

DEVINE documentation

Welcome,

In this document you will find various technical documentation of the DEVINE project such as installation process,
in depth module information and even more!

Architecture

	Architecture

External Links

DEVINE website [https://devineproject.github.io/].

DEVINE GitHub [https://github.com/devineproject/DEVINE].

Installation

Global installation process for the project can be found here

	Getting Started
	Installation

	Launching the project

All DEVINE modules

	Audio

	Bodytracking

	Dashboard

	Depth mask

	Feature extraction

	GuessWhat

	Head Coordinator

	Image disptacher

	Robot Behavior

	Segmentation

	Video

Tests

	Tests
	Adding test cases

	Running the unit tests with catkin

Cheat Sheet

	ROS Cheat Sheet

Architecture

The DEVINE project is base on a distributed ROS system.

This allow the project to run on a real robot, while rendering heavy tasks like images segmentation and body tracking in another more perfomant computer.

	Distributed Computing

You can also check out the diagrams below in order to learn the basics on how each DEVINE modules interacts with each others:

	Image Pipeline

	UML Sequence Diagrams

Distributed Computing

As part of this project we experimented with running ROS nodes on multiple machines.

This solution was developed to suit our project’s needs by allowing it to run on a remote server with its dependencies inside a container.

Initial network configuration

First, create a docker network. In this tutorial we will use subnet 172.20.0.0/16, but you may need to change subnet so it does not conflict with existing networks. On each machine run:

$ docker network create --subnet 172.20.0.0/16 --gateway 172.20.0.1 devine

This will create a bridge interface named br-${networkId}. The network id can be recovered using docker network ls.

Bringing up the nodes

When bringing up the containers, assign them an ip (within the subnet) and a hostname. ROS nodes also need to be able to reach the rosmaster specified by the environment variable ROS_MASTER_URI.

For example, run on the first machine:

$ docker run -ti --rm --runtime=nvidia --network devine \
 --hostname machine1 --ip 172.20.0.16 \
 --add-host machine2:172.20.0.15 \
 -e ROS_MASTER_URI=http://172.20.0.16:11311 \
$ devine bash

On the second machine run:

$ docker run -ti --rm --runtime=nvidia --network devine \
 --hostname machine2 --ip 172.20.0.15 \
 --add-host machine1:172.20.0.16 \
 -e ROS_MASTER_URI=http://172.20.0.16:11311 \
$ devine bash

Tunneling

To link the containers we use ssh tunneling.

From machine1 run:

$ ssh -o Tunnel=ethernet -w 123:123 root@machine2

This will create a tap interface named tap123 on each side.

We connect these taps to the bridge. On each machine run:

$ ip link set tap123 master br-$(docker network ls -f name=devine | grep devine | awk '{print $1}')
$ ip link set tap123 up

Image Pipeline

Being able to interface with GuessWhat?! and users requires taking inputs from the robot’s Kinect 360 and processing them accordingly. The first link in the chain is the image dispatcher, which takes compressed images, validates that they are not blurred, and based on the game state, sends them onto the next node in the chain.

The next node to recieve the image, temporally, is the body tracking node. Using OpenPose we try to determine if a person is within range to begin a game. If it is the case, after the scene’s picture is taken, the image is sent to the segmentation and feature extration nodes.

Interfacing with GuessWhat?! requires extracting: a list of all objects, bounding boxes around them and a feature vector (FC8 of a VGG16). Respectively the segmentatation and feature nodes are responsible for this.

Below is a UML showing the sequence of interactions between the different modules.

[image: @startuml 'Look params' skinparam sequence { hide footbox shadowing false ParticipantPadding 20 BoxPadding 10 ArrowColor Black ActorBorderColor Black LifeLineBorderColor Black LifeLineBackgroundColor Black ParticipantBorderColor Black ParticipantBackgroundColor Grey ParticipantFontName Roboto ParticipantFontSize 18 ParticipantFontColor White ActorBackgroundColor White ActorFontColor Black ActorFontSize 18 ActorFontName Roboto BoxFontSize 16 TitleFontSize 20 } 'Box and participants' box "Robot CPU" #FFFFFF participant openni participant body_tracking participant image_dispatcher participant feature_extraction participant image_segmentation participant GuessWhat end box 'UML' title Start Game == Wait for human == loop until a human is close enough and for more than 0.5 sec. openni -> image_dispatcher : /openni/rgb/image_color/compressed (CompressedImage) openni -> image_dispatcher : /openni/depth/points (PointCloud2) image_dispatcher -> body_tracking : /devine/image/body_tracking (CompressedImage) body_tracking -> dialog_control : /devine/body_tracking (String) end == Extract image data == image_dispatcher -> feature_extraction : /devine/image/features_extraction (CompressedImage) scene_finder -> image_segmentation : /devine/image/segmentation (CompressedImage) image_segmentation -> GuessWhat : /devine/objects (SegmentedImage) feature_segmentation -> GuessWhat : /devine/image_features (VGG16Features) @enduml]

Additional Information

Specifics for each node can be found at the following links:

	Image disptacher

	Segmentation

	Feature extraction

	Segmentation

	Bodytracking

	Depth mask

UML Sequence Diagrams

Start Game

[image: @startuml 'Look params' skinparam sequence { hide footbox shadowing false ParticipantPadding 20 BoxPadding 10 ArrowColor Black ActorBorderColor Black LifeLineBorderColor Black LifeLineBackgroundColor Black ParticipantBorderColor Black ParticipantBackgroundColor Grey ParticipantFontName Roboto ParticipantFontSize 18 ParticipantFontColor White ActorBackgroundColor White ActorFontColor Black ActorFontSize 18 ActorFontName Roboto BoxFontSize 16 TitleFontSize 20 } 'Box and participants' box "Robot CPU" #FFFFFF participant openni participant body_tracking participant human_finder participant image_dispatcher participant dialog_control participant scene_finder participant snips end box box "Robot Embedded" #LightBlue participant irl1 end box 'UML' title Start Game == Wait for human == loop until a human is close enough and for more than 0.5 sec. openni -> image_dispatcher : /openni/rgb/image_color/compressed (CompressedImage) openni -> image_dispatcher : /openni/depth/points (PointCloud2) dialog_control -> human_finder : /devine/human_finder (LookAtHumanGoal) loop until human is found image_dispatcher -> body_tracking : /devine/image/body_tracking (CompressedImage) body_tracking -> human_finder : /devine/body_tracking (String) human_finder -> dialog_control : /devine/human_finder (LookAtHumanActionFeedback) human_finder -> irl1 : /jn0/neck_controller/follow_joint_trajectory (JointTrajectoryPoint) end == Ask human if wants to play == loop until discussion is complete dialog_control -> snips : /devine/tts/query (TtsQuery) snips -> dialog_control : /devine/tts/answer (TtsAnswer) end dialog_control -> image_dispatcher : /devine/player_name (String) == Find scene to play == loop until 2 AprilTags are found image_dispatcher -> scene_finder : /devine/zone_detection (CompressedImage) scene_finder -> irl1 : /jn0/neck_controller/follow_joint_trajectory (JointTrajectoryPoint) end scene_finder -> image_dispatcher: /devine/scene_found (Bool) @enduml]

Play Game

[image: @startuml 'Look params' skinparam sequence { hide footbox shadowing false ParticipantPadding 20 BoxPadding 10 ArrowColor Black ActorBorderColor Black LifeLineBorderColor Black LifeLineBackgroundColor Black ParticipantBorderColor Black ParticipantBackgroundColor Grey ParticipantFontName Roboto ParticipantFontSize 18 ParticipantFontColor White ActorBackgroundColor White ActorFontColor Black ActorFontSize 18 ActorFontName Roboto BoxFontSize 16 TitleFontSize 20 } 'Box and participants' box "External GPU" #LightGreen participant image_processing end box box "Robot CPU" #FFFFFF participant guesswhat participant image_dispatcher participant snips end box 'UML' title Play Game == Prepare data for GuessWhat?! == image_dispatcher -> image_processing : /devine/image/segmentation (CompressedImage) image_processing -> guesswhat : /devine/image_features (VGG16Features) image_processing -> guesswhat : /devine/objects (SegmentedImage) == Play GuessWhat?! == loop until discussion is completed guesswhat -> snips : /devine/tts/query (TtsQuery) snips -> guesswhat : /devine/tts/answer (TtsAnswer) end @enduml]

End of Game

[image: @startuml 'Look params' skinparam sequence { hide footbox shadowing false ParticipantPadding 20 BoxPadding 10 ArrowColor Black ActorBorderColor Black LifeLineBorderColor Black LifeLineBackgroundColor Black ParticipantBorderColor Black ParticipantBackgroundColor Grey ParticipantFontName Roboto ParticipantFontSize 18 ParticipantFontColor White ActorBackgroundColor White ActorFontColor Black ActorFontSize 18 ActorFontName Roboto BoxFontSize 16 TitleFontSize 20 } 'Box and participants' box "Robot CPU" #FFFFFF participant guesswhat participant image_dispatcher participant snips participant pos_lib participant openni participant robot_control participant dialog_control end box box "Robot Embedded" #LightBlue participant irl1 end box 'UML' title End of Game == Point guessed object == guesswhat -> dialog_control : /devine/objects_confidence (Float64MultiArray) guesswhat -> dialog_control : /devine/guess_category (String) guesswhat -> pos_lib : /devine/guess_location/image (PointStamped) openni -> pos_lib: /openni/depth/points (PointCloud2) pos_lib -> robot_control : /devine/guess_location/world (PoseStamped) note left: referenced from 'base_link' robot_control -> irl1 : /jn0/<left/right>_arm_controller/follow_joint_trajectory (JointTrajectoryPoint) robot_control -> dialog_control : /devine/robot/is_pointing (Bool) == Ask player if guess is good == dialog_control -> snips : /devine/tts/query (TtsQuery) snips -> dialog_control : /devine/tts/answer (TtsAnswer) == Emote based on game result == dialog_control -> robot_control : /devine/guesswhat_succeeded (Bool) guesswhat -> robot_control : /devine/objects_confidence (Float64MultiArray) guesswhat -> robot_control : /devine/object_guess_success (Bool) robot_control -> irl1 : /jn0/emo_intensity (EmoIntensity) @enduml]

Getting Started

DEVINE is a project with many dependencies such as ROS [http://www.ros.org/].

In this section, you can find links to different installation types that we support.

That being said, we highly recommand going with the Docker way.

Installation

	Docker

	Ubuntu 16.04 LTS

	Virtual Box

Launching the project

The project uses a devine.launch file which can start all the required ROS nodes.

$ roslaunch devine devine.launch

By default, this will launch all the nodes.
You can also specify which nodes to launch, like so:

$ roslaunch devine devine.launch launch_all:=false dashboard:=true

Also by default, the launch file is made to run on a real robot.
To run in simulation only, you can change the sim argument:

$ roslaunch devine devine.launch sim:=true

Docker

Docker is an application which runs a program in an isolated environment with its dependencies, akin to a virtual machine. Docker is portable, lightweight and allows for compatibility.

How to get started

First, navigate to the docker folder.

Build the docker image for CPU use:

$./build.sh

Or build the docker image for GPU use:

$./build.sh --gpu

Theses commands will get the devine-base image and build the devine image.

Once the build is complete, you can validate by running sudo docker images. One docker should be named devine.
With an image in hand, simply run the command to launch an instance of your docker image:

$./run.sh

You will arive in a ubuntu like terminal which has the same layout as the code base.
To exit, use ctrl+d.

Note: both run.sh and build.sh have some arguments that can be set depending on your usage.
Use the argument --help for more information.

Information about the DEVINE docker images

The DEVINE project uses two docker images:

	devine-base: contains all of the projects dependencies and can be rebuilt if necessary using ./base/build-base.sh.

	devine: contains the actual code.

Separating the dependencies from the code speed up further DEVINE builds.

Useful commands

$ sudo docker container ls # Lists all containers currently running
$ sudo docker exec -it {containerId} bash # starts another bash in a given docker container
$ docker cp {path/to/filename} {containerId}:{Destination/Path/} # copy a file into a specific docker image

Ubuntu 16.04 LTS

We recommend you to install it on a fresh copy of Ubuntu 16.04 LTS.

The following steps will install all the dependencies for the DEVINE project.

	Create a catkin workspace directory like explained in the ROS tutorial [https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment].

	Create src directory under it.

	Clone the DEVINE repository [https://github.com/devineproject/DEVINE] in src/. Make sure not to rename the repository

	Navigate to DEVINE/scripts.

	Run the following command:

$./install.sh {path/to/catkin/src} {path/to/devine/root}

GPU Usage - Optional

If you want to use your GPU instead of your CPU for the computation, follow the GPU setup bellow.

	GPU Setup

GPU Setup

Following the steps shown at Ubuntu 16.04 LTS, Tensorflow will use the CPU for all the computational problems. To make TensorFlow use your GPU, you need to do some more installation.

There is many ways to install TensorFlow / CUDA. This guide is only one of them.

As the writting of this documentation, TensorFlow GPU [https://www.tensorflow.org/install/gpu] is officially supported for CUDA [https://developer.nvidia.com/cuda-toolkit] 9.0 with Nvidia drivers > 384.x and cuDNN [https://developer.nvidia.com/cudnn] >= 7.2

After these steps, you will have installed:

	CUDA 9.0 and it’s dependencies

	cuDNN 7.3.0 and it’s dependencies

	TensorFlow with GPU support and it’s dependencies

Step 0 - Dependencies

You should have most of theses already.

$ sudo apt-get install build-essential cmake git unzip zip python-pip python3-pip python-virtualenv swig python-wheel libcurl3-dev curl python-dev python3-dev python-numpy python3-numpy
$ sudo apt-get install linux-headers-$(uname -r)

Step 1 - Cleanup

You need to make sure that you have nothing Nvidia or CUDA related installed on your machine.

You can follow theses steps if you want to uninstall CUDA, Nvidia and Tensorflow from your machine.

Do not worry, Nvidia drivers will be installed with CUDA later on.

	Remove all Nvidia and CUDA related installation

Danger

Be careful, the following steps are destructive and will uninstall and remove any Nvidia drivers installed

$ sudo apt-get purge nvidia*
$ sudo apt-get purge cuda* # You may need to manually purge them, for example sudo apt-get purge cuda-cusparse-9-0
$ dpkg -l | grep '^rc' | awk '{print $2}' | grep cuda | sudo xargs dpkg --purge # verify the output first so you don't delete something else...
$ dpkg -l | grep '^rc' | awk '{print $2}' | grep nvidia | sudo xargs dpkg --purge # verify the output first so you don't delete something else...
$ sudo apt-get autoremove
$ sudo apt-get autoclean
$ sudo rm -rf /usr/local/cuda*

	Uninstall any TensorFlow installation

$ pip uninstall tensorflow
$ pip uninstall tensorflow-gpu

	reboot!

$ sudo reboot

Step 1 - Install CUDA

You can download CUDA from Nvidia website and manually install it, but it is preferable to use their repository and install it using Ubuntu’s package manager.

	Download and install CUDA 9.0

$ curl -O http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_9.0.176-1_amd64.deb
$ sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
$ sudo dpkg -i ./cuda-repo-ubuntu1604_9.0.176-1_amd64.deb
$ sudo apt-get update
$ sudo apt-get install cuda-9-0 # this may take a while (~1.7G)

	reboot!

$ sudo reboot

	Verify installation

$ nvidia-smi # should return a list of GPUs with some metrics. Make sure the driver's version shown on the top is > 384.x

[image: ../../../_images/nvidia-smi_output.png]
$ nvcc -V # should return the CUDA compiler version installed. Make sure the version is 9.0

example

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176

If you do not pass any verification steps, go back to Step 1 - Cleanup.

Step 2 - Install cuDNN

Download cuDNN 7.3.0 for CUDA 9.0 from Nvidia’s cuDNN archive [https://developer.nvidia.com/rdp/cudnn-archive].

You may need to create a account if you do not have one yet.

	Download and install

$ sudo tar -xzvf cudnn-9.0-linux-x64-v7.3.0.29.tgz
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

	Update your bashrc.

In the case you have different CUDA version installed, change the folder to the CUDA version you want.

$ echo 'export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"' >> ~/.bashrc
$ echo 'export CUDA_HOME=/usr/local/cuda' >> ~/.bashrc
$ echo 'export PATH="$PATH:/usr/local/cuda/bin"' >> ~/.bashrc
$. ~/.bashrc

Step 3 - Install TensorFlow GPU

	Uninstall TensorFlow

$ pip uninstall tensorflow

	Install TensorFlow with GPU support under python3

$ python3 -m pip install --user tensorflow-gpu

	Verify installation

$ python3
 import tensorflow as tf
 hello = tf.constant('Hello, TensorFlow!')
 sess = tf.Session() # You should see some information about your GPU in the output
 print(sess.run(hello))

in another shell
$ nvidia-smi # you should see in the processe list python3

If you do not pass any verification steps, go back to Step 1 - Cleanup.

Step 5 - Profit

Have fun!

Virtual Box

The DEVINE project can be installed in a virtual machine.

To do so, make sure you have a VM with Ubuntu 16.04 installed, and follow the steps of installing Ubuntu 16.04 LTS.

Note about running the project in Virtual Box

To allow the Xbox Kinect connected physically to the host to communicate with the VM, you must link your USB devices from the host to the client:

[image: ../../_images/link-kinect-usb.png]
There should be three devices to select for the Kinect:

	Microsoft Xbox NUI Motor

	Microsoft Xbox NUI Camera

	Microsoft Xbox NUI Audio

If you get an error while linking the devices, it may be possible that the device is busy by another process. The simplest way to solve that is to restart the client and restart the host.

You may also need to install Oracle VM VirtualBox Extension Pack [https://www.virtualbox.org/wiki/Downloads] in order to allow the use of USB 2.0 in the settings of your VM.

Audio

Description

We use SNIPS as our voice assistant to interact with the robot with the voice.

ROS Installation

As SNIPS does not officially support Ubuntu Xenial, its intallation comes with a few caveat.

	Run $ sudo npm install -g snips-sam to install SAM

	Go to /usr/lib/node_modules/snips-sam/lib/session/ssh.js (or usr/local/lib/node_modules/snips-sam/lib/session/ssh.js) and change line 426 to […] echo "deb https://debian.snips.ai/stretch stable main" […]

	Install an upstream version of libc $ sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test && sudo apt-get update && sudo apt-get upgrade -y libstdc++6

	Connect with $ sam connect localhost

	$ sam init

	If you get an error at this stage, add this line your_username ALL=(ALL) NOPASSWD: ALL at the end of your sudoers file with the command : $ sudo visudo, then try again from step 4.

	Test the speaker with $ sam test speaker

	Test the microphone with $ sam test microphone

	If tests are not conclusive or quality is poor, try selecting a different speaker and microphone with : $ sam setup audio

	Install our assistant $ wget https://github.com/projetdevine/static/releases/download/v0.0.1/assistant.zip && sudo unzip -o assistant.zip -d /usr/share/snips

Once the SNIPS team adds support for Ubuntu Xenial step 2 and 3 will not be necessary. Note that our assistant was tested for version 0.58.3 of the snips-platform-voice package.

Usage

$ roscore #start ROS master
$ rosrun devine_dialog snips.py __ns:=devine #run snips node
$ sam watch
$ rostopic echo /devine/tts/answer #listen to the answers

To send custom data to the topic used by snips, do :

$ rosrun rqt_gui rqt_gui

	Select topic : /devine/tts/query

	Select type : devine_dialog/TtsQuery

	Select a frequency

	Fill out the ‘text’ (ex: “Is the object blue ?”), ‘uid’ (ex: 1) and ‘answer_type’ (ex: 1) fields.

Or, run this command :
$ rostopic pub /devine/tts/query devine_dialog/TtsQuery '{text: "Is the object blue?", uid: 1, answer_type: 1}'

Bodytracking

Description

Detecting people is an important part of our project. By detecting nearby humans, we can follow them using the robots eyes and find potential players. This functionality is provided by tf-pose-estimation [https://github.com/ildoonet/tf-pose-estimation].

The body tracking node outputs a JSON which contains a skeleton of all the people in a given image. It is is published on the image/body_tracking topic.

ROS Installation

Run the install script install.sh

Usage

$ rosrun devine_image_processing body_tracking.py __ns:=devine

Dashboard

Description

The dashboard is a web based project where we integrate all of the ROS nodes and gives us a centralized operation center.
You can subscribe to any ROS topic and see what is being send on any topic and you can also send information to them.
It’s main goal is to allow us to verify that the whole DEVINE system works in harmony.

It can also be used to demo the project.

Usage

Once the project is installed on your machine, you can simply launch the dashboard like so:

$ roslaunch devine devine.launch launch_all:=false dashboard:=true

The process will listen and update whenever there is a change in the code.

Manual installation

$ sudo npm i -g webpack
$ npm install
$ pip3 install -r requirements.txt
$ sudo apt-get install ros-kinetic-rosbridge-server

Adding a view

Create an html layout for your view. E.g: views/myview.html. Or reuse one similar to yours.

include it in views/index.html, keep these class attributes uk-width-expand command-view and change the name attribute.

<div class="uk-width-expand command-view" name="myview" hidden>
 {% include 'myview.html' %}
</div>

Add it to the menu with a class attribute matching the name you used previously.

<li class="command-myview command-menu">My view

Code your view in its own file (src/myview.js) and import it in src/app.js.

Depth mask

Description

To filter out extraneous objects in the background, the kinect’s depth sensor is used to create a mask. This mask blacks out all objects further then 1.5m.

The body tracking node outputs the masked image. It is is published on the sensor_msgs/CompressedImage topic.

ROS Installation

Run the install script install.sh

Usage

$ rosrun devine_image_processing mask.py __ns:=devine

Feature extraction

Description

VGG-16 [https://github.com/tensorflow/models/tree/master/research/slim] is used to extract image features which was in turn used by the question generator. It was coded using tensorflow and is available on github.

The feature extraction node outputs an array which contains the class of the object, which contains the FC8 layer’s output. It is is published on the features topic.

ROS Installation

Run the install script source install_package.sh

Usage

$ rosrun devine_image_processing features_extraction.py __ns:=devine

GuessWhat

Description

This project makes use of the open source code provided alongside the original GuessWhat?! [https://github.com/GuessWhatGame/guesswhat/] research. On our side, we add the strict minimum to have it act as a ROS node.

Installation

Since guesswhat is not yet a proper python module, it has to be added to your python path:

$ git clone --recursive https://github.com/GuessWhatGame/guesswhat.git /tmp/somewhere
$ export PYTHONPATH=/tmp/somewhere/src:$PYTHONPATH

Also install python dependencies:

$ pip3 install -r requirements.txt

Build this ROS package using:

$ catkin_make -C ~/catkin_ws

Usage

Roslaunch:

$ roslaunch devine devine.launch launch_all:=false guesswhat:=true

Monitor questions:

$ rostopic echo /devine/tts/query
 text: "is it a person ?"
 uid: 1234
 answer_type: 1

Send some test inputs:

$ cd example
$ python3 example.py

Reply:

$ rostopic pub /devine/tts/answer devine_dialog/TtsAnswer '{original_query: {text: "is it a person ?", uid: 1234, answer_type: 1}, probability: 1.0, text: "yes"}'

Head Coordinator

Description

Scene finding:

We’re using april tags and the apriltags2_ros library to find the scene where the objets are located. The head will rotate looking down until both tags are found, and then the image_dispatcher will proceed by taking a picture of the scene found.

Installation

	Clone the apriltags2_ros repository in your catkin workspace, presumably ~/catkin_ws.

$ git clone git@github.com:dmalyuta/apriltags2_ros.git

	Copy the settings available in ./src/head_coordinator/apriltags2_config in the config directory of the newly cloned repository under ./apriltags2_ros/config

	Build the module using catkin_make:

$ catkin_make -C ~/catkin_ws

Usage

Using a kinect, place two 11cm by 11cm tag36h11 identified 0 and 1 in the top left and botom right corners of the scene you are trying to find.

$ roslaunch devine devine.launch launch_all:=false kinect:=true find_scene:=true

The robot’s head should turn in order to find the scene when the zone_detection topic is triggered.

Example of april tags

[image: April tag #0 (top left)]
[image: April tag #1 (bottom right)]
These are examples of 36h11 tag ids #0 and #1. The tags must be 11cm wide when printed, and positioned respectively in the top left and bottom right corners. It’s also preferable that they directly face the camera to have the best accuracy possible.

Image disptacher

Description

The image dispatcher is responsible for distributing images from the kinect to the various modules that need them in the correct order. It takes raw images, checks them for blur, applies the depth mask and sends the processed images to be segmented and have their features extracted.

ROS Installation

Run the install script install.sh

Usage

$ rosrun devine_image_processing image_dispatcher.py __ns:=devine

Robot Behavior

Description

[image: alternate text]
We currently use robot IRL-1 [https://introlab.3it.usherbrooke.ca/mediawiki-introlab/index.php/Autonomous_Robot] from IntRoLab [https://introlab.3it.usherbrooke.ca] for our demonstrations. See official IRL-1 GitHub [https://github.com/introlab/IRL-1] for more details.

Possible Mouvements

	
	Point to position (x, y, z) with

	
	Right arm

	Left arm

	Head

	
	Open and close

	
	Right gripper

	Left gripper

	
	SIMULATION ONLY, Do complex movements with arms and head:

	
	Happy (confidence >= threshold, success 1)

	Satisfied (confidence < threshold, success 1)

	Disappointed (confidence >= threshold, success 0)

	Sad (confidence < threshold, success 0)

	
	Facial expression

	
	Anger

	Joy

	Sad

	Surprise

Running Examples

Before running any examples, you need to:

	Launch jn0 with RViz UI

$ roslaunch jn0_gazebo jn0_empty_world.launch # for simulation
$ roslaunch jn0_bringup jn0_standalone.launch # for real robot

	Launch devine_irl_control nodes

$ roslaunch devine_irl_control devine_irl_control.launch sim:=true # for simulation

	Load RViz configuration

File -> Open Config -> src/robot_control/launch/irl_point.rviz

You can now execute any of the examples:

	Point to position [x, y, z]

$ rosrun devine_irl_control example_point.py --point 0.6,0.3,0.5 --look 1,-0.6,0.5 __ns:=devine
Position is referenced from base_link

	Do complex move (SIMULATION ONLY!!!)

$ rosrun devine_irl_control example_emotion.py -c 0 -s 0 __ns:=devine

Dependencies

See package.xml for dependencies.

Topics

Topics input and output from this module

	In/Out

	Topic

	ROS Message

	In

	/devine/guess_location/world

	geometry_msgs/PoseStamped [http://docs.ros.org/api/geometry_msgs/html/msg/PoseStamped.html] *

	In

	/devine/robot/robot_look_at

	In

	/devine/robot/head_joint_traj_point

	trajectory_msgs/JointTrajectoryPoint [http://docs.ros.org/api/trajectory_msgs/html/msg/JointTrajectoryPoint.html]

	Out

	/devine/robot/is_pointing

	std_msgs/Bool [http://docs.ros.org/api/std_msgs/html/msg/Bool.html]

	Out

	/devine/robot/is_looking

	Out

	/devine/robot/err_pointing

	std_msgs/Float64MultiArray [http://docs.ros.org/api/std_msgs/html/msg/Float64MultiArray.html]

* PoseStamped are relative to base_link (see frame_id)

Constants

File irl_constant.py contains

	Controllers names

	Joints names

	Joints limits

Segmentation

Description

We currently use Mask R-CNN [https://github.com/matterport/Mask_RCNN] to detect and segment the objects of our images. It was coded using tensorflow and trained using MSCOCO, which means that the classes it uses to segment objects are compatible with GuessWhat?!

The segmentation node outputs a SegmentedImage object which contains the class of the object, a box which delimits the object and a segmentation mask. It is is published on the objects topic.

ROS Installation

Run the install script install.sh

Usage

$ rosrun devine_image_processing segmentation.py __ns:=devine

Video

Description

We currently use a Microsoft Kinect for a Xbox 360 [https://en.wikipedia.org/wiki/Kinect#Kinect_for_Xbox_360_(2010)] in combination with OpenNI to use it inside the ROS ecosystem.

Pre requirement Installation

	Install OpenNI

$ sudo apt-get install ros-kinetic-openni-launch ros-kinetic-openni-camera ros-kinetic-openni-description
$ sudo apt-get install ros-kinetic-compressed-image-transport #Image compression plugin

	Start OpenNI server

$ roslaunch devine devine.launch launch_all:=false kinect:=true dashboard:=true

	View Data

You can use the dashboard (http://localhost:8080) or the image_view package:

$ rosrun image_view image_view image:=/openni/rgb/image_color #color
$ rosrun image_view image_view image:=/openni/rgb/image_mono #mono
$ rosrun image_view disparity_view image:=/openni/depth_registered/disparity #disparity

	Read the ROS OpenNI documentation [http://wiki.ros.org/openni_launch/] for more info!

ROS Installation

	Run the install script ./install_package.bash

	Build the module using catkin_make:

$ roscd
$ cd ..
$ catkin_make

Tests

The tests are made using Python unittest [https://docs.python.org/3/library/unittest.html].

	Adding test cases

	Running the unit tests with catkin

Adding test cases

To add a test case, simply copy the testcase_template.py into your test folder, then import your test case into test_suite.py.

Running the unit tests with catkin

From your catkin workspace run the following:

$ catkin_make run_tests

This command will launch all the necessary nodes and run the tests.

Launching a single test case

Each test_*.py file corresponds to a test case.

Each one of these files can run individually like so:

$ python DEVINE/tests/src/devine_tests/*/test_*.py

ROS Cheat Sheet

Here you can see a couple of usefull ROS commands to help you out!

	$ roscore

	Starts the ros core node, you need this before starting any other node.

	$ rosrun {rosPackageName} {pythonFileContainingTheRosNode} [__ns:=namespace]

	Example: $ rosrun devine_irl_control node_facial_expression.py __ns:=devine

	This will start the node specified inside the node_facial_expression.py

	$ rostopic pub {/topic_name} std_msgs/{dataType} {Payload}

	Example: $ rostopic pub /devine/objects_confidence std_msgs/Float64MultiArray “{layout: {dim: [{label: ‘’, size: 0, stride: 0}], data_offset: 0}, data: [0,0.8, 0.7]}”

	This will publish the specified payload to the specified topic.

	$ rostopic echo {topicName}

	Example: $ rostopic echo /devine/robot/facial_expression

	This will listen and print out any messages on the specified topic.

	$ roslaunch devine devine.launch

	This will launch ALL Devine nodes.

	You can also use this to launch specific nodes like so $ roslaunch devine devine.launch launch_all:=false dashboard:=true

	$ rosrun topic_tools throttle messages /openni/rgb/image_color/compressed 0.33 /devine/image/segmentation

	Segments every 30 seconds

	$ rosrun rqt_gui rqt_gui

	Starts a GUI with many usefull ROS development tools that enables you to subscribe and monitor ROS topics for example.

	$ rosrun rqt_top rqt_top

	See the actually ressources consumed by your ROS environment.

Index

 _static/comment-bright.png

_images/tag36_11_00001.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/plantuml-d59d69cf451a95ea0f2c68b0d3f9bddb383c83fa.png
Start Game

Robot CPU

m M m [20SCiEpatcher

dialog_control inder w

Jopennijrgbfimage_colorjcompressed (Compressadimage)

Jopenni/depth/pgints (PointCloud2)

| [devinejhuman findet (LookatHumanGoal)

[wait for human |

1'(/devinefimage/body tracking (Gompressedimage)

| Idevine/body_tracking (String) _ |
—

‘ (devine/human finder (LookAtHumanActionFeedback)

x

! Jinojneck_controllerffollow joint_trajectory (jointTrajectoryPoint)

1 Tuntil human 1s found]

Rantil 2 AprilTags are foundl |
| Jdevine/zone_detection (Comprassedimage)

5 completel
| idevinetts/query (TtsQuery)

/devinetts/answer(TtsAnswer)

| devuinelscen found (800 |

> |
1 fin0jneck_controller,

ollow_joint_trajectory (jointTrajectoryPoin

openni J body_tracking human_finder J§ image_dispatcher

dialog_control finder |§ snips

_images/plantuml-ffe32f4081170e77952c1e1d380a8a71515ff90e.png
Start Game

Robot CPU

m body_tracking image_dispatcher feature_extraction J§ image_segmentation GuessWhat || dialog_control feature_segmentation

Wait for human

Tuntil a hyman is close enough and for more than 0.5 sec

| fopennifrgbjimage_color/compressed (Compressedimage) >

> |

Jopenni/depth/pgints (PointCloud2)

! | Jdevine/mage/body tracking (Compressedimage) |

! devine/body_tracking (String)

[devine/image festures_extraction (Compressedimage) |

| [deving/image/segmentation (Comptessedimpge)

| /devine/objects (Segmentedimage) , !
1 1 [devineobjects (Segmentedimage) o | 1 1

' | Jdevingfimage features (VGG16Features)

m body_tracking image_dispatcher feature_extraction J§ image_segmentation GuessWhat || dialog_control feature_segmentation

_images/plantuml-84249006bdf85e826a3f1d180260f0db8d7533c9.png
End of Game

Robot CPU

m image_dispatcher mm m robot_control dialog_control il

fdevinejobjects_confiflence (FloatsaMultjArray) ! i i
1 jdevine/guess_categdry (String) ' ' ' '

| /devine/guess_location/image (PointStamped)

>
| \ |_ jopenni/depthjpoints (PointCloud2)
; 1 R

/devine/guess_locationworld (Posestimped)

2 XY

. S

fin0j<leftjright>_arm_controllerfollow_joint_trajectory (jointTrajectoryPoint

\ | Idevinefrobotjis_pointing (Bool) |
1 e e e ——>)

Ask player if guess is good e

! i | _ jdevine/guesswhat_succeeded (Bool) |
. ; i [devinelguesswhat_succeeded (Bool);

/devinefobjects_confitlence (Float6aMultiarray)

| /devinejobject_guess) success (Bool) | | |

| | | | | fin0/ermo_intensity (Emolntensity)

M image_dispatcher mm m robot_control dialog_control il

Y Y

_images/plantuml-98d2be47f6f6db1a16d61c2601df02eecc6c8f07.png
Play Game
External GPU Robot CPU

Jdevine/imbge/segmentation (Corppressedimage) :
[devinefimage features (VGG16Fedtures))

<

i [devine/obiefts (Segmentedimage!

.

| [devineftts/answer (Ttsanswer)

| | [devineftts/query (TtsQuery)

_images/tag36_11_00000.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 DEVINE documentation

 		
 Architecture

 		
 Distributed Computing

 		
 Initial network configuration

 		
 Bringing up the nodes

 		
 Tunneling

 		
 Image Pipeline

 		
 Additional Information

 		
 UML Sequence Diagrams

 		
 Start Game

 		
 Play Game

 		
 End of Game

 		
 Getting Started

 		
 Installation

 		
 Docker

 		
 Ubuntu 16.04 LTS

 		
 Virtual Box

 		
 Launching the project

 		
 Audio

 		
 Description

 		
 ROS Installation

 		
 Usage

 		
 Bodytracking

 		
 Description

 		
 ROS Installation

 		
 Usage

 		
 Dashboard

 		
 Description

 		
 Usage

 		
 Manual installation

 		
 Adding a view

 		
 Depth mask

 		
 Description

 		
 ROS Installation

 		
 Usage

 		
 Feature extraction

 		
 Description

 		
 ROS Installation

 		
 Usage

 		
 GuessWhat

 		
 Description

 		
 Installation

 		
 Usage

 		
 Head Coordinator

 		
 Description

 		
 Installation

 		
 Usage

 		
 Example of april tags

 		
 Image disptacher

 		
 Description

 		
 ROS Installation

 		
 Usage

 		
 Robot Behavior

 		
 Description

 		
 Possible Mouvements

 		
 Running Examples

 		
 Dependencies

 		
 Topics

 		
 Constants

 		
 Segmentation

 		
 Description

 		
 ROS Installation

 		
 Usage

 		
 Video

 		
 Description

 		
 Pre requirement Installation

 		
 ROS Installation

 		
 Tests

 		
 Adding test cases

 		
 Running the unit tests with catkin

 		
 Launching a single test case

 		
 ROS Cheat Sheet

_images/link-kinect-usb.png
P4 devine-16.04 (Clean ubuntu) [Running] - Oracle VM VirtualBox

File Machine View Input Devices Help

Optical Drives ,
Audio ,

ne/launch/devine.launch http:/localhost:11311
[devine_irl_co ished cleanly
log file: /hom Network [l - 11e8-8aa4-080027b8al82/devine irl contre

r-10*.log usB » G5 USB Settings.
[devine irl
rocess[devine

Web ,
eocams Sunplus Innovation Technology Inc. [5605]

Shared Folders , Qualcomm Atheros Communications [0001]
Shared Clipboard » Logitech USB Receiver [5701]

Drag and Drop » | Microsoft Xbox NUI Motor [0105]
Microsoft Xbox NUI Camera [0108]
Microsoft Xbox NUI Audio [0100]

Insert Guest Additions CD image.
/43000] : 71mg_dl

00000] : Client connected. 1 clients

_images/nvidia-smi_output.png
| NVIDIA-SMI 410.48 Driver Version: 410.48

Name Persistence-M| Bus-TId Disp.A | Volatile Uncorr. ECC
Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M.

GeForce GTX 988 0ff | 00000000:01:00.0 On | N/A
45C PS5 18W / 196W | 1291MiB / 4041MiB | 0% Default

AR N

| Processes GPU Memory
I GPU PID Type Process name Usage
|

I o 1155 6 /usr/lib/xorg/Xorg 73ami8
] 1733 G compiz 128Mi8
] 7879 G ...uest-channel-token=18284803315406523937 105MiB
] 8243 6 token=FAS754B1C38E1940150500B075E69924 103118
] 12706 6 token=8E331CC52956191FFO372E27AF775954 6ANiB
] 18281 6 quest-channel -token=6701300601076318841 42MiB
] 18522 6 quest-channel - token=6895497141269744465 36MiB
| o 26148 6 token-A16733EC1ETFOS6CDF32E4A3237ABCFO 67MiB

_static/up-pressed.png

_static/plus.png

_images/irl1_full.jpg

_static/up.png

