

Welcome to Dynamic Gravity Processor’s documentation!

What is DGP?

DGP is a library as well a graphical desktop application for processing
gravity data collected with dynamic gravity systems, such as those run on
ships and aircraft.

The library can be used to automate the processing workflow and experiment with
new techniques. The application was written to fulfill the needs of of gravity
processing in production environments.

The project aims to bring all gravity data processing under a single umbrella by:

	accommodating various sensor types, data formats, and processing techniques

	providing a flexible framework to allow for experimentation with the workflow

	providing a robust and efficient system for production-level processing

Core Dependencies

(Subject to change)

	Python >= 3.6

	numpy >= 1.13.1

	pandas == 0.20.3

	scipy == 1.1.0

	pyqtgraph >= 0.10.0

	PyQt5 >= 5.10

	PyTables >= 3.4.2

Getting Started

	Installation

	User Guide

API Documentation

	dgp.core package
	dgp.core.models package
	Model Development Principles
	Supported Complex Types

	dgp.core.models.project module
	Project Serialization/De-Serialization Classes

	dgp.core.models.meter module

	dgp.core.models.flight module

	dgp.core.models.datafile module

	dgp.core.models.dataset module

	dgp.core.controllers package
	Controller Development Principles
	Context Menu Declarations

	Interfaces

	Controllers

	Containers

	Utility/Helper Modules

	dgp.core.types package

	Sub Modules
	dgp.core.file_loader module

	dgp.core.oid module

	dgp.lib package
	dgp.lib.gravity_ingestor module

	dgp.lib.time_utils module

	dgp.lib.trajectory_ingestor module

	dgp.gui package
	dgp.gui.plotting package
	Types/Consts/Enums

	Bases

	Plotters

	Helpers

	dgp.gui.workspaces package
	Base Interfaces

	Workspaces
	Project Workspace

	Flight Workspace

	DataSet Workspace

	DataFile Workspace

	Data Management in DGP

Development

	Contributing
	Creating a branch

	Committing your code
	Combining commits

	Incorporating a finished feature on develop

	Code standards

	Test-driven development
	Running the test suite

	Documentation
	Building the documentation

	Software Requirements Specification
	Overall Description
	User Classes and Characteristics

	Functional Requirements

	Documentation ToDo’s

Indices and tables

	Index

	Module Index

	Search Page

Installation

TODO: All

User Guide

Todo

Write documentation/tutorial on how to use the application,
targeted at actual users, not developers.

Creating a new project

Project Structure (Airborne)

An Airborne gravity project in DGP is centered primarily around the
Flight construct as a representation of an actual survey flight. A
flight has at least one DataSet containing Trajectory (GPS) and Gravity
data files, and at least one associated Gravimeter.

A Flight may potentially have more than one DataSet associated
with it, and more than one Gravimeter.

Each DataSet has exactly one Trajectory and one Gravity DataFile contained
within it, and the DataSet may define DataSegments which are
directly associated with the encapsulated files.

DataSegments are used to select areas of data which are of interest for
processing, typically this means they are used to select the individual
Flight Lines out of a continuous data file, i.e. the segments between course
changes of the aircraft.

Creating Flights/Survey’s

Importing Gravimeter (Sensor) Configurations

Importing Gravity/Trajectory (GPS) Data

Data Processing Workflow

Selecting Survey Lines

Selecting/Applying Transformation Graphs

Viewing Line Repeats

dgp.core package

Core modules and packages defining the project data-layer
and controllers for interfacing with the data-layer via the
user interface.

Sub Packages

	dgp.core.models package

	dgp.core.controllers package

	dgp.core.types package

Sub Modules

dgp.core.file_loader module

dgp.core.oid module

dgp.core.models package

The models package contains and defines the various data classes that define
the logical structure of a ‘Gravity Project’

Currently we are focused exclusively on providing functionality for
representing and processing an Airborne gravity survey/campaign.
In future support will be added for processing and managing Marine gravity
survey’s/campaigns.

The following generally describes the class hierarchy of a typical Airborne project:

AirborneProject

├── Flight

│ ├── DataSet

│ │ ├── DataFile – Gravity

│ │ ├── DataFile – Trajectory

│ │ └── DataSegment – Container (Multiple)

│ └── Gravimeter – Link

└── Gravimeter

The project can have multiple Flight, and each Flight can have
0 or more FlightLine, DataFile, and linked
Gravimeter.
The project can also define multiple Gravimeters, of varying type with specific
configuration files assigned to each.

Model Development Principles

	Classes in the core models should be kept as simple as possible.

	@properties (getter/setter) are encouraged where state updates must
accompany a value change

	Otherwise, simple attributes/fields are preferred

	Models may contain back-references (upwards in the hierarchy) only to their
parent (using the ‘magic’ parent attribute) - otherwise the JSON serializer
will complain.

	Any complex functions/transformations should be handled by the model’s
controller

	Data validation should be handled by the controller, not the model.

	A limited set of complex objects can be used and serialized in the model,
support may be added as the need arises in the JSON serializer.

	Any field defined in a model’s __dict__ or __slots__ is
serialization by the ProjectEncoder, and consequently must be accepted
by name (keyword argument) in the model constructor for de-serialization

Supported Complex Types

	pathlib.Path [https://docs.python.org/3.6/library/pathlib.html#pathlib.Path]

	datetime.datetime [https://docs.python.org/3.6/library/datetime.html#datetime.datetime]

	datetime.date [https://docs.python.org/3.6/library/datetime.html#datetime.date]

	dgp.core.oid.OID

	All classes in dgp.core.models

See ProjectDecoder and
ProjectEncoder for implementation details.

Contents

	dgp.core.models package

	Model Development Principles

	dgp.core.models.project module

	dgp.core.models.meter module

	dgp.core.models.flight module

	dgp.core.models.datafile module

	dgp.core.models.dataset module

dgp.core.models.project module

Project Serialization/De-Serialization Classes

dgp.core.models.meter module

New in version 0.1.0.

dgp.core.models.flight module

dgp.core.models.datafile module

dgp.core.models.dataset module

New in version 0.1.0.

dgp.core.controllers package

The Controllers package contains the various controller classes which are
layered on top of the core ‘data models’ (see the dgp.core.models package) which
themselves store the raw project data.

The function of the controller classes is to provide an interaction
layer on top of the data layer - without complicating the underlying
data classes, especially as the data classes must undergo serialization
and de-serialization.

The controllers provide various functionality related to creating,
traversing, and mutating the project tree-hierarchy. The controllers
also interact in minor ways with the UI, and more importantly, are the
layer by which the UI interacts with the underlying project data.

TODO: Add Controller Hierarchy like in models.rst

Controller Development Principles

Controllers typically should match 1:1 a model class, though there are cases
for creating controllers such as the ProjectFolder
which is a utility class for grouping items visually in the project’s tree view.

Controllers should at minimum subclass
VirtualBaseController which configures inheritance
for QStandardItem and AttributeProxy.
For more complex and widely used controllers, a dedicated interface should be
created following the same naming scheme - particularly where circular
dependencies may be introduced.

Context Menu Declarations

Due to the nature of QMenu, the menu cannot be instantiated directly
ahead of time as it requires a parent QWidget to bind to. This has
led to the current solution which lets each controller declaratively define
their context menu items and actions (with some common actions mixed in by
the view at runtime).
The declaration syntax at present is simply a list of tuples which is queried
by the view when a context menu is requested.

Following is an example declaring a single menu item to be displayed when
right-clicking on the controller’s representation in the UI

bindings = [
 ('addAction', ('Properties', lambda: self._show_properties())),
]

The menu is built by iterating through the bindings list, each 2-tuple is a
tuple of the QMenu function to call (‘addAction’), and the positional
arguments supplied to the function - in this case the name ‘Properties’, and
the lambda functor to call when activated.

Contents

	dgp.core.controllers package

	Controller Development Principles

	Interfaces

	Controllers

	Containers

	Utility/Helper Modules

Interfaces

The following interfaces provide interface definitions for the various
controllers used within the overall project model.

The interfaces, while perhaps not exactly Pythonic, provide great utility
in terms of type safety in the interaction of the various controllers.
In most cases the concrete subclasses of these interfaces cannot be
directly imported into other controllers as this would cause circular
import loops

e.g. the FlightController
is a child of an AirborneProjectController,
but the FlightController also stores a typed reference to its parent
(creating a circular reference), the interfaces are designed to allow proper
type hinting within the development environment in such cases.

Controllers

Concrete controller implementations

Containers

Utility/Helper Modules

dgp.core.types package

Stuff about types

dgp.lib package

This package contains library functions and utilities for loading,
processing, and transforming gravity and trajectory data.

dgp.lib.gravity_ingestor module

dgp.lib.time_utils module

dgp.lib.trajectory_ingestor module

dgp.gui package

This package contains modules and sub-packages related to the
Graphical User Interface (GUI) presentation layer of DGP.

DGP’s User Interface is built on the Qt 5 C++ library, using the
PyQt Python bindings.

Custom Qt Views, Widgets, and Dialogs are contained here, as well
as plotting interfaces.

Qt Interfaces and Widgets created with Qt Creator generate .ui XML
files, which are then compiled into a Python source files which define
individual UI components.
The .ui source files are contained within the ui directory.

Sub Packages

	dgp.gui.plotting package

	dgp.gui.workspaces package

See also

Qt 5 Documentation [http://doc.qt.io]

PyQt5 Documentation [http://pyqt.sourceforge.net/Docs/PyQt5/]

dgp.gui.plotting package

The plotting package contains the backend wrappers and classes used by the DGP
application to interactively plot data within the GUI.

The interactive plotting framework that we utilize here is based on the
PyQtGraph [http://http://pyqtgraph.org/documentation/index.html] python
package, which itself utilizes the
Qt Graphics View Framework [http://doc.qt.io/qt-5/graphicsview.html] to
provide a highly performant interactive plotting interface.

The modules within the plotting package are separated into the Bases,
Plotters and Helpers modules, which provide the base plot
wrappers, task/application specific plot widgets, and plot utility functions/
classes respectively.

The Bases module defines the base plot wrappers which wrap some of
PyQtGraph’s plotting functionality to ease the plotting and management of
Pandas Series data within a plot surface.

The Plotters module provides task specific plot widgets that can be
directly incorporated into a QtWidget application’s layout. These classes add
specific functionality to the base ‘backend’ plots, for example to enable
graphical click-drag selection of data segments by the user.

Types/Consts/Enums

	
backends.MaybePlot = Union[DgpPlotItem, None]

	Typedef for a function which returns a DgpPlotItem or None

	
backends.MaybeSeries = Union[pandas.Series, None]

	Typedef for a function which returns a pandas.Series [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] or None

	
backends.SeriesIndex = Tuple[str, int, int, Axis]

	Typedef for a tuple representing the unique index of a series on a plot
within a GridPlotWidget

Bases

Plotters

Helpers

dgp.gui.workspaces package

The Workspaces sub-package defines GUI widgets for various controller
contexts in the DGP application.
The idea being that there are naturally different standard ways in which the
user will interact with different project objects/controllers, depending on the
type of the object.

The workspaces are intended to be displayed within a QTabWidget within the
application so that the user may easily navigate between multiple open
workspaces.

Each workspace defines its own custom widget(s) for interacting & manipulating
data associated with its underlying controller (VirtualBaseController).

Workspaces may also contain sub-tabs, for example the DataSetTab
defines sub-tabs for viewing raw-data and selecting segments, and a tab for
executing transform graphs on the data.

Contents

	dgp.gui.workspaces package

	Base Interfaces

	Workspaces

	Project Workspace

	Flight Workspace

	DataSet Workspace

	DataFile Workspace

Base Interfaces

New in version 0.1.0.

Workspaces

Project Workspace

Warning

Not yet implemented

Note

Future Planning: Project Workspace may display a map interface which can
overlay each flight’s trajectory path from the flights within the project.
Some interface to allow comparison of flight data may also be integrated into
this workspace.

Flight Workspace

Warning

Not yet implemented

Note

Future Planning: Similar to the project workspace, the flight workspace may
be used to display a map of the selected flight.
A dashboard type widget may be implemented to show details of the flight,
and to allow users to view/configure flight specific parameters.

DataSet Workspace

New in version 0.1.0.

DataFile Workspace

Warning

Not yet implemented

Note

Future Planning: The DataFile workspace may be used to allow users to view
and possibly edit raw data within the interface in a spreadsheet style
view/control.

Data Management in DGP

DGP manages and interacts with a variety of forms of Data.
Imported raw data (GPS or Gravity) is ingested and maintained internally as a
pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or pandas.Series [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] from their raw
representation in comma separated value (CSV) files.
The ingestion process performs type-casts, filling/interpolation of missing
values, and time index creation/conversion functions to result in a
ready-to-process DataFrame.

These DataFrames are then stored in the project’s HDF5 [https://portal.hdfgroup.org/display/support] data-file, which
natively supports (with PyTables [https://www.pytables.org/] and Pandas) the storage and retrieval of
DataFrames and Series.

To facilitate storage and retrieval of data within the project, the
HDF5Manager class provides an easy to use
wrapper around the pandas.HDFStore and provides utility methods
for getting/setting meta-data attributes on nodes.

Contributing

Creating a branch

This project uses the GitFlow [http://nvie.com/posts/a-successful-git-branching-model/] branching model. The master branch reflects the current
production-ready state. The develop branch is a perpetual development branch.

New development is done in feature branches which are merged back
into the develop branch once development is completed. Prior to a release,
a release branch is created off of develop. When the
release is ready, the release branch is merged into master and develop.

Development branches are named with a prefix according to their purpose:

	feature/: An added feature or improved functionality.

	bug/: Bug fix.

	doc/: Addition or cleaning of documentation.

	clean/: Code clean-up.

When starting a new branch, be sure to branch from develop:

$ git checkout -b my_feature develop

Keep any changes in this branch specific to one bug or feature. If the develop
branch has advanced since your branch was first created, then you can update
your branch by retrieving those changes from the develop branch:

$ git fetch origin
$ git rebase origin/develop

This will replay your commits on top of the latest version of the develop branch.
If there are merge conflicts, then you must resolve them.

Committing your code

When committing to your changes, we recommend structuring the commit message
in the following way:

	subject line with less than < 80 chars

	one blank line

	optionally, a commit message body

Please reference the relevant GitHub issues in your commit message using
GH1234 or #1234.

For the subject line, this project uses the same convention for commit message
prefix and layout as the Pandas project. Here are some common prefixes and
guidelines for when to use them:

	ENH: Enhancement, new functionality

	BUG: Bug fix

	DOC: Additions/updates to documentation

	TST: Additions/updates to tests

	BLD: Updates to the build process/scripts

	PERF: Performance improvement

	CLN: Code cleanup

Combining commits

When you’re ready to make a pull request and if you have made multiple commits,
then you may want to combine, or “squash”, those commits. Squashing commits
helps to maintain a compact commit history, especially if a number of commits
were made to fix errors or bugs along the way. To squash your commits:

git rebase -i HEAD-#

where # is the number of commits you want to combine. If you want to squash
all commits on the branch:

git rebase -i --root

Then you will need to push the branch forcefully to replace the current commits
with the new ones:

git push origin new-feature -f

Incorporating a finished feature on develop

Finished features should be added to the develop branch to be included in the
next release:

$ git checkout develop
Switched to branch 'develop'
$ git merge --no-ff myfeature
Updating ea1b82a..05e9557
(summary of changes)
$ git branch -d myfeature
Deleted branch myfeature (was 05e9557).
$ git push origin develop

The --no-ff flag causes the merge to always create a commit, even if it can
be done with a fast-forward. This way we record the existence of the feature
branch even after it has been deleted, and it groups all of the relevant
commits for this feature.

Note that pull-requests into develop require passing Continuous Integration
(CI) builds on Travis.ci and AppVeyor, and at least one approved review.

Code standards

DGP uses the PEP8 [http://www.python.org/dev/peps/pep-0008/] standard. In particular, that means:

	we restrict line-length to 79 characters to promote readability

	passing arguments should have spaces after commas, e.g.,
foo(arg1, arg2, kw1='bar')

Continuous integration will run the flake8 tool to check for conformance with
PEP8. Therefore, it is beneficial to run the check yourself before submitting
a pull request:

git diff master --name-only -- '*.py' | flake8 --diff

Test-driven development

All new features and added functionality will require new tests or amendments
to existing tests, so we highly recommend that all contributors embrace
test-driven development (TDD) [http://en.wikipedia.org/wiki/Test-driven_development].

All tests should go to the tests subdirectory. We suggest looking to any of
the examples in that directory to get ideas on how to write tests for the
code that you are adding or modifying.

DGP uses the pytest [https://docs.pytest.org/] framework for unit testing and coverage.py [https://coverage.readthedocs.io/en/coverage-4.4.1/] to gauge the
effectiveness of tests by showing which parts of the code are being executed
by tests, and which are not. The pytest-cov [https://pytest-cov.readthedocs.io/] extension is used in conjunction
with Py.Test and coverage.py to generate coverage reports after executing the
test suite.

Continuous integration will also run the test-suite with coverage, and report
the coverage statistics to Coveralls [https://coveralls.io]

Running the test suite

The test suite can be run from the repository root:

pytest --cov=dgp tests
or
coverage run --source=dgp -m unittest discover

Add the following parameter to display lines missing coverage when using the
pytest-cov extension:

--cov-report term-missing

Use coverage report to report the results on test coverage:

$ coverage report -m
Name Stmts Miss Cover Missing
--
dgp/__init__.py 0 0 100%
dgp/lib/__init__.py 0 0 100%
dgp/lib/etc.py 6 0 100%
dgp/lib/gravity_ingestor.py 94 0 100%
dgp/lib/time_utils.py 52 3 94% 131-136
dgp/lib/trajectory_ingestor.py 50 8 84% 62-65, 93-94, 100-101, 106
--
TOTAL 202 11 95%

Documentation

The documentation is written in reStructuredText and built using Sphinx. Some
other things to know about the docs:

	It consists of two parts: the docstrings in the code and the docs in this folder.

Docstrings provide a clear explanation of the usage of the individual functions,
while the documentation in this folder consists of tutorials, planning, and
technical documents related data formats, sensors, and processing techniques.

	The docstrings in this project follow the NumPydoc docstring standard [https://numpydoc.readthedocs.io/en/latest/].
This standard specifies the format of the different sections of the docstring.
See this document [http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html] for a detailed explanation and examples.

	See Quick reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickref.html]
for a quick-reference on reStructuredText syntax and markup.

	Documentation can also contain cross-references to other
classes/objects/modules using the Sphinx Domain Reference Syntax [http://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html]

	Documentation is automatically built on push for designated branches
(typically master and develop) and hosted on Read the Docs [https://readthedocs.org]

Building the documentation

Navigate to the dgp/docs directory in the console. On Linux and MacOS X run:

make html

or on Windows run:

make.bat

If the build completes without errors, then you will find the HTML output in
dgp/docs/build/html.

Alternately, documentation can be built by calling the sphinx python module
e.g.:

python -m sphinx -M html source build

Software Requirements Specification

Overall Description

User Classes and Characteristics

There are three types of users that interact with the system differentiated by
the subset of product functions used. The user classes are:

	Operator

	Scientist

	Engineer

The Operator uses the software to assess data set quality to ensure that the
systems are functioning nominally.

The Scientist uses the software to produce a gravity anomaly. They will
also seek to compare data sets across flights, projects, and sensor systems.

The Engineer uses the software to evaluate hardware and software and to troubleshoot issues.

Functional Requirements

	FR1

	Description: The user shall be able to import gravity data. The user shall be able to choose file type and define the format.

	Priority: High

	Rationale: Required to process gravity data. Allowing the user to define the type and format reduces future work to incorporate other sensors or changes to file types and formats.

	Dependencies: None

	FR2

	Description: The user shall be able to import position and attitude data. The user shall be able to choose file type and define the format.

	Priority: High

	Rationale: Required to process gravity data. Allowing the user to define the type and format reduces future work to incorporate other sensors or changes to file types and formats.

	Dependencies: None

	FR4

	Description: The user shall be able to organize data by project and flight.

	Priority: High

	Rationale: This is a standard organizing principle.

	Dependencies: None

	FR5

	Description: The user shall be able to import and compare multiple trajectories for a flight.

	Priority: Medium

	Rationale: For comparison of INS hardware and post-processing methods.

	Dependencies: None

	FR6

	Description: The user shall be able to combine and analyze data across projects and flights.

	Priority: Medium

	Rationale: For comparison of line reflown, or to produce a grid of lines flown for a survey, for example.

	Dependencies: None

	FR7

	Description: The user shall be able to select sections of a flight for processing.

	Priority: High

	Rationale: Necessary to properly process gravity.

	Dependencies: None

	FR8

	Description: The user shall be able to plot all corrections.

	Priority: High

	Rationale: For troubleshooting, for example.

	Dependencies: None

	FR9

	Description: The user shall be able to choose to plot any channel.

	Priority: High

	Rationale: For quality control of data, diagnostics, and performance assessment.

	Dependencies: None

	FR10

	Description: The user shall be able to compare with lines and grids processed externally.

	Priority: Medium

	Rationale: For quality control of data, diagnostics, and performance assessment.

	Dependencies: None

	FR11

	Description: The user shall be able to export data. The user shall be able to choose file type and define the format.

	Priority: High

	Rationale: For further processing or use in another system.

	Dependencies: None

	FR12

	Description: The user shall be able to specify sensor-specific parameters.

	Priority: High

	Rationale: Required to process gravity data.

	Dependencies: None

	FR13

	Description: The user shall be able to plot flight track on a map.

	Priority: High

	Rationale: To facilitate selection of sections for processing.

	Dependencies: FR2

	FR14

	Description: The user shall be able to import a background image or data set as the background for the map.

	Priority: Low

	Rationale: To facilitate selection of sections for processing.

	Dependencies: FR13

	FR15

	Description: The user shall be able to choose the method used to filter data and any associated parameters.

	Priority: High

	Rationale: To facilitate comparison of processing methods.

	Dependencies: None

	FR16

	Description: The user shall be able to compute statistics for any channel.

	Priority: High

	Rationale: For quality control of data, diagnostics, and performance assessment.

	Dependencies:

	FR17

	Description: The user shall be able to perform cross-over analysis.

	Priority: Medium

	Rationale: For quality control at the level of a whole survey.

	Dependencies:

	FR18

	Description: The user shall be able to perform upward continuation.

	Priority: Low

	Rationale: For quality control at the level of a whole survey.

	Dependencies:

	FR19

	Description: The user shall ble able to flag bad data within lines and choose whether to exclude from processing.

	Priority: High

	Rationale: For quality control of data, diagnostics, and performance assessment.

	Dependencies:

	FR20

	Description: The user shall be able to import outside data sets (e.g., SRTM, geoid) for comparison with flown gravity.

	Priority: High

	Rationale: For quality control of data, diagnostics, and performance assessment.

	Dependencies

Documentation ToDo’s

Todo

Write documentation/tutorial on how to use the application,
targeted at actual users, not developers.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dgp/checkouts/develop/docs/source/userguide.rst, line 4.)

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dgp	

 	
 	
 dgp.core.controllers.controller_interfaces	

 	
 	
 dgp.core.controllers.datafile_controller	

 	
 	
 dgp.core.controllers.dataset_controller	

 	
 	
 dgp.core.controllers.flight_controller	

 	
 	
 dgp.core.controllers.gravimeter_controller	

 	
 	
 dgp.core.controllers.project_containers	

 	
 	
 dgp.core.controllers.project_controllers	

 	
 	
 dgp.core.hdf5_manager	

 	
 	
 dgp.core.models	

 	
 	
 dgp.gui.plotting	

Index

 B
 | D

B

 	
 	backends.MaybePlot (in module dgp.gui.plotting)

 	
 	backends.MaybeSeries (in module dgp.gui.plotting)

 	backends.SeriesIndex (in module dgp.gui.plotting)

D

 	
 	dgp.core.controllers.controller_interfaces (module)

 	dgp.core.controllers.datafile_controller (module)

 	dgp.core.controllers.dataset_controller (module)

 	dgp.core.controllers.flight_controller (module)

 	dgp.core.controllers.gravimeter_controller (module)

 	
 	dgp.core.controllers.project_containers (module)

 	dgp.core.controllers.project_controllers (module)

 	dgp.core.hdf5_manager (module)

 	dgp.core.models (module)

 	dgp.gui.plotting (module)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Dynamic Gravity Processor’s documentation!

 		
 Installation

 		
 User Guide

 		
 Creating a new project

 		
 Project Structure (Airborne)

 		
 Creating Flights/Survey’s

 		
 Importing Gravimeter (Sensor) Configurations

 		
 Importing Gravity/Trajectory (GPS) Data

 		
 Data Processing Workflow

 		
 Selecting Survey Lines

 		
 Selecting/Applying Transformation Graphs

 		
 Viewing Line Repeats

 		
 dgp.core package

 		
 dgp.core.models package

 		
 Model Development Principles

 		
 dgp.core.models.project module

 		
 dgp.core.models.meter module

 		
 dgp.core.models.flight module

 		
 dgp.core.models.datafile module

 		
 dgp.core.models.dataset module

 		
 dgp.core.controllers package

 		
 Controller Development Principles

 		
 Interfaces

 		
 Controllers

 		
 Containers

 		
 Utility/Helper Modules

 		
 dgp.core.types package

 		
 Sub Modules

 		
 dgp.core.file_loader module

 		
 dgp.core.oid module

 		
 dgp.lib package

 		
 dgp.lib.gravity_ingestor module

 		
 dgp.lib.time_utils module

 		
 dgp.lib.trajectory_ingestor module

 		
 dgp.gui package

 		
 dgp.gui.plotting package

 		
 Types/Consts/Enums

 		
 Bases

 		
 Plotters

 		
 Helpers

 		
 dgp.gui.workspaces package

 		
 Base Interfaces

 		
 Workspaces

 		
 Data Management in DGP

 		
 Contributing

 		
 Creating a branch

 		
 Committing your code

 		
 Combining commits

 		
 Incorporating a finished feature on develop

 		
 Code standards

 		
 Test-driven development

 		
 Running the test suite

 		
 Documentation

 		
 Building the documentation

 		
 Software Requirements Specification

 		
 Overall Description

 		
 User Classes and Characteristics

 		
 Functional Requirements

 		
 Documentation ToDo’s

_static/up.png

