

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Devilry 2.0.20- documentation

Welcome to the Devilry documentation

Table of contents

	Devilry user documentation

	Devilry sysadmin docs

	Devilry developer documentation

More help

If this documentation is lacking, or if you have problems, detect bugs, etc...

	Forum, issue-tracker and contact information

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

Devilry user documentation

Getting started

We recommend that you start with a quick look at Common concepts.
This avoids confusion with a few special terms that Devilry uses to allow
it to be used in many different settings. When you have skimmed over the concepts,
you can continue with the other Topic guides below.

Common for all roles

	Common concepts

	Email sending in Devilry

Student

	The Student role

	How to create project groups (collaborate on an assignment)

Examiner/Corrector

	The Examiner role

Subject/Course administrator

Note

For users managing one or more courses.

	Introduction to the Subjectadmin role

	Manage deadlines — for Subjectadmins

	How to administer project groups (students that collaborate)

	Examiners — How to set examiners, and how to create feedback

	Choose students that qualify for final exams

Node/Department admin

Note

For users managing a Node containing multiple courses.

	Introduction to the Nodeadmin role

	Find students, subjects, etc

	View/browse students that qualify for final exams

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

Common concepts

Special terms and concepts

Devilry has some special terms and concepts. The most important (that cause most confusion) is:

	Term: A range of time. Typically a semester or a year.

	Examiner: Someone that provides feedback.

	Group: Students are always in a (project) group even when they work alone on an assignment.

More details about these and more terms and concepts follows below.

Node

A Node is a place to organise top-level administrators (I.E.: administrators
responsible for more than one Subject (course)). Nodes are organised in a tree.
This is very flexible, and can be used to emulate most administrative
hierarchies. A node is often a department, or some other organizational unit,
but the exact use in your local Devilry instance depends on how you choose to
organize administrators in Devilry.

Subject (course)

A subject is, as far as Devilry is concerned, a container of Terms. In a typical Devilry setup, a Subject is the same as a Course, and
each Term within the Subject is a semester or year.

Term (semester, year, ...)

A term is a limited span of time (I.E: january to july 2011) that you give a
name (I.E.: Spring 2011). You register assignments on a term, and register
students and examiners on each assignment.

Group, Candidate and Student

Students are not registered directly on an assignment. Instead a group is
created, and one or more students is added as Candidates on that group. This
means that project assignments, where students cooperate, is organized exactly
like any other assignment. The only difference is the number of Candidates in
each group.

A Candidate can also have a candidate ID, which is used to identify the student
on anonymous assignments like exams.

See also

The Student role.

Deadline

Deadlines are individual for each group. They are organized below a Group in
the Devilry hierarchy. In other words: Each Group has one or more deadlines.

Examiner

Examiner is someone that writes feedback. Examiners are often one of these:

	A teacher that corrects their own students. They are usually Term or
Subject administrator in addition to Examiner.

	A teaching assistant.

	Someone giving anonymous feedback on an exam.

A user becomes examiner when they are assigned as examiner for a group (See
Group, Candidate and Student) by an administrator.

See also

The Examiner role.

Special terms in context — a typical Devilry hierarchy

The tree below is an example of a typical Devilry hierarchy for a university named Duckburgh University with
the special terms in brackets.

	
	Duckburgh University [Node]

	
	
	Department of Physics [Node]

	
	
	PHYS 101 — Introduction to physics [Subject (course)]

	
	
	Spring 2011 [Term (semester, year, ...)]

	
	
	Assignment one

	
	
	Peter Pan and Wendy [Group, Candidate and Student]

	
	
	Deadline feb. 27 2012 19:30 [Deadline]

	
	Delivery 1

	
	Captain Hook [Group, Candidate and Student]

	
	
	Deadline mar. 12 2012 11:45 [Deadline]

	
	Delivery 3

	
	Deadline feb. 28 2012 12:30 [Deadline]

	
	Delivery 2

	Delivery 1

	
	John Doe [Group, Candidate and Student]

	
	
	Deadline feb. 25 2012 23:35 [Deadline]

	
	Delivery 1

	Spring 2012 [Term (semester, year, ...)]

	Spring 2013 [Term (semester, year, ...)]

	PHYS 302 — Advanced physics [Subject (course)]

	...

	
	Department of Informatics [Node]

	
	INF 101 — Introduction to programming [Subject (course)]

	INF 102 — Objectoriented programming [Subject (course)]

	...

	...

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

Email sending in Devilry

Email sending is highly configurable in Devilry. This guide deals with the
default configuration.

When does Devilry send email?

Whenever a student makes a delivery, and whenever they get a new feedback.

How to test email sending (for system admins)

Go to the frontpage, select the Superuser role, select Users, select a user
and click Send a test-email to USERNAME in the upper right corner.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

The Student role

The student interface should be intuitive to use. Please post an issue with our
Issue tracker [https://github.com/devilry/devilry-django/issues] if that is not the case.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

How to create project groups (collaborate on an assignment)

How it works

Project groups are created on a per assignment basis. Features:

	Any member of the group can make deliveries on behalf of the group.

	Any feedback given to the project group is for all group members. If you are
supposed to get individual feedback, you should not be in a project group.

	When you join a group, you get any deliveries and feedback made by the group
before joining, and they get any deliveries and feedback you may have had when
joining the group.

	When you leave a group, you do not loose any deliveries and feedback. You even
keep deliveries and feedback made before you joined the group.

Invite other students to join your group

If your course administrator have enabled collaboration, you can invite other
students to join your group as follows:

	Log in to Devilry.

	Select the Student role on the frontpage.

	Select the assignment.

	Select Project group in the list on the left.

	It will say Invite someone to join your group? at the top of the page. Under you
can select the student you want to invite to your group, and send an invite. Other
students will get their invite via email, and they can accept or decline the invite.
You can delete an unanswered invite.
If any, your group members will be in the list Project group members at the bottom
of the page.

Warning

All students you invite to your group will given all current deliveries and
feedback, even deliveries and feedbacks made before they joined
the group. If they leave the group, they will keep all deliveries and
feedback you have received on the assignment, even feedback and deliveries
made before they joined the group.

Note

Refer your course administrator to How to administer project groups (students that collaborate) if you think
they should enable collaboration.

Leave a group / kick a member

You need to ask a course administrator if you want to leave a group or kick a
group member. Leaving a group or kicking a member is perfectly safe. Any member
leaving a group is simply moved into a complete copy of the group including all
deliveries and feedback. The only difference is that the original group gets one
less member, and the new group will only have one member.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

The Examiner role

Note

Examiner is someone that writes feedback. Examiners are often one of these:

	Someone responsible for correcting some or all students in a subject/course.

	A teacher that corrects their own students. They are usually Period or
Subject administrator in addition to Examiner.

	Someone giving anonymous feedback on an exam.

Getting started

	Getting started guide for examiners

	How to examine in bulk or correct non electronic deliveries

Other examiner guides

	How to correct several groups at once

	Manage deadlines — for Examiners

	How to add feedback to a student without deliveries

	Devilry flavoured Markdown

Frequently asked questions

	Examiner UI FAQ

What can an examiner do?

Examiners can basically do anything non-destructive with groups (see
Group, Candidate and Student) that they have been assigned to:

	View all feedback for the groups.

	Add new deadlines to their groups.

	Give feedback.

	Change feedback. Each change to the published feedback is
logged, and the students can view all published feedback.

Examiners can not:

	Delete groups.

	Add new groups.

	Add or remove students to groups.

	Move deadlines. This is a missing feature, which will be implemented in a
future release. It will be safe becuase students will remain protected
because of logging of all changes. Moving deadlines is already implemented
for administrators.

	Remove deadlines from groups. We will probably allow examiners to remove
deadlines without deliveries when we start allowing them to move deadlines.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

 	The Examiner role

Getting started guide for examiners

Note

To avoid confusion when reading this guide, please read
Common concepts, at least the Group, Candidate and Student section.

Note

This guide is under construction. Please contact devilry-support@ifi.uio.no
if you have questions of any kind related to Devilry.

Choose the examiner role

After successful login you need to choose Examiner from the list of
available roles.

Select an assignment

[image: ../_images/v2-select-assignment.png]
On the examiner dashboard, assignments where you are examiners are listed.
To start correcting, you must choose the spesific assignment in which you want
to work with. The list are ordered by the time the assignments where published in
descending order. This ensure that your latest assignment are listed on top.

Select the group to correct

[image: ../_images/v2-allgroupsoverview.png]
After the assignment is choosen you are redirected to a view that list all groups
on the assignment.

The list may be filtered to show a more fine grained selection:

	Waiting for feedback

	Shows the assignment groups that have at least one valid delivery
and are waiting for feedback to be provided by the examiner.

	Waiting for deliveries

	Shows the assignment groups that have not provided a valid delivery yet.

	Corrected

	Shows the assignment groups that are corrected. Be aware that Corrected will list
both failed and passed groups as long as they are corrected.

	All

	Shows every assignment group on the assignment where yourself are the assigned examiner.
This is the default filter upon entering the view.

To start correcting you would normally filter with the Waiting for feedback option. The Write feedback
button on the group item in the list will take you directly to the latest delivery provided by the group.
see Add feedback to the delivery for further details.

If you need access to older deliveries provided by the group you must click on the group name header in the list
item which redirect you a detailed view for that assignment. More information on this view in Correct an earlier delivery

Add feedback to the delivery

Upon entering the delivery you will need to click the Provide feedback button
to start giving feedback.

Provide Feedback

This view may vary depending on the grading system configured for the assignment.
The picture show a simple points system with a form to provide the number points achieved.

Every grading system features the ability to provide a feedback text in addition to the grade information.
Click inside the textbox and a WYSIWYG Markdown editor will be shown. Just type in the feedback and push the Publish
button to publish the feedback without examine a preview. If you lack experience with Markdown you would probably want to
click the Preview button to be able to secure that the feedback appear as supposed.

Feedback drafts and history

You may save you work for later by clicking the Save Draft button

Correct the next delivery

When there is multiple groups Waiting for feedback you can loop through each group
by clicking the arrow button in the upper right corner of the view.

Correct an earlier delivery

When choosing the spesific group every delivery attempts will be listed categorised by the their respective deadlines.
This makes it possible to correct a delivery that is not the latest one.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

 	The Examiner role

How to examine in bulk or correct non electronic deliveries

Note

To avoid total confusion when reading this guide, please read
Common concepts, at least the Group, Candidate and Student-section.

Introduction

This is a guide for examiners who want to give the same feedback to multiple
groups at once and for examiners giving feedback to assignments
where Devilry is only used to register results(not for deliveries).

Choose the examiner role

It should be one of the available roles on your frontpage.

Select an assignment

[image: ../_images/dash-select-assignment.png]
On the examiner dashboard, assignments where you are examiners are listed
ordered by publishing time in descending order. Choose an assignment from this
list to get start giving feedback on that assignment.

Group overview

[image: ../_images/manage-assignmentgroups-nonelectronic.png]
When you enter the examiner interfance, you will see an overview of all groups on
that assignment. Choose one or more groups and click Give feedback to
selected. A window containing the grade editor is shown. Click the
Help-button in the lower left corner of the grade editor for more help.

Note

You can right-click anywhere in the group overview for quick access to
everything in the toolbar.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

 	The Examiner role

How to correct several groups at once

Note

To avoid confusion when reading this guide, please read
Common concepts, at least the Group, Candidate and Student-section.

Introduction

[image: ../_images/v2-bulkedit.png]
This guide show you how to edit feedback for a selection of groups. To get to the view described here
you must first choose the examiner role in the Devilry frontpage and then choose an assignment.

Editing of multiple groups is easy and straightforward.
Activate the checkboxes next to the group of interest to add it to your selection.
If you want to choose all groups within the active filter you may click Select All button
to speed up the process. When you have created your selection click the Write feedback button
to start providing feedback.

Provide feedback

The groups that you selected are listed after the Edit feedback for: text, please make sure that
it is complete and correct before you take further actions. Provide your feedback. Click Preview button
to get a glimpse on how your feedback will look when completely rendered. Be aware that Preview will save your feedback draft
on each group. You will be able to come back and edit further in the next step.

If you want to publish your work right away just click Publish.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

 	The Examiner role

Manage deadlines — for Examiners

Add a deadline

When an assignment is created, an initial deadline is set. You can not change
this deadline, however you can extend the deadline by creating a new deadline.
You usually create deadlines for the following reasons:

A student gets a failing grade

If you want to give the student a change to get a new attempt Devilry will ask
you (when you publish a failing feedback) if you wish to give the group a new
deadline.

Move a deadline

Currently, examiners can not move deadlines. This is coming along with an
update of the examiner UI. For now, you have to ask an administrator if
you need to move a deadline.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

 	The Examiner role

How to add feedback to a student without deliveries

Note

This guide is a supplement to Getting started guide for examiners.

Choose the examiner role

It should be one of the available roles on your frontpage.

Select an assignment

On the examiner dashboard, assignments where you are examiners are listed
ordered by publishing time in descending order. Choose an assignment from this
list to get start giving feedback on that assignment.

Select a group without any deliveries

Select a group that waiting for feedback, but does not have any deliveries, as illustrated in the figure below:

[image: ../_images/add-nonelectronic-delivery-1.png]

Click the “add non-electronic delivery” button

If the group:
- Has no deliveries.
- Is waiting for feedback (their last deadline has expired).

You will see a orange warning-box like the one in this illustration:

[image: ../_images/add-nonelectronic-delivery-2.png]
Click the add non-electronic delivery button, and follow the instructions on the next page.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

 	The Examiner role

Devilry flavoured Markdown

When you write feedback to your students, you use the Markdown text formatting language.

With Markdown, you to write using an easy-to-read, easy-to-write plain text
format, and let someone else (Devilry) worry about how the results will look.
This makes it possible to write feedback text that Devilry can optimize for
anything from smartphones to large desktop displays.

Basics

Paragraphs

Paragraphs are just one or more lines of consecutive text followed by one or more blank lines:

Maecenas faucibus mollis interdum. Vestibulum id ligula porta felis euismod
semper. Vestibulum id ligula porta felis euismod semper. Aenean lacinia
bibendum nulla sed consectetur.

Donec id elit non mi porta gravida at eget metus. Vestibulum id ligula
porta felis euismod semper. Praesent commodo cursus magna, vel scelerisque
nisl consectetur et.

Headings

Largest heading
Second largest heading
...
Very small heading

Text styles

Italic text
Bold text

Links

Check out [http://devilry.org](The devilry website).

Lists

Unordered lists (bullet lists):

* This
* is
* a
* test

Ordered lists (numbered lists):

1. Item one
2. Item two
3. Item three

Blockquotes

As stated on the first page of the 101 guide:

> You have to learn to walk before you can learn how to run

Advanced

Escape Markdown characters

If you want to use a special Markdown character in your document (such as
displaying literal asterisks), you can escape the character with a backslash.
Markdown will ignore the character directly after a backslash. Example:

This is how the _ (underscore) and * asterisks characters look.

LaTeX Math

Devilry Markdown supports LaTeX math through the MathJAX library/renderer. Examples:

A simple example:
$mathblock$
^3/_7
$/mathblock$

The Lorenz Equations:
$mathblock$
\begin{aligned}
\dot{x} & = \sigma(y-x) \\\\
\dot{y} & = \rho x - y - xz \\\\
\dot{z} & = -\beta z + xy
\end{aligned}
$/mathblock$

You have to escape special Markdown characters such as \, which
is why we have \\\\ at the end of our lines in the example above instead of
just \\.

Code blocks

You can easily show syntax highlighted code blocks:

Java code:
``` java
class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello world");
    }
}
```

Python code:
``` python
if __name__ == "__main__":
    print "Hello world"
```

C code:
``` c
#include<stdio.h>
int main() {
    printf("Hello World");
    return 0;
}
```

C++ code:
``` c++
#include <iostream>
int main() {
    std::cout << "Hello World!";
    return 0;
}
```

HTML example:
``` html
<html>
    <body>
        <h1>Hello world</h1>
    </body>
</html>
```

CSS example:
``` css
body {
    background-color: pink;
    color: green;
    font-size: 80px;
}
```

Any code:
```
for x in 1 through 3
    show x
```


Devilry supports all languages supported by Pygments [http://pygments.org/languages/].

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

 	The Examiner role

Examiner UI FAQ

	How can I set a new deadline?

	When the deadline is up you will be asked if you want to provide a new deadline for students to deliver.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

Introduction to the Subjectadmin role

Note

Please read, or at least take a quick look at, the Common concepts before reading this guide.

Who this guide is for

A subject is, as explained in the common concepts guide, typically a course.
This means that this guide is for administrators managing a course or a term
(semester) within a course. If you have orange background color in your
header, you are using the user interface for the Subjectadmin role.

The responibilities of a Subjectadmin

A Subjectadmin manage one or more Subject (course), and/or Term (semester, year, ...). They set up
assignments, organize students into Groups, and
assignment Examiners to give feedback to students.

Commmon tasks

Finding the Subjectadmin frontpage

The Subjectadmin frontpage is the page that you navigate to when you select the
Subject administrator role (may be something like Course administrator in your
local dialect), from the Devilry frontpage.

Create an assignment

We provide an interractive guide to help you create assignments. Simply go to
the Subjectadmin frontpage (see Finding the Subjectadmin frontpage), and select
the guide on the right hand side.

Get an overview over all your students

Select an active Term (semester, year, ...) from the Subjectadmin frontpage (see
Finding the Subjectadmin frontpage), or an old/expired Term (semester, year, ...) via
the link further down on the frontpage.

Under the Edit and view related information heading, you will find links to
your Students, and a link to an Overview of all results. You can export
(download) the overview as MS Excel, CSV, and a couple of other formats. The
export-links is in the toolbar right below the page heading.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

Manage deadlines — for Subjectadmins

Subject administrators can create, view, move and edit deadlines using the
Deadlines link on the main page for an assignment.

Overview of the deadline view

The image below is a typical deadline overview. Each of the red-marked areas
is explained below the image.

[image: ../_images/deadlines.png]

Add deadline (hilighted with a red circle)

Click the Add deadline button to a add deadline to one or more groups. You can
select individual groups, and Devilry has shortcuts for a couple of common
choices.

Expand/collapse deadline (hilighted by a red arrow)

Deadlines start out collapsed when you enter a view. Click the deadline to
expand or collapse it.

Move/edit deadline (hilighted by a red rectangle)

To move or edit (the about-text for) a deadline, expand the deadline, and
select the edit-button.

You can change the deadline for only some of the groups
within the deadline, effectively splitting the deadline in two. This is
explained on the right-hand side of the list of groups that appear when you
choose that option.

Delete deadline (hilighted by a red rectangle)

You can delete a deadline, but only superusers can delete deadlines where
groups have made deliveries.

Hard VS soft deadlines

Soft or hard deadlines is configured on the left hand side in the assignment
overview under the Deadline handling heading. Use the More info button to
get detailed information about soft and hard deadlines.

What about examiners?

Examiners can add deadlines. It is a natural part of their workflow. Whenever
they fail a student, they are asked to do one of the following:

	Leave the student with a failing grade.

	Give them another chance — create a new deadline.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

How to administer project groups (students that collaborate)

Concepts and features

Devilry is designed with cooperative deliveries in mind.

	Students are always in a group even when they work alone.

	Course admins can safely create and split up project groups at any time.

	You can enable students to create project groups on their own.

	Groups are created and managed per assignment. This means that changing a
group on one assignment does not affect that group on another assignment.
You can copy groups from another assignment when you create a new assignment.

	Students can be organized in groups even after they have made deliveries and
been given feedback. They their respective groups are simply merged into
a single group with all deliveries and feedback. The last feedback (if any)
is made the active feedback.

How to enable students to create project groups on their own

If you want to allow students to form project groups on their own, you have to
enable this option on the assignment:

	Go to the overview page for an assignment where you have administrator rights.

	Click any of the edit buttons in the sidebar to your left, except the edit button for Grading system.

	Edit the options in the Allow students to form project groups section.

Note

To see how students form project groups on their own, see
How to create project groups (collaborate on an assignment). You should refer your students to that guide when you
ask them to form their own groups. Devilry does not notify students when you
enable this feature.

Note

This is not as intuitive as it should be. It will be made more intuitive in
the future.

How to manually create a project group

	Open the students overview on the relevant assignment.

	Select two or more groups/students.

	Select Create project group.

Exactly what this means is explained when you click Create project group, and
you have to confirm before the group is created. In short,

How to remove a student from a group

Students can not leave groups on their own (yet). So an admin has to manage that:

	Open the students overview on the relevant assignment.

	Select the group.

	Click the red minus button on the right hand side of the student you wish to remove from the group.

This will do the following:

	Create a copy of the group with all deliveries and feedback, even
deliveries made by other students before the student you are removing joined
the group.

	Add the student you are removing to the copy of the original group.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

Examiners — How to set examiners, and how to create feedback

How to give feedback to students when you are Subjectadmin

Starting with Devilry 1.2.1 it is no longer possible to give feedback using the
Subjectadmin role. You have to make yourself examiner.

How to make yourself examiner

The easiest way of making yourself examiner is to make yourself examiner when
creating a new assignment. If you are one of many examiners, you will have to
make sure you are tagged appropriately. The Create new assignment wizard helps
you with this when you get to that step.

The other way of making yourself examiner is to do it manually after the
assignment has been created. Select an assignment, and select the
Students-link. The see the help-column for more help.

How to make others examiner

This is basically the same as the previous section. Just choose other users
than yourself.

What do examiners have permission to do

See What can an examiner do?.

Note

The reason why it is no longer possible to provide feedback as Subjectadmin
is that we have need to be able to optimize the workflows for examiners and
subject admins independently. Mixing the roles leads to confusion in all
but the most simple cases, and it increases the development time required
for each change to any of the user-interfaces significantly.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

Choose students that qualify for final exams

Quickstart

We have an interractive guide for this on your right-hand side on the
Subjectadmin frontpage (see Finding the Subjectadmin frontpage). Select
the guide, and follow its instructions.

How the qualified for final exams system works

You select the students that qualify for final exams using one of the provided
plugins. Nodeadmins, or automatic exporters, read these lists to determine who
can participate in the final exams.

Students can see if they are qualified for exams or not, but they can not se
why they are qualified (they can not see what plugin was used, and with what
settings). You should use the course website, or other approprite channels to
inform your students about the requirements for final exams.

Changing or retracting

You can retract or change a saved qualified for final exams-status.

Warning

Nodeadmins are not notified when you retract or
change a status. We are working on a system that handles
updates/retracting, but that did not make it into the first release of the
Qualifies for final exams app.

Please notify the people coordinating final exams for your
department/organizational unit if you change a status.

To change a status, simply use the button at the bottom of the box at the top
of the page showing a status.

No plugin fits my needs!

Contact the Devilry developers and we will try to help you.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

Introduction to the Nodeadmin role

Note

Please read, or at least take a quick look at, the Common concepts before reading this guide.

The responibilities of a Nodeadmin

A Nodeadmin manage one or more Node. They typically have responsibility
for an entire department or organizational unit, where a node represents a
department/organizational unit.

Finding the Nodeadmin frontpage

The Nodeadmin frontpage is the page that you navigate to when you select the
Node administrator role (may be something like Department administrator in
your local dialect), from the Devilry frontpage. The button is orange.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

Find students, subjects, etc

We recommend that you use search to find items in Devilry a a Nodeadmin. You
can find the search-panel in the header on the left hand side of your name in
the upper right corner of any page.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry user documentation

View/browse students that qualify for final exams

To view/browse students that qualify for final exams, grouped by their
subject/course, you need to:

	Finding the Nodeadmin frontpage.

	Navigate to a Node containing subjects/courses.

	Select the Qualifed for final exams-link in the Tools section.

Please read

The guide for subject/course admins, to
know how they interract with the Qualified for final exams system.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

Devilry sysadmin docs

	Getting started
	Install required system packages

	Create a system user for Devilry

	Make a directory for your Devilry deploy

	Make a requirements file for Python packages

	Install from the requirements file

	Create a Django management script

	Configure

	Create or migrate a database

	Collect static files

	Run the gunicorn server

	If you do not have an existing database — Add some data

	If you have an existing database

	Stop the gunicorn server

	Whats next?

	Install and configure the ElasticSearch search server
	Install ElasticSearch

	Configure ElasticSearch as the Devilry search backend

	Build the search index

	Setup a Devilry authentication backend
	Choices

	The default authentication backend

	Authenticate using LDAP

	Autoset email

	Setup the Celery background task server
	Install Redis

	Configure Redis

	Add Redis and Celery settings to Devilry

	Run Celery

	Setup Supervisord for process management, log handling and log rotation
	Create a Supervisord configuration file

	Password and security

	Create the var/ and log/ directories

	Make sure all services work as excpected

	Run Supervisord for production

	Init script

	Setup Nginx, Apache or some other web proxy server with SSL

	Debug problems

	Update Devilry

	Autoset email from the authentication backend username

	Devilry Managment Commands
	devilry_nodeadd

	devilry_subjectadd

	devilry_subjectadminadd

	devilry_subjectadminclear

	devilry_subjectsearch

	devilry_periodadd

	devilry_periodadminadd

	devilry_periodadminclear

	devilry_periodsearch

	devilry_periodsetrelatedexaminers

	devilry_periodsetrelatedstudents

	devilry_resave_all_users

	devilry_sync_candidates

	devilry_useradd

	devilry_useraddbulk

	devilry_usermod

	devilry_usersearch

Migration guides

If a minor version is not listed here, it is a code-only update, which means that
the update guide is all you need.

	Migrating from 2.0.1 to 2.0.3

	Migrating from 2.0.3 to 2.0.4

	Migrating from 1.X.X to 2.0.0

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Getting started

Install required system packages

	Python 2.7.X. Check your current version by running python --version.

	PIP [https://pip.pypa.io]

	VirtualEnv [https://virtualenv.pypa.io]

	PostgreSQL server. Alternatively, you can test out Devilry with SQLite,
but you will need PostgreSQL for production.

Create a system user for Devilry

You should run Devilry as a non-privledged user. We suggest you name the user
something like devilryrunner. Run all commands in this documentation as
this user unless stated otherwise.

Make a directory for your Devilry deploy

You need a directory for your Devilry settings and other Devilry-related files.
We suggest you use the ~/devilrydeploy/ directory (in the HOME folder of
the devilryrunner-user):

$ mkdir ~/devilrydeploy

The rest of the guide will assume you use the ~/devilrydeploy-directory

Make a requirements file for Python packages

To run Devilry in production, you need the Devilry library, and a couple
of extra Python packages and perhaps you will want to install some third
party devilry addons. We could just install these, but that would be
messy to maintain. Instead, we use a PIP requirements-file. Create
~/devilrydeploy/requirements.txt with the following contents:

PostgreSQL python bindings
psycopg2

Elastic search python bindings
elasticsearch

Supervisord process manager
supervisor

The devilry library/djangoproject
- See http://devilry.org for the latest devilry version
devilry==VERSION

Where VERSION should be set to the latest version of Devilry.

Install from the requirements file

$ cd ~/devilrydeploy
$ virtualenv venv
$ venv/bin/pip install -r requirements.txt

Create a Django management script

Copy this script into ~/devilrydeploy/manage.py:

import os
import sys

if __name__ == "__main__":
 os.environ["DJANGO_SETTINGS_MODULE"] = "devilry_settings"
 from django.core.management import execute_from_command_line
 execute_from_command_line(sys.argv)

Configure

Devilry is configured through a python file. We will start by configuring the
essential parts to get a working Devilry server, and then move on to
guides for the more complex parts like search and authentication in
separate chapters.

Start by copying the following into ~/devilrydeploy/devilry_settings.py:

from devilry.project.production.settings import *
import dj_database_url

Make this 50 chars and RANDOM - do not share it with anyone
SECRET_KEY = 'XXX'

Database config
DATABASE_URL = 'sqlite:///devilrydb.sqlite'
DATABASES = {'default': dj_database_url.config(default=DATABASE_URL)}

Set this to False to turn of debug mode in production
DEBUG = True
TEMPLATE_DEBUG = DEBUG

#: Default from email - students receive emails from this address when they make deliveries
DEVILRY_EMAIL_DEFAULT_FROM = 'devilry-support@example.com'

#: The URL that is used to link back to devilry from emails
DEVILRY_SCHEME_AND_DOMAIN = 'https://devilry.example.com'

#: Where should Devilry store files delivered by students.
#: This directory should be backed up.
DEVILRY_FSHIERDELIVERYSTORE_ROOT = '/path/to/directory/for/deliveryfiles/'

#: The directory where user uploaded files such as attachments to feedback is uploaded.
#: This directory should be backed up.
MEDIA_ROOT = '/path/to/directory/for/uploadedfiles/'

#: Url where users are directed when they do not have the permissions they believe they should have.
DEVILRY_LACKING_PERMISSIONS_URL = None

#: Url where users are directed when they want to know what to do if their personal info in Devilry is wrong.
DEVILRY_WRONG_USERINFO_URL = None

#: Url where users can go to get documentation for Devilry that your organization provides.
#: If you leave this blank, the only help link will be the official Devilry documentation.
DEVILRY_ORGANIZATION_SPECIFIC_DOCUMENTATION_URL = None

#: Text for the DEVILRY_ORGANIZATION_SPECIFIC_DOCUMENTATION_URL link.
#: Leave this blank to use the default text
DEVILRY_ORGANIZATION_SPECIFIC_DOCUMENTATION_TEXT = None

#: Deadline handling method:
#:
#: 0: Soft deadlines
#: 1: Hard deadlines
DEFAULT_DEADLINE_HANDLING_METHOD = 0

#: Configure an email backend
EMAIL_BACKEND = 'djcelery_email.backends.CeleryEmailBackend'
CELERY_EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
INSTALLED_APPS += ['djcelery_email']
EMAIL_HOST_USER = ''
EMAIL_HOST_PASSWORD = ''
EMAIL_PORT = 25
EMAIL_USE_TLS = False

If you have a devilry_prod_settings.py file from an older version of Devilry, you should be
able to copy over most of these settings.

Make sure it works

Just to make sure everything works, run:

$ cd ~/devilrydeploy/
$ venv/bin/python manage.py syncdb --noinput
$ venv/bin/python manage.py migrate --noinput

This should create a file named ~/devilrydeploy/devilrydb.sqlite.
You can remove that file now - it was just for testing.

Configure a SECRET_KEY

Configure the SECRET_KEY (used for cryptographic signing) by editing the SECRET_KEY setting in your
devilry_settings.py script. Make it a 50 characters long random string.

Configure the database

Configure a Postgres database by editing the DATABASE_URL setting in your devilry_settings.py script.
The format is:

DATABASE_URL = "postgres://USER:PASSWORD@HOST:PORT/NAME"

Note

If you are just testing out Devilry, you can keep SQLite as the database.

Configure where to store files

Adjust the DEVILRY_FSHIERDELIVERYSTORE_ROOT setting to a directory where you want delivered files
to be stored, and the MEDIA_ROOT setting to a directory where you want to place all other uploaded files,
such as files uploaded as attachments when examiners provide feedback.

Configure various external pages

Make sure you create a website that you can link to for the DEVILRY_LACKING_PERMISSIONS_URL
and DEVILRY_WRONG_USERINFO_URL pages. You may also want to configure a
DEVILRY_ORGANIZATION_SPECIFIC_DOCUMENTATION_URL, but that is not required.

Configure Email sending

You will probably have to adjust the EMAIL_* settings. The use of djcelery_email.backends.CeleryEmailBackend
means that all email is sent via a background queue instead of letting email sending become a potential
bottleneck. The other email settings are documented in the Django settings [https://docs.djangoproject.com/en/1.6/topics/settings/].

Disable debug mode

Before running Devilry in production, you must set DEBUG=False in devilry_settings.py.

Warning

If you do not disable DEBUG mode in production, you database credentials and SECRET_KEY
will be shown to any visitor when they encounter an error.

Create or migrate a database

No matter if the current the database contains a database from a previous Devilry version,
or if you are starting from an empty database, you need to run:

$ cd ~/devilrydeploy/
$ venv/bin/python manage.py syncdb --noinput
$ venv/bin/python manage.py migrate --noinput

This will create any missing database tables, and migrate any unmigrated database changes.

Collect static files

Run the following command to collect all static files (CSS, javascript, ...) for Devilry:

$ cd ~/devilrydeploy/
$ venv/bin/python manage.py collectstatic

The files are written to the staticfiles sub-directory (~/devilrydeploy/staticfiles).

Run the gunicorn server

Run:

$ cd ~/devilrydeploy/
$ DJANGO_SETTINGS_MODULE=devilry_settings venv/bin/gunicorn devilry.project.production.wsgi -b 0.0.0.0:8000 --workers=3 --preload

You can adjust the number of worker threads in the --workers argument,
and the port number in the -b argument.

Note

This is not how you should run this in production. Below, you will learn how to setup
SSL via a webserver proxy, and Supervisord for process management.

If you do not have an existing database — Add some data

If you do not have a Devilry database from a previous version of Devilry,
you will want to add some data.

First, create a superuser:

$ cd ~/devilrydeploy/
$ venv/bin/python manage.py createsuperuser

Next:

	Go to http://localhost:8000/

	Login with your newly created superuser.

	Select the Superuser role.

	Add a Node. The toplevel node is typically the name of your school/university.

	Add a Course within the created node. Make sure you make yourself admin on the course.

	Go back to http://localhost:8000/. You should now have a new Course manager role available
on the frontpage.

If you have an existing database

If you already have a working Devilry database, you will most likely have to configure
and authentication backend before you can do any more testing (explained below).

Stop the gunicorn server

When you are done testing, stop the gunicorn server (with ctrl-c), and move on to
setting up the more complex parts of the system.

Whats next?

You now have a working Devilry server, but you still need to:

	Setup a Devilry authentication backend.

	Install and configure the ElasticSearch search server.

	Setup the Celery background task server.

	Setup Supervisord for process management, log handling and log rotation.

	Setup Nginx, Apache or some other web proxy server with SSL.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Install and configure the ElasticSearch search server

Install ElasticSearch

See http://www.elasticsearch.org/.

Configure ElasticSearch as the Devilry search backend

Add the following to ~/devilrydeploy/devilry_settings.py:

HAYSTACK_CONNECTIONS = {
 'default': {
 'ENGINE': 'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine',
 'URL': 'http://127.0.0.1:9200/',
 'INDEX_NAME': 'devilry',
 },
}

Adjust the URL if you are running ElasticSearch on a separate server or another port.

Build the search index

To index the data currently in the database, run:

$ cd ~/devilrydeploy/
$ venv/bin/python manage.py rebuild_index --noinput

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Setup a Devilry authentication backend

Choices

Devilry can work with any Django-compatible authentication backend.

The default authentication backend

If you do not have a user database that you wish to use for Devilry, you can use
the default Django authentication backend, and add users to Devilry
manually.

Authenticate using LDAP

Authenticating via LDAP requires the django-auth-ldap Python module and some small adjustments to your settings.

Install the django-auth-ldap module

Add a new line containing django-auth-ldap in your ~/devilrydeploy/requirements.txt,
then run:

$ cd ~/devilrydeploy
$ venv/bin/pip install -r requirements.txt

to install the new module.

Add the LDAP backend to your settings

Add the following to your ~/devilrydeploy/devilry_settings.py:

AUTHENTICATION_BACKENDS = (
 'django_auth_ldap.backend.LDAPBackend',
)

You will also have to configure how to authenticate via LDAP. That is explained in
the django-auth-ldap docs: https://pythonhosted.org/django-auth-ldap/authentication.html

Autoset email

If your authentication backend does not provide an email address for your users, you
will most likely want to take a look at: Autoset email from the authentication backend username.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Setup the Celery background task server

If you want to scale Devilry to more than a couple of hundred users, you really
have to configure the Celery background task server. Celery is installed by
default, but you need to configure a task broker. We recommend Redis.

Install Redis

See https://redis.io/.

Configure Redis

Uncomment the requirepass setting in redis.conf to set a password.
Remember to run Redis with this config:

$ redis-server /path/to/redis.conf

You can tweak other configuration parameters in this file, such as port and other things,
so check it out.

Add Redis and Celery settings to Devilry

Add the following to ~/devilrydeploy/devilry_settings.py (change secret to
match the password in the redis.conf file) and set the correct config parameters in REDIS_CONFIG:

REDIS_CONFIG = {
 'port': 6379,
 'hostname': 'localhost',
 'password': 'secret',
 'db_number': 0
}

BROKER_URL = 'redis://:{password}@{hostname}:{port}/{db_number}'.format(
 password='secret',
 hostname='localhost',
 port=6379,
 db_number=0
)

CELERY_RESULT_BACKEND = 'redis://:{password}@{hostname}:{port}/{db_number}'.format(
 password='secret',
 hostname='localhost',
 port=6379,
 db_number=0
)

Run Celery

To run Celery, use:

$ cd ~/devilrydeploy/
$ DJANGO_SETTINGS_MODULE=devilry_settings venv/bin/celery -A devilry.project.common worker -l debug

If this starts without any errors, Celery should be working. You can stop the
server using ctrl-c. For all other cases than debugging and testing, we will be
running the Celery server via Supervisord (see Setup Supervisord for process management, log handling and log rotation).

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Setup Supervisord for process management, log handling and log rotation

Note

This assumes the full path to your ~/devilrydeploy-directory is
/home/devilryrunner/devilrydeploy — adjust accordingly.

Create a Supervisord configuration file

Create a file named ~/devilrydeploy/supervisord.conf and add the following:

[supervisord]
childlogdir = /home/devilryrunner/devilrydeploy/log
logfile = /home/devilryrunner/devilrydeploy/log/supervisord.log
logfile_maxbytes = 50MB
logfile_backups = 30
loglevel = info
pidfile = /home/devilryrunner/devilrydeploy/var/supervisord.pid
umask = 022
nodaemon = false
nocleanup = false

[inet_http_server]
port = 9001
username = devilryadmin
password = secret

[supervisorctl]
serverurl = http://localhost:9001
username = devilryadmin
password = secret

[rpcinterface:supervisor]
supervisor.rpcinterface_factory=supervisor.rpcinterface:make_main_rpcinterface

[program:gunicorn]
command = /home/devilryrunner/devilrydeploy/venv/bin/gunicorn devilry.project.production.wsgi -b 127.0.0.1:8002 -w 12 --timeout 300
environment = DJANGO_SETTINGS_MODULE=devilry_settings
process_name = gunicorn
directory = /home/devilryrunner/devilrydeploy
redirect_stderr = true
stdout_logfile = /home/devilryrunner/devilrydeploy/log/gunicorn.log
stdout_logfile_maxbytes = 150MB
stdout_logfile_backups = 15

[program:celery]
command = /home/devilryrunner/devilrydeploy/venv/bin/celery -A devilry.project.common worker -l info
environment = DJANGO_SETTINGS_MODULE=devilry_settings
process_name = celery
directory = /home/devilryrunner/devilrydeploy
redirect_stderr = true
stdout_logfile = /home/devilryrunner/devilrydeploy/log/celery.log
stdout_logfile_maxbytes = 150MB
stdout_logfile_backups = 15

Password and security

Make sure you set some other password than secret in
the [inet_http_server] and [supervisorctl] sections,
and make sure ~/devilrydeploy/supervisord.conf is only
accessible to the devilryrunner-user.

Create the var/ and log/ directories

The supervisord.conf file refers to the ~/devilrydeploy/var/ and ~/devilrydeploy/log/
directories. These must be created:

$ cd ~/devilrydeploy
$ mkdir var/ log/

Make sure all services work as excpected

To run supervisord in the foreground (for testing), run:

$ cd ~/devilrydeploy
$ venv/bin/supervisord -n -c supervisord.conf

You should now be able to open http://localhost:8002 in a browser and use Devilry.
Use ctrl-c to kill supervisord and all the services it is running.

Run Supervisord for production

To run supervisord in the background with a PID, run:

$ cd ~/devilrydeploy
$ venv/bin/supervisord -c supervisord.conf

Warning

Do NOT run supervisord as root. Run it as the devilryrunner user.

Init script

The following init script works well. You need to adjust the DAEMON-variable:

#! /bin/sh
BEGIN INIT INFO
Provides: supervisord
Required-Start: $remote_fs
Required-Stop: $remote_fs
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Example initscript
Description: This file should be used to construct scripts to be
placed in /etc/init.d.
END INIT INFO

Author: Dan MacKinlay <danielm@phm.gov.au>
Based on instructions by Bertrand Mathieu
http://zebert.blogspot.com/2009/05/installing-django-solr-varnish-and.html
See: https://gist.github.com/176149

Do NOT "set -e"

PATH should only include /usr/* if it runs after the mountnfs.sh script
PATH=/sbin:/usr/sbin:/bin:/usr/bin
DESC="Description of the service"
NAME=supervisord
DAEMON=/usr/local/bin/supervisord
DAEMON_ARGS=""
PIDFILE=/var/run/$NAME.pid
SCRIPTNAME=/etc/init.d/$NAME

Exit if the package is not installed
[-x "$DAEMON"] || exit 0

Read configuration variable file if it is present
[-r /etc/default/$NAME] && . /etc/default/$NAME

Load the VERBOSE setting and other rcS variables
. /lib/init/vars.sh

Define LSB log_* functions.
Depend on lsb-base (>= 3.0-6) to ensure that this file is present.
. /lib/lsb/init-functions

#
Function that starts the daemon/service
#
do_start()
{
	# Return
	# 0 if daemon has been started
	# 1 if daemon was already running
	# 2 if daemon could not be started
	start-stop-daemon --start --quiet --pidfile $PIDFILE --exec $DAEMON --test > /dev/null \
		|| return 1
	start-stop-daemon --start --quiet --pidfile $PIDFILE --exec $DAEMON -- \
		$DAEMON_ARGS \
		|| return 2
	# Add code here, if necessary, that waits for the process to be ready
	# to handle requests from services started subsequently which depend
	# on this one. As a last resort, sleep for some time.
}

#
Function that stops the daemon/service
#
do_stop()
{
	# Return
	# 0 if daemon has been stopped
	# 1 if daemon was already stopped
	# 2 if daemon could not be stopped
	# other if a failure occurred
	start-stop-daemon --stop --quiet --retry=TERM/30/KILL/5 --pidfile $PIDFILE --name $NAME
	RETVAL="$?"
	["$RETVAL" = 2] && return 2
	# Wait for children to finish too if this is a daemon that forks
	# and if the daemon is only ever run from this initscript.
	# If the above conditions are not satisfied then add some other code
	# that waits for the process to drop all resources that could be
	# needed by services started subsequently. A last resort is to
	# sleep for some time.
	start-stop-daemon --stop --quiet --oknodo --retry=0/30/KILL/5 --exec $DAEMON
	["$?" = 2] && return 2
	# Many daemons don't delete their pidfiles when they exit.
	rm -f $PIDFILE
	return "$RETVAL"
}

#
Function that sends a SIGHUP to the daemon/service
#
do_reload() {
	#
	# If the daemon can reload its configuration without
	# restarting (for example, when it is sent a SIGHUP),
	# then implement that here.
	#
	start-stop-daemon --stop --signal 1 --quiet --pidfile $PIDFILE --name $NAME
	return 0
}

case "$1" in
 start)
	["$VERBOSE" != no] && log_daemon_msg "Starting $DESC" "$NAME"
	do_start
	case "$?" in
		0|1) ["$VERBOSE" != no] && log_end_msg 0 ;;
		2) ["$VERBOSE" != no] && log_end_msg 1 ;;
	esac
	;;
 stop)
	["$VERBOSE" != no] && log_daemon_msg "Stopping $DESC" "$NAME"
	do_stop
	case "$?" in
		0|1) ["$VERBOSE" != no] && log_end_msg 0 ;;
		2) ["$VERBOSE" != no] && log_end_msg 1 ;;
	esac
	;;
 #reload|force-reload)
	#
	# If do_reload() is not implemented then leave this commented out
	# and leave 'force-reload' as an alias for 'restart'.
	#
	#log_daemon_msg "Reloading $DESC" "$NAME"
	#do_reload
	#log_end_msg $?
	#;;
 restart|force-reload)
	#
	# If the "reload" option is implemented then remove the
	# 'force-reload' alias
	#
	log_daemon_msg "Restarting $DESC" "$NAME"
	do_stop
	case "$?" in
	 0|1)
		do_start
		case "$?" in
			0) log_end_msg 0 ;;
			1) log_end_msg 1 ;; # Old process is still running
			*) log_end_msg 1 ;; # Failed to start
		esac
		;;
	 *)
	 	# Failed to stop
		log_end_msg 1
		;;
	esac
	;;
 *)
	#echo "Usage: $SCRIPTNAME {start|stop|restart|reload|force-reload}" >&2
	echo "Usage: $SCRIPTNAME {start|stop|restart|force-reload}" >&2
	exit 3
	;;
esac

:

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Setup Nginx, Apache or some other web proxy server with SSL

You need to configure your webserver to act as a reverse proxy that
forwards all traffic from port 443 (the https port) to 127.0.0.0:8002.

The webserver must use SSL, and it should redirect traffic from port 80 to port 443.

Refer to the Gunicorn [http://gunicorn.org/] documentation for more information.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Debug problems

To test that everything works as expected, you can use the Django devserver in
DEBUG-mode. The devserver serves static files, so you do not need a webserver.
It does not use SSL, so be VERY careful when running it on an extrnal NIC (like
the example with 0.0.0.0 below).

First, enable debug-mode in your ~/devilrydeploy/devilry_settings.py:

DEBUG = True

Then run the devserver:

$ venv/bin/python manange.py runserver

and open http://localhost:8000. You can tell the testserver to allow external
connections, and to listen on another port with:

$ venv/bin/python manange.py runserver 0.0.0.0:9000 --insecure

Warning

NEVER use the devserver or DEBUG=True in production. It is insecure and
slow.

Note

Some browsers have issues with loading the Devilry javascript sources
from the devserver. We recommend that you use a recent version of
Chrome, Firefox or Safari if you have problems.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Update Devilry

Warning

These are general instructions that work if we only have code changes.
Refer to the migration guide for each new version for the correct
instructions.

Note

Remember that you should run all these commands as the system user
you created in Getting started. The exception is, of course,
stopping/starting Supervisord if you use an init script.

	Update the version of the devilry library in your ~/devilrydeploy/requirements.txt.

	Stop Supervisord.

	Update Devilry using PIP:

$ cd ~/devilrydeploy
$ venv/bin/pip install -r requirements.txt

	Start Supervisord.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Autoset email from the authentication backend username

If you have an authentication backend that uses username,
and it does not set an email for your users, you will
probably want to add the devilry.devilry_autoset_empty_email_by_username
app to automatically set an email based on usernames.

To enable this app, add the following to your ~/devilrydeploy/devilry_settings.py:

INSTALLED_APPS += ['devilry.apps.autoset_empty_email_by_username']

#: Email pattern. The 'devilry.devilry_autoset_empty_email_by_username' app
#: automatically sets email to "<username>@DEVILRY_DEFAULT_EMAIL_SUFFIX"
#: when a user is saved.
DEVILRY_DEFAULT_EMAIL_SUFFIX = 'example.com'

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Devilry Managment Commands

This section describe the managment commands available in devilry.
To learn more about Django and their administrative support visit the django managment commands [https://docs.djangoproject.com/en/1.4/ref/django-admin/]
page in their docs. The set of commands may be altered or extended by packages used in Devilry.

Django managment commands follow a strict and well defined interface and is easy to extend and customize.
More info can be found on the custom django-admin commands [https://docs.djangoproject.com/en/1.4/howto/custom-management-commands/] page.
Devilry provides the following commands to ease the administration tasks for Devilry maintainers.
If you find the list incomplete and or want a broader support, you are welcome to post an issue on the Devilry
project issue tracker [https://github.com/devilry/devilry-django/issues?state=open] at any time.

The source code of the commands can be found in the official Devilry repository in the
superadmin managment commands [https://github.com/devilry/devilry-django/tree/master/src/devilry/devilry/apps/superadmin/management/commands] directory.

devilry_nodeadd

django.py devilry_nodeadd <node path> <short name>

Creates a new node in the Devilry node hierarchy. To create a root node
use None as <node path>.

	
--admins
	Comma separated list of usernames to set as admins on the node

	
--long_name
	A longer and more descriptive name of the node.

devilry_subjectadd

django.py devilry_subjectadd <node path> <short name>

Creates a new subject within the devilry hierarchy. The path and short name are required.

	
--admins
	Comma separated list of usernames to set as admins on the node

	
--long_name
	A longer and more descriptive name of the node.

devilry_subjectadminadd

django.py devilry_subjectadminadd <subject-short_name> <admin username>

Add a user as admin on the specified subject.

devilry_subjectadminclear

django.py devilry_subjectadminclear <subject short name>

Removes all administrators from the specified subject.

devilry_subjectsearch

django.py devilry_subjectsearch <short name>

Search for a subject by short name. Matches any part of the name.

	
--short_name-only

		Only print short name (one line per short name)

devilry_periodadd

django.py devilry_periodadd <subject short name> <period short name>

Create a new period on a new subject.

	
--admins
	Comma separated list of usernames to set as admins on the node.

	
--long_name
	A longer and more descriptive name of the node.

	
--start-time
	The start time of the period on ISO format “%Y-%m-%dT%H:%M”.

	
--end-time
	The end time of the period on ISO format “%Y-%m-%dT%H:%M”.

	
--date-format
	The date format expressed in a format according to strftime [http://docs.python.org/library/datetime.html#strftime-strptime-behavior’]

devilry_periodadminadd

django.py devilry_periodadminadd <subject-short_name> <period-short-name> <admin-username>

Add a user as admin on the period.

devilry_periodadminclear

django.py devilry_periodadminclear <subject short name> <period short name>

Clear administrators on the the subject.

devilry_periodsearch

django.py devilry_periodsearch <period short name>

Searches for periods based on the specified short name

	
--short_name-only

		Only print short name (one line per short name)

devilry_periodsetrelatedexaminers

django.py devilry_periodsetrelatedexaminers <subject short name> <period short name>

Set related examiners on a period. Users are read from stdin, as a JSON encoded array of arguments to the RelatedExaminer model.
See relatedexaminers.json [https://github.com/devilry/devilry-django/blob/2.0.4/devilry/devilry_superadmin/examples/relatedexaminers.json] for an example.

	
--clearall
	Clear all related examiners before adding

devilry_periodsetrelatedstudents

django.py devilry_periodsetrelatedstudents <subject short name> <period short name>

Set related students on a period. Users are read from stdin, as a JSON encoded array of arguments to the RelatedStudent model.
See relatedstudents.json [https://github.com/devilry/devilry-django/blob/2.0.4/devilry/devilry_superadmin/examples/relatedstudents.json] for an example.

	
--clearall
	Clear all related students before adding

devilry_resave_all_users

django.py devilrly_resave_all_users

Resaves all users. This command is useful if you have any apps that listens for post_save signals on User.

devilry_sync_candidates

django.py devilry_sync_candidates

Sync the cached fields in Candidate with the actual data from User.

devilry_useradd

django.py devilry_userad <username>

Creates a new user.

	
--email
	The user email address

	
--full_name
	Full name of the user

	
--superuser
	Make the user a superuser. Be careful this will give the user complete access to everything in Devilry.

	
--password
	Password for the user login credential.

Returns a non-zero value when the user already exists in Devilry.

devilry_useraddbulk

django.py devilry_useraddbulk

Reading usernames from stdin

	
--emailsuffix
	Email suffix are set on all users in the list. Example: <username>@example.com

devilry_usermod

django.py devilry_usermod <username>

Modify the credentials of an existing user

	
--email
	The user email address

	
--full_name
	Full name of the user

	
--superuser
	Make the user a superuser. Be careful this will give the user complete access to everything in Devilry.

	
--normaluser
	Make the user a normal user, with access to everything within their rank in Devilry hierarchy

devilry_usersearch

django.py devilry_usersearch <username>

Search for a user by username. Matches any part of the username.

	
--username-only

		Only print usernames

	
--no-email
	Only matching users without an email address.

	
--superusers
	Only matching superusers

	
--normalusers
	Only matching normalusers, everybody except superusers

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Migrating from 2.0.1 to 2.0.3

Note

We skipped 2.0.2 because of a forgotten update to version.json.

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

Update devilry

Follow the Update guide, and set the version in requirements.txt to:

devilry==2.0.3

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Migrating from 2.0.3 to 2.0.4

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

Update devilry

Follow the Update guide, and set the version in requirements.txt to:

devilry==2.0.4

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry sysadmin docs

Migrating from 1.X.X to 2.0.0

Backup database and files

BACKUP. YOUR. DATABASE. AND. FILES.

Update devilry

This is the first release using the new deployment/production setup.
Please follow the Getting started guide.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

Devilry developer documentation

Note

Welcome to the Devilry developer documentation.
See http://devilry.org/ for general information about Devilry,
and https://github.com/devilry/devilry-django for the code.

Essentials

	Setup a local development environment

	The devilry testsuite

	Mocking tests

	corebuilder — Setup devilry core data structures for tests

Essential wiki pages for developers

	How to write API documentation - wiki page [https://github.com/devilry/devilry-django/wiki/How-to-write-API-documentation]

	More info available on the Developer wiki page [https://github.com/devilry/devilry-django/wiki/Developer].

API and utilities

	devilry.apps.core.models — Devilry core datastructure

	The Devilry User object

	devilry.apps.core.deliverystore — DeliveryStore

	devilry.utils — Various utility functions

Advanced topics

Most developers will not need to bother with these topics.

	Developing and testing Celery background tasks

	How to write a plugin

	Devilry localization/internationalization/translation

	Configure Transifex

	JavaScript — Libraries and guidelines/code style

Apps

	devilry_subjectadmin — Subject administrator GUI

	devilry_qualifiesforexam

	devilry_gradingsystem — The devilry grading system plugin architecture

	devilry.devilry_search — Search for Devilry

	devilry.devilry_theme — The Devilry theme

Deprecated APIs and frameworks

	devilry.apps.core.testhelper — Create core test data

Releases

	Release notes

	How to release a new Devilry version

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

Setup a local development environment

Check out from GIT

If you plan to develop devilry, you should fork the devilry-django repo,
changes to your own repo and request inclusion to the master repo using
github pull requests. If you are just trying out Devilry, use:

$ git clone https://github.com/devilry/devilry-django.git

The master branch, which git checks out by default, is usually the
latest semi-stable development version. The latest stable version is in
the latest-stable branch.

Install dependencies/requirements

Note

Devilry should work perfectly well with only Python 2.7 or later Python2 versions.
Devilry does not work with Python3 yet, but we will support it when Django and all
our dependencies gets good Python3 support.

Other dependencies than are not really required, but we recommend that you:

	use Virtualenv to avoid installing anything globally, and to get a clean environment

	use Fabric because we have a lot of useful scripts written for Fabric that will ease
setting up your development environment and building various components of Devilry.
See Fabric.

Note that all instructions below assume you have and want to install Fabric and Virtualenv.

Mac OSX

	Install XCode (from app store).

	Install command line tools for XCode (includes Git and Python):

$ xcode-select --install

	Install other dependencies/requirements:

$ sudo easy_install virtualenv

Ubuntu Linux

$ sudo apt-get install build-essential python-dev python-virtualenv libncurses5-dev virtualenvwrapper libxslt1-dev libxml2 libxml2-dev zlib1g-dev

Setup the development virtualenv

$ mkvirtualenv devilry-django
$ pip install -r requirements/development.txt

Create a database

We have several alternatives for setting up a demo database. They all
use Fabric tasks. See Fabric.

First, make sure you are in the devilry-django virtualenv:

$ workon devilry-django

You can create a fairly full featured demo database with:

$ fab autodb

... or you can create a much more minimalistic demo database with:

$ fab demodb

... or you can create an empty database with:

$ fab reset_db

Note: Creating the testdata with autodb takes a lot of time, but you can start using
the server as soon as the users have been created (one of the first
things the script does).

Run the Django development server

First, make sure you are in the devilry-django virtualenv:

$ workon devilry-django

Start the Django development server with:

$ python manage.py runserver

Go to http://localhost:8000/ and log in as a superuser using:

user: grandma
password: test

Or as a user which is student, examiner and admin using:

user: thor
password: test

Note: All users have password==test, and you can see all users
in the superadmin interface. See the demo page on the
wiki [https://github.com/devilry/devilry-django/wiki/demo] for more
info about the demo database, including recommended test users for each
role.

Fabric

We use Fabric [http://fabfile.org] to simplify common tasks. Fabric
simply runs the requested @task decorated functions in
fabfile.py.

fabfile.py is very straigt forward to read if you wonder what the
tasks actually do. The fabric.api.local(...) function runs an
executable on the local machine.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

The devilry testsuite

Run all test:

$ DJANGOENV=test python manage.py test devilry

Skip the selenium tests using:

$ SKIP_SELENIUMTESTS=1 DJANGOENV=test python manage.py test

Specify a browser for the selenium tests using (example uses Firefox):

$ SELENIUM_BROWSER=Firefox DJANGOENV=test python manage.py test

Chrome is the default browser (configured in devilry.project.develop.settings.base).

Note

We use DJANGOENV=test python manage.py to run tests, because that makes
manage.py use devilry.project.develop.settings.test,
which does not load Haystack or Celery.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

Mocking tests

Always try to mock objects instead of creating real data unless you are actually testing
something that needs real data. Use https://pypi.python.org/pypi/mock to mock your
tests.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

corebuilder — Setup devilry core data structures for tests

devilry.project.develop.testhelpers.corebuilder is a module that makes it easy to create devilry.apps.core.models data for
tests.

When to use

Use this for end-to-end tests and tests where you really need real data. Always
try to mock objects instead of creating real data unless you are actually testing
something that needs real data. See Mocking tests.

Howto

Each class in the core has a wrapper class in
devilry.project.develop.testhelpers.corebuilder that makes it easy to perform
operations that we need to setup tests. We call these wrappers builders, and
they are all prefixed with the name of their corresponding core model and
suffixed with Builder.

Using the builders is very easy:

from devilry.project.develop.testhelpers.corebuilder import NodeBuilder
duck1010builder = NodeBuilder('duckuniversity').add_subject('duck1010')
assert(duck1010builder.subject == Subject.objects.get(short_name='duck1010'))

They can all easily be updated with new attributes:

duck1010builder.update(long_name='DUCK1010 - Programming')
assert(duck1010builder.subject.long_name == 'DUCK1010 - Programming')

And they have sane defaults optimized for testing, so you can easily create a
deeply nested core object. This creates the duck1010-subject with an active
period that started 3 months ago and ends in 3 months, with a single assignment
(week1), with a single group, with deadline one week from now with a single
helloworld.txt delivery:

from devilry.project.develop.testhelpers.corebuilder import NodeBuilder
from devilry.project.develop.testhelpers.corebuilder import UserBuilder
peterpan = UserBuilder(username='peterpan')
helloworld_filemetabuilder = NodeBuilder('ducku')\
 .add_subject('duck1010')\
 .add_6month_active_period('current')\
 .add_assignment('week1')\
 .add_group(students=[peterpan.user])\
 .add_deadline_in_x_weeks(weeks=1)\
 .add_delivery()\
 .add_filemeta(filename='helloworld.txt', data='Hello world')

Since we often need to add a single subject or a single active period, we have
shortcuts for that:

from devilry.project.develop.testhelpers.corebuilder import SubjectBuilder
from devilry.project.develop.testhelpers.corebuilder import PeriodBuilder
duck1010_builder = SubjectBuilder.quickadd_ducku_duck1010()
currentperiod_builder = PeriodBuilder.quickadd_ducku_duck1010_active()

Note

These shortcuts is not there just to save a couple of keystrokes. They are there
to make sure we use a uniform test setup in 98% of our tests. As long as you just
need a single subject or period, you MUST use these shortcuts (to get a patch
accepted in Devilry).

Magic and defaults

The builders have very little magic, but they have some defaults that make
sense when testing:

	long_name is set to short_name when it is not specified explicitly.

	All BaseNodes (the models with short and long name) takes the short_name
as the first argument and the long_name as the second argument.

	Time of delivery (for DeliveryBuilder and DealdineBuilder.add_delivery())
default to now.

	Default publishing_time for assignments is now.

	UserBuilder defaults to setting email to <username>@example.com.

These defaults are all handled in the constructor of their builder-class. All
the defaults can be overridden by specifying a value for them.

Reload from DB

You often need to create an object that is changed by
the code you are testing, and then check that
the change has made it to the database. All our builders implement
ReloadableDbBuilderInterface which includes
reload_from_db().

ReloadableDbBuilderInterface

	
class devilry.project.develop.testhelpers.corebuilder.ReloadableDbBuilderInterface

	All the builders implement this interface.

	
update(**attributes)

	Update the object wrapped by the builder with the given attributes.
Saves the object, and reloads it from the database.

	
reload_from_db(**attributes)

	Reloads the object wrapped by the builder from the database.
Perfect when you create an object that is changed by
the code you are testing, and you want to check that
the change has made it to the database.

UserBuilder

	
class devilry.project.develop.testhelpers.corebuilder.UserBuilder

	Creates a User object for testing. Also creates the DevilryUserProfile,
and methods for editing both the User and the profile.

	
__init__(username, full_name=None, email=None)

	Creates a new User with password set to test, and the
devilry.apps.core.models.DevilryUserProfile created.

	Parameters:	
	username – The username of the new user.

	full_name – Optional full_name. Defaults to None.

	email – Optional email. Defaults to <username>@example.com.

	
update(**attributes)

	Update the User with the given attributes.
Reloads the object from the database.

	
update_profile(**attributes)

	Update the devilry.apps.core.models.DevilryUserProfile
with the given attributes. Reloads the object from the database.

NodeBuilder

	
class devilry.project.develop.testhelpers.corebuilder.NodeBuilder

	
	
node

	The Node wrapped by this builder.

	
__init__(short_name, long_name=None, **kwargs)

	Creates a new Node with the given attributes.

	Parameters:	
	short_name – The short_name of the Node.

	long_name – The long_name of the Node. Defaults to short_name if None.

	kwargs – Other arguments for the Node constructor.

	
add_node(*args, **kwargs)

	Adds a childnode to the node. args and kwargs are forwarded
to NodeBuilder with kwargs['parentnode'] set to
this node.

	Return type:	NodeBuilder.

	
add_subject(*args, **kwargs)

	Adds a subject to the node. args and kwargs are forwarded
to SubjectBuilder with kwargs['parentnode'] set to
this node.

	Return type:	SubjectBuilder.

SubjectBuilder

	
class devilry.project.develop.testhelpers.corebuilder.SubjectBuilder

	
	
subject

	The Subject wrapped by this builder.

	
__init__(short_name, long_name=None, **kwargs)

	Creates a new Subject with the given attributes.

	Parameters:	
	short_name – The short_name of the Subject.

	long_name – The long_name of the Subject. Defaults to short_name if None.

	kwargs – Other arguments for the Subject constructor.

	
classmethod quickadd_ducku_duck1010()

	When we need just a single subject, we use this shortcut
method instead of writing:

NodeBuilder('ducku').add_subject('duck1010')

This is not just to save a couple of letters, but also to
promote a common setup for simple tests.

	
add_period(*args, **kwargs)

	Adds a period to the subject. args and kwargs are forwarded
to PeriodBuilder with kwargs['parentnode'] set to
this subject.

	Return type:	PeriodBuilder.

	
add_6month_active_period(*args, **kwargs)

	Shortcut for adding add_period() with start_time 3*30
days ago, and end_time in 3*30 days. args and kwargs
is forwarded to add_period, but with start_time and
end_time set in kwargs.

If no short_name is provided, it defaults to active.

	Return type:	PeriodBuilder.

	
add_6month_lastyear_period(*args, **kwargs)

	Shortcut for adding add_period() with start_time
365-30*3 days ago, and end_time 365+3*30 days ago.
args and kwargs is forwarded to add_period, but with
start_time and end_time set in kwargs.

If no short_name is provided, it defaults to lastyear.
:rtype: PeriodBuilder.

	
add_6month_nextyear_period(*args, **kwargs)

	Shortcut for adding add_period() with start_time in
365-30*3 days, and end_time in 365+3*30 days. args and
kwargs is forwarded to add_period, but with start_time and
end_time set in kwargs.

If no short_name is provided, it defaults to nextyear.

	Return type:	PeriodBuilder.

PeriodBuilder

	
class devilry.project.develop.testhelpers.corebuilder.PeriodBuilder

	
	
period

	The Period wrapped by this builder.

	
__init__(short_name, long_name=None, **kwargs)

	Creates a new Period with the given attributes.

	Parameters:	
	short_name – The short_name of the Period.

	long_name – The long_name of the Period. Defaults to short_name if None.

	kwargs – Other arguments for the Period constructor.

	
add_assignment(*args, **kwargs)

	Adds an assignment to the period. args and kwargs are forwarded
to AssignmentBuilder with kwargs['parentnode'] set to
this period.

	Return type:	AssignmentBuilder.

	
classmethod quickadd_ducku_duck1010_active()

	When we need just a single active period, we use this shortcut
method instead of writing:

NodeBuilder('ducku').add_subject('duck1010').add_6month_active_period('current')

This is not just to save a couple of letters, but also to
promote a common setup for simple tests.

AssignmentBuilder

	
class devilry.project.develop.testhelpers.corebuilder.AssignmentBuilder

	
	
assignment

	The Assignment wrapped by this builder.

	
__init__(short_name, long_name=None, **kwargs)

	Creates a new Assignment with the given attributes.

	Parameters:	
	short_name – The short_name of the Assignment.

	long_name – The long_name of the Assignment. Defaults to short_name if None.

	publishing_time – The publishing_time of the Assignment. Defaults to now.

	kwargs – Other arguments for the Assignment constructor.

	
add_group(*args, **kwargs)

	Adds an assignment group to the period. args and kwargs are forwarded
to AssignmentGroupBuilder with kwargs['parentnode'] set to
this assignment.

	Return type:	AssignmentGroupBuilder.

AssignmentGroupBuilder

	
class devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder

	
	
assignment_group

	The AssignmentGroup wrapped by this builder.

	
__init__(students=, []candidates=, []examiners=, []**kwargs)

	Creates a new AssignmentGroup with the given attributes.

	Parameters:	
	students – Forwarded to add_students().

	candidates – Forwarded to add_candidates().

	examiners – Forwarded to add_examiners().

	kwargs – Arguments for the AssignmentGroup constructor.

	
add_students(*users)

	Add the given users as candidates without a candidate ID on this assignment group.

	Returns:	self (to enable us to nest the method call).

	
add_examiners(*users)

	Add the given users as examiners on this assignment group.

	Returns:	self (to enable us to nest the method call).

	
add_students(*candidates)

	Add the given candidates to this assignment group.

	Parameters:	candidates – devilry.apps.core.models.Candidate objects.

	Returns:	self (to enable us to nest the method call).

	
add_deadline(*args, **kwargs)

	Adds an deadline to the assignment. args and kwargs are forwarded
to DeadlineBuilder with kwargs['assignment_group'] set to
this assignment_group.

	Return type:	AssignmentGroupBuilder.

	
add_deadline_in_x_weeks(weeks, *args, **kwargs)

	Calls add_deadline() with kwargs[deadline] set
weeks weeks in the future.

	Return type:	AssignmentGroupBuilder.

	
add_deadline_x_weeks_ago(weeks, *args, **kwargs)

	Calls add_deadline() with kwargs[deadline] set
weeks weeks in the past.

	Return type:	DeadlineBuilder.

DeadlineBuilder

	
class devilry.project.develop.testhelpers.corebuilder.DeadlineBuilder

	
	
deadline

	The Deadline wrapped by this builder.

	
__init__(**kwargs)

	Creates a new AssignmentGroup with the given attributes.

	Parameters:	kwargs – Arguments for the Deadline constructor.

	
add_delivery(**kwargs)

	Adds a delivery to the deadline. args and kwargs are forwarded
to DeliveryBuilder with kwargs['deadline'] set to
this deadline and kwargs['successful'] defaulting to True.

	Parameters:	kwargs – Extra kwargs for the DeliveryBuilder constructor.

	Return type:	DeliveryBuilder.

	
add_delivery_after_deadline(timedeltaobject, **kwargs)

	Add a delivery timedeltaobject time after this deadline expires.

Shortcut that calls add_delivery() with kwargs['time_of_delivery'] set
to deadline.deadline + timedeltaobject.

Example - add delivery 3 weeks and 2 hours after deadline:

from datetime import datetime, timedelta
deadlinebuilder = DeadlineBuilder(deadline=datetime(2010, 1, 1))
deadlinebuilder.add_delivery_after_deadline(timedelta(weeks=3, hours=2))

	Parameters:	kwargs – Extra kwargs for the DeliveryBuilder constructor.

	Return type:	DeliveryBuilder.

	
add_delivery_before_deadline(timedeltaobject, **kwargs)

	Add a delivery timedeltaobject time before this deadline expires.

Shortcut that calls add_delivery() with kwargs['time_of_delivery'] set
to deadline.deadline + timedeltaobject.

Example - add delivery 5 hours before deadline:

from datetime import datetime, timedelta
deadlinebuilder = DeadlineBuilder(deadline=datetime(2010, 1, 1))
deadlinebuilder.add_delivery_before_deadline(timedelta(hours=5))

	Parameters:	kwargs – Extra kwargs for the DeliveryBuilder constructor.

	Return type:	DeliveryBuilder.

	
add_delivery_x_hours_after_deadline(timedeltaobject, **kwargs)

	Add a delivery hours hours after this deadline expires.

Shortcut that calls add_delivery_after_deadline() with
timedeltaobject set to timedelta(hours=hours).

	Parameters:	
	hours – Number of hours.

	kwargs – Extra kwargs for the DeliveryBuilder constructor.

	Return type:	DeliveryBuilder.

	
add_delivery_x_hours_before_deadline(timedeltaobject, **kwargs)

	Add a delivery hours hours before this deadline expires.

Shortcut that calls add_delivery_before_deadline() with
timedeltaobject set to timedelta(hours=hours).

	Parameters:	
	hours – Number of hours.

	kwargs – Extra kwargs for the DeliveryBuilder constructor.

	Return type:	DeliveryBuilder.

DeliveryBuilder

	
class devilry.project.develop.testhelpers.corebuilder.DeliveryBuilder

	
	
delivery

	The Delivery wrapped by this builder.

	
__init__(**kwargs)

	Creates a new Delivery with the given attributes.
If time_of_delivery is not provided, it defaults to now.

	Parameters:	kwargs – Arguments for the Delivery constructor.

	
add_filemeta(**kwargs)

	Adds a filemeta to the delivery. kwargs is forwarded
to FilteMetaBuilder with kwargs['delivery'] set to
this delivery.

Example:

deliverybuilder.add_filemeta(
 filename='test.txt',
 data='This is a test.'
)

	Parameters:	kwargs – Kwargs for the FileMetaBuilder constructor.

	Return type:	FileMetaBuilder.

	
add_feedback(**kwargs)

	Adds a feedback to the delivery. kwargs is forwarded to
StaticFeedbackBuilder with kwargs['delivery'] set to
this delivery.

Example:

deliverybuilder.add_feedback(
 points=10,
 grade='10/100',
 is_passing_grade=False,
 saved_by=UserBuilder('testuser').user
)

	Parameters:	kwargs – Kwargs for the StaticFeedbackBuilder constructor.

	Return type:	StaticFeedbackBuilder.

	
add_passed_feedback(**kwargs)

	Shortcut that adds a passed feedback to the delivery. kwargs is
forwarded to add_feedback() with:

	points=1

	grade="Passed"

	is_passing_grade=True

Example:

deliverybuilder.add_passed_feedback(saved_by=UserBuilder('testuser').user)

	Parameters:	kwargs – Extra kwargs for add_feedback(). Is updated with
:points, grade and is_passing_grade as documented above.

	Return type:	StaticFeedbackBuilder.

	
add_failed_feedback(**kwargs)

	Shortcut that adds a failed feedback to the delivery. kwargs is
forwarded to add_feedback() with:

	points=0

	grade="Failed"

	is_passing_grade=False

Example:

deliverybuilder.add_failed_feedback(saved_by=UserBuilder('testuser').user)

	Parameters:	kwargs – Extra kwargs for add_feedback(). Is updated with
:points, grade and is_passing_grade as documented above.

	Return type:	StaticFeedbackBuilder.

FileMetaBuilder

	
class devilry.project.develop.testhelpers.corebuilder.FileMetaBuilder

	
	
filemeta

	The FileMeta wrapped by this builder.

	
__init__(delivery, filename, data)

	Creates a new FileMeta. Since FileMeta
just points to files on disk, and creating those files requires iterators
and extra stuff that is almost never needed for tests, we provide an
easier method for creating files with FileMetaBuilder.

	Parameters:	
	delivery – The Delivery object.

	filename – A filename.

	data – The file contents as a string.

StaticFeedbackBuilder

	
class devilry.project.develop.testhelpers.corebuilder.StaticFeedbackBuilder

	
	
feedback

	The StaticFeedback wrapped by this builder.

	
__init__(**kwargs)

	Creates a new StaticFeedback with the given attributes.

	Parameters:	kwargs – Arguments for the StaticFeedback constructor.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

devilry.apps.core.models — Devilry core datastructure

[image: ../_images/devilry.core.models.1.png]
[image: ../_images/devilry.core.models.2.png]
(edit the images umldiagram1 [http://yuml.me/diagram/plain;dir:LR;scale:80;/class/edit/[Node]++1-subjects>*[Subject],[Node]++0-child-nodes>*[Node],[Subject]++1-periods>*[Period],[Period]++1-assignments>*[Assignment],[Assignment]++1-assignmentgroups>*[AssignmentGroup]] and umldiagram2 [http://yuml.me/diagram/scruffy/class/edit/%5BAssignmentGroup%5D++1-deadlines%20%3E*%5BDeadline%5D,%20%5BAssignmentGroup%5D++1-candidates%20%3E*%5BCandidate%5D,%20%5BDelivery%5D++1-staticfeedbacks%20%3E*%5BStaticFeedback%5D,%20%5BDelivery%5D++1-filemetas%20%3E*%5BFileMeta%5D,%20%5BDeadline%5D++1-deliveries%20%3E*%5BDelivery%5D,%20%5BDelivery%5D++1-delivered_by%20%3E1%5BCandidate%5D] using yuml.me)

Functions and attributes

	
devilry.apps.core.models.model_utils.pathsep

	Path separator used by node-paths. The value is '.', and it must not
be changed.

	
devilry.apps.core.models.model_utils.splitpath(path, expected_len=0)

	Split the path on pathsep and return the resulting list.
Example:

>>> splitpath('uio.ifi.matnat')
['uio', 'ifi', 'matnat']
>>> splitpath('uio.ifi.matnat', expected_len=2)
Traceback (most recent call last):
...
ValueError: Path must have exactly 2 parts

	Parameters:	expected_len – Expected length of the resulting list. If the resulting list is not
exactly the given length, ValueError is raised. If
expected_len is 0 (default), no checking is done.

BaseNode

	
class devilry.apps.core.models.BaseNode

	Bases: devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin, devilry.apps.core.models.save_interface.SaveInterface

The base class of the Devilry hierarchy. Implements basic functionality
used by the other Node classes. This is an abstract datamodel, so it
is never used directly.

	
short_name

	A django.db.models.SlugField [http://docs.djangoproject.com/en/dev/ref/models/fields/#slugfield] with max 20 characters. Only numbers,
letters, ‘_’ and ‘-‘.

	
long_name

	A django.db.models.CharField [http://docs.djangoproject.com/en/dev/ref/models/fields/#charfield] with max 100 characters. Gives a longer
description than short_name.

AbstractIsAdmin

	
class devilry.apps.core.models.AbstractIsAdmin

	Bases: object

Abstract class implemented by all classes where it is natural to
need to check if a user has admin rights.

	
classmethod q_is_admin(user_obj)

	Get a django.db.models.Q object matching all objects of this
type where the given user is admin. The matched result is not
guaranteed to contain unique items, so you should use distinct() on
the queryset if this is required.

This must be implemented in all subclassed.

	
classmethod where_is_admin(user_obj, *related_fields)

	Get all objects of this type where the given user is admin.

	
classmethod where_is_admin_or_superadmin(user_obj, *related_fields)

	Get all objects of this type where the given user is admin, or
all objects if the user is superadmin.

AbstractIsExaminer

	
class devilry.apps.core.models.AbstractIsExaminer

	Bases: object

Abstract class implemented by all classes where it is natural to
need to check if a user is examiner.

	
classmethod q_published(old=True, active=True)

	Return a django.models.Q object which matches all items of this type
where Assignment.publishing_time is in the past.

	Parameters:	
	old – Include assignments where Period.end_time
is in the past?

	active – Include assignments where Period.end_time
is in the future?

	
classmethod q_is_examiner(user_obj)

	Return a django.models.Q object which matches items
where the given user is examiner.

	
classmethod where_is_examiner(user_obj)

	Get all items of this type where the given user_obj is
examiner on one of the assignment groups.

	Parameters:	user_obj – A django.contrib.auth.models.User [http://docs.djangoproject.com/en/dev/topics/auth/#users] object.

	Return type:	QuerySet

	
classmethod published_where_is_examiner(user_obj, old=True, active=True)

	Get all published items of this type
where the given user_obj is examiner on one of the assignment
groups. Combines q_is_examiner() and q_published().

	Parameters:	
	user_obj – q_is_examiner().

	old – q_published().

	active – q_published().

	Returns:	A django.db.models.query.QuerySet with duplicate
assignments eliminated.

	
classmethod active_where_is_examiner(user_obj)

	Shortcut for published_where_is_examiner() with
old=False.

	
classmethod old_where_is_examiner(user_obj)

	Shortcut for published_where_is_examiner() with
active=False.

Node

A node at the top of the navigation tree. It is a generic element used to
organize administrators. A Node can be organized below another Node, and it
can only have one parent.

Let us say you use Devilry within two departments at Fantasy University;
informatics and mathematics. The university has an administration, and each
department have their own administration. You would end up with this
node-hierarchy:

	
	Fantasy University

	
	Department of informatics

	Department of mathematics

	
class devilry.apps.core.models.Node(*args, **kwargs)

	Bases: django.db.models.base.Model, devilry.apps.core.models.basenode.BaseNode, devilry.apps.core.models.model_utils.Etag

This class is typically used to represent a hierarchy of institutions,
faculties and departments.

	
parentnode

	A django.db.models.ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey] that points to the parent node, which
is always a Node.

	
admins

	A django.db.models.ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#manytomanyfield] that holds all the admins of the
Node.

	
child_nodes

	A set of child_nodes of type Node for this node

	
subjects

	A set of subjects for this node

	
etag

	A DateTimeField containing the etag for this object.

	
iter_childnodes()

	Recursively iterates over all child nodes, and their child nodes.
For a list of direct child nodes, use atribute child_nodes instead.

	
clean(*args, **kwargs)

	Validate the node, making sure it does not do something stupid.

Always call this before save()! Read about validation here:
http://docs.djangoproject.com/en/dev/ref/models/instances/#id1

Raises ValidationError if:

	The node is it’s own parent.

	The node is the child of itself or one of its childnodes.

	
is_empty()

	Returns True if this Node does not contain any childnodes or subjects.

Subject

A subject is a course, seminar, class or something else being given
regularly. A subject is further divided into periods.

	
class devilry.apps.core.models.Subject(*args, **kwargs)

	Bases: django.db.models.base.Model, devilry.apps.core.models.basenode.BaseNode, devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer, devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate, devilry.apps.core.models.model_utils.Etag

	
parentnode

	A django.db.models.ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey] that points to the parent node,
which is always a Node.

	
admins

	A django.db.models.ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#manytomanyfield] that holds all the admins of the
Node.

	
short_name

	A django.db.models.SlugField [http://docs.djangoproject.com/en/dev/ref/models/fields/#slugfield] with max 20 characters. Only numbers,
letters, ‘_’ and ‘-‘. Unlike all other children of
BaseNode, Subject.short_name is unique. This is mainly
to avoid the overhead of having to recurse all the way to the top of
the node hierarchy for every unique path.

	
periods

	A set of periods for this subject.

	
etag

	A DateTimeField containing the etag for this object.

	
get_path()

	Only returns short_name for subject since it is
guaranteed to be unique.

	
is_empty()

	Returns True if this Subject does not contain any periods.

Period

A Period is a limited period of time, like spring 2009, week 34 2010 or
even a single day.

	
class devilry.apps.core.models.Period(*args, **kwargs)

	Bases: django.db.models.base.Model, devilry.apps.core.models.basenode.BaseNode, devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer, devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate, devilry.apps.core.models.model_utils.Etag

A Period represents a period of time, for example a half-year term
at a university.

	
parentnode

	A django.db.models.ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey] that points to the parent node,
which is always a Subject.

	
start_time

	A django.db.models.DateTimeField [http://docs.djangoproject.com/en/dev/ref/models/fields/#datetimefield] representing the starting time of
the period.

	
end_time

	A django.db.models.DateTimeField [http://docs.djangoproject.com/en/dev/ref/models/fields/#datetimefield] representing the ending time of
the period.

	
admins

	A django.db.models.ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#manytomanyfield] that holds all the admins of the
node.

	
assignments

	A Django RelatedManager of assignments for this period.

	
relatedexaminer_set

	A Django RelatedManager of RelatedExaminers for this period.

	
relatedstudent_set

	A Django RelatedManager of RelatedStudents for this period.

	
etag

	A DateTimeField containing the etag for this object.

	
clean(*args, **kwargs)

	Validate the period.

Always call this before save()! Read about validation here:
http://docs.djangoproject.com/en/dev/ref/models/instances/#id1

Raises ValidationError if start_time is after end_time.

	
is_active()

	Returns true if the period is active

	
classmethod q_is_active()

	Get a django.db.models.Q object that matches all active periods (periods where start_time is
in the past, and end_time is in the future).

Example:

activeperiods = Period.objects.filter(Period.q_is_active())

	
is_empty()

	Returns True if this Period does not contain any assignments.

	
subject

	More readable alternative to self.parentnode.

RelatedUserBase

Base class for devilry.apps.core.models.RelatedStudent and devilry.apps.core.models.RelatedExaminer.

	
class devilry.apps.core.models.relateduser.RelatedUserBase(*args, **kwargs)

	Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin

Common fields for examiners and students related to a period.

	
period

	The period that the user is related to.

	
user

	A django.contrib.auth.models.User [http://docs.djangoproject.com/en/dev/topics/auth/#users] object. Must be unique within this
period.

	
tags

	Comma-separated list of tags. Each tag is a word with the following
letters allowed: a-z and 0-9. Each word is separated by a comma, and no
whitespace.

RelatedStudent — Student on a period

A RelatedStudent is a student related to a devilry.apps.core.models.Period.

	
class devilry.apps.core.models.RelatedStudent(*args, **kwargs)

	Bases: devilry.apps.core.models.relateduser.RelatedUserBase

Related student.

	
candidate_id

	If a candidate has the same Candidate ID for all or many assignments in
a semester, this field can be set to simplify setting candidate IDs on
each assignment.

RelatedExaminer — Examiner on a period

A RelatedExaminer is an examiner related to a devilry.apps.core.models.Period.

	
class devilry.apps.core.models.RelatedExaminer(*args, **kwargs)

	Bases: devilry.apps.core.models.relateduser.RelatedUserBase

Related examiner.

Adds no fields to RelatedUserBase.

Assignment

Represents one assignment within a given Period in a given Subject. Each
assignment contains one AssignmentGroup for each student or group of students
permitted to submit deliveries.

We have three main classifications of assignments:

	A old assignment is a assignment where Period.end_time is in the past.

	A published assignment is a assignment where publishing_time is in the past.

	A active assignment is a assignment where publishing_time is in the
past and current time is before Period.end_time.

	
class devilry.apps.core.models.Assignment(*args, **kwargs)

	Bases: django.db.models.base.Model, devilry.apps.core.models.basenode.BaseNode, devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer, devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate

	
parentnode

	A django.db.models.ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey] that points to the parent node,
which is always a Period.

	
publishing_time

	A django.db.models.DateTimeField [http://docs.djangoproject.com/en/dev/ref/models/fields/#datetimefield] representing the publishing time of
the assignment.

	
anonymous

	A models.BooleanField specifying if the assignment should be
anonymously for correcters.

	
admins

	A django.db.models.ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#manytomanyfield] that holds all the admins of the
Node.

	
assignmentgroups

	A set of assignmentgroups for this assignment

	
examiners_publish_feedbacks_directly

	Should feedbacks published by examiners be made avalable to the
students immediately? If not, an administrator have to publish
feedbacks. See also Deadline.feedbacks_published.

	
scale_points_percent

	Percent to scale points on this assignment by for period overviews. The default is 100,
which means no change to the points.

	
delivery_types

	An integer identifying the type of deliveries allowed. Possible values:

	0

	Electronic deliveries using Devilry

	1

	Non-electronic deliveries, or deliveries made through another
electronic system.

	2

	An alias/link to a delivery made in another Period.

	
deadline_handling

	An integer identifying how deadlines are handled.

	0

	Soft deadlines. Deliveries can be added until groups are closed.

	1

	Hard deadlines. Deliveries can not be added after the deadline
has expired.

	
first_deadline

	A DateTimeField containing an optional first deadline for this
assignment. This is metadata that the UI can use where it is
natural.

	
max_points

	An IntegerField that contains the maximum number of points possible to achieve on
this assignment. This field may be None, and it is normally set by the
grading system plugin.

DO NOT UPDATE MANUALLY. You can safely set an initial value for this
manually when you create a new assignment, but when you update this
field, do so using set_max_points().

	
passing_grade_min_points

	An IntegerField that contains the minimum number of points required to
achive a passing grade on this assignment. This means that any feedback
with more this number of points or more is considered a passing grade.

WARNING: Changing this does not have any effect on existing feedback.
To actually change existing feedback, you would have to update all
feedback on the assignment, effectively creating new StaticFeedbacks
from the latest published FeedbackDrafts for each AssignmentGroup.

	
points_to_grade_mapper

	Configures how points should be mapped to a grade. Valid choices:

	passed-failed - Points is mapped directly to passed/failed.
Zero points results in a failing grade, other points results in
a passing grade.

	raw-points - The grade is <points>/<max-points>.

	table-lookup - Points is mapped to a grade via a table lookup.
This means that someone configures a mapping from point thresholds
to grades using devilry.apps.core.models.PointRangeToGrade.

	
grading_system_plugin_id

	A CharField containing the ID of the grading system plugin this
assignment uses.

	
students_can_create_groups

	BooleanField specifying if students can join/leave groups on
their own.

If this is True students should be allowed to join/leave groups.
If students_can_not_create_groups_after is specified, this
students can not create groups after students_can_not_create_groups_after
even if this is True.

This does not in any way affect an admins ability to organize students
in groups manually.

	
students_can_not_create_groups_after

	Students can not create project groups after this time. Ignored if
students_can_create_groups is False.

DateTimeField that defaults to None (null).

	
students_can_create_groups_now

	Return True if students_can_create_groups is True, and
students_can_not_create_groups_after is in the future or None.

	
is_electronic()

	Returns True if deliverytypes is 0 (electric).

New in version 1.4.0.

	
is_nonelectronic()

	Returns True if deliverytypes is 1 (non-electric).

New in version 1.4.0.

	
set_max_points(max_points)

	Sets max_points, and invalidates any
PointToGradeMap configured for this
assignment if the new value for max_points differs from the old one.

Invalidating the PointToGradeMap ensures that the course admin
has to re-evaluate the grade to point mapping when they change max_points.

NOTE: This saves the PointToGradeMap, but not the assignment.

	
get_gradingsystem_plugin_api()

	Shortcut for:

devilry.devilry_gradingsystem.pluginregistry.gradingsystempluginregistry.get(
 self.grading_system_plugin_id)(self)

See: devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginRegistry.get().

	
has_valid_grading_setup()

	Checks if this assignment is configured correctly for grading.

	
setup_grading(grading_system_plugin_id, points_to_grade_mapper, passing_grade_min_points=None, max_points=None)

	Setup all of the simple parts of the grading system:

	grading_system_plugin_id

	points_to_grade_mapper

	passing_grade_min_points

	max_points

Does not setup:

	Grading system plugin specific configuration.

	A PointToGradeMap.

	
get_point_to_grade_map()

	Get the PointToGradeMap for this assinment,
creating if first if it does not exist.

	
points_is_passing_grade(points)

	Checks if the given points represents a passing grade.

WARNING: This will only work if passing_grade_min_points is set. The best
way to check that is with has_valid_grading_setup().

	
points_to_grade(points)

	Convert the given points into a grade.

WARNING: This will not work if has_valid_grading_setup() is not True.

	
clean(*args, **kwargs)

	Validate the assignment.

Always call this before save()! Read about validation here:
http://docs.djangoproject.com/en/dev/ref/models/instances/#id1

Raises ValidationError if publishing_time is not between
Period.start_time and Period.end_time.

	
is_empty()

	Returns True if this Assignment does not contain any deliveries.

	
is_active()

	Returns True if this assignment is published, and the period has not ended yet.

Examiner

	
class devilry.apps.core.models.Examiner(*args, **kwargs)

	Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin

	
assignmentgroup

	The AssignmentGroup where this groups belongs.

	
user

	A foreign key to a User.

Candidate

	
class devilry.apps.core.models.Candidate(*args, **kwargs)

	Bases: django.db.models.base.Model

	
assignment_group

	The AssignmentGroup where this groups belongs.

	
student

	A student (a foreign key to a User).

	
candidate_id

	A optional candidate id. This can be anything as long as it is not
more than 30 characters. When the assignment is anonymous, this is
the “name” shown to examiners instead of the username of the
student.

AssignmentGroup

	
class devilry.apps.core.models.AssignmentGroup(*args, **kwargs)

	Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin, devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer, devilry.apps.core.models.model_utils.Etag

Represents a student or a group of students.

	
parentnode

	A django.db.models.ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey] that points to the parent node,
which is always an Assignment.

	
name

	An optional name for the group.

	
candidates

	A django RelatedManager that holds the candidates
on this group.

	
examiners

	A django.db.models.ManyToManyField [http://docs.djangoproject.com/en/dev/ref/models/fields/#manytomanyfield] that holds the examiner(s) that are
to correct and grade the assignment.

	
is_open

	A django.db.models.BooleanField [http://docs.djangoproject.com/en/dev/ref/models/fields/#booleanfield] that tells you if the group can add
deliveries or not.

	
deadlines

	A django RelatedManager that holds the deadlines
on this group.

	
tags

	A django RelatedManager that holds the tags
on this group.

	
feedback

	The last StaticFeedback (by save timestamp) on this assignmentgroup.

	
last_deadline

	The last devilry.apps.core.models.Deadline for this assignmentgroup.

	
etag

	A DateTimeField containing the etag for this object.

	
delivery_status

	A CharField containing the status of the group.
Valid status values:

	“no-deadlines”

	“corrected”

	“closed-without-feedback”

	“waiting-for-something”

	
save(*args, **kwargs)

	

	Parameters:	
	update_delivery_status – Update the delivery_status? This is a somewhat expensive
operation, so we provide the option to avoid it if needed.
Defaults to True.

	autocreate_first_deadline_for_nonelectronic – Autocreate the first deadline if non-electronic assignment?
Defaults to True.

	
classmethod q_is_candidate(user_obj)

	Returns a django.models.Q object matching AssignmentGroups where
the given student is candidate.

	
classmethod where_is_candidate(user_obj)

	Returns a QuerySet matching all AssignmentGroups where the
given user is student.

	Parameters:	user_obj – A django.contrib.auth.models.User [http://docs.djangoproject.com/en/dev/topics/auth/#users] object.

	Return type:	QuerySet

	
classmethod published_where_is_candidate(user_obj, old=True, active=True)

	Returns a QuerySet matching all published assignment groups where the given user
is student.

	Parameters:	user_obj – A django.contrib.auth.models.User [http://docs.djangoproject.com/en/dev/topics/auth/#users] object.

	Return type:	QuerySet

	
classmethod active_where_is_candidate(user_obj)

	Returns a QuerySet matching all active assignment groups where the given user
is student.

	Parameters:	user_obj – A django.contrib.auth.models.User [http://docs.djangoproject.com/en/dev/topics/auth/#users] object.

	Return type:	QuerySet

	
classmethod old_where_is_candidate(user_obj)

	Returns a QuerySet matching all old assignment groups where the given user
is student.

	Parameters:	user_obj – A django.contrib.auth.models.User [http://docs.djangoproject.com/en/dev/topics/auth/#users] object.

	Return type:	QuerySet

	
should_ask_if_examiner_want_to_give_another_chance

	True if the current state of the group is such that the examiner should
be asked if they want to give them another chance.

True if corrected with failing grade or closed without feedback.

	
missing_expected_delivery

	Return True if the group has no deliveries, and we are expecting
them to have made at least one delivery on the last deadline.

	
subject

	Shortcut for parentnode.parentnode.parentnode.

	
period

	Shortcut for parentnode.parentnode.

	
assignment

	Alias for parentnode.

	
short_displayname

	A short displayname for the group. If the assignment is anonymous,
we list the candidate IDs. If the group has a name, the name is used,
else we fall back to a comma separated list of usernames. If the group has no name and no
students, we use the ID.

See also

https://github.com/devilry/devilry-django/issues/498

	
long_displayname

	A long displayname for the group. If the assignment is anonymous,
we list the candidate IDs.

If the assignment is not anonymous, we use a comma separated list of
the displaynames (full names with fallback to username) of the
students. If the group has a name, we use the groupname with the names
of the students in parenthesis.

See also

https://github.com/devilry/devilry-django/issues/499

	
get_students()

	Get a string containing all students in the group separated by
comma and a space, like: superman, spiderman, batman.

WARNING: You should never use this method when the user is not
an administrator.

	
get_examiners(separator=u', ')

	Get a string contaning the username of all examiners in the group separated by
comma (',').

	Parameters:	separator – The unicode string used to separate candidates. Defaults to u', '.

	
is_examiner(user_obj)

	Return True if user is examiner on this assignment group

	
can_delete(user_obj)

	Check if the given user is permitted to delete this AssignmentGroup. A user is
permitted to delete an object if the user is superadmin, or if the user
is admin on the assignment (uses is_admin()). Only superusers
are allowed to delete AssignmentGroups where AssignmentGroup.is_empty() returns False.

Note

This method can also be used to check if candidates can be
removed from the group.

	Returns:	True if the user is permitted to delete this object.

	
is_empty()

	Returns True if this AssignmentGroup does not contain any deliveries.

	
get_active_deadline()

	Get the active Deadline.

This is always the last deadline on this group.

	Returns:	The latest deadline or None.

	
can_save(user_obj)

	Check if the user has permission to save this AssignmentGroup.

	
can_add_deliveries()

	Returns true if a student can add deliveries on this assignmentgroup

Both the assignmentgroups is_open attribute, and the periods start
and end time is checked.

	
copy_all_except_candidates()

	
Note

Always run this is a transaction.

	
pop_candidate(candidate)

	Make a copy of this group using copy_all_except_candidates, and
add given candidate to the copied group and remove the candidate from
this group.

	Parameters:	candidate – A devilry.apps.core.models.Candidate object.
The candidate must be among the candidates on this group.

Note

Always run this is a transaction.

	
recalculate_delivery_numbers()

	Query all successful deliveries on this AssignmentGroup, ordered by
time_of_delivery ascending, and number them with the oldest delivery
as number 1.

	
merge_into(target)

	Merge this AssignmentGroup into the target AssignmentGroup.
Algorithm:

	Copy in all candidates and examiners not already on the
AssignmentGroup.

	
	Delete all copies where the original is in self or target:

	
	Delete all deliveries from target that are copy_of a delivery
self.

	Delete all deliveries from self that are copy_of a delivery in
target.

	Loop through all deadlines in this AssignmentGroup, and for each
deadline:

If the datetime and text of the deadline matches one already in
target, move the remaining deliveries into the target deadline.

If the deadline and text does NOT match a deadline already in
target, change assignmentgroup of the deadline to the
master group.

	Recalculate delivery numbers of target using
recalculate_delivery_numbers().

	Run self.delete().

	Set the latest feedback on target as the active feedback.

Note

The target.name or target.is_open is not changed.

Note

Everything except setting the latest feedback runs in a
transaction. Setting the latest feedback does not run
in transaction because we need to save the with feedback=None,
and then set the new latest feedback to avoid IntegrityError.

	
classmethod merge_many_groups(sources, target)

	Loop through the sources-iterable, and for each source in the
iterator, run source.merge_into(target).

	
get_status()

	Get the status of the group. Calculated with this algorithm:

if ``delivery_status == 'waiting-for-something'``
 if assignment.delivery_types==NON_ELECTRONIC:
 "waiting-for-feedback"
 else
 if before deadline
 "waiting-for-deliveries"
 if after deadline:
 "waiting-for-feedback"
else
 delivery_status

AssignmentGroupTag

	
class devilry.apps.core.models.AssignmentGroupTag(*args, **kwargs)

	Bases: django.db.models.base.Model

An AssignmentGroup can be tagged with zero or more tags using this class.

	
assignment_group

	The AssignmentGroup where this groups belongs.

	
tag

	The tag. Max 20 characters. Can only contain a-z, A-Z, 0-9 and “_”.

Deadline

Each AssignmentGroup have zero or more deadlines.

	
class devilry.apps.core.models.Deadline(*args, **kwargs)

	Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin, devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer, devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate

A deadline on an AssignmentGroup. A deadline contains zero or more
deliveries, the time of the deadline and an optional text.

	
assignment_group

	The AssignmentGroup where the deadline is registered.

	
deadline

	The deadline a DateTimeField.

	
text

	A optional deadline text.

	
deliveries

	A django RelatedManager that holds the deliveries on this group.
NOTE: You should normally not use this directly, but rather use meth:.query_successful_deliveries.

	
deliveries_available_before_deadline

	Should deliveries on this deadline be available to examiners before the
deadline expires? This is set by students.

	
feedbacks_published

	If this boolean field is True, the student can see all
StaticFeedback objects associated with this Deadline through a
Delivery. See also Assignment.examiners_publish_feedbacks_directly.

	
added_by

	The User that added this deadline.
Can be None, and all deadlines created before Devilry
version 1.4.0 has this set to None.

New in version 1.4.0.

	
why_created

	Why was this deadline created? Valid choices:

	None: Why the deadline was created is unknown.

	"examiner-gave-another-chance": Created because the examiner
elected to give the student another chance to pass the assignment.

Can be None, and all deadlines created before Devilry
version 1.4.0 has this set to None.

New in version 1.4.0.

	
classmethod reduce_datetime_precision(datetimeobj)

	Reduce the precition of the datetimeobj to make it easier to
compare and harder to make distinct deadlines that is basically the
same time. We:

	Set seconds and microseconds to 0. This makes “Friday 14:59”,
“Friday 14:59:00” and “Friday 14:59:59” equal. We do not allow
specifying seconds in the UI, and handling this right in the core
makes this easier to handle across the board.

	Set tzinfo to None. We do not support timezones in Devilry, so including it makes no sense.

	Returns:	A copy of datetimeobj with second and microsecond set to 0, and tzinfo set to None.

	
clean(*args, **kwargs)

	Validate the deadline.

Always call this before save()! Read about validation here:
http://docs.djangoproject.com/en/dev/ref/models/instances/#id1

Raises ValidationError if:

	deadline is before Assignment.publishing_time.

	deadline is not before Period.end_time.

	
save(*args, **kwargs)

	

	Parameters:	autocreate_delivery_if_nonelectronic – Autocreate a delivery if this save creates the deadline,
and the assignment is non-electronic. Defaults to True.

	
query_successful_deliveries()

	Returns a django QuerySet that filters all the successful deliveries on this group.

	
is_empty()

	Returns True if this Deadline does not contain any deliveries.

	
can_delete(user_obj)

	Check if the given user is permitted to delete this object. A user is
permitted to delete an Deadline if the user is superadmin, or if the user
is admin on the assignment. Only superusers
are allowed to delete deadlines with any deliveries.

	Returns:	True if the user is permitted to delete this object.

	
copy(newgroup)

	Copy this deadline into newgroup, including all deliveries and
filemetas, with the actual file data.

Note

Always run this is a transaction.

Warning

This does not autoset the latest feedback as active on the group.
You need to handle that yourself after the copy.

	
is_in_the_future()

	Return True if this deadline is in the future.

	
is_in_the_past()

	Return True if this deadline is in the past.

	
has_text()

	Checks that the text is not None or an empty string.

Delivery

Examples

Simple example:

assignmentgroup = AssignmentGroup.objects.get(id=1)
assignmentgroup.deliveries.create(delivered_by=student1,
 successful=True)

More advanced example:

assignmentgroup = AssignmentGroup.objects.get(id=1)
delivery = assignmentgroup.deliveries.create(delivered_by=student1,
 successful=False)
delivery.add_file('test.py', ['print', 'hello world'])
delivery.add_file('test2.py', ['print "hi"'])
delivery.successful = True
delivery.save()

The input to add_file() will normally be a file-like object,
but as shown above it can be anything you want.

Delivery API

	
class devilry.apps.core.models.Delivery(*args, **kwargs)

	Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin, devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate, devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer

A class representing a given delivery from an AssignmentGroup.

How to create a delivery:

deadline = Deadline.objects.get(....)
candidate = Candidate.objects.get(....)
delivery = Delivery(
 deadline=deadline,
 delivered_by=candidate)
delivery.set_number()
delivery.full_clean()
delivery.save()

	
time_of_delivery

	A django.db.models.DateTimeField [http://docs.djangoproject.com/en/dev/ref/models/fields/#datetimefield] that holds the date and time the
Delivery was uploaded.

	
deadline

	A django.db.models.ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey] pointing to the Deadline for this Delivery.

	
number

	A django.db.models.fields.PositiveIntegerField with the delivery-number
within this assignment-group. This number is automatically
incremented within each assignmentgroup, starting from 1. Must be
unique within the assignment-group. Automatic incrementation is used
if number is None when calling save().

	
delivered_by

	A django.db.models.ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey] pointing to the user that uploaded
the Delivery

	
successful

	A django.db.models.BooleanField [http://docs.djangoproject.com/en/dev/ref/models/fields/#booleanfield] telling whether or not the Delivery
was successfully uploaded.

	
after_deadline

	A django.db.models.BooleanField [http://docs.djangoproject.com/en/dev/ref/models/fields/#booleanfield] telling whether or not the Delivery
was delived after deadline..

	
filemetas

	A set of filemetas for this delivery.

	
feedbacks

	A set of feedbacks on this delivery.

	
etag

	A DateTimeField containing the etag for this object.

	
copy_of

	Link to a delivery that this delivery is a copy of. This is set by Delivery.copy().

	
last_feedback

	The last StaticFeedback on this delivery. This is updated each time a feedback is added.

	
copy_of

	If this delivery is a copy of another delivery, this ForeignKey points to that other delivery.

	
copies

	The reverse of copy_of - a queryset that returns all copies of this delivery.

	
after_deadline

	Compares the deadline and time of delivery.
If time_of_delivery is greater than the deadline, return True.

	
classmethod q_is_candidate(user_obj)

	Returns a django.models.Q object matching Deliveries where
the given student is candidate.

	
is_last_delivery

	Returns True if this is the last delivery for this AssignmentGroup.

	
assignment_group

	Shortcut for self.deadline.assignment_group.assignment.

	
assignment

	Shortcut for self.deadline.assignment_group.assignment.

	
add_file(filename, iterable_data)

	Add a file to the delivery.

	Parameters:	
	filename – A filename as defined in FileMeta.

	iterable_data – A iterable yielding data that can be written to file using the
write() method of a storage backend (byte strings).

	
clean(*args, **kwargs)

	Validate the delivery.

	
copy(newdeadline)

	Copy this delivery, including all FileMeta’s and their files, and all
feedbacks into newdeadline. Sets the copy_of attribute of the
created delivery.

Note

Always run this in a transaction.

Warning

This does not autoset the latest feedback as feedback or
the last_delivery on the group.
You need to handle that yourself after the copy.

	Returns:	The newly created, cleaned and saved delivery.

	
is_electronic()

	Returns True if Delivery.delivery_type is 0 (electric).

	
is_nonelectronic()

	Returns True if Delivery.delivery_type is 1 (non-electric).

StaticFeedback

	
class devilry.apps.core.models.StaticFeedback(*args, **kwargs)

	Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin, devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer, devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate

Represents a feedback for a Delivery.

Each delivery can have zero or more feedbacks. Each StaticFeedback object stores
static data that an examiner has published on a delivery. StaticFeedback is
created and edited in a grade+feedback editor in a grade plugin, and
when an examiner choose to publish feedback, a static copy of the data
he/she created in the grade+feedback editor is stored in a StaticFeedback.

Feedbacks are only visible to students when
Deadline.feedbacks_published on the related deadline is True.
Feedbacks are related to Deadlines through its delivery.

Students are presented with the last feedback on a delivery, however they
can browse every StaticFeedback on their deliveries. This history is to protect
the student from administrators or examiners that change published
feedback to avoid that a student can make an issue out of a bad feedback.

NOTE: When a StaticFeedback is saved, the corresponding
AssignmentGroup.feedback is updated to the newly created
StaticFeedback.

	
rendered_view

	The rendered HTML view.

	
saved_by

	The django.contrib.auth.models.User [http://docs.djangoproject.com/en/dev/topics/auth/#users] that created the StaticFeedback.

	
save_timestamp

	Date/time when this feedback was created.

	
delivery

	A django.db.models.ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey] that points to the Delivery where this feedback belongs.

	
grade

	The grade as a short string (max 12 chars).

	
points

	The number of points (integer).

	
is_passing_grade

	Boolean is passing grade?

	
classmethod q_is_candidate(user_obj)

	Returns a django.models.Q object matching Deliveries where
the given student is candidate.

	
classmethod q_is_examiner(user_obj)

	Returns a django.models.Q object matching Feedbacks where
the given student is candidate.

	
classmethod from_points(points, assignment=None, **kwargs)

	Shortcut method to initialize the StaticFeedback object
from points.

Initializes a StaticFeedback with the given points, with grade
and is_passing_grade inferred from the points with the help
of devilry.apps.core.models.Assignment.points_to_grade()
and devilry.apps.core.models.Assignment.points_is_passing_grade().

Example:

feedback = StaticFeedback.from_points(
 assignment=myassignment,
 points=10,
 delivery=mydelivery,
 saved_by=someuser)
assert(feedback.id == None)
assert(feedback.grade != None)

	Parameters:	
	points – The number of points for the feedback.

	assignment – An Assignment object. Should be the assignment where delivery
this feedback is for belongs, but that is not checked.

Defaults to self.delivery.deadline.assignment_group.assignment.

We provide the ability to take the assignment as argument instead
of looking it up via self.delivery.deadline.assignment_group
because we want to to be efficient when creating feedback in bulk.

	kwargs – Extra kwargs for the StaticFeedback constructor.

	Returns:	An (unsaved) StaticFeedback.

	
save(*args, **kwargs)

	

	Parameters:	
	autoset_timestamp_to_now – Automatically set the timestamp-attribute of this model
to now? Defaults to True.

	autoupdate_related_models – Automatically update related models:

	Sets the last_feedback-attribute of self.delivery and saved the delivery.

	Sets the feedback and is_open attributes of
self.delivery.deadline.assignment_group to this feedback, and False.
Saves the AssignmentGroup.

Defaults to True.

	
copy(newdelivery)

	Copy this StaticFeedback into newdeadline.

Note

This only copies the StaticFeedback, not any data related to it
via any grade editors.

Warning

This does not autoset the feedback as active on the group or as latest on the delivery.
You need to handle that yourself after the copy.

FileMeta

	
class devilry.apps.core.models.FileMeta(*args, **kwargs)

	Bases: django.db.models.base.Model, devilry.apps.core.models.abstract_is_admin.AbstractIsAdmin, devilry.apps.core.models.abstract_is_examiner.AbstractIsExaminer, devilry.apps.core.models.abstract_is_candidate.AbstractIsCandidate

Represents the metadata for a file belonging to a Delivery.

A file meta is just information about a single file, which is stored in a
deliverystore. Use the deliverystore to manage the file
stored in its physical location. Example:

filemeta = FileMeta.objects.get(pk=0)
if filemeta.deliverystore.exists(filemeta):
 filemeta.deliverystore.remove(filemeta)

Write or read just as with the builtin open()
fobj = filemeta.deliverystore.write_open(filemeta)
fobj.write('Hello')
fobj.write('World')
fobj.close()
fobj = filemeta.deliverystore.read_open(filemeta)
print fobj.read()

See DeliveryStore for more details on deliverystores.

	
delivery

	

A django.db.models.ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#foreignkey] that points to the Delivery of
the given feedback.

	
filename

	Name of the file.

	
size

	Size of the file in bytes.

	
deliverystore

	The current DeliveryStore.
Class variable.

	
get_all_data_as_string()

	Get all data store in the deliverystore for this FileMeta as a string.
THIS IS ONLY FOR TESTING, and should NEVER be used for production code,
since it will eat all memory on the server for huge files.

	
copy(newdelivery)

	Copy this filemeta into newdelivery. Copies the database object and
the data in the deliverystore.

DevilryUserProfile

See also: The Devilry User object.

	
class devilry.apps.core.models.DevilryUserProfile(*args, **kwargs)

	Bases: django.db.models.base.Model

User profile with a one-to-one relation to django.contrib.auth.models.User.

Ment to be used as a Django user profile (AUTH_PROFILE_MODULE).

	
full_name

	Django splits names into first_name and last_name. They are only 30 chars each.
Read about why this is not a good idea here:

http://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/

Since we require support for any name, we use our own full_name
field, and ignore the one in Django. Max length 300.

	
languagecode

	Used to store the preferred language for a user.
Not required (The UI defaults to the default language)

	
get_displayname()

	Get a name for this user, preferrably the full name, but falls back to username of
that is unavailable.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

The Devilry User object

Django user

Devilry users are Django django.contrib.auth.models.User [http://docs.djangoproject.com/en/dev/topics/auth/#users] objects. However we only use a subset of the fields:

	username

	email

	is_superuser

	password (if authenticating using the default Django auth)

Additional data

Additional data is stored in a one-to-one relation to
devilry.apps.core.models.DevilryUserProfile. The profile object is
available through the devilryuserprofile attribute of any
django.contrib.auth.models.User [http://docs.djangoproject.com/en/dev/topics/auth/#users] object in devilry. It can be used in queries
just like any other one-to-one relation, like this:

from django.contrib.auth.models import User
supermen = User.objects.filter(devilryuserprofile__full_name__contains="Superman")

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

devilry.apps.core.deliverystore — DeliveryStore

A DeliveryStore is a place to put the files from deliveries. In more
technical terms, it is a place where each file related to a
devilry.apps.core.models.FileMeta is stored.

Selecting a DeliveryStore

Devilry on comes with one DeliveryStore ready for production use,
FsDeliveryStore. To enable a DeliveryStore, you have to set the
DELIVERY_STORE_BACKEND-setting in your settings.py like this:

DELIVERY_STORE_BACKEND = 'devilry.apps.core.deliverystore.FsDeliveryStore'

The FsDeliveryStore also require you to define where on the disk you wish to
store your files in the DELIVERY_STORE_ROOT-setting like this:

DELIVERY_STORE_ROOT = '/path/to/root/directory/of/my/deliverystore'

Creating your own DeliveryStore

To create your own DeliveryStore you have to implement
DeliveryStoreInterface. A good example is FsDeliveryStore:

class FsDeliveryStore(DeliveryStoreInterface):
 """
 Filesystem-based DeliveryStore suitable for production use.

 It stores files in a filesystem hierarcy with one directory for each
 Delivery, with the delivery-id as name. In each delivery-directory, the
 files are stored by FileMeta id.
 """
 def __init__(self, root=None):
 """
 :param root: The root-directory where files are stored. Defaults to the value of the ``DELIVERY_STORE_ROOT``-setting.
 """
 self.root = root or settings.DELIVERY_STORE_ROOT

 def _get_dirpath(self, delivery_obj):
 return join(self.root, str(delivery_obj.pk))

 def _get_filepath(self, filemeta_obj):
 return join(self._get_dirpath(filemeta_obj.delivery),
 str(filemeta_obj.pk))

 def read_open(self, filemeta_obj):
 filepath = self._get_filepath(filemeta_obj)
 if not exists(filepath):
 raise FileNotFoundError(filemeta_obj)
 return open(filepath, 'rb')

 def _create_dir(self, filemeta_obj):
 dirpath = self._get_dirpath(filemeta_obj.delivery)
 if not exists(dirpath):
 makedirs(dirpath)

 def write_open(self, filemeta_obj):
 self._create_dir(filemeta_obj)
 return open(self._get_filepath(filemeta_obj), 'wb')

 def remove(self, filemeta_obj):
 filepath = self._get_filepath(filemeta_obj)
 if not exists(filepath):
 raise FileNotFoundError(filemeta_obj)
 remove(filepath)

 def exists(self, filemeta_obj):
 filepath = self._get_filepath(filemeta_obj)
 return exists(filepath)

 def copy(self, filemeta_obj_from, filemeta_obj_to):
 frompath = self._get_filepath(filemeta_obj_from)
 topath = self._get_filepath(filemeta_obj_to)
 self._create_dir(filemeta_obj_to)
 shutil_copy(frompath, topath)

Testing your own DeliveryStore

We provide a mixing-class,
devilry.apps.core.testhelpers.DeliveryStoreTestMixin, for you to extend
when writing unit-tests for your DeliveryStore. Here is how we test
FsDeliveryStore:

class TestFsDeliveryStore(DeliveryStoreTestMixin, TestCase):
 def setUp(self):
 self.root = mkdtemp()
 super(TestFsDeliveryStore, self).setUp()

 def get_storageobj(self):
 return FsDeliveryStore(self.root)

 def tearDown(self):
 rmtree(self.root)

	
class devilry.apps.core.testhelpers.DeliveryStoreTestMixin

	Bases: devilry.apps.core.testhelper.TestHelper

Mixin-class that tests if
devilry.core.deliverystore.DeliveryStoreInterface is
implemented correctly.

You only need to override
get_storageobj(), and maybe setUp() and tearDown(),
but make sure you call super(..., self).setUp() if you override it.

You must mixin this class before django.test.TestCase like
so:

class TestMyDeliveryStore(DeliveryStoreTestMixin, django.test.TestCase):
 ...

	
get_storageobj()

	Return a object implementing
devilry.core.deliverystore.DeliveryStoreInterface

	
setUp()

	Make sure to call this if you override it in subclasses, or the
tests will fail.

Setting the DeliveryStore manually - for tests

You might need to set the DeliveryStore manually if you need to handle
deliveries in your own tests. Just set devilry.apps.core.FileMeta.deliveryStore
like this:

from django.test import TestCase
from devilry.apps.core.models import FileMeta, Delivery
from devilry.apps.core.deliverystore import MemoryDeliveryStore

class MyTest(TestCase):
 def test_something(self):
 FileMeta.deliverystore = MemoryDeliveryStore()
 delivery = Delivery.begin(assignmentgroup, user)
 delivery.add_file('hello.txt', ['hello', 'world'])
 delivery.finish()

The recommended production deliverystore

The recommended DeliveryStore is devilry.apps.core.deliverystore.FsHierDeliveryStore.

It stores files in a filesystem hierarcy with one directory for each
Delivery, with the delivery-id as name. In each delivery-directory, the
files are stored by FileMeta id.

Directory hierachy

The delivery directories are stored in a
hierarchy with two parent directories. The parent directories are numeric intervals.
We have one top-level directory for each N in interval_size*interval_size*N. Within each
toplevel directory, we have one subdirectory for each N in
interval_size*N.

Directory hierarchy example

For interval_size of 1000, this will use the following hierarchy:

0/
 0/
 0/
 1/
 .
 .
 1/
 1000/
 2000/
 .
 .
 2/
 .
 .
 999/
1/
 0/
 1000000/
 1000001/
 .
 .
 1/
 1001000/
 1001001/
 2/
 .
 .
 999/
2/
.
.
999/

API

	
exception devilry.apps.core.deliverystore.FileNotFoundError(filemeta_obj)

	Bases: exceptions.Exception

Exception to be raised when the remove method of a DeliveryStore
does not find the given file.

	
class devilry.apps.core.deliverystore.DeliveryStoreInterface

	Bases: object

The interface all deliverystores must implement. All methods raise
NotImplementedError.

	
read_open(filemeta_obj)

	Return a file-like object opened for reading.

The returned object must have close() and read() methods
as defined by the documentation of the standard python file-class.

	Parameters:	filemeta_obj – A devilry.core.models.FileMeta-object.

	
write_open(filemeta_obj)

	Return a file-like object opened for writing.

The returned object must have close() and write() methods as
defined by the documentation of the standard python file-class.

	Parameters:	filemeta_obj – A devilry.core.models.FileMeta-object.

	
remove(filemeta_obj)

	Remove the file.

Note that this method is called before the filemeta_obj is
removed. This means that the file might be removed, and the removal
of the filemeta_obj can still fail. To prevent users from having to
manually resolve such cases implementations should check if the file
exists, and raise FileNotFoundError if it does not.

The calling function has to check for FileNotFoundError and
handle any other error.

	Parameters:	filemeta_obj – A devilry.core.models.FileMeta-object.

	
exists(filemeta_obj)

	Return True if the file exists, False if not.

	Parameters:	filemeta_obj – A devilry.core.models.FileMeta-object.

	
copy(filemeta_obj_from, filemeta_obj_to)

	Copy the underlying file-object for filemeta_obj_from into the
file-object for filemeta_obj_to.

Defaults to an inefficient implementation using read_open() and
meth:.write_open. Should be overridden for backends with some form of
native copy-capability.

	
class devilry.apps.core.deliverystore.FsDeliveryStore(root=None)

	Bases: devilry.apps.core.deliverystore.DeliveryStoreInterface

Filesystem-based DeliveryStore suitable for production use.

It stores files in a filesystem hierarcy with one directory for each
Delivery, with the delivery-id as name. In each delivery-directory, the
files are stored by FileMeta id.

	Parameters:	root – The root-directory where files are stored. Defaults to the value of the DELIVERY_STORE_ROOT-setting.

	
class devilry.apps.core.deliverystore.FsHierDeliveryStore(root=None, interval=None)

	Bases: devilry.apps.core.deliverystore.FsDeliveryStore

Filesystem-based DeliveryStore suitable for production use with huge
amounts of deliveries.

	Parameters:	
	root – The root-directory where files are stored. Defaults to
the value of the DEVILRY_FSHIERDELIVERYSTORE_ROOT-setting.

	interval – The interval. Defaults to
the value of the DEVILRY_FSHIERDELIVERYSTORE_INTERVAL-setting.

	
get_path_from_deliveryid(deliveryid)

	>>> fs = FsHierDeliveryStore('/stuff/', interval=1000)
>>> fs.get_path_from_deliveryid(deliveryid=2001000)
(2, 1)
>>> fs.get_path_from_deliveryid(deliveryid=1000)
(0, 1)
>>> fs.get_path_from_deliveryid(deliveryid=1005)
(0, 1)
>>> fs.get_path_from_deliveryid(deliveryid=2005)
(0, 2)
>>> fs.get_path_from_deliveryid(deliveryid=0)
(0, 0)
>>> fs.get_path_from_deliveryid(deliveryid=1)
(0, 0)
>>> fs.get_path_from_deliveryid(deliveryid=1000000)
(1, 0)

	
class devilry.apps.core.deliverystore.MemoryDeliveryStore

	Bases: devilry.apps.core.deliverystore.DeliveryStoreInterface

Memory-base DeliveryStore ONLY FOR TESTING.

This is only for testing, and it does not handle parallel access.
Suitable for unittesting.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

devilry.utils — Various utility functions

	devilry.utils.assignmentgroup

	devilry.utils.ordereddict

	devilry.utils.delivery_collection

	devilry.utils.groupnodes

	devilry.utils.devilry_email

	devilry.utils.groups_groupedby_relatedstudent_and_assignment
	Example

	API

There are more utils than the ones listed above. Read the source. The most useful is probably:

	devilry.utils.passed_in_previous_period — Find students that passed the course in previous periods/semesters.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	devilry.utils — Various utility functions

devilry.utils.assignmentgroup

	
class devilry.utils.assignmentgroup.GroupDeliveriesByDeadline(group)

	Deliveries on an assignmentgroup is returned in a list of tuples, where
each tuple contains the deadline, and all the deliveries on that deadline.
If the default deadline (head) contains no deliveries, it is ignored.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	devilry.utils — Various utility functions

devilry.utils.ordereddict

	
class devilry.utils.OrderedDict

	If python version >=2.7, collections.OrderedDict [http://docs.python.org/dev/library/collections.html#ordereddict-objects] is imported. For older
python versions, the fallback mentioned in the OrderedDict docs is
imported.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	devilry.utils — Various utility functions

devilry.utils.delivery_collection

	
class devilry.utils.delivery_collection.ArchiveException

	Bases: exceptions.Exception

Archive exceptions

	
devilry.utils.delivery_collection.create_archive_from_assignmentgroups(request, assignmentgroups, file_name, archive_type)

	Creates an archive of type archive_type, named file_name, containing all the
deliveries in each of the assignmentgroups in the list assignmentgroups.

	
devilry.utils.delivery_collection.create_archive_from_delivery(request, delivery, archive_type)

	Creates an archive of type archive_type, named assignment.get_path(),
containing all files in the delivery.

	
devilry.utils.delivery_collection.iter_archive_deliveries(archive, group_name, directory_prefix, deliveries)

	Adds files one by one from the list of deliveries into the archive.
After writing each file to the archive, the new bytes in the archive
is yielded. If a file is bigger than DEVILRY_MAX_ARCHIVE_CHUNK_SIZE,
only DEVILRY_MAX_ARCHIVE_CHUNK_SIZE bytes are written before it’s yielded.
The returned object is an iterator.

	
devilry.utils.delivery_collection.iter_archive_assignmentgroups(archive, assignmentgroups)

	Creates an archive, adds files delivered by the assignmentgroups
and yields the data.

	
devilry.utils.delivery_collection.verify_groups_not_exceeding_max_file_size(assignmentgroups)

	For each assignmentgroups in groups, calls
verify_deliveries_not_exceeding_max_file_size(). If the size of a file
in a delivery exceeds the settings.DEVILRY_MAX_ARCHIVE_CHUNK_SIZE, an
ArchiveException is raised.

	
devilry.utils.delivery_collection.verify_deliveries_not_exceeding_max_file_size(deliveries)

	Goes through all the files in each deliverery, and if the size of a file
exceeds the DEVILRY_MAX_ARCHIVE_CHUNK_SIZE, an ArchiveException is raised.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	devilry.utils — Various utility functions

devilry.utils.groupnodes

	
class devilry.utils.GroupNode

	The node object containing a node, and GroupNode children.

	
group_assignmentgroups(assignment_group_list)

	Creates a tree where each assignmentgroup is represented as a GroupNode.
assignmentgroups with the same parent (period) are grouped together.

	
group_assignments(assignment_list)

	Creates a tree where each assignment is represented as a GroupNode.
assignments with the same parent (period) are grouped together.

	
group_nodes(node_list, tree_height)

	Creates a tree where each node is represented as a GroupNode.
nodes with the same parent (period) are grouped together.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	devilry.utils — Various utility functions

devilry.utils.devilry_email

	
exception NoEmailAddressException

	Raised when email adress is missing on users.

	
send_email(user_objects_to_send_to, subject, message)

	Send email to the list of users in user_objects_to_send_to

	
send_email_admins(subject, message, fail_silently=False)

	Send email to admins registered in settings.ADMINS.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	devilry.utils — Various utility functions

devilry.utils.groups_groupedby_relatedstudent_and_assignment

Provides an easy-to-use API for generating overviews over the results of all students in a period.
Collects students that are not related as well as related.

Example

Create CSV with the grades of all students on the period, including those ignored because they
are not related:

grouper = GroupsGroupedByRelatedStudentAndAssignment(myperiod)

header = ['USER','IGNORED']
for assignment in grouper.iter_assignments():
 header.append(assignment.short_name)
print ';'.join(header)

def print_aggregated_relstudentinfo(aggregated_relstudentinfo, ignored):
 user = aggregated_relstudentinfo.user
 row = [user.username, ignored]
 for grouplist in aggregated_relstudentinfo.iter_groups_by_assignment():
 # NOTE: There can be more than one group if the same student is in more than one
 # group on an assignment - we select the "best" feedback.
 feedback = grouplist.get_feedback_with_most_points()
 if feedback:
 row.append(feedback.grade)
 else:
 row.append('NO-FEEDBACK')
 print ';'.join(row)

Print all related students
for aggregated_relstudentinfo in grouper.iter_relatedstudents_with_results():
 print_aggregated_relstudentinfo(aggregated_relstudentinfo, 'NO')

Last we print the ignored students (non-related students that are in a group)
for aggregated_relstudentinfo in grouper.iter_students_with_feedback_that_is_candidate_but_not_in_related():
 print_aggregated_relstudentinfo(aggregated_relstudentinfo, 'YES')

API

	
class devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupList

	Bases: list

Represents a list of devilry.apps.core.models.AssignmentGroup objects,
with utility functions for commonly needed actions. The list is ment to hold
groups where the same student in candidate on a single assignment, and the
utilities is ment to make it easier to work with the added complexity of
supporting the same user in multiple groups on a single assignment.

	
get_feedback_with_most_points()

	Get the devilry.apps.core.models.StaticFeedback with the most points in the list.

	
get_best_gradestring()

	Uses get_feedback_with_most_points() to get the feedback with most points,
and returns the grade-attribute of that feedaback.

	Returns:	The grade or None.

	
class devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo(user, assignments, relatedstudent=None)

	Bases: object

Used by GroupsGroupedByRelatedStudentAndAssignment to stores all results for a
single student on a period.

	
user = None

	The Django user object for the student.

	
assignments = None

	Dict of assignments where the key is the assignment-id, and the value is a GroupList.

	
relatedstudent = None

	The devilry.apps.core.models.RelatedStudent for users that are related students.
This is only available for the objects returned by
GroupsGroupedByRelatedStudentAndAssignment.iter_relatedstudents_with_results(),
and not for the objects returned by the ignored students iterators.

	
iter_groups_by_assignment()

	Returns an iterator over all GroupList objects for this student.
Shortcut for self.assignments.itervalues().

	
add_group(group)

	Used by GroupsGroupedByRelatedStudentAndAssignment to add groups.

	
prettyprint()

	Prettyprint for debugging.

	
class devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment(period)

	Bases: object

Provides an easy-to-use API for overviews over the results of all students
in a period.

	Parameters:	period – A devilry.apps.core.models.Period object.

	
get_assignment_queryset()

	Get the queryset used to fetch all assignments on the period.
Override for custom ordering or if you need to optimize the query for
your usecase (select_related, prefetch_related, etc.)

	
get_relatedstudents_queryset()

	Get the queryset used to fetch all relatedstudents on the period.
Override if you need to optimize the query for your usecase
(select_related, prefetch_related, etc.)

	
get_groups_queryset()

	Get the queryset used to fetch all groups on the period.
Override if you need to optimize the query for your usecase
(select_related, prefetch_related, etc.)

	
iter_assignments()

	Iterate over all the assignments, yielding Assignment-objects. The objects
are iterated in the order returned by get_assignment_queryset().

	
iter_relatedstudents_with_results()

	Iterate over all relatedstudents, yielding a dict with the following attributes for each
related student:

	user

	The Django user-object for the student.

	assignments

	An OrderedDict, ordered the same as iter_assignments(), where the key is
the assignment-id, and the value is a list of AssignmentGroup-objects where the user
is candidate. The list may have 0 or more groups, 0 if the user is not in any group
on the assignment, and more than 1 if the user is in more than one group on the
assignment.

	
iter_students_that_is_candidate_but_not_in_related()

	Iterate over the students that is candidate on one or more groups, but not registered as
related students.

This iterator includes everything yielded by both:

	iter_students_with_feedback_that_is_candidate_but_not_in_related()

	iter_students_with_no_feedback_that_is_candidate_but_not_in_related()

	
iter_students_with_feedback_that_is_candidate_but_not_in_related()

	Same as iter_students_that_is_candidate_but_not_in_related(), but it does not include
the students that have no feedback.

	
iter_students_with_no_feedback_that_is_candidate_but_not_in_related()

	Iterate over everything returned by
iter_students_that_is_candidate_but_not_in_related()
except for the students returned by
iter_students_with_feedback_that_is_candidate_but_not_in_related()

	
serialize()

	Serialize all the collected data as plain python objects.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

Developing and testing Celery background tasks

How Celery is configured

Celery [http://celery.readthedocs.org/] is configured according to the Celery first steps with Django [http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html] guide. The
app is in devilry.project.common.celery, and it is imported as celery_app in
devilry/project/common/__init__.py.

For production, we leave the configuration up to sysadmins.

For development, we default to running Celery in eager mode, but we have commented out settings
in devilry.project.develop.develop for “real” Celery testing. Eager mode means that
all celery tasks runs in blocking mode in the current thread, so celery tasks runs just like any other
function.

For unit tests, we run Celery in eager mode (configured in devilry.project.develop.test).

Testing with non-eager Celery

Install Redis

See https://redis.io/. On Mac OSX, you can install Redis using Homebrew:

$ brew install redis

Start the Redis server

To start the redis server, run:

$ redis-server

To stop the server, run:

$ redis-server stop

To stop the server on OSX, run:

$ redis-cli shutdown

Start the Celery worker

Run:

$ celery -A devilry.project.common worker -l debug

It should print some info about the config, the tasks that it detects in Devilry,
and stop for input with the following message: celery@<your machine name> is ready.

Try one of the test-tasks

Open the Django shell, and run one the test-tasks (while Redis and the Celery worker are both running):

$ python manage.py shell
>>> from devilry.project.develop.tasks import add
>>> result = add.delay(10, 20)
>>> result.wait()
30

If this works, Celery is configured correctly, and you should be able to see the job in
the terminal where the worker is running.

Things to remember

(when running Celery tasks through the Celery worker)

	The output (stdout and stderr) goes to the Celery worker, not to runserver.

	You can get more verbose output from the worker with worker -l debug.

Testing email sending with django-celery-email

Uncomment the following lines in devilry.project.develop.settings.develop:

INSTALLED_APPS += ['djcelery_email']
EMAIL_BACKEND = 'djcelery_email.backends.CeleryEmailBackend'
CELERY_EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"

And run the following in the Django shell:

>>> from django.contrib.auth import get_user_model
>>> from devilry.utils.devilry_email import send_message
>>> send_message('Testsubject', 'Testmessage', get_user_model().objects.get(username='april'))

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

How to write a plugin

Warning

Plugins will be phased out in 2.1.0 when we update to Django 1.7.

A plugin is basically just a normal Django application. The only thing making
it a pugin is that it integrates itself into the Devilry system in some way.

Setting up your testsite

In this howto we assume you have created a django site, mysite/, and
and that your plugin is a application in this site called myplugin. It should
look something like this:

mysite/
 settings.py
 manage.py
 urls.py
 myplugin/
 models.py
 urls.py

Autoload plugins

There are several ways a plugin can integrate itself, but they all need some
place to do the integration. Just like admin.py can be used to integrate
your application with the Django admin interface, devilry provides a place
where you can put code that you want to autoload.

First initialize the plugin system by adding:

from devilry.apps.core import pluginloader
pluginloader.autodiscover()

to your mysite/urls.py, making it look something like this:

from django.conf.urls import *

Uncomment the next two lines to enable the admin:
#from django.contrib import admin
#admin.autodiscover()

from devilry.apps.core import pluginloader
pluginloader.autodiscover()

urlpatterns = patterns('',
 # Example:
 # (r'^mysite/', include('mysite.foo.urls')),

 # Uncomment the admin/doc line below and add 'django.contrib.admindocs'
 # to INSTALLED_APPS to enable admin documentation:
 # (r'^admin/doc/', include('django.contrib.admindocs.urls')),

 # Uncomment the next line to enable the admin:
 # (r'^admin/', include(admin.site.urls)),
)

pluginloader.autodiscover() will autoload any module named
devilry_plugin in any application in INSTALLED_APPS.

Your first plugin

Create a file named mysite/myplugin/devilry_plugin.py, and put the
following code into the file:

print
print "Hello plugin world!"
print

Start the development server with python manage.py runserver, go to
http://localhost:8000/ and you should see the message you printed in the
terminal/shell running the server.

Plugin errors

pluginloader.autodiscover() will fail if you have any errors in your
devilry_plugin-module. It will not auto-reload failed modules before you
restart the server.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

Devilry localization/internationalization/translation

Devilry uses the Django localization platform/system. This means that:

	Our translations are in the gettext .po format.

	We mark translation strings in Python code, templates and in JavaScript.

For the actual translation process, we use transifex.com.

Warning

Pushing files to Transifex requires you to be part of the Devilry core
developer team.

If you are a normal developer and not responsible for
managing translations, you just need to make sure to mark all trings
for translation as described in the Django docs.

If you are a translator, you only need to ask for permission
to the translation catalogs for you languages in our Transifex
project, and none of the information in these docs should concern you.

How we organize the translations

All translations are added to devilry/locale/. We do not add translation
per app for the following reasons:

	There are lots of overlapping translation strings.

	Easier to upload and maintain a single translation catalog on Transifex.

Configure Transifex

Before you can start pushing and pulling translation files
to/from Transifex, you will need to create a ~/.transifexrc. It
should look like this:

[https://www.transifex.com]
hostname = https://www.transifex.com
username = myuser
password = supersecret
token =

More information here: http://docs.transifex.com/developer/client/config.

Translation process

We translate using Transifex. This means that the workflow is:

	Mark new translations or change existing translations.

	Build the translation files (.po files).

	Push translation files (.po files) to Transifex.

	Wait for translators to translate using Transifex.

	Pull translation files (.po files) from Transifex.

	Compile translations and commit the .mo files.

Below we go in detail for each of these steps. All commands assume the
following:

$ cd /path/to/reporoot
$ workon devilry-django

Mark new translations or change existing translations

Read the Django internationalization docs.

Build the translation files

First, make sure you have the latest po-files from transifex:

$ tx pull

We have a fabric task for that:

$ fab makemessages

Commit the changes to the .po-files in devilry/locale/.

Push translation files to Transifex

Run:

$ tx push -s -t

to push the .po files to transifex.

Compile translations and commit the .mo files

We have a fabric task for compiling the translations:

$ cd /path/to/reporoot
$ workon devilry-django
$ fab compilemessages

This should change some .mo-files in devilry/locale/. Commit those files.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

JavaScript — Libraries and guidelines/code style

Most of our UIs are developed in JavaScript using the ExtJS4 framework from Secha (http://sencha.com).

Libraries

At the time of writing, we only use ExtJS4. We are open to including more libraries, but we have not
had the need yet.

Guidelines and code style

	Indent

	4 spaces

	Naming

	Real meaningful names like:

var age = 10;
var username_to_name_map = {peterpan: 'Peter', wendy: 'Wendy'};

NOT:

var a = 10;
var u = {peterpan: 'Peter', wendy: 'Wendy'};
var usrmap = {peterpan: 'Peter', wendy: 'Wendy'};

	Private methods and functions

	Same format as semi-private python methods/functions (prefix by _):

_my_private_method: function() {
 return null;
}

	Code format

	Should pass without any errors from JSHint (see JSHint).

	Code layout

	The ExtJS app layout. See the devilry_subjectadmin app and the ExtJS4 docs.

	Documentation

	Use the JSDuck format (https://github.com/senchalabs/jsduck). Note that you do not have to
document every single function, but you should at least document:

	Functions, methods and variables used outside its context (I.E.: you do not have to
document view-functions that is only used by its controller, but you have to document it
of multiple controllers use it).

	Properties and config parameters for ExtJS classes.

	Events for ExtJS classes, especially if they are used outside their controller.

	File naming

	Name controllers by what the control (E.g: controller/period/PeriodController.js), and the
views after their purpose (E.g.: view/period/PeriodOverview.js). Try to use unique names
instead of generic names like Overview.js. To see why, try to find (quick open) a file with
tens of matches in an IDE like PyCharm or Eclipse that only search for file names, not for
folder names (hint: it is not quick to open such files). We learned this when developing
devilry_subjectadmin with controllers and views named Overview.js.

JSHint

For info about JSHint, see http://www.jshint.com/.

Install

Install NodeJS and Node Package Manager (part of NodeJS):

	Ubuntu: sudo apt-get install nodejs npm

	OSX with homebrew: brew install npm

	Others, see: http://nodejs.org/

Install JSHint in /usr/local on most nix systems, like Linux and OSX:

$ sudo npm install jshint -g

Usage

Simply point JSHint at a directory:

$ jshint src/devilry_subjectadmin/devilry_subjectadmin/static/devilry_subjectadmin/app/

The defaults are sane (unlike JSLint), so you should not need to supply any options.

Building the ExtJS javascript apps

Note

This is only needed if you have made changes to javascript sources, or if you are making
your own ExtJS app.

Building

We use webpack for building javascript. Go into the static directory of the app,
where package.json and webpack.develop.js is, and run npm run jsbuild to build
for development, and npm run jsbuild-production to build for production. If this
is the first time you build javascript for the app, you must run npm install first.

Example:

$ cd devilry/devilry_subjectadmin/static/devilry_subjectadmin
$ npm install
$ npm run jsbuild

During development, you should use:

$ npm run jsbuild-watch

When the code is stable, you should build for production with:

$ npm run jsbuild-production

and commit the changes to production.js and production.js.map

Testing a production build

Change the EXTJS4_DEBUG setting to False in devilry/project/develop/settings/develop.py.
This should make all the javascript views serve production.js instead of debug.js.

Update old sencha tools app to build with Webpack

Run the following management command:

$ python manage.py make_require_statements_from_jsb3 <appname> devilry/<appname>/static/<appname>/app.jsb3
$... E.g.: ...
$ python manage.py make_require_statements_from_jsb3 devilry_nodeadmin devilry/devilry_nodeadmin/static/devilry_nodeadmin/app.jsb3

This will create an entry.js file with require statements for all the required
files extracted from the app.jsb3 file.

Copy the webpack.develop.config.js and webpack.production.config.js files from
devilry/devilry_nodeadmin/static/devilry_nodeadmin into the app. Update the
package.json file to contain the weback requirements and scripts from
devilry/devilry_nodeadmin/static/devilry_nodeadmin/package.json

You should now be able to follow the building guide above. You should now run both
npm run jsbuild and npm run jsbuild-production, and commit the
generated debug.js, production.js and production.js.map.

The last thing you need to do is to make the view that serves the javascript
to inherit from devilry.devilry_extjsextras.views.DevilryExtjs4AppView instead
of from Extjs4AppView. You should not need to make any other changes, just
switch the superclass of the view.

If the javascript builds, and you have changed the superclass of the view,
you should now be able to test the code in your browser. Make sure to
check the network tab in chrome developer tools to ensure that the
view serves:

	debug.js instead of app.js with the EXTJS4_DEBUG setting set to True.

	production.js` instead of ``app-all.js with the EXTJS4_DEBUG setting set to False.

When you have verified that both development and production builds work, you can remove:

	app-all.js

	app.jsb3

	all-classes.js

(they are all replaced by webpack + entry.js).

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

devilry_subjectadmin — Subject administrator GUI

About the app

The subjectadmin app provides a GUI for administrators on Subject, Period and
Assignment, including a dashboard.

JavaScript

The application is mostly written in JavaScript as an ExtJS app.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

devilry_qualifiesforexam

Database models, APIs and UI for qualifying students for final exams.

UI workflow

How users are qualified for final exam i plugin-based. The subject/period admin is taken through
a wizard with the following steps/pages:

	
	If no configuration exists for the period:

	List the title and description of each plugin (see Plugins below),
and let the user select the plugin they want to use. The selection is stored in
QualifiesForFinalExamPeriodStatus.plugin.

	If a configuration exists for the period:

	Show the overview of the semester (basically the same as the preview described as page 3 below).
Includes a button to change the configuration. Clicking this button will show the list
of plugins, just like when no configuration exists, with the previously used plugin
selected. The change-button is only available on active periods.

	Completely controlled by the plugin. May be more than one page if that should be needed by
the plugin. The plugin can also just redirect directly to the next page if it does not require
any input from the user. We supply a box with save and back buttons that should be the same
for all plugins.

	Preview the results with the option to save or go back to the previous page.

Plugins

A plugin is a regular Django app. Your best source for a simple example is the
devilry_qualifiesforexam_approved-module which contains two plugins. You will find the
package in the src/-directory of the devilry repository.

The role of the plugin

A plugin is basically one or more Django views that, for the qualifies-for-exam system, acts like
a black box with the following input and output:

	The input is a dict store by the qualifies-for-exam system in the users session (request.session):

	periodid

	The ID of the class:devilry.apps.core.models.Period.

	pluginsessionid

	An ID that is generated by the qualifies-for-exam system. It is used to ensure that
we do not get session key collisions when using the wizard from multiple browser windows at
the same time.

	The output is a devilry_qualifiesforexam.pluginhelpers.PreviewData-object stored in the
users session (request.session) under the qualifiesforexam-<pluginsessionid> key. The
output object is used by the REST-api that generates the preview-data.

Registering an app as a qualifiesforexam plugin

Add something like the following to yourapp/devilry_plugin.py:

from devilry_qualifiesforexam.registry import qualifiesforexam_plugins
from django.core.urlresolvers import reverse
from django.utils.translation import ugettext_lazy as _

qualifiesforexam_plugins.add(
 id='myapp',
 url=reverse('myapp-myplugin'), # The url of the view to use for step/page 2 in the workflow - the input parameters (see above) is added to this url.
 title=_('My plugin'),
 description=_('Does this and that.')
)

Create the view

See Plugin helpers and take a look at the sourcecode for
devilry_qualifiesforexam_approved (in the src/ directory of the Devilry sources).

Configure available plugins

Available plugins are configured in settings.DEVILRY_QUALIFIESFOREXAM_PLUGINS, which is
a list of plugin ids. Note that the apps containing the plugin must also be in
settings.INSTALLED_APPS, and the urls must be registered.
The plugins are shown in listed order on page 1 of the wizard described in the
UI workflow.

Note

You can safely remove plugins from settings.DEVILRY_QUALIFIESFOREXAM_PLUGINS.
They will simply not be available in the list of plugins in the
UI workflow.

Write tests

If you want your plugin to be considered for inclusion in Devilry you will have to write good
tests. These plugins handle very sensitive data, so it would be madness to deploy them in production
without proper tests. We provide a helper-mixin for tests,
devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin, which you should
use. See the tests-module in devilry_qualifiesforexam_approved for examples.

Plugin helpers

The mixin classes

QualifiesForExamPluginViewMixin is a mixin class
that simplifies the common tasks for all plugin views (getting input and setting
output).

Basic usage

Basic usage of the class turns the input and output steps described in
The role of the plugin into two methods:
get_plugin_input_and_authenticate(), save_plugin_output(). Those two
methods greatly simplify writing plugins. For example, we can create a view like this:

from django.views.generic import View
class MyPluginView(View, QualifiesForExamPluginViewMixin):
 def post(self, request):
 try:
 self.get_plugin_input_and_authenticate()
 except PermissionDenied:
 return HttpResponseForbidden()
 # Your code to detect passing students
 passing_relatedstudentsids = [1,2,3]
 self.save_plugin_output(passing_relatedstudentsids)
 return HttpResponseRedirect(self.get_preview_url())

A more complete example

The example above is very simple. You will usually have to iterate over all the students in a
period to find out who qualifies:

from django.views.generic import View
from devilry_qualifiesforexam.pluginhelpers import PeriodResultsCollector
from devilry_qualifiesforexam.pluginhelpers import QualifiesForExamPluginViewMixin

class MyPeriodResultsCollector(PeriodResultsCollector):
 def student_qualifies_for_exam(self, aggregated_relstudentinfo):
 # Test if the student in the AggreatedRelatedStudentInfo qualifies.
 # Typically something like this (all students must pass all assignments):
 for assignmentid, grouplist in aggregated_relstudentinfo.assignments.iteritems():
 feedback = grouplist.get_feedback_with_most_points()
 if not feedback or not feedback.is_passing_grade:
 return False
 return True

class MyPluginView(View, QualifiesForExamPluginViewMixin):
 def post(self, request):
 try:
 self.get_plugin_input_and_authenticate()
 except PermissionDenied:
 return HttpResponseForbidden()
 # Your code to detect passing students
 passing_relatedstudentsids = MyPeriodResultsCollector().get_relatedstudents_that_qualify_for_exam()
 self.save_plugin_output(passing_relatedstudentsids)
 return HttpResponseRedirect(self.get_preview_url())

	
class devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin

	
	
periodid

	The ID of the period — set by get_plugin_input().

	
period

	The period object loaded using the django.shortcuts.get_object_or_404() —
set by get_plugin_input().

	
pluginsessionid

	The pluginsessionid described in The role of the plugin —
set by get_plugin_input().

	
get_plugin_input_and_authenticate()

	Reads the parameters (periodid and pluginsessionid) from
the querystring and store them as in the following instance
variables: periodid, period, pluginsessionid.

	Raise:	django.core.exceptions.PermissionDenied if the request user is not
administrator on the period.

	
save_plugin_output(*args, **kwargs)

	Shortcut that saves a PreviewData in the session key generated
using create_sessionkey(). Args and kwargs are forwarded to PreviewData.

	
save_settings_in_session(settings)

	Save settings in the session. You get this back as an argument to your
post_statussave-handler if your plugin is configured with uses_settings=True.

	
get_preview_url()

	Get the preview URL - the URL you must redirect to after saving the output
(save_plugin_output()) to proceed to the preview.

	
get_selectplugin_url()

	Get the preview URL - the URL you should navigate to when users select Back from
your plugin view.

	
redirect_to_preview_url()

	Returns a HttpResponseRedirect that redirects to get_preview_url().

Helper for unit tests

	
class devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin

	Mixin-class for test-cases for plugin-views (the views that typically inherit from
QualifiesForExamPluginViewMixin). This class has a couple of helpers that
simplifies writing tests, and some unimplemented methods that ensure you do not forget
to write permission tests.

Note

If you use this class as base for your tests, your chances of getting a plugin approved
for inclusion as part of Devilry is greatly increased. You have to include at least one
test in addition to the unimplemented tests, a test that uses a realistic dataset
to make sure your plugin behaves as intended (E.g.: Approves/disapproves the expected
students). You may need more than one extra test if your plugin is complex.

	
testhelper

	A devilry.apps.core.testhelper.TestHelper-object which is required for
create_feedbacks() and create_relatedstudent() to work.

Typcally created with something like this in setUp:

from django.test import TestCase
from devilry.apps.core.testhelper import TestHelper

class TestMyPluginView(TestCase, QualifiesForExamPluginTestMixin):
 def setUp(self):
 self.testhelper = TestHelper()

 # Create:
 # - the uni-node with ``uniadmin`` as admin
 # - the uni.sub.p1 period with ``periodadmin`` as admin.
 # - the a1 and a2 assignments within ``p1``, with separate groups on each
 # assignment for student1 and student2, and with examiner1 as examiner.
 # - a deadline on each group
 self.testhelper.add(nodes='uni:admin(uniadmin)',
 subjects=['sub'],
 periods=['p1:admin(periodadmin):begins(-3):ends(6)'],
 assignments=['a1', 'a2'],
 assignmentgroups=[
 'gstudent1:candidate(student1):examiner(examiner1)',
 'gstudent2:candidate(student2):examiner(examiner1)'],
 deadlines=['d1:ends(10)']
)

	
period

	The period you use in your tests. Needs to be set in the setUp-method for
create_relatedstudent() to work. Typically defined with the following code
after the core in the example in testhelper:

self.period = self.testhelper.sub_p1

	
create_relatedstudent(username)

	Create and return a related student on the period. A user with the given
username is created if it does not exist.

	
create_feedbacks(*feedbacks):

	Create feedbacks on groups from the given list of feedbacks.

	Parameters:	feedbacks – Each item in the arguments list is a (group, feedback) tuple where group
is the devilry.apps.core.models.AssignmentGroup-object that it to be given
feedback, and feedbacks is a dict with attributes for the
devilry.apps.core.models.StaticFeedback with the following keys:

	grade

	See devilry.apps.core.models.StaticFeedback.grade.

	points

	See devilry.apps.core.models.StaticFeedback.points.

	is_passing_grade

	See devilry.apps.core.models.StaticFeedback.is_passing_grade.

A delivery to save the feedback on is created automatically, so all that is needed
of the groups is an examiner, a candidate and a deadline.

Example:

self.create_feedbacks(
 (self.testhelper.sub_p1_a1_gstudent2, {'grade': 'B', 'points': 86, 'is_passing_grade': True}),
 (self.testhelper.sub_p1_a2_gstudent2, {'grade': 'A', 'points': 97, 'is_passing_grade': True})
)

	
test_perms_as_periodadmin()

	Must be implemented in subclasses.

	
test_perms_as_nodeadmin()

	Must be implemented in subclasses.

	
test_perms_as_superuser

	Must be implemented in subclasses.

	
test_perms_as_nobody

	Must be implemented in subclasses.

	
test_invalid_period

	Must be implemented in subclasses.

Other helpers

	
class devilry_qualifiesforexam.pluginhelpers.PreviewData(passing_relatedstudentids)

	Stores the output from a plugin. You should not need to use this directly. Use
QualifiesForExamPluginViewMixin.save_plugin_output() instead.

	Parameters:	passing_relatedstudentids – See passing_relatedstudentids.

	
passing_relatedstudentids

	List of the IDs of all devilry.apps.core.models.RelatedStudent that
qualifies for final exams according to the plugin that generated the data.

	
devilry_qualifiesforexam.pluginhelpers.create_sessionkey(pluginsessionid)

	Generate the session key for the plugin output as described in
The role of the plugin. You should not need to use this directly. Use
QualifiesForExamPluginViewMixin.get_plugin_input_and_authenticate() instead.

Plugins shipped with Devilry

devilry_qualifiesforexam_approved

TODO

Database models

How the models fit together

Each time a periodadmin qualifies students for final exams, even when they only partly qualify their
students, a new Status-record is saved in the database. A status has a ForeignKey to
devilry.apps.core.models.Period, so the last saved Status is the active
qualified-for-exam status for a Period.

Each time a Status is saved, all of the devilry.apps.core.models.RelatedStudent`s
for that period gets a :class:.QualifiesForFinalExam`-record, which saves the qualifies-for-exam
status for the student. When a status is almostready, we use NULL in the
QualifiesForFinalExam.qualifies-field to indicate students that are not ready.

Node administrators or systems that intergrate with Devilry uses Status.exported_timestamp
to mark Status-records that have been exported to an external system. It is important to
note that we export statuses, not periods. This means that we can create new statuses, and re-export
them. An automatic system can check timestamps to handle status changes, and the Node admin UI
can show/hilight periods with exported statuses and more recent statuses.

DeadlineTag is used to organize periods by the time when they should have made a
ready-Status.

The models

	
class devilry_qualifiesforexam.models.DeadlineTag

	A deadlinetag is used to tag devilry.apps.core.models.Period-objects with a timestamp
and an optional tag describing the timestamp.

	
timestamp

	Database field containing the date and time when a period admin should be finished
qualifying students for final exams.

	
tag

	A tag for node-admins for this deadlinetag. Max 30 chars. May be empty or null.

	
class devilry_qualifiesforexam.models.PeriodTag

	This table is used to create a one-to-many relation from DeadlineTag to
devilry.apps.core.models.Period.

	
deadlinetag

	Database foreign key to the DeadlineTag that the Period should be tagged by.

	
period

	Database foreign key to the devilry.apps.core.models.Period that this tag
points to.

	
class devilry_qualifiesforexam.models.Status

	Every time the admin updates qualifies-for-exam on a period, we save new object of this
database model.

This gives us a history of changes, and it makes it possible for subject/period admins
to communicate simple information to whoever it is that is responsible for handling
examinations.

	
period

	Database foreign key to the devilry.apps.core.models.Period that the
status is for.

	
exported_timestamp

	Database datetime field that tells when the status was exported out of Devilry to an
external system. This is null if the status has not been expored out of Devilry.

	
status

	Database char field that accepts the following values:

	ready is used to indicate the the entire period is ready for export/use.

	almostready is used to indicate that the period is almost ready for export/use, and
that the exceptions are explained in the message.

	notready is used to indicate that the period has no useful data yet. This is typically
only used when the period used to be ready or almostready, but had to be retracted
for a reason explained in the status

	
createtime

	Database datetime field where we store when we added the status.

	
message

	Database field with an optional message about the status change.

	
user

	Database foreign key to the user that made the status change.

	
plugin

	Database char field that stores the id of the plugin (see Plugins)
that was used to change the status.

	
class devilry_qualifiesforexam.models.QualifiesForFinalExam

	
	
relatedstudent

	Database one-to-one relation to devilry.apps.core.models.RelatedStudent.

	
qualifies

	Boolean database field telling if the student qualifies or not.
This may be None (NULL), if the status is almostready,
to mark students as not ready for export.

	
status

	Foreign key to a QualifiesForFinalExamPeriodStatus.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

devilry_gradingsystem — The devilry grading system plugin architecture

How we configure the grading system on an assignment

1 - Select a grading system plugin.

User selects one of the plugins in the devilry.devilry_gradingsystem.pluginregistry.gradingsystempluginregistry.

2 - Configure the grading system plugin

User configures the grading system using the view pointed to by
devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface.get_configuration_url().

Note

This step is skipped unless the plugin has set
requires_configuration
to True

3 - Configure the maximum number of points possible

User sets the maximum number of points possible.

Note

Plugins can opt out of this step by setting
sets_max_points_automatically
to True

4 - Choose how students are graded

	The user selects one of the possible values for devilry.apps.core.models.Assignment.points_to_grade_mapper):

	
	Passed failed

	Raw points

	Custom table

5 - Configure the points to grade mapping table (only if custom-table)

If the user selected custom-table, they need to setup that table.

6 - Configure required points to pass

The user selects the number of points required to pass the assignment
(devilry.apps.core.models.Assignment.passing_grade_min_points).
How they do this depends on the points_to_grade_mapper:

	If raw-points or passed-failed: Select a number of points between 0 and max_points, including both ends.

	If custom table: Select a grade from the table.

Note

Plugins can opt out of this step by setting sets_passing_grade_min_points_automatically)

Creating a Plugin

A grading system plugin must implement the
devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface, and
it must register the implemented class with
devilry.devilry_gradingsystem.pluginregistry.gradingsystempluginregistry.

Please refer to one of the simple grading system plugins, such as
devilry_gradingsystemplugin_points, for a starting point for implementing
your own plugin.

API

	
class devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface(assignment)

	Bases: object

Interface for new grading system plugins. Makes the grading system plugin
ready for the global registry.

This interface must be implemented by each grade plugin in the running system.
this holds all the global information necessary to be able to
manage the grade plugin layout and to cover smooth transition between different
grade plugins on different Assignments

	
id = None

	The ID of the registry. Should be a unique string, typically the python path of
the module implementing the plugin.
This attribute MUST be overidden by each plugin.

	
title = None

	The title of the plugin. Should be a short title, and it should be translated.

	
description = None

	The description of the plugin. Should be translated. Shown with css white-space:pre-wrap.

	
requires_configuration = False

	True if the plugin require configuration before it can be used.
If a plugin sets this to True, is_configured_correctly()
and get_configuration_url() must be overridden.

	
sets_passing_grade_min_points_automatically = False

	True if the plugin sets devilry.apps.core.models.Assignment.passing_grade_min_points
automatically. If this is True, the plugin must implement
get_passing_grade_min_points().

	
sets_max_points_automatically = False

	True if the plugin sets devilry.apps.core.models.Assignment.max_points
automatically. If this is True, the plugin must implement
get_max_points().

	
get_passing_grade_min_points()

	Get the value for devilry.apps.core.models.Assignment.passing_grade_min_points
for this assignment.

MUST be implemented when sets_passing_grade_min_points_automatically is True.

	
get_max_points()

	Get the value for devilry.apps.core.models.Assignment.max_points
for this assignment.

MUST be implemented when sets_max_points_automatically is True.

	
is_configured()

	Is the plugins configured in a manner that makes it ready for use on
this assignment.

MUST be implemented if requires_configuration is True.

	
get_configuration_url()

	Get the configuration URL for this plugin for this assignment.

MUST be implemented if requires_configuration is True.

	
get_edit_feedback_url(deliveryid)

	Get the feedback editing URL for this plugin for the given deliveryid.

	Parameters:	deliveryid – The ID of the delivery to provide feedback for.

	
get_bulkedit_feedback_url(assignmentid)

	Get the feedback editing URL for this plugin for the given assignmentid.

	Parameters:	assignmentid – The ID of the delivery to provide feedback for.

	
exception devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginNotInRegistryError

	Bases: exceptions.Exception

Raised by GradingSystemPluginRegistry.get() when a
plugin that is not in the registry is requested.

	
exception devilry.devilry_gradingsystem.pluginregistry.NotGradingSystemPluginError

	Bases: exceptions.Exception

Raised by GradingSystemPluginRegistry.add() when adding
a plugin that is not a subclass of GradingSystemPluginInterface.

	
class devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginRegistry

	Bases: object

Global Registry for grading system plugins.

This registry holds information on each grading system plugin the current setup uses.

The registry is used to decouple providing points for grades from the rest of the grading framework.

	
add(registryitemcls)

	Add a plugin to the registry.

	Parameters:	registryitemcls – A subclass of GradingSystemPluginInterface.

	Raises NotGradingSystemPluginError:

		If registryitemcls is not a subclass of GradingSystemPluginInterface.

	
get(id)

	Get a grading plugin API class by its ID.

	Raises GradingSystemPluginNotInRegistryError:

		If the plugin is not found in the registry.

	
iter_with_assignment(assignment)

	Returns an iterator over instances of all the plugins in the registry.
Each instance is constructed with the given assignment as their
first and only argument.

	
devilry.devilry_gradingsystem.pluginregistry.gradingsystempluginregistry = <devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginRegistry object at 0x7ff56300e9d0>

	The grading system plugin registry. An instance of GradingSystemPluginRegistry.
Plugins register themselves through this instance.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

devilry.devilry_search — Search for Devilry

This app provides a search API for Devilry.

How we handle object level permissions

We maintain a list of admin_ids on Node, Subject, Period, Assignment and AssignmentGroup. On
AssignmentGroup, we also maintain a list of examiner_ids and student_ids. When we perform
a search, we filter on these ids (the requesting user must be in an id-list). I.E:

When we search for assignments, we first filter on admin_ids=request.user.id, then we
perform the search.

Protection of anonymous data

We do not include any sensitive data in the main search index:

	No student names on anonymous assignments — Examiners should not be able to search for these
because they are only supposed to know the candidate ID.

	No examiner names on anonymous assignments — Students should not be able to know who their
examiner is.

	Tags — Only examiners and admins are supposted to see tags.

This is handled in the devilry.apps.core.search_indexes.AssignmentGroupIndex, and the exclusions
is handled by the text-template in the search/indexes/core/assignmentgroup_text.txt template
(located in devilry/apps/core/templates/).

We include the excluded data in their own fields in AssignmentGroupIndexes.
The fields, examiners, tags and candidates, may be used to search for
the excluded terms.

Limitations

We do not currently use the excluded fields mentioned in the previous section in the search API.
This means that it is:

	not possible to search for AssignmentGroups by username or examiner on anonymous assignments.

	not possible to search for AssignmentGroups by tags.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

devilry.devilry_theme — The Devilry theme

Warning

The devilry.devilry_theme app is deprecated. Use devilry.devilry_theme2.

ExtJS apps

ExtJS apps should use the extjs4.views.Extjs4AppView from django_extjs4 [https://github.com/espenak/django_extjs4]:

from django.utils.translation import ugettext as _
from extjs4.views import Extjs4AppView

class AppView(Extjs4AppView):
 template_name = "devilry_examiner/app.django.html"
 appname = 'devilry_examiner'
 title = _('Myapp') # The initial title until you set one in your app

Writing ExtJS apps is out of scope of this guide. The code above will give you
a view that you can add to your urls.py. You have to put your app.js in
static/myapp/app.js, and it will just work. Take a look at
devilry_student and devilry_subjectadmin for inspiration.

Normal Django apps

Normal Django apps can extend devilry_theme/nonapptemplate.django.html
template. This will give you access to all of the bootstrap CSS, and the
Devilry header at the top of your page. Most parts of the template and its
parent-template can be modified by overriding blocks. See their source code for
more details.

Example:

{% extends "devilry_theme/nonapptemplate.django.html" %}
{% load i18n %}
{% load static %}

{% block title %}{% trans "Select assignments that students must pass to qualify for final exams" %} - Devilry{% endblock %}

{% block head-pre %}
 <script type="text/javascript" src="{% static "myapp/stuff.js" %}"></script>
{% endblock %}

{% block bodyclass%}devilry_subtlebg{% endblock %}

{% block bootstrap-body %}
 <div style="margin-top: 40px;">

 </div>
{% endblock %}

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

devilry.apps.core.testhelper — Create core test data

Deprecated since version 1.4: Use corebuilder — Setup devilry core data structures for tests instead.

Example

from devilry.apps.core.testhelper import TestHelper

testhelper = TestHelper()

testhelper.add(nodes='uni:admin(mortend)',
 subjects=['cs101:admin(admin1,admin2):ln(Basic OO programming)',
 'cs110:admin(admin3,admin4):ln(Basic scientific programming)',
 'cs111:admin(admin1,damin3):ln(Advanced OO programming)'],
 periods=['fall11', 'spring11:begins(6)'])

add 4 assignments to inf101 and inf110 in fall and spring
testhelper.add(nodes='uni',
 subjects=['cs101', 'cs110'],
 periods=['fall11', 'spring11'],
 assignments=['a1', 'a2'])

add 12 assignments to inf111 fall and spring.
testhelper.add(nodes='uni',
 subjects=['cs111'],
 periods=['fall11', 'spring11'],
 assignments=['week1', 'week2', 'week3', 'week4'])

set up some students with descriptive names

inf101 is so easy, everyone passes
testhelper.add_to_path('uni;cs101.fall11.a1.g1:candidate(goodStud1):examiner(examiner1).dl:ends(5)')
testhelper.add_to_path('uni;cs101.fall11.a1.g2:candidate(goodStud2):examiner(examiner1).dl:ends(5)')
testhelper.add_to_path('uni;cs101.fall11.a1.g3:candidate(badStud3):examiner(examiner2).dl:ends(5)')
testhelper.add_to_path('uni;cs101.fall11.a1.g4:candidate(okStud4):examiner(examiner2).dl:ends(5)')

testhelper.add_to_path('uni;cs101.fall11.a2.g1:candidate(goodStud1):examiner(examiner1).dl:ends(5)')
testhelper.add_to_path('uni;cs101.fall11.a2.g2:candidate(goodStud2):examiner(examiner1).dl:ends(5)')
testhelper.add_to_path('uni;cs101.fall11.a2.g3:candidate(badStud3):examiner(examiner2).dl:ends(5)')
testhelper.add_to_path('uni;cs101.fall11.a2.g4:candidate(okStud4):examiner(examiner2).dl:ends(5)')

inf110 is an easy group-project, everyone passes
testhelper.add_to_path('uni;cs110.fall11.a1.g1:candidate(goodStud1,goodStud2):examiner(examiner1).dl:ends(14)')
testhelper.add_to_path('uni;cs110.fall11.a1.g2:candidate(badStud3,okStud4):examiner(examiner2).dl.ends(14)')

testhelper.add_to_path('uni;cs110.fall11.a2.g1:candidate(goodStud1,goodStud2):examiner(examiner1).dl:ends(14)')
testhelper.add_to_path('uni;cs110.fall11.a2.g2:candidate(badStud3,okStud4):examiner(examiner2).dl.ends(14)')

inf111 is hard! Everyone passes week1
testhelper.add_to_path('uni;cs111.fall11.week1.g1:candidate(goodStud1):examiner(examiner3).dl:ends(5)')
testhelper.add_to_path('uni;cs111.fall11.week1.g2:candidate(goodStud2):examiner(examiner3).dl:ends(5)')
testhelper.add_to_path('uni;cs111.fall11.week1.g3:candidate(badStud3):examiner(examiner3).dl:ends(5)')
testhelper.add_to_path('uni;cs111.fall11.week1.g4:candidate(okStud4):examiner(examiner3).dl:ends(5)')

and 2
testhelper.add_to_path('uni;cs111.fall11.week2.g1:candidate(goodStud1):examiner(examiner3).dl:ends(5)')
testhelper.add_to_path('uni;cs111.fall11.week2.g2:candidate(goodStud2):examiner(examiner3).dl:ends(5)')
testhelper.add_to_path('uni;cs111.fall11.week2.g3:candidate(badStud3):examiner(examiner3).dl:ends(5)')
testhelper.add_to_path('uni;cs111.fall11.week2.g4:candidate(okStud4):examiner(examiner3).dl:ends(5)')

badStud4 fails at week3
testhelper.add_to_path('uni;cs111.fall11.week3.g1:candidate(goodStud1):examiner(examiner3).dl:ends(5)')
testhelper.add_to_path('uni;cs111.fall11.week3.g2:candidate(goodStud2):examiner(examiner3).dl:ends(5)')
testhelper.add_to_path('uni;cs111.fall11.week3.g4:candidate(okStud2):examiner(examiner3).dl:ends(5)')

and okStud4 fails at week4
testhelper.add_to_path('uni;cs111.fall11.week4.g1:candidate(goodStud1):examiner(examiner3).dl:ends(5)')
testhelper.add_to_path('uni;cs111.fall11.week4.g2:candidate(goodStud2):examiner(examiner3).dl:ends(5)')

deliveries
goodFile = {'good.py': ['print ', 'awesome']}
okFile = {'ok.py': ['print ', 'meh']}
badFile = {'bad.py': ['print ', 'bah']}

cs101
testhelper.add_delivery('cs101.fall11.a1.g1', goodFile)
testhelper.add_delivery('cs101.fall11.a1.g2', goodFile)
testhelper.add_delivery('cs101.fall11.a1.g3', badFile)
testhelper.add_delivery('cs101.fall11.a1.g4', okFile)
testhelper.add_delivery('cs101.fall11.a2.g1', goodFile)
testhelper.add_delivery('cs101.fall11.a2.g2', goodFile)
testhelper.add_delivery('cs101.fall11.a2.g3', badFile)
testhelper.add_delivery('cs101.fall11.a2.g4', okFile)

cs110
testhelper.add_delivery('cs110.fall11.a1.g1', goodFile)
testhelper.add_delivery('cs110.fall11.a1.g1', goodFile)
testhelper.add_delivery('cs110.fall11.a2.g2', badFile)
testhelper.add_delivery('cs110.fall11.a2.g2', okFile)

cs111
testhelper.add_delivery('cs111.fall11.week1.g1', goodFile)
testhelper.add_delivery('cs111.fall11.week1.g2', goodFile)
testhelper.add_delivery('cs111.fall11.week1.g3', badFile)
testhelper.add_delivery('cs111.fall11.week1.g4', okFile)

g3's delivery fails here
testhelper.add_delivery('cs111.fall11.week2.g1', goodFile)
testhelper.add_delivery('cs111.fall11.week2.g2', goodFile)
testhelper.add_delivery('cs111.fall11.week2.g3', badFile)
testhelper.add_delivery('cs111.fall11.week2.g4', okFile)

g4's delivery fails here
testhelper.add_delivery('cs111.fall11.week3.g1', goodFile)
testhelper.add_delivery('cs111.fall11.week3.g2', goodFile)
testhelper.add_delivery('cs111.fall11.week3.g4', okFile)

g4 fails
testhelper.add_delivery('cs111.fall11.week4.g1', goodFile)
testhelper.add_delivery('cs111.fall11.week4.g2', goodFile)

feedbacks
an empty verdict defaults to max score
goodVerdict = None
okVerdict = {'grade': 'C', 'points': 85, 'is_passing_grade': True}
badVerdict = {'grade': 'E', 'points': 60, 'is_passing_grade': True}
failVerdict = {'grade': 'F', 'points': 30, 'is_passing_grade': False}

testhelper.add_feedback('cs101.fall11.a1.g1', verdict=goodVerdict)
testhelper.add_feedback('cs101.fall11.a1.g2', verdict=goodVerdict)
testhelper.add_feedback('cs101.fall11.a1.g3', verdict=badVerdict)
testhelper.add_feedback('cs101.fall11.a1.g4', verdict=okVerdict)
testhelper.add_feedback('cs101.fall11.a2.g1', verdict=goodVerdict)
testhelper.add_feedback('cs101.fall11.a2.g2', verdict=goodVerdict)
testhelper.add_feedback('cs101.fall11.a2.g3', verdict=badVerdict)
testhelper.add_feedback('cs101.fall11.a2.g4', verdict=okVerdict)

cs110
testhelper.add_feedback('cs110.fall11.a1.g1', verdict=goodVerdict)
testhelper.add_feedback('cs110.fall11.a1.g1', verdict=badVerdict)
testhelper.add_feedback('cs110.fall11.a2.g2', verdict=goodVerdict)
testhelper.add_feedback('cs110.fall11.a2.g2', verdict=okVerdict)

cs111
testhelper.add_feedback('cs111.fall11.week1.g1', verdict=goodVerdict)
testhelper.add_feedback('cs111.fall11.week1.g2', verdict=goodVerdict)
testhelper.add_feedback('cs111.fall11.week1.g3', verdict=badVerdict)
testhelper.add_feedback('cs111.fall11.week1.g4', verdict=okVerdict)

g3's feedback fails here
testhelper.add_feedback('cs111.fall11.week2.g1', verdict=goodVerdict)
testhelper.add_feedback('cs111.fall11.week2.g2', verdict=goodVerdict)
testhelper.add_feedback('cs111.fall11.week2.g3', verdict=failVerdict)
testhelper.add_feedback('cs111.fall11.week2.g4', verdict=okVerdict)

g4's feedback fails here
testhelper.add_feedback('cs111.fall11.week3.g1', verdict=goodVerdict)
testhelper.add_feedback('cs111.fall11.week3.g2', verdict=goodVerdict)
testhelper.add_feedback('cs111.fall11.week3.g4', verdict=failVerdict)

g4 fails
testhelper.add_feedback('cs111.fall11.week4.g1', verdict=goodVerdict)
testhelper.add_feedback('cs111.fall11.week4.g2', verdict=goodVerdict)

TestHelper API

	
class devilry.apps.core.testhelper.TestHelper

	Bases: object

This class helps generate test data.

	
create_user(name, fullname=None)

	Create a user with the given username. Adds the user to self.<name>.

	Returns:	The created user object.

	
reload_from_db(obj)

	Reload the given django.db.Model object from the database using
obj.__class__.get(pk=obj.pk). Updates the cache entry on this
testhelper object if the object was created using this testhelper.

	Returns:	The object that was re-loaded from the database.

	
create_superuser(name)

	Create a superuser with the given username. Adds the user to self.<name>.

	Returns:	The created user object.

	
add_delivery(assignmentgroup, files={}, after_last_deadline=False, delivered_by=None, successful=True, time_of_delivery=None)

	

	Parameters:	
	assignmentgroup – Expects either an AssignmentGroup object or a string path to an
assignmentgroup. This is a mandatory parameter.

	files – A dictionary with key/values as file name and
file content as described in Delivery.add_file()

	after_last_deadline – If True, sets time_of_delivery 1 day later than the
assignmentgroups active deadline. Effectively the same as
setting time_of_delivery=1. Ignored i time_of_delivery
is used.

	time_of_delivery – Set time_of_delivery to this number of days after the active
deadline. Use a negative number to add a delivery before the active
deadline. Can also be a datetime.datetime object that specifies an
exact timestamp.

	
add_feedback(delivery=None, verdict=None, examiner=None, timestamp=None, rendered_view='This is a default static feedback')

	

	Parameters:	
	delivery – Either a Delivery object or a string path to
an assignmentgroup, where we take the last delivery made. This
is the only mandatory parameter

	verdict – E dict containing grade, score and passing
grade. Defaults to:

dict(grade='A', points=100, is_passing_grade=True)

	examiner – A User object. Defaults to the first examiner
for the delivery’s assignment group.

	timestamp – A datetime object for when the feedback was
saved. Defaults to same time the delivery was made

	rendered_view – The rendered view of the feedback. Defaults to
"This is a default static feedback".

	
add(nodes=None, subjects=None, periods=None, assignments=None, assignmentgroups=None, deadlines=None)

	Smart add.

Each attribute is normally just a list of names. The names are
short_name, for nodeish types, and a virtual name for
assignmentgroups, and deadlines.

Names can be supplemented by extras, which are parameters that
tunes the created items. Extras are separated by colon (:), and
each extra has the following format:

<name>(<args>)

	Parameters:	
	nodes – List of nodes.

	admin

	Comma-separated list of admins (usernames) to add to the node.

	ln

	Long name of the period. Defaults to capitalize short name.

	subjects – List of subjects. Extras:

	admin

	Comma-separated list of admins (usernames) to add to the node.

	ln

	Long name of the period. Defaults to capitalize short name.

	periods – List of nodes. Extras:

	admin

	Comma-separated list of admins (usernames) to add to the node.

	ln

	Long name of the period. Defaults to capitalize short name.

	begins

	Number of months after now that the period begins. Can be a
negative number. Defaults to now.

	ends

	Number of months after begins that the period ends. Can be
a negative number. Defaults to 6.

	assignments – List of assignments.

	admin

	Comma-separated list of admins (usernames) to add to the node.

	ln

	Long name of the period. Defaults to capitalize short name.

	anon

	Should the assignment be anonymous? true or false, and
defaults to false.

	pub

	Number of days after the start time of the period that the
assignment should be published. Can be a negative number.
Defaults to 0.

	delivery_types

	electronic or nonelectronic.

	first_deadline

	The offset of the first_deadline from the publishing_time in
days. If this is 0, we automatically add 1 second to the
publishing_time to ensure that they are not equal.

	assignmentgroups – List of assignmentgroups. Extras:

	candidate

	Comma-separated list of candidates (usernames) to add to the
group. Optionally, you can add a candidate_id by suffixing the
username with ;<candidate_id>. Example:
candidate(student0;2345,student1;5673)

	examiner

	Comma-separated list of examiners (usernames) to add to the group.

	deadlines – List of deadlines. Extras:

	ends

	Number of days after the publishing_time of the deadline ends.
Can be a negative number. Defaults to 10 days.

	text

	Deadline text.

	
add_to_path(path)

	Splits up a dot separated path, and calls add() with those pieces
as arguments.

	
get_object_from_path(path)

	Get a Node,
Subject,
Period,
Assignment,
AssignmentGroup,
Deadline,
Delivery or
Feedback
that was added with add(), add_feedback(),
add_to_path(), or add_delivery().

The path does not have to contain the node path (unless you are looking
up a node), since subject shortnames are unique.

	
set_attributes_from_path(path, **attributes)

	Shortcut to get_object_from_path(), set the given attributes on
the object, and call obj.save().

	
create_feedbacks(*args)

	Create feedbacks on groups from the given list of (group, feedback, delivery)-tuples.

	Parameters:	args – Each item in the arguments list is a (group, feedback[, delivery]) tuple where:

	group

	is the devilry.apps.core.models.AssignmentGroup-object that it to be given
feedback

	feedbacks

	is a dict with attributes for the devilry.apps.core.models.StaticFeedback
with the following keys:
	grade

	See devilry.apps.core.models.StaticFeedback.grade.

	points

	See devilry.apps.core.models.StaticFeedback.points.

	is_passing_grade

	See devilry.apps.core.models.StaticFeedback.is_passing_grade.

	delivery

	Is an optional dict of files to make a delivery from. Defaults to:{'test.py': ['print ', 'tst']}

A delivery to save the feedback on is created automatically, so all that is needed
of the groups is an examiner, a candidate and a deadline.

Example:

self.create_feedbacks(
 (group1, {'grade': 'B', 'points': 86, 'is_passing_grade': True}),
 (group2, {'grade': 'A', 'points': 96, 'is_passing_grade': True}, {'hello.txt', ['Hello']}),
 (group3, {'grade': 'F', 'points': 12, 'is_passing_grade': False})
)

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

Release notes

	Release Notes 1.2.1

	Release Notes 1.2.1.1

	Release Notes 1.3

	Release Notes 1.3.1

	Release Notes 1.3.2

	Release Notes 1.3.3

	Release Notes 1.3.4

	Release Notes 1.3.6

	Release Notes 1.4.0

	Release Notes 1.4.10

	Release Notes 1.4.11

	Release Notes 1.4.12

	Release Notes 1.4.13

	Release Notes 1.4.14

	Release Notes 1.4.2

	Release Notes 1.4.3

	Release Notes 1.4.4

	Release Notes 1.4.4.1

	Release Notes 1.4.4.2

	Release Notes 1.4.5

	Release Notes 1.4.6

	Release Notes 1.4.7

	Release Notes 1.4.8

	Release Notes 2.0.3

	Release Notes 2.0.4

	Release Notes 2.0.5

	Release Notes 2.0.6

	Release Notes 2.0.7

	Release Notes 2.0.8

	Release Notes 2.0.9

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.2.1

Major changes

Semantic changes

Administrators are no longer implicitly examiner. They must make themself examiner if they want
to provide feedback to students. We have made it easy to make yourself examiner:

	An option when creating an assignment.

	Administrators can edit examiners on the period/semester.

	When browsing a group (student), you get a button to make yourself examiner if you are
not already.

A complete rewrite of the deployment system

We have split our deployment scripts (for system administrators) into a separate repository.
The repository includes a Chef DevOps setup that should simplify the work of system admins
greatly. It also includes a much better setup for those who do not wish to use Chef. See
http://devilry-deploy.readthedocs.org/ for more information.

New subject admin UI

A completely new user interface for subject (course) administrators. The UI has more or less all of
the features of the old UI, but it is far more user-friendly and optimized for common task.
Some highlights:

Create new assignment wizard

Smart and efficient create new assignment wizard. The wizard sets up an assignnent, adds students
to the assignment and assigns examiners to the students with very little input needed.

The wizard is smart and tries to suggest values when you create assignments. It automatically
suggests names of assignments based on previous assignments. So if you name your first assignment
Assignment 1, it will suggest Assignment 2 for your next assignment.

The wizard also autodetects regularly repeating assignments, and suggests publishing time and
submission dates based on regular intervals. This means that if you have weekly deliveries,
you will only have to setup the submission and publishing times on the first 2 weeks, and Devilry
will suggest sane defaults for the rest. It even works if you have a break of a week or 2, because
Devilry uses the most common interval for all your assignments.

For those who like to set up many assignments, the wizard has a shortcut after each assignment is
created, that lets you re-run the wizard using the same settings. Combined with the autodetection
described above, this means that you can setup many assignments in a very efficient manner.

Semester/period overview

An overview, very similar to the one in the old UI, but it is faster and has some new features.
Autodetects problems with missing students. Supports export to Office Open XML (MS Excel), CSV, JSON,
XML, YAML and REST API.

Logging of all dangerous actions

We log all dangerous actions in the new UI, like deletion, renaming, moving deadline, and so on.
The log-records include the action performed, with IDs and names, the user who made the change,
and the time the change occurred. We also log failed dangerous actions.

New system for marking qualified for final exam

Far more user-friendly and plugin based, so it is easy to extend.

Edit examiners and students on semesters/periods

Admins can manage their own students and examiners. They can tag students and examiners, and
use those tags to automatch students and examiners on all assignments.

Deadline manager

A full featured deadline manager that gives you full control over all your deadlines, and
the students on each deadline. Among many other features, it supports moving deadlines (which
several users have requested).

Interractive guide system

A guide that stays at your right hand side and guides you through the UI.
We only have a guide that helps users creating new assignments, but we will add guides
when users tell us what they need help understanding.

Smarter statuses

Groups (students) are no longer closed or open. Instead they have smarter statuses, like:
Waiting for feedback, Waiting for deliveries, Corrected, and so on.

Statistics about examiners on an assignment

Charts and numbers that should help admins keep track of their examiners.
Please let us know if you have suggestions for more numbers or charts in this
view, or if you have ideas for making it better.

New node admin UI

Because the old admin interface was for both node and subject administrator, we had to
make a new UI for node administrators when we replaced it. This UI is not very powerful
in this release, but we plan to improve it gradually in cooperation with its users.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.2.1.1

Major changes

New qualified for final exam app

The qualified for final exam app has been rewritten. It now uses a very user-friendly wizard
to guide users through the process, and the entire system in plugin-based, so is is relatively
easy to add support for more complex scenarios than the build-in plugins support. In addition
to a plugin based architecture, the new app adds some useful new features:

	Support for almost finished. This solves the problem that arises when just a couple of the
students need more time, but you want to export the rest of the students as ready for exams.

	Here is how it works for a subject/course administrator:

	
	The entire period/semester is marked as almost ready for export.

	The administrator gets a message field where they can explain the situation.

	The administrator has to select the students that is not ready for export.

	And for a Node/Department administrator:

	
	Gets a list of un-exported periods/semesters, kind of like the TODO-list for examiners.

	Can mark periods/semesters as exported.

	If the qualified-for-final-exam status on a period/semester is changed, it re-appears
in the TODO-list with information about why it has re-appeared.

	For systems that want to auto-export from Devilry:

	
	Can get the same information as admins get via their UI via the REST API, and make smart
choices based on metadata they store about the last time they exported. Devilry saves a
new status each time an admin makes a change, so it should not be a problem to track
changes.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.3

See also

Migration guide for sysadmins [https://devilry-deploy.readthedocs.org/en/2.0.20-/migrationguides/1.3.html]

Major changes

REST APIs

We are working on migrating from djangorestframework version 1 to
django-simple-rest. The reason for this is that djangorestframework
version 2 is incompatible with version one, but they use the same namespace,
which makes it hard to run them side by side. We could hack it to work, but
django-simple-rest matches our needs better, and it is more in line with
the modern Django view API. We have created the devilry_rest module
where we keep our common REST utilities, and we have implemented public/private
authentication that will make it a lot easier to program against Devilry.

Fixed HARD deadlines issues

We have moved all constraint checking for HARD deadlines from the core into the
only view where it makes sense to check for hard deadlines. This view is, of
course, the one where users add deliveries.

This fixes a lot of edge case issues, such as examiners adding a placeholder
delivery when the deadline has expired.

More details: https://github.com/devilry/devilry-django/issues/434

Tell students when they are not relatedstudent on a semester/period

We add a big red message for students when they are not student on a period.
This can happen when students are added to a group, and later removed from the
subject/course.

More details and screenshots: https://github.com/devilry/devilry-django/issues/433

MathJaX embedded

We have included MathJaX as part of the Devilry repo.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.3.1

Changes

This is a minor bugfix release. It fixes:

	https://github.com/devilry/devilry-django/issues/437

	https://github.com/devilry/devilry-django/issues/444

	https://github.com/devilry/devilry-django/issues/447

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.3.2

Warning

Does not work - see https://github.com/devilry/devilry-django/issues/463. Use 1.3.3 instead.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.3.3

Features added

	Added possibilities to remove from current selection in the student overview for assignment administrator
in addition to existing functionality for replacing and adding student to current selection. This makes
it easier to remove student with special tags for example those who have alreade passed the assignment.

	Added an aggregated student info view for Administrators. This will help the managers to be able
to easily look up and check for possible wrongly data. Devilry integrates with third-party solutions for the
raw student data and flaws and erros in the data are not always automatically ruled out.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.3.4

Fixes https://github.com/devilry/devilry-django/issues/464.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.3.6

Fixes https://github.com/devilry/devilry-django/issues/481.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.0

New Examiner Interface

The biggest new feature in Devilry 1.4.0 is the completely overhauled and new Examiner interface.
Fully responsive and mobile friendly design will make the task of correcting a lot easier.

New Grading System Plugin Architecture

Along with the new examiner interface we have added a new plugin architecture for handling grade mapping.
The plugins are easily integrated into Devilry with a minimal required setup for external plugins. Grade system provided
are:

	Approved / Not Approved

	Points

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.10

Bugfixes:

	https://github.com/devilry/devilry-django/issues/587

Improvements/Changes

	Added programming code similarity check support.

	Made examiner overview sortable.

	Added support for more efficient approval/disapproval of
one and one group for examiners.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.11

Bugfixes:

	https://github.com/devilry/devilry-django/issues/604

	https://github.com/devilry/devilry-django/issues/605

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.12

Nothing new - just a release to fix a bug in the devilry-deploy release with
the same version number.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.13

	Fixed https://github.com/devilry/devilry-django/issues/625

	Updated Detektor to 1.1.0-beta.011 (to get the fix for https://github.com/appressoas/detektor/issues/1)

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.14

	Fixes issues with 1.4.13.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.2

Bugfix and finetuning after 1.4.0. Fixes:

	Lots of missing translations.

	Bugs with feedback editing in bulk.

	Fixed https://github.com/devilry/devilry-django/issues/520

	Fixed https://github.com/devilry/devilry-django/issues/519

	Add documentation links right in the UI for examiners.

	More useful metadata in listings for examiners. On the frontpage,
we show the number of students waiting for feedback. On the
assignment overview we have added counter for each menu item and
a few other small adjustments.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.3

Bugfixes for 1.4.x. Fixes:

	Fixed https://github.com/devilry/devilry-django/issues/521

	Usable workaround for https://github.com/devilry/devilry-django/issues/520

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.4

Bugfixes:

	https://github.com/devilry/devilry-django/issues/528

	https://github.com/devilry/devilry-django/issues/524

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.4.1

Bugfixes:

	https://github.com/devilry/devilry-django/issues/531

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.4.2

Bugfix

Fixed issue #533 https://github.com/devilry/devilry-django/issues/533

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.5

Added functionality for students to manage their own group composition.

Bugfixes

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.6

Bugfixes and improvements:
- Cleanup lots of old examiner UI code.
- https://github.com/devilry/devilry-django/issues/536
- https://github.com/devilry/devilry-django/issues/538
- https://github.com/devilry/devilry-django/issues/539
- https://github.com/devilry/devilry-django/issues/549
- https://github.com/devilry/devilry-django/issues/547

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.7

Bugfixes:

	https://github.com/devilry/devilry-django/issues/560

	https://github.com/devilry/devilry-django/issues/563

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 1.4.8

Bugfixes:

	https://github.com/devilry/devilry-django/issues/569

	https://github.com/devilry/devilry-django/issues/566

Improvements/Changes

	Making passed as the default choice in Passed/Failed plugin: https://github.com/devilry/devilry-django/issues/523

	Consistent use of “Write Feedback” to avoid confusion when mixed with “Provide Feedback”

	Made the todolist for examiner show the next forward in the list not the previous one

	Fixed timing issues with rendering on safari and chrome when there was no assignments

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 2.0.3

Note

We skipped 2.0.2 because of a forgotten update to version.json.

	Fix for https://github.com/devilry/devilry-django/issues/746.

	Fix for serialization issues with Qualifies For Exam.

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 2.0.4

	Fix for https://github.com/devilry/devilry-django/issues/892

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 2.0.5

	2.0.x version with json dump scripts for migration to 3.0

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 2.0.6

	2.0.x version with json dump scripts for migration to 3.0

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 2.0.7

	2.0.x version with json dump scripts for migration to 3.0

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 2.0.8

	2.0.x version with json dump scripts for migration to 3.0

	Removed devilry_search app

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

 	Release notes

Release Notes 2.0.9

	2.0.x version with json dump scripts for migration to 3.0

	Removed HAYSTACK_CONNECTIONS

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Devilry 2.0.20- documentation

 	Devilry developer documentation

How to release a new Devilry version

In the devilry-django repo

	Make sure you build and commit any changed ExtJS apps (see
JavaScript — Libraries and guidelines/code style). Make sure to test out student, examiner, course admin
and department admin roles with the EXTJS4_DEBUG=False setting
as explained in JavaScript — Libraries and guidelines/code style.

	Update the version number in:

devilry/version.json

	Add a releasenotes document in docs/releasenotes-X.Y.Z.rst, and commit
the new file.

	Commit the version changes.

	Tag the release:

$ git tag vX.Y.Z

	Push the changes:

$ git push
$ git push --tags

	Push the changes to pypi:

$ python setup.py sdist upload

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Devilry 2.0.20- documentation

Forum, issue-tracker and contact information

Note

Devilry is truly open, not just Open Source, but we also try to keep all
issues, suggestions and plans in the open. This means that your suggestions,
bugs, problems, etc. is handled in the open, and readable by anyone.

Warning

DO NOT post sensitive information, like names of students, passwords, etc.
via any of the contact channels listed below (see the note above for why).

Issue tracker

Visit The Devilry issue tracker [https://github.com/devilry/devilry-django/issues].

Anyone can add issues to our issue tracker at our GitHub project page. We use
the issue tracker for bugs, problems, suggested improvements, suggested new
features, etc.

You need to create a GitHub user to add an issue. You just have to write an
understandable title and description. We will then tag your issue, and respond
to your via comments on your issue. You should be notified for each new comments
on your issues by email unless you disable email notifications on GitHub.

Facebook

Visit our Facebook [https://www.facebook.com/DevilryProsjektet] page.

Question and Answers forum

Visit: The Devilry Help Questions and Answers forum [https://groups.google.com/forum/#!forum/devilry-help].

We have a Question and Answer forum on Google Groups named Devilry Help. You
can post anything on this forum, including:

	help understanding Devilry — no problem is too small for this forum

	suggest improvements — even minor improvements

	report problems

	report bugs

	suggest new features

Note

We recommend that you use the issue tracker instead of this
forum if you have a well defined problem or suggestion.
Even very small improvements or issues belong in the issue tracker, and
they end up there even if you post them in the Q&A forum. The only
difference is that someone else have to put them in the issue tracker,
which may delay fixing the issue.

Your local Devilry support

The local Devilry support typically adds a link to a page with their contact
information in the help page. Click the question mark in the upper right corner
when logged in to Devilry, and look for a link to internal/organization specific
devilry documentation.

Contact email — only for special cases

Warning

This is only for contact requests that does not belong in the open contact
channels, like the issue tracker, or in the Q&A forums. This mailinglist is
typically for those that need private and direct contact with the Developers,
and requests belonging in the other contact channels is ignored.

The warning above about sensitive information is also for this list.

devilry-contact@googlegroups.com

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Devilry 2.0.20- documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 devilry	

 	
 	
 devilry.apps.core.deliverystore	

 	
 	
 devilry.apps.core.models.model_utils	

 	
 	
 devilry.devilry_gradingsystem.pluginregistry	

 	
 	
 devilry.project.develop.testhelpers.corebuilder	

 	
 	
 devilry.utils	

 	
 	
 devilry.utils.groups_groupedby_relatedstudent_and_assignment	

 	
 	
 devilry_qualifiesforexam	

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Devilry 2.0.20- documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	

 	__init__() (devilry.project.develop.testhelpers.corebuilder.AssignmentBuilder method)

 	

 	(devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder method)

 	(devilry.project.develop.testhelpers.corebuilder.DeadlineBuilder method)

 	(devilry.project.develop.testhelpers.corebuilder.DeliveryBuilder method)

 	(devilry.project.develop.testhelpers.corebuilder.FileMetaBuilder method)

 	(devilry.project.develop.testhelpers.corebuilder.NodeBuilder method)

 	(devilry.project.develop.testhelpers.corebuilder.PeriodBuilder method)

 	(devilry.project.develop.testhelpers.corebuilder.StaticFeedbackBuilder method)

 	(devilry.project.develop.testhelpers.corebuilder.SubjectBuilder method)

 	(devilry.project.develop.testhelpers.corebuilder.UserBuilder method)

A

 	

 	AbstractIsAdmin (class in devilry.apps.core.models)

 	AbstractIsExaminer (class in devilry.apps.core.models)

 	active_where_is_candidate() (devilry.apps.core.models.AssignmentGroup class method)

 	active_where_is_examiner() (devilry.apps.core.models.AbstractIsExaminer class method)

 	add() (devilry.apps.core.testhelper.TestHelper method)

 	

 	(devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginRegistry method)

 	add_6month_active_period() (devilry.project.develop.testhelpers.corebuilder.SubjectBuilder method)

 	add_6month_lastyear_period() (devilry.project.develop.testhelpers.corebuilder.SubjectBuilder method)

 	add_6month_nextyear_period() (devilry.project.develop.testhelpers.corebuilder.SubjectBuilder method)

 	add_assignment() (devilry.project.develop.testhelpers.corebuilder.PeriodBuilder method)

 	add_deadline() (devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder method)

 	add_deadline_in_x_weeks() (devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder method)

 	add_deadline_x_weeks_ago() (devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder method)

 	add_delivery() (devilry.apps.core.testhelper.TestHelper method)

 	

 	(devilry.project.develop.testhelpers.corebuilder.DeadlineBuilder method)

 	add_delivery_after_deadline() (devilry.project.develop.testhelpers.corebuilder.DeadlineBuilder method)

 	add_delivery_before_deadline() (devilry.project.develop.testhelpers.corebuilder.DeadlineBuilder method)

 	add_delivery_x_hours_after_deadline() (devilry.project.develop.testhelpers.corebuilder.DeadlineBuilder method)

 	add_delivery_x_hours_before_deadline() (devilry.project.develop.testhelpers.corebuilder.DeadlineBuilder method)

 	add_examiners() (devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder method)

 	add_failed_feedback() (devilry.project.develop.testhelpers.corebuilder.DeliveryBuilder method)

 	add_feedback() (devilry.apps.core.testhelper.TestHelper method)

 	

 	(devilry.project.develop.testhelpers.corebuilder.DeliveryBuilder method)

 	add_file() (devilry.apps.core.models.Delivery method)

 	add_filemeta() (devilry.project.develop.testhelpers.corebuilder.DeliveryBuilder method)

 	add_group() (devilry.project.develop.testhelpers.corebuilder.AssignmentBuilder method)

 	

 	(devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo method)

 	

 	add_node() (devilry.project.develop.testhelpers.corebuilder.NodeBuilder method)

 	add_passed_feedback() (devilry.project.develop.testhelpers.corebuilder.DeliveryBuilder method)

 	add_period() (devilry.project.develop.testhelpers.corebuilder.SubjectBuilder method)

 	add_students() (devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder method), [1]

 	add_subject() (devilry.project.develop.testhelpers.corebuilder.NodeBuilder method)

 	add_to_path() (devilry.apps.core.testhelper.TestHelper method)

 	added_by (devilry.apps.core.models.model_utils.Deadline attribute)

 	admins (devilry.apps.core.models.model_utils.Assignment attribute)

 	

 	(devilry.apps.core.models.model_utils.Node attribute)

 	(devilry.apps.core.models.model_utils.Period attribute)

 	(devilry.apps.core.models.model_utils.Subject attribute)

 	after_deadline (devilry.apps.core.models.Delivery attribute)

 	

 	(devilry.apps.core.models.model_utils.Delivery attribute)

 	AggreatedRelatedStudentInfo (class in devilry.utils.groups_groupedby_relatedstudent_and_assignment)

 	anonymous (devilry.apps.core.models.model_utils.Assignment attribute)

 	ArchiveException (class in devilry.utils.delivery_collection)

 	Assignment (class in devilry.apps.core.models)

 	assignment (devilry.apps.core.models.AssignmentGroup attribute)

 	

 	(devilry.apps.core.models.Delivery attribute)

 	(devilry.project.develop.testhelpers.corebuilder.AssignmentBuilder attribute)

 	assignment_group (devilry.apps.core.models.Delivery attribute)

 	

 	(devilry.apps.core.models.model_utils.AssignmentGroupTag attribute)

 	(devilry.apps.core.models.model_utils.Candidate attribute)

 	(devilry.apps.core.models.model_utils.Deadline attribute)

 	(devilry.project.develop.testhelpers.corebuilder.AssignmentGroupBuilder attribute)

 	AssignmentBuilder (class in devilry.project.develop.testhelpers.corebuilder)

 	AssignmentGroup (class in devilry.apps.core.models)

 	assignmentgroup (devilry.apps.core.models.model_utils.Examiner attribute)

 	AssignmentGroupBuilder (class in devilry.project.develop.testhelpers.corebuilder)

 	assignmentgroups (devilry.apps.core.models.model_utils.Assignment attribute)

 	AssignmentGroupTag (class in devilry.apps.core.models)

 	assignments (devilry.apps.core.models.model_utils.Period attribute)

 	

 	(devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo attribute)

B

 	

 	BaseNode (class in devilry.apps.core.models)

C

 	

 	can_add_deliveries() (devilry.apps.core.models.AssignmentGroup method)

 	can_delete() (devilry.apps.core.models.AssignmentGroup method)

 	

 	(devilry.apps.core.models.Deadline method)

 	can_save() (devilry.apps.core.models.AssignmentGroup method)

 	Candidate (class in devilry.apps.core.models)

 	candidate_id (devilry.apps.core.models.model_utils.Candidate attribute)

 	

 	(devilry.apps.core.models.model_utils.RelatedStudent attribute)

 	candidates (devilry.apps.core.models.model_utils.AssignmentGroup attribute)

 	child_nodes (devilry.apps.core.models.model_utils.Node attribute)

 	clean() (devilry.apps.core.models.Assignment method)

 	

 	(devilry.apps.core.models.Deadline method)

 	(devilry.apps.core.models.Delivery method)

 	(devilry.apps.core.models.Node method)

 	(devilry.apps.core.models.Period method)

 	copies (devilry.apps.core.models.model_utils.Delivery attribute)

 	copy() (devilry.apps.core.deliverystore.DeliveryStoreInterface method)

 	

 	(devilry.apps.core.models.Deadline method)

 	(devilry.apps.core.models.Delivery method)

 	(devilry.apps.core.models.FileMeta method)

 	(devilry.apps.core.models.StaticFeedback method)

 	

 	copy_all_except_candidates() (devilry.apps.core.models.AssignmentGroup method)

 	copy_of (devilry.apps.core.models.model_utils.Delivery attribute), [1]

 	create_archive_from_assignmentgroups() (in module devilry.utils.delivery_collection)

 	create_archive_from_delivery() (in module devilry.utils.delivery_collection)

 	create_feedbacks() (devilry.apps.core.testhelper.TestHelper method)

 	create_relatedstudent() (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin method)

 	create_sessionkey() (in module devilry_qualifiesforexam.pluginhelpers)

 	create_superuser() (devilry.apps.core.testhelper.TestHelper method)

 	create_user() (devilry.apps.core.testhelper.TestHelper method)

 	createtime (devilry_qualifiesforexam.models.Status attribute)

D

 	

 	Deadline (class in devilry.apps.core.models)

 	deadline (devilry.apps.core.models.model_utils.Deadline attribute)

 	

 	(devilry.apps.core.models.model_utils.Delivery attribute)

 	(devilry.project.develop.testhelpers.corebuilder.DeadlineBuilder attribute)

 	deadline_handling (devilry.apps.core.models.model_utils.Assignment attribute)

 	DeadlineBuilder (class in devilry.project.develop.testhelpers.corebuilder)

 	deadlines (devilry.apps.core.models.model_utils.AssignmentGroup attribute)

 	DeadlineTag (class in devilry_qualifiesforexam.models)

 	deadlinetag (devilry_qualifiesforexam.models.PeriodTag attribute)

 	delivered_by (devilry.apps.core.models.model_utils.Delivery attribute)

 	deliveries (devilry.apps.core.models.model_utils.Deadline attribute)

 	deliveries_available_before_deadline (devilry.apps.core.models.model_utils.Deadline attribute)

 	Delivery (class in devilry.apps.core.models)

 	delivery (devilry.apps.core.models.model_utils.FileMeta attribute)

 	

 	(devilry.apps.core.models.model_utils.StaticFeedback attribute)

 	(devilry.project.develop.testhelpers.corebuilder.DeliveryBuilder attribute)

 	delivery_status (devilry.apps.core.models.model_utils.AssignmentGroup attribute)

 	delivery_types (devilry.apps.core.models.model_utils.Assignment attribute)

 	DeliveryBuilder (class in devilry.project.develop.testhelpers.corebuilder)

 	

 	deliverystore (devilry.apps.core.models.model_utils.FileMeta attribute)

 	DeliveryStoreInterface (class in devilry.apps.core.deliverystore)

 	DeliveryStoreTestMixin (class in devilry.apps.core.testhelpers)

 	description (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface attribute)

 	devilry.apps.core.deliverystore (module)

 	devilry.apps.core.models.model_utils (module)

 	devilry.devilry_gradingsystem.pluginregistry (module)

 	devilry.project.develop.testhelpers.corebuilder (module)

 	devilry.utils (module)

 	devilry.utils.GroupNode (built-in class)

 	devilry.utils.groups_groupedby_relatedstudent_and_assignment (module)

 	devilry.utils.OrderedDict (built-in class)

 	devilry_qualifiesforexam (module)

 	DevilryUserProfile (class in devilry.apps.core.models)

E

 	

 	end_time (devilry.apps.core.models.model_utils.Period attribute)

 	etag (devilry.apps.core.models.model_utils.AssignmentGroup attribute)

 	

 	(devilry.apps.core.models.model_utils.Delivery attribute)

 	(devilry.apps.core.models.model_utils.Node attribute)

 	(devilry.apps.core.models.model_utils.Period attribute)

 	(devilry.apps.core.models.model_utils.Subject attribute)

 	Examiner (class in devilry.apps.core.models)

 	examiners (devilry.apps.core.models.model_utils.AssignmentGroup attribute)

 	

 	examiners_publish_feedbacks_directly (devilry.apps.core.models.model_utils.Assignment attribute)

 	exists() (devilry.apps.core.deliverystore.DeliveryStoreInterface method)

 	exported_timestamp (devilry_qualifiesforexam.models.Status attribute)

F

 	

 	feedback (devilry.apps.core.models.model_utils.AssignmentGroup attribute)

 	

 	(devilry.project.develop.testhelpers.corebuilder.StaticFeedbackBuilder attribute)

 	feedbacks (devilry.apps.core.models.model_utils.Delivery attribute)

 	feedbacks_published (devilry.apps.core.models.model_utils.Deadline attribute)

 	FileMeta (class in devilry.apps.core.models)

 	filemeta (devilry.project.develop.testhelpers.corebuilder.FileMetaBuilder attribute)

 	FileMetaBuilder (class in devilry.project.develop.testhelpers.corebuilder)

 	filemetas (devilry.apps.core.models.model_utils.Delivery attribute)

 	

 	filename (devilry.apps.core.models.model_utils.FileMeta attribute)

 	FileNotFoundError

 	first_deadline (devilry.apps.core.models.model_utils.Assignment attribute)

 	from_points() (devilry.apps.core.models.StaticFeedback class method)

 	FsDeliveryStore (class in devilry.apps.core.deliverystore)

 	FsHierDeliveryStore (class in devilry.apps.core.deliverystore)

 	full_name (devilry.apps.core.models.model_utils.DevilryUserProfile attribute)

G

 	

 	get() (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginRegistry method)

 	get_active_deadline() (devilry.apps.core.models.AssignmentGroup method)

 	get_all_data_as_string() (devilry.apps.core.models.FileMeta method)

 	get_assignment_queryset() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment method)

 	get_best_gradestring() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupList method)

 	get_bulkedit_feedback_url() (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface method)

 	get_configuration_url() (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface method)

 	get_displayname() (devilry.apps.core.models.DevilryUserProfile method)

 	get_edit_feedback_url() (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface method)

 	get_examiners() (devilry.apps.core.models.AssignmentGroup method)

 	get_feedback_with_most_points() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupList method)

 	get_gradingsystem_plugin_api() (devilry.apps.core.models.Assignment method)

 	get_groups_queryset() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment method)

 	get_max_points() (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface method)

 	get_object_from_path() (devilry.apps.core.testhelper.TestHelper method)

 	get_passing_grade_min_points() (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface method)

 	get_path() (devilry.apps.core.models.Subject method)

 	get_path_from_deliveryid() (devilry.apps.core.deliverystore.FsHierDeliveryStore method)

 	get_plugin_input_and_authenticate() (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin method)

 	

 	get_point_to_grade_map() (devilry.apps.core.models.Assignment method)

 	get_preview_url() (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin method)

 	get_relatedstudents_queryset() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment method)

 	get_selectplugin_url() (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin method)

 	get_status() (devilry.apps.core.models.AssignmentGroup method)

 	get_storageobj() (devilry.apps.core.testhelpers.DeliveryStoreTestMixin method)

 	get_students() (devilry.apps.core.models.AssignmentGroup method)

 	grade (devilry.apps.core.models.model_utils.StaticFeedback attribute)

 	grading_system_plugin_id (devilry.apps.core.models.model_utils.Assignment attribute)

 	GradingSystemPluginInterface (class in devilry.devilry_gradingsystem.pluginregistry)

 	GradingSystemPluginNotInRegistryError

 	GradingSystemPluginRegistry (class in devilry.devilry_gradingsystem.pluginregistry)

 	gradingsystempluginregistry (in module devilry.devilry_gradingsystem.pluginregistry)

 	group_assignmentgroups() (built-in function)

 	group_assignments() (built-in function)

 	group_nodes() (built-in function)

 	GroupDeliveriesByDeadline (class in devilry.utils.assignmentgroup)

 	GroupList (class in devilry.utils.groups_groupedby_relatedstudent_and_assignment)

 	GroupsGroupedByRelatedStudentAndAssignment (class in devilry.utils.groups_groupedby_relatedstudent_and_assignment)

H

 	

 	has_text() (devilry.apps.core.models.Deadline method)

 	

 	has_valid_grading_setup() (devilry.apps.core.models.Assignment method)

I

 	

 	id (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface attribute)

 	is_active() (devilry.apps.core.models.Assignment method)

 	

 	(devilry.apps.core.models.Period method)

 	is_configured() (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface method)

 	is_electronic() (devilry.apps.core.models.Assignment method)

 	

 	(devilry.apps.core.models.Delivery method)

 	is_empty() (devilry.apps.core.models.Assignment method)

 	

 	(devilry.apps.core.models.AssignmentGroup method)

 	(devilry.apps.core.models.Deadline method)

 	(devilry.apps.core.models.Node method)

 	(devilry.apps.core.models.Period method)

 	(devilry.apps.core.models.Subject method)

 	is_examiner() (devilry.apps.core.models.AssignmentGroup method)

 	is_in_the_future() (devilry.apps.core.models.Deadline method)

 	is_in_the_past() (devilry.apps.core.models.Deadline method)

 	is_last_delivery (devilry.apps.core.models.Delivery attribute)

 	is_nonelectronic() (devilry.apps.core.models.Assignment method)

 	

 	(devilry.apps.core.models.Delivery method)

 	is_open (devilry.apps.core.models.model_utils.AssignmentGroup attribute)

 	

 	is_passing_grade (devilry.apps.core.models.model_utils.StaticFeedback attribute)

 	iter_archive_assignmentgroups() (in module devilry.utils.delivery_collection)

 	iter_archive_deliveries() (in module devilry.utils.delivery_collection)

 	iter_assignments() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment method)

 	iter_childnodes() (devilry.apps.core.models.Node method)

 	iter_groups_by_assignment() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo method)

 	iter_relatedstudents_with_results() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment method)

 	iter_students_that_is_candidate_but_not_in_related() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment method)

 	iter_students_with_feedback_that_is_candidate_but_not_in_related() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment method)

 	iter_students_with_no_feedback_that_is_candidate_but_not_in_related() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment method)

 	iter_with_assignment() (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginRegistry method)

L

 	

 	languagecode (devilry.apps.core.models.model_utils.DevilryUserProfile attribute)

 	last_deadline (devilry.apps.core.models.model_utils.AssignmentGroup attribute)

 	last_feedback (devilry.apps.core.models.model_utils.Delivery attribute)

 	

 	long_displayname (devilry.apps.core.models.AssignmentGroup attribute)

 	long_name (devilry.apps.core.models.model_utils.BaseNode attribute)

M

 	

 	max_points (devilry.apps.core.models.model_utils.Assignment attribute)

 	MemoryDeliveryStore (class in devilry.apps.core.deliverystore)

 	merge_into() (devilry.apps.core.models.AssignmentGroup method)

 	

 	merge_many_groups() (devilry.apps.core.models.AssignmentGroup class method)

 	message (devilry_qualifiesforexam.models.Status attribute)

 	missing_expected_delivery (devilry.apps.core.models.AssignmentGroup attribute)

N

 	

 	name (devilry.apps.core.models.model_utils.AssignmentGroup attribute)

 	Node (class in devilry.apps.core.models)

 	node (devilry.project.develop.testhelpers.corebuilder.NodeBuilder attribute)

 	NodeBuilder (class in devilry.project.develop.testhelpers.corebuilder)

 	

 	NoEmailAddressException

 	NotGradingSystemPluginError

 	number (devilry.apps.core.models.model_utils.Delivery attribute)

O

 	

 	old_where_is_candidate() (devilry.apps.core.models.AssignmentGroup class method)

 	

 	old_where_is_examiner() (devilry.apps.core.models.AbstractIsExaminer class method)

P

 	

 	parentnode (devilry.apps.core.models.model_utils.Assignment attribute)

 	

 	(devilry.apps.core.models.model_utils.AssignmentGroup attribute)

 	(devilry.apps.core.models.model_utils.Node attribute)

 	(devilry.apps.core.models.model_utils.Period attribute)

 	(devilry.apps.core.models.model_utils.Subject attribute)

 	passing_grade_min_points (devilry.apps.core.models.model_utils.Assignment attribute)

 	passing_relatedstudentids (devilry_qualifiesforexam.pluginhelpers.PreviewData attribute)

 	pathsep (in module devilry.apps.core.models.model_utils)

 	Period (class in devilry.apps.core.models)

 	period (devilry.apps.core.models.AssignmentGroup attribute)

 	

 	(devilry.apps.core.models.model_utils.RelatedUserBase attribute)

 	(devilry.project.develop.testhelpers.corebuilder.PeriodBuilder attribute)

 	(devilry_qualifiesforexam.models.PeriodTag attribute)

 	(devilry_qualifiesforexam.models.Status attribute)

 	(devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin attribute)

 	(devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin attribute)

 	PeriodBuilder (class in devilry.project.develop.testhelpers.corebuilder)

 	periodid (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin attribute)

 	periods (devilry.apps.core.models.model_utils.Subject attribute)

 	PeriodTag (class in devilry_qualifiesforexam.models)

 	plugin (devilry_qualifiesforexam.models.Status attribute)

 	

 	pluginsessionid (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin attribute)

 	points (devilry.apps.core.models.model_utils.StaticFeedback attribute)

 	points_is_passing_grade() (devilry.apps.core.models.Assignment method)

 	points_to_grade() (devilry.apps.core.models.Assignment method)

 	points_to_grade_mapper (devilry.apps.core.models.model_utils.Assignment attribute)

 	pop_candidate() (devilry.apps.core.models.AssignmentGroup method)

 	prettyprint() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo method)

 	PreviewData (class in devilry_qualifiesforexam.pluginhelpers)

 	published_where_is_candidate() (devilry.apps.core.models.AssignmentGroup class method)

 	published_where_is_examiner() (devilry.apps.core.models.AbstractIsExaminer class method)

 	publishing_time (devilry.apps.core.models.model_utils.Assignment attribute)

Q

 	

 	q_is_active() (devilry.apps.core.models.Period class method)

 	q_is_admin() (devilry.apps.core.models.AbstractIsAdmin class method)

 	q_is_candidate() (devilry.apps.core.models.AssignmentGroup class method)

 	

 	(devilry.apps.core.models.Delivery class method)

 	(devilry.apps.core.models.StaticFeedback class method)

 	q_is_examiner() (devilry.apps.core.models.AbstractIsExaminer class method)

 	

 	(devilry.apps.core.models.StaticFeedback class method)

 	q_published() (devilry.apps.core.models.AbstractIsExaminer class method)

 	qualifies (devilry_qualifiesforexam.models.QualifiesForFinalExam attribute)

 	

 	QualifiesForExamPluginTestMixin (class in devilry_qualifiesforexam.pluginhelpers)

 	QualifiesForExamPluginViewMixin (class in devilry_qualifiesforexam.pluginhelpers)

 	QualifiesForFinalExam (class in devilry_qualifiesforexam.models)

 	query_successful_deliveries() (devilry.apps.core.models.Deadline method)

 	quickadd_ducku_duck1010() (devilry.project.develop.testhelpers.corebuilder.SubjectBuilder class method)

 	quickadd_ducku_duck1010_active() (devilry.project.develop.testhelpers.corebuilder.PeriodBuilder class method)

R

 	

 	read_open() (devilry.apps.core.deliverystore.DeliveryStoreInterface method)

 	recalculate_delivery_numbers() (devilry.apps.core.models.AssignmentGroup method)

 	redirect_to_preview_url() (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin method)

 	reduce_datetime_precision() (devilry.apps.core.models.Deadline class method)

 	RelatedExaminer (class in devilry.apps.core.models)

 	relatedexaminer_set (devilry.apps.core.models.model_utils.Period attribute)

 	RelatedStudent (class in devilry.apps.core.models)

 	relatedstudent (devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo attribute)

 	

 	(devilry_qualifiesforexam.models.QualifiesForFinalExam attribute)

 	

 	relatedstudent_set (devilry.apps.core.models.model_utils.Period attribute)

 	RelatedUserBase (class in devilry.apps.core.models.relateduser)

 	reload_from_db() (devilry.apps.core.testhelper.TestHelper method)

 	

 	(devilry.project.develop.testhelpers.corebuilder.ReloadableDbBuilderInterface method)

 	ReloadableDbBuilderInterface (class in devilry.project.develop.testhelpers.corebuilder)

 	remove() (devilry.apps.core.deliverystore.DeliveryStoreInterface method)

 	rendered_view (devilry.apps.core.models.model_utils.StaticFeedback attribute)

 	requires_configuration (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface attribute)

S

 	

 	save() (devilry.apps.core.models.AssignmentGroup method)

 	

 	(devilry.apps.core.models.Deadline method)

 	(devilry.apps.core.models.StaticFeedback method)

 	save_plugin_output() (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin method)

 	save_settings_in_session() (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginViewMixin method)

 	save_timestamp (devilry.apps.core.models.model_utils.StaticFeedback attribute)

 	saved_by (devilry.apps.core.models.model_utils.StaticFeedback attribute)

 	scale_points_percent (devilry.apps.core.models.model_utils.Assignment attribute)

 	send_email() (built-in function)

 	send_email_admins() (built-in function)

 	serialize() (devilry.utils.groups_groupedby_relatedstudent_and_assignment.GroupsGroupedByRelatedStudentAndAssignment method)

 	set_attributes_from_path() (devilry.apps.core.testhelper.TestHelper method)

 	set_max_points() (devilry.apps.core.models.Assignment method)

 	sets_max_points_automatically (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface attribute)

 	sets_passing_grade_min_points_automatically (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface attribute)

 	setUp() (devilry.apps.core.testhelpers.DeliveryStoreTestMixin method)

 	setup_grading() (devilry.apps.core.models.Assignment method)

 	short_displayname (devilry.apps.core.models.AssignmentGroup attribute)

 	short_name (devilry.apps.core.models.model_utils.BaseNode attribute)

 	

 	(devilry.apps.core.models.model_utils.Subject attribute)

 	

 	should_ask_if_examiner_want_to_give_another_chance (devilry.apps.core.models.AssignmentGroup attribute)

 	size (devilry.apps.core.models.model_utils.FileMeta attribute)

 	splitpath() (in module devilry.apps.core.models.model_utils)

 	start_time (devilry.apps.core.models.model_utils.Period attribute)

 	StaticFeedback (class in devilry.apps.core.models)

 	StaticFeedbackBuilder (class in devilry.project.develop.testhelpers.corebuilder)

 	Status (class in devilry_qualifiesforexam.models)

 	status (devilry_qualifiesforexam.models.QualifiesForFinalExam attribute)

 	

 	(devilry_qualifiesforexam.models.Status attribute)

 	student (devilry.apps.core.models.model_utils.Candidate attribute)

 	students_can_create_groups (devilry.apps.core.models.model_utils.Assignment attribute)

 	students_can_create_groups_now (devilry.apps.core.models.Assignment attribute)

 	students_can_not_create_groups_after (devilry.apps.core.models.model_utils.Assignment attribute)

 	Subject (class in devilry.apps.core.models)

 	subject (devilry.apps.core.models.AssignmentGroup attribute)

 	

 	(devilry.apps.core.models.Period attribute)

 	(devilry.project.develop.testhelpers.corebuilder.SubjectBuilder attribute)

 	SubjectBuilder (class in devilry.project.develop.testhelpers.corebuilder)

 	subjects (devilry.apps.core.models.model_utils.Node attribute)

 	successful (devilry.apps.core.models.model_utils.Delivery attribute)

T

 	

 	tag (devilry.apps.core.models.model_utils.AssignmentGroupTag attribute)

 	

 	(devilry_qualifiesforexam.models.DeadlineTag attribute)

 	tags (devilry.apps.core.models.model_utils.AssignmentGroup attribute)

 	

 	(devilry.apps.core.models.model_utils.RelatedUserBase attribute)

 	test_invalid_period (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin attribute)

 	test_perms_as_nobody (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin attribute)

 	test_perms_as_nodeadmin() (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin method)

 	test_perms_as_periodadmin() (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin method)

 	test_perms_as_superuser (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin attribute)

 	

 	TestHelper (class in devilry.apps.core.testhelper)

 	testhelper (devilry_qualifiesforexam.pluginhelpers.QualifiesForExamPluginTestMixin attribute)

 	text (devilry.apps.core.models.model_utils.Deadline attribute)

 	time_of_delivery (devilry.apps.core.models.model_utils.Delivery attribute)

 	timestamp (devilry_qualifiesforexam.models.DeadlineTag attribute)

 	title (devilry.devilry_gradingsystem.pluginregistry.GradingSystemPluginInterface attribute)

U

 	

 	update() (devilry.project.develop.testhelpers.corebuilder.ReloadableDbBuilderInterface method)

 	

 	(devilry.project.develop.testhelpers.corebuilder.UserBuilder method)

 	update_profile() (devilry.project.develop.testhelpers.corebuilder.UserBuilder method)

 	

 	user (devilry.apps.core.models.model_utils.Examiner attribute)

 	

 	(devilry.apps.core.models.model_utils.RelatedUserBase attribute)

 	(devilry.utils.groups_groupedby_relatedstudent_and_assignment.AggreatedRelatedStudentInfo attribute)

 	(devilry_qualifiesforexam.models.Status attribute)

 	UserBuilder (class in devilry.project.develop.testhelpers.corebuilder)

V

 	

 	verify_deliveries_not_exceeding_max_file_size() (in module devilry.utils.delivery_collection)

 	

 	verify_groups_not_exceeding_max_file_size() (in module devilry.utils.delivery_collection)

W

 	

 	where_is_admin() (devilry.apps.core.models.AbstractIsAdmin class method)

 	where_is_admin_or_superadmin() (devilry.apps.core.models.AbstractIsAdmin class method)

 	where_is_candidate() (devilry.apps.core.models.AssignmentGroup class method)

 	

 	where_is_examiner() (devilry.apps.core.models.AbstractIsExaminer class method)

 	why_created (devilry.apps.core.models.model_utils.Deadline attribute)

 	write_open() (devilry.apps.core.deliverystore.DeliveryStoreInterface method)

 Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

 _images/deadlines.png
Deadlines

Deadiine:2013-01-14 17:59 (2 days ago)
Groups 6

Deadline: 2013-01-07 17:59 (9 days ago)
Groups: 16

About this deadline

Groups

1nahn Smith

More info~

Edit/move

_images/manage-assignmentgroups-nonelectronic.png
Usernames
students

studentd

student10

student11

student12

student13

o1

Studerts

Full names
The Students

The Studentd

The Student10

The Student11

The Student12

The Student13

Latest foedback
Grade.

[Passed H8

Fier +

Advanced ~

Tegs | Growp name

Displaying 1 -30 of 30

(Give feedback to selected)

_images/add-nonelectronic-delivery-1.png
Week5

DUCK1100 - Getting started with python — Spring Current

Home / Examiner / duck1100.springcur.week5

Select All DeselectAll & Download all deliveries <

Walting for ~ grandma Write feedback
o
feedback Walting for feedbac

_images/v2-select-assignment.png
Examiner

Dashboard for the examiner role. You use this role to provide feedback to students.

Home / Examiner

duck1100.springcur - Week9

g waiting for feedback

duck1100.springcur - Week8
12 waiing for feedback

duck1100.springcur - Week7

4 waiting for feedback

duck1100.springcur - Week6

No groups waiting for feedback.

duck2500p.springcur - Paper delivery 1

No groups waiting for feedback.

_images/devilry.core.models.1.png
chikdnodes *

subjec pen
Node [> subect (o

assignment +
period [o- > Assignment

AssignmentGroup

search.html

 Navigation

 		
 index

 		
 modules |

 		Devilry 2.0.20- documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Appresso AS.
 Created using Sphinx 1.2.2.

_images/dash-select-assignment.png
Assignments in active semesters

duck1100.springeur - Week?

_images/v2-allgroupsoverview.png
Week7

DUCK1100 - Getting started with python — Spring Current

Home / Examiner / duck1100.springour. week?

Al o

Waiting for feedback

Waiting for deliveries

o0

Corrected

New to Devilry? Do you want to
become more efficient? Check out the.
getting started guide.

Select Al Deselect Al & Download all deliveries

Juan Carlos

Waiting for feedback (o deiiveries)

Mike Jones
Waiting for feedback

- o>

Walting for feedback

James Smith
Waiting for feedback

Write feedback (o selectea)

Write feedback

Write feedback

Write feedback

_images/v2-bulkedit.png
Week9

DUCK1100 - Getting started with python — Spring Current

Home / Examiner / duck1100.springour. week9

Al o Select Al | Deselect All Download all deliveries
Vaiting for feedback David Smith

Waiting for feedback

Waiting for deliveries (]
God of Beauty
Corrected o Waiting for feedback
New to Devilry? Do you want to Goddess of Love
become more efficient? Check out the Waiting for feedback

getting started guide.
God of Fertility

Waiting for feedback

God of Inspiration
Waiting for feedback

God of thunder and Battle
Waiting for feedback

Write feedback (o selectea)

_static/up.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_images/add-nonelectronic-delivery-2.png
Week5 — grandma

DUCK1100 - Getting started with python, Spring Current

Home / Examiner / duck1100.springcur.week5 / grandma

Status: Waiting for feedback

This group has no deliveries. You have to choose one of the following options:

Add new deadiine Fall the group
(Give another chance) | | (Close the group without feedback)

If the group has made a delivery outside Devilry (paper, emalil, etc), you should add a "non-electronic*
delivgry tha ag correct just like any other delivery.

el
' Add non-alectronic” dellvery

Deadline 1 January 1, 2014, 15:00

No deliveries.

_images/devilry.core.models.2.png
AssignmentGroup

pe—

L

Deadiine

Candidate

Delivery.

flemets]

FileMeta

cbcks

StaticFeedback

_static/down.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

