this case, Docker bypasses the Docker Hub. However the security is not
guaranteed (in case Registry A is corrupted) because there won’t be any
checksum checks.

Currently registry redirects to s3 urls for downloads, going forward all
downloads need to be streamed through the registry. The Registry will
then abstract the calls to S3 by a top-level class which implements
sub-classes for S3 and local storage.

Token is only returned when the X-Docker-Token
header is sent with request.

Basic Auth is required to pull private repos. Basic auth isn’t required
for pulling public repos, but if one is provided, it needs to be valid
and for an active account.

API (pulling repository foo/bar):

		(Docker -> Docker Hub) GET /v1/repositories/foo/bar/images:

Headers:

 Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==
 X-Docker-Token: true

Action:

 (looking up the foo/bar in db and gets images and checksums
 for that repo (all if no tag is specified, if tag, only
 checksums for those tags) see part 4.4.1)

		(Docker Hub -> Docker) HTTP 200 OK

Headers:

 Authorization: Token
 signature=123abc,repository=”foo/bar”,access=write
 X-Docker-Endpoints: registry.docker.io [,registry2.docker.io]

Body:

 Jsonified checksums (see part 4.4.1)

		(Docker -> Registry) GET /v1/repositories/foo/bar/tags/latest

Headers:

 Authorization: Token
 signature=123abc,repository=”foo/bar”,access=write

		(Registry -> Docker Hub) GET /v1/repositories/foo/bar/images

Headers:

 Authorization: Token
 signature=123abc,repository=”foo/bar”,access=read

Body:

 <ids and checksums in payload>

Action:

 (Lookup token see if they have access to pull.)

 If good:
 HTTP 200 OK Docker Hub will invalidate the token

 If bad:
 HTTP 401 Unauthorized

		(Docker -> Registry) GET /v1/images/928374982374/ancestry

Action:

 (for each image id returned in the registry, fetch /json + /layer)

Note:
If someone makes a second request, then we will always give a new token,
never reuse tokens.

Push

[image:]

		Contact the Docker Hub to allocate the repository name “samalba/busybox”
(authentication required with user credentials)

		If authentication works and namespace available, “samalba/busybox”
is allocated and a temporary token is returned (namespace is marked
as initialized in Docker Hub)

		Push the image on the registry (along with the token)

		Registry A contacts the Docker Hub to verify the token (token must
corresponds to the repository name)

		Docker Hub validates the token. Registry A starts reading the stream
pushed by docker and store the repository (with its images)

		docker contacts the Docker Hub to give checksums for upload images

Note:
It’s possible not to use the Docker Hub at all! In this case, a deployed
version of the Registry is deployed to store and serve images. Those
images are not authenticated and the security is not guaranteed.

Note:
Docker Hub can be replaced! For a private Registry deployed, a custom
Docker Hub can be used to serve and validate token according to different
policies.

Docker computes the checksums and submit them to the Docker Hub at the end of
the push. When a repository name does not have checksums on the Docker Hub,
it means that the push is in progress (since checksums are submitted at
the end).

API (pushing repos foo/bar):

		(Docker -> Docker Hub) PUT /v1/repositories/foo/bar/

Headers:

 Authorization: Basic sdkjfskdjfhsdkjfh== X-Docker-Token:
 true

Action:

		in Docker Hub, we allocated a new repository, and set to
initialized

Body:

(The body contains the list of images that are going to be
pushed, with empty checksums. The checksums will be set at
the end of the push):

 [{“id”: “9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f”}]

		(Docker Hub -> Docker) 200 Created

Headers:

 WWW-Authenticate: Token
 signature=123abc,repository=”foo/bar”,access=write
 X-Docker-Endpoints: registry.docker.io [, registry2.docker.io]

		(Docker -> Registry) PUT /v1/images/98765432_parent/json

Headers:

 Authorization: Token
 signature=123abc,repository=”foo/bar”,access=write

		(Registry->Docker Hub) GET /v1/repositories/foo/bar/images

Headers:

 Authorization: Token
 signature=123abc,repository=”foo/bar”,access=write

Action:

		Docker Hub:
will invalidate the token.

		Registry:
grants a session (if token is approved) and fetches
the images id

		(Docker -> Registry) PUT /v1/images/98765432_parent/json

Headers:

 Authorization: Token
 signature=123abc,repository=”foo/bar”,access=write
 Cookie: (Cookie provided by the Registry)

		(Docker -> Registry) PUT /v1/images/98765432/json

Headers:

 Cookie: (Cookie provided by the Registry)

		(Docker -> Registry) PUT /v1/images/98765432_parent/layer

Headers:

 Cookie: (Cookie provided by the Registry)

		(Docker -> Registry) PUT /v1/images/98765432/layer

Headers:

 X-Docker-Checksum: sha256:436745873465fdjkhdfjkgh

		(Docker -> Registry) PUT /v1/repositories/foo/bar/tags/latest

Headers:

 Cookie: (Cookie provided by the Registry)

Body:

 “98765432”

		(Docker -> Docker Hub) PUT /v1/repositories/foo/bar/images

Headers:

 Authorization: Basic 123oislifjsldfj== X-Docker-Endpoints:
 registry1.docker.io (no validation on this right now)

Body:

 (The image, id`s, tags and checksums)
 [{“id”:
 “9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f”,
 “checksum”:
 “b486531f9a779a0c17e3ed29dae8f12c4f9e89cc6f0bc3c38722009fe6857087”}]

Return:

 HTTP 204

Note: If push fails and they need to start again, what happens in the Docker Hub,
there will already be a record for the namespace/name, but it will be
initialized. Should we allow it, or mark as name already used? One edge
case could be if someone pushes the same thing at the same time with two
different shells.

If it’s a retry on the Registry, Docker has a cookie (provided by the
registry after token validation). So the Docker Hub won’t have to provide a
new token.

Delete

If you need to delete something from the Docker Hub or registry, we need a
nice clean way to do that. Here is the workflow.

		Docker contacts the Docker Hub to request a delete of a repository
samalba/busybox (authentication required with user credentials)

		If authentication works and repository is valid, samalba/busybox
is marked as deleted and a temporary token is returned

		Send a delete request to the registry for the repository (along with
the token)

		Registry A contacts the Docker Hub to verify the token (token must
corresponds to the repository name)

		Docker Hub validates the token. Registry A deletes the repository and
everything associated to it.

		docker contacts the Docker Hub to let it know it was removed from the
registry, the Docker Hub removes all records from the database.

Note:
The Docker client should present an “Are you sure?” prompt to confirm
the deletion before starting the process. Once it starts it can’t be
undone.

API (deleting repository foo/bar):

		(Docker -> Docker Hub) DELETE /v1/repositories/foo/bar/

Headers:

 Authorization: Basic sdkjfskdjfhsdkjfh== X-Docker-Token:
 true

Action:

		in Docker Hub, we make sure it is a valid repository, and set
to deleted (logically)

Body:

 Empty

		(Docker Hub -> Docker) 202 Accepted

Headers:

 WWW-Authenticate: Token
 signature=123abc,repository=”foo/bar”,access=delete
 X-Docker-Endpoints: registry.docker.io [, registry2.docker.io]
 # list of endpoints where this repo lives.

		(Docker -> Registry) DELETE /v1/repositories/foo/bar/

Headers:

 Authorization: Token
 signature=123abc,repository=”foo/bar”,access=delete

		(Registry->Docker Hub) PUT /v1/repositories/foo/bar/auth

Headers:

 Authorization: Token
 signature=123abc,repository=”foo/bar”,access=delete

Action:

		Docker Hub:
will invalidate the token.

		Registry:
deletes the repository (if token is approved)

		(Registry -> Docker) 200 OK

200 If success 403 if forbidden 400 if bad request 404
if repository isn't found

		(Docker -> Docker Hub) DELETE /v1/repositories/foo/bar/

Headers:

 Authorization: Basic 123oislifjsldfj== X-Docker-Endpoints:
 registry-1.docker.io (no validation on this right now)

Body:

 Empty

Return:

 HTTP 200

How to use the Registry in standalone mode

The Docker Hub has two main purposes (along with its fancy social features):

		Resolve short names (to avoid passing absolute URLs all the time):

username/projectname ->
https://registry.docker.io/users//repositories//
team/projectname ->
https://registry.docker.io/team//repositories//

		Authenticate a user as a repos owner (for a central referenced
repository)

Without a Docker Hub

Using the Registry without the Docker Hub can be useful to store the images
on a private network without having to rely on an external entity
controlled by Docker Inc.

In this case, the registry will be launched in a special mode
(-standalone? ne? -no-index?). In this mode, the only thing which changes is
that Registry will never contact the Docker Hub to verify a token. It will be
the Registry owner responsibility to authenticate the user who pushes
(or even pulls) an image using any mechanism (HTTP auth, IP based,
etc...).

In this scenario, the Registry is responsible for the security in case
of data corruption since the checksums are not delivered by a trusted
entity.

As hinted previously, a standalone registry can also be implemented by
any HTTP server handling GET/PUT requests (or even only GET requests if
no write access is necessary).

With a Docker Hub

The Docker Hub data needed by the Registry are simple:

		Serve the checksums

		Provide and authorize a Token

In the scenario of a Registry running on a private network with the need
of centralizing and authorizing, it’s easy to use a custom Docker Hub.

The only challenge will be to tell Docker to contact (and trust) this
custom Docker Hub. Docker will be configurable at some point to use a
specific Docker Hub, it’ll be the private entity responsibility (basically
the organization who uses Docker in a private environment) to maintain
the Docker Hub and the Docker’s configuration among its consumers.

The API

The first version of the api is available here:
https://github.com/jpetazzo/docker/blob/acd51ecea8f5d3c02b00a08176171c59442df8b3/docs/images-repositories-push-pull.md

Images

The format returned in the images is not defined here (for layer and
JSON), basically because Registry stores exactly the same kind of
information as Docker uses to manage them.

The format of ancestry is a line-separated list of image ids, in age
order, i.e. the image’s parent is on the last line, the parent of the
parent on the next-to-last line, etc.; if the image has no parent, the
file is empty.

GET /v1/images/<image_id>/layer
PUT /v1/images/<image_id>/layer
GET /v1/images/<image_id>/json
PUT /v1/images/<image_id>/json
GET /v1/images/<image_id>/ancestry
PUT /v1/images/<image_id>/ancestry

Users

Create a user (Docker Hub)

POST /v1/users:

Body:

{"email": "[sam@docker.com](mailto:sam%40docker.com)",
"password": "toto42", "username": "foobar"`}

Validation:

		username: min 4 character, max 30 characters, must match the
regular expression [a-z0-9_].

		password: min 5 characters

Valid:

 return HTTP 201

Errors: HTTP 400 (we should create error codes for possible errors) -
invalid json - missing field - wrong format (username, password, email,
etc) - forbidden name - name already exists

Note:
A user account will be valid only if the email has been validated (a
validation link is sent to the email address).

Update a user (Docker Hub)

PUT /v1/users/<username>

Body:

{"password": "toto"}

Note:
We can also update email address, if they do, they will need to reverify
their new email address.

Login (Docker Hub)

Does nothing else but asking for a user authentication. Can be used to
validate credentials. HTTP Basic Auth for now, maybe change in future.

GET /v1/users

Return:

		Valid: HTTP 200

		Invalid login: HTTP 401

		Account inactive: HTTP 403 Account is not Active

Tags (Registry)

The Registry does not know anything about users. Even though
repositories are under usernames, it’s just a namespace for the
registry. Allowing us to implement organizations or different namespaces
per user later, without modifying the Registry’s API.

The following naming restrictions apply:

		Namespaces must match the same regular expression as usernames (See
4.2.1.)

		Repository names must match the regular expression [a-zA-Z0-9-_.]

Get all tags:

GET /v1/repositories/<namespace>/<repository_name>/tags

Return: HTTP 200
[
 {
 "layer": "9e89cc6f",
 "name": "latest"
 },
 {
 "layer": "b486531f",
 "name": "0.1.1",
 }
]

4.3.2 Read the content of a tag (resolve the image id):

GET /v1/repositories/<namespace>/<repo_name>/tags/<tag>

Return:

"9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f"

4.3.3 Delete a tag (registry):

DELETE /v1/repositories/<namespace>/<repo_name>/tags/<tag>

4.4 Images (Docker Hub)

For the Docker Hub to “resolve” the repository name to a Registry location,
it uses the X-Docker-Endpoints header. In other terms, this requests
always add a X-Docker-Endpoints to indicate the
location of the registry which hosts this repository.

4.4.1 Get the images:

GET /v1/repositories/<namespace>/<repo_name>/images

Return: HTTP 200
[{“id”:
“9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f”,
“checksum”:
“md5:b486531f9a779a0c17e3ed29dae8f12c4f9e89cc6f0bc3c38722009fe6857087”}]

Add/update the images:

You always add images, you never remove them.

PUT /v1/repositories/<namespace>/<repo_name>/images

Body:

[{“id”:
“9e89cc6f0bc3c38722009fe6857087b486531f9a779a0c17e3ed29dae8f12c4f”,
“checksum”:
“sha256:b486531f9a779a0c17e3ed29dae8f12c4f9e89cc6f0bc3c38722009fe6857087”}
]

Return:

204

Repositories

Remove a Repository (Registry)

DELETE /v1/repositories//<repo_name>

Return 200 OK

Remove a Repository (Docker Hub)

This starts the delete process. see 2.3 for more details.

DELETE /v1/repositories//<repo_name>

Return 202 OK

Chaining Registries

It’s possible to chain Registries server for several reasons:

		Load balancing

		Delegate the next request to another server

When a Registry is a reference for a repository, it should host the
entire images chain in order to avoid breaking the chain during the
download.

The Docker Hub and Registry use this mechanism to redirect on one or the
other.

Example with an image download:

On every request, a special header can be returned:

X-Docker-Endpoints: server1,server2

On the next request, the client will always pick a server from this
list.

Authentication and authorization

On the Docker Hub

The Docker Hub supports both “Basic” and “Token” challenges. Usually when
there is a 401 Unauthorized, the Docker Hub replies
this:

401 Unauthorized
WWW-Authenticate: Basic realm="auth required",Token

You have 3 options:

		Provide user credentials and ask for a token

Header:

 Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==
 X-Docker-Token: true

In this case, along with the 200 response, you’ll get a new token
(if user auth is ok): If authorization isn’t correct you get a 401
response. If account isn’t active you will get a 403 response.

Response:

 200 OK
 X-Docker-Token: Token
 signature=123abc,repository=”foo/bar”,access=read

		Provide user credentials only

Header:

 Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

		Provide Token

Header:

 Authorization: Token
 signature=123abc,repository=”foo/bar”,access=read

6.2 On the Registry

The Registry only supports the Token challenge:

401 Unauthorized
WWW-Authenticate: Token

The only way is to provide a token on 401 Unauthorized
responses:

Authorization: Token signature=123abc,repository="foo/bar",access=read

Usually, the Registry provides a Cookie when a Token verification
succeeded. Every time the Registry passes a Cookie, you have to pass it
back the same cookie.:

200 OK
Set-Cookie: session="wD/J7LqL5ctqw8haL10vgfhrb2Q=?foo=UydiYXInCnAxCi4=×tamp=RjEzNjYzMTQ5NDcuNDc0NjQzCi4="; Path=/; HttpOnly

Next request:

GET /(...)
Cookie: session="wD/J7LqL5ctqw8haL10vgfhrb2Q=?foo=UydiYXInCnAxCi4=×tamp=RjEzNjYzMTQ5NDcuNDc0NjQzCi4="

Document version

		1.0 : May 6th 2013 : initial release

		1.1 : June 1st 2013 : Added Delete Repository and way to handle new
source namespace.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.21.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.21

1. Brief introduction

		The Remote API has replaced rcli.

		The daemon listens on unix:///var/run/docker.sock but you can
Bind Docker to another host/port or a Unix socket.

		The API tends to be REST. However, for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout,
stdin and stderr.

		When the client API version is newer than the daemon’s, these calls return an HTTP
400 Bad Request error message.

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "Id": "8dfafdbc3a40",
 "Names":["/boring_feynman"],
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Names":["/coolName"]
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Names":["/sleepy_dog"]
 "Image": "ubuntu:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Names":["/running_cat"]
 "Image": "ubuntu:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created
containers, include non-running ones.

		since – Show only containers created since Id, include
non-running ones.

		before – Show only containers created before Id, include
non-running ones.

		size – 1/True/true or 0/False/false, Show the containers
sizes

		filters - a JSON encoded value of the filters (a map[string][]string) to process on the containers list. Available filters:

		exited=<int>; – containers with exit code of <int> ;

		status=(created|restarting|running|paused|exited)

		label=key or label="key=value" of a container label

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

POST /containers/create HTTP/1.1
Content-Type: application/json

{
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Entrypoint": "",
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "Mounts": [
 {
 "Source": "/data",
 "Destination": "/data",
 "Mode": "ro,Z",
 "RW": false
 }
],
 "WorkingDir": "",
 "NetworkDisabled": false,
 "MacAddress": "12:34:56:78:9a:bc",
 "ExposedPorts": {
 "22/tcp": {}
 },
 "HostConfig": {
 "Binds": ["/tmp:/tmp"],
 "Links": ["redis3:redis"],
 "LxcConf": {"lxc.utsname":"docker"},
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "CpuPeriod": 100000,
 "CpusetCpus": "0,1",
 "CpusetMems": "0,1",
 "BlkioWeight": 300,
 "MemorySwappiness": 60,
 "OomKillDisable": false,
 "PortBindings": { "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts": false,
 "Privileged": false,
 "ReadonlyRootfs": false,
 "Dns": ["8.8.8.8"],
 "DnsSearch": [""],
 "ExtraHosts": null,
 "VolumesFrom": ["parent", "other:ro"],
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"],
 "RestartPolicy": { "Name": "", "MaximumRetryCount": 0 },
 "NetworkMode": "bridge",
 "Devices": [],
 "Ulimits": [{}],
 "LogConfig": { "Type": "json-file", "Config": {} },
 "SecurityOpt": [""],
 "CgroupParent": ""
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		Hostname - A string value containing the hostname to use for the
container.

		Domainname - A string value containing the domain name to use
for the container.

		User - A string value specifying the user inside the container.

		Memory - Memory limit in bytes.

		MemorySwap- Total memory limit (memory + swap); set -1 to disable swap
You must use this with memory and make the swap value larger than memory.

		CpuShares - An integer value containing the container’s CPU Shares
(ie. the relative weight vs other containers).

		CpuPeriod - The length of a CPU period in microseconds.

		Cpuset - Deprecated please don’t use. Use CpusetCpus instead.

		CpusetCpus - String value containing the cgroups CpusetCpus to use.

		CpusetMems - Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effective on NUMA systems.

		BlkioWeight - Block IO weight (relative weight) accepts a weight value between 10 and 1000.

		MemorySwappiness - Tune a container’s memory swappiness behavior. Accepts an integer between 0 and 100.

		OomKillDisable - Boolean value, whether to disable OOM Killer for the container or not.

		AttachStdin - Boolean value, attaches to stdin.

		AttachStdout - Boolean value, attaches to stdout.

		AttachStderr - Boolean value, attaches to stderr.

		Tty - Boolean value, Attach standard streams to a tty, including stdin if it is not closed.

		OpenStdin - Boolean value, opens stdin,

		StdinOnce - Boolean value, close stdin after the 1 attached client disconnects.

		Env - A list of environment variables in the form of VAR=value

		Labels - Adds a map of labels to a container. To specify a map: {"key":"value"[,"key2":"value2"]}

		Cmd - Command to run specified as a string or an array of strings.

		Entrypoint - Set the entry point for the container as a string or an array
of strings.

		Image - A string specifying the image name to use for the container.

		Mounts - An array of mount points in the container.

		WorkingDir - A string specifying the working directory for commands to
run in.

		NetworkDisabled - Boolean value, when true disables networking for the
container

		ExposedPorts - An object mapping ports to an empty object in the form of:
"ExposedPorts": { "<port>/<tcp|udp>: {}" }

		HostConfig
		Binds – A list of volume bindings for this container. Each volume binding is a string in one of these forms:
		container_path to create a new volume for the container

		host_path:container_path to bind-mount a host path into the container

		host_path:container_path:ro to make the bind-mount read-only inside the container.

		Links - A list of links for the container. Each link entry should be
in the form of container_name:alias.

		LxcConf - LXC specific configurations. These configurations only
work when using the lxc execution driver.

		PortBindings - A map of exposed container ports and the host port they
should map to. A JSON object in the form
{ <port>/<protocol>: [{ "HostPort": "<port>" }] }
Take note that port is specified as a string and not an integer value.

		PublishAllPorts - Allocates a random host port for all of a container’s
exposed ports. Specified as a boolean value.

		Privileged - Gives the container full access to the host. Specified as
a boolean value.

		ReadonlyRootfs - Mount the container’s root filesystem as read only.
Specified as a boolean value.

		Dns - A list of DNS servers for the container to use.

		DnsSearch - A list of DNS search domains

		ExtraHosts - A list of hostnames/IP mappings to add to the
container’s /etc/hosts file. Specified in the form ["hostname:IP"].

		VolumesFrom - A list of volumes to inherit from another container.
Specified in the form <container name>[:<ro|rw>]

		CapAdd - A list of kernel capabilities to add to the container.

		Capdrop - A list of kernel capabilities to drop from the container.

		RestartPolicy – The behavior to apply when the container exits. The
value is an object with a Name property of either "always" to
always restart or "on-failure" to restart only when the container
exit code is non-zero. If on-failure is used, MaximumRetryCount
controls the number of times to retry before giving up.
The default is not to restart. (optional)
An ever increasing delay (double the previous delay, starting at 100mS)
is added before each restart to prevent flooding the server.

		NetworkMode - Sets the networking mode for the container. Supported
values are: bridge, host, and container:<name|id>

		Devices - A list of devices to add to the container specified as a JSON object in the
form
{ "PathOnHost": "/dev/deviceName", "PathInContainer": "/dev/deviceName", "CgroupPermissions": "mrw"}

		Ulimits - A list of ulimits to set in the container, specified as
{ "Name": <name>, "Soft": <soft limit>, "Hard": <hard limit> }, for example:
Ulimits: { "Name": "nofile", "Soft": 1024, "Hard", 2048 }}

		SecurityOpt: A list of string values to customize labels for MLS
systems, such as SELinux.

		LogConfig - Log configuration for the container, specified as a JSON object in the form
{ "Type": "<driver_name>", "Config": {"key1": "val1"}}.
Available types: json-file, syslog, journald, gelf, none.
json-file logging driver.

		CgroupParent - Path to cgroups under which the container’s cgroup is created. If the path is not absolute, the path is considered to be relative to the cgroups path of the init process. Cgroups are created if they do not already exist.

Query Parameters:

		name – Assign the specified name to the container. Must
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "AppArmorProfile": "",
 "Args": [
 "-c",
 "exit 9"
],
 "Config": {
 "AttachStderr": true,
 "AttachStdin": false,
 "AttachStdout": true,
 "Cmd": [
 "/bin/sh",
 "-c",
 "exit 9"
],
 "Domainname": "",
 "Entrypoint": null,
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
],
 "ExposedPorts": null,
 "Hostname": "ba033ac44011",
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "MacAddress": "",
 "NetworkDisabled": false,
 "OnBuild": null,
 "OpenStdin": false,
 "StdinOnce": false,
 "Tty": false,
 "User": "",
 "Volumes": null,
 "WorkingDir": ""
 },
 "Created": "2015-01-06T15:47:31.485331387Z",
 "Driver": "devicemapper",
 "ExecDriver": "native-0.2",
 "ExecIDs": null,
 "HostConfig": {
 "Binds": null,
 "BlkioWeight": 0,
 "CapAdd": null,
 "CapDrop": null,
 "ContainerIDFile": "",
 "CpusetCpus": "",
 "CpusetMems": "",
 "CpuShares": 0,
 "CpuPeriod": 100000,
 "Devices": [],
 "Dns": null,
 "DnsSearch": null,
 "ExtraHosts": null,
 "IpcMode": "",
 "Links": null,
 "LxcConf": [],
 "Memory": 0,
 "MemorySwap": 0,
 "OomKillDisable": false,
 "NetworkMode": "bridge",
 "PortBindings": {},
 "Privileged": false,
 "ReadonlyRootfs": false,
 "PublishAllPorts": false,
 "RestartPolicy": {
 "MaximumRetryCount": 2,
 "Name": "on-failure"
 },
 "LogConfig": {
 "Config": null,
 "Type": "json-file"
 },
 "SecurityOpt": null,
 "VolumesFrom": null,
 "Ulimits": [{}]
 },
 "HostnamePath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/hostname",
 "HostsPath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/hosts",
 "LogPath": "/var/lib/docker/containers/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b-json.log",
 "Id": "ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39",
 "Image": "04c5d3b7b0656168630d3ba35d8889bd0e9caafcaeb3004d2bfbc47e7c5d35d2",
 "MountLabel": "",
 "Name": "/boring_euclid",
 "NetworkSettings": {
 "Bridge": "",
 "Gateway": "",
 "IPAddress": "",
 "IPPrefixLen": 0,
 "MacAddress": "",
 "PortMapping": null,
 "Ports": null
 },
 "Path": "/bin/sh",
 "ProcessLabel": "",
 "ResolvConfPath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/resolv.conf",
 "RestartCount": 1,
 "State": {
 "Error": "",
 "ExitCode": 9,
 "FinishedAt": "2015-01-06T15:47:32.080254511Z",
 "OOMKilled": false,
 "Paused": false,
 "Pid": 0,
 "Restarting": false,
 "Running": false,
 "StartedAt": "2015-01-06T15:47:32.072697474Z"
 },
 "Mounts": [
 {
 "Source": "/data",
 "Destination": "/data",
 "Mode": "ro,Z",
 "RW": false
 }
]
}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
}

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container logs

GET /containers/(id)/logs

Get stdout and stderr logs from the container id

Note:
This endpoint works only for containers with json-file logging driver.

Example request:

 GET /containers/4fa6e0f0c678/logs?stderr=1&stdout=1×tamps=1&follow=1&tail=10&since=1428990821 HTTP/1.1

Example response:

 HTTP/1.1 101 UPGRADED
 Content-Type: application/vnd.docker.raw-stream
 Connection: Upgrade
 Upgrade: tcp

 {{ STREAM }}

Query Parameters:

		follow – 1/True/true or 0/False/false, return stream. Default false.

		stdout – 1/True/true or 0/False/false, show stdout log. Default false.

		stderr – 1/True/true or 0/False/false, show stderr log. Default false.

		since – UNIX timestamp (integer) to filter logs. Specifying a timestamp
will only output log-entries since that timestamp. Default: 0 (unfiltered)

		timestamps – 1/True/true or 0/False/false, print timestamps for
every log line. Default false.

		tail – Output specified number of lines at the end of logs: all or <number>. Default all.

Status Codes:

		101 – no error, hints proxy about hijacking

		200 – no error, no upgrade header found

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Values for Kind:

		0: Modify

		1: Add

		2: Delete

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/octet-stream

{{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container stats based on resource usage

GET /containers/(id)/stats

This endpoint returns a live stream of a container’s resource usage statistics.

Note: this functionality currently only works when using the libcontainer exec-driver.

Example request:

GET /containers/redis1/stats HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "read" : "2015-01-08T22:57:31.547920715Z",
 "network" : {
 "rx_dropped" : 0,
 "rx_bytes" : 648,
 "rx_errors" : 0,
 "tx_packets" : 8,
 "tx_dropped" : 0,
 "rx_packets" : 8,
 "tx_errors" : 0,
 "tx_bytes" : 648
 },
 "memory_stats" : {
 "stats" : {
 "total_pgmajfault" : 0,
 "cache" : 0,
 "mapped_file" : 0,
 "total_inactive_file" : 0,
 "pgpgout" : 414,
 "rss" : 6537216,
 "total_mapped_file" : 0,
 "writeback" : 0,
 "unevictable" : 0,
 "pgpgin" : 477,
 "total_unevictable" : 0,
 "pgmajfault" : 0,
 "total_rss" : 6537216,
 "total_rss_huge" : 6291456,
 "total_writeback" : 0,
 "total_inactive_anon" : 0,
 "rss_huge" : 6291456,
 "hierarchical_memory_limit" : 67108864,
 "total_pgfault" : 964,
 "total_active_file" : 0,
 "active_anon" : 6537216,
 "total_active_anon" : 6537216,
 "total_pgpgout" : 414,
 "total_cache" : 0,
 "inactive_anon" : 0,
 "active_file" : 0,
 "pgfault" : 964,
 "inactive_file" : 0,
 "total_pgpgin" : 477
 },
 "max_usage" : 6651904,
 "usage" : 6537216,
 "failcnt" : 0,
 "limit" : 67108864
 },
 "blkio_stats" : {},
 "cpu_stats" : {
 "cpu_usage" : {
 "percpu_usage" : [
 16970827,
 1839451,
 7107380,
 10571290
],
 "usage_in_usermode" : 10000000,
 "total_usage" : 36488948,
 "usage_in_kernelmode" : 20000000
 },
 "system_cpu_usage" : 20091722000000000,
 "throttling_data" : {}
 }
 }

Query Parameters:

		stream – 1/True/true or 0/False/false, pull stats once then disconnect. Default true.

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Resize a container TTY

POST /containers/(id)/resize?h=<height>&w=<width>

Resize the TTY for container with id. You must restart the container for the resize to take effect.

Example request:

 POST /containers/4fa6e0f0c678/resize?h=40&w=80 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Length: 0
 Content-Type: text/plain; charset=utf-8

Status Codes:

		200 – no error

		404 – No such container

		500 – Cannot resize container

Start a container

POST /containers/(id)/start

Start the container id

Note:
For backwards compatibility, this endpoint accepts a HostConfig as JSON-encoded request body.
See create a container for details.

Example request:

POST /containers/(id)/start HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		304 – container already started

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		304 – container already stopped

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

POST /containers/e90e34656806/kill HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like SIGINT.
When not set, SIGKILL is assumed and the call waits for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Rename a container

POST /containers/(id)/rename

Rename the container id to a new_name

Example request:

POST /containers/e90e34656806/rename?name=new_name HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters:

		name – new name for the container

Status Codes:

		204 – no error

		404 – no such container

		409 - conflict name already assigned

		500 – server error

Pause a container

POST /containers/(id)/pause

Pause the container id

Example request:

POST /containers/e90e34656806/pause HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Unpause a container

POST /containers/(id)/unpause

Unpause the container id

Example request:

POST /containers/e90e34656806/unpause HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

HTTP/1.1 101 UPGRADED
Content-Type: application/vnd.docker.raw-stream
Connection: Upgrade
Upgrade: tcp

{{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false.

		stream – 1/True/true or 0/False/false, return stream.
Default false.

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false.

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false.

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false.

Status Codes:

		101 – no error, hints proxy about hijacking

		200 – no error, no upgrade header found

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header contains the information which the stream writes (stdout or
stderr). It also contains the size of the associated frame encoded in the
last four bytes (uint32).

It is encoded on the first eight bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (is written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the four bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read eight bytes.

		Choose stdout or stderr depending on the first byte.

		Extract the frame size from the last four bytes.

		Read the extracted size and output it on the correct output.

		Goto 1.

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

{{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false.

		stream – 1/True/true or 0/False/false, return stream.
Default false.

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false.

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false.

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false.

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false.

		force - 1/True/true or 0/False/false, Kill then remove the container.
Default false.

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Deprecated in favor of the archive endpoint below.

Example request:

POST /containers/4fa6e0f0c678/copy HTTP/1.1
Content-Type: application/json

{
 "Resource": "test.txt"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/x-tar

{{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Retrieving information about files and folders in a container

HEAD /containers/(id)/archive

See the description of the X-Docker-Container-Path-Stat header in the
folowing section.

Get an archive of a filesystem resource in a container

GET /containers/(id)/archive

Get an tar archive of a resource in the filesystem of container id.

Query Parameters:

		path - resource in the container’s filesystem to archive. Required.

If not an absolute path, it is relative to the container’s root directory.
The resource specified by path must exist. To assert that the resource
is expected to be a directory, path should end in / or /.
(assuming a path separator of /). If path ends in /. then this
indicates that only the contents of the path directory should be
copied. A symlink is always resolved to its target.

Note: It is not possible to copy certain system files such as resources
under /proc, /sys, /dev, and mounts created by the user in the
container.

Example request:

 GET /containers/8cce319429b2/archive?path=/root HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar
 X-Docker-Container-Path-Stat: eyJuYW1lIjoicm9vdCIsInBhdGgiOiIvcm9vdCIsInNpemUiOjQwOTYsIm1vZGUiOjIxNDc0ODQwOTYsIm10aW1lIjoiMjAxNC0wMi0yN1QyMDo1MToyM1oifQ==

 {{ TAR STREAM }}

On success, a response header X-Docker-Container-Path-Stat will be set to a
base64-encoded JSON object containing some filesystem header information about
the archived resource. The above example value would decode to the following
JSON object (whitespace added for readability):

 {
 "name": "root",
 "path": "/root",
 "size": 4096,
 "mode": 2147484096,
 "mtime": "2014-02-27T20:51:23Z"
 }

A HEAD request can also be made to this endpoint if only this information is
desired.

Status Codes:

		200 - success, returns archive of copied resource

		400 - client error, bad parameter, details in JSON response body, one of:
		must specify path parameter (path cannot be empty)

		not a directory (path was asserted to be a directory but exists as a
file)

		404 - client error, resource not found, one of:
– no such container (container id does not exist)
		no such file or directory (path does not exist)

		500 - server error

Extract an archive of files or folders to a directory in a container

PUT /containers/(id)/archive

Upload a tar archive to be extracted to a path in the filesystem of container
id.

Query Parameters:

		path - path to a directory in the container
to extract the archive’s contents into. Required.

If not an absolute path, it is relative to the container’s root directory.
The path resource must exist.

		noOverwriteDirNonDir - If “1”, “true”, or “True” then it will be an error
if unpacking the given content would cause an existing directory to be
replaced with a non-directory and vice versa.

Example request:

 PUT /containers/8cce319429b2/archive?path=/vol1 HTTP/1.1
 Content-Type: application/x-tar

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – the content was extracted successfully

		400 - client error, bad parameter, details in JSON response body, one of:
		must specify path parameter (path cannot be empty)

		not a directory (path should be a directory but exists as a file)

		unable to overwrite existing directory with non-directory
(if noOverwriteDirNonDir)

		unable to overwrite existing non-directory with directory
(if noOverwriteDirNonDir)

		403 - client error, permission denied, the volume
or container rootfs is marked as read-only.

		404 - client error, resource not found, one of:
– no such container (container id does not exist)
		no such file or directory (path resource does not exist)

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

GET /images/json?all=0 HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Example request, with digest information:

GET /images/json?digests=1 HTTP/1.1

Example response, with digest information:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "Created": 1420064636,
 "Id": "4986bf8c15363d1c5d15512d5266f8777bfba4974ac56e3270e7760f6f0a8125",
 "ParentId": "ea13149945cb6b1e746bf28032f02e9b5a793523481a0a18645fc77ad53c4ea2",
 "RepoDigests": [
 "localhost:5000/test/busybox@sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf"
],
 "RepoTags": [
 "localhost:5000/test/busybox:latest",
 "playdate:latest"
],
 "Size": 0,
 "VirtualSize": 2429728
 }
]

The response shows a single image Id associated with two repositories
(RepoTags): localhost:5000/test/busybox: and playdate. A caller can use
either of the RepoTags values localhost:5000/test/busybox:latest or
playdate:latest to reference the image.

You can also use RepoDigests values to reference an image. In this response,
the array has only one reference and that is to the
localhost:5000/test/busybox repository; the playdate repository has no
digest. You can reference this digest using the value:
localhost:5000/test/busybox@sha256:cbbf2f9a99b47fc460d...

See the docker run and docker build commands for examples of digest and tag
references on the command line.

Query Parameters:

		all – 1/True/true or 0/False/false, default false

		filters – a JSON encoded value of the filters (a map[string][]string) to process on the images list. Available filters:

		dangling=true

		label=key or label="key=value" of an image label

		filter - only return images with the specified name

Build image from a Dockerfile

POST /build

Build an image from a Dockerfile

Example request:

POST /build HTTP/1.1

{{ TAR STREAM }}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"stream": "Step 1..."}
{"stream": "..."}
{"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The input stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a build instructions file, typically called
Dockerfile at the archive’s root. The dockerfile parameter may be
used to specify a different build instructions file. To do this, its value must be
the path to the alternate build instructions file to use.

The archive may include any number of other files,
which are accessible in the build context (See the ADD build
command).

The build is canceled if the client drops the connection by quitting
or being killed.

Query Parameters:

		dockerfile - Path within the build context to the Dockerfile. This is
ignored if remote is specified and points to an individual filename.

		t – A repository name (and optionally a tag) to apply to
the resulting image in case of success.

		remote – A Git repository URI or HTTP/HTTPS URI build source. If the
URI specifies a filename, the file’s contents are placed into a file
called Dockerfile.

		q – Suppress verbose build output.

		nocache – Do not use the cache when building the image.

		pull - Attempt to pull the image even if an older image exists locally.

		rm - Remove intermediate containers after a successful build (default behavior).

		forcerm - Always remove intermediate containers (includes rm).

		memory - Set memory limit for build.

		memswap - Total memory (memory + swap), -1 to disable swap.

		cpushares - CPU shares (relative weight).

		cpusetcpus - CPUs in which to allow execution (e.g., 0-3, 0,1).

Request Headers:

		Content-type – Set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Create an image

POST /images/create

Create an image either by pulling it from the registry or by importing it

Example request:

POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"status": "Pulling..."}
{"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
{"error": "Invalid..."}
...

When using this endpoint to pull an image from the registry, the
X-Registry-Auth header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – Name of the image to pull.

		fromSrc – Source to import. The value may be a URL from which the image
can be retrieved or - to read the image from the request body.

		repo – Repository name.

		tag – Tag.

		registry – The registry to pull from.

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

GET /images/ubuntu/json HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Created": "2013-03-23T22:24:18.818426-07:00",
 "Container": "3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "ContainerConfig":
 {
 "Hostname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "Tty": true,
 "OpenStdin": true,
 "StdinOnce": false,
 "Env": null,
 "Cmd": ["/bin/bash"],
 "Dns": null,
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "Volumes": null,
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Parent": "27cf784147099545",
 "Size": 6824592
}

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

GET /images/ubuntu/history HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "Id": "3db9c44f45209632d6050b35958829c3a2aa256d81b9a7be45b362ff85c54710",
 "Created": 1398108230,
 "CreatedBy": "/bin/sh -c #(nop) ADD file:eb15dbd63394e063b805a3c32ca7bf0266ef64676d5a6fab4801f2e81e2a5148 in /",
 "Tags": [
 "ubuntu:lucid",
 "ubuntu:10.04"
],
 "Size": 182964289,
 "Comment": ""
 },
 {
 "Id": "6cfa4d1f33fb861d4d114f43b25abd0ac737509268065cdfd69d544a59c85ab8",
 "Created": 1398108222,
 "CreatedBy": "/bin/sh -c #(nop) MAINTAINER Tianon Gravi <admwiggin@gmail.com> - mkimage-debootstrap.sh -i iproute,iputils-ping,ubuntu-minimal -t lucid.tar.xz lucid http://archive.ubuntu.com/ubuntu/",
 "Tags": null,
 "Size": 0,
 "Comment": ""
 },
 {
 "Id": "511136ea3c5a64f264b78b5433614aec563103b4d4702f3ba7d4d2698e22c158",
 "Created": 1371157430,
 "CreatedBy": "",
 "Tags": [
 "scratch12:latest",
 "scratch:latest"
],
 "Size": 0,
 "Comment": "Imported from -"
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

POST /images/test/push HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"status": "Pushing..."}
{"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
{"error": "Invalid..."}
...

If you wish to push an image on to a private registry, that image must already have a tag
into a repository which references that registry hostname and port. This repository name should
then be used in the URL. This duplicates the command line’s flow.

Example request:

POST /images/registry.acme.com:5000/test/push HTTP/1.1

Query Parameters:

		tag – The tag to associate with the image on the registry. This is optional.

Request Headers:

		X-Registry-Auth – Include a base64-encoded AuthConfig.
object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

DELETE /images/test HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-type: application/json

[
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Query Parameters:

		force – 1/True/true or 0/False/false, default false

		noprune – 1/True/true or 0/False/false, default false

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

GET /images/search?term=sshd HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Check auth configuration

POST /auth

Get the default username and email

Example request:

POST /auth HTTP/1.1
Content-Type: application/json

{
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
}

Example response:

HTTP/1.1 200 OK

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

GET /info HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Containers": 11,
 "CpuCfsPeriod": true,
 "CpuCfsQuota": true,
 "Debug": false,
 "DockerRootDir": "/var/lib/docker",
 "Driver": "btrfs",
 "DriverStatus": [[""]],
 "ExecutionDriver": "native-0.1",
 "ExperimentalBuild": false,
 "HttpProxy": "http://test:test@localhost:8080",
 "HttpsProxy": "https://test:test@localhost:8080",
 "ID": "7TRN:IPZB:QYBB:VPBQ:UMPP:KARE:6ZNR:XE6T:7EWV:PKF4:ZOJD:TPYS",
 "IPv4Forwarding": true,
 "Images": 16,
 "IndexServerAddress": "https://index.docker.io/v1/",
 "InitPath": "/usr/bin/docker",
 "InitSha1": "",
 "KernelVersion": "3.12.0-1-amd64",
 "Labels": [
 "storage=ssd"
],
 "MemTotal": 2099236864,
 "MemoryLimit": true,
 "NCPU": 1,
 "NEventsListener": 0,
 "NFd": 11,
 "NGoroutines": 21,
 "Name": "prod-server-42",
 "NoProxy": "9.81.1.160",
 "OomKillDisable": true,
 "OperatingSystem": "Boot2Docker",
 "RegistryConfig": {
 "IndexConfigs": {
 "docker.io": {
 "Mirrors": null,
 "Name": "docker.io",
 "Official": true,
 "Secure": true
 }
 },
 "InsecureRegistryCIDRs": [
 "127.0.0.0/8"
]
 },
 "SwapLimit": false,
 "SystemTime": "2015-03-10T11:11:23.730591467-07:00"
}

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

GET /version HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Version": "1.5.0",
 "Os": "linux",
 "KernelVersion": "3.18.5-tinycore64",
 "GoVersion": "go1.4.1",
 "GitCommit": "a8a31ef",
 "Arch": "amd64",
 "ApiVersion": "1.20",
 "Experimental": false
}

Status Codes:

		200 – no error

		500 – server error

Ping the docker server

GET /_ping

Ping the docker server

Example request:

GET /_ping HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: text/plain

OK

Status Codes:

		200 - no error

		500 - server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

POST /commit?container=44c004db4b17&comment=message&repo=myrepo HTTP/1.1
Content-Type: application/json

{
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Mounts": [
 {
 "Source": "/data",
 "Destination": "/data",
 "Mode": "ro,Z",
 "RW": false
 }
],
 "Labels": {
 "key1": "value1",
 "key2": "value2"
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "ExposedPorts": {
 "22/tcp": {}
 }
}

Example response:

HTTP/1.1 201 Created
Content-Type: application/vnd.docker.raw-stream

{"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		comment – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get container events from docker, either in real time via streaming, or via
polling (using since).

Docker containers report the following events:

attach, commit, copy, create, destroy, die, exec_create, exec_start, export, kill, oom, pause, rename, resize, restart, start, stop, top, unpause

and Docker images report:

delete, import, pull, push, tag, untag

Example request:

GET /events?since=1374067924

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"status": "create", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
{"status": "start", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
{"status": "stop", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067966}
{"status": "destroy", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067970}

Query Parameters:

		since – Timestamp used for polling

		until – Timestamp used for polling

		filters – A json encoded value of the filters (a map[string][]string) to process on the event list. Available filters:

		event=<string>; – event to filter

		image=<string>; – image to filter

		container=<string>; – container to filter

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository specified
by name.

If name is a specific name and tag (e.g. ubuntu:latest), then only that image
(and its parents) are returned. If name is an image ID, similarly only that
image (and its parents) are returned, but with the exclusion of the
‘repositories’ file in the tarball, as there were no image names referenced.

See the image tarball format for more details.

Example request

GET /images/ubuntu/get

Example response:

HTTP/1.1 200 OK
Content-Type: application/x-tar

Binary data stream

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images.

GET /images/get

Get a tarball containing all images and metadata for one or more repositories.

For each value of the names parameter: if it is a specific name and tag (e.g.
ubuntu:latest), then only that image (and its parents) are returned; if it is
an image ID, similarly only that image (and its parents) are returned and there
would be no names referenced in the ‘repositories’ file for this image ID.

See the image tarball format for more details.

Example request

GET /images/get?names=myname%2Fmyapp%3Alatest&names=busybox

Example response:

HTTP/1.1 200 OK
Content-Type: application/x-tar

Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into a Docker repository.
See the image tarball format for more details.

Example request

POST /images/load

Tarball in body

Example response:

HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing these files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file contains aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, the tarball should also include a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

Exec Create

POST /containers/(id)/exec

Sets up an exec instance in a running container id

Example request:

POST /containers/e90e34656806/exec HTTP/1.1
Content-Type: application/json

 {
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "Cmd": [
 "date"
]
 }

Example response:

HTTP/1.1 201 OK
Content-Type: application/json

{
 "Id": "f90e34656806"
 "Warnings":[]
}

Json Parameters:

		AttachStdin - Boolean value, attaches to stdin of the exec command.

		AttachStdout - Boolean value, attaches to stdout of the exec command.

		AttachStderr - Boolean value, attaches to stderr of the exec command.

		Tty - Boolean value to allocate a pseudo-TTY.

		Cmd - Command to run specified as a string or an array of strings.

Status Codes:

		201 – no error

		404 – no such container

Exec Start

POST /exec/(id)/start

Starts a previously set up exec instance id. If detach is true, this API
returns after starting the exec command. Otherwise, this API sets up an
interactive session with the exec command.

Example request:

POST /exec/e90e34656806/start HTTP/1.1
Content-Type: application/json

{
 "Detach": false,
 "Tty": false
}

Example response:

HTTP/1.1 201 OK
Content-Type: application/json

{{ STREAM }}

Json Parameters:

		Detach - Detach from the exec command.

		Tty - Boolean value to allocate a pseudo-TTY.

Status Codes:

		201 – no error

		404 – no such exec instance

Stream details:
Similar to the stream behavior of POST /container/(id)/attach API

Exec Resize

POST /exec/(id)/resize

Resizes the tty session used by the exec command id.
This API is valid only if tty was specified as part of creating and starting the exec command.

Example request:

POST /exec/e90e34656806/resize HTTP/1.1
Content-Type: text/plain

Example response:

HTTP/1.1 201 OK
Content-Type: text/plain

Query Parameters:

		h – height of tty session

		w – width

Status Codes:

		201 – no error

		404 – no such exec instance

Exec Inspect

GET /exec/(id)/json

Return low-level information about the exec command id.

Example request:

GET /exec/11fb006128e8ceb3942e7c58d77750f24210e35f879dd204ac975c184b820b39/json HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: plain/text

{
 "ID" : "11fb006128e8ceb3942e7c58d77750f24210e35f879dd204ac975c184b820b39",
 "Running" : false,
 "ExitCode" : 2,
 "ProcessConfig" : {
 "privileged" : false,
 "user" : "",
 "tty" : false,
 "entrypoint" : "sh",
 "arguments" : [
 "-c",
 "exit 2"
]
 },
 "OpenStdin" : false,
 "OpenStderr" : false,
 "OpenStdout" : false,
 "Container" : {
 "State" : {
 "Running" : true,
 "Paused" : false,
 "Restarting" : false,
 "OOMKilled" : false,
 "Pid" : 3650,
 "ExitCode" : 0,
 "Error" : "",
 "StartedAt" : "2014-11-17T22:26:03.717657531Z",
 "FinishedAt" : "0001-01-01T00:00:00Z"
 },
 "ID" : "8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c",
 "Created" : "2014-11-17T22:26:03.626304998Z",
 "Path" : "date",
 "Args" : [],
 "Config" : {
 "Hostname" : "8f177a186b97",
 "Domainname" : "",
 "User" : "",
 "AttachStdin" : false,
 "AttachStdout" : false,
 "AttachStderr" : false,
 "ExposedPorts" : null,
 "Tty" : false,
 "OpenStdin" : false,
 "StdinOnce" : false,
 "Env" : ["PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"],
 "Cmd" : [
 "date"
],
 "Image" : "ubuntu",
 "Volumes" : null,
 "WorkingDir" : "",
 "Entrypoint" : null,
 "NetworkDisabled" : false,
 "MacAddress" : "",
 "OnBuild" : null,
 "SecurityOpt" : null
 },
 "Image" : "5506de2b643be1e6febbf3b8a240760c6843244c41e12aa2f60ccbb7153d17f5",
 "NetworkSettings" : {
 "IPAddress" : "172.17.0.2",
 "IPPrefixLen" : 16,
 "MacAddress" : "02:42:ac:11:00:02",
 "Gateway" : "172.17.42.1",
 "Bridge" : "docker0",
 "PortMapping" : null,
 "Ports" : {}
 },
 "ResolvConfPath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/resolv.conf",
 "HostnamePath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/hostname",
 "HostsPath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/hosts",
 "LogPath": "/var/lib/docker/containers/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b-json.log",
 "Name" : "/test",
 "Driver" : "aufs",
 "ExecDriver" : "native-0.2",
 "MountLabel" : "",
 "ProcessLabel" : "",
 "AppArmorProfile" : "",
 "RestartCount" : 0,
 "Mounts" : [],
 }
}

Status Codes:

		200 – no error

		404 – no such exec instance

		500 - server error

3. Going further

3.1 Inside docker run

As an example, the docker run command line makes the following API calls:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
		Try to pull it.

		Then, retry to create the container.

		Start the container.

		If you are not in detached mode:

		Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached, display the container’s id.

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout, and stderr on the same socket.

To hint potential proxies about connection hijacking, Docker client sends
connection upgrade headers similarly to websocket.

Upgrade: tcp
Connection: Upgrade

When Docker daemon detects the Upgrade header, it switches its status code
from 200 OK to 101 UPGRADED and resends the same headers.

3.3 CORS Requests

To set cross origin requests to the remote api please give values to
--api-cors-header when running Docker in daemon mode. Set * (asterisk) allows all,
default or blank means CORS disabled

$ docker daemon -H="192.168.1.9:2375" --api-cors-header="http://foo.bar"

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.14.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.14

1. Brief introduction

		The Remote API has replaced rcli.

		The daemon listens on unix:///var/run/docker.sock but you can
Bind Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport STDOUT,
STDIN and STDERR.

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Image": "ubuntu:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "ubuntu:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created containers, include non-running ones.

		since – Show only containers created since Id, include non-running ones.

		before – Show only containers created before Id, include non-running ones.

		size – 1/True/true or 0/False/false, Show the containers sizes

		filters - a json encoded value of the filters (a map[string][]string) to process on the containers list. Available filters:

		exited=<

int>

 – containers with exit code of <

int>

		status=(restarting|running|paused|exited)

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "Domainname": "",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "CpuShares": 512,
 "Cpuset": "0,1",
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Image":"ubuntu",
 "Volumes":{
 "/tmp": {}
 },
 "WorkingDir":"",
 "NetworkDisabled": false,
 "ExposedPorts":{
 "22/tcp": {}
 },
 "RestartPolicy": { "Name": "always" }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		RestartPolicy – The behavior to apply when the container exits. The
value is an object with a Name property of either "always" to
always restart or "on-failure" to restart only when the container
exit code is non-zero. If on-failure is used, MaximumRetryCount
controls the number of times to retry before giving up.
The default is not to restart. (optional)
An ever increasing delay (double the previous delay, starting at 100mS)
is added before each restart to prevent flooding the server.

		config – the container’s configuration

Query Parameters:

		name – Assign the specified name to the container. Must match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": {},
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {},
 "HostConfig": {
 "Binds": null,
 "ContainerIDFile": "",
 "LxcConf": [],
 "Privileged": false,
 "PortBindings": {
 "80/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "49153"
 }
]
 },
 "Links": ["/name:alias"],
 "PublishAllPorts": false,
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"]
 }
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container logs

GET /containers/(id)/logs

Get stdout and stderr logs from the container id

Example request:

 GET /containers/4fa6e0f0c678/logs?stderr=1&stdout=1×tamps=1&follow=1&tail=10 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		follow – 1/True/true or 0/False/false, return stream. Default false

		stdout – 1/True/true or 0/False/false, show stdout log. Default false

		stderr – 1/True/true or 0/False/false, show stderr log. Default false

		timestamps – 1/True/true or 0/False/false, print timestamps for every
log line. Default false

		tail – Output specified number of lines at the end of logs: all or
<number>. Default all

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds":["/tmp:/tmp"],
 "Links":["redis3:redis"],
 "LxcConf":[{"Key":"lxc.utsname","Value":"docker"}],
 "PortBindings":{ "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts":false,
 "Privileged":false,
 "Dns": ["8.8.8.8"],
 "VolumesFrom": ["parent", "other:ro"],
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"]
 }

Example response:

 HTTP/1.1 204 No Content

Json Parameters:

		hostConfig – the container’s host configuration (optional)

Status Codes:

		204 – no error

		304 – container already started

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		304 – container already stopped

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like “SIGINT”.
When not set, SIGKILL is assumed and the call will wait for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Pause a container

POST /containers/(id)/pause

Pause the container id

Example request:

 POST /containers/e90e34656806/pause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Unpause a container

POST /containers/(id)/unpause

Unpause the container id

Example request:

 POST /containers/e90e34656806/unpause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream. Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach to stdin.
Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

		force - 1/True/true or 0/False/false, Kill then remove the container.
Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, default false

		filters – a json encoded value of the filters (a map[string][]string) to process on the images list. Available filters:

		dangling=true

		filter - only return images with the specified name

Create an image

POST /images/create

Create an image, either by pulling it from the registry or by importing it

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pulling..."}
 {"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
 {"error": "Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/ubuntu/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Created": "2013-03-23T22:24:18.818426-07:00",
 "Container": "3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "ContainerConfig":
 {
 "Hostname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "PortSpecs": null,
 "Tty": true,
 "OpenStdin": true,
 "StdinOnce": false,
 "Env": null,
 "Cmd": ["/bin/bash"],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": null,
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Parent": "27cf784147099545",
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/ubuntu/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pushing..."}
 {"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
 {"error": "Invalid..."}
 ...

If you wish to push an image on to a private registry, that image must already have been tagged
into a repository which references that registry host name and port. This repository name should
then be used in the URL. This mirrors the flow of the CLI.

Example request:

 POST /images/registry.acme.com:5000/test/push HTTP/1.1

Query Parameters:

		tag – the tag to associate with the image on the registry, optional

Request Headers:

		X-Registry-Auth – include a base64-encoded AuthConfig object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Query Parameters:

		force – 1/True/true or 0/False/false, default false

		noprune – 1/True/true or 0/False/false, default false

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"stream": "Step 1..."}
 {"stream": "..."}
 {"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a file called `Dockerfile`
at its root. It may include any number of other files,
which will be accessible in the build context (See the [*ADD build
command*](/reference/builder/#dockerbuilder)).

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – git or HTTP/HTTPS URI build source

		q – suppress verbose build output

		nocache – do not use the cache when building the image

		rm - remove intermediate containers after a successful build (default behavior)

		forcerm - always remove intermediate containers (includes rm)

Request Headers:

		Content-type – should be set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers": 11,
 "Images": 16,
 "Driver": "btrfs",
 "ExecutionDriver": "native-0.1",
 "KernelVersion": "3.12.0-1-amd64"
 "Debug": false,
 "NFd": 11,
 "NGoroutines": 21,
 "NEventsListener": 0,
 "InitPath": "/usr/bin/docker",
 "IndexServerAddress": ["https://index.docker.io/v1/"],
 "MemoryLimit": true,
 "SwapLimit": false,
 "IPv4Forwarding": true
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "ApiVersion": "1.12",
 "Version": "0.2.2",
 "GitCommit": "5a2a5cc+CHANGES",
 "GoVersion": "go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Ping the docker server

GET /_ping

Ping the docker server

Example request:

 GET /_ping HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 OK

Status Codes:

		200 - no error

		500 - server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&comment=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "Cpuset": "0,1",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Volumes": {
 "/tmp": {}
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "ExposedPorts": {
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		comment – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get container events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

		until – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images and tags in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository
specified by name.

See the image tarball format for more details.

Example request

 GET /images/ubuntu/get

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into the docker repository.
See the image tarball format for more details.

Example request

 POST /images/load

 Tarball in body

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing three files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file will contain aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, there will also be a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

3. Going further

3.1 Inside docker run

As an example, the docker run command line makes the following API calls:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
		Try to pull it

		Then retry to create the container

		Start the container

		If you are not in detached mode:
		Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
		Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.19.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.19

1. Brief introduction

		The Remote API has replaced rcli.

		The daemon listens on unix:///var/run/docker.sock but you can
Bind Docker to another host/port or a Unix socket.

		The API tends to be REST. However, for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout,
stdin and stderr.

		When the client API version is newer than the daemon’s, these calls return an HTTP
400 Bad Request error message.

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "Id": "8dfafdbc3a40",
 "Names":["/boring_feynman"],
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Names":["/coolName"],
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Names":["/sleepy_dog"],
 "Image": "ubuntu:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Names":["/running_cat"],
 "Image": "ubuntu:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created
containers, include non-running ones.

		since – Show only containers created since Id, include
non-running ones.

		before – Show only containers created before Id, include
non-running ones.

		size – 1/True/true or 0/False/false, Show the containers
sizes

		filters - a JSON encoded value of the filters (a map[string][]string) to process on the containers list. Available filters:

		exited=<int>; – containers with exit code of <int> ;

		status=(restarting|running|paused|exited)

		label=key or label="key=value" of a container label

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

POST /containers/create HTTP/1.1
Content-Type: application/json

{
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Entrypoint": "",
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "Volumes": {
 "/tmp": {}
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "MacAddress": "12:34:56:78:9a:bc",
 "ExposedPorts": {
 "22/tcp": {}
 },
 "HostConfig": {
 "Binds": ["/tmp:/tmp"],
 "Links": ["redis3:redis"],
 "LxcConf": {"lxc.utsname":"docker"},
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "CpuPeriod": 100000,
 "CpusetCpus": "0,1",
 "CpusetMems": "0,1",
 "BlkioWeight": 300,
 "OomKillDisable": false,
 "PortBindings": { "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts": false,
 "Privileged": false,
 "ReadonlyRootfs": false,
 "Dns": ["8.8.8.8"],
 "DnsSearch": [""],
 "ExtraHosts": null,
 "VolumesFrom": ["parent", "other:ro"],
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"],
 "RestartPolicy": { "Name": "", "MaximumRetryCount": 0 },
 "NetworkMode": "bridge",
 "Devices": [],
 "Ulimits": [{}],
 "LogConfig": { "Type": "json-file", "Config": {} },
 "SecurityOpt": [""],
 "CgroupParent": ""
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		Hostname - A string value containing the hostname to use for the
container.

		Domainname - A string value containing the domain name to use
for the container.

		User - A string value specifying the user inside the container.

		Memory - Memory limit in bytes.

		MemorySwap- Total memory limit (memory + swap); set -1 to disable swap
You must use this with memory and make the swap value larger than memory.

		CpuShares - An integer value containing the container’s CPU Shares
(ie. the relative weight vs other containers).

		CpuPeriod - The length of a CPU period in microseconds.

		Cpuset - Deprecated please don’t use. Use CpusetCpus instead.

		CpusetCpus - String value containing the cgroups CpusetCpus to use.

		CpusetMems - Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effective on NUMA systems.

		BlkioWeight - Block IO weight (relative weight) accepts a weight value between 10 and 1000.

		OomKillDisable - Boolean value, whether to disable OOM Killer for the container or not.

		AttachStdin - Boolean value, attaches to stdin.

		AttachStdout - Boolean value, attaches to stdout.

		AttachStderr - Boolean value, attaches to stderr.

		Tty - Boolean value, Attach standard streams to a tty, including stdin if it is not closed.

		OpenStdin - Boolean value, opens stdin,

		StdinOnce - Boolean value, close stdin after the 1 attached client disconnects.

		Env - A list of environment variables in the form of VAR=value

		Labels - Adds a map of labels to a container. To specify a map: {"key":"value"[,"key2":"value2"]}

		Cmd - Command to run specified as a string or an array of strings.

		Entrypoint - Set the entry point for the container as a string or an array
of strings.

		Image - A string specifying the image name to use for the container.

		Volumes – An object mapping mount point paths (strings) inside the
container to empty objects.

		WorkingDir - A string specifying the working directory for commands to
run in.

		NetworkDisabled - Boolean value, when true disables networking for the
container

		ExposedPorts - An object mapping ports to an empty object in the form of:
"ExposedPorts": { "<port>/<tcp|udp>: {}" }

		HostConfig
		Binds – A list of volume bindings for this container. Each volume binding is a string in one of these forms:
		container_path to create a new volume for the container

		host_path:container_path to bind-mount a host path into the container

		host_path:container_path:ro to make the bind-mount read-only inside the container.

		Links - A list of links for the container. Each link entry should be
in the form of container_name:alias.

		LxcConf - LXC specific configurations. These configurations only
work when using the lxc execution driver.

		PortBindings - A map of exposed container ports and the host port they
should map to. A JSON object in the form
{ <port>/<protocol>: [{ "HostPort": "<port>" }] }
Take note that port is specified as a string and not an integer value.

		PublishAllPorts - Allocates a random host port for all of a container’s
exposed ports. Specified as a boolean value.

		Privileged - Gives the container full access to the host. Specified as
a boolean value.

		ReadonlyRootfs - Mount the container’s root filesystem as read only.
Specified as a boolean value.

		Dns - A list of DNS servers for the container to use.

		DnsSearch - A list of DNS search domains

		ExtraHosts - A list of hostnames/IP mappings to add to the
container’s /etc/hosts file. Specified in the form ["hostname:IP"].

		VolumesFrom - A list of volumes to inherit from another container.
Specified in the form <container name>[:<ro|rw>]

		CapAdd - A list of kernel capabilities to add to the container.

		Capdrop - A list of kernel capabilities to drop from the container.

		RestartPolicy – The behavior to apply when the container exits. The
value is an object with a Name property of either "always" to
always restart or "on-failure" to restart only when the container
exit code is non-zero. If on-failure is used, MaximumRetryCount
controls the number of times to retry before giving up.
The default is not to restart. (optional)
An ever increasing delay (double the previous delay, starting at 100mS)
is added before each restart to prevent flooding the server.

		NetworkMode - Sets the networking mode for the container. Supported
values are: bridge, host, and container:<name|id>

		Devices - A list of devices to add to the container specified as a JSON object in the
form
{ "PathOnHost": "/dev/deviceName", "PathInContainer": "/dev/deviceName", "CgroupPermissions": "mrw"}

		Ulimits - A list of ulimits to set in the container, specified as
{ "Name": <name>, "Soft": <soft limit>, "Hard": <hard limit> }, for example:
Ulimits: { "Name": "nofile", "Soft": 1024, "Hard", 2048 }}

		SecurityOpt: A list of string values to customize labels for MLS
systems, such as SELinux.

		LogConfig - Log configuration for the container, specified as a JSON object in the form
{ "Type": "<driver_name>", "Config": {"key1": "val1"}}.
Available types: json-file, syslog, journald, none.
syslog available options are: address.

		CgroupParent - Path to cgroups under which the cgroup for the container will be created. If the path is not absolute, the path is considered to be relative to the cgroups path of the init process. Cgroups will be created if they do not already exist.

Query Parameters:

		name – Assign the specified name to the container. Must
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "AppArmorProfile": "",
 "Args": [
 "-c",
 "exit 9"
],
 "Config": {
 "AttachStderr": true,
 "AttachStdin": false,
 "AttachStdout": true,
 "Cmd": [
 "/bin/sh",
 "-c",
 "exit 9"
],
 "Domainname": "",
 "Entrypoint": null,
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
],
 "ExposedPorts": null,
 "Hostname": "ba033ac44011",
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "MacAddress": "",
 "NetworkDisabled": false,
 "OnBuild": null,
 "OpenStdin": false,
 "PortSpecs": null,
 "StdinOnce": false,
 "Tty": false,
 "User": "",
 "Volumes": null,
 "WorkingDir": ""
 },
 "Created": "2015-01-06T15:47:31.485331387Z",
 "Driver": "devicemapper",
 "ExecDriver": "native-0.2",
 "ExecIDs": null,
 "HostConfig": {
 "Binds": null,
 "BlkioWeight": 0,
 "CapAdd": null,
 "CapDrop": null,
 "ContainerIDFile": "",
 "CpusetCpus": "",
 "CpusetMems": "",
 "CpuShares": 0,
 "CpuPeriod": 100000,
 "Devices": [],
 "Dns": null,
 "DnsSearch": null,
 "ExtraHosts": null,
 "IpcMode": "",
 "Links": null,
 "LxcConf": [],
 "Memory": 0,
 "MemorySwap": 0,
 "OomKillDisable": false,
 "NetworkMode": "bridge",
 "PortBindings": {},
 "Privileged": false,
 "ReadonlyRootfs": false,
 "PublishAllPorts": false,
 "RestartPolicy": {
 "MaximumRetryCount": 2,
 "Name": "on-failure"
 },
 "LogConfig": {
 "Config": null,
 "Type": "json-file"
 },
 "SecurityOpt": null,
 "VolumesFrom": null,
 "Ulimits": [{}]
 },
 "HostnamePath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/hostname",
 "HostsPath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/hosts",
 "LogPath": "/var/lib/docker/containers/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b-json.log",
 "Id": "ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39",
 "Image": "04c5d3b7b0656168630d3ba35d8889bd0e9caafcaeb3004d2bfbc47e7c5d35d2",
 "MountLabel": "",
 "Name": "/boring_euclid",
 "NetworkSettings": {
 "Bridge": "",
 "Gateway": "",
 "IPAddress": "",
 "IPPrefixLen": 0,
 "MacAddress": "",
 "PortMapping": null,
 "Ports": null
 },
 "Path": "/bin/sh",
 "ProcessLabel": "",
 "ResolvConfPath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/resolv.conf",
 "RestartCount": 1,
 "State": {
 "Error": "",
 "ExitCode": 9,
 "FinishedAt": "2015-01-06T15:47:32.080254511Z",
 "OOMKilled": false,
 "Paused": false,
 "Pid": 0,
 "Restarting": false,
 "Running": false,
 "StartedAt": "2015-01-06T15:47:32.072697474Z"
 },
 "Volumes": {},
 "VolumesRW": {}
}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
}

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container logs

GET /containers/(id)/logs

Get stdout and stderr logs from the container id

Note:
This endpoint works only for containers with json-file logging driver.

Example request:

 GET /containers/4fa6e0f0c678/logs?stderr=1&stdout=1×tamps=1&follow=1&tail=10&since=1428990821 HTTP/1.1

Example response:

 HTTP/1.1 101 UPGRADED
 Content-Type: application/vnd.docker.raw-stream
 Connection: Upgrade
 Upgrade: tcp

 {{ STREAM }}

Query Parameters:

		follow – 1/True/true or 0/False/false, return stream. Default false.

		stdout – 1/True/true or 0/False/false, show stdout log. Default false.

		stderr – 1/True/true or 0/False/false, show stderr log. Default false.

		since – UNIX timestamp (integer) to filter logs. Specifying a timestamp
will only output log-entries since that timestamp. Default: 0 (unfiltered)

		timestamps – 1/True/true or 0/False/false, print timestamps for
every log line. Default false.

		tail – Output specified number of lines at the end of logs: all or <number>. Default all.

Status Codes:

		101 – no error, hints proxy about hijacking

		200 – no error, no upgrade header found

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Values for Kind:

		0: Modify

		1: Add

		2: Delete

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/octet-stream

{{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container stats based on resource usage

GET /containers/(id)/stats

This endpoint returns a live stream of a container’s resource usage statistics.

Note: this functionality currently only works when using the libcontainer exec-driver.

Example request:

GET /containers/redis1/stats HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "read" : "2015-01-08T22:57:31.547920715Z",
 "network" : {
 "rx_dropped" : 0,
 "rx_bytes" : 648,
 "rx_errors" : 0,
 "tx_packets" : 8,
 "tx_dropped" : 0,
 "rx_packets" : 8,
 "tx_errors" : 0,
 "tx_bytes" : 648
 },
 "memory_stats" : {
 "stats" : {
 "total_pgmajfault" : 0,
 "cache" : 0,
 "mapped_file" : 0,
 "total_inactive_file" : 0,
 "pgpgout" : 414,
 "rss" : 6537216,
 "total_mapped_file" : 0,
 "writeback" : 0,
 "unevictable" : 0,
 "pgpgin" : 477,
 "total_unevictable" : 0,
 "pgmajfault" : 0,
 "total_rss" : 6537216,
 "total_rss_huge" : 6291456,
 "total_writeback" : 0,
 "total_inactive_anon" : 0,
 "rss_huge" : 6291456,
 "hierarchical_memory_limit" : 67108864,
 "total_pgfault" : 964,
 "total_active_file" : 0,
 "active_anon" : 6537216,
 "total_active_anon" : 6537216,
 "total_pgpgout" : 414,
 "total_cache" : 0,
 "inactive_anon" : 0,
 "active_file" : 0,
 "pgfault" : 964,
 "inactive_file" : 0,
 "total_pgpgin" : 477
 },
 "max_usage" : 6651904,
 "usage" : 6537216,
 "failcnt" : 0,
 "limit" : 67108864
 },
 "blkio_stats" : {},
 "cpu_stats" : {
 "cpu_usage" : {
 "percpu_usage" : [
 16970827,
 1839451,
 7107380,
 10571290
],
 "usage_in_usermode" : 10000000,
 "total_usage" : 36488948,
 "usage_in_kernelmode" : 20000000
 },
 "system_cpu_usage" : 20091722000000000,
 "throttling_data" : {}
 }
 }

Query Parameters:

		stream – 1/True/true or 0/False/false, pull stats once then disconnect. Default true.

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Resize a container TTY

POST /containers/(id)/resize?h=<height>&w=<width>

Resize the TTY for container with id. You must restart the container for the resize to take effect.

Example request:

 POST /containers/4fa6e0f0c678/resize?h=40&w=80 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Length: 0
 Content-Type: text/plain; charset=utf-8

Status Codes:

		200 – no error

		404 – No such container

		500 – Cannot resize container

Start a container

POST /containers/(id)/start

Start the container id

Note:
For backwards compatibility, this endpoint accepts a HostConfig as JSON-encoded request body.
See create a container for details.

Example request:

 POST /containers/(id)/start HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		304 – container already started

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		304 – container already stopped

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

POST /containers/e90e34656806/kill HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like SIGINT.
When not set, SIGKILL is assumed and the call waits for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Rename a container

POST /containers/(id)/rename

Rename the container id to a new_name

Example request:

POST /containers/e90e34656806/rename?name=new_name HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters:

		name – new name for the container

Status Codes:

		204 – no error

		404 – no such container

		409 - conflict name already assigned

		500 – server error

Pause a container

POST /containers/(id)/pause

Pause the container id

Example request:

POST /containers/e90e34656806/pause HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Unpause a container

POST /containers/(id)/unpause

Unpause the container id

Example request:

POST /containers/e90e34656806/unpause HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

HTTP/1.1 101 UPGRADED
Content-Type: application/vnd.docker.raw-stream
Connection: Upgrade
Upgrade: tcp

{{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false.

		stream – 1/True/true or 0/False/false, return stream.
Default false.

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false.

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false.

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false.

Status Codes:

		101 – no error, hints proxy about hijacking

		200 – no error, no upgrade header found

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header contains the information which the stream writes (stdout or
stderr). It also contains the size of the associated frame encoded in the
last four bytes (uint32).

It is encoded on the first eight bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (is written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the four bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read eight bytes.

		Choose stdout or stderr depending on the first byte.

		Extract the frame size from the last four bytes.

		Read the extracted size and output it on the correct output.

		Goto 1.

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

{{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false.

		stream – 1/True/true or 0/False/false, return stream.
Default false.

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false.

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false.

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false.

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false.

		force - 1/True/true or 0/False/false, Kill then remove the container.
Default false.

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

POST /containers/4fa6e0f0c678/copy HTTP/1.1
Content-Type: application/json

{
 "Resource": "test.txt"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/x-tar

{{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

GET /images/json?all=0 HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Example request, with digest information:

GET /images/json?digests=1 HTTP/1.1

Example response, with digest information:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "Created": 1420064636,
 "Id": "4986bf8c15363d1c5d15512d5266f8777bfba4974ac56e3270e7760f6f0a8125",
 "ParentId": "ea13149945cb6b1e746bf28032f02e9b5a793523481a0a18645fc77ad53c4ea2",
 "RepoDigests": [
 "localhost:5000/test/busybox@sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf"
],
 "RepoTags": [
 "localhost:5000/test/busybox:latest",
 "playdate:latest"
],
 "Size": 0,
 "VirtualSize": 2429728
 }
]

The response shows a single image Id associated with two repositories
(RepoTags): localhost:5000/test/busybox: and playdate. A caller can use
either of the RepoTags values localhost:5000/test/busybox:latest or
playdate:latest to reference the image.

You can also use RepoDigests values to reference an image. In this response,
the array has only one reference and that is to the
localhost:5000/test/busybox repository; the playdate repository has no
digest. You can reference this digest using the value:
localhost:5000/test/busybox@sha256:cbbf2f9a99b47fc460d...

See the docker run and docker build commands for examples of digest and tag
references on the command line.

Query Parameters:

		all – 1/True/true or 0/False/false, default false

		filters – a JSON encoded value of the filters (a map[string][]string) to process on the images list. Available filters:

		dangling=true

		label=key or label="key=value" of an image label

		filter - only return images with the specified name

Build image from a Dockerfile

POST /build

Build an image from a Dockerfile

Example request:

POST /build HTTP/1.1

{{ TAR STREAM }}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"stream": "Step 1..."}
{"stream": "..."}
{"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The input stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a build instructions file, typically called
Dockerfile at the archive’s root. The dockerfile parameter may be
used to specify a different build instructions file. To do this, its value must be
the path to the alternate build instructions file to use.

The archive may include any number of other files,
which are accessible in the build context (See the ADD build
command).

The build is canceled if the client drops the connection by quitting
or being killed.

Query Parameters:

		dockerfile - Path within the build context to the Dockerfile. This is
ignored if remote is specified and points to an external Dockerfile.

		t – Repository name (and optionally a tag) to be applied to
the resulting image in case of success.

		remote – A Git repository URI or HTTP/HTTPS context URI. If the
URI points to a single text file, the file’s contents are placed into
a file called Dockerfile and the image is built from that file. If
the URI points to a tarball, the file is downloaded by the daemon and
the contents therein used as the context for the build. If the URI
points to a tarball and the dockerfile parameter is also specified,
there must be a file with the corresponding path inside the tarball.

		q – Suppress verbose build output.

		nocache – Do not use the cache when building the image.

		pull - Attempt to pull the image even if an older image exists locally.

		rm - Remove intermediate containers after a successful build (default behavior).

		forcerm - Always remove intermediate containers (includes rm).

		memory - Set memory limit for build.

		memswap - Total memory (memory + swap), -1 to disable swap.

		cpushares - CPU shares (relative weight).

		cpusetcpus - CPUs in which to allow execution (e.g., 0-3, 0,1).

Request Headers:

		Content-type – Set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Create an image

POST /images/create

Create an image either by pulling it from the registry or by importing it

Example request:

POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"status": "Pulling..."}
{"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
{"error": "Invalid..."}
...

When using this endpoint to pull an image from the registry, the
X-Registry-Auth header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – Name of the image to pull.

		fromSrc – Source to import. The value may be a URL from which the image
can be retrieved or - to read the image from the request body.

		repo – Repository name.

		tag – Tag.

		registry – The registry to pull from.

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

GET /images/ubuntu/json HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Created": "2013-03-23T22:24:18.818426-07:00",
 "Container": "3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "ContainerConfig":
 {
 "Hostname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "PortSpecs": null,
 "Tty": true,
 "OpenStdin": true,
 "StdinOnce": false,
 "Env": null,
 "Cmd": ["/bin/bash"],
 "Dns": null,
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "Volumes": null,
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Parent": "27cf784147099545",
 "Size": 6824592
}

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

GET /images/ubuntu/history HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "Id": "3db9c44f45209632d6050b35958829c3a2aa256d81b9a7be45b362ff85c54710",
 "Created": 1398108230,
 "CreatedBy": "/bin/sh -c #(nop) ADD file:eb15dbd63394e063b805a3c32ca7bf0266ef64676d5a6fab4801f2e81e2a5148 in /",
 "Tags": [
 "ubuntu:lucid",
 "ubuntu:10.04"
],
 "Size": 182964289,
 "Comment": ""
 },
 {
 "Id": "6cfa4d1f33fb861d4d114f43b25abd0ac737509268065cdfd69d544a59c85ab8",
 "Created": 1398108222,
 "CreatedBy": "/bin/sh -c #(nop) MAINTAINER Tianon Gravi <admwiggin@gmail.com> - mkimage-debootstrap.sh -i iproute,iputils-ping,ubuntu-minimal -t lucid.tar.xz lucid http://archive.ubuntu.com/ubuntu/",
 "Tags": null,
 "Size": 0,
 "Comment": ""
 },
 {
 "Id": "511136ea3c5a64f264b78b5433614aec563103b4d4702f3ba7d4d2698e22c158",
 "Created": 1371157430,
 "CreatedBy": "",
 "Tags": [
 "scratch12:latest",
 "scratch:latest"
],
 "Size": 0,
 "Comment": "Imported from -"
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

POST /images/test/push HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"status": "Pushing..."}
{"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
{"error": "Invalid..."}
...

If you wish to push an image on to a private registry, that image must already have a tag
into a repository which references that registry hostname and port. This repository name should
then be used in the URL. This duplicates the command line’s flow.

Example request:

POST /images/registry.acme.com:5000/test/push HTTP/1.1

Query Parameters:

		tag – The tag to associate with the image on the registry. This is optional.

Request Headers:

		X-Registry-Auth – Include a base64-encoded AuthConfig.
object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

DELETE /images/test HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-type: application/json

[
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Query Parameters:

		force – 1/True/true or 0/False/false, default false

		noprune – 1/True/true or 0/False/false, default false

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com]. This API
returns both is_trusted and is_automated images. Currently, they
are considered identical. In the future, the is_trusted property will
be deprecated and replaced by the is_automated property.

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

GET /images/search?term=sshd HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

 [
 {
 "star_count": 12,
 "is_official": false,
 "name": "wma55/u1210sshd",
 "is_trusted": false,
 "is_automated": false,
 "description": "",
 },
 {
 "star_count": 10,
 "is_official": false,
 "name": "jdswinbank/sshd",
 "is_trusted": false,
 "is_automated": false,
 "description": "",
 },
 {
 "star_count": 18,
 "is_official": false,
 "name": "vgauthier/sshd",
 "is_trusted": false,
 "is_automated": false,
 "description": "",
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Check auth configuration

POST /auth

Get the default username and email

Example request:

POST /auth HTTP/1.1
Content-Type: application/json

{
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
}

Example response:

HTTP/1.1 200 OK

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

GET /info HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Containers": 11,
 "CpuCfsPeriod": true,
 "CpuCfsQuota": true,
 "Debug": false,
 "DockerRootDir": "/var/lib/docker",
 "Driver": "btrfs",
 "DriverStatus": [[""]],
 "ExecutionDriver": "native-0.1",
 "ExperimentalBuild": false,
 "HttpProxy": "http://test:test@localhost:8080",
 "HttpsProxy": "https://test:test@localhost:8080",
 "ID": "7TRN:IPZB:QYBB:VPBQ:UMPP:KARE:6ZNR:XE6T:7EWV:PKF4:ZOJD:TPYS",
 "IPv4Forwarding": true,
 "Images": 16,
 "IndexServerAddress": "https://index.docker.io/v1/",
 "InitPath": "/usr/bin/docker",
 "InitSha1": "",
 "KernelVersion": "3.12.0-1-amd64",
 "Labels": [
 "storage=ssd"
],
 "MemTotal": 2099236864,
 "MemoryLimit": true,
 "NCPU": 1,
 "NEventsListener": 0,
 "NFd": 11,
 "NGoroutines": 21,
 "Name": "prod-server-42",
 "NoProxy": "9.81.1.160",
 "OomKillDisable": true,
 "OperatingSystem": "Boot2Docker",
 "RegistryConfig": {
 "IndexConfigs": {
 "docker.io": {
 "Mirrors": null,
 "Name": "docker.io",
 "Official": true,
 "Secure": true
 }
 },
 "InsecureRegistryCIDRs": [
 "127.0.0.0/8"
]
 },
 "SwapLimit": false,
 "SystemTime": "2015-03-10T11:11:23.730591467-07:00"
}

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

GET /version HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Version": "1.5.0",
 "Os": "linux",
 "KernelVersion": "3.18.5-tinycore64",
 "GoVersion": "go1.4.1",
 "GitCommit": "a8a31ef",
 "Arch": "amd64",
 "ApiVersion": "1.19"
}

Status Codes:

		200 – no error

		500 – server error

Ping the docker server

GET /_ping

Ping the docker server

Example request:

GET /_ping HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: text/plain

OK

Status Codes:

		200 - no error

		500 - server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

POST /commit?container=44c004db4b17&comment=message&repo=myrepo HTTP/1.1
Content-Type: application/json

{
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Volumes": {
 "/tmp": {}
 },
 "Labels": {
 "key1": "value1",
 "key2": "value2"
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "ExposedPorts": {
 "22/tcp": {}
 }
}

Example response:

HTTP/1.1 201 Created
Content-Type: application/vnd.docker.raw-stream

{"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		comment – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get container events from docker, either in real time via streaming, or via
polling (using since).

Docker containers report the following events:

attach, commit, copy, create, destroy, die, exec_create, exec_start, export, kill, oom, pause, rename, resize, restart, start, stop, top, unpause

and Docker images report:

untag, delete

Example request:

GET /events?since=1374067924

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"status": "create", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
{"status": "start", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
{"status": "stop", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067966}
{"status": "destroy", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067970}

Query Parameters:

		since – Timestamp used for polling

		until – Timestamp used for polling

		filters – A json encoded value of the filters (a map[string][]string) to process on the event list. Available filters:

		event=<string>; – event to filter

		image=<string>; – image to filter

		container=<string>; – container to filter

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository specified
by name.

If name is a specific name and tag (e.g. ubuntu:latest), then only that image
(and its parents) are returned. If name is an image ID, similarly only that
image (and its parents) are returned, but with the exclusion of the
‘repositories’ file in the tarball, as there were no image names referenced.

See the image tarball format for more details.

Example request

GET /images/ubuntu/get

Example response:

HTTP/1.1 200 OK
Content-Type: application/x-tar

Binary data stream

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images.

GET /images/get

Get a tarball containing all images and metadata for one or more repositories.

For each value of the names parameter: if it is a specific name and tag (e.g.
ubuntu:latest), then only that image (and its parents) are returned; if it is
an image ID, similarly only that image (and its parents) are returned and there
would be no names referenced in the ‘repositories’ file for this image ID.

See the image tarball format for more details.

Example request

GET /images/get?names=myname%2Fmyapp%3Alatest&names=busybox

Example response:

HTTP/1.1 200 OK
Content-Type: application/x-tar

Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into a Docker repository.
See the image tarball format for more details.

Example request

POST /images/load

Tarball in body

Example response:

HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing these files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file contains aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, the tarball should also include a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

Exec Create

POST /containers/(id)/exec

Sets up an exec instance in a running container id

Example request:

POST /containers/e90e34656806/exec HTTP/1.1
Content-Type: application/json

 {
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "Cmd": [
 "date"
],
 }

Example response:

HTTP/1.1 201 OK
Content-Type: application/json

{
 "Id": "f90e34656806"
 "Warnings":[]
}

Json Parameters:

		AttachStdin - Boolean value, attaches to stdin of the exec command.

		AttachStdout - Boolean value, attaches to stdout of the exec command.

		AttachStderr - Boolean value, attaches to stderr of the exec command.

		Tty - Boolean value to allocate a pseudo-TTY.

		Cmd - Command to run specified as a string or an array of strings.

Status Codes:

		201 – no error

		404 – no such container

Exec Start

POST /exec/(id)/start

Starts a previously set up exec instance id. If detach is true, this API
returns after starting the exec command. Otherwise, this API sets up an
interactive session with the exec command.

Example request:

POST /exec/e90e34656806/start HTTP/1.1
Content-Type: application/json

{
 "Detach": false,
 "Tty": false,
}

Example response:

HTTP/1.1 201 OK
Content-Type: application/json

{{ STREAM }}

Json Parameters:

		Detach - Detach from the exec command.

		Tty - Boolean value to allocate a pseudo-TTY.

Status Codes:

		201 – no error

		404 – no such exec instance

Stream details:
Similar to the stream behavior of POST /container/(id)/attach API

Exec Resize

POST /exec/(id)/resize

Resizes the tty session used by the exec command id.
This API is valid only if tty was specified as part of creating and starting the exec command.

Example request:

POST /exec/e90e34656806/resize HTTP/1.1
Content-Type: text/plain

Example response:

HTTP/1.1 201 OK
Content-Type: text/plain

Query Parameters:

		h – height of tty session

		w – width

Status Codes:

		201 – no error

		404 – no such exec instance

Exec Inspect

GET /exec/(id)/json

Return low-level information about the exec command id.

Example request:

GET /exec/11fb006128e8ceb3942e7c58d77750f24210e35f879dd204ac975c184b820b39/json HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: plain/text

{
 "ID" : "11fb006128e8ceb3942e7c58d77750f24210e35f879dd204ac975c184b820b39",
 "Running" : false,
 "ExitCode" : 2,
 "ProcessConfig" : {
 "privileged" : false,
 "user" : "",
 "tty" : false,
 "entrypoint" : "sh",
 "arguments" : [
 "-c",
 "exit 2"
]
 },
 "OpenStdin" : false,
 "OpenStderr" : false,
 "OpenStdout" : false,
 "Container" : {
 "State" : {
 "Running" : true,
 "Paused" : false,
 "Restarting" : false,
 "OOMKilled" : false,
 "Pid" : 3650,
 "ExitCode" : 0,
 "Error" : "",
 "StartedAt" : "2014-11-17T22:26:03.717657531Z",
 "FinishedAt" : "0001-01-01T00:00:00Z"
 },
 "ID" : "8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c",
 "Created" : "2014-11-17T22:26:03.626304998Z",
 "Path" : "date",
 "Args" : [],
 "Config" : {
 "Hostname" : "8f177a186b97",
 "Domainname" : "",
 "User" : "",
 "AttachStdin" : false,
 "AttachStdout" : false,
 "AttachStderr" : false,
 "PortSpecs": null,
 "ExposedPorts" : null,
 "Tty" : false,
 "OpenStdin" : false,
 "StdinOnce" : false,
 "Env" : ["PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"],
 "Cmd" : [
 "date"
],
 "Image" : "ubuntu",
 "Volumes" : null,
 "WorkingDir" : "",
 "Entrypoint" : null,
 "NetworkDisabled" : false,
 "MacAddress" : "",
 "OnBuild" : null,
 "SecurityOpt" : null
 },
 "Image" : "5506de2b643be1e6febbf3b8a240760c6843244c41e12aa2f60ccbb7153d17f5",
 "NetworkSettings" : {
 "IPAddress" : "172.17.0.2",
 "IPPrefixLen" : 16,
 "MacAddress" : "02:42:ac:11:00:02",
 "Gateway" : "172.17.42.1",
 "Bridge" : "docker0",
 "PortMapping" : null,
 "Ports" : {}
 },
 "ResolvConfPath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/resolv.conf",
 "HostnamePath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/hostname",
 "HostsPath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/hosts",
 "LogPath": "/var/lib/docker/containers/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b-json.log",
 "Name" : "/test",
 "Driver" : "aufs",
 "ExecDriver" : "native-0.2",
 "MountLabel" : "",
 "ProcessLabel" : "",
 "AppArmorProfile" : "",
 "RestartCount" : 0,
 "Volumes" : {},
 "VolumesRW" : {}
 }
}

Status Codes:

		200 – no error

		404 – no such exec instance

		500 - server error

3. Going further

3.1 Inside docker run

As an example, the docker run command line makes the following API calls:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
		Try to pull it.

		Then, retry to create the container.

		Start the container.

		If you are not in detached mode:

		Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached, display the container’s id.

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout, and stderr on the same socket.

To hint potential proxies about connection hijacking, Docker client sends
connection upgrade headers similarly to websocket.

Upgrade: tcp
Connection: Upgrade

When Docker daemon detects the Upgrade header, it switches its status code
from 200 OK to 101 UPGRADED and resends the same headers.

3.3 CORS Requests

To set cross origin requests to the remote api please give values to
--api-cors-header when running Docker in daemon mode. Set * (asterisk) allows all,
default or blank means CORS disabled

$ docker -d -H="192.168.1.9:2375" --api-cors-header="http://foo.bar"

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.10.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.10

1. Brief introduction

		The Remote API has replaced rcli

		The daemon listens on unix:///var/run/docker.sock but you can bind
Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout, stdin
and stderr

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Image": "ubuntu:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "ubuntu:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created containers, include non-running ones.

		since – Show only containers created since Id, include non-running ones.

		before – Show only containers created before Id, include non-running ones.

		size – 1/True/true or 0/False/false, Show the containers sizes

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Image":"ubuntu",
 "Volumes":{
 "/tmp": {}
 },
 "WorkingDir":"",
 "NetworkDisabled": false,
 "ExposedPorts":{
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		config – the container’s configuration

Query Parameters:

		name – Assign the specified name to the container. Mus
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Image": "ubuntu",
 "Volumes": {},
 "WorkingDir":""

 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {},
 "HostConfig": {
 "Binds": null,
 "ContainerIDFile": "",
 "LxcConf": [],
 "Privileged": false,
 "PortBindings": {
 "80/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "49153"
 }
]
 },
 "Links": null,
 "PublishAllPorts": false
 }
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id ‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds":["/tmp:/tmp"],
 "LxcConf":[{"Key":"lxc.utsname","Value":"docker"}],
 "PortBindings":{ "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts":false,
 "Privileged":false,
 "Dns": ["8.8.8.8"],
 "VolumesFrom": ["parent", "other:ro"]
 }

Example response:

 HTTP/1.1 204 No Content
 Content-Type: text/plain

Json Parameters:

		hostConfig – the container’s host configuration (optional)

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like “SIGINT”.
When not set, SIGKILL is assumed and the call will wait for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Defaul
false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1)

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns
the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id*) : Remove the containerid` from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

		force – 1/True/true or 0/False/false, Removes the container
even if it was running. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing
i

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pulling..."}
 {"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
 {"error": "Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Insert a file in an image

POST /images/(name)/insert

Insert a file from url in the image
name at path

Example request:

 POST /images/test/insert?path=/usr&url=myurl HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Inserting..."}
 {"status":"Inserting", "progress":"1/? (n/a)", "progressDetail":{"current":1}}
 {"error":"Invalid..."}
 ...

Query Parameters:

		url – The url from where the file is taken

		path – The path where the file is stored

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/ubuntu/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id":"b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "parent":"27cf784147099545",
 "created":"2013-03-23T22:24:18.818426-07:00",
 "container":"3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "container_config":
 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":false,
 "AttachStderr":false,
 "PortSpecs":null,
 "Tty":true,
 "OpenStdin":true,
 "StdinOnce":false,
 "Env":null,
 "Cmd": ["/bin/bash"]
 "Image":"ubuntu",
 "Volumes":null,
 "WorkingDir":""
 },
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/ubuntu/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pushing..."}
 {"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
 {"error": "Invalid..."}
 ...

If you wish to push an image on to a private registry, that image must already have been tagged
into a repository which references that registry host name and port. This repository name should
then be used in the URL. This mirrors the flow of the CLI.

Example request:

 POST /images/registry.acme.com:5000/test/push HTTP/1.1

Query Parameters:

		tag – the tag to associate with the image on the registry, optional

Request Headers:

		X-Registry-Auth – include a base64-encoded AuthConfig object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name*) : Remove the imagename` from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Query Parameters:

		force – 1/True/true or 0/False/false, default false

		noprune – 1/True/true or 0/False/false, default false

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"stream": "Step 1..."}
 {"stream": "..."}
 {"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a file called `Dockerfile`

at its root. It may include any number of other files,
which will be accessible in the build context (See the ADD build
command).

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – git or HTTP/HTTPS URI build source

		q – suppress verbose build output

		nocache – do not use the cache when building the image

		rm - remove intermediate containers after a successful build

Request Headers:

		Content-type – should be set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "MemoryLimit":true,
 "SwapLimit":false,
 "IPv4Forwarding":true
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version":"0.2.2",
 "GitCommit":"5a2a5cc+CHANGES",
 "GoVersion":"go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&m=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Volumes":{
 "/tmp": {}
 },
 "WorkingDir":"",
 "NetworkDisabled": false,
 "ExposedPorts":{
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		m – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images and tags in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository
specified by name.

See the image tarball format for more details.

Example request

 GET /images/ubuntu/get

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into the docker repository.

See the image tarball format for more details.

Example request

 POST /images/load

 Tarball in body

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing three files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file will contain aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, there will also be a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

3. Going further

3.1 Inside docker run

Here are the steps of docker run :

		Create the container

		If the status code is 404, it means the image doesn’t exist:
- Try to pull it
- Then retry to create the container

		Start the container

		If you are not in detached mode:
- Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
- Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API

		By default the Docker daemon listens on unix:///var/run/docker.sock
and the client must have root access to interact with the daemon.

		If you are using docker-machine, the Docker daemon is on a virtual host that uses an encrypted TCP socket. In this situation, you need to add extra
parameters to curl or wget when making test API requests:
curl --insecure --cert ~/.docker/cert.pem --key ~/.docker/key.pem https://YOUR_VM_IP:2376/images/json
or
wget --no-check-certificate --certificate=$DOCKER_CERT_PATH/cert.pem --private-key=$DOCKER_CERT_PATH/key.pem https://your_vm_ip:2376/images/json -O - -q

		If a group named docker exists on your system, docker will apply
ownership of the socket to the group.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport STDOUT, STDIN,
and STDERR.

		Since API version 1.2, the auth configuration is now handled client
side, so the client has to send the authConfig as a POST in /images/(name)/push.

		authConfig, set as the X-Registry-Auth header, is currently a Base64
encoded (JSON) string with the following structure:
{"username": "string", "password": "string", "email": "string", "serveraddress" : "string", "auth": ""}. Notice that auth is to be left
empty, serveraddress is a domain/ip without protocol, and that double
quotes (instead of single ones) are required.

		The Remote API uses an open schema model. In this model, unknown
properties in incoming messages will be ignored.
Client applications need to take this into account to ensure
they will not break when talking to newer Docker daemons.

The current version of the API is v1.21

Calling /info is the same as calling
/v1.21/info.

You can still call an old version of the API using
/v1.20/info.

Docker Events

The following diagram depicts the container states accessible through the API.

[image: States]

Some container-related events are not affected by container state, so they are not included in this diagram. These events are:

		export emitted by docker export

		exec_create emitted by docker exec

		exec_start emitted by docker exec after exec_create

Running docker rmi emits an untag event when removing an image name. The rmi command may also emit delete events when images are deleted by ID directly or by deleting the last tag referring to the image.

Acknowledgement: This diagram and the accompanying text were used with the permission of Matt Good and Gilder Labs. See Matt’s original blog post Docker Events Explained [http://gliderlabs.com/blog/2015/04/14/docker-events-explained/].

v1.21

Full documentation

Docker Remote API v1.21

v1.20

Full documentation

Docker Remote API v1.20

What’s new

GET /containers/(id)/archive

New!
Get an archive of filesystem content from a container.

PUT /containers/(id)/archive

New!
Upload an archive of content to be extracted to an
existing directory inside a container’s filesystem.

POST /containers/(id)/copy

Deprecated!
This copy endpoint has been deprecated in favor of the above archive endpoint
which can be used to download files and directories from a container.

New!
The hostConfig option now accepts the field GroupAdd, which specifies a list of additional
groups that the container process will run as.

v1.19

Full documentation

Docker Remote API v1.19

What’s new

New!
When the daemon detects a version mismatch with the client, usually when
the client is newer than the daemon, an HTTP 400 is now returned instead
of a 404.

GET /containers/(id)/stats

New!
You can now supply a stream bool to get only one set of stats and
disconnect

GET /containers(id)/logs

New!

This endpoint now accepts a since timestamp parameter.

GET /info

New!

The fields Debug, IPv4Forwarding, MemoryLimit, and SwapLimit
are now returned as boolean instead of as an int.

In addition, the end point now returns the new boolean fields
CpuCfsPeriod, CpuCfsQuota, and OomKillDisable.

v1.18

Full documentation

Docker Remote API v1.18

What’s new

GET /version

New!
This endpoint now returns Os, Arch and KernelVersion.

POST /containers/create
POST /containers/(id)/start

New!
You can set ulimit settings to be used within the container.

GET /info

New!
This endpoint now returns SystemTime, HttpProxy,HttpsProxy and NoProxy.

GET /images/json

New!
Added a RepoDigests field to include image digest information.

POST /build

New!
Builds can now set resource constraints for all containers created for the build.

New!
(CgroupParent) can be passed in the host config to setup container cgroups under a specific cgroup.

POST /build

New!
Closing the HTTP request will now cause the build to be canceled.

POST /containers/(id)/exec

New!
Add Warnings field to response.

v1.17

Full documentation

Docker Remote API v1.17

What’s new

The build supports LABEL command. Use this to add metadata
to an image. For example you could add data describing the content of an image.

LABEL "com.example.vendor"="ACME Incorporated"

New!
POST /containers/(id)/attach and POST /exec/(id)/start

New!
Docker client now hints potential proxies about connection hijacking using HTTP Upgrade headers.

POST /containers/create

New!
You can set labels on container create describing the container.

GET /containers/json

New!
The endpoint returns the labels associated with the containers (Labels).

GET /containers/(id)/json

New!
This endpoint now returns the list current execs associated with the container (ExecIDs).
This endpoint now returns the container labels (Config.Labels).

POST /containers/(id)/rename

New!
New endpoint to rename a container id to a new name.

POST /containers/create
POST /containers/(id)/start

New!
(ReadonlyRootfs) can be passed in the host config to mount the container’s
root filesystem as read only.

GET /containers/(id)/stats

New!
This endpoint returns a live stream of a container’s resource usage statistics.

GET /images/json

New!
This endpoint now returns the labels associated with each image (Labels).

v1.16

Full documentation

Docker Remote API v1.16

What’s new

GET /info

New!
info now returns the number of CPUs available on the machine (NCPU),
total memory available (MemTotal), a user-friendly name describing the running Docker daemon (Name), a unique ID identifying the daemon (ID), and
a list of daemon labels (Labels).

POST /containers/create

New!
You can set the new container’s MAC address explicitly.

New!
Volumes are now initialized when the container is created.

POST /containers/(id)/copy

New!
You can now copy data which is contained in a volume.

v1.15

Full documentation

Docker Remote API v1.15

What’s new

POST /containers/create

New!
It is now possible to set a container’s HostConfig when creating a container.
Previously this was only available when starting a container.

v1.14

Full documentation

Docker Remote API v1.14

What’s new

DELETE /containers/(id)

New!
When using force, the container will be immediately killed with SIGKILL.

POST /containers/(id)/start

New!
The hostConfig option now accepts the field CapAdd, which specifies a list of capabilities
to add, and the field CapDrop, which specifies a list of capabilities to drop.

POST /images/create

New!
The fromImage and repo parameters now supports the repo:tag format.
Consequently, the tag parameter is now obsolete. Using the new format and
the tag parameter at the same time will return an error.

v1.13

Full documentation

Docker Remote API v1.13

What’s new

GET /containers/(name)/json

New!
The HostConfig.Links field is now filled correctly

New!
Sockets parameter added to the /info endpoint listing all the sockets the
daemon is configured to listen on.

POST /containers/(name)/start
POST /containers/(name)/stop

New!
start and stop will now return 304 if the container’s status is not modified

POST /commit

New!
Added a pause parameter (default true) to pause the container during commit

v1.12

Full documentation

Docker Remote API v1.12

What’s new

POST /build

New!
Build now has support for the forcerm parameter to always remove containers

GET /containers/(name)/json
GET /images/(name)/json

New!
All the JSON keys are now in CamelCase

New!
Trusted builds are now Automated Builds - is_trusted is now is_automated.

Removed Insert Endpoint
The insert endpoint has been removed.

v1.11

Full documentation

Docker Remote API v1.11

What’s new

GET /_ping

New!
You can now ping the server via the _ping endpoint.

GET /events

New!
You can now use the -until parameter to close connection
after timestamp.

GET /containers/(id)/logs

This url is preferred method for getting container logs now.

v1.10

Full documentation

Docker Remote API v1.10

What’s new

DELETE /images/(name)

New!
You can now use the force parameter to force delete of an
image, even if it’s tagged in multiple repositories. New!
You
can now use the noprune parameter to prevent the deletion of parent
images

DELETE /containers/(id)

New!
You can now use the force parameter to force delete a
container, even if it is currently running

v1.9

Full documentation

Docker Remote API v1.9

What’s new

POST /build

New!
This endpoint now takes a serialized ConfigFile which it
uses to resolve the proper registry auth credentials for pulling the
base image. Clients which previously implemented the version
accepting an AuthConfig object must be updated.

v1.8

Full documentation

Docker Remote API v1.8

What’s new

POST /build

New!
This endpoint now returns build status as json stream. In
case of a build error, it returns the exit status of the failed
command.

GET /containers/(id)/json

New!
This endpoint now returns the host config for the
container.

POST /images/create

POST /images/(name)/insert

POST /images/(name)/push

New!
progressDetail object was added in the JSON. It’s now
possible to get the current value and the total of the progress
without having to parse the string.

v1.7

Full documentation

Docker Remote API v1.7

What’s new

GET /images/json

The format of the json returned from this uri changed. Instead of an
entry for each repo/tag on an image, each image is only represented
once, with a nested attribute indicating the repo/tags that apply to
that image.

Instead of:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "VirtualSize": 131506275,
 "Size": 131506275,
 "Created": 1365714795,
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Tag": "12.04",
 "Repository": "ubuntu"
 },
 {
 "VirtualSize": 131506275,
 "Size": 131506275,
 "Created": 1365714795,
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Tag": "latest",
 "Repository": "ubuntu"
 },
 {
 "VirtualSize": 131506275,
 "Size": 131506275,
 "Created": 1365714795,
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Tag": "precise",
 "Repository": "ubuntu"
 },
 {
 "VirtualSize": 180116135,
 "Size": 24653,
 "Created": 1364102658,
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Tag": "12.10",
 "Repository": "ubuntu"
 },
 {
 "VirtualSize": 180116135,
 "Size": 24653,
 "Created": 1364102658,
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Tag": "quantal",
 "Repository": "ubuntu"
 }
]

The returned json looks like this:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

GET /images/viz

This URI no longer exists. The images --viz
output is now generated in the client, using the
/images/json data.

v1.6

Full documentation

Docker Remote API v1.6

What’s new

POST /containers/(id)/attach

New!
You can now split stderr from stdout. This is done by
prefixing a header to each transmission. See
POST /containers/(id)/attach.
The WebSocket attach is unchanged. Note that attach calls on the
previous API version didn’t change. Stdout and stderr are merged.

v1.5

Full documentation

Docker Remote API v1.5

What’s new

POST /images/create

New!
You can now pass registry credentials (via an AuthConfig
object) through the X-Registry-Auth header

POST /images/(name)/push

New!
The AuthConfig object now needs to be passed through the
X-Registry-Auth header

GET /containers/json

New!
The format of the Ports entry has been changed to a list of
dicts each containing PublicPort, PrivatePort and Type describing a
port mapping.

v1.4

Full documentation

Docker Remote API v1.4

What’s new

POST /images/create

New!
When pulling a repo, all images are now downloaded in parallel.

GET /containers/(id)/top

New!
You can now use ps args with docker top, like docker top
<container_id> aux

GET /events

New!
Image’s name added in the events

v1.3

docker v0.5.0
51f6c4a [https://github.com/docker/docker/commit/51f6c4a7372450d164c61e0054daf0223ddbd909]

Full documentation

Docker Remote API v1.3

What’s new

GET /containers/(id)/top

List the processes running inside a container.

GET /events

New!
Monitor docker’s events via streaming or via polling

Builder (/build):

		Simplify the upload of the build context

		Simply stream a tarball instead of multipart upload with 4
intermediary buffers

		Simpler, less memory usage, less disk usage and faster

Warning:
The /build improvements are not reverse-compatible. Pre 1.3 clients will
break on /build.

List containers (/containers/json):

		You can use size=1 to get the size of the containers

Start containers (/containers//start):

		You can now pass host-specific configuration (e.g., bind mounts) in
the POST body for start calls

v1.2

docker v0.4.2
2e7649b [https://github.com/docker/docker/commit/2e7649beda7c820793bd46766cbc2cfeace7b168]

Full documentation

Docker Remote API v1.2

What’s new

The auth configuration is now handled by the client.

The client should send it’s authConfig as POST on each call of
/images/(name)/push

GET /auth

Deprecated.

POST /auth

Only checks the configuration but doesn’t store it on the server

Deleting an image is now improved, will only untag the image if it
has children and remove all the untagged parents if has any.

POST /images/<name>/delete

Now returns a JSON structure with the list of images
deleted/untagged.

v1.1

docker v0.4.0
a8ae398 [https://github.com/docker/docker/commit/a8ae398bf52e97148ee7bd0d5868de2e15bd297f]

Full documentation

Docker Remote API v1.1

What’s new

POST /images/create

POST /images/(name)/insert

POST /images/(name)/push

Uses json stream instead of HTML hijack, it looks like this:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pushing..."}
 {"status":"Pushing", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

v1.0

docker v0.3.4
8d73740 [https://github.com/docker/docker/commit/8d73740343778651c09160cde9661f5f387b36f4]

Full documentation

Docker Remote API v1.0

What’s new

Initial version

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/remote_api_client_libraries.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API client libraries

These libraries have not been tested by the Docker maintainers for
compatibility. Please file issues with the library owners. If you find
more library implementations, please list them in Docker doc bugs and we
will add the libraries here.

 		Language/Framework
 		Name
 		Repository
 		Status

 		C#
 		Docker.DotNet
 		https://github.com/ahmetalpbalkan/Docker.DotNet
 		Active

 		C++
 		lasote/docker_client
 		http://www.biicode.com/lasote/docker_client (Biicode C++ dependency manager)
 		Active

 		Erlang
 		erldocker
 		https://github.com/proger/erldocker
 		Active

 		Dart
 		bwu_docker
 		https://github.com/bwu-dart/bwu_docker
 		Active

 		Go
 		go-dockerclient
 		https://github.com/fsouza/go-dockerclient
 		Active

 		Go
 		dockerclient
 		https://github.com/samalba/dockerclient
 		Active

 		Gradle
 		gradle-docker-plugin
 		https://github.com/gesellix/gradle-docker-plugin
 		Active

 		Groovy
 		docker-client
 		https://github.com/gesellix/docker-client
 		Active

 		Haskell
 		docker-hs
 		https://github.com/denibertovic/docker-hs
 		Active

 		Java
 		docker-java
 		https://github.com/docker-java/docker-java
 		Active

 		Java
 		docker-client
 		https://github.com/spotify/docker-client
 		Active

 		Java
 		jclouds-docker
 		https://github.com/jclouds/jclouds-labs/tree/master/docker
 		Active

 		JavaScript (NodeJS)
 		dockerode
 		https://github.com/apocas/dockerode
 Install via NPM: npm install dockerode
 		Active

 		JavaScript (NodeJS)
 		docker.io
 		https://github.com/appersonlabs/docker.io
 Install via NPM: npm install docker.io
 		Active

 		JavaScript
 		docker-js
 		https://github.com/dgoujard/docker-js
 		Outdated

 		JavaScript (Angular) WebUI
 		docker-cp
 		https://github.com/13W/docker-cp
 		Active

 		JavaScript (Angular) WebUI
 		dockerui
 		https://github.com/crosbymichael/dockerui
 		Active

 		JavaScript (Angular) WebUI
 		dockery
 		https://github.com/lexandro/dockery
 		Active

 		Perl
 		Net::Docker
 		https://metacpan.org/pod/Net::Docker
 		Active

 		Perl
 		Eixo::Docker
 		https://github.com/alambike/eixo-docker
 		Active

 		PHP
 		Alvine
 		http://pear.alvine.io/ (alpha)
 		Active

 		PHP
 		Docker-PHP
 		http://stage1.github.io/docker-php/
 		Active

 		Python
 		docker-py
 		https://github.com/docker/docker-py
 		Active

 		Ruby
 		docker-api
 		https://github.com/swipely/docker-api
 		Active

 		Ruby
 		docker-client
 		https://github.com/geku/docker-client
 		Outdated

 		Rust
 		docker-rust
 		https://github.com/abh1nav/docker-rust
 		Active

 		Scala
 		tugboat
 		https://github.com/softprops/tugboat
 		Active

 		Scala
 		reactive-docker
 		https://github.com/almoehi/reactive-docker
 		Active

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.4.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.4

1. Brief introduction

		The Remote API is replacing rcli

		Default port in the docker daemon is 2375

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout stdin
and stderr

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports":"",
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "9cd87474be90",
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports":"",
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "3176a2479c92",
 "Image": "centos:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":"",
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "fedora:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports":"",
 "SizeRw":12288,
 "SizeRootFs":0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created containers, include non-running ones.

		since – Show only containers created since Id, include non-running ones.

		before – Show only containers created before Id, include non-running ones.

		size – 1/True/true or 0/False/false, Show the containers sizes

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Privileged": false,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Dns":null,
 "Image":"ubuntu",
 "Volumes":{},
 "VolumesFrom":"",
 "WorkingDir":""

 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		config – the container’s configuration

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": {},
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {}
 }

Status Codes:

		200 – no error

		404 – no such container

		409 – conflict between containers and images

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds":["/tmp:/tmp"],
 "LxcConf":[{"Key":"lxc.utsname","Value":"docker"}]
 }

Example response:

 HTTP/1.1 204 No Content
 Content-Type: text/plain

Json Parameters:

		hostConfig – the container’s host configuration (optional)

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 OK

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Defaul
false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/(format)

List images format could be json or viz (json default)

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Repository":"ubuntu",
 "Tag":"precise",
 "Id":"b750fe79269d",
 "Created":1364102658,
 "Size":24653,
 "VirtualSize":180116135
 },
 {
 "Repository":"ubuntu",
 "Tag":"12.04",
 "Id":"b750fe79269d",
 "Created":1364102658,
 "Size":24653,
 "VirtualSize":180116135
 }
]

Example request:

 GET /images/viz HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 digraph docker {
 "d82cbacda43a" -> "074be284591f"
 "1496068ca813" -> "08306dc45919"
 "08306dc45919" -> "0e7893146ac2"
 "b750fe79269d" -> "1496068ca813"
 base -> "27cf78414709" [style=invis]
 "f71189fff3de" -> "9a33b36209ed"
 "27cf78414709" -> "b750fe79269d"
 "0e7893146ac2" -> "d6434d954665"
 "d6434d954665" -> "d82cbacda43a"
 base -> "e9aa60c60128" [style=invis]
 "074be284591f" -> "f71189fff3de"
 "b750fe79269d" [label="b750fe79269d\nubuntu",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "e9aa60c60128" [label="e9aa60c60128\ncentos",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 "9a33b36209ed" [label="9a33b36209ed\nfedora",shape=box,fillcolor="paleturquoise",style="filled,rounded"];
 base [style=invisible]
 }

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by defaul

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing i

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Pulling..."}
 {"status":"Pulling", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Status Codes:

		200 – no error

		500 – server error

Insert a file in an image

POST /images/(name)/insert

Insert a file from url in the image name at path

Example request:

 POST /images/test/insert?path=/usr&url=myurl HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"Inserting..."}
 {"status":"Inserting", "progress":"1/? (n/a)"}
 {"error":"Invalid..."}
 ...

Query Parameters:

		url – The url from where the file is taken

		path – The path where the file is stored

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/centos/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id":"b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "parent":"27cf784147099545",
 "created":"2013-03-23T22:24:18.818426-07:00",
 "container":"3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "container_config":
 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":false,
 "AttachStderr":false,
 "PortSpecs":null,
 "Tty":true,
 "OpenStdin":true,
 "StdinOnce":false,
 "Env":null,
 "Cmd": ["/bin/bash"],
 "Dns":null,
 "Image":"centos",
 "Volumes":null,
 "VolumesFrom":"",
 "WorkingDir":""
 },
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict between containers and images

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/fedora/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1
 {{ authConfig }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

{"status":"Pushing..."} {"status":"Pushing", "progress":"1/? (n/a)"}
{"error":"Invalid..."} ...

Status Codes:

		200 – no error :statuscode 404: no such image :statuscode
500: server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com]

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Name":"cespare/sshd",
 "Description":""
 },
 {
 "Name":"johnfuller/sshd",
 "Description":""
 },
 {
 "Name":"dhrp/mongodb-sshd",
 "Description":""
 }
]

 :query term: term to search
 :statuscode 200: no error
 :statuscode 500: server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK

 {{ STREAM }}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.
The archive must include a file called Dockerfile at its root. I
may include any number of other files, which will be accessible in
the build context (See the ADD build command).

The Content-type header should be set to "application/tar".

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – build source URI (git or HTTPS/HTTP)

		q – suppress verbose build output

		nocache – do not use the cache when building the image

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "MemoryLimit":true,
 "SwapLimit":false,
 "IPv4Forwarding":true
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version":"0.2.2",
 "GitCommit":"5a2a5cc+CHANGES",
 "GoVersion":"go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&m=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Cmd": ["cat", "/world"],
 "PortSpecs":["22"]
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		m – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status":"create","id":"dfdf82bd3881","from":"ubuntu:latest","time":1374067924}
 {"status":"start","id":"dfdf82bd3881","from":"ubuntu:latest","time":1374067924}
 {"status":"stop","id":"dfdf82bd3881","from":"ubuntu:latest","time":1374067966}
 {"status":"destroy","id":"dfdf82bd3881","from":"ubuntu:latest","time":1374067970}

Query Parameters:

		since – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

3. Going further

3.1 Inside docker run

Here are the steps of docker run :

		Create the container

		If the status code is 404, it means the image doesn’t exist:
- Try to pull it
- Then retry to create the container

		Start the container

		If you are not in detached mode:
- Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
- Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.11.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.11

1. Brief introduction

		The Remote API has replaced rcli.

		The daemon listens on unix:///var/run/docker.sock but you can bind
Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport STDOUT, STDIN
and STDERR.

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Image": "ubuntu:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "ubuntu:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created containers, include non-running ones.

		since – Show only containers created since Id, include non-running ones.

		before – Show only containers created before Id, include non-running ones.

		size – 1/True/true or 0/False/false, Show the containers sizes

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Image":"ubuntu",
 "Volumes":{
 "/tmp": {}
 },
 "VolumesFrom":"",
 "WorkingDir":"",
 "DisableNetwork": false,
 "ExposedPorts":{
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		config – the container’s configuration

Query Parameters:

		name – Assign the specified name to the container. Mus
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": {},
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {},
 "HostConfig": {
 "Binds": null,
 "ContainerIDFile": "",
 "LxcConf": [],
 "Privileged": false,
 "PortBindings": {
 "80/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "49153"
 }
]
 },
 "Links": null,
 "PublishAllPorts": false
 }
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container logs

GET /containers/(id)/logs

Get stdout and stderr logs from the container id

Example request:

 GET /containers/4fa6e0f0c678/logs?stderr=1&stdout=1×tamps=1&follow=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		follow – 1/True/true or 0/False/false, return stream.
Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log. Default false

		timestamps – 1/True/true or 0/False/false, if logs=true, prin
timestamps for every log line. Default false

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds":["/tmp:/tmp"],
 "LxcConf":[{"Key":"lxc.utsname","Value":"docker"}],
 "PortBindings":{ "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts":false,
 "Privileged":false,
 "Dns": ["8.8.8.8"],
 "VolumesFrom": ["parent", "other:ro"]
 }

Example response:

 HTTP/1.1 204 No Content
 Content-Type: text/plain

Json Parameters:

		hostConfig – the container’s host configuration (optional)

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like “SIGINT”.
When not set, SIGKILL is assumed and the call will wait for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Defaul
false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1)

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

		force – 1/True/true or 0/False/false, Removes the container
even if it was running. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing i

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pulling..."}
 {"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
 {"error": "Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/ubuntu/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "id":"b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "parent":"27cf784147099545",
 "created":"2013-03-23T22:24:18.818426-07:00",
 "container":"3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "container_config":
 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":false,
 "AttachStderr":false,
 "PortSpecs":null,
 "Tty":true,
 "OpenStdin":true,
 "StdinOnce":false,
 "Env":null,
 "Cmd": ["/bin/bash"],
 "Dns":null,
 "Image":"ubuntu",
 "Volumes":null,
 "VolumesFrom":"",
 "WorkingDir":""
 },
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/ubuntu/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pushing..."}
 {"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
 {"error": "Invalid..."}
 ...

If you wish to push an image on to a private registry, that image must already have been tagged
into a repository which references that registry host name and port. This repository name should
then be used in the URL. This mirrors the flow of the CLI.

Example request:

 POST /images/registry.acme.com:5000/test/push HTTP/1.1

Query Parameters:

		tag – the tag to associate with the image on the registry, optional

Request Headers:

		X-Registry-Auth – include a base64-encoded AuthConfig object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Query Parameters:

		force – 1/True/true or 0/False/false, default false

		noprune – 1/True/true or 0/False/false, default false

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_trusted": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"stream": "Step 1..."}
 {"stream": "..."}
 {"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a file called `Dockerfile`
at its root. It may include any number of other files,
which will be accessible in the build context (See the [*ADD build
command*](/reference/builder/#dockerbuilder)).

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – git or HTTP/HTTPS URI build source

		q – suppress verbose build output

		nocache – do not use the cache when building the image

		rm - remove intermediate containers after a successful build

Request Headers:

		Content-type – should be set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers": 11,
 "Images": 16,
 "Driver": "btrfs",
 "ExecutionDriver": "native-0.1",
 "KernelVersion": "3.12.0-1-amd64"
 "Debug": false,
 "NFd": 11,
 "NGoroutines": 21,
 "NEventsListener": 0,
 "InitPath": "/usr/bin/docker",
 "IndexServerAddress": ["https://index.docker.io/v1/"],
 "MemoryLimit": true,
 "SwapLimit": false,
 "IPv4Forwarding": true
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Version":"0.2.2",
 "GitCommit":"5a2a5cc+CHANGES",
 "GoVersion":"go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Ping the docker server

GET /_ping

Ping the docker server

Example request:

 GET /_ping HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 OK

Status Codes:

		200 - no error

		500 - server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&m=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Volumes":{
 "/tmp": {}
 },
 "WorkingDir":"",
 "DisableNetwork": false,
 "ExposedPorts":{
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		m – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get container events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

		until – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images and tags in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository
specified by name.

See the image tarball format for more details.

Example request

 GET /images/ubuntu/get

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into the docker repository.

See the image tarball format for more details.

Example request

 POST /images/load

 Tarball in body

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing three files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file will contain aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, there will also be a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

3. Going further

3.1 Inside docker run

As an example, the docker run command line makes the following API calls:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
		Try to pull it

		Then retry to create the container

		Start the container

		If you are not in detached mode:
		Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
		Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.20.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.20

1. Brief introduction

		The Remote API has replaced rcli.

		The daemon listens on unix:///var/run/docker.sock but you can
Bind Docker to another host/port or a Unix socket.

		The API tends to be REST. However, for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport stdout,
stdin and stderr.

		When the client API version is newer than the daemon’s, these calls return an HTTP
400 Bad Request error message.

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "Id": "8dfafdbc3a40",
 "Names":["/boring_feynman"],
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Names":["/coolName"]
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Names":["/sleepy_dog"]
 "Image": "ubuntu:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Names":["/running_cat"]
 "Image": "ubuntu:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created
containers, include non-running ones.

		since – Show only containers created since Id, include
non-running ones.

		before – Show only containers created before Id, include
non-running ones.

		size – 1/True/true or 0/False/false, Show the containers
sizes

		filters - a JSON encoded value of the filters (a map[string][]string) to process on the containers list. Available filters:

		exited=<int>; – containers with exit code of <int> ;

		status=(created|restarting|running|paused|exited)

		label=key or label="key=value" of a container label

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

POST /containers/create HTTP/1.1
Content-Type: application/json

{
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Entrypoint": "",
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "Mounts": [
 {
 "Source": "/data",
 "Destination": "/data",
 "Mode": "ro,Z",
 "RW": false
 }
],
 "WorkingDir": "",
 "NetworkDisabled": false,
 "MacAddress": "12:34:56:78:9a:bc",
 "ExposedPorts": {
 "22/tcp": {}
 },
 "HostConfig": {
 "Binds": ["/tmp:/tmp"],
 "Links": ["redis3:redis"],
 "LxcConf": {"lxc.utsname":"docker"},
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "CpuPeriod": 100000,
 "CpusetCpus": "0,1",
 "CpusetMems": "0,1",
 "BlkioWeight": 300,
 "MemorySwappiness": 60,
 "OomKillDisable": false,
 "PortBindings": { "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts": false,
 "Privileged": false,
 "ReadonlyRootfs": false,
 "Dns": ["8.8.8.8"],
 "DnsSearch": [""],
 "ExtraHosts": null,
 "VolumesFrom": ["parent", "other:ro"],
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"],
 "RestartPolicy": { "Name": "", "MaximumRetryCount": 0 },
 "NetworkMode": "bridge",
 "Devices": [],
 "Ulimits": [{}],
 "LogConfig": { "Type": "json-file", "Config": {} },
 "SecurityOpt": [""],
 "CgroupParent": ""
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		Hostname - A string value containing the hostname to use for the
container.

		Domainname - A string value containing the domain name to use
for the container.

		User - A string value specifying the user inside the container.

		Memory - Memory limit in bytes.

		MemorySwap- Total memory limit (memory + swap); set -1 to disable swap
You must use this with memory and make the swap value larger than memory.

		CpuShares - An integer value containing the container’s CPU Shares
(ie. the relative weight vs other containers).

		CpuPeriod - The length of a CPU period in microseconds.

		Cpuset - Deprecated please don’t use. Use CpusetCpus instead.

		CpusetCpus - String value containing the cgroups CpusetCpus to use.

		CpusetMems - Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effective on NUMA systems.

		BlkioWeight - Block IO weight (relative weight) accepts a weight value between 10 and 1000.

		MemorySwappiness - Tune a container’s memory swappiness behavior. Accepts an integer between 0 and 100.

		OomKillDisable - Boolean value, whether to disable OOM Killer for the container or not.

		AttachStdin - Boolean value, attaches to stdin.

		AttachStdout - Boolean value, attaches to stdout.

		AttachStderr - Boolean value, attaches to stderr.

		Tty - Boolean value, Attach standard streams to a tty, including stdin if it is not closed.

		OpenStdin - Boolean value, opens stdin,

		StdinOnce - Boolean value, close stdin after the 1 attached client disconnects.

		Env - A list of environment variables in the form of VAR=value

		Labels - Adds a map of labels to a container. To specify a map: {"key":"value"[,"key2":"value2"]}

		Cmd - Command to run specified as a string or an array of strings.

		Entrypoint - Set the entry point for the container as a string or an array
of strings.

		Image - A string specifying the image name to use for the container.

		Mounts - An array of mount points in the container.

		WorkingDir - A string specifying the working directory for commands to
run in.

		NetworkDisabled - Boolean value, when true disables networking for the
container

		ExposedPorts - An object mapping ports to an empty object in the form of:
"ExposedPorts": { "<port>/<tcp|udp>: {}" }

		HostConfig
		Binds – A list of volume bindings for this container. Each volume binding is a string in one of these forms:
		container_path to create a new volume for the container

		host_path:container_path to bind-mount a host path into the container

		host_path:container_path:ro to make the bind-mount read-only inside the container.

		Links - A list of links for the container. Each link entry should be
in the form of container_name:alias.

		LxcConf - LXC specific configurations. These configurations only
work when using the lxc execution driver.

		PortBindings - A map of exposed container ports and the host port they
should map to. A JSON object in the form
{ <port>/<protocol>: [{ "HostPort": "<port>" }] }
Take note that port is specified as a string and not an integer value.

		PublishAllPorts - Allocates a random host port for all of a container’s
exposed ports. Specified as a boolean value.

		Privileged - Gives the container full access to the host. Specified as
a boolean value.

		ReadonlyRootfs - Mount the container’s root filesystem as read only.
Specified as a boolean value.

		Dns - A list of DNS servers for the container to use.

		DnsSearch - A list of DNS search domains

		ExtraHosts - A list of hostnames/IP mappings to add to the
container’s /etc/hosts file. Specified in the form ["hostname:IP"].

		VolumesFrom - A list of volumes to inherit from another container.
Specified in the form <container name>[:<ro|rw>]

		CapAdd - A list of kernel capabilities to add to the container.

		Capdrop - A list of kernel capabilities to drop from the container.

		RestartPolicy – The behavior to apply when the container exits. The
value is an object with a Name property of either "always" to
always restart or "on-failure" to restart only when the container
exit code is non-zero. If on-failure is used, MaximumRetryCount
controls the number of times to retry before giving up.
The default is not to restart. (optional)
An ever increasing delay (double the previous delay, starting at 100mS)
is added before each restart to prevent flooding the server.

		NetworkMode - Sets the networking mode for the container. Supported
values are: bridge, host, and container:<name|id>

		Devices - A list of devices to add to the container specified as a JSON object in the
form
{ "PathOnHost": "/dev/deviceName", "PathInContainer": "/dev/deviceName", "CgroupPermissions": "mrw"}

		Ulimits - A list of ulimits to set in the container, specified as
{ "Name": <name>, "Soft": <soft limit>, "Hard": <hard limit> }, for example:
Ulimits: { "Name": "nofile", "Soft": 1024, "Hard", 2048 }}

		SecurityOpt: A list of string values to customize labels for MLS
systems, such as SELinux.

		LogConfig - Log configuration for the container, specified as a JSON object in the form
{ "Type": "<driver_name>", "Config": {"key1": "val1"}}.
Available types: json-file, syslog, journald, gelf, none.
json-file logging driver.

		CgroupParent - Path to cgroups under which the container’s cgroup is created. If the path is not absolute, the path is considered to be relative to the cgroups path of the init process. Cgroups are created if they do not already exist.

Query Parameters:

		name – Assign the specified name to the container. Must
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "AppArmorProfile": "",
 "Args": [
 "-c",
 "exit 9"
],
 "Config": {
 "AttachStderr": true,
 "AttachStdin": false,
 "AttachStdout": true,
 "Cmd": [
 "/bin/sh",
 "-c",
 "exit 9"
],
 "Domainname": "",
 "Entrypoint": null,
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
],
 "ExposedPorts": null,
 "Hostname": "ba033ac44011",
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "MacAddress": "",
 "NetworkDisabled": false,
 "OnBuild": null,
 "OpenStdin": false,
 "StdinOnce": false,
 "Tty": false,
 "User": "",
 "Volumes": null,
 "WorkingDir": ""
 },
 "Created": "2015-01-06T15:47:31.485331387Z",
 "Driver": "devicemapper",
 "ExecDriver": "native-0.2",
 "ExecIDs": null,
 "HostConfig": {
 "Binds": null,
 "BlkioWeight": 0,
 "CapAdd": null,
 "CapDrop": null,
 "ContainerIDFile": "",
 "CpusetCpus": "",
 "CpusetMems": "",
 "CpuShares": 0,
 "CpuPeriod": 100000,
 "Devices": [],
 "Dns": null,
 "DnsSearch": null,
 "ExtraHosts": null,
 "IpcMode": "",
 "Links": null,
 "LxcConf": [],
 "Memory": 0,
 "MemorySwap": 0,
 "OomKillDisable": false,
 "NetworkMode": "bridge",
 "PortBindings": {},
 "Privileged": false,
 "ReadonlyRootfs": false,
 "PublishAllPorts": false,
 "RestartPolicy": {
 "MaximumRetryCount": 2,
 "Name": "on-failure"
 },
 "LogConfig": {
 "Config": null,
 "Type": "json-file"
 },
 "SecurityOpt": null,
 "VolumesFrom": null,
 "Ulimits": [{}]
 },
 "HostnamePath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/hostname",
 "HostsPath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/hosts",
 "LogPath": "/var/lib/docker/containers/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b-json.log",
 "Id": "ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39",
 "Image": "04c5d3b7b0656168630d3ba35d8889bd0e9caafcaeb3004d2bfbc47e7c5d35d2",
 "MountLabel": "",
 "Name": "/boring_euclid",
 "NetworkSettings": {
 "Bridge": "",
 "Gateway": "",
 "IPAddress": "",
 "IPPrefixLen": 0,
 "MacAddress": "",
 "PortMapping": null,
 "Ports": null
 },
 "Path": "/bin/sh",
 "ProcessLabel": "",
 "ResolvConfPath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/resolv.conf",
 "RestartCount": 1,
 "State": {
 "Error": "",
 "ExitCode": 9,
 "FinishedAt": "2015-01-06T15:47:32.080254511Z",
 "OOMKilled": false,
 "Paused": false,
 "Pid": 0,
 "Restarting": false,
 "Running": false,
 "StartedAt": "2015-01-06T15:47:32.072697474Z"
 },
 "Mounts": [
 {
 "Source": "/data",
 "Destination": "/data",
 "Mode": "ro,Z",
 "RW": false
 }
]
}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
}

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container logs

GET /containers/(id)/logs

Get stdout and stderr logs from the container id

Note:
This endpoint works only for containers with json-file logging driver.

Example request:

 GET /containers/4fa6e0f0c678/logs?stderr=1&stdout=1×tamps=1&follow=1&tail=10&since=1428990821 HTTP/1.1

Example response:

 HTTP/1.1 101 UPGRADED
 Content-Type: application/vnd.docker.raw-stream
 Connection: Upgrade
 Upgrade: tcp

 {{ STREAM }}

Query Parameters:

		follow – 1/True/true or 0/False/false, return stream. Default false.

		stdout – 1/True/true or 0/False/false, show stdout log. Default false.

		stderr – 1/True/true or 0/False/false, show stderr log. Default false.

		since – UNIX timestamp (integer) to filter logs. Specifying a timestamp
will only output log-entries since that timestamp. Default: 0 (unfiltered)

		timestamps – 1/True/true or 0/False/false, print timestamps for
every log line. Default false.

		tail – Output specified number of lines at the end of logs: all or <number>. Default all.

Status Codes:

		101 – no error, hints proxy about hijacking

		200 – no error, no upgrade header found

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Values for Kind:

		0: Modify

		1: Add

		2: Delete

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/octet-stream

{{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container stats based on resource usage

GET /containers/(id)/stats

This endpoint returns a live stream of a container’s resource usage statistics.

Note: this functionality currently only works when using the libcontainer exec-driver.

Example request:

GET /containers/redis1/stats HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "read" : "2015-01-08T22:57:31.547920715Z",
 "network" : {
 "rx_dropped" : 0,
 "rx_bytes" : 648,
 "rx_errors" : 0,
 "tx_packets" : 8,
 "tx_dropped" : 0,
 "rx_packets" : 8,
 "tx_errors" : 0,
 "tx_bytes" : 648
 },
 "memory_stats" : {
 "stats" : {
 "total_pgmajfault" : 0,
 "cache" : 0,
 "mapped_file" : 0,
 "total_inactive_file" : 0,
 "pgpgout" : 414,
 "rss" : 6537216,
 "total_mapped_file" : 0,
 "writeback" : 0,
 "unevictable" : 0,
 "pgpgin" : 477,
 "total_unevictable" : 0,
 "pgmajfault" : 0,
 "total_rss" : 6537216,
 "total_rss_huge" : 6291456,
 "total_writeback" : 0,
 "total_inactive_anon" : 0,
 "rss_huge" : 6291456,
 "hierarchical_memory_limit" : 67108864,
 "total_pgfault" : 964,
 "total_active_file" : 0,
 "active_anon" : 6537216,
 "total_active_anon" : 6537216,
 "total_pgpgout" : 414,
 "total_cache" : 0,
 "inactive_anon" : 0,
 "active_file" : 0,
 "pgfault" : 964,
 "inactive_file" : 0,
 "total_pgpgin" : 477
 },
 "max_usage" : 6651904,
 "usage" : 6537216,
 "failcnt" : 0,
 "limit" : 67108864
 },
 "blkio_stats" : {},
 "cpu_stats" : {
 "cpu_usage" : {
 "percpu_usage" : [
 16970827,
 1839451,
 7107380,
 10571290
],
 "usage_in_usermode" : 10000000,
 "total_usage" : 36488948,
 "usage_in_kernelmode" : 20000000
 },
 "system_cpu_usage" : 20091722000000000,
 "throttling_data" : {}
 }
 }

Query Parameters:

		stream – 1/True/true or 0/False/false, pull stats once then disconnect. Default true.

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Resize a container TTY

POST /containers/(id)/resize?h=<height>&w=<width>

Resize the TTY for container with id. You must restart the container for the resize to take effect.

Example request:

 POST /containers/4fa6e0f0c678/resize?h=40&w=80 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Length: 0
 Content-Type: text/plain; charset=utf-8

Status Codes:

		200 – no error

		404 – No such container

		500 – Cannot resize container

Start a container

POST /containers/(id)/start

Start the container id

Note:
For backwards compatibility, this endpoint accepts a HostConfig as JSON-encoded request body.
See create a container for details.

Example request:

POST /containers/(id)/start HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		304 – container already started

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		304 – container already stopped

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

POST /containers/e90e34656806/kill HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like SIGINT.
When not set, SIGKILL is assumed and the call waits for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Rename a container

POST /containers/(id)/rename

Rename the container id to a new_name

Example request:

POST /containers/e90e34656806/rename?name=new_name HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters:

		name – new name for the container

Status Codes:

		204 – no error

		404 – no such container

		409 - conflict name already assigned

		500 – server error

Pause a container

POST /containers/(id)/pause

Pause the container id

Example request:

POST /containers/e90e34656806/pause HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Unpause a container

POST /containers/(id)/unpause

Unpause the container id

Example request:

POST /containers/e90e34656806/unpause HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

HTTP/1.1 101 UPGRADED
Content-Type: application/vnd.docker.raw-stream
Connection: Upgrade
Upgrade: tcp

{{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false.

		stream – 1/True/true or 0/False/false, return stream.
Default false.

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false.

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false.

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false.

Status Codes:

		101 – no error, hints proxy about hijacking

		200 – no error, no upgrade header found

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header contains the information which the stream writes (stdout or
stderr). It also contains the size of the associated frame encoded in the
last four bytes (uint32).

It is encoded on the first eight bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (is written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the four bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read eight bytes.

		Choose stdout or stderr depending on the first byte.

		Extract the frame size from the last four bytes.

		Read the extracted size and output it on the correct output.

		Goto 1.

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

{{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false.

		stream – 1/True/true or 0/False/false, return stream.
Default false.

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false.

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false.

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false.

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false.

		force - 1/True/true or 0/False/false, Kill then remove the container.
Default false.

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Deprecated in favor of the archive endpoint below.

Example request:

POST /containers/4fa6e0f0c678/copy HTTP/1.1
Content-Type: application/json

{
 "Resource": "test.txt"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/x-tar

{{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Retrieving information about files and folders in a container

HEAD /containers/(id)/archive

See the description of the X-Docker-Container-Path-Stat header in the
folowing section.

Get an archive of a filesystem resource in a container

GET /containers/(id)/archive

Get an tar archive of a resource in the filesystem of container id.

Query Parameters:

		path - resource in the container’s filesystem to archive. Required.

If not an absolute path, it is relative to the container’s root directory.
The resource specified by path must exist. To assert that the resource
is expected to be a directory, path should end in / or /.
(assuming a path separator of /). If path ends in /. then this
indicates that only the contents of the path directory should be
copied. A symlink is always resolved to its target.

Note: It is not possible to copy certain system files such as resources
under /proc, /sys, /dev, and mounts created by the user in the
container.

Example request:

 GET /containers/8cce319429b2/archive?path=/root HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar
 X-Docker-Container-Path-Stat: eyJuYW1lIjoicm9vdCIsInBhdGgiOiIvcm9vdCIsInNpemUiOjQwOTYsIm1vZGUiOjIxNDc0ODQwOTYsIm10aW1lIjoiMjAxNC0wMi0yN1QyMDo1MToyM1oifQ==

 {{ TAR STREAM }}

On success, a response header X-Docker-Container-Path-Stat will be set to a
base64-encoded JSON object containing some filesystem header information about
the archived resource. The above example value would decode to the following
JSON object (whitespace added for readability):

 {
 "name": "root",
 "path": "/root",
 "size": 4096,
 "mode": 2147484096,
 "mtime": "2014-02-27T20:51:23Z"
 }

A HEAD request can also be made to this endpoint if only this information is
desired.

Status Codes:

		200 - success, returns archive of copied resource

		400 - client error, bad parameter, details in JSON response body, one of:
		must specify path parameter (path cannot be empty)

		not a directory (path was asserted to be a directory but exists as a
file)

		404 - client error, resource not found, one of:
– no such container (container id does not exist)
		no such file or directory (path does not exist)

		500 - server error

Extract an archive of files or folders to a directory in a container

PUT /containers/(id)/archive

Upload a tar archive to be extracted to a path in the filesystem of container
id.

Query Parameters:

		path - path to a directory in the container
to extract the archive’s contents into. Required.

If not an absolute path, it is relative to the container’s root directory.
The path resource must exist.

		noOverwriteDirNonDir - If “1”, “true”, or “True” then it will be an error
if unpacking the given content would cause an existing directory to be
replaced with a non-directory and vice versa.

Example request:

 PUT /containers/8cce319429b2/archive?path=/vol1 HTTP/1.1
 Content-Type: application/x-tar

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – the content was extracted successfully

		400 - client error, bad parameter, details in JSON response body, one of:
		must specify path parameter (path cannot be empty)

		not a directory (path should be a directory but exists as a file)

		unable to overwrite existing directory with non-directory
(if noOverwriteDirNonDir)

		unable to overwrite existing non-directory with directory
(if noOverwriteDirNonDir)

		403 - client error, permission denied, the volume
or container rootfs is marked as read-only.

		404 - client error, resource not found, one of:
– no such container (container id does not exist)
		no such file or directory (path resource does not exist)

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

GET /images/json?all=0 HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Example request, with digest information:

GET /images/json?digests=1 HTTP/1.1

Example response, with digest information:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "Created": 1420064636,
 "Id": "4986bf8c15363d1c5d15512d5266f8777bfba4974ac56e3270e7760f6f0a8125",
 "ParentId": "ea13149945cb6b1e746bf28032f02e9b5a793523481a0a18645fc77ad53c4ea2",
 "RepoDigests": [
 "localhost:5000/test/busybox@sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf"
],
 "RepoTags": [
 "localhost:5000/test/busybox:latest",
 "playdate:latest"
],
 "Size": 0,
 "VirtualSize": 2429728
 }
]

The response shows a single image Id associated with two repositories
(RepoTags): localhost:5000/test/busybox: and playdate. A caller can use
either of the RepoTags values localhost:5000/test/busybox:latest or
playdate:latest to reference the image.

You can also use RepoDigests values to reference an image. In this response,
the array has only one reference and that is to the
localhost:5000/test/busybox repository; the playdate repository has no
digest. You can reference this digest using the value:
localhost:5000/test/busybox@sha256:cbbf2f9a99b47fc460d...

See the docker run and docker build commands for examples of digest and tag
references on the command line.

Query Parameters:

		all – 1/True/true or 0/False/false, default false

		filters – a JSON encoded value of the filters (a map[string][]string) to process on the images list. Available filters:

		dangling=true

		label=key or label="key=value" of an image label

		filter - only return images with the specified name

Build image from a Dockerfile

POST /build

Build an image from a Dockerfile

Example request:

POST /build HTTP/1.1

{{ TAR STREAM }}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"stream": "Step 1..."}
{"stream": "..."}
{"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The input stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a build instructions file, typically called
Dockerfile at the archive’s root. The dockerfile parameter may be
used to specify a different build instructions file. To do this, its value must be
the path to the alternate build instructions file to use.

The archive may include any number of other files,
which are accessible in the build context (See the ADD build
command).

The build is canceled if the client drops the connection by quitting
or being killed.

Query Parameters:

		dockerfile - Path within the build context to the Dockerfile. This is
ignored if remote is specified and points to an individual filename.

		t – A repository name (and optionally a tag) to apply to
the resulting image in case of success.

		remote – A Git repository URI or HTTP/HTTPS URI build source. If the
URI specifies a filename, the file’s contents are placed into a file
called Dockerfile.

		q – Suppress verbose build output.

		nocache – Do not use the cache when building the image.

		pull - Attempt to pull the image even if an older image exists locally.

		rm - Remove intermediate containers after a successful build (default behavior).

		forcerm - Always remove intermediate containers (includes rm).

		memory - Set memory limit for build.

		memswap - Total memory (memory + swap), -1 to disable swap.

		cpushares - CPU shares (relative weight).

		cpusetcpus - CPUs in which to allow execution (e.g., 0-3, 0,1).

Request Headers:

		Content-type – Set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Create an image

POST /images/create

Create an image either by pulling it from the registry or by importing it

Example request:

POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"status": "Pulling..."}
{"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
{"error": "Invalid..."}
...

When using this endpoint to pull an image from the registry, the
X-Registry-Auth header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – Name of the image to pull.

		fromSrc – Source to import. The value may be a URL from which the image
can be retrieved or - to read the image from the request body.

		repo – Repository name.

		tag – Tag.

		registry – The registry to pull from.

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

GET /images/ubuntu/json HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Created": "2013-03-23T22:24:18.818426-07:00",
 "Container": "3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "ContainerConfig":
 {
 "Hostname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "Tty": true,
 "OpenStdin": true,
 "StdinOnce": false,
 "Env": null,
 "Cmd": ["/bin/bash"],
 "Dns": null,
 "Image": "ubuntu",
 "Labels": {
 "com.example.vendor": "Acme",
 "com.example.license": "GPL",
 "com.example.version": "1.0"
 },
 "Volumes": null,
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Parent": "27cf784147099545",
 "Size": 6824592
}

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

GET /images/ubuntu/history HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "Id": "3db9c44f45209632d6050b35958829c3a2aa256d81b9a7be45b362ff85c54710",
 "Created": 1398108230,
 "CreatedBy": "/bin/sh -c #(nop) ADD file:eb15dbd63394e063b805a3c32ca7bf0266ef64676d5a6fab4801f2e81e2a5148 in /",
 "Tags": [
 "ubuntu:lucid",
 "ubuntu:10.04"
],
 "Size": 182964289,
 "Comment": ""
 },
 {
 "Id": "6cfa4d1f33fb861d4d114f43b25abd0ac737509268065cdfd69d544a59c85ab8",
 "Created": 1398108222,
 "CreatedBy": "/bin/sh -c #(nop) MAINTAINER Tianon Gravi <admwiggin@gmail.com> - mkimage-debootstrap.sh -i iproute,iputils-ping,ubuntu-minimal -t lucid.tar.xz lucid http://archive.ubuntu.com/ubuntu/",
 "Tags": null,
 "Size": 0,
 "Comment": ""
 },
 {
 "Id": "511136ea3c5a64f264b78b5433614aec563103b4d4702f3ba7d4d2698e22c158",
 "Created": 1371157430,
 "CreatedBy": "",
 "Tags": [
 "scratch12:latest",
 "scratch:latest"
],
 "Size": 0,
 "Comment": "Imported from -"
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

POST /images/test/push HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"status": "Pushing..."}
{"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
{"error": "Invalid..."}
...

If you wish to push an image on to a private registry, that image must already have a tag
into a repository which references that registry hostname and port. This repository name should
then be used in the URL. This duplicates the command line’s flow.

Example request:

POST /images/registry.acme.com:5000/test/push HTTP/1.1

Query Parameters:

		tag – The tag to associate with the image on the registry. This is optional.

Request Headers:

		X-Registry-Auth – Include a base64-encoded AuthConfig.
object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

DELETE /images/test HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-type: application/json

[
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Query Parameters:

		force – 1/True/true or 0/False/false, default false

		noprune – 1/True/true or 0/False/false, default false

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

GET /images/search?term=sshd HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Check auth configuration

POST /auth

Get the default username and email

Example request:

POST /auth HTTP/1.1
Content-Type: application/json

{
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
}

Example response:

HTTP/1.1 200 OK

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

GET /info HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Containers": 11,
 "CpuCfsPeriod": true,
 "CpuCfsQuota": true,
 "Debug": false,
 "DockerRootDir": "/var/lib/docker",
 "Driver": "btrfs",
 "DriverStatus": [[""]],
 "ExecutionDriver": "native-0.1",
 "ExperimentalBuild": false,
 "HttpProxy": "http://test:test@localhost:8080",
 "HttpsProxy": "https://test:test@localhost:8080",
 "ID": "7TRN:IPZB:QYBB:VPBQ:UMPP:KARE:6ZNR:XE6T:7EWV:PKF4:ZOJD:TPYS",
 "IPv4Forwarding": true,
 "Images": 16,
 "IndexServerAddress": "https://index.docker.io/v1/",
 "InitPath": "/usr/bin/docker",
 "InitSha1": "",
 "KernelVersion": "3.12.0-1-amd64",
 "Labels": [
 "storage=ssd"
],
 "MemTotal": 2099236864,
 "MemoryLimit": true,
 "NCPU": 1,
 "NEventsListener": 0,
 "NFd": 11,
 "NGoroutines": 21,
 "Name": "prod-server-42",
 "NoProxy": "9.81.1.160",
 "OomKillDisable": true,
 "OperatingSystem": "Boot2Docker",
 "RegistryConfig": {
 "IndexConfigs": {
 "docker.io": {
 "Mirrors": null,
 "Name": "docker.io",
 "Official": true,
 "Secure": true
 }
 },
 "InsecureRegistryCIDRs": [
 "127.0.0.0/8"
]
 },
 "SwapLimit": false,
 "SystemTime": "2015-03-10T11:11:23.730591467-07:00"
}

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

GET /version HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "Version": "1.5.0",
 "Os": "linux",
 "KernelVersion": "3.18.5-tinycore64",
 "GoVersion": "go1.4.1",
 "GitCommit": "a8a31ef",
 "Arch": "amd64",
 "ApiVersion": "1.20",
 "Experimental": false
}

Status Codes:

		200 – no error

		500 – server error

Ping the docker server

GET /_ping

Ping the docker server

Example request:

GET /_ping HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: text/plain

OK

Status Codes:

		200 - no error

		500 - server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

POST /commit?container=44c004db4b17&comment=message&repo=myrepo HTTP/1.1
Content-Type: application/json

{
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Mounts": [
 {
 "Source": "/data",
 "Destination": "/data",
 "Mode": "ro,Z",
 "RW": false
 }
],
 "Labels": {
 "key1": "value1",
 "key2": "value2"
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "ExposedPorts": {
 "22/tcp": {}
 }
}

Example response:

HTTP/1.1 201 Created
Content-Type: application/vnd.docker.raw-stream

{"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		comment – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get container events from docker, either in real time via streaming, or via
polling (using since).

Docker containers report the following events:

attach, commit, copy, create, destroy, die, exec_create, exec_start, export, kill, oom, pause, rename, resize, restart, start, stop, top, unpause

and Docker images report:

delete, import, pull, push, tag, untag

Example request:

GET /events?since=1374067924

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{"status": "create", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
{"status": "start", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
{"status": "stop", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067966}
{"status": "destroy", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067970}

Query Parameters:

		since – Timestamp used for polling

		until – Timestamp used for polling

		filters – A json encoded value of the filters (a map[string][]string) to process on the event list. Available filters:

		event=<string>; – event to filter

		image=<string>; – image to filter

		container=<string>; – container to filter

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository specified
by name.

If name is a specific name and tag (e.g. ubuntu:latest), then only that image
(and its parents) are returned. If name is an image ID, similarly only that
image (and its parents) are returned, but with the exclusion of the
‘repositories’ file in the tarball, as there were no image names referenced.

See the image tarball format for more details.

Example request

GET /images/ubuntu/get

Example response:

HTTP/1.1 200 OK
Content-Type: application/x-tar

Binary data stream

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images.

GET /images/get

Get a tarball containing all images and metadata for one or more repositories.

For each value of the names parameter: if it is a specific name and tag (e.g.
ubuntu:latest), then only that image (and its parents) are returned; if it is
an image ID, similarly only that image (and its parents) are returned and there
would be no names referenced in the ‘repositories’ file for this image ID.

See the image tarball format for more details.

Example request

GET /images/get?names=myname%2Fmyapp%3Alatest&names=busybox

Example response:

HTTP/1.1 200 OK
Content-Type: application/x-tar

Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into a Docker repository.
See the image tarball format for more details.

Example request

POST /images/load

Tarball in body

Example response:

HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing these files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file contains aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, the tarball should also include a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

Exec Create

POST /containers/(id)/exec

Sets up an exec instance in a running container id

Example request:

POST /containers/e90e34656806/exec HTTP/1.1
Content-Type: application/json

 {
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "Cmd": [
 "date"
]
 }

Example response:

HTTP/1.1 201 OK
Content-Type: application/json

{
 "Id": "f90e34656806"
 "Warnings":[]
}

Json Parameters:

		AttachStdin - Boolean value, attaches to stdin of the exec command.

		AttachStdout - Boolean value, attaches to stdout of the exec command.

		AttachStderr - Boolean value, attaches to stderr of the exec command.

		Tty - Boolean value to allocate a pseudo-TTY.

		Cmd - Command to run specified as a string or an array of strings.

Status Codes:

		201 – no error

		404 – no such container

Exec Start

POST /exec/(id)/start

Starts a previously set up exec instance id. If detach is true, this API
returns after starting the exec command. Otherwise, this API sets up an
interactive session with the exec command.

Example request:

POST /exec/e90e34656806/start HTTP/1.1
Content-Type: application/json

{
 "Detach": false,
 "Tty": false
}

Example response:

HTTP/1.1 201 OK
Content-Type: application/json

{{ STREAM }}

Json Parameters:

		Detach - Detach from the exec command.

		Tty - Boolean value to allocate a pseudo-TTY.

Status Codes:

		201 – no error

		404 – no such exec instance

Stream details:
Similar to the stream behavior of POST /container/(id)/attach API

Exec Resize

POST /exec/(id)/resize

Resizes the tty session used by the exec command id.
This API is valid only if tty was specified as part of creating and starting the exec command.

Example request:

POST /exec/e90e34656806/resize HTTP/1.1
Content-Type: text/plain

Example response:

HTTP/1.1 201 OK
Content-Type: text/plain

Query Parameters:

		h – height of tty session

		w – width

Status Codes:

		201 – no error

		404 – no such exec instance

Exec Inspect

GET /exec/(id)/json

Return low-level information about the exec command id.

Example request:

GET /exec/11fb006128e8ceb3942e7c58d77750f24210e35f879dd204ac975c184b820b39/json HTTP/1.1

Example response:

HTTP/1.1 200 OK
Content-Type: plain/text

{
 "ID" : "11fb006128e8ceb3942e7c58d77750f24210e35f879dd204ac975c184b820b39",
 "Running" : false,
 "ExitCode" : 2,
 "ProcessConfig" : {
 "privileged" : false,
 "user" : "",
 "tty" : false,
 "entrypoint" : "sh",
 "arguments" : [
 "-c",
 "exit 2"
]
 },
 "OpenStdin" : false,
 "OpenStderr" : false,
 "OpenStdout" : false,
 "Container" : {
 "State" : {
 "Running" : true,
 "Paused" : false,
 "Restarting" : false,
 "OOMKilled" : false,
 "Pid" : 3650,
 "ExitCode" : 0,
 "Error" : "",
 "StartedAt" : "2014-11-17T22:26:03.717657531Z",
 "FinishedAt" : "0001-01-01T00:00:00Z"
 },
 "ID" : "8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c",
 "Created" : "2014-11-17T22:26:03.626304998Z",
 "Path" : "date",
 "Args" : [],
 "Config" : {
 "Hostname" : "8f177a186b97",
 "Domainname" : "",
 "User" : "",
 "AttachStdin" : false,
 "AttachStdout" : false,
 "AttachStderr" : false,
 "ExposedPorts" : null,
 "Tty" : false,
 "OpenStdin" : false,
 "StdinOnce" : false,
 "Env" : ["PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"],
 "Cmd" : [
 "date"
],
 "Image" : "ubuntu",
 "Volumes" : null,
 "WorkingDir" : "",
 "Entrypoint" : null,
 "NetworkDisabled" : false,
 "MacAddress" : "",
 "OnBuild" : null,
 "SecurityOpt" : null
 },
 "Image" : "5506de2b643be1e6febbf3b8a240760c6843244c41e12aa2f60ccbb7153d17f5",
 "NetworkSettings" : {
 "IPAddress" : "172.17.0.2",
 "IPPrefixLen" : 16,
 "MacAddress" : "02:42:ac:11:00:02",
 "Gateway" : "172.17.42.1",
 "Bridge" : "docker0",
 "PortMapping" : null,
 "Ports" : {}
 },
 "ResolvConfPath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/resolv.conf",
 "HostnamePath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/hostname",
 "HostsPath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/hosts",
 "LogPath": "/var/lib/docker/containers/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b/1eb5fabf5a03807136561b3c00adcd2992b535d624d5e18b6cdc6a6844d9767b-json.log",
 "Name" : "/test",
 "Driver" : "aufs",
 "ExecDriver" : "native-0.2",
 "MountLabel" : "",
 "ProcessLabel" : "",
 "AppArmorProfile" : "",
 "RestartCount" : 0,
 "Mounts" : [],
 }
}

Status Codes:

		200 – no error

		404 – no such exec instance

		500 - server error

3. Going further

3.1 Inside docker run

As an example, the docker run command line makes the following API calls:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
		Try to pull it.

		Then, retry to create the container.

		Start the container.

		If you are not in detached mode:

		Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached, display the container’s id.

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout, and stderr on the same socket.

To hint potential proxies about connection hijacking, Docker client sends
connection upgrade headers similarly to websocket.

Upgrade: tcp
Connection: Upgrade

When Docker daemon detects the Upgrade header, it switches its status code
from 200 OK to 101 UPGRADED and resends the same headers.

3.3 CORS Requests

To set cross origin requests to the remote api please give values to
--api-cors-header when running Docker in daemon mode. Set * (asterisk) allows all,
default or blank means CORS disabled

$ docker daemon -H="192.168.1.9:2375" --api-cors-header="http://foo.bar"

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.12.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.12

1. Brief introduction

		The Remote API has replaced rcli.

		The daemon listens on unix:///var/run/docker.sock but you can
Bind Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport STDOUT,
STDIN and STDERR.

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Image": "ubuntu:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Image": "ubuntu:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by defaul

		limit – Show limit last created
containers, include non-running ones.

		since – Show only containers created since Id, include
non-running ones.

		before – Show only containers created before Id, include
non-running ones.

		size – 1/True/true or 0/False/false, Show the containers
sizes

		filters – a JSON encoded value of the filters (a map[string][]string)
to process on the images list.

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname":"",
 "Domainname": "",
 "User":"",
 "Memory":0,
 "MemorySwap":0,
 "CpuShares": 512,
 "Cpuset": "0,1",
 "AttachStdin":false,
 "AttachStdout":true,
 "AttachStderr":true,
 "PortSpecs":null,
 "Tty":false,
 "OpenStdin":false,
 "StdinOnce":false,
 "Env":null,
 "Cmd":[
 "date"
],
 "Image":"ubuntu",
 "Volumes":{
 "/tmp": {}
 },
 "WorkingDir":"",
 "NetworkDisabled": false,
 "ExposedPorts":{
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		config – the container’s configuration

Query Parameters:

		name – Assign the specified name to the container. Mus
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Id": "4fa6e0f0c6786287e131c3852c58a2e01cc697a68231826813597e4994f1d6e2",
 "Created": "2013-05-07T14:51:42.041847+02:00",
 "Path": "date",
 "Args": [],
 "Config": {
 "Hostname": "4fa6e0f0c678",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": {},
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "State": {
 "Running": false,
 "Pid": 0,
 "ExitCode": 0,
 "StartedAt": "2013-05-07T14:51:42.087658+02:01360",
 "Ghost": false
 },
 "Image": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "NetworkSettings": {
 "IpAddress": "",
 "IpPrefixLen": 0,
 "Gateway": "",
 "Bridge": "",
 "PortMapping": null
 },
 "SysInitPath": "/home/kitty/go/src/github.com/docker/docker/bin/docker",
 "ResolvConfPath": "/etc/resolv.conf",
 "Volumes": {},
 "HostConfig": {
 "Binds": null,
 "ContainerIDFile": "",
 "LxcConf": [],
 "Privileged": false,
 "PortBindings": {
 "80/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "49153"
 }
]
 },
 "Links": null,
 "PublishAllPorts": false
 }
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container logs

GET /containers/(id)/logs

Get stdout and stderr logs from the container id

Example request:

 GET /containers/4fa6e0f0c678/logs?stderr=1&stdout=1×tamps=1&follow=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		follow – 1/True/true or 0/False/false, return stream.
Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log. Default false

		timestamps – 1/True/true or 0/False/false, if logs=true, prin
timestamps for every log line. Default false

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Start a container

POST /containers/(id)/start

Start the container id

Example request:

 POST /containers/(id)/start HTTP/1.1
 Content-Type: application/json

 {
 "Binds":["/tmp:/tmp"],
 "Links":["redis3:redis"],
 "LxcConf":[{"Key":"lxc.utsname","Value":"docker"}],
 "PortBindings":{ "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts":false,
 "Privileged":false,
 "Dns": ["8.8.8.8"],
 "VolumesFrom": ["parent", "other:ro"]
 }

Example response:

 HTTP/1.1 204 No Content
 Content-Type: text/plain

Json Parameters:

		hostConfig – the container’s host configuration (optional)

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like “SIGINT”.
When not set, SIGKILL is assumed and the call will wait for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Pause a container

POST /containers/(id)/pause

Pause the container id

Example request:

 POST /containers/e90e34656806/pause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Unpause a container

POST /containers/(id)/unpause

Unpause the container id

Example request:

 POST /containers/e90e34656806/unpause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/vnd.docker.raw-stream

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream. Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach to stdin.
Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

		force – 1/True/true or 0/False/false, Removes the container
even if it was running. Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, default false

		filters – a json encoded value of the filters (a map[string][]string) to process on the images list. Available filters:

		dangling=true

		filter - only return images with the specified name

Create an image

POST /images/create

Create an image, either by pull it from the registry or by importing i

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pulling..."}
 {"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
 {"error": "Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import, - means stdin

		repo – repository

		tag – tag

		registry – the registry to pull from

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/ubuntu/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Created": "2013-03-23T22:24:18.818426-07:00",
 "Container": "3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "ContainerConfig":
 {
 "Hostname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "PortSpecs": null,
 "Tty": true,
 "OpenStdin": true,
 "StdinOnce": false,
 "Env": null,
 "Cmd": ["/bin/bash"],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": null,
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Parent": "27cf784147099545",
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/ubuntu/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pushing..."}
 {"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
 {"error": "Invalid..."}
 ...

If you wish to push an image on to a private registry, that image must already have been tagged
into a repository which references that registry host name and port. This repository name should
then be used in the URL. This mirrors the flow of the CLI.

Example request:

 POST /images/registry.acme.com:5000/test/push HTTP/1.1

Query Parameters:

		tag – the tag to associate with the image on the registry, optional

Request Headers:

		X-Registry-Auth – include a base64-encoded AuthConfig object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Query Parameters:

		force – 1/True/true or 0/False/false, default false

		noprune – 1/True/true or 0/False/false, default false

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Build an image from Dockerfile via stdin

POST /build

Build an image from Dockerfile via stdin

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"stream": "Step 1..."}
 {"stream": "..."}
 {"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a file called `Dockerfile`
at its root. It may include any number of other files,
which will be accessible in the build context (See the [*ADD build
command*](/reference/builder/#dockerbuilder)).

Query Parameters:

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – git or HTTP/HTTPS URI build source

		q – suppress verbose build output

		nocache – do not use the cache when building the image

		rm - remove intermediate containers after a successful build (default behavior)

		forcerm - always remove intermediate containers (includes rm)

Request Headers:

		Content-type – should be set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers": 11,
 "Images": 16,
 "Driver": "btrfs",
 "ExecutionDriver": "native-0.1",
 "KernelVersion": "3.12.0-1-amd64"
 "Debug": false,
 "NFd": 11,
 "NGoroutines": 21,
 "NEventsListener": 0,
 "InitPath": "/usr/bin/docker",
 "IndexServerAddress": ["https://index.docker.io/v1/"],
 "MemoryLimit": true,
 "SwapLimit": false,
 "IPv4Forwarding": true
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "ApiVersion": "1.12",
 "Version": "0.2.2",
 "GitCommit": "5a2a5cc+CHANGES",
 "GoVersion": "go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Ping the docker server

GET /_ping

Ping the docker server

Example request:

 GET /_ping HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 OK

Status Codes:

		200 - no error

		500 - server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&comment=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "Cpuset": "0,1",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Volumes": {
 "/tmp": {}
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "ExposedPorts": {
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		comment – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get container events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, export, kill, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

		until – timestamp used for polling

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images and tags in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository
specified by name.

See the image tarball format for more details.

Example request

 GET /images/ubuntu/get

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into the docker repository.
See the image tarball format for more details.

Example request

 POST /images/load

 Tarball in body

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing three files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file will contain aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, there will also be a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

3. Going further

3.1 Inside docker run

As an example, the docker run command line makes the following API calls:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
		Try to pull it

		Then retry to create the container

		Start the container

		If you are not in detached mode:
		Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:
		Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket. This might change in the future.

3.3 CORS Requests

To enable cross origin requests to the remote api add the flag
“–api-enable-cors” when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/logging/fluentd.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Fluentd logging driver

The fluentd logging driver sends container logs to the
Fluentd [http://www.fluentd.org/] collector as structured log data. Then, users
can use any of the various output plugins of
Fluentd [http://www.fluentd.org/plugins] to write these logs to various
destinations.

In addition to the log message itself, the fluentd log
driver sends the following metadata in the structured log message:

| Field | Description |
——————-|————————————-|
container_id	The full 64-character container ID.
container_name	The container name at the time it was started. If you use docker rename to rename a container, the new name is not reflected in the journal entries.
source	stdout or stderr

Usage

Configure the default logging driver by passing the
--log-driver option to the Docker daemon:

docker --log-driver=fluentd

To set the logging driver for a specific container, pass the
--log-driver option to docker run:

docker run --log-driver=fluentd ...

Before using this logging driver, launch a Fluentd daemon. The logging driver
connects to this daemon through localhost:24224 by default. Use the
fluentd-address option to connect to a different address.

docker run --log-driver=fluentd --log-opt fluentd-address=myhost.local:24224

If container cannot connect to the Fluentd daemon, the container stops
immediately.

Options

Users can use the --log-opt NAME=VALUE flag to specify additional Fluentd logging driver options.

fluentd-address

By default, the logging driver connects to localhost:24224. Supply the
fluentd-address option to connect to a different address.

docker run --log-driver=fluentd --log-opt fluentd-address=myhost.local:24224

fluentd-tag

Every Fluentd’s event has a tag that indicates where the log comes from. By
default, the driver uses the docker.{{.ID}} tag. Use the fluentd-tag option
to change this behavior.

When specifying a fluentd-tag value, you can use the following markup tags:

		{{.ID}}: short container id (12 characters)

		{{.FullID}}: full container id

		{{.Name}}: container name

Note regarding container names

At startup time, the system sets the container_name field and {{.Name}}
in the tags to their values at startup. If you use docker rename to rename a
container, the new name is not be reflected in fluentd messages. Instead,
these messages continue to use the original container name.

Fluentd daemon management with Docker

About Fluentd itself, see the project webpage [http://www.fluentd.org]
and its documents [http://docs.fluentd.org/].

To use this logging driver, start the fluentd daemon on a host. We recommend
that you use the Fluentd docker
image [https://registry.hub.docker.com/u/fluent/fluentd/]. This image is
especially useful if you want to aggregate multiple container logs on a each
host then, later, transfer the logs to another Fluentd node to create an
aggregate store.

Testing container loggers

		Write a configuration file (test.conf) to dump input logs:

 <source>
 @type forward
 </source>

 <match docker.**>
 @type stdout
 </match>

		Launch Fluentd container with this configuration file:

 $ docker run -it -p 24224:24224 -v /path/to/conf/test.conf:/fluentd/etc -e FLUENTD_CONF=test.conf fluent/fluentd:latest

		Start one or more containers with the fluentd logging driver:

 $ docker run --log-driver=fluentd your/application

 © Copyright .
 Created using Sphinx 1.3.1.

reference/logging/index.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Configure logging drivers

The container can have a different logging driver than the Docker daemon. Use
the --log-driver=VALUE with the docker run command to configure the
container’s logging driver. The following options are supported:

none	Disables any logging for the container. docker logs won’t be available with this driver.
————-	——-
json-file	Default logging driver for Docker. Writes JSON messages to file.
syslog	Syslog logging driver for Docker. Writes log messages to syslog.
journald	Journald logging driver for Docker. Writes log messages to journald.
gelf	Graylog Extended Log Format (GELF) logging driver for Docker. Writes log messages to a GELF endpoint likeGraylog or Logstash.
fluentd	Fluentd logging driver for Docker. Writes log messages to fluentd (forward input).

The docker logscommand is available only for the json-file logging driver.

The json-file options

The following logging options are supported for the json-file logging driver:

--log-opt max-size=[0-9+][k|m|g]
--log-opt max-file=[0-9+]

Logs that reach max-size are rolled over. You can set the size in kilobytes(k), megabytes(m), or gigabytes(g). eg --log-opt max-size=50m. If max-size is not set, then logs are not rolled over.

max-file specifies the maximum number of files that a log is rolled over before being discarded. eg --log-opt max-file=100. If max-size is not set, then max-file is not honored.

If max-size and max-file are set, docker logs only returns the log lines from the newest log file.

The syslog options

The following logging options are supported for the syslog logging driver:

--log-opt syslog-address=[tcp|udp]://host:port
--log-opt syslog-address=unix://path
--log-opt syslog-facility=daemon
--log-opt syslog-tag="mailer"

syslog-address specifies the remote syslog server address where the driver connects to.
If not specified it defaults to the local unix socket of the running system.
If transport is either tcp or udp and port is not specified it defaults to 514
The following example shows how to have the syslog driver connect to a syslog
remote server at 192.168.0.42 on port 123

$ docker run --log-driver=syslog --log-opt syslog-address=tcp://192.168.0.42:123

The syslog-facility option configures the syslog facility. By default, the system uses the
daemon value. To override this behavior, you can provide an integer of 0 to 23 or any of
the following named facilities:

		kern

		user

		mail

		daemon

		auth

		syslog

		lpr

		news

		uucp

		cron

		authpriv

		ftp

		local0

		local1

		local2

		local3

		local4

		local5

		local6

		local7

The syslog-tag specifies a tag that identifies the container’s syslog messages. By default,
the system uses the first 12 characters of the container id. To override this behavior, specify
a syslog-tag option

Specify journald options

The journald logging driver stores the container id in the journal’s CONTAINER_ID field. For detailed information on
working with this logging driver, see the journald logging driver
reference documentation.

Specify gelf options

The GELF logging driver supports the following options:

--log-opt gelf-address=udp://host:port
--log-opt gelf-tag="database"

The gelf-address option specifies the remote GELF server address that the
driver connects to. Currently, only udp is supported as the transport and you must
specify a port value. The following example shows how to connect the gelf
driver to a GELF remote server at 192.168.0.42 on port 12201

$ docker run --log-driver=gelf --log-opt gelf-address=udp://192.168.0.42:12201

The gelf-tag option specifies a tag for easy container identification.

Specify fluentd options

You can use the --log-opt NAME=VALUE flag to specify these additional Fluentd logging driver options.

		fluentd-address: specify host:port to connect [localhost:24224]

		fluentd-tag: specify tag for fluentd message,

When specifying a fluentd-tag value, you can use the following markup tags:

		{{.ID}}: short container id (12 characters)

		{{.FullID}}: full container id

		{{.Name}}: container name

For example, to specify both additional options:

docker run --log-driver=fluentd --log-opt fluentd-address=localhost:24224 --log-opt fluentd-tag=docker.{{.Name}}

If container cannot connect to the Fluentd daemon on the specified address,
the container stops immediately. For detailed information on working with this
logging driver, see the fluentd logging driver

 © Copyright .
 Created using Sphinx 1.3.1.

reference/api/docker_remote_api_v1.17.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Docker Remote API v1.17

1. Brief introduction

		The Remote API has replaced rcli.

		The daemon listens on unix:///var/run/docker.sock but you can
Bind Docker to another host/port or a Unix socket.

		The API tends to be REST, but for some complex commands, like attach
or pull, the HTTP connection is hijacked to transport STDOUT,
STDIN and STDERR.

2. Endpoints

2.1 Containers

List containers

GET /containers/json

List containers

Example request:

 GET /containers/json?all=1&before=8dfafdbc3a40&size=1 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "8dfafdbc3a40",
 "Names":["/boring_feynman"],
 "Image": "ubuntu:latest",
 "Command": "echo 1",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [{"PrivatePort": 2222, "PublicPort": 3333, "Type": "tcp"}],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "9cd87474be90",
 "Names":["/coolName"],
 "Image": "ubuntu:latest",
 "Command": "echo 222222",
 "Created": 1367854155,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 },
 {
 "Id": "3176a2479c92",
 "Names":["/sleepy_dog"],
 "Image": "ubuntu:latest",
 "Command": "echo 3333333333333333",
 "Created": 1367854154,
 "Status": "Exit 0",
 "Ports":[],
 "SizeRw":12288,
 "SizeRootFs":0
 },
 {
 "Id": "4cb07b47f9fb",
 "Names":["/running_cat"],
 "Image": "ubuntu:latest",
 "Command": "echo 444444444444444444444444444444444",
 "Created": 1367854152,
 "Status": "Exit 0",
 "Ports": [],
 "SizeRw": 12288,
 "SizeRootFs": 0
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, Show all containers.
Only running containers are shown by default (i.e., this defaults to false)

		limit – Show limit last created
containers, include non-running ones.

		since – Show only containers created since Id, include
non-running ones.

		before – Show only containers created before Id, include
non-running ones.

		size – 1/True/true or 0/False/false, Show the containers
sizes

		filters - a json encoded value of the filters (a map[string][]string) to process on the containers list. Available filters:

		exited=<

int>

 – containers with exit code of <

int>

		status=(restarting|running|paused|exited)

Status Codes:

		200 – no error

		400 – bad parameter

		500 – server error

Create a container

POST /containers/create

Create a container

Example request:

 POST /containers/create HTTP/1.1
 Content-Type: application/json

 {
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "Cpuset": "0,1",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Entrypoint": "",
 "Image": "ubuntu",
 "Volumes": {
 "/tmp": {}
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "MacAddress": "12:34:56:78:9a:bc",
 "ExposedPorts": {
 "22/tcp": {}
 },
 "HostConfig": {
 "Binds": ["/tmp:/tmp"],
 "Links": ["redis3:redis"],
 "LxcConf": {"lxc.utsname":"docker"},
 "PortBindings": { "22/tcp": [{ "HostPort": "11022" }] },
 "PublishAllPorts": false,
 "Privileged": false,
 "ReadonlyRootfs": false,
 "Dns": ["8.8.8.8"],
 "DnsSearch": [""],
 "ExtraHosts": null,
 "VolumesFrom": ["parent", "other:ro"],
 "CapAdd": ["NET_ADMIN"],
 "CapDrop": ["MKNOD"],
 "RestartPolicy": { "Name": "", "MaximumRetryCount": 0 },
 "NetworkMode": "bridge",
 "Devices": [],
 "SecurityOpt": [""]
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "Id":"e90e34656806"
 "Warnings":[]
 }

Json Parameters:

		Hostname - A string value containing the desired hostname to use for the
container.

		Domainname - A string value containing the desired domain name to use
for the container.

		User - A string value containing the user to use inside the container.

		Memory - Memory limit in bytes.

		MemorySwap- Total memory limit (memory + swap); set -1 to disable swap,
always use this with memory, and make the value larger than memory.

		CpuShares - An integer value containing the CPU Shares for container
(ie. the relative weight vs other containers).
CpuSet - String value containing the cgroups Cpuset to use.

		AttachStdin - Boolean value, attaches to stdin.

		AttachStdout - Boolean value, attaches to stdout.

		AttachStderr - Boolean value, attaches to stderr.

		Tty - Boolean value, Attach standard streams to a tty, including stdin if it is not closed.

		OpenStdin - Boolean value, opens stdin,

		StdinOnce - Boolean value, close stdin after the 1 attached client disconnects.

		Env - A list of environment variables in the form of VAR=value

		Cmd - Command to run specified as a string or an array of strings.

		Entrypoint - Set the entrypoint for the container a string or an array
of strings

		Image - String value containing the image name to use for the container

		Volumes – An object mapping mountpoint paths (strings) inside the
container to empty objects.

		WorkingDir - A string value containing the working dir for commands to
run in.

		NetworkDisabled - Boolean value, when true disables networking for the
container

		ExposedPorts - An object mapping ports to an empty object in the form of:
"ExposedPorts": { "<port>/<tcp|udp>: {}" }

		HostConfig

		Binds – A list of volume bindings for this container. Each volume
binding is a string of the form container_path (to create a new
volume for the container), host_path:container_path (to bind-mount
a host path into the container), or host_path:container_path:ro
(to make the bind-mount read-only inside the container).

		Links - A list of links for the container. Each link entry should be
in the form of “container_name:alias”.

		LxcConf - LXC specific configurations. These configurations will only
work when using the lxc execution driver.

		PortBindings - A map of exposed container ports and the host port they
should map to. It should be specified in the form
{ <port>/<protocol>: [{ "HostPort": "<port>" }] }
Take note that port is specified as a string and not an integer value.

		PublishAllPorts - Allocates a random host port for all of a container’s
exposed ports. Specified as a boolean value.

		Privileged - Gives the container full access to the host. Specified as
a boolean value.

		ReadonlyRootfs - Mount the container’s root filesystem as read only.
Specified as a boolean value.

		Dns - A list of dns servers for the container to use.

		DnsSearch - A list of DNS search domains

		ExtraHosts - A list of hostnames/IP mappings to be added to the
container’s /etc/hosts file. Specified in the form ["hostname:IP"].

		VolumesFrom - A list of volumes to inherit from another container.
Specified in the form <container name>[:<ro|rw>]

		CapAdd - A list of kernel capabilities to add to the container.

		Capdrop - A list of kernel capabilities to drop from the container.

		RestartPolicy – The behavior to apply when the container exits. The
value is an object with a Name property of either "always" to
always restart or "on-failure" to restart only when the container
exit code is non-zero. If on-failure is used, MaximumRetryCount
controls the number of times to retry before giving up.
The default is not to restart. (optional)
An ever increasing delay (double the previous delay, starting at 100mS)
is added before each restart to prevent flooding the server.

		NetworkMode - Sets the networking mode for the container. Supported
values are: bridge, host, and container:<name|id>

		Devices - A list of devices to add to the container specified in the
form
{ "PathOnHost": "/dev/deviceName", "PathInContainer": "/dev/deviceName", "CgroupPermissions": "mrw"}

		SecurityOpt: A list of string values to customize labels for MLS
systems, such as SELinux.

Query Parameters:

		name – Assign the specified name to the container. Must
match /?[a-zA-Z0-9_-]+.

Status Codes:

		201 – no error

		404 – no such container

		406 – impossible to attach (container not running)

		500 – server error

Inspect a container

GET /containers/(id)/json

Return low-level information on the container id

Example request:

 GET /containers/4fa6e0f0c678/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

{
 "AppArmorProfile": "",
 "Args": [
 "-c",
 "exit 9"
],
 "Config": {
 "AttachStderr": true,
 "AttachStdin": false,
 "AttachStdout": true,
 "Cmd": [
 "/bin/sh",
 "-c",
 "exit 9"
],
 "CpuShares": 0,
 "Cpuset": "",
 "Domainname": "",
 "Entrypoint": null,
 "Env": [
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
],
 "ExposedPorts": null,
 "Hostname": "ba033ac44011",
 "Image": "ubuntu",
 "MacAddress": "",
 "Memory": 0,
 "MemorySwap": 0,
 "NetworkDisabled": false,
 "OnBuild": null,
 "OpenStdin": false,
 "PortSpecs": null,
 "StdinOnce": false,
 "Tty": false,
 "User": "",
 "Volumes": null,
 "WorkingDir": ""
 },
 "Created": "2015-01-06T15:47:31.485331387Z",
 "Driver": "devicemapper",
 "ExecDriver": "native-0.2",
 "ExecIDs": null,
 "HostConfig": {
 "Binds": null,
 "CapAdd": null,
 "CapDrop": null,
 "ContainerIDFile": "",
 "Devices": [],
 "Dns": null,
 "DnsSearch": null,
 "ExtraHosts": null,
 "IpcMode": "",
 "Links": null,
 "LxcConf": [],
 "NetworkMode": "bridge",
 "PortBindings": {},
 "Privileged": false,
 "ReadonlyRootfs": false,
 "PublishAllPorts": false,
 "RestartPolicy": {
 "MaximumRetryCount": 2,
 "Name": "on-failure"
 },
 "SecurityOpt": null,
 "VolumesFrom": null
 },
 "HostnamePath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/hostname",
 "HostsPath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/hosts",
 "Id": "ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39",
 "Image": "04c5d3b7b0656168630d3ba35d8889bd0e9caafcaeb3004d2bfbc47e7c5d35d2",
 "MountLabel": "",
 "Name": "/boring_euclid",
 "NetworkSettings": {
 "Bridge": "",
 "Gateway": "",
 "IPAddress": "",
 "IPPrefixLen": 0,
 "MacAddress": "",
 "PortMapping": null,
 "Ports": null
 },
 "Path": "/bin/sh",
 "ProcessLabel": "",
 "ResolvConfPath": "/var/lib/docker/containers/ba033ac4401106a3b513bc9d639eee123ad78ca3616b921167cd74b20e25ed39/resolv.conf",
 "RestartCount": 1,
 "State": {
 "Error": "",
 "ExitCode": 9,
 "FinishedAt": "2015-01-06T15:47:32.080254511Z",
 "OOMKilled": false,
 "Paused": false,
 "Pid": 0,
 "Restarting": false,
 "Running": false,
 "StartedAt": "2015-01-06T15:47:32.072697474Z"
 },
 "Volumes": {},
 "VolumesRW": {}
}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

List processes running inside a container

GET /containers/(id)/top

List processes running inside the container id

Example request:

 GET /containers/4fa6e0f0c678/top HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Titles": [
 "USER",
 "PID",
 "%CPU",
 "%MEM",
 "VSZ",
 "RSS",
 "TTY",
 "STAT",
 "START",
 "TIME",
 "COMMAND"
],
 "Processes": [
 ["root","20147","0.0","0.1","18060","1864","pts/4","S","10:06","0:00","bash"],
 ["root","20271","0.0","0.0","4312","352","pts/4","S+","10:07","0:00","sleep","10"]
]
 }

Query Parameters:

		ps_args – ps arguments to use (e.g., aux)

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container logs

GET /containers/(id)/logs

Get stdout and stderr logs from the container id

Example request:

 GET /containers/4fa6e0f0c678/logs?stderr=1&stdout=1×tamps=1&follow=1&tail=10 HTTP/1.1

Example response:

 HTTP/1.1 101 UPGRADED
 Content-Type: application/vnd.docker.raw-stream
 Connection: Upgrade
 Upgrade: tcp

 {{ STREAM }}

Query Parameters:

		follow – 1/True/true or 0/False/false, return stream. Default false

		stdout – 1/True/true or 0/False/false, show stdout log. Default false

		stderr – 1/True/true or 0/False/false, show stderr log. Default false

		timestamps – 1/True/true or 0/False/false, print timestamps for
every log line. Default false

		tail – Output specified number of lines at the end of logs: all or <number>. Default all

Status Codes:

		101 – no error, hints proxy about hijacking

		200 – no error, no upgrade header found

		404 – no such container

		500 – server error

Inspect changes on a container’s filesystem

GET /containers/(id)/changes

Inspect changes on container id‘s filesystem

Example request:

 GET /containers/4fa6e0f0c678/changes HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Path": "/dev",
 "Kind": 0
 },
 {
 "Path": "/dev/kmsg",
 "Kind": 1
 },
 {
 "Path": "/test",
 "Kind": 1
 }
]

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Export a container

GET /containers/(id)/export

Export the contents of container id

Example request:

 GET /containers/4fa6e0f0c678/export HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Get container stats based on resource usage

GET /containers/(id)/stats

This endpoint returns a live stream of a container’s resource usage statistics.

Example request:

 GET /containers/redis1/stats HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "read" : "2015-01-08T22:57:31.547920715Z",
 "network" : {
 "rx_dropped" : 0,
 "rx_bytes" : 648,
 "rx_errors" : 0,
 "tx_packets" : 8,
 "tx_dropped" : 0,
 "rx_packets" : 8,
 "tx_errors" : 0,
 "tx_bytes" : 648
 },
 "memory_stats" : {
 "stats" : {
 "total_pgmajfault" : 0,
 "cache" : 0,
 "mapped_file" : 0,
 "total_inactive_file" : 0,
 "pgpgout" : 414,
 "rss" : 6537216,
 "total_mapped_file" : 0,
 "writeback" : 0,
 "unevictable" : 0,
 "pgpgin" : 477,
 "total_unevictable" : 0,
 "pgmajfault" : 0,
 "total_rss" : 6537216,
 "total_rss_huge" : 6291456,
 "total_writeback" : 0,
 "total_inactive_anon" : 0,
 "rss_huge" : 6291456,
 "hierarchical_memory_limit" : 67108864,
 "total_pgfault" : 964,
 "total_active_file" : 0,
 "active_anon" : 6537216,
 "total_active_anon" : 6537216,
 "total_pgpgout" : 414,
 "total_cache" : 0,
 "inactive_anon" : 0,
 "active_file" : 0,
 "pgfault" : 964,
 "inactive_file" : 0,
 "total_pgpgin" : 477
 },
 "max_usage" : 6651904,
 "usage" : 6537216,
 "failcnt" : 0,
 "limit" : 67108864
 },
 "blkio_stats" : {},
 "cpu_stats" : {
 "cpu_usage" : {
 "percpu_usage" : [
 16970827,
 1839451,
 7107380,
 10571290
],
 "usage_in_usermode" : 10000000,
 "total_usage" : 36488948,
 "usage_in_kernelmode" : 20000000
 },
 "system_cpu_usage" : 20091722000000000,
 "throttling_data" : {}
 }
 }

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Resize a container TTY

POST /containers/(id)/resize?h=<height>&w=<width>

Resize the TTY for container with id. The container must be restarted for the resize to take effect.

Example request:

 POST /containers/4fa6e0f0c678/resize?h=40&w=80 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Length: 0
 Content-Type: text/plain; charset=utf-8

Status Codes:

		200 – no error

		404 – No such container

		500 – Cannot resize container

Start a container

POST /containers/(id)/start

Start the container id

Note:
For backwards compatibility, this endpoint accepts a HostConfig as JSON-encoded request body.
See create a container for details.

Example request:

 POST /containers/(id)/start HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		304 – container already started

		404 – no such container

		500 – server error

Stop a container

POST /containers/(id)/stop

Stop the container id

Example request:

 POST /containers/e90e34656806/stop?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		304 – container already stopped

		404 – no such container

		500 – server error

Restart a container

POST /containers/(id)/restart

Restart the container id

Example request:

 POST /containers/e90e34656806/restart?t=5 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		t – number of seconds to wait before killing the container

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Kill a container

POST /containers/(id)/kill

Kill the container id

Example request:

 POST /containers/e90e34656806/kill HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters

		signal - Signal to send to the container: integer or string like “SIGINT”.
When not set, SIGKILL is assumed and the call will waits for the container to exit.

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Rename a container

POST /containers/(id)/rename

Rename the container id to a new_name

Example request:

 POST /containers/e90e34656806/rename?name=new_name HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		name – new name for the container

Status Codes:

		204 – no error

		404 – no such container

		409 - conflict name already assigned

		500 – server error

Pause a container

POST /containers/(id)/pause

Pause the container id

Example request:

 POST /containers/e90e34656806/pause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Unpause a container

POST /containers/(id)/unpause

Unpause the container id

Example request:

 POST /containers/e90e34656806/unpause HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Status Codes:

		204 – no error

		404 – no such container

		500 – server error

Attach to a container

POST /containers/(id)/attach

Attach to the container id

Example request:

 POST /containers/16253994b7c4/attach?logs=1&stream=0&stdout=1 HTTP/1.1

Example response:

 HTTP/1.1 101 UPGRADED
 Content-Type: application/vnd.docker.raw-stream
 Connection: Upgrade
 Upgrade: tcp

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		101 – no error, hints proxy about hijacking

		200 – no error, no upgrade header found

		400 – bad parameter

		404 – no such container

		500 – server error

Stream details:

When using the TTY setting is enabled in
POST /containers/create
,
the stream is the raw data from the process PTY and client’s stdin.
When the TTY is disabled, then the stream is multiplexed to separate
stdout and stderr.

The format is a Header and a Payload (frame).

HEADER

The header will contain the information on which stream write the
stream (stdout or stderr). It also contain the size of the
associated frame encoded on the last 4 bytes (uint32).

It is encoded on the first 8 bytes like this:

header := [8]byte{STREAM_TYPE, 0, 0, 0, SIZE1, SIZE2, SIZE3, SIZE4}

STREAM_TYPE can be:

		0: stdin (will be written on stdout)

		1: stdout

		2: stderr

SIZE1, SIZE2, SIZE3, SIZE4 are the 4 bytes of
the uint32 size encoded as big endian.

PAYLOAD

The payload is the raw stream.

IMPLEMENTATION

The simplest way to implement the Attach protocol is the following:

		Read 8 bytes

		chose stdout or stderr depending on the first byte

		Extract the frame size from the last 4 bytes

		Read the extracted size and output it on the correct output

		Goto 1

Attach to a container (websocket)

GET /containers/(id)/attach/ws

Attach to the container id via websocket

Implements websocket protocol handshake according to RFC 6455 [http://tools.ietf.org/html/rfc6455]

Example request

 GET /containers/e90e34656806/attach/ws?logs=0&stream=1&stdin=1&stdout=1&stderr=1 HTTP/1.1

Example response

 {{ STREAM }}

Query Parameters:

		logs – 1/True/true or 0/False/false, return logs. Default false

		stream – 1/True/true or 0/False/false, return stream.
Default false

		stdin – 1/True/true or 0/False/false, if stream=true, attach
to stdin. Default false

		stdout – 1/True/true or 0/False/false, if logs=true, return
stdout log, if stream=true, attach to stdout. Default false

		stderr – 1/True/true or 0/False/false, if logs=true, return
stderr log, if stream=true, attach to stderr. Default false

Status Codes:

		200 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Wait a container

POST /containers/(id)/wait

Block until container id stops, then returns the exit code

Example request:

 POST /containers/16253994b7c4/wait HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"StatusCode": 0}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

Remove a container

DELETE /containers/(id)

Remove the container id from the filesystem

Example request:

 DELETE /containers/16253994b7c4?v=1 HTTP/1.1

Example response:

 HTTP/1.1 204 No Content

Query Parameters:

		v – 1/True/true or 0/False/false, Remove the volumes
associated to the container. Default false

		force - 1/True/true or 0/False/false, Kill then remove the container.
Default false

Status Codes:

		204 – no error

		400 – bad parameter

		404 – no such container

		500 – server error

Copy files or folders from a container

POST /containers/(id)/copy

Copy files or folders of container id

Example request:

 POST /containers/4fa6e0f0c678/copy HTTP/1.1
 Content-Type: application/json

 {
 "Resource": "test.txt"
 }

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 {{ TAR STREAM }}

Status Codes:

		200 – no error

		404 – no such container

		500 – server error

2.2 Images

List Images

GET /images/json

Example request:

 GET /images/json?all=0 HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "RepoTags": [
 "ubuntu:12.04",
 "ubuntu:precise",
 "ubuntu:latest"
],
 "Id": "8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c",
 "Created": 1365714795,
 "Size": 131506275,
 "VirtualSize": 131506275
 },
 {
 "RepoTags": [
 "ubuntu:12.10",
 "ubuntu:quantal"
],
 "ParentId": "27cf784147099545",
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Created": 1364102658,
 "Size": 24653,
 "VirtualSize": 180116135
 }
]

Query Parameters:

		all – 1/True/true or 0/False/false, default false

		filters – a json encoded value of the filters (a map[string][]string) to process on the images list. Available filters:

		dangling=true

		filter - only return images with the specified name

Build image from a Dockerfile

POST /build

Build an image from a Dockerfile

Example request:

 POST /build HTTP/1.1

 {{ TAR STREAM }}

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"stream": "Step 1..."}
 {"stream": "..."}
 {"error": "Error...", "errorDetail": {"code": 123, "message": "Error..."}}

The input stream must be a tar archive compressed with one of the
following algorithms: identity (no compression), gzip, bzip2, xz.

The archive must include a build instructions file, typically called
Dockerfile at the root of the archive. The dockerfile parameter may be
used to specify a different build instructions file by having its value be
the path to the alternate build instructions file to use.

The archive may include any number of other files,
which will be accessible in the build context (See the ADD build
command).

Query Parameters:

		dockerfile - path within the build context to the Dockerfile

		t – repository name (and optionally a tag) to be applied to
the resulting image in case of success

		remote – git or HTTP/HTTPS URI build source

		q – suppress verbose build output

		nocache – do not use the cache when building the image

		pull - attempt to pull the image even if an older image exists locally

		rm - remove intermediate containers after a successful build (default behavior)

		forcerm - always remove intermediate containers (includes rm)

Request Headers:

		Content-type – should be set to "application/tar".

		X-Registry-Config – base64-encoded ConfigFile object

Status Codes:

		200 – no error

		500 – server error

Create an image

POST /images/create

Create an image, either by pulling it from the registry or by importing it

Example request:

 POST /images/create?fromImage=ubuntu HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pulling..."}
 {"status": "Pulling", "progress": "1 B/ 100 B", "progressDetail": {"current": 1, "total": 100}}
 {"error": "Invalid..."}
 ...

When using this endpoint to pull an image from the registry, the
`X-Registry-Auth` header can be used to include
a base64-encoded AuthConfig object.

Query Parameters:

		fromImage – name of the image to pull

		fromSrc – source to import. The value may be a URL from which the image
can be retrieved or - to read the image from the request body.

		repo – repository

		tag – tag

		registry – the registry to pull from

Request Headers:

		X-Registry-Auth – base64-encoded AuthConfig object

Status Codes:

		200 – no error

		500 – server error

Inspect an image

GET /images/(name)/json

Return low-level information on the image name

Example request:

 GET /images/ubuntu/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Created": "2013-03-23T22:24:18.818426-07:00",
 "Container": "3d67245a8d72ecf13f33dffac9f79dcdf70f75acb84d308770391510e0c23ad0",
 "ContainerConfig":
 {
 "Hostname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "AttachStdin": false,
 "AttachStdout": false,
 "AttachStderr": false,
 "PortSpecs": null,
 "Tty": true,
 "OpenStdin": true,
 "StdinOnce": false,
 "Env": null,
 "Cmd": ["/bin/bash"],
 "Dns": null,
 "Image": "ubuntu",
 "Volumes": null,
 "VolumesFrom": "",
 "WorkingDir": ""
 },
 "Id": "b750fe79269d2ec9a3c593ef05b4332b1d1a02a62b4accb2c21d589ff2f5f2dc",
 "Parent": "27cf784147099545",
 "Size": 6824592
 }

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Get the history of an image

GET /images/(name)/history

Return the history of the image name

Example request:

 GET /images/ubuntu/history HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "Id": "b750fe79269d",
 "Created": 1364102658,
 "CreatedBy": "/bin/bash"
 },
 {
 "Id": "27cf78414709",
 "Created": 1364068391,
 "CreatedBy": ""
 }
]

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Push an image on the registry

POST /images/(name)/push

Push the image name on the registry

Example request:

 POST /images/test/push HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "Pushing..."}
 {"status": "Pushing", "progress": "1/? (n/a)", "progressDetail": {"current": 1}}}
 {"error": "Invalid..."}
 ...

If you wish to push an image on to a private registry, that image must already have been tagged
into a repository which references that registry host name and port. This repository name should
then be used in the URL. This mirrors the flow of the CLI.

Example request:

 POST /images/registry.acme.com:5000/test/push HTTP/1.1

Query Parameters:

		tag – the tag to associate with the image on the registry, optional

Request Headers:

		X-Registry-Auth – include a base64-encoded AuthConfig
object.

Status Codes:

		200 – no error

		404 – no such image

		500 – server error

Tag an image into a repository

POST /images/(name)/tag

Tag the image name into a repository

Example request:

 POST /images/test/tag?repo=myrepo&force=0&tag=v42 HTTP/1.1

Example response:

 HTTP/1.1 201 OK

Query Parameters:

		repo – The repository to tag in

		force – 1/True/true or 0/False/false, default false

		tag - The new tag name

Status Codes:

		201 – no error

		400 – bad parameter

		404 – no such image

		409 – conflict

		500 – server error

Remove an image

DELETE /images/(name)

Remove the image name from the filesystem

Example request:

 DELETE /images/test HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-type: application/json

 [
 {"Untagged": "3e2f21a89f"},
 {"Deleted": "3e2f21a89f"},
 {"Deleted": "53b4f83ac9"}
]

Query Parameters:

		force – 1/True/true or 0/False/false, default false

		noprune – 1/True/true or 0/False/false, default false

Status Codes:

		200 – no error

		404 – no such image

		409 – conflict

		500 – server error

Search images

GET /images/search

Search for an image on Docker Hub [https://hub.docker.com].

Note:
The response keys have changed from API v1.6 to reflect the JSON
sent by the registry server to the docker daemon’s request.

Example request:

 GET /images/search?term=sshd HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 [
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "wma55/u1210sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "jdswinbank/sshd",
 "star_count": 0
 },
 {
 "description": "",
 "is_official": false,
 "is_automated": false,
 "name": "vgauthier/sshd",
 "star_count": 0
 }
 ...
]

Query Parameters:

		term – term to search

Status Codes:

		200 – no error

		500 – server error

2.3 Misc

Check auth configuration

POST /auth

Get the default username and email

Example request:

 POST /auth HTTP/1.1
 Content-Type: application/json

 {
 "username":" hannibal",
 "password: "xxxx",
 "email": "hannibal@a-team.com",
 "serveraddress": "https://index.docker.io/v1/"
 }

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		204 – no error

		500 – server error

Display system-wide information

GET /info

Display system-wide information

Example request:

 GET /info HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "Containers":11,
 "Images":16,
 "Driver":"btrfs",
 "DriverStatus": [[""]],
 "ExecutionDriver":"native-0.1",
 "KernelVersion":"3.12.0-1-amd64"
 "NCPU":1,
 "MemTotal":2099236864,
 "Name":"prod-server-42",
 "ID":"7TRN:IPZB:QYBB:VPBQ:UMPP:KARE:6ZNR:XE6T:7EWV:PKF4:ZOJD:TPYS",
 "Debug":false,
 "NFd": 11,
 "NGoroutines":21,
 "NEventsListener":0,
 "InitPath":"/usr/bin/docker",
 "InitSha1":"",
 "IndexServerAddress":["https://index.docker.io/v1/"],
 "MemoryLimit":true,
 "SwapLimit":false,
 "IPv4Forwarding":true,
 "Labels":["storage=ssd"],
 "DockerRootDir": "/var/lib/docker",
 "OperatingSystem": "Boot2Docker",
 }

Status Codes:

		200 – no error

		500 – server error

Show the docker version information

GET /version

Show the docker version information

Example request:

 GET /version HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "ApiVersion": "1.12",
 "Version": "0.2.2",
 "GitCommit": "5a2a5cc+CHANGES",
 "GoVersion": "go1.0.3"
 }

Status Codes:

		200 – no error

		500 – server error

Ping the docker server

GET /_ping

Ping the docker server

Example request:

 GET /_ping HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: text/plain

 OK

Status Codes:

		200 - no error

		500 - server error

Create a new image from a container’s changes

POST /commit

Create a new image from a container’s changes

Example request:

 POST /commit?container=44c004db4b17&comment=message&repo=myrepo HTTP/1.1
 Content-Type: application/json

 {
 "Hostname": "",
 "Domainname": "",
 "User": "",
 "Memory": 0,
 "MemorySwap": 0,
 "CpuShares": 512,
 "Cpuset": "0,1",
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "PortSpecs": null,
 "Tty": false,
 "OpenStdin": false,
 "StdinOnce": false,
 "Env": null,
 "Cmd": [
 "date"
],
 "Volumes": {
 "/tmp": {}
 },
 "WorkingDir": "",
 "NetworkDisabled": false,
 "ExposedPorts": {
 "22/tcp": {}
 }
 }

Example response:

 HTTP/1.1 201 Created
 Content-Type: application/vnd.docker.raw-stream

 {"Id": "596069db4bf5"}

Json Parameters:

		config - the container’s configuration

Query Parameters:

		container – source container

		repo – repository

		tag – tag

		comment – commit message

		author – author (e.g., “John Hannibal Smith
<hannibal@a-team.com>”)

Status Codes:

		201 – no error

		404 – no such container

		500 – server error

Monitor Docker’s events

GET /events

Get container events from docker, either in real time via streaming, or via
polling (using since).

Docker containers will report the following events:

create, destroy, die, exec_create, exec_start, export, kill, oom, pause, restart, start, stop, unpause

and Docker images will report:

untag, delete

Example request:

 GET /events?since=1374067924

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {"status": "create", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "start", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067924}
 {"status": "stop", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067966}
 {"status": "destroy", "id": "dfdf82bd3881","from": "ubuntu:latest", "time":1374067970}

Query Parameters:

		since – timestamp used for polling

		until – timestamp used for polling

		filters – a json encoded value of the filters (a map[string][]string) to process on the event list. Available filters:

		event=<

string>

 – event to filter

		image=<

string>

 – image to filter

		container=<

string>

 – container to filter

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images in a repository

GET /images/(name)/get

Get a tarball containing all images and metadata for the repository specified
by name.

If name is a specific name and tag (e.g. ubuntu:latest), then only that image
(and its parents) are returned. If name is an image ID, similarly only that
image (and its parents) are returned, but with the exclusion of the
‘repositories’ file in the tarball, as there were no image names referenced.

See the image tarball format for more details.

Example request

 GET /images/ubuntu/get

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Get a tarball containing all images.

GET /images/get

Get a tarball containing all images and metadata for one or more repositories.

For each value of the names parameter: if it is a specific name and tag (e.g.
ubuntu:latest), then only that image (and its parents) are returned; if it is
an image ID, similarly only that image (and its parents) are returned and there
would be no names referenced in the ‘repositories’ file for this image ID.

See the image tarball format for more details.

Example request

 GET /images/get?names=myname%2Fmyapp%3Alatest&names=busybox

Example response:

 HTTP/1.1 200 OK
 Content-Type: application/x-tar

 Binary data stream

Status Codes:

		200 – no error

		500 – server error

Load a tarball with a set of images and tags into docker

POST /images/load

Load a set of images and tags into the docker repository.
See the image tarball format for more details.

Example request

 POST /images/load

 Tarball in body

Example response:

 HTTP/1.1 200 OK

Status Codes:

		200 – no error

		500 – server error

Image tarball format

An image tarball contains one directory per image layer (named using its long ID),
each containing three files:

		VERSION: currently 1.0 - the file format version

		json: detailed layer information, similar to docker inspect layer_id

		layer.tar: A tarfile containing the filesystem changes in this layer

The layer.tar file will contain aufs style .wh..wh.aufs files and directories
for storing attribute changes and deletions.

If the tarball defines a repository, there will also be a repositories file at
the root that contains a list of repository and tag names mapped to layer IDs.

{"hello-world":
 {"latest": "565a9d68a73f6706862bfe8409a7f659776d4d60a8d096eb4a3cbce6999cc2a1"}
}

Exec Create

POST /containers/(id)/exec

Sets up an exec instance in a running container id

Example request:

 POST /containers/e90e34656806/exec HTTP/1.1
 Content-Type: application/json

 {
 "AttachStdin": false,
 "AttachStdout": true,
 "AttachStderr": true,
 "Tty": false,
 "Cmd": [
 "date"
],
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/json

 {
 "Id": "f90e34656806"
 }

Json Parameters:

		AttachStdin - Boolean value, attaches to stdin of the exec command.

		AttachStdout - Boolean value, attaches to stdout of the exec command.

		AttachStderr - Boolean value, attaches to stderr of the exec command.

		Tty - Boolean value to allocate a pseudo-TTY

		Cmd - Command to run specified as a string or an array of strings.

Status Codes:

		201 – no error

		404 – no such container

Exec Start

POST /exec/(id)/start

Starts a previously set up exec instance id. If detach is true, this API
returns after starting the exec command. Otherwise, this API sets up an
interactive session with the exec command.

Example request:

 POST /exec/e90e34656806/start HTTP/1.1
 Content-Type: application/json

 {
 "Detach": false,
 "Tty": false,
 }

Example response:

 HTTP/1.1 201 OK
 Content-Type: application/json

 {{ STREAM }}

Json Parameters:

		Detach - Detach from the exec command

		Tty - Boolean value to allocate a pseudo-TTY

Status Codes:

		201 – no error

		404 – no such exec instance

Stream details:
Similar to the stream behavior of POST /container/(id)/attach API

Exec Resize

POST /exec/(id)/resize

Resizes the tty session used by the exec command id.
This API is valid only if tty was specified as part of creating and starting the exec command.

Example request:

 POST /exec/e90e34656806/resize HTTP/1.1
 Content-Type: text/plain

Example response:

 HTTP/1.1 201 OK
 Content-Type: text/plain

Query Parameters:

		h – height of tty session

		w – width

Status Codes:

		201 – no error

		404 – no such exec instance

Exec Inspect

GET /exec/(id)/json

Return low-level information about the exec command id.

Example request:

 GET /exec/11fb006128e8ceb3942e7c58d77750f24210e35f879dd204ac975c184b820b39/json HTTP/1.1

Example response:

 HTTP/1.1 200 OK
 Content-Type: plain/text

 {
 "ID" : "11fb006128e8ceb3942e7c58d77750f24210e35f879dd204ac975c184b820b39",
 "Running" : false,
 "ExitCode" : 2,
 "ProcessConfig" : {
 "privileged" : false,
 "user" : "",
 "tty" : false,
 "entrypoint" : "sh",
 "arguments" : [
 "-c",
 "exit 2"
]
 },
 "OpenStdin" : false,
 "OpenStderr" : false,
 "OpenStdout" : false,
 "Container" : {
 "State" : {
 "Running" : true,
 "Paused" : false,
 "Restarting" : false,
 "OOMKilled" : false,
 "Pid" : 3650,
 "ExitCode" : 0,
 "Error" : "",
 "StartedAt" : "2014-11-17T22:26:03.717657531Z",
 "FinishedAt" : "0001-01-01T00:00:00Z"
 },
 "ID" : "8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c",
 "Created" : "2014-11-17T22:26:03.626304998Z",
 "Path" : "date",
 "Args" : [],
 "Config" : {
 "Hostname" : "8f177a186b97",
 "Domainname" : "",
 "User" : "",
 "Memory" : 0,
 "MemorySwap" : 0,
 "CpuShares" : 0,
 "Cpuset" : "",
 "AttachStdin" : false,
 "AttachStdout" : false,
 "AttachStderr" : false,
 "PortSpecs" : null,
 "ExposedPorts" : null,
 "Tty" : false,
 "OpenStdin" : false,
 "StdinOnce" : false,
 "Env" : ["PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"],
 "Cmd" : [
 "date"
],
 "Image" : "ubuntu",
 "Volumes" : null,
 "WorkingDir" : "",
 "Entrypoint" : null,
 "NetworkDisabled" : false,
 "MacAddress" : "",
 "OnBuild" : null,
 "SecurityOpt" : null
 },
 "Image" : "5506de2b643be1e6febbf3b8a240760c6843244c41e12aa2f60ccbb7153d17f5",
 "NetworkSettings" : {
 "IPAddress" : "172.17.0.2",
 "IPPrefixLen" : 16,
 "MacAddress" : "02:42:ac:11:00:02",
 "Gateway" : "172.17.42.1",
 "Bridge" : "docker0",
 "PortMapping" : null,
 "Ports" : {}
 },
 "ResolvConfPath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/resolv.conf",
 "HostnamePath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/hostname",
 "HostsPath" : "/var/lib/docker/containers/8f177a186b977fb451136e0fdf182abff5599a08b3c7f6ef0d36a55aaf89634c/hosts",
 "Name" : "/test",
 "Driver" : "aufs",
 "ExecDriver" : "native-0.2",
 "MountLabel" : "",
 "ProcessLabel" : "",
 "AppArmorProfile" : "",
 "RestartCount" : 0,
 "Volumes" : {},
 "VolumesRW" : {}
 }
 }

Status Codes:

		200 – no error

		404 – no such exec instance

		500 - server error

3. Going further

3.1 Inside docker run

As an example, the docker run command line makes the following API calls:

		Create the container

		If the status code is 404, it means the image doesn’t exist:
		Try to pull it

		Then retry to create the container

		Start the container

		If you are not in detached mode:

		Attach to the container, using logs=1 (to have stdout and
stderr from the container’s start) and stream=1

		If in detached mode or only stdin is attached:

		Display the container’s id

3.2 Hijacking

In this version of the API, /attach, uses hijacking to transport stdin,
stdout and stderr on the same socket.

To hint potential proxies about connection hijacking, Docker client sends
connection upgrade headers similarly to websocket.

Upgrade: tcp
Connection: Upgrade

When Docker daemon detects the Upgrade header, it will switch its status code
from 200 OK to 101 UPGRADED and resend the same headers.

This might change in the future.

3.3 CORS Requests

To set cross origin requests to the remote api, please add flag “–api-enable-cors”
when running docker in daemon mode.

$ docker -d -H="192.168.1.9:2375" --api-enable-cors

 © Copyright .
 Created using Sphinx 1.3.1.

reference/logging/journald.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Journald logging driver

The journald logging driver sends container logs to the systemd
journal [http://www.freedesktop.org/software/systemd/man/systemd-journald.service.html]. Log entries can be retrieved using the journalctl
command or through use of the journal API.

In addition to the text of the log message itself, the journald log
driver stores the following metadata in the journal with each message:

| Field | Description |
———————-|————-|
CONTAINER_ID	The container ID truncated to 12 characters.
CONTAINER_ID_FULL	The full 64-character container ID.
CONTAINER_NAME	The container name at the time it was started. If you use docker rename to rename a container, the new name is not reflected in the journal entries.

Usage

You can configure the default logging driver by passing the
--log-driver option to the Docker daemon:

docker --log-driver=journald

You can set the logging driver for a specific container by using the
--log-driver option to docker run:

docker run --log-driver=journald ...

Note regarding container names

The value logged in the CONTAINER_NAME field is the container name
that was set at startup. If you use docker rename to rename a
container, the new name will not be reflected in the journal entries.
Journal entries will continue to use the original name.

Retrieving log messages with journalctl

You can use the journalctl command to retrieve log messages. You
can apply filter expressions to limit the retrieved messages to a
specific container. For example, to retrieve all log messages from a
container referenced by name:

journalctl CONTAINER_NAME=webserver

You can make use of additional filters to further limit the messages
retrieved. For example, to see just those messages generated since
the system last booted:

journalctl -b CONTAINER_NAME=webserver

Or to retrieve log messages in JSON format with complete metadata:

journalctl -o json CONTAINER_NAME=webserver

Retrieving log messages with the journal API

This example uses the systemd Python module to retrieve container
logs:

import systemd.journal

reader = systemd.journal.Reader()
reader.add_match('CONTAINER_NAME=web')

for msg in reader:
 print '{CONTAINER_ID_FULL}: {MESSAGE}'.format(**msg)

 © Copyright .
 Created using Sphinx 1.3.1.

_images/contributor-edit.png
locker 2015 Birthday Party Attendess O
Waryedocker .con San Francisco, Ch

BIRTHDAY.nd" [noeol] 2L, 78C

installation/archlinux.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Arch Linux

Installing on Arch Linux can be handled via the package in community:

		docker [https://www.archlinux.org/packages/community/x86_64/docker/]

or the following AUR package:

		docker-git [https://aur.archlinux.org/packages/docker-git/]

The docker package will install the latest tagged version of docker. The
docker-git package will build from the current master branch.

Dependencies

Docker depends on several packages which are specified as dependencies
in the packages. The core dependencies are:

		bridge-utils

		device-mapper

		iproute2

		lxc

		sqlite

Installation

For the normal package a simple

$ sudo pacman -S docker

is all that is needed.

For the AUR package execute:

$ sudo yaourt -S docker-git

The instructions here assume yaourt is installed. See Arch User
Repository [https://wiki.archlinux.org/index.php/Arch_User_Repository#Installing_packages]
for information on building and installing packages from the AUR if you
have not done so before.

Starting Docker

There is a systemd service unit created for docker. To start the docker
service:

$ sudo systemctl start docker

To start on system boot:

$ sudo systemctl enable docker

Custom daemon options

If you need to add an HTTP Proxy, set a different directory or partition for the
Docker runtime files, or make other customizations, read our systemd article to
learn how to customize your systemd Docker daemon options.

Running Docker with a manually-defined network

If you manually configure your network using systemd-network version 220 or
higher, containers you start with Docker may be unable to access your network.
Beginning with version 220, the forwarding setting for a given network
(net.ipv4.conf.<interface>.forwarding) defaults to off. This setting
prevents IP forwarding. It also conflicts with Docker which enables the
net.ipv4.conf.all.forwarding setting within a container.

To work around this, edit the <interface>.network file in
/etc/systemd/network/ on your Docker host add the following block:

[Network]
...
IPForward=kernel
...

This configuration allows IP forwarding from the container as expected.

Uninstallation

To uninstall the Docker package:

$ sudo pacman -R docker

To uninstall the Docker package and dependencies that are no longer needed:

$ sudo pacman -Rns docker

The above commands will not remove images, containers, volumes, or user created
configuration files on your host. If you wish to delete all images, containers,
and volumes run the following command:

$ rm -rf /var/lib/docker

You must delete the user created configuration files manually.

 © Copyright .
 Created using Sphinx 1.3.1.

installation/fedora.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

Fedora

Docker is supported on the following versions of Fedora:

		Fedora 20

		Fedora 21

		Fedora 22

This page instructs you to install using Docker-managed release packages and
installation mechanisms. Using these packages ensures you get the latest release
of Docker. If you wish to install using Fedora-managed packages, consult your
Fedora release documentation for information on Fedora’s Docker support.

##Prerequisites

Docker requires a 64-bit installation regardless of your Fedora version. Also, your kernel must be 3.10 at minimum. To check your current kernel
version, open a terminal and use uname -r to display your kernel version:

$ uname -r
3.19.5-100.fc20.x86_64

If your kernel is at a older version, you must update it.

Finally, is it recommended that you fully update your system. Please keep in
mind that your system should be fully patched to fix any potential kernel bugs. Any
reported kernel bugs may have already been fixed on the latest kernel packages

Install

There are two ways to install Docker Engine. You can use curl with the get.docker.com site. This method runs an installation script which installs via the yum package manager. Or you can install with the yum package manager directly yourself.

Install with the script

		Log into your machine as a user with sudo or root privileges.

		Make sure your existing yum packages are up-to-date.

 $ sudo yum update

		Run the Docker installation script.

 $ curl -sSL https://get.docker.com/ | sh

 This script adds the `docker.repo` repository and installs Docker.

		Start the Docker daemon.

 $ sudo service docker start

		Verify docker is installed correctly by running a test image in a container.

 $ sudo docker run hello-world
 Unable to find image 'hello-world:latest' locally
 latest: Pulling from hello-world
 a8219747be10: Pull complete
 91c95931e552: Already exists
 hello-world:latest: The image you are pulling has been verified. Important: image verification is a tech preview feature and should not be relied on to provide security.
 Digest: sha256:aa03e5d0d5553b4c3473e89c8619cf79df368babd1.7.1cf5daeb82aab55838d
 Status: Downloaded newer image for hello-world:latest
 Hello from Docker.
 This message shows that your installation appears to be working correctly.

 To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (Assuming it was not already locally available.)
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

 To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

 For more examples and ideas, visit:
 http://docs.docker.com/userguide/

Install without the script

		Log into your machine as a user with sudo or root privileges.

		Make sure your existing yum packages are up-to-date.

 $ sudo yum update

		Add the yum repo yourself.

For Fedora 20 run:

 $ cat >/etc/yum.repos.d/docker.repo <<-EOF
 [dockerrepo]
 name=Docker Repository
 baseurl=https://yum.dockerproject.org/repo/main/fedora/20
 enabled=1
 gpgcheck=1
 gpgkey=https://yum.dockerproject.org/gpg
 EOF

For Fedora 21 run:

 $ cat >/etc/yum.repos.d/docker.repo <<-EOF
 [dockerrepo]
 name=Docker Repository
 baseurl=https://yum.dockerproject.org/repo/main/fedora/21
 enabled=1
 gpgcheck=1
 gpgkey=https://yum.dockerproject.org/gpg
 EOF

For Fedora 22 run:

 $ cat >/etc/yum.repos.d/docker.repo <<-EOF
 [dockerrepo]
 name=Docker Repository
 baseurl=https://yum.dockerproject.org/repo/main/fedora/22
 enabled=1
 gpgcheck=1
 gpgkey=https://yum.dockerproject.org/gpg
 EOF

		Install the Docker package.

 $ sudo yum install docker-engine

		Start the Docker daemon.

 $ sudo service docker start

		Verify docker is installed correctly by running a test image in a container.

 $ sudo docker run hello-world

Create a docker group

The docker daemon binds to a Unix socket instead of a TCP port. By default
that Unix socket is owned by the user root and other users can access it with
sudo. For this reason, docker daemon always runs as the root user.

To avoid having to use sudo when you use the docker command, create a Unix
group called docker and add users to it. When the docker daemon starts, it
makes the ownership of the Unix socket read/writable by the docker group.

Warning: The docker group is equivalent to the root user; For details
on how this impacts security in your system, see Docker Daemon Attack
Surface for details.

To create the docker group and add your user:

		Log into your system as a user with sudo privileges.

		Create the docker group and add your user.

sudo usermod -aG docker your_username

		Log out and log back in.

This ensures your user is running with the correct permissions.

		Verify your work by running docker without sudo.

 $ docker run hello-world
 Unable to find image 'hello-world:latest' locally
 latest: Pulling from hello-world
 a8219747be10: Pull complete
 91c95931e552: Already exists
 hello-world:latest: The image you are pulling has been verified. Important: image verification is a tech preview feature and should not be relied on to provide security.
 Digest: sha256:aa03e5d0d5553b4c3473e89c8619cf79df368babd18681cf5daeb82aab55838d
 Status: Downloaded newer image for hello-world:latest
 Hello from Docker.
 This message shows that your installation appears to be working correctly.

 To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (Assuming it was not already locally available.)
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

 To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

 For more examples and ideas, visit:
 http://docs.docker.com/userguide/

Start the docker daemon at boot

To ensure Docker starts when you boot your system, do the following:

$ sudo chkconfig docker on

If you need to add an HTTP Proxy, set a different directory or partition for the
Docker runtime files, or make other customizations, read our Systemd article to
learn how to customize your Systemd Docker daemon options.

Uninstall

You can uninstall the Docker software with yum.

		List the package you have installed.

 $ yum list installed | grep docker
 yum list installed | grep docker
 docker-engine.x86_64 1.7.1-0.1.fc20
 @/docker-engine-1.7.1-0.1.fc20.el7.x86_64

		Remove the package.

 $ sudo yum -y remove docker-engine.x86_64

This command does not remove images, containers, volumes, or user-created
configuration files on your host.

		To delete all images, containers, and volumes, run the following command:

 $ rm -rf /var/lib/docker

		Locate and delete any user-created configuration files.

 © Copyright .
 Created using Sphinx 1.3.1.

_images/to_from_pr.png
U1 base fork: docker/docker ~ | base: master~ .. head fork: moxlegiri/docker ~ || compare: 11038-fix-rhek-link +

Pl lines for contributing to this repository.
Change https > http in 6.5 docs -
Write Preview (G Markdown supported I, Edit in fullscreen
+ Able to merge.

‘These branches can be

o

_images/docker-filesystems-multilayer.png
references
parent
image

_images/repos.png
Search... o Browse Repos Documentation ~ Community Help () docsuser v

() docsuser v Your Repositories

Show: Al | sortby: Lastupdated

Summary

Filter by name...
Repositories

i a day ago N
Starred n docsuser/private & D
o o

Manage
Settings docsuser/repository aday ago QD
Enterprise Licenses A non-automated repository o o
Private Repositories

n docsuser/public amonth ago QD
(used 1 of 50) o o

Hub Enterprise

Register here for the
limited early access

version,

_images/irc_connect.png
v Connection details,

Connect to freenode IRC

Nickname:

Channels:

Auth to services: ()
reCAPTCHA:

Sk

Reload |

Audio captcha: O

Iy (Commeet)

_images/docker-filesystems-multiroot.png

_images/register-web.png
Create your Docker account

Already have an account? Login instead.

Username:

Required. 4 to 30 lower case characters. Letters and digts only.

Password:

Password confirmation:

Enter the same password as above, for verification.

Mailing List:

@ Subscribe to the Docker Weekly mailing list.

["onue SRR 50 vt i

reference/commandline/import.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

import

Usage: docker import file|URL|- [REPOSITORY[:TAG]]

Create an empty filesystem image and import the contents of the
tarball (.tar, .tar.gz, .tgz, .bzip, .tar.xz, .txz) into it, then
optionally tag it.

 -c, --change=[] Apply specified Dockerfile instructions while importing the image

You can specify a URL or - (dash) to take data directly from STDIN. The
URL can point to an archive (.tar, .tar.gz, .tgz, .bzip, .tar.xz, or .txz)
containing a fileystem or to an individual file on the Docker host. If you
specify an archive, Docker untars it in the container relative to the /
(root). If you specify an individual file, you must specify the full path within
the host. To import from a remote location, specify a URI that begins with the
http:// or https:// protocol.

The --change option will apply Dockerfile instructions to the image
that is created.
Supported Dockerfile instructions:
CMD|ENTRYPOINT|ENV|EXPOSE|ONBUILD|USER|VOLUME|WORKDIR

Examples

Import from a remote location:

This will create a new untagged image.

$ docker import http://example.com/exampleimage.tgz

Import from a local file:

Import to docker via pipe and STDIN.

$ cat exampleimage.tgz | docker import - exampleimagelocal:new

Import to docker from a local archive.

$ docker import /path/to/exampleimage.tgz

Import from a local directory:

$ sudo tar -c . | docker import - exampleimagedir

Import from a local directory with new configurations:

$ sudo tar -c . | docker import --change "ENV DEBUG true" - exampleimagedir

Note the sudo in this example – you must preserve
the ownership of the files (especially root ownership) during the
archiving with tar. If you are not root (or the sudo command) when you
tar, then the ownerships might not get preserved.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/info.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

info

Usage: docker info

Display system-wide information

For example:

$ docker -D info
Containers: 14
Images: 52
Storage Driver: aufs
 Root Dir: /var/lib/docker/aufs
 Backing Filesystem: extfs
 Dirs: 545
Execution Driver: native-0.2
Logging Driver: json-file
Kernel Version: 3.13.0-24-generic
Operating System: Ubuntu 14.04 LTS
CPUs: 1
Name: prod-server-42
ID: 7TRN:IPZB:QYBB:VPBQ:UMPP:KARE:6ZNR:XE6T:7EWV:PKF4:ZOJD:TPYS
Total Memory: 2 GiB
Debug mode (server): false
Debug mode (client): true
File Descriptors: 10
Goroutines: 9
System Time: Tue Mar 10 18:38:57 UTC 2015
EventsListeners: 0
Init Path: /usr/bin/docker
Docker Root Dir: /var/lib/docker
Http Proxy: http://test:test@localhost:8080
Https Proxy: https://test:test@localhost:8080
No Proxy: 9.81.1.160
Username: svendowideit
Registry: [https://index.docker.io/v1/]
Labels:
 storage=ssd

The global -D option tells all docker commands to output debug information.

When sending issue reports, please use docker version and docker -D info to
ensure we know how your setup is configured.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/exec.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

exec

Usage: docker exec [OPTIONS] CONTAINER COMMAND [ARG...]

Run a command in a running container

 -d, --detach=false Detached mode: run command in the background
 -i, --interactive=false Keep STDIN open even if not attached
 -t, --tty=false Allocate a pseudo-TTY
 -u, --user= Username or UID (format: <name|uid>[:<group|gid>])

The docker exec command runs a new command in a running container.

The command started using docker exec only runs while the container’s primary
process (PID 1) is running, and it is not restarted if the container is
restarted.

If the container is paused, then the docker exec command will fail with an error:

$ docker pause test
test
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
1ae3b36715d2 ubuntu:latest "bash" 17 seconds ago Up 16 seconds (Paused) test
$ docker exec test ls
FATA[0000] Error response from daemon: Container test is paused, unpause the container before exec
$ echo $?
1

Examples

$ docker run --name ubuntu_bash --rm -i -t ubuntu bash

This will create a container named ubuntu_bash and start a Bash session.

$ docker exec -d ubuntu_bash touch /tmp/execWorks

This will create a new file /tmp/execWorks inside the running container
ubuntu_bash, in the background.

$ docker exec -it ubuntu_bash bash

This will create a new Bash session in the container ubuntu_bash.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/commit.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

commit

Usage: docker commit [OPTIONS] CONTAINER [REPOSITORY[:TAG]]

Create a new image from a container's changes

 -a, --author="" Author (e.g., "John Hannibal Smith <hannibal@a-team.com>")
 -c, --change=[] Apply specified Dockerfile instructions while committing the image
 -m, --message="" Commit message
 -p, --pause=true Pause container during commit

It can be useful to commit a container’s file changes or settings into a new
image. This allows you debug a container by running an interactive shell, or to
export a working dataset to another server. Generally, it is better to use
Dockerfiles to manage your images in a documented and maintainable way.

The commit operation will not include any data contained in
volumes mounted inside the container.

By default, the container being committed and its processes will be paused
while the image is committed. This reduces the likelihood of encountering data
corruption during the process of creating the commit. If this behavior is
undesired, set the ‘p’ option to false.

The --change option will apply Dockerfile instructions to the image that is
created. Supported Dockerfile instructions:
CMD|ENTRYPOINT|ENV|EXPOSE|LABEL|ONBUILD|USER|VOLUME|WORKDIR

Commit a container

$ docker ps
ID IMAGE COMMAND CREATED STATUS PORTS
c3f279d17e0a ubuntu:12.04 /bin/bash 7 days ago Up 25 hours
197387f1b436 ubuntu:12.04 /bin/bash 7 days ago Up 25 hours
$ docker commit c3f279d17e0a SvenDowideit/testimage:version3
f5283438590d
$ docker images
REPOSITORY TAG ID CREATED VIRTUAL SIZE
SvenDowideit/testimage version3 f5283438590d 16 seconds ago 335.7 MB

Commit a container with new configurations

$ docker ps
ID IMAGE COMMAND CREATED STATUS PORTS
c3f279d17e0a ubuntu:12.04 /bin/bash 7 days ago Up 25 hours
197387f1b436 ubuntu:12.04 /bin/bash 7 days ago Up 25 hours
$ docker inspect -f "{{ .Config.Env }}" c3f279d17e0a
[HOME=/ PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin]
$ docker commit --change "ENV DEBUG true" c3f279d17e0a SvenDowideit/testimage:version3
f5283438590d
$ docker inspect -f "{{ .Config.Env }}" f5283438590d
[HOME=/ PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin DEBUG=true]

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/logs.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

logs

Usage: docker logs [OPTIONS] CONTAINER

Fetch the logs of a container

 -f, --follow=false Follow log output
 --since="" Show logs since timestamp
 -t, --timestamps=false Show timestamps
 --tail="all" Number of lines to show from the end of the logs

NOTE: this command is available only for containers with json-file logging
driver.

The docker logs command batch-retrieves logs present at the time of execution.

The docker logs --follow command will continue streaming the new output from
the container’s STDOUT and STDERR.

Passing a negative number or a non-integer to --tail is invalid and the
value is set to all in that case.

The docker logs --timestamp commands will add an RFC3339Nano
timestamp, for example 2014-09-16T06:17:46.000000000Z, to each
log entry. To ensure that the timestamps for are aligned the
nano-second part of the timestamp will be padded with zero when necessary.

The --since option shows only the container logs generated after
a given date. You can specify the date as an RFC 3339 date, a UNIX
timestamp, or a Go duration string (e.g. 1m30s, 3h). Docker computes
the date relative to the client machine’s time. You can combine
the --since option with either or both of the --follow or --tail options.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/daemon.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

daemon

Usage: docker daemon [OPTIONS]

A self-sufficient runtime for linux containers.

Options:
 --api-cors-header="" Set CORS headers in the remote API
 -b, --bridge="" Attach containers to a network bridge
 --bip="" Specify network bridge IP
 -D, --debug=false Enable debug mode
 --default-gateway="" Container default gateway IPv4 address
 --default-gateway-v6="" Container default gateway IPv6 address
 --dns=[] DNS server to use
 --dns-search=[] DNS search domains to use
 --default-ulimit=[] Set default ulimit settings for containers
 -e, --exec-driver="native" Exec driver to use
 --exec-opt=[] Set exec driver options
 --exec-root="/var/run/docker" Root of the Docker execdriver
 --fixed-cidr="" IPv4 subnet for fixed IPs
 --fixed-cidr-v6="" IPv6 subnet for fixed IPs
 -G, --group="docker" Group for the unix socket
 -g, --graph="/var/lib/docker" Root of the Docker runtime
 -H, --host=[] Daemon socket(s) to connect to
 -h, --help=false Print usage
 --icc=true Enable inter-container communication
 --insecure-registry=[] Enable insecure registry communication
 --ip=0.0.0.0 Default IP when binding container ports
 --ip-forward=true Enable net.ipv4.ip_forward
 --ip-masq=true Enable IP masquerading
 --iptables=true Enable addition of iptables rules
 --ipv6=false Enable IPv6 networking
 -l, --log-level="info" Set the logging level
 --label=[] Set key=value labels to the daemon
 --log-driver="json-file" Default driver for container logs
 --log-opt=[] Log driver specific options
 --mtu=0 Set the containers network MTU
 -p, --pidfile="/var/run/docker.pid" Path to use for daemon PID file
 --registry-mirror=[] Preferred Docker registry mirror
 -s, --storage-driver="" Storage driver to use
 --selinux-enabled=false Enable selinux support
 --storage-opt=[] Set storage driver options
 --tls=false Use TLS; implied by --tlsverify
 --tlscacert="~/.docker/ca.pem" Trust certs signed only by this CA
 --tlscert="~/.docker/cert.pem" Path to TLS certificate file
 --tlskey="~/.docker/key.pem" Path to TLS key file
 --tlsverify=false Use TLS and verify the remote
 --userland-proxy=true Use userland proxy for loopback traffic

Options with [] may be specified multiple times.

The Docker daemon is the persistent process that manages containers. Docker
uses the same binary for both the daemon and client. To run the daemon you
type docker daemon.

To run the daemon with debug output, use docker daemon -D.

Daemon socket option

The Docker daemon can listen for Docker Remote API
requests via three different types of Socket: unix, tcp, and fd.

By default, a unix domain socket (or IPC socket) is created at
/var/run/docker.sock, requiring either root permission, or docker group
membership.

If you need to access the Docker daemon remotely, you need to enable the tcp
Socket. Beware that the default setup provides un-encrypted and
un-authenticated direct access to the Docker daemon - and should be secured
either using the built in HTTPS encrypted socket, or by
putting a secure web proxy in front of it. You can listen on port 2375 on all
network interfaces with -H tcp://0.0.0.0:2375, or on a particular network
interface using its IP address: -H tcp://192.168.59.103:2375. It is
conventional to use port 2375 for un-encrypted, and port 2376 for encrypted
communication with the daemon.

Note:
If you’re using an HTTPS encrypted socket, keep in mind that only
TLS1.0 and greater are supported. Protocols SSLv3 and under are not
supported anymore for security reasons.

On Systemd based systems, you can communicate with the daemon via
Systemd socket activation [http://0pointer.de/blog/projects/socket-activation.html],
use docker daemon -H fd://. Using fd:// will work perfectly for most setups but
you can also specify individual sockets: docker daemon -H fd://3. If the
specified socket activated files aren’t found, then Docker will exit. You can
find examples of using Systemd socket activation with Docker and Systemd in the
Docker source tree [https://github.com/docker/docker/tree/master/contrib/init/systemd/].

You can configure the Docker daemon to listen to multiple sockets at the same
time using multiple -H options:

listen using the default unix socket, and on 2 specific IP addresses on this host.
docker daemon -H unix:///var/run/docker.sock -H tcp://192.168.59.106 -H tcp://10.10.10.2

The Docker client will honor the DOCKER_HOST environment variable to set the
-H flag for the client.

$ docker -H tcp://0.0.0.0:2375 ps
or
$ export DOCKER_HOST="tcp://0.0.0.0:2375"
$ docker ps
both are equal

Setting the DOCKER_TLS_VERIFY environment variable to any value other than
the empty string is equivalent to setting the --tlsverify flag. The following
are equivalent:

$ docker --tlsverify ps
or
$ export DOCKER_TLS_VERIFY=1
$ docker ps

The Docker client will honor the HTTP_PROXY, HTTPS_PROXY, and NO_PROXY
environment variables (or the lowercase versions thereof). HTTPS_PROXY takes
precedence over HTTP_PROXY.

Daemon storage-driver option

The Docker daemon has support for several different image layer storage
drivers: aufs, devicemapper, btrfs, zfs and overlay.

The aufs driver is the oldest, but is based on a Linux kernel patch-set that
is unlikely to be merged into the main kernel. These are also known to cause
some serious kernel crashes. However, aufs is also the only storage driver
that allows containers to share executable and shared library memory, so is a
useful choice when running thousands of containers with the same program or
libraries.

The devicemapper driver uses thin provisioning and Copy on Write (CoW)
snapshots. For each devicemapper graph location – typically
/var/lib/docker/devicemapper – a thin pool is created based on two block
devices, one for data and one for metadata. By default, these block devices
are created automatically by using loopback mounts of automatically created
sparse files. Refer to Storage driver options below
for a way how to customize this setup.
~jpetazzo/Resizing Docker containers with the Device Mapper plugin [http://jpetazzo.github.io/2014/01/29/docker-device-mapper-resize/]
article explains how to tune your existing setup without the use of options.

The btrfs driver is very fast for docker build - but like devicemapper
does not share executable memory between devices. Use
docker daemon -s btrfs -g /mnt/btrfs_partition.

The zfs driver is probably not fast as btrfs but has a longer track record
on stability. Thanks to Single Copy ARC shared blocks between clones will be
cached only once. Use docker daemon -s zfs. To select a different zfs filesystem
set zfs.fsname option as described in Storage driver options.

The overlay is a very fast union filesystem. It is now merged in the main
Linux kernel as of 3.18.0 [https://lkml.org/lkml/2014/10/26/137]. Call
docker daemon -s overlay to use it.

Note:
As promising as overlay is, the feature is still quite young and should not
be used in production. Most notably, using overlay can cause excessive
inode consumption (especially as the number of images grows), as well as
being incompatible with the use of RPMs.

Note:
It is currently unsupported on btrfs or any Copy on Write filesystem
and should only be used over ext4 partitions.

Storage driver options

Particular storage-driver can be configured with options specified with
--storage-opt flags. Options for devicemapper are prefixed with dm and
options for zfs start with zfs.

		dm.thinpooldev

Specifies a custom block storage device to use for the thin pool.

If using a block device for device mapper storage, it is best to use lvm
to create and manage the thin-pool volume. This volume is then handed to Docker
to exclusively create snapshot volumes needed for images and containers.

Managing the thin-pool outside of Docker makes for the most feature-rich
method of having Docker utilize device mapper thin provisioning as the
backing storage for Docker’s containers. The highlights of the lvm-based
thin-pool management feature include: automatic or interactive thin-pool
resize support, dynamically changing thin-pool features, automatic thinp
metadata checking when lvm activates the thin-pool, etc.

Example use:

 docker daemon --storage-opt dm.thinpooldev=/dev/mapper/thin-pool

		dm.basesize

Specifies the size to use when creating the base device, which limits the
size of images and containers. The default value is 100G. Note, thin devices
are inherently “sparse”, so a 100G device which is mostly empty doesn’t use
100 GB of space on the pool. However, the filesystem will use more space for
the empty case the larger the device is.

This value affects the system-wide “base” empty filesystem
that may already be initialized and inherited by pulled images. Typically,
a change to this value requires additional steps to take effect:

$ sudo service docker stop
$ sudo rm -rf /var/lib/docker
$ sudo service docker start

Example use:

$ docker daemon --storage-opt dm.basesize=20G

		dm.loopdatasize

Note: This option configures devicemapper loopback, which should not be used in production.

Specifies the size to use when creating the loopback file for the
“data” device which is used for the thin pool. The default size is
100G. The file is sparse, so it will not initially take up this
much space.

Example use:

$ docker daemon --storage-opt dm.loopdatasize=200G

		dm.loopmetadatasize

Note: This option configures devicemapper loopback, which should not be used in production.

Specifies the size to use when creating the loopback file for the
“metadadata” device which is used for the thin pool. The default size
is 2G. The file is sparse, so it will not initially take up
this much space.

Example use:

$ docker daemon --storage-opt dm.loopmetadatasize=4G

		dm.fs

Specifies the filesystem type to use for the base device. The supported
options are “ext4” and “xfs”. The default is “ext4”

Example use:

$ docker daemon --storage-opt dm.fs=xfs

		dm.mkfsarg

Specifies extra mkfs arguments to be used when creating the base device.

Example use:

$ docker daemon --storage-opt "dm.mkfsarg=-O ^has_journal"

		dm.mountopt

Specifies extra mount options used when mounting the thin devices.

Example use:

$ docker daemon --storage-opt dm.mountopt=nodiscard

		dm.datadev

(Deprecated, use dm.thinpooldev)

Specifies a custom blockdevice to use for data for the thin pool.

If using a block device for device mapper storage, ideally both datadev and
metadatadev should be specified to completely avoid using the loopback
device.

Example use:

$ docker daemon --storage-opt dm.datadev=/dev/sdb1 --storage-opt dm.metadatadev=/dev/sdc1

		dm.metadatadev

(Deprecated, use dm.thinpooldev)

Specifies a custom blockdevice to use for metadata for the thin pool.

For best performance the metadata should be on a different spindle than the
data, or even better on an SSD.

If setting up a new metadata pool it is required to be valid. This can be
achieved by zeroing the first 4k to indicate empty metadata, like this:

$ dd if=/dev/zero of=$metadata_dev bs=4096 count=1

Example use:

$ docker daemon --storage-opt dm.datadev=/dev/sdb1 --storage-opt dm.metadatadev=/dev/sdc1

		dm.blocksize

Specifies a custom blocksize to use for the thin pool. The default
blocksize is 64K.

Example use:

$ docker daemon --storage-opt dm.blocksize=512K

		dm.blkdiscard

Enables or disables the use of blkdiscard when removing devicemapper
devices. This is enabled by default (only) if using loopback devices and is
required to resparsify the loopback file on image/container removal.

Disabling this on loopback can lead to much faster container removal
times, but will make the space used in /var/lib/docker directory not be
returned to the system for other use when containers are removed.

Example use:

$ docker daemon --storage-opt dm.blkdiscard=false

		dm.override_udev_sync_check

Overrides the udev synchronization checks between devicemapper and udev.
udev is the device manager for the Linux kernel.

To view the udev sync support of a Docker daemon that is using the
devicemapper driver, run:

$ docker info
[...]
Udev Sync Supported: true
[...]

When udev sync support is true, then devicemapper and udev can
coordinate the activation and deactivation of devices for containers.

When udev sync support is false, a race condition occurs between
thedevicemapper and udev during create and cleanup. The race condition
results in errors and failures. (For information on these failures, see
docker#4036 [https://github.com/docker/docker/issues/4036])

To allow the docker daemon to start, regardless of udev sync not being
supported, set dm.override_udev_sync_check to true:

$ docker daemon --storage-opt dm.override_udev_sync_check=true

When this value is true, the devicemapper continues and simply warns
you the errors are happening.

Note:
The ideal is to pursue a docker daemon and environment that does
support synchronizing with udev. For further discussion on this
topic, see docker#4036 [https://github.com/docker/docker/issues/4036].
Otherwise, set this flag for migrating existing Docker daemons to
a daemon with a supported environment.

Currently supported options of zfs:

		zfs.fsname

Set zfs filesystem under which docker will create its own datasets.
By default docker will pick up the zfs filesystem where docker graph
(/var/lib/docker) is located.

Example use:

 $ docker daemon -s zfs --storage-opt zfs.fsname=zroot/docker

Docker execdriver option

The Docker daemon uses a specifically built libcontainer execution driver as
its interface to the Linux kernel namespaces, cgroups, and SELinux.

There is still legacy support for the original LXC userspace tools [https://linuxcontainers.org/] via the lxc execution driver, however, this is
not where the primary development of new functionality is taking place.
Add -e lxc to the daemon flags to use the lxc execution driver.

Options for the native execdriver

You can configure the native (libcontainer) execdriver using options specified
with the --exec-opt flag. All the flag’s options have the native prefix. A
single native.cgroupdriver option is available.

The native.cgroupdriver option specifies the management of the container’s
cgroups. You can specify cgroupfs or systemd. If you specify systemd and
it is not available, the system uses cgroupfs. By default, if no option is
specified, the execdriver first tries systemd and falls back to cgroupfs.
This example sets the execdriver to cgroupfs:

$ sudo docker daemon --exec-opt native.cgroupdriver=cgroupfs

Setting this option applies to all containers the daemon launches.

Daemon DNS options

To set the DNS server for all Docker containers, use
docker daemon --dns 8.8.8.8.

To set the DNS search domain for all Docker containers, use
docker daemon --dns-search example.com.

Insecure registries

Docker considers a private registry either secure or insecure. In the rest of
this section, registry is used for private registry, and myregistry:5000
is a placeholder example for a private registry.

A secure registry uses TLS and a copy of its CA certificate is placed on the
Docker host at /etc/docker/certs.d/myregistry:5000/ca.crt. An insecure
registry is either not using TLS (i.e., listening on plain text HTTP), or is
using TLS with a CA certificate not known by the Docker daemon. The latter can
happen when the certificate was not found under
/etc/docker/certs.d/myregistry:5000/, or if the certificate verification
failed (i.e., wrong CA).

By default, Docker assumes all, but local (see local registries below),
registries are secure. Communicating with an insecure registry is not possible
if Docker assumes that registry is secure. In order to communicate with an
insecure registry, the Docker daemon requires --insecure-registry in one of
the following two forms:

		--insecure-registry myregistry:5000 tells the Docker daemon that
myregistry:5000 should be considered insecure.

		--insecure-registry 10.1.0.0/16 tells the Docker daemon that all registries
whose domain resolve to an IP address is part of the subnet described by the
CIDR syntax, should be considered insecure.

The flag can be used multiple times to allow multiple registries to be marked
as insecure.

If an insecure registry is not marked as insecure, docker pull,
docker push, and docker search will result in an error message prompting
the user to either secure or pass the --insecure-registry flag to the Docker
daemon as described above.

Local registries, whose IP address falls in the 127.0.0.0/8 range, are
automatically marked as insecure as of Docker 1.3.2. It is not recommended to
rely on this, as it may change in the future.

Running a Docker daemon behind a HTTPS_PROXY

When running inside a LAN that uses a HTTPS proxy, the Docker Hub
certificates will be replaced by the proxy’s certificates. These certificates
need to be added to your Docker host’s configuration:

		Install the ca-certificates package for your distribution

		Ask your network admin for the proxy’s CA certificate and append them to
/etc/pki/tls/certs/ca-bundle.crt

		Then start your Docker daemon with HTTPS_PROXY=http://username:password@proxy:port/ docker daemon.
The username: and password@ are optional - and are only needed if your
proxy is set up to require authentication.

This will only add the proxy and authentication to the Docker daemon’s requests -
your docker builds and running containers will need extra configuration to
use the proxy

Default Ulimits

--default-ulimit allows you to set the default ulimit options to use for
all containers. It takes the same options as --ulimit for docker run. If
these defaults are not set, ulimit settings will be inherited, if not set on
docker run, from the Docker daemon. Any --ulimit options passed to
docker run will overwrite these defaults.

Be careful setting nproc with the ulimit flag as nproc is designed by Linux to
set the maximum number of processes available to a user, not to a container. For details
please check the run reference.

Miscellaneous options

IP masquerading uses address translation to allow containers without a public
IP to talk to other machines on the Internet. This may interfere with some
network topologies and can be disabled with --ip-masq=false.

Docker supports softlinks for the Docker data directory (/var/lib/docker) and
for /var/lib/docker/tmp. The DOCKER_TMPDIR and the data directory can be
set like this:

DOCKER_TMPDIR=/mnt/disk2/tmp /usr/local/bin/docker daemon -D -g /var/lib/docker -H unix:// > /var/lib/docker-machine/docker.log 2>&1
or
export DOCKER_TMPDIR=/mnt/disk2/tmp
/usr/local/bin/docker daemon -D -g /var/lib/docker -H unix:// > /var/lib/docker-machine/docker.log 2>&1

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/start.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

start

Usage: docker start [OPTIONS] CONTAINER [CONTAINER...]

Start one or more stopped containers

 -a, --attach=false Attach STDOUT/STDERR and forward signals
 -i, --interactive=false Attach container's STDIN

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/restart.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

restart

Usage: docker restart [OPTIONS] CONTAINER [CONTAINER...]

Restart a running container

 -t, --time=10 Seconds to wait for stop before killing the container

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/build.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

build

Usage: docker build [OPTIONS] PATH | URL | -

Build a new image from the source code at PATH

 -f, --file="" Name of the Dockerfile (Default is 'PATH/Dockerfile')
 --force-rm=false Always remove intermediate containers
 --no-cache=false Do not use cache when building the image
 --pull=false Always attempt to pull a newer version of the image
 -q, --quiet=false Suppress the verbose output generated by the containers
 --rm=true Remove intermediate containers after a successful build
 -t, --tag="" Repository name (and optionally a tag) for the image
 -m, --memory="" Memory limit for all build containers
 --memory-swap="" Total memory (memory + swap), `-1` to disable swap
 -c, --cpu-shares CPU Shares (relative weight)
 --cpuset-mems="" MEMs in which to allow execution, e.g. `0-3`, `0,1`
 --cpuset-cpus="" CPUs in which to allow execution, e.g. `0-3`, `0,1`
 --cgroup-parent="" Optional parent cgroup for the container
 --ulimit=[] Ulimit options

Builds Docker images from a Dockerfile and a “context”. A build’s context is
the files located in the specified PATH or URL. The build process can refer
to any of the files in the context. For example, your build can use an
ADD instruction to reference a file in the
context.

The URL parameter can specify the location of a Git repository; the repository
acts as the build context. The system recursively clones the repository and its
submodules using a git clone --depth 1 --recursive command. This command runs
in a temporary directory on your local host. After the command succeeds, the
directory is sent to the Docker daemon as the context. Local clones give you the
ability to access private repositories using local user credentials, VPNs, and
so forth.

Git URLs accept context configuration in their fragment section, separated by a
colon :. The first part represents the reference that Git will check out,
this can be either a branch, a tag, or a commit SHA. The second part represents
a subdirectory inside the repository that will be used as a build context.

For example, run this command to use a directory called docker in the branch
container:

 $ docker build https://github.com/docker/rootfs.git#container:docker

The following table represents all the valid suffixes with their build
contexts:

Build Syntax Suffix | Commit Used | Build Context Used
——————–|————-|——————-
myrepo.git | refs/heads/master | /
myrepo.git#mytag | refs/tags/mytag | /
myrepo.git#mybranch | refs/heads/mybranch | /
myrepo.git#abcdef | sha1 = abcdef | /
myrepo.git#:myfolder | refs/heads/master | /myfolder
myrepo.git#master:myfolder | refs/heads/master | /myfolder
myrepo.git#mytag:myfolder | refs/tags/mytag | /myfolder
myrepo.git#mybranch:myfolder | refs/heads/mybranch | /myfolder
myrepo.git#abcdef:myfolder | sha1 = abcdef | /myfolder

Instead of specifying a context, you can pass a single Dockerfile in the URL
or pipe the file in via STDIN. To pipe a Dockerfile from STDIN:

docker build - < Dockerfile

If you use STDIN or specify a URL, the system places the contents into a file
called Dockerfile, and any -f, --file option is ignored. In this
scenario, there is no context.

By default the docker build command will look for a Dockerfile at the root
of the build context. The -f, --file, option lets you specify the path to
an alternative file to use instead. This is useful in cases where the same set
of files are used for multiple builds. The path must be to a file within the
build context. If a relative path is specified then it must to be relative to
the current directory.

In most cases, it’s best to put each Dockerfile in an empty directory. Then,
add to that directory only the files needed for building the Dockerfile. To
increase the build’s performance, you can exclude files and directories by
adding a .dockerignore file to that directory as well. For information on
creating one, see the .dockerignore file.

If the Docker client loses connection to the daemon, the build is canceled.
This happens if you interrupt the Docker client with ctrl-c or if the Docker
client is killed for any reason.

Note:
Currently only the “run” phase of the build can be canceled until pull
cancellation is implemented).

Return code

On a successful build, a return code of success 0 will be returned. When the
build fails, a non-zero failure code will be returned.

There should be informational output of the reason for failure output to
STDERR:

$ docker build -t fail .
Sending build context to Docker daemon 2.048 kB
Sending build context to Docker daemon
Step 0 : FROM busybox
 ---> 4986bf8c1536
Step 1 : RUN exit 13
 ---> Running in e26670ec7a0a
INFO[0000] The command [/bin/sh -c exit 13] returned a non-zero code: 13
$ echo $?
1

See also:

Dockerfile Reference.

Examples

$ docker build .
Uploading context 10240 bytes
Step 1 : FROM busybox
Pulling repository busybox
 ---> e9aa60c60128MB/2.284 MB (100%) endpoint: https://cdn-registry-1.docker.io/v1/
Step 2 : RUN ls -lh /
 ---> Running in 9c9e81692ae9
total 24
drwxr-xr-x 2 root root 4.0K Mar 12 2013 bin
drwxr-xr-x 5 root root 4.0K Oct 19 00:19 dev
drwxr-xr-x 2 root root 4.0K Oct 19 00:19 etc
drwxr-xr-x 2 root root 4.0K Nov 15 23:34 lib
lrwxrwxrwx 1 root root 3 Mar 12 2013 lib64 -> lib
dr-xr-xr-x 116 root root 0 Nov 15 23:34 proc
lrwxrwxrwx 1 root root 3 Mar 12 2013 sbin -> bin
dr-xr-xr-x 13 root root 0 Nov 15 23:34 sys
drwxr-xr-x 2 root root 4.0K Mar 12 2013 tmp
drwxr-xr-x 2 root root 4.0K Nov 15 23:34 usr
 ---> b35f4035db3f
Step 3 : CMD echo Hello world
 ---> Running in 02071fceb21b
 ---> f52f38b7823e
Successfully built f52f38b7823e
Removing intermediate container 9c9e81692ae9
Removing intermediate container 02071fceb21b

This example specifies that the PATH is ., and so all the files in the
local directory get tard and sent to the Docker daemon. The PATH specifies
where to find the files for the “context” of the build on the Docker daemon.
Remember that the daemon could be running on a remote machine and that no
parsing of the Dockerfile happens at the client side (where you’re running
docker build). That means that all the files at PATH get sent, not just
the ones listed to ADD in the Dockerfile.

The transfer of context from the local machine to the Docker daemon is what the
docker client means when you see the “Sending build context” message.

If you wish to keep the intermediate containers after the build is complete,
you must use --rm=false. This does not affect the build cache.

$ docker build .
Uploading context 18.829 MB
Uploading context
Step 0 : FROM busybox
 ---> 769b9341d937
Step 1 : CMD echo Hello world
 ---> Using cache
 ---> 99cc1ad10469
Successfully built 99cc1ad10469
$ echo ".git" > .dockerignore
$ docker build .
Uploading context 6.76 MB
Uploading context
Step 0 : FROM busybox
 ---> 769b9341d937
Step 1 : CMD echo Hello world
 ---> Using cache
 ---> 99cc1ad10469
Successfully built 99cc1ad10469

This example shows the use of the .dockerignore file to exclude the .git
directory from the context. Its effect can be seen in the changed size of the
uploaded context. The builder reference contains detailed information on
creating a .dockerignore file

$ docker build -t vieux/apache:2.0 .

This will build like the previous example, but it will then tag the resulting
image. The repository name will be vieux/apache and the tag will be 2.0

$ docker build - < Dockerfile

This will read a Dockerfile from STDIN without context. Due to the lack of a
context, no contents of any local directory will be sent to the Docker daemon.
Since there is no context, a Dockerfile ADD only works if it refers to a
remote URL.

$ docker build - < context.tar.gz

This will build an image for a compressed context read from STDIN. Supported
formats are: bzip2, gzip and xz.

$ docker build github.com/creack/docker-firefox

This will clone the GitHub repository and use the cloned repository as context.
The Dockerfile at the root of the repository is used as Dockerfile. Note that
you can specify an arbitrary Git repository by using the git:// or git@
schema.

$ docker build -f Dockerfile.debug .

This will use a file called Dockerfile.debug for the build instructions
instead of Dockerfile.

$ docker build -f dockerfiles/Dockerfile.debug -t myapp_debug .
$ docker build -f dockerfiles/Dockerfile.prod -t myapp_prod .

The above commands will build the current build context (as specified by the
.) twice, once using a debug version of a Dockerfile and once using a
production version.

$ cd /home/me/myapp/some/dir/really/deep
$ docker build -f /home/me/myapp/dockerfiles/debug /home/me/myapp
$ docker build -f ../../../../dockerfiles/debug /home/me/myapp

These two docker build commands do the exact same thing. They both use the
contents of the debug file instead of looking for a Dockerfile and will use
/home/me/myapp as the root of the build context. Note that debug is in the
directory structure of the build context, regardless of how you refer to it on
the command line.

Note:
docker build will return a no such file or directory error if the
file or directory does not exist in the uploaded context. This may
happen if there is no context, or if you specify a file that is
elsewhere on the Host system. The context is limited to the current
directory (and its children) for security reasons, and to ensure
repeatable builds on remote Docker hosts. This is also the reason why
ADD ../file will not work.

When docker build is run with the --cgroup-parent option the containers
used in the build will be run with the corresponding docker run
flag.

Using the --ulimit option with docker build will cause each build step’s
container to be started using those --ulimit
flag values.

 © Copyright .
 Created using Sphinx 1.3.1.

reference/commandline/diff.html

 Navigation

 		
 index

 		dhrpdocs latest documentation »

diff

Usage: docker diff CONTAINER

Inspect changes on a container's filesystem

List the changed files and directories in a container᾿s filesystem
There are 3 events that are listed in the diff:

		A - Add

		D - Delete

		C - Change

For example:

$ docker diff 7bb0e258aefe

C /dev
A /dev/kmsg
C /etc
A /etc/mtab
A /go
A /go/src
A /go/src/github.com
A /go/src/github.com/docker
A /go/src/github.com/docker/docker
A /go/src/github.com/docker/docker/.git
....

 © Copyright .
 Created using Sphinx 1.3.1.

_images/commits_expected.png
4 mmmm docs/sources/installation/thel.md

=

Red Hat Enterprise Linux 6.5 Installation

You Will need 64 bitwx [RHEL
a7 -6.51 a7
(https: //access. redhat. con/site/articles/30784RHELG

) or later, with

a RHEL 6 kernel version 2.6.32-431 or higher as
this has specific kernel

fixes to allow Docker to work.

Docker is available for +*RHELG.5wk on EPEL. Pleasf
note that
this package is part of [Extra Packages for
Enterprise Linux
53 | ~(EPEL)] (https://fedoraproject.org/wiki/EPEL), a 53
comnunity effort to
create and maintain additional packages for the
RHEL distribution.

Kernel support
=

© B View

Red Hat Enterprise Linux 6.5 Installation

You Will need #x64 bitwx [RHEL
+46.5]

(http: //access. redhat. con/site/art icles/3078#RHELG)
or later, with

a RHEL 6 kernel version 2.6.32-431 or higher as
this has specific kernel

fixes to allow Docker to work.

Docker is available for »+RHELG.5w on EPEL. Please
note that

this package is part of [Extra Packages for
Enterprise Linux

+(EPEL)] (REED: // fedoraproject . org/wiki/EPEL), a
community effort to

create and maintain additional packages for the
RHEL distribution.,

Kernel support

_images/good_host.png
Weicoma to nginx!

« (<} 192.168.59.103:49157

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

_images/docker-filesystems-generic.png

_images/webapp1.png
€ - C [localhost:49155

Hello world!

_images/path_variable.png

_images/login-web.png
*docker Whatis Docker? ~ UseCases Trylt! Explore Install & Docs m

Login

Username:

Password:

Forgot Password?

_images/gh-check-user-org-dh-app-access.png
) | scncrn Explore Gist Biog Help B docsuser +- O & ©

Personal settings Application permissions / Docker Hub Registry

Profile Docker Hub Registry
Docker Hub Registry
Accountsetings OOCKRS ® Last used on Mar 30,2015 docker @ hitpsdiregistry hub docker.
Emails
Revoke access
Notiication center
Permissions

Billing
 Access private repositories.

SsHkeys
® Applications acton your benaifto access your data based on the permissions you grant them. Organizations
Securty control which applications are allowed to access their private data. Applications you authorize wil always have
‘access {0 public data in your organizations. Read about third-party access
Applications
Repositories
Organization access
Organizations
4 docorg
‘Organization settings BB cocsonox
e docorg

W wocsor

_images/existing_issue.png
Workflow for an existing issue

_images/three_running.png

_images/groups.png
Search... o Browse Repos Documentation Community Help () docsuser v

) docsorg v Your Organizations / docsorg

Your Profile Settings Groups Profile Billing

Your Organizations 4 Groups in Total

Enterprise Licenses
Boomteam
Global settings s %
Description
Boom!

View public profile Members

No Members

Notowner S x
Description

Members

‘ Sven Dowideit
o

Owners s ®
Description

Members

Testgroup s ox
Description

Members

_images/dashboard.png
search. Q Browse Repos Documentation ~ Community Help docsuser

Official Repositories

The Official Ubuntu base image

@Wom)l’m-:ss

&B redis ubuntu®

Wordpress is a free and
open source blogging
tool and a content

Popular open-source relational

database management system . mongoDB
%% CentOS

M SQ L Document-oriented
y - NosQL database

Official CentOS base
NGiNX

High performance

management system

Node js is a platform for

reverse proxy server .
e Relational database (1] ‘ d e @ scalable server-side and

management system networking applications

Top Contributors Popular Repositories

. clue 158 ubuntu

~Aachen, Germany Official Ubuntu base image 1649

& cpuguyss 153 & library

o centos 972
@ radial 126 1 official build of Centos.)

Los Angeles
(" pinterb e & library

Wisconsin, USA nginx 836
o guilhem 78 Official build of Nginx)

Paris & library
. joaodubas 75

Paulo, Brazil

_images/easy_issue.png
[INK roken In R=EL ingtallation coe #11038

‘moxiegirl opened this issue 23 days ago - 1 comment

x ‘moxiegirl commented 23 days ago Collaborator

Please change the EPEL link on RHEL 6.5+ installation documentation from https to http because https
doesn't work anymore. Thanks a lot.

https://docs.docker.com/installation/rhel/

& W moxiegir self-assigned this 23 days ago

@ [itrazelle added [TTTTIIIT] white-belt improvement labels 23 days ago

x ‘moxiegirl commented 23 days ago Collaborator

#dibs

IIE
i

Milestone
No milestone

Assignee
W moxiegirl

Notifications

4~ Unsubscribe

You'e receiving notifcations
because you were assignod.

_images/orgs.png
Search... o Browse Repos Documentation Community Help) docsuser v

) docsuser v Your Organizations

Convert docsuser

Edit Profile
docsorg

4Groups 4 Members
Change Password

Email Addresses
Organizations
Subscriptions
Notifications
Authorized Services
Linked Accounts
Enterprise Licenses
Billing

Global settings

View public profile

_images/docker-filesystems-busyboxrw.png

_images/windows-boot2docker-powershell.png
PS C:\> boot2docker start
aiting for W and Docker daemon to start...

Jting C:\Users\ahmetb) . boot2docker\certs\boot2docker-vm\ca.pem
{ting C:\Users\ahmetb\ boot 2docker\certs\boot 2docker -vm\cert. pem
iting C:\Users\ahmetb\ .boot 2docker\certs\boot 2docker-vm\key. pem

o connect the Docker client to the Docker daemon, please set:
[Lf you are running inside Windows Command Prompt (cmd.exe), copy and paste the
ollowing commands to your terminal to set the environment variables:
set DOCKER_TLS_VERTFY=1
cp://192.168.59.103:2376
set DOCKER_CERT_PATH=C: \Users\ahmetb\ . boot2docker\certs\boot2docker-vm

[Lf you are running inside Powershell, copy or paste the following commands
your shell or run "boot2docker shellinit | Invoke-Expression” to set the
environment variabl
SENV:DOCKER_HOST = "tcp://192.168.59.103:2376"
SEnv:DOCKER_CERT_PATH = "C:\Users\ahmetb\ . boot2docker\certs\boot2docker-vm"
SENV:DOCKER_TLS_VERTFY = "1"

S C:\> $EnV:DOCKER_HOST = "tcp://192.168.59.103:2376"

PS C:\> SEnv:DOCKER_CERT_PATH \Users\ahmetb\ . boot 2docker\certs\boot 2docker -

PS C:\> SEnv:DOCKER TLS_VERIFY = "1"
PS C:\> docker ps
HAGE comMAND CREATED

V'

STATUS

_images/windows-mingw.png
£ MinGW Installation Manager SICICES
Instolation_Package _Setings Help
‘Basic Setup 1IPackage. Class _Installed Version __ Repository Verzion _ Description ~
4 S e TR 013 G tor archiver tol
013 G tar archvr tol
Okay to proceed? .. The termina feoure databose used by certan apslic
cknge changes ltamised balow wi . The termina festure database used by certain aopic
] oply] [pefer | [[oiscard The terminal eature database used by certin applic

be implemented when you choose *Apply”

0 installed packages wil be removed

0 installed packages wil be upgraded

Documentation system for on-screen and printed me
Documentaton system for on-screen and printed ma
Documentation system for on-screen and printed me
ocumentation system for on-screen and printed ma
ATiny MSYS Instalstion (meta)

High performance comoression based on the LZHA 8
High performance compression based on the m«]

High performance compression based on the LZHA
High performance compression based on the LZHA

19 new/upgraded packages wil be installed

b 870.3 0 Ry T 17 b ar

[REE R e it

rrmats. You can use tar to create fie archives, to extract
e which were airesdy srored
e, and can restore individual i from the archive. It
< sreve Sompreceion/decompraseion, remate archwes
e
Irown 25 pax nterchange format). GNU tar can aiso read

Je, o Gther programs (using ppes); tar can even access

remote devices orfies (23 archives)

The MInGW/MSYS project provides four diferent ta implementations: (1) msys-ar, this GNU tar implementatin parted for MSYS;

_images/locate_branch.png
Docker - the open-source application container engine http:/www.docker.com — Edit

<> Code
13,687 commits 17 24 branches % 86 releases £ 801 contributors

I Pull Requests @

docker /+

Thie Switch branchestags x TR |
B Sranares] T latest comnit eba3sd7ect B

B e o s Tromao K St

ok T — e 2O oo

[T . autogenerated code fo create Dockerversio... 2Ndaysag0 [gitegithuv.connor | B
WG eakdoo from MabinGoldocs_api-enable-cors_deprecated adayogo | YoucancoraaniTes o

_images/irc_after_login.png
Gv Status
10]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]
40]

have been removed. We may have to ask you to change your
passwords again after analysis has completed.

Further details will appear on https://blog.freenode.net/

- By connecting to freenode you indicate that you have read and
- accept our policies as set out on http://www.freenode.net

- freenode runs an open proxy scanner. Please join #ireencde for
- any network-related questions or queries, where a number of

- volunteer staff and helpful users will be happy to assist you.

You can meet us at FOSSCON (http://wiw.fosscon.ora) where we get
together with like-minded FOSS enthusiasts for talks and

W] e Internet Access
(| Youcantjoin the channel faccess.con/) and the other
o untilyou regiter your freenode and our other projec

Command line bar.

gateway/web/frechode/ip.73.170.182.105 is now your hidden host
#docker Cannot join channel (+r) - you need to be identified

Bt by syn.)

_images/red_notice.png
G oo o weeomer vmcmes Tvm sose [oo T

- Installation ~ User Guide DockerHub Examples Articles Reference Contribute

This Is the dry-run-tests development branch documentation for Docker version 1.5.0-dev. Please go
Why Docker? o http://docs.docker.com for the current Docker release documentation.
About this guide

Installation Guides

Docker User Guide About Docker Version v1.5 (Latest) ¥
Release Notes Develop, Ship and Run Any Application, Anywhere
Licensing

Docker is a platform for developers and sysadmins to develop, ship, and run applications. Docker lefs you
auicklv assemble anplications from comonents and eliminates the friction that can come when shioina

_images/windows-installer.png
(it

L] Setup - Boot2Docker for Windows =

Welcome to the Boot2Docker for
Windows Setup Wizard

This il nstal Boot2Docker for Windows version 1.6.04c2on
Your computer.

Itis recommended that you dose al other appications before:
continuing,

Cldk Next to continue, or Cancel to exitSetup.

0ot2

Next > Cancel

Boot2Docker for Windows instalation documentation

_images/pull_request_made.png
Hdocker/docker @ Unwatch ~ 1636 o Star 19449 Y Fork

Change https > http in 6.5 docs #11066 Pul Rquest ean
lumber
‘moxiegirl wants to merge 1 commitinto docker:master ffoM moxiegirl:11036-Fix-rhel-link
¥ Conversation 0 - Commits 1 [Files changed 1 42 -2 mmmm
\ ‘moxiegirl commented just now Collaborator Labels
ooyt
Hard coded https was causing a problem for a user. Filed a ticket with Zen. I'll change them to http and
allow the destination server to redirect as needed. Both protocols work for me. Fixes #11038 Milestone
‘Signed-off-by: Mary Anthony mary.anthony@docker.com
W Change https > http in 6.5 docs ==
‘Automatic link to ign yourself

what you are fixing.

‘Add more commits by pushing to the 11038~f ix-rhel~Link branch on moxiegirUdocker.

4= Unsubscribe
® Waiting o hear about ae8ae77 — Jenkins build Docker-PRs 2060 s running . B
foute receiing notiications

bocause you authored the
thread,

Automation tasks
that are checking
your work.

Merge with caution!
'You can also merge branches on the command line.

1 participant
AN

\ Write | Preview D Markdown supported I Editin ullscreen

&L pull request

Leave a comment

Attach images by dragging & dropping, sellcting them, or pasting from the ciipboard.

crose purreauest ([

@ ProTipt Add .patch or diff to the end of URLS for Git's plaintext views.

4,037

<«

I

