
dftfit Documentation
Release 0.3.2

Chris Ostrouchov

Sep 20, 2018

Contents:

1 Installation 3

2 Tutorial 5
2.1 Simple MgO Example . 5

3 Potentials 11
3.1 Two Body Potentials . 11
3.2 Three Body Potentials . 14

4 Training Sets 21
4.1 Measured Properties . 21
4.2 Ab-Initio Training Sets . 21
4.3 VASP . 23
4.4 Quantum Espresso . 23
4.5 Siesta . 23

5 Configuration 25
5.1 Metadata . 25
5.2 Optimization . 26
5.3 SQLite Database . 26
5.4 MD Calculator . 27
5.5 Miscellaneous . 27

6 Commands 29
6.1 Merging Databases . 29
6.2 Evaluating Potentials . 29
6.3 Summarizing DFTFIT runs . 30
6.4 Visualize Progress of Run . 31
6.5 Training Set Radial Distribution . 32
6.6 Visualize Potential Error on Training Set . 32
6.7 Visualize Pair Potential . 33

7 Visualization 35

8 Improving Performance 37

9 Indices and tables 39

i

ii

dftfit Documentation, Release 0.3.2

DFTFIT is a python code that used Ab Initio data from DFT calculations such as VASP, Quantum Espresso, and
Siesta to develop molecular dynamic potentials. Our package differs from other similar codes in that we leverage
LAMMPS as a calculator enabling a wide variety of potentials. The potentials include custom python functions and
a wide variety or three-body interactions including the Tersoff, Stillinger-Weber, Gao-Weber, Vashishta, and COMB
Potentials. All of which can be combined to have for example a Buckingham + Coulomb + ZBL potential. We
also have an extensive set of multi-objective and single-objective optimizers that can evaluate a potential for many
properties including energy, forces, stress, lattice constants, elastic constants, bulk modulus, and shear modulus.

In general three things are required from the user.

• Ab-Initio Training Data includes VASP, Siesta, and Quantum Espresso Calculations. Additionally the
user may supply measured properties such as lattice constants, elastic constants, bulk modulus, and shear
modulus.

• configuration specifies optimization algorithm and number of steps, sqlite database to store results, MD
calculator to use, weights to give for each property.

• Potential among a rich set of two and three body potentials. Including a custom python function.

Contents: 1

https://dftfit.readthedocs.io/en/latest/potentials.html
https://dftfit.readthedocs.io/en/latest/configuration.html#optimization
https://dftfit.readthedocs.io/en/latest/training.html
https://dftfit.readthedocs.io/en/latest/configuration.html
https://dftfit.readthedocs.io/en/latest/potentials.html

dftfit Documentation, Release 0.3.2

2 Contents:

CHAPTER 1

Installation

For pypi installation. Note that installation of lammps-cython may fail and is required. You will need to install
LAMMPS as documented here.

pip install dftfit

For conda installation

conda install -c costrouc -c matsci -c conda-forge dftfit

For docker installation

docker pull costrouc/dftfit
docker run -it costrouc/dftfit /bin/bash

3

https://costrouc.gitlab.io/lammps-cython/installation.html#pip

dftfit Documentation, Release 0.3.2

4 Chapter 1. Installation

CHAPTER 2

Tutorial

2.1 Simple MgO Example

DFTFIT is a software that is used to produce interatomic potentials for molecular dynamics simulations. The goal of
the code is to enable scientists to use more accurate simulation methods to guide the construction of these potentials.
For this example we will be using VASP calculations.

The dft training data consists of:

• equilibrium structure

• displaced structures 0.01𝑥212𝐵 − 0.04𝑥212𝐵

• deformed structures ±%2 normal, ±%8 shear

• random perturbed structures 0.04𝑥212𝐵

5

dftfit Documentation, Release 0.3.2

For this example all the training structures are stored in a cached database. DFTFIT uses a cache so that it does not
have to reparse all input vasp and quantum espresso input files. From this cache we get 131 training structures.

• 1 equilibrium structure

• 6 x 10 deformed structures

• 2 x 5 displaced structures

• 60 perturbed structures

Now that we have all of our input files we now need to configure our dftfit potential fitting. We are studing MgO
which most commonly uses a buckingham potential with each atom having a charge.

𝑈𝑀𝑔−𝑀𝑔(𝐴1, 𝜌1, 𝐶1) 𝑈𝑀𝑔−𝑂(𝐴2, 𝜌2, 𝐶2) 𝑈𝑂−𝑂(𝐴3, 𝜌3, 𝐶3)

𝑞𝑀𝑔 = −𝑞𝑂

This leads to 10 free parameters.

𝐴1, 𝜌1, 𝐶1, 𝐴2, 𝜌2, 𝐶2, 𝐴3, 𝜌3, 𝐶3, 𝑞𝑀𝑔

DFTFIT configuration is intentionally separated into 3 parts: potential, training structures, dftfit configuration. Let us
look at an example potential file. In this case we will be looking at the lewis-catlow potential for MgO.

6 Chapter 2. Tutorial

https://gitlab.com/costrouc/dftfit/tree/master/examples/mgo/cache/
https://doi.org/10.1088/0022-3719/18/6/010

dftfit Documentation, Release 0.3.2

version: v1
kind: Potential
spec:

constraint:
charge_balance: MgO

charge:
Mg: {'initial': 2.0, 'bounds': [1.3, 2]}
O: {'initial': -2.0, 'bounds': [-2, -1.3]}

kspace:
type: pppm
tollerance: 1e-5

pair:
type: buckingham
cutoff: 10.0
parameters:

- elements: ['Mg', 'Mg']
coefficients:

- {'initial': 0.1, 'bounds': [1e-6, 1000]}
- {'initial': 0.1, 'bounds': [1e-6, 1e2]}
- 0.0

- elements: ['Mg', 'O']
coefficients:

- {'initial': 821.61, 'bounds': [10, 1e4]}
- {'initial': 0.324199, 'bounds': [1e-6, 1e2]}
- 0.0

- elements: ['O', 'O']
coefficients:
- {'initial': 22764.915, 'bounds': [1e3, 1e6]}
- {'initial': 0.14899, 'bounds': [1e-3, 1e2]}
- {'initial': 20.3705, 'bounds': [1, 1e3]}

Currently DFTFIT supports any float value in the input file to be a parameter for the optimization. This even means
that the buckingham cutoff radius can be an optimization parameter. Additionally, DFTFIT has been designed such
that it is possible to determine if two potential parameter files are using the same potential form (I am quite proud
of this feature). It is not perfect but will work for %90 of all cases. The form for a parameter is {'initial':
<value>, 'bound': [<lower>,<upper>]}. There is planned support in the future for spline function
parameters. This would be useful for example in constructing EAM potentials.

Next the training structures need to be defined for input. The current input file uses calculations generated with my
own framework mattoolkit however vasp and quantum espresso are also supported. The actual input file in the
examples is much longer. We can see that it is a list of calculations to include. In the case of mattoolkit all cal-
culations are chosen using a selector. All calculations that match the labels project:potential_fitting,
structrue:MgO, calculation_type:static, calculation_group:lattice_constant. If you
haven’t done it already, when you accumulate a lot of data it is important to assign metadata to all of your calcu-
lations. This makes the calculations much easier to select.

version: v1
kind: Training
spec:

- type: mattoolkit
selector:

labels:
- project:potential_fitting
- structrue:MgO
- calculation_type:static
- calculation_group:lattice_constant

2.1. Simple MgO Example 7

dftfit Documentation, Release 0.3.2

Finally we have the DFTFIT configuration. The configuration is quite flexible.

version: v1
kind: Configuration
metadata:

name: testing
labels:
algorithm: "pygmo.sade"
test: test

spec:
logging: INFO
database:
interval: 10
filename: "/tmp/dftfit/database.db"

algorithm:
name: 'pygmo.sade'
steps: 10
population: 10

problem:
calculator: 'lammps_cython'
num_workers: 3
weights:

force: 0.3
stress: 0.6
energy: 0.1

training:
cache_filename: "./cache/cache.db"

The metadata section is for providing information about the calculation. The name property needs to be a string.
While the labels are key value pairs that must both be strings. The key value pairs can be anything. Now we have
the parameters that actually affect the calculation.

logging default is WARNING it is used to print information during the run. Stick with WARNING for a much much
cleaner stdout

database if specified provide the location for the sqlite3 database

steps required number of optimization steps

population required number of potential parameters sets to solve at each iteration

algorithm required the optimization algorithm to use a good one to start using is SADE. See pagmo2 algorithmn
documentation.

problem.calculator molecular dynamics calculator to use lammps is the only one for now

problem.command command to run to start calculator make sure command matches calculator!

problem.num_workers determines the parallelism. Currently DFTFIT doesn’t scale well past 8 processors. Each
processor does about 150 calculations/second.

weights features to calculate and the associated weights. Can be None for value.

training.cache_filename where to store the caches parsed training calculations

If is a global optimization algorithm is chosen random population points will be chosen. After the configuration file
has been setup you are ready to go! The optimization can be simply run using the dftfit command installed when
installing the python package. Run the command within the examples/mgo folder.

dftfit train -c configuration.yaml -p potential.yaml -t training.yaml

8 Chapter 2. Tutorial

https://esa.github.io/pagmo2/docs/algorithm_list.html
https://esa.github.io/pagmo2/docs/algorithm_list.html

dftfit Documentation, Release 0.3.2

Since the example configuration only run 10 * 10 = 100 optimization steps the potential really will not improve. For
my calculations I do 100,000 optimization steps with each step taking less than a fraction of a second. In total 100,000
steps takes about 10-12 hours.

DFTFIT comes with tools for investigating the results from the optimization.

TODO add more.

2.1. Simple MgO Example 9

dftfit Documentation, Release 0.3.2

10 Chapter 2. Tutorial

CHAPTER 3

Potentials

Read a potential from a python dict

Read a potential from json or yaml file.

from dftfit.potential import Potential
potential = Potential.from_file(filename)

DFTFIT can define very complex potentials. Unlike similar potential fitting software, DFTFIT allows any combina-
tion of potentials defined bellow. This allows a user for example to mix a ZBL and buckingham with a coulombic
interaction seen here. Even though it may not make sense a user can mix a Tersoff, ZBL, Stillinger Weber, and python
custom pair potential. The performance impact of mixing several potentials is almost negligible for small systems of
less than 1000 atoms.

DFTFIT uses a json schema to represent any potential. To make DFTFIT optimize any float value in the potential
replace the float value for with somthing similar to {"initial": 1.0, "bounds ": [2.0, 3.0]}. This
tells DFTFIT that the initial guess should be 1.0 and to restrict the optimization values between 2.0 and 3.0. An
example is shown here for MgO.

Note that the yaml schema is not the only way to provide a potential. json can be used to represent any DFTFIT
yaml specification. Additionally they can be represented with normal python datastructures dict and list.

Bellow is a list of all the supported potentials. Soon EAM and arbitrary splines for potentials will be supported see
issue 17

3.1 Two Body Potentials

3.1.1 Python Functions

DFTFIT allows for arbitrary python functions to be used for pair potentials. The only requirement is that you define
a function named potential with the last arguments being the r that will be supplied by dftfit. All the other
parameters to the function will be optimized. See this stack-overflow question if you need clarification on what

11

https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/MgO-charge-buck-zbl.yaml
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/MgO-charge-buck-fitting.yaml
https://gitlab.com/costrouc/dftfit/issues/17
https://stackoverflow.com/questions/19139869/vectorizing-a-function-python

dftfit Documentation, Release 0.3.2

numpy function vectorization is. Under the covers DFTFIT evaluates the function at a set number of points (np.
linspace(cutoff[0], cutoff[1], samples)) to calculate the energies and forces (via the finite centered
difference).

An example of the buckingham potential is below. You are free to import and call any functions within the block.

import numpy as np

def potential(A, p, C, r):
return A * np.exp(-r/p) - C / (r**6)

yaml schema

pair:
- type: python-function
cutoff: [1.0, 10.0]
samples: 1000
function: |

import numpy as np

def potential(A, p, C, r):
return A * np.exp(-r/p) - C / (r**6)

parameters:
- elements: ['Mg', 'Mg']

coefficients: [1309362.2766468062, 0.104, 0.0]
- elements: ['Mg', 'O']

coefficients: [9892.357, 0.20199, 0.0]
- elements: ['O', 'O']

coefficients: [2145.7345, 0.3, 30.2222]

3.1.2 Coloumbic Interaction Potential

• lammps documentation

• example potential

• n parameters: where n is number of elements - 1

The coloumbic interaction potential has more knobs that other pair potentials to allow for how the long range interac-
tions are integrated. Additionally a constraint allows for ensure that the total charge of the system is balanced.
Complex forumla can be used e.g. LiTaO3.

𝐸 =
𝐶𝑞𝑖𝑞𝑗
𝜖𝑟

yaml schema

spec:
constraint:
charge_balance: MgO

charge:
Mg: 1.4
O: -1.4

kspace:
type: pppm
tollerance: 1e-5

12 Chapter 3. Potentials

https://lammps.sandia.gov/doc/pair_coul.html)=
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/MgO-charge-buck.yaml

dftfit Documentation, Release 0.3.2

3.1.3 ZBL Potential

• lammps documentation

• example potential

• 2 parameters: Z_1, Z_2

𝐸𝑖𝑗 =
𝑍𝑖𝑍𝑗𝑒

2

4𝜋𝜖0𝑟𝑖𝑗
𝜑(𝑟𝑖𝑗/𝑎)

𝑎 =
0.46850

𝑍0.23
𝑖 + 𝑍0.23

𝑗

𝜑𝑥 = 0.18175𝑒−3.19980𝑥 + 0.50986𝑒−0.94229𝑥 + 0.28022𝑒−0.40290𝑥 + 0.02817𝑒−0.20162𝑥

yaml schema

pair:
- type: zbl
cutoff: [3.0, 4.0]
parameters:

- elements: ['Mg', 'Mg']
coefficients: [12, 12]

- elements: ['Mg', 'O']
coefficients: [12, 8]

- elements: ['O', 'O']
coefficients: [8, 8]

3.1.4 Lennard Jones Potential

• lammps documentation

• example potential

• parameters 2: 𝜖, 𝜎

𝐸 = 4𝜖

[︂(︁𝜎
𝑟

)︁12

−
(︁𝜎
𝑟

)︁6
]︂

yaml schema

pair:
- type: lennard-jones
cutoff: [10.0]
parameters:

- elements: ['Ne', 'Ne']
coefficients: [33.921, 2.801]

3.1.5 Beck Potential

• lammps documentation

• example potential

• 5 parameters: A, B, a, 𝛼, 𝛽

3.1. Two Body Potentials 13

https://lammps.sandia.gov/doc/pair_zbl.html
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/MgO-charge-buck-zbl.yaml
https://lammps.sandia.gov/doc/pair_lj.html
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/Ne-lennard-jones.yaml
https://lammps.sandia.gov/doc/pair_beck.html
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/He-beck.yaml

dftfit Documentation, Release 0.3.2

𝐸(𝑟) = 𝐴 exp
[︀
−𝛼𝑟 − 𝛽𝑟6

]︀
− 𝐵

(𝑟2 + 𝑎2)3

(︂
1 +

2.709 + 3𝑎2

𝑟2 + 𝑎2

)︂
yaml schema

pair:
- type: beck
cutoff: [8.0]
parameters:

- elements: ['He', 'He']
coefficients: [399.671876712, 0.0000867636112694, 0.675, 4.390, 0.0003746]

3.1.6 Buckingham Potential

• lammps documentation

• example potential

• 3 parameters: A, 𝜌, C

𝜓(𝑟) = 𝐴 exp− 𝑟
𝜌 −𝐶

𝑟6

yaml schema

pair:
- type: buckingham
cutoff: [10.0]
parameters:

- elements: ['Mg', 'Mg']
coefficients: [1309362.2766468062, 0.104, 0.0]

- elements: ['Mg', 'O']
coefficients: [9892.357, 0.20199, 0.0]

- elements: ['O', 'O']
coefficients: [2145.7345, 0.3, 30.2222]

3.2 Three Body Potentials

Three Body potentials tend to have many more parameters. Because of this there are often mixing rules that help to re-
duce the number of parameters. They define some rules such that given interaction element_{i, i} ∇𝑖 and element_{j,j}
∇𝑖 the potential for intercation element_{ij} can be calculated via 𝑓(𝑖,∇𝑗).

Currently defined mixes:

• tersoff-2

3.2.1 Tersoff Potential

• lammmps documentation

• example potential

• 14 parameters: 𝑚, 𝛾, 𝜆3, 𝑐, 𝑑, cos(𝜃0), 𝑛, 𝑏𝑒𝑡𝑎, 𝜆2, 𝐵,𝑅,𝐷, 𝜆1, 𝐴

yaml schema

14 Chapter 3. Potentials

https://lammps.sandia.gov/doc/pair_buck.html
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/MgO-charge-buck.yaml
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/LiTaO3-tersoff-2.yaml
https://lammps.sandia.gov/doc/pair_tersoff.html
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/SiC-tersoff.yaml

dftfit Documentation, Release 0.3.2

pair:
- type: tersoff
parameters:

- elements: ['C', 'C', 'C']
coefficients: [3.0, 1.0, 0.0, 38049, 4.3484, -0.57058, 0.72751, 0.00000015724,

→˓2.2119, 346.7, 1.95, 0.15, 3.4879, 1393.6]
- elements: ['Si', 'Si', 'Si']

coefficients: [3.0, 1.0, 0.0, 100390, 16.217, -0.59825 ,0.78734, 0.0000011, 1.
→˓73222, 471.18, 2.85, 0.15, 2.4799, 1830.8]

- elements: ['Si', 'Si', 'C']
coefficients: [3.0, 1.0, 0.0, 100390, 16.217, -0.59825, 0.0, 0.0, 0.0, 0.0, 2.

→˓36, 0.15, 0.0, 0.0]
- elements: ['Si', 'C', 'C']

coefficients: [3.0, 1.0, 0.0, 100390, 16.217, -0.59825, 0.787340, 0.0000011, 1.
→˓97205, 395.126, 2.36, 0.15, 2.9839, 1597.3111]

- elements: ['C', 'Si', 'Si']
coefficients: [3.0, 1.0, 0.0, 38049, 4.3484, -0.57058, 0.72751, 0.00000015724,

→˓1.97205, 395.126, 2.36, 0.15, 2.9839, 1597.3111]
- elements: ['C', 'Si', 'C']

coefficients: [3.0, 1.0, 0.0, 38049, 4.3484, -0.57058, 0.0, 0.0, 0.0, 0.0, 1.
→˓95, 0.15, 0.0, 0.0]

- elements: ['C', 'C', 'Si']
coefficients: [3.0, 1.0, 0.0, 38049, 4.3484, -0.57058, 0.0, 0.0, 0.0, 0.0, 2.

→˓36, 0.15, 0.0, 0.0]
- elements: ['Si', 'C', 'Si']

coefficients: [3.0, 1.0, 0.0, 100390, 16.217, -0.59825, 0.0, 0.0, 0.0, 0.0, 2.
→˓85, 0.15, 0.0, 0.0]

Equations

𝐸 =
1

2

∑︁
𝑖

∑︁
𝑗 ̸=𝑖

𝑉𝑖𝑗

𝑉𝑖𝑗 = 𝑓𝑐 (𝑟𝑖𝑗) [𝑓𝑅(𝑟𝑖𝑗) + 𝑏𝑖𝑗𝑓𝐴(𝑟𝑖𝑗)]

𝑓𝑐(𝑟𝑖𝑗) =

⎧⎨⎩ 1 𝑟𝑖𝑗 < 𝑅𝑖𝑗 −𝐷𝑖𝑗
1
2 − 1

2 sin
[︀
𝜋
2 (𝑟𝑖𝑗 −𝑅𝑖𝑗)/𝐷𝑖𝑗

]︀
𝑅𝑖𝑗 − 𝑆𝑖𝑗 < 𝑟𝑖𝑗 < 𝑅𝑖𝑗 +𝐷𝑖𝑗

0 𝑟𝑖𝑗 > 𝑅𝑖𝑗 +𝐷𝑖𝑗

𝑓𝑅(𝑟) = 𝐴𝑖𝑗 exp(−𝜆1,𝑖𝑗𝑟)

𝑓𝐴(𝑟) = −𝐵𝑖𝑗 exp(−𝜆2,𝑖𝑗𝑟)

𝑏𝑖𝑗 = (1 + 𝛽𝑛𝑖
𝑖 𝜁𝑛𝑖

𝑖𝑗)
− 1

2𝑛𝑖

𝜁𝑖𝑗 =
∑︁
𝑘 ̸=𝑖,𝑗

𝑓𝑐(𝑟𝑖𝑘)𝑔(𝜃𝑖𝑗𝑘) exp[𝜆𝑚3,𝑖𝑗(𝑟𝑖𝑗 − 𝑟𝑖𝑘)𝑚]

𝑔(𝜃𝑖𝑗𝑘) = 𝛾𝑖𝑘

(︂
1 +

𝑐2𝑖
𝑑2𝑖

− 𝑐2𝑖
[𝑑2𝑖 + (cos 𝜃0,𝑖 − cos 𝜃𝑖𝑗𝑘)2]

)︂
Variables: 𝑅𝑖𝑗 , 𝐷𝑖𝑗 , 𝐴𝑖𝑗 , 𝜆1,𝑖𝑗 , 𝐵𝑖𝑗 , 𝜆2,𝑖𝑗 , 𝛽𝑖, 𝑛𝑖, 𝛾𝑖𝑘, 𝑐𝑖, 𝑑𝑖,𝑚𝑖, 𝜆3,𝑖𝑗 , 𝜃0,𝑖

Two body terms (6): 𝑛𝑖, 𝛽𝑖, 𝜆2,𝑖𝑗 , 𝐵𝑖𝑗 , 𝜆1,𝑖𝑗 , 𝐴𝑖𝑗

Three body terms (6): 𝑚𝑖, 𝛾𝑖𝑘, 𝜆3,𝑖𝑗 , 𝑐𝑖, 𝑑𝑖, 𝜃0,𝑖

Terms that only depend on primary atom (6): 𝑛𝑖, 𝛽𝑖,𝑚𝑖, 𝑐𝑖, 𝑑𝑖, 𝜃0,𝑖

Usually Fixed Terms $‘m, gamma, beta‘$

3.2. Three Body Potentials 15

dftfit Documentation, Release 0.3.2

Mixing Terms 𝜆,𝐴,𝐵,𝑅,𝐷

__m must be 3 or 1__

Original tersoff [1] form achieved when 𝑚 = 3 and 𝛾 = 1

Tersoff [2] has the the following contstraints:

𝜆3,𝑖 = 0 thus m has not effect. In original paper 𝛾𝑖𝑘 = 1.

Additional assumptions are the following: 𝜆3 = 0, m = 3, and gamma = 1 thus these parameters are not included.

The order of the parameters are 𝑐, 𝑑, cos(𝜃0), 𝑛, 𝛽, 𝜆2, 𝐵,𝑅,𝐷, 𝜆1, 𝐴. Additional models may be added if necessary.

𝜆𝑖𝑗 =
1

2
(𝜆𝑖 + 𝜆𝑗)

𝐴𝑖𝑗 =
√︀
𝐴𝑖𝐴𝑗

𝐵𝑖𝑗 = 𝜒𝑖𝑗

√︀
𝐵𝑖𝐵𝑗

A mixing parameter is required for elements (N -1) see paper

𝑅𝑖𝑗 =
√︀
𝑅𝑖𝑅𝑗

𝐷𝑖𝑗 =
√︀
𝐷𝑖𝐷𝑗

Albe [3] when 𝛽 = 1 and 𝑚 = 1.

From [4] an R is 1.95, 2.85 for C-C-C and Si-Si-Si respectively and 0.15 for D (units Angstroms). R and D are chosen
so as to include the first neighbor shell only.

1. Tersoff Original Paper J. Tersoff, Phys Rev B, 37, 6991 (1988).

2. Albe Form

3. Tersoff 2

4. Lammps Implementation

3.2.2 Stillinger Weber Potential

• lammps documentation

• example potential

• 11 parameters: 𝜖, 𝜎, 𝑎, 𝜆, 𝛾, cos(𝜃0), 𝐴,𝐵, 𝑝, 𝑞, 𝑡𝑜𝑙

yaml schema

pair:
- type: stillinger-weber
parameters:

- elements: ["Cd", "Cd", "Cd"]
coefficients: [1.03, 2.51, 1.80, 25.0, 1.20, -0.333333333333, 5.1726, 0.8807,

→˓4.0, 0.0, 0.0]
- elements: ["Te", "Te", "Te"]

coefficients: [1.03, 2.51, 1.80, 25.0, 1.20, -0.333333333333, 8.1415, 0.6671,
→˓4.0, 0.0, 0.0]

- elements: ["Cd", "Cd", "Te"]
coefficients: [1.03, 0.0 , 0.0, 25.0, 0.0, -0.333333333333, 0.0, 0.0, 0.0, 0.

→˓0, 0.0]

(continues on next page)

16 Chapter 3. Potentials

https://doi.org/10.1103/PhysRevB.37.6991
http://iopscience.iop.org/article/10.1088/0953-8984/15/32/324/meta
https://doi.org/10.1103/PhysRevB.39.5566
http://lammps.sandia.gov/doc/pair_tersoff.html
https://lammps.sandia.gov/doc/pair_sw.html
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/CdTe-stillinger-weber.yaml

dftfit Documentation, Release 0.3.2

(continued from previous page)

- elements: ["Cd", "Te", "Te"]
coefficients: [1.03, 2.51, 1.80, 25.0, 1.20, -0.333333333333, 7.0496, 0.6022,

→˓4.0, 0.0, 0.0]
- elements: ["Te", "Cd", "Cd"]

coefficients: [1.03, 2.51, 1.80, 25.0, 1.20, -0.333333333333, 7.0496, 0.6022,
→˓4.0, 0.0, 0.0]

- elements: ["Te", "Cd", "Te"]
coefficients: [1.03, 0.0, 0.0, 25.0, 0.0, -0.333333333333, 0.0, 0.0, 0.0, 0.0,

→˓ 0.0]
- elements: ["Te", "Te", "Cd"]

coefficients: [1.03, 0.0, 0.0, 25.0, 0.0, -0.333333333333, 0.0, 0.0, 0.0, 0.0,
→˓ 0.0]

- elements: ["Cd", "Te", "Cd"]
coefficients: [1.03, 0.0, 0.0, 25.0, 0.0, -0.333333333333, 0.0, 0.0, 0.0, 0.0,

→˓ 0.0]

Equations

𝐸 =
∑︁
𝑖

∑︁
𝑗>𝑖

𝜑2(𝑟𝑖𝑗) +
∑︁
𝑖

∑︁
𝑗 ̸=𝑖

∑︁
𝑘>𝑗

𝜑3(𝑟𝑖𝑗 , 𝑟𝑖𝑘, 𝜃𝑖𝑗𝑘)

𝜑2(𝑟𝑖𝑗) = 𝐴𝑖𝑗𝜖𝑖𝑗

[︂
𝐵𝑖𝑗

(︂
𝜎𝑖𝑗
𝑟𝑖𝑗

)︂𝑝𝑖𝑗

−
(︂
𝜎𝑖𝑗
𝑟𝑖𝑗

)︂𝑞𝑖𝑗]︂
exp

(︂
𝜎𝑖𝑗

𝑟𝑖𝑗 − 𝑎𝑖𝑗𝜎𝑖𝑗

)︂
𝜑3(𝑟𝑖𝑗 , 𝑟𝑖𝑘, 𝜃𝑖𝑗𝑘) = 𝜆𝑖𝑗𝑘𝜖𝑖𝑗𝑘 [𝑐𝑜𝑠𝜃𝑖𝑗𝑘 − 𝑐𝑜𝑠𝜃0𝑖𝑗𝑘]

2
𝑒𝑥𝑝

(︂
𝛾𝑖𝑗𝜎𝑖𝑗

𝑟𝑖𝑗 − 𝑎𝑖𝑗𝜎𝑖𝑗

)︂
𝑒𝑥𝑝

(︂
𝛾𝑖𝑗𝜎𝑖𝑘

𝑟𝑖𝑘 − 𝑎𝑖𝑘𝜎𝑖𝑘

)︂
Parameters: 𝜖, 𝜎, 𝑎, 𝜆, 𝛾, cos(𝜃0), 𝐴,𝐵, 𝑝, 𝑞, 𝑡𝑜𝑙

Mixing terms: 𝜎, 𝜖

Mixing Rules

Analysis of the mixing rules for the Stillinger–Weber potential: a case-study of Ge–Si interactions in the liquid phase

https://doi.org/10.1016/j.jnoncrysol.2006.07.017

With such systems, however, there arises a problem of choosing suitable parameters for unlike-species interactions,
i.e. devising 𝜎𝑖𝑗 , 𝜖𝑖𝑗𝑓𝑟𝑜𝑚𝜎𝑖, 𝑠𝑖𝑔𝑚𝑎𝑗 , 𝜖𝑖, 𝜖𝑗 (for the two-body term) and 𝜖𝑖𝑗𝑘, 𝜆𝑖𝑗𝑘 from 𝜖𝑖, 𝜖𝑗 , 𝜆𝑖, 𝑎𝑛𝑑𝜆𝑗 , where i,
j, and k label the species of atoms in bond pairs and triplets. The two-body parameters were usually approximated
using the geometric mean for the energy parameter and the arithmetic mean for the length parameter (the so-called
Lorentz–Berthelot mixing rules). This had no rigoristic justification in first principles, but was analogous to what was
usually done for other potentials. - page 4233

Choosing mixed-species paramters 𝜖𝑖𝑗𝑘, 𝜆𝑖𝑗𝑘 for the three-body part is less obvious. Usually the choice of 𝜖𝑖𝑗𝑘 =
√
𝜖𝑖𝑗𝜖𝑖𝑘 = 𝜖

1
4
𝑗 𝜖

1
2
𝑗 𝜖

1
4
𝑗 and 𝜆𝑖𝑗𝑘 =

√︀
𝜆𝑖𝑗𝜆𝑖𝑘 = 𝜆

1
4
𝑗 𝜆

1
2
𝑗 𝜆

1
4
𝑗 , first made by Grabow and Gilmer in [1] was iterated, even

though the original authors had not justified it in any way.

In our study we decided to further test this traditional choice against other ways of constructing the parameters, eg.
𝜆𝑆𝑖𝑆𝑖𝐺𝑒 = 3

√
𝜆𝑆𝑖𝜆𝑆𝑖𝜆𝐺𝑒.

Since the resultant parameters differed by only a few percent, we expected to obtain similar results, regardless of the
type of the mixing rule employed, which would then confirm the validity of the Grabow–Gilmer mixing as one of
several that work. Surprisingly, this was not the case. It turned out that the simulations performed with only slightly
different parameters resulted in radically different final atomic configurations.

1. M.H. Grabow, G.H. Gilmer, Surf. Sci. 194 (1987) 333

3.2. Three Body Potentials 17

https://doi.org/10.1016/j.jnoncrysol.2006.07.017

dftfit Documentation, Release 0.3.2

3.2.3 Gao Weber Potential

• [lammps documentation](https://lammps.sandia.gov/doc/pair_gw.html)

• [example potential](https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/SiC-gao-weber.yaml)

• 14 parameters: $‘m, gamma, lambda_3, c, d, h, n, beta ,lambda_2, B, R, D, lambda_1, A‘$

yaml schema

pair:
- type: gao-weber
parameters:

- elements: ['Si', 'Si', 'Si']
coefficients: [1, 0.013318, 0, 14, 2.1, -1, 0.78000, 1, 1.80821400248640, 632.

→˓658058300867, 2.35, 0.15, 2.38684248328205, 1708.79738703139]
- elements: ['Si', 'Si', 'C']

coefficients: [1, 0.013318, 0, 14, 2.1, -1, 0.78000, 1, 1.80821400248640, 632.
→˓658058300867, 2.35, 0.15, 2.38684248328205, 1708.79738703139]

- elements: ['Si', 'C', 'Si']
coefficients: [1, 0.013318, 0, 14, 2.1, -1, 0.78000, 1, 1.96859970919818, 428.

→˓946015420752, 2.35, 0.15, 3.03361215187440, 1820.05673775234]
- elements: ['C', 'Si', 'Si']

coefficients: [1, 0.011304, 0, 19, 2.5, -1, 0.80468, 1, 1.96859970919818, 428.
→˓946015420752, 2.35, 0.15, 3.03361215187440, 1820.05673775234]

- elements: ['C', 'C', 'Si']
coefficients: [1, 0.011304, 0, 19, 2.5, -1, 0.80469, 1, 1.76776695296637, 203.

→˓208547714849, 2.35, 0.15, 2.54558441227157, 458.510465798439]
- elements: ['C', 'Si', 'C']

coefficients: [1, 0.011304, 0, 19, 2.5, -1, 0.80469, 1, 1.96859970919818, 428.
→˓946015420752, 2.35, 0.15, 3.03361215187440, 1820.05673775234]

- elements: ['Si', 'C', 'C']
coefficients: [1, 0.013318, 0, 14, 2.1, -1, 0.78000, 1, 1.96859970919818, 428.

→˓946015420752, 2.35, 0.15, 3.03361215187440, 1820.05673775234]
- elements: ['C', 'C', 'C']

coefficients: [1, 0.011304, 0, 19, 2.5, -1, 0.80469, 1, 1.76776695296637, 203.
→˓208547714849, 2.35, 0.15, 2.54558441227157, 458.510465798439]

Equations

Not documented see publication: Gao and Weber, Nuclear Instruments and Methods in Physics Research B 191 (2012)
504.

3.2.4 Vashishta Potential

• lammps documentation

• example potential

• 14 parameters: 𝐻, 𝜂, 𝑍𝑖, 𝑍𝑗 , 𝜆1, 𝐷, 𝜆4,𝑊, 𝑟𝑐,𝐵, 𝛾, 𝑟0, 𝐶, cos(𝜃)

yaml schema

pair:
- type: vashishta
parameters:

- elements: ['C', 'C', 'C']
coefficients: [471.74538, 7, -1.201, -1.201, 5.0, 0.0, 3.0, 0.0, 7.35, 0.0, 0.

→˓0, 0.0, 0.0, 0.0]

(continues on next page)

18 Chapter 3. Potentials

https://lammps.sandia.gov/doc/pair_gw.html
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/SiC-gao-weber.yaml
https://lammps.sandia.gov/doc/pair_vashishta.html
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/SiC-vashishta.yaml

dftfit Documentation, Release 0.3.2

(continued from previous page)

- elements: ['Si', 'Si', 'Si']
coefficients: [23.67291, 7, 1.201, 1.201, 5.0, 15.575, 3.0, 0.0, 7.35, 0.0, 0.

→˓0, 0.0, 0.0, 0.0]
- elements: ['C', 'Si', 'Si']

coefficients: [447.09026, 9, -1.201, 1.201, 5.0, 7.7874, 3.0, 61.4694, 7.35, 9.
→˓003, 1.0, 2.90, 5.0, -0.333333333333]

- elements: ['Si', 'C', 'C']
coefficients: [447.09026, 9, 1.201, -1.201, 5.0, 7.7874, 3.0, 61.4694, 7.35, 9.

→˓003, 1.0, 2.90, 5.0, -0.333333333333]
- elements: ['C', 'C', 'Si']

coefficients: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
→˓ 0.0]

- elements: ['C', 'Si', 'C']
coefficients: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

→˓ 0.0]
- elements: ['Si', 'C', 'Si']

coefficients: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
→˓ 0.0]

- elements: ['Si', 'Si', 'C']
coefficients: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

→˓ 0.0]

Equations

𝑈 =

𝑁∑︁
𝑖

𝑁∑︁
𝑗>𝑖

𝑈
(2)
𝑖𝑗 (𝑟𝑖𝑗) +

𝑁∑︁
𝑖

𝑁∑︁
𝑗 ̸=𝑖

𝑁∑︁
𝑘>𝑗,𝑘 ̸=𝑖

𝑈
(3)
𝑖𝑗𝑘(𝑟𝑖𝑗 , 𝑟𝑖𝑘, 𝜃𝑖𝑗𝑘)

𝑈
(2)
𝑖𝑗 (𝑟) =

𝐻𝑖𝑗

𝑟𝑒𝑡𝑎𝑖𝑗
+
𝑍𝑖𝑍𝑗

𝑟
exp(−𝑟/𝜆1,𝑖𝑗) −

𝐷𝑖𝑗

𝑟4
exp(−𝑟/𝜆4,𝑖𝑗) −

𝑊𝑖𝑗

𝑟6
, 𝑟 < 𝑟𝑐,𝑖𝑗

𝑈
(3)
𝑖𝑗𝑘(𝑟𝑖𝑗 , 𝑟𝑖𝑘, 𝜃𝑖𝑗𝑘) = 𝐵𝑖𝑗𝑘

[cos 𝜃𝑖𝑗𝑘 − cos 𝜃0𝑖𝑗𝑘]2

1 + 𝐶𝑖𝑗𝑘[cos 𝜃𝑖𝑗𝑘 − cos 𝜃0𝑖𝑗𝑘]2
× exp

(︂
𝛾𝑖𝑗

𝑟𝑖𝑗 − 𝑟0,𝑖𝑗

)︂
exp

(︂
𝛾𝑖𝑘

𝑟𝑖𝑘 − 𝑟0,𝑖𝑘

)︂
, 𝑟𝑖𝑗 < 𝑟0,𝑖𝑗 , 𝑟𝑖𝑘 < 𝑟0,𝑖𝑘

3.2.5 COMB Potential

• lammps documentation

• example comb potential

• example comb3 potential

• 46 parameters (comb), 71 parameters (comb3)

Spec not provided here because is so large. See examples.

Equations

𝐸 =
∑︁
𝑖

[𝐸𝑠𝑒𝑙𝑓
𝑖 (𝑞𝑖) +

∑︁
𝑗>𝑖

[𝐸𝑠ℎ𝑜𝑟𝑡
𝑖𝑗 (𝑟𝑖𝑗 , 𝑞𝑖, 𝑞𝑗) + 𝐸𝐶𝑜𝑢𝑙

𝑖𝑗 (𝑟𝑖𝑗 , 𝑞𝑖, 𝑞𝑗)] + 𝐸𝑝𝑜𝑙𝑎𝑟(𝑞𝑖, 𝑟𝑖𝑗) + 𝐸𝑣𝑑𝑤(𝑟𝑖𝑗) + 𝐸𝑏𝑎𝑟𝑟(𝑞𝑖) + 𝐸𝑐𝑜𝑟𝑟(𝑟𝑖𝑗 , 𝜃𝑗𝑖𝑘)]

See publication for full parameter list.

• COMB - T.-R. Shan, B. D. Dvine, T. W. Kemper, S. B. Sinnott, and S. R. Phillpot, Phys. Rev. B 81,
125328 (2010)

• COMB3 - T. Liang, T.-R. Shan, Y.-T. Cheng, B. D. Devine, M. Noordhoek, Y. Li, Z. Lu, S. R. Phillpot,
and S. B. Sinnott, Mat. Sci. & Eng: R 74, 255-279 (2013).

3.2. Three Body Potentials 19

https://lammps.sandia.gov/doc/pair_comb.html
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/SiO2-comb.yaml
https://gitlab.com/costrouc/dftfit/blob/master/test_files/potential/Ti4Cu2O-comb-3.yaml

dftfit Documentation, Release 0.3.2

20 Chapter 3. Potentials

CHAPTER 4

Training Sets

DFTFIT uses Ab-Inito calculation to guide the optimization of potentials along with measured properties. The goal is
to make it easier for users to include vasp calculations in their potential fitting. Thus DFTFIT has support for reading
VASP vasprun.xml, Quantum Espresso *.out, and Siesta *.xml output files. The parsers will read as many
sets that contain the structure, energy, stress, and forces. These output files may be the result of a relaxation, SCF, of
BOMD, etc. calculation. If DFTFIT does not have support for the output format that you supply please submit an issue.
Additionally measured properties include: lattice_constants, elastic_constants, bulk_modulus, and shear_modulus.

4.1 Measured Properties

Recently DFTFIT has added support for experimental properties and other measured quantities. These include:
lattice_constants, elastic_constants, bulk_modulus, and shear_modulus. In order to use one you must include a
ground_state for an example see this input training file.

• lattice constants (lengths)

• elastic constants (voigt)

• bulk modulus

• shear modulus

4.2 Ab-Initio Training Sets

Example of training sets include:

• equilibrium structure

• displaced structures 0.01𝑥212𝐵 − 0.04𝑥212𝐵

• deformed structures ±%2 normal, ±%8 shear

• random perturbed structures 0.04𝑥212𝐵

21

https://gitlab.com/costrouc/dftfit/issues
https://gitlab.com/costrouc/dftfit/blob/master/test_files/training/training-mattoolkit-mgo-properties.yaml

dftfit Documentation, Release 0.3.2

Be aware the DFT calculations that change the unit cell result in less accurate energy, stress, and forces. Thus an
additional SCF calculation will be necessary.

In general a selector is used to get the input files.

• selector.filename select a specific output filename of type

• selector.fileglob select a specific set of output files that match glob of type.

• selector.num_samples for each matching file choose num_samples with maximum separation

An example Siesta training set is included below.

version: v1
kind: Training
spec:

- type: Siesta
selector:

filename: test_files/siesta/d1_li_20ev.xml
num_samples: 3

- type: Siesta
selector:

filename: test_files/siesta/d1_o_30ev.xml
num_samples: 4

- type: Siesta
(continues on next page)

22 Chapter 4. Training Sets

https://cms.mpi.univie.ac.at/vasp/vasp/Accurate_bulk_relaxations_with_internal_parameters_one.html
https://docs.python.org/3.7/library/glob.html#module-glob

dftfit Documentation, Release 0.3.2

(continued from previous page)

selector:
filename: test_files/siesta/d1_ta_20ev.xml
num_samples: 5

4.3 VASP

spec:
- type: VASP
selector:

filename: test_files/vasp/vasprun.xml.mgo

4.4 Quantum Espresso

spec:
- type: QE
selector:

filename: test_files/espresso/...

4.5 Siesta

spec:
- type: Siesta
selector:

filename: test_files/siesta/d1_o_30ev.xml
num_samples: 4

4.3. VASP 23

dftfit Documentation, Release 0.3.2

24 Chapter 4. Training Sets

CHAPTER 5

Configuration

The configuration schema is where you specify all optimization settings and general DFTFIT settings such as which
sqlite database to write to. See bellow for an example configuration file.

version: v1
kind: Configuration
metadata:

name: simple test
labels:
test: simple
hello: world

spec:
logging: INFO
database:
filename: "test.db"
interval: 10

algorithm:
name: 'pygmo.de'
steps: 10
population: 5
include_initial_guess: False

problem:
calculator: 'lammps'
command: 'lammps_serial'
weights:

force: 0.8
stress: 0.1
energy: 0.1

5.1 Metadata

DFTFIT allows a user to assign a name to an optimization run metadata.name along with arbitrary key value
strings to the run. This metadata will be included in the SQLite database.

25

dftfit Documentation, Release 0.3.2

• metadata.name string name to assign to run

• metadata.labels key, value strings to assign to run

5.2 Optimization

DFTFIT gives the user explicit control over the optimization procedure. In general the number of potential evaluations
is equal to spec.population * (spec.steps + 1). This is because DFTFIT does one initial evaluations
of guessed parameters. Note that optimization is broken into two parts. The problem is how DFTFIT evaluates the
objective function. The algorithm is control over the optimization algorithm used on the objective function.

5.2.1 Problem

DFTFIT uses the problem to specify how it evaluates the objective function.

• spec.problem.weights weights to use in addition to the features to calculate. Available options include:
force, stress, energy, lattice_constants, elastic_constants, bulk_modulus, shear_modulus. Note that even for
multiobjective optimization functions a single objective value can be computed.

5.2.2 Algorithms

DFTFIT is unique in that it allows for both single and multi objective optimization. By using pagmo2 for optimization
DFTFIT is able to offer 20+ single objective and several multi-objective algorithms. A list of some of the notable
algorithms include.

• SADE

• LBFGS

• Bee Colony

• MOEAD

Values

• spec.algorithm.name pagmo2 optimization algorithm to use

• spec.algorithm.steps number of steps to take in optimization

• spec.algorithm.population number of guesses per optimization step

• spec.algorithm.include_initial_guess whether to include the initial values from the potential
schema

5.3 SQLite Database

Most scientific software writes output to a custom binary output file or json files. DFTFIT writes all optimization
information to an SQLite database. This provides MANY benefits.

• several concurrent runs can write to the same file

• since sqlite is a database you can evaluate the progress of the optimization in realtime

• sqlite is fault tollerant meaning that the change of corruption is very low

26 Chapter 5. Configuration

https://esa.github.io/pagmo2/docs/algorithm_list.html
https://esa.github.io/pagmo2/docs/python/algorithms/py_algorithms.html#pygmo.sade
https://esa.github.io/pagmo2/docs/python/algorithms/py_algorithms.html#pygmo.nlopt
https://esa.github.io/pagmo2/docs/python/algorithms/py_algorithms.html#pygmo.bee_colony
https://esa.github.io/pagmo2/docs/python/algorithms/py_algorithms.html#pygmo.moead

dftfit Documentation, Release 0.3.2

For easily viewing the results DFTFIT provides serveral methods in dftfit.db_actions. Also you may use any
available SQLite viewer such as the free sqlitebrowser.

• spec.database.filename controls the sqlite filename that all information is written to

• spec.database.interval controls how dftfit batches writes of evaluation information. Each write takes
around 1-20 ms depending on system.

5.4 MD Calculator

DFTFIT originally only had one MD calculator lammps. However it worked by writting input files and then telling
lammps to run them. This was not ideal so a new calculator was written that uses lammps-cython. This calculator
integrated LAMMPS within the python process.

It is at least 5X-10X faster and is the recommended calculator.

• spec.problem.calculator set that DFTFIT calculator to use. Recommended lammps_cython.
Available: “lammps”, “lammps_cython”

• spec.problem.command only used by “lammps” calculator to specify the executable path.

• spec.problem.num_workers allows for parallelism of DFTFIT optimization. Does not scale well past 6
workers (1500 lammps calculations/second).

5.5 Miscellaneous

• spec.logging controls the verbosity of DFTFIT (DEBUG, INFO, WARNING, CRITICAL)

5.4. MD Calculator 27

http://sqlitebrowser.org/
https://gitlab.com/costrouc/lammps-cython

dftfit Documentation, Release 0.3.2

28 Chapter 5. Configuration

CHAPTER 6

Commands

6.1 Merging Databases

Everything in DFTFIT is backed by an SQLite3 database. Often times when running calcluations on supercomputers
your calculations will be stored in several databases. In fact this is recommended because SQLite3 does not handle
concurrency and distributed file systems well. dftfit db merge will combine several databases into one. It can
also de-duplicate calculations.

dftfit db merge database1.db database2.db -o database.db

6.2 Evaluating Potentials

A challenging area of using potentials for molecular dynamics calculations is checking that the potential is stable for
your work. DFTFIT makes this easy by taking in a potential plus the ground state structure. It will predict the:

• lattice constants

• elastic constants

• energy, forces, and stress of configuration

dftfit test properties -p test_files/potential/mgo.yaml \
-s test_files/structure/MgO.cif

Output:

Lattice Constants:
a: 4.199 b: 4.199 c: 4.199

alpha: 90.000 beta: 90.000 gamma: 90.000

Elastic:
Stiffness Tensor

(continues on next page)

29

https://www.sqlite.org/whentouse.html

dftfit Documentation, Release 0.3.2

(continued from previous page)

-313.8 -148.5 -179.1 -0.0 -0.0 -0.0

-117.1 -333.8 -179.1 -0.0 -0.0 -0.0

-117.1 -148.6 -353.2 -0.0 -0.0 -0.0

-0.0 +0.0 -0.0 -120.7 -0.0 +0.0

-0.0 +0.0 -0.0 -0.0 -120.7 +0.0

-0.0 -0.0 -0.0 +0.0 -0.0 -120.7

Shear Modulus G_V -105.36002528878238
Shear Modulus G_R -106.1332136372622
Shear Modulus G_vrh -105.74661946302228
Bulk Modulus K_V -210.04961372048925
Bulk Modulus K_R -211.15489789675007
Bulk Modulus K_vrh -210.60225580861965
Elastic Anisotropy -0.04165984250465549
Poisons Ration 0.284937698051096

Static:
Energy: [eV]

-14.559
Forces: [eV/Angstrom]

8.500 20.370 -9.638
-8.500 -20.370 9.638

Stress: [bars]
118.599 211.146 -29.249
211.146 399.328 -53.051
-29.249 -53.051 33.288

DFTFIT will perform the calculation on the input structure so it may be important to relax it with the potential
beforehand.

dftfit test relax -p test_files/potential/mgo.yaml \
-s test_files/structure/MgO.cif \
-o MgO-relaxed.cif

6.3 Summarizing DFTFIT runs

After performing many calculations you may want to quickly look through the database and look at the progress. It
will print interesting features that indicate the success of the optimization.

dftfit db summary test_files/database/database.db

Output:

run: 1
algo: pygmo.sade steps: 21
stats:

mean: 1.0

(continues on next page)

30 Chapter 6. Commands

dftfit Documentation, Release 0.3.2

(continued from previous page)

median: 1.0
min: 1.0

final: -1.98, 177, 1.92, 871, 74.6, 1.82e+05, 88.2, 976
score: 0.9999780011307999

run: 2
algo: pygmo.sade steps: 26248
stats:

mean: 0.932
median: 0.925
min: 0.86

final: -1.31, 0.741, 3.31, 12.8, 0.26, 1.47e+03, 0.404, 640
score: 0.8522755981712459

run: 3
algo: pygmo.sade steps: 26248
stats:

mean: 0.977
median: 0.973
min: 0.956

final: -1.31, 46.6, 0.143, 20.4, 0.614, 3.67e+03, 0.397, 995
score: 0.8908135790668292

run: 4
algo: pygmo.sade steps: 98366
stats:

mean: 0.795
median: 0.902
min: 0.393

final: 1.77, 163, 0.395, 348, 0.38, 1.88e+03, 0.382, 811
score: 0.37092898795248247

run: 5
algo: pygmo.sade steps: 26220
stats:

mean: 0.909
median: 0.898
min: 0.823

final: -1.69, 2.5, 96.5, 4.66e+03, 0.229, 1.12e+03, 0.411, 773
score: 0.7009948887639249

6.4 Visualize Progress of Run

The DFTFIT summary command only gives a some information about the convergence but cannot show the full
progress through time. To address this you can visualize the convergence of a single run.

dftfit db progress test_files/database/database.db --run-id=4

6.4. Visualize Progress of Run 31

dftfit Documentation, Release 0.3.2

6.5 Training Set Radial Distribution

One of DFTFIT’s main goals is to produce more transferable potentials. To enable this you can visualize the pair
distribution of each atom combination. The picture below show training from 140 structures close to equilibrium
indicated by the sharp peaks.

dftfit test radial -t test_files/training/training-full-mgo.yaml

6.6 Visualize Potential Error on Training Set

So far the only indicator for progress was ∆𝐸,∆𝐹,∆𝑆. It is not easy to visualize how the potential is fitting the DFT
data. For this DFTFIT provides methods to visualize the error or the energy, stresses, and forces. Bellow is an example
of visualizing the force error. In this image we can see that the MD predicted forces tend to be higher than the DFT
forces. The red dashed line indicates a one to one match between the data.

dftfit test training forces -p test_files/potential/mgo.yaml \
-t test_files/training/training-full-mgo.yaml

32 Chapter 6. Commands

dftfit Documentation, Release 0.3.2

6.7 Visualize Pair Potential

Often times complex pair potentials are used in combination with three body and n body terms. This leads to a
complicated pair potential interaction. This command will visualize the resulting pair potential from the model for
each pair of atoms. This method just does a simple evaluation of the pair of atoms at different separations in a large
periodic box (much larger than separation).

dftfit test pair -p test_files/potential/mgo.yaml

6.7. Visualize Pair Potential 33

dftfit Documentation, Release 0.3.2

34 Chapter 6. Commands

CHAPTER 7

Visualization

DFTFIT has many tools for visualizing the progress and results from potential fitting.

For now the visualization is mostly in the commands documentation.

TODO

35

dftfit Documentation, Release 0.3.2

36 Chapter 7. Visualization

CHAPTER 8

Improving Performance

DFTFIT’s performance is predictable. A great amount of effort has been put into ensuring that the code is bench-
marked. See the benchmark tests to view the time it takes for certain methods to complete.

The optimization is limited by the time each LAMMPS calculator evaluation takes. For configurations of around 100-
200 atoms this takes around 1-10 ms. DFTFIT provides a method to parallelize these calculations among processors
lammps.problem.num_workers.

So for example if you have 100 training images. You can expect without parallelism you will achieve around 5
iterations per seconds. The code scales almost ideally with more processors.

37

https://gitlab.com/costrouc/dftfit/pipelines

dftfit Documentation, Release 0.3.2

38 Chapter 8. Improving Performance

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

39

	Installation
	Tutorial
	Simple MgO Example

	Potentials
	Two Body Potentials
	Three Body Potentials

	Training Sets
	Measured Properties
	Ab-Initio Training Sets
	VASP
	Quantum Espresso
	Siesta

	Configuration
	Metadata
	Optimization
	SQLite Database
	MD Calculator
	Miscellaneous

	Commands
	Merging Databases
	Evaluating Potentials
	Summarizing DFTFIT runs
	Visualize Progress of Run
	Training Set Radial Distribution
	Visualize Potential Error on Training Set
	Visualize Pair Potential

	Visualization
	Improving Performance
	Indices and tables

