
Devilbox Documentation
Release 1.0

cytopia

Jan 25, 2019

Contents

1 Read first 3
1.1 Shell commands . 3
1.2 Examples . 3
1.3 Checklists . 3
1.4 Where to start? . 4

2 Features 5
2.1 Projects . 6
2.2 Service and version choice . 7
2.3 Configuration . 7
2.4 Intranet . 8
2.5 Dockerized . 8
2.6 Others . 8

3 Devilbox purpose 11
3.1 Why did I built this? . 11
3.2 Automation is key . 11
3.3 Issues with Docker encountered . 12
3.4 Today’s state . 12
3.5 Tomorrow’s state . 12

4 Prerequisites 13
4.1 Supported host OS . 14
4.2 Required software . 14
4.3 Docker installation . 15
4.4 Post installation . 17
4.5 Optional previous knowledge . 17

5 Install the Devilbox 19
5.1 Download the Devilbox . 19
5.2 Create .env file . 20
5.3 Set uid and gid . 20
5.4 OS specific setup . 21
5.5 Checklist . 22

6 Start the Devilbox 23
6.1 The Devilbox startup explained . 23

i

6.2 Start all container . 24
6.3 Start some container . 24
6.4 Open Devilbox intranet . 25
6.5 Checklist . 26

7 Devilbox intranet 27
7.1 Devilbox tools . 28
7.2 Third-party tools . 28
7.3 Settings . 30
7.4 Checklist . 32

8 Directory overview 35
8.1 Data directory . 35
8.2 Project directory . 36
8.3 Docroot directory . 36
8.4 Domain suffix . 36
8.5 Making sense of it . 36
8.6 Checklist . 37

9 Create your first project 39
9.1 Step 1: visit Intranet vhost page . 39
9.2 Step 2: create a project directory . 40
9.3 Step 3: create a docroot directory . 40
9.4 Step 4: create a DNS entry . 42
9.5 Step 5: visit your project . 42
9.6 Step 6: create a hello world file . 43
9.7 Checklist . 44
9.8 Further examples . 44

10 Enter the PHP container 45
10.1 How to enter . 45
10.2 How to become root . 46
10.3 Tools . 46
10.4 Advanced . 47
10.5 Checklist . 47

11 Change container versions 49
11.1 Implications . 50
11.2 Examples . 50
11.3 Gotchas . 53
11.4 Checklist . 53

12 Setup Auto DNS 55
12.1 Native Docker . 55
12.2 Docker Toolbox . 57

13 Setup valid HTTPS 59
13.1 TL;DR . 59
13.2 How does it work . 60
13.3 Import the CA into your browser . 60
13.4 Further Reading . 61

14 Configure PHP Xdebug 69
14.1 Introduction . 69
14.2 Configure PHP container for Xdebug . 70

ii

14.3 Configure your IDE/editor for Xdebug . 80

15 Enable/disable PHP modules 89
15.1 Enabled PHP modules . 89
15.2 Disable PHP modules . 90
15.3 Roadmap . 90

16 Read log files 91
16.1 Mounted logs . 91
16.2 Docker logs . 92
16.3 Checklist . 92

17 Email catch-all 93
17.1 Devilbox Intranet . 93
17.2 MailHog . 93

18 Add custom environment variables 95
18.1 Add custom environment variables . 95
18.2 Use custom environment variables . 96

19 Work inside the PHP container 97
19.1 Enter the container . 98
19.2 Inside the container . 98
19.3 Leave the container . 99
19.4 Host to Container mappings . 99
19.5 Checklist . 101

20 Source Code Analysis 103
20.1 Awesome-ci . 103
20.2 PHPCS . 104
20.3 ESLint . 104

21 Best practice 107
21.1 Move data out of Devilbox directory . 107
21.2 PHP project hostname settings . 110
21.3 Timezone . 110

22 Customize PHP globally 113
22.1 Configure PHP settings globally . 113
22.2 Configure non-overwritable settings globally . 114
22.3 Configure loaded PHP modules . 114
22.4 Configure PHP-FPM service . 114

23 Customize web server globally 115
23.1 Configure Apache . 115
23.2 Configure Nginx . 116
23.3 Devilbox specific settings . 116

24 Connect to host OS 117
24.1 Prerequisites . 117
24.2 Docker on Linux . 118
24.3 Docker for Mac . 118
24.4 Docker for Windows . 118
24.5 Docker Toolbox . 119

iii

25 Connect to other Docker container 121
25.1 Any Docker container on host os . 121
25.2 Add Docker container to Devilbox network . 122
25.3 Add Docker container to Devilbox stack . 122

26 Connect to external hosts 123

27 Add custom CNAME DNS entries 125
27.1 Why and what? . 125
27.2 How? . 125

28 Add your own Docker image 127
28.1 Prerequisites . 127
28.2 What information do you need? . 128
28.3 How to add a new service? . 128
28.4 How to start the new service? . 130
28.5 Further reading . 130

29 Overwrite existing Docker image 131
29.1 Prerequisites . 131
29.2 What information do you need? . 131
29.3 How to overwrite a service? . 132
29.4 Further reading . 133

30 Custom scripts per PHP version 135
30.1 General . 135
30.2 Examples . 136

31 Custom scripts globally 139
31.1 General . 139
31.2 Examples . 140

32 Autostarting NodeJS Apps 143
32.1 Self-built . 143
32.2 Pre-built . 144
32.3 Reverse proxy NodeJS . 145

33 Virtual host templates 147
33.1 Overview . 148
33.2 Virtual host Templates . 149
33.3 Reverse proxy Templates . 158

34 Customize all virtual hosts globally 167
34.1 Prerequisite . 167
34.2 Apply templates globally to all vhosts . 167

35 Customize specific virtual host 169
35.1 vhost-gen . 170
35.2 Templates explained . 172
35.3 Apply Changes . 175
35.4 Further readings . 176

36 Virtual host vs Reverse Proxy 177
36.1 Motivation . 177
36.2 Benefits . 177
36.3 Creating a reverse proxy . 178

iv

37 Example: add sub domains 179
37.1 Simple sub domains for one project . 180
37.2 Complex sub domains for one project . 181

38 Reverse Proxy with HTTPS 191
38.1 Walkthrough . 192

39 Reverse Proxy for custom Docker 197
39.1 Walkthrough . 198

40 Enable all additional container 203
40.1 Available additional container . 203
40.2 Enable all additional container . 203
40.3 Configure additional container . 204

41 Enable and configure Blackfire 205
41.1 Overview . 206
41.2 Instructions . 207
41.3 TL;DR . 208

42 Enable and configure MailHog 209
42.1 Overview . 210
42.2 Instructions . 211
42.3 TL;DR . 212

43 Enable and configure RabbitMQ 213
43.1 Overview . 214
43.2 Instructions . 215
43.3 TL;DR . 216

44 Enable and configure Solr 217
44.1 Overview . 218
44.2 Instructions . 219
44.3 TL;DR . 219

45 Shared Devilbox server in LAN 221
45.1 Prerequisites . 222
45.2 Project access . 222
45.3 Handle DNS records . 223
45.4 Share Devilbox CA . 225

46 Use external databases 227
46.1 Why . 227
46.2 Database on host os . 227
46.3 Database on network . 228
46.4 Database on internet . 228

47 Checkout different Devilbox release 229

48 Remove stopped container 231
48.1 Why should I? . 231
48.2 How to do it? . 231
48.3 When to do it? . 231

49 Update the Devilbox 233
49.1 Update git repository . 234

v

49.2 Update Docker images . 235
49.3 Checklist git repository . 236
49.4 Checklist Docker images . 236

50 Remove the Devilbox 237
50.1 Backups . 237
50.2 Remove the Devilbox . 238
50.3 Revert your system changes . 239

51 Backup and restore MySQL 241
51.1 Backup . 242
51.2 Restore . 245

52 Backup and restore PostgreSQL 247
52.1 Backup . 248
52.2 Restore . 248

53 Backup and restore MongoDB 251
53.1 Backup . 251
53.2 Restore . 252

54 .env file 253
54.1 Core settings . 255
54.2 Intranet settings . 261
54.3 Docker image versions . 262
54.4 Docker host mounts . 266
54.5 Docker host ports . 269
54.6 Container settings . 272

55 docker-compose.yml 281

56 docker-compose.override.yml 283
56.1 Create docker-compose.override.yml . 283
56.2 Further reading . 284

57 apache.conf 285
57.1 General . 285
57.2 Examples . 286

58 nginx.conf 289
58.1 General . 289
58.2 Examples . 290

59 php.ini 293
59.1 General . 293
59.2 Examples . 294

60 php-fpm.conf 297
60.1 General . 297
60.2 Examples . 298

61 my.cnf 301
61.1 General . 301
61.2 Examples . 302

vi

62 bashrc.sh 305
62.1 Directory mapping . 305
62.2 Examples . 306

63 Setup CakePHP 309
63.1 Overview . 309
63.2 Walk through . 310

64 Setup CodeIgniter 313
64.1 Overview . 313
64.2 Walk through . 314

65 Setup CraftCMS 317
65.1 Overview . 317
65.2 Walk through . 318

66 Setup Drupal 323
66.1 Overview . 323
66.2 Walk through . 324

67 Setup Joomla 327
67.1 Overview . 327
67.2 Walk through . 328

68 Setup Laravel 331
68.1 Overview . 331
68.2 Walk through . 332

69 Setup Magento 2 335
69.1 Overview . 335
69.2 Walk through . 336

70 Setup Phalcon 339
70.1 Overview . 339
70.2 Walk through . 340

71 Setup Photon CMS 343
71.1 Overview . 343
71.2 Walk through . 344

72 Setup PrestaShop 347
72.1 Overview . 347
72.2 Walk through . 348

73 Setup Shopware 351
73.1 Overview . 351
73.2 Walk through . 352
73.3 Encountered problems . 354

74 Setup Symfony 355
74.1 Overview . 355
74.2 Walk through . 356

75 Setup Typo3 359
75.1 Overview . 359
75.2 Walk through . 360

vii

76 Setup Wordpress 363
76.1 Overview . 363
76.2 Walk through . 364

77 Setup Yii 373
77.1 Overview . 373
77.2 Walk through . 374

78 Setup Zend 377
78.1 Overview . 377
78.2 Walk through . 378

79 Setup other Frameworks 381

80 Setup reverse proxy NodeJS 383
80.1 Overview . 384
80.2 Walk through . 384
80.3 Managing NodeJS . 391

81 Setup reverse proxy Sphinx docs 393
81.1 Overview . 394
81.2 Walk through . 394

82 Syncronize container permissions 401
82.1 Unsyncronized permissions . 401
82.2 It gets even worse . 402
82.3 The solution . 402

83 Available container 403
83.1 Core container . 403
83.2 Additional container . 403

84 Available tools 405

85 Troubleshooting 407
85.1 General . 408
85.2 Performance . 409
85.3 DNS issues . 410
85.4 SSL issues . 410
85.5 Web server issues . 410
85.6 PHP issues . 411
85.7 Database issues . 412

86 FAQ 413
86.1 General . 414
86.2 Configuration . 415
86.3 Compatibility . 416

87 How To 419
87.1 Add custom DNS server on Android . 419
87.2 Add custom DNS server on iPhone . 424
87.3 Add custom DNS server on Linux . 425
87.4 Add custom DNS server on MacOS . 430
87.5 Add custom DNS server on Windows . 431
87.6 Add project hosts entry on Linux . 431
87.7 Add project hosts entry on MacOS . 434

viii

87.8 Add project hosts entry on Windows . 435
87.9 Find your user id and group id on MacOS . 437
87.10 Find your user id and group id on Windows . 438
87.11 Find Docker and Docker Compose version . 439
87.12 Move projects to a different directory . 439
87.13 Host address alias on MacOS . 440
87.14 Docker Toolbox and the Devilbox . 441
87.15 Find Docker Toolbox IP address . 444
87.16 SSH into Docker Toolbox . 445
87.17 SSH port-forward on Docker Toolbox from host . 447
87.18 SSH port-forward on host to Docker Toolbox . 449
87.19 Open a terminal on MacOS . 451
87.20 Open a terminal on Windows . 453

88 Blogs, Videos and Use-cases 457
88.1 Official videos . 457
88.2 Conferences . 457
88.3 Blog posts . 459
88.4 Use-cases . 459
88.5 Add your story . 459

89 Artwork 461

ix

x

Devilbox Documentation, Release 1.0

The Devilbox is a modern dockerized LAMP and MEAN stack for local development on Linux, MacOS and Windows.

It allows you to have an unlimited number of projects ready without having to install any external software and without
having to configure any virtual hosts. As well as providing a very flexible development stack that you can run offline.
(Internet is only required to initially pull docker container).

The only thing you will have to do is to create a new directory on the filesystem and your virtual host is ready to be
served with your custom domain.

Important:

Read first Ensure you have read this document to understand how this documentation works.

Contents 1

Devilbox Documentation, Release 1.0

2 Contents

CHAPTER 1

Read first

Find some useful information and tips for the documentation itself.

1.1 Shell commands

Important: All shell commands in this documentation use two different formats:

1. This one indicates that the command should be executed on your host operating system. (When copying com-
mands, do not copy the host> part).

host> command

2. This one indicates that the command should be executed inside the currently selected PHP container. (When
copying commands, do not copy the php> part).

php> command

1.2 Examples

Note: Most examples to configure your host operating system will be presented for Linux by default, there will
however always be links for how to accomplish the same on Windows and MacOS.

1.3 Checklists

3

Devilbox Documentation, Release 1.0

Note: Most guids and tutorials provide a Checklist at the very bottom. You can as well jump to it and quickly see if
you have done everything already.

1.4 Where to start?

On the left menu you will find a GETTING STARTED section, read through all of them to get a basic theoretical
and practical understanding about the Devilbox.

There is also a Blogs, Videos and Use-cases section that might be useful as an additional crash-course.

4 Chapter 1. Read first

CHAPTER 2

Features

This section gives you a brief overview about the available features.

Table of Contents

• Projects

– Unlimited projects

– Automated virtual hosts

– Automated SSL certificates

– Automated DNS records

– Email catch-all

– Log files

– Virtual host domains

• Service and version choice

– Selective start

– Version choice

– LAMP and MEAN stack

• Configuration

– Global configuration

– Version specific configuration

– Project specific configuration

• Intranet

– Command & Control Center

5

Devilbox Documentation, Release 1.0

– Third-party tools

• Dockerized

– Portable

– Built nightly

– Ships popular development tools

– Work inside the container

– Work inside and outside the container interchangeably

• Others

– Work offline

– Hacking

2.1 Projects

2.1.1 Unlimited projects

The number of projects you can add are so to speak unlimited. Simply add new project directories and they become
automatically available in no time.

2.1.2 Automated virtual hosts

Creating a new project is literally done by creating a new directory on the file system. Everything else is automatically
taken care of in the background. Virtual hosts are added instantly without having to restart any services.

2.1.3 Automated SSL certificates

Whenever a new project is created, SSL certificates are generated as well and assigned to that virtual host. Those
certificates are signed by the Devilbox certificate authority which can be imported into your local browser to make all
certificates valid and trusted.

2.1.4 Automated DNS records

The built-in DNS server will automatically make any DNS record available to your host system by using a wild-card
DNS record. This removes the need to create developer DNS records in /etc/hosts.

2.1.5 Email catch-all

All outgoing emails originating from your projects are intercepted, stored locally and can be viewed within the bundled
intranet.

6 Chapter 2. Features

Devilbox Documentation, Release 1.0

2.1.6 Log files

Log files for every service are available. Either in the form of Docker logs or as actual log files mounted into the
Devilbox git directory. The web and PHP server offer log files for each project separetely.

2.1.7 Virtual host domains

Each of your virtual host will have its own domain. TLD can be freely chosen, such as *.loc or *.local. Be
aware that some TLD’s can cause problems. Read more here: TLD_SUFFIX.

2.2 Service and version choice

2.2.1 Selective start

Run only the Docker container you actually need, but be able to reload others on the fly once they are needed. So you
could first startup PHP and MySQL only and in case you would require a Redis server you can attach it later to the
Devilbox stack without having to restart anything.

2.2.2 Version choice

Each provided service (such as PHP, MySQL, PostgreSQL, etc) comes in many different versions. You can enable any
combination that matches your perfect development stack.

2.2.3 LAMP and MEAN stack

Run a full LAMP stack with Apache or Nginx and even attach MEAN stack services such as MongoDB.

2.3 Configuration

2.3.1 Global configuration

All services can be configured globally by including your very own customized php.ini, php-fpm.conf, my.
cnf, nginx.conf. apache.conf and other configuration files.

2.3.2 Version specific configuration

Each version of PHP can have its own php.ini and php-fpm.conf files, each version of MySQL, MariaDB or
PerconaDB can have its own my.cnf files, each Apache. . . , each Nginx. . . you get the idea.

2.3.3 Project specific configuration

Even down to projects, the Devilbox allows for full customization when it comes to virtual host settings via .

2.2. Service and version choice 7

Devilbox Documentation, Release 1.0

2.4 Intranet

2.4.1 Command & Control Center

The intranet is your Command & Control Center showing you all applied settings, mount points, port exposures,
hostnames and any errors including how they can be resolved.

2.4.2 Third-party tools

Mandatory web projects are also shipped: , , , and as well as a web GUI to view all sent emails.

2.5 Dockerized

2.5.1 Portable

Docker container run on Linux, Windows and MacOS, so does the Devilbox. This ensures that no matter what
operating system you are currently on, you can always run your development stack.

2.5.2 Built nightly

Docker images (at least official Devilbox Docker images) are built nightly and pushed to Dockerhub to ensure to
always have the latest versions installed and be up-to-date with any security patches that are available.

2.5.3 Ships popular development tools

The Devilbox is also designed to be a development environment offering many tools used for everyday web develop-
ment, no matter if frontend or backend.

2.5.4 Work inside the container

Instead of working on you host operating system, you can do everything inside the container. This allows you to have
all tools pre-installed and a working unix environment ready.

2.5.5 Work inside and outside the container interchangeably

No matter if you work on your host operating system or inside the Docker container. Special mount points and
port-forwards are already in place to make both look the same to you.

2.6 Others

2.6.1 Work offline

The Devilbox only requires internet initially to pull the required Docker images, once this is done you can work
completely offline. No need for an active internet connection.

8 Chapter 2. Features

Devilbox Documentation, Release 1.0

2.6.2 Hacking

Last but not least, the Devilbox is bascially just a docker-compose.yml file and you can easily add any Docker
images you are currently missing in the Devilbox setup.

2.6. Others 9

Devilbox Documentation, Release 1.0

10 Chapter 2. Features

CHAPTER 3

Devilbox purpose

The Devilbox aims to provide you a universal zero-configuration LAMP and MEAN development environment for
any purpose which is setup in less than 5 minutes.

Its main intention is to support an unlimited number of projects for any framework or cms and be portable accross all
major operating systems, as well as providing any available php version with whatever module you require.

To be portable, customizable and as leight weight as possible, the choice fell on a Dockerized setup.

3.1 Why did I built this?

In one of my previous jobs I had to maintain around 30 different PHP projects. Many of them utilized different versions
and configuration, thus I had to switch between my local MacOS and various Linux VMs on a frequent base in order
to fullfill the current requirement.

Setting up new vhosts, local DNS entries, self-signed https certificates, installing other PHP versions, ensuring I had
all modules and lots of other initial configuration was always a pain to me, so I decided to automate this.

3.2 Automation is key

A few month after releasing it on Github I hit another problem: Tickets regarding outdated versions as well as new
major version requests accumulated and I spent a lot of time keeping up with updating and creating Docker images
and making them available.

That was the point when I decided to create a fully automated and generalized build infrastructure for all custom
Docker images.

The outcome was this:

• Docker images are generated and verified with Ansible

• Docker images have extensive CI tests

• Docker images are automatically built, tested and updated every night and pushed on success

11

Devilbox Documentation, Release 1.0

3.3 Issues with Docker encountered

One of the major issues I have encountered with Docker is the syncronization of file and directory permissions between
local and Docker mounted directories.

This is due to the fact that the process of PHP or the web server usually run with a different uid and gid as the local
user starting the Docker container. Whenever a new file is created from inside the container, it will happen with the
uid of the process running inside the container, thus making it incompatible with your local user.

This problem has been finally addressed with the Devilbox and you can read up on it in much more detail here:
Syncronize container permissions.

3.4 Today’s state

Honestly speaking, in the time I spent to build the Devilbox, I could have configured every possible VM by now, but I
would have missed the fun. I learned a lot and in the end it made my work much more pleasent.

3.5 Tomorrow’s state

I use the Devilbox on a daily base and together with other developers we find more and more edge cases that are being
resolved. As technology also advanced quickly, the Devilbox needs to keep up with as well. Next major milestones
will be to modularize it for easier customization of currently not available Container, hardening for production usage
and workflows for deployments in a CI/CD landscape.

12 Chapter 3. Devilbox purpose

CHAPTER 4

Prerequisites

Important:

Read first Ensure you have read this document to understand how this documentation works.

Table of Contents

• Supported host OS

• Required software

• Docker installation

– Linux

– Mac

* Docker for Mac

* Docker Toolbox

– Windows

* Docker for Windows

* Docker Toolbox

• Post installation

– User settings

– Shared drives

– Network and firewall

– SE Linux

– General

13

Devilbox Documentation, Release 1.0

• Optional previous knowledge

4.1 Supported host OS

The Devilbox runs on all major operating systems which provide Docker and Docker Compose. See the matrix
below for supported versions:

OS Version Type Recommended

Any yes

Any yes

Windows 7 yes
Windows 10 yes

Windows Server 2016 yes

4.2 Required software

The only requirements for the Devilbox is to have Docker and Docker Compose installed, everything else is
bundled and provided withing the Docker container. The minimum required versions are listed below:

• Docker: 1.12.0+

• Docker Compose: 1.9.0+

Additionally you will require git in order to clone the devilbox project.

See also:

•

•

•

• Find Docker and Docker Compose version

14 Chapter 4. Prerequisites

Devilbox Documentation, Release 1.0

4.3 Docker installation

4.3.1 Linux

Docker on Linux requires super user privileges which is granted to a system wide group called docker. After having
installed Docker on your system, ensure that your local user is a member of the docker group.

host> id

uid=1000(cytopia) gid=1000(cytopia) groups=1000(cytopia),999(docker)

See also:

•

•

•

•

• (covers docker group)

4.3.2 Mac

On MacOS Docker is available in two different forms: Docker for Mac and Docker Toolbox.

Docker for Mac

Docker for Mac is the native and recommended version to choose when using the Devilbox.

Docker for Mac requires super user privileges which is granted to a system wide group called docker. After having
installed Docker on your system, ensure that your local user is a member of the docker group.

host> id

uid=502(cytopia) gid=20(staff) groups=20(staff),999(docker)

See also:

Docker for Mac

•

4.3. Docker installation 15

Devilbox Documentation, Release 1.0

•

Docker Toolbox

If you still want to use Docker Toolbox, ensure you have read its drawbacks in the below provided links.

See also:

Docker Toolbox

•

•

•

Important: Docker Toolbox and the Devilbox

4.3.3 Windows

On Windows Docker is available in two different forms: Docker for Windows and Docker Toolbox.

Docker for Windows

Docker for Windows is the native and recommended version to choose when using the Devilbox. This however is only
available since Windows 10.

Docker for Windows requires administrative privileges which is granted to a system wide group called
docker-users. After having installed Docker on your system, ensure that your local user is a member of the
docker-users group.

See also:

Docker for Windows

•

•

Docker Toolbox

If you are on Windows 7 or still want to use Docker Toolbox, ensure you have read its drawbacks in the below provided
links.

See also:

Docker Toolbox

•

16 Chapter 4. Prerequisites

Devilbox Documentation, Release 1.0

•

Important: Docker Toolbox and the Devilbox

4.4 Post installation

Read the Docker documentation carefully and follow all install and post-install steps. Below are a few stumbling
blocks to check that might or might not apply depending on your host operating system and your Docker version.

See also:

Troubleshooting

4.4.1 User settings

Some versions of Docker require your local user to be in the docker group (or docker-users on Windows).

4.4.2 Shared drives

Some versions of Docker require you to correctly setup shared drives. Ensure the desired locations are being made
available to Docker and the correct credentials are applied.

4.4.3 Network and firewall

On Windows, ensure your firewall allows access to shared drives.

4.4.4 SE Linux

Make sure to read any shortcomings when SE Linux is enabled.

4.4.5 General

It could also help to do a full system restart after the installation has been finished.

4.5 Optional previous knowledge

In order to easily work with the Devilbox you should already be familiar with the following:

• Navigate on the command line

• Docker Compose commands (, , , , and)

• Docker Compose .env file

• Know how to use git

See also:

•

4.4. Post installation 17

Devilbox Documentation, Release 1.0

•

• Troubleshooting

18 Chapter 4. Prerequisites

CHAPTER 5

Install the Devilbox

Important: Ensure you have read and followed the Prerequisites

Table of Contents

• Download the Devilbox

• Create .env file

• Set uid and gid

– Find your user id

– Find your group id

• OS specific setup

– Linux: SELinux

– OSX: Performance

• Checklist

5.1 Download the Devilbox

The Devilbox does not need to be installed. The only thing that is required is its git directory. To download that, open
a terminal and copy/paste the following command.

host> git clone https://github.com/cytopia/devilbox

See also:

• Open a terminal on MacOS

19

Devilbox Documentation, Release 1.0

• Open a terminal on Windows

• Checkout different Devilbox release

5.2 Create .env file

Inside the cloned Devilbox git directory, you will find a file called env-example. This file is the main configuration
with sane defaults for Docker Compose. In order to use it, it must be copied to a file named .env. (Pay attention to
the leading dot).

host> cp env-example .env

The .env file does nothing else then providing environment variables for Docker Compose and in this case it is used
as the main configuration file for the Devilbox by providing all kinds of settings (such as which version to start up).

See also:

•

• .env file

5.3 Set uid and gid

To get you started, there are only two variables that need to be adjusted:

• NEW_UID

• NEW_GID

The values for those two variables refer to your local (on your host operating system) user id and group id. To find out
what the values are required in your case, issue the following commands on a terminal:

5.3.1 Find your user id

host> id -u

5.3.2 Find your group id

host> id -g

In most cases both values will be 1000, but for the sake of this example, let’s assume a value of 1001 for the user id
and 1002 for the group id.

Open the .env file with your favorite text editor and adjust those values:

Listing 1: .env

host> vi .env

NEW_UID=1001
NEW_GID=1002

See also:

20 Chapter 5. Install the Devilbox

Devilbox Documentation, Release 1.0

•

• Find your user id and group id on MacOS

• Find your user id and group id on Windows

• Syncronize container permissions

5.4 OS specific setup

5.4.1 Linux: SELinux

If you have SELinux enabled, you will also have to adjust the MOUNT_OPTIONS to allow shared mounts among
multiple container:

Listing 2: .env

host> vi .env

MOUNT_OPTIONS=,z

See also:

• https://github.com/cytopia/devilbox/issues/255

• MOUNT_OPTIONS

•

•

5.4.2 OSX: Performance

Out of the box, Docker for Mac has some performance issues when it comes to mount directories with a lot of files
inside. To mitigate this issue, you can adjust the caching settings for mounted directories.

To do so, you will want to adjust the MOUNT_OPTIONS to allow caching on mounts.

Listing 3: .env

host> vi .env

MOUNT_OPTIONS=,cached

Ensure to read the links below to understand why this problem exists and how the fix works. The Docker documenta-
tion will also give you alternative caching options to consider.

See also:

• https://github.com/cytopia/devilbox/issues/105#issuecomment-426229921

• https://forums.docker.com/t/file-access-in-mounted-volumes-extremely-slow-cpu-bound/8076/281

• https://docs.docker.com/docker-for-mac/osxfs-caching/#tuning-with-consistent-cached-and-delegated-configurations

• MOUNT_OPTIONS

5.4. OS specific setup 21

https://github.com/cytopia/devilbox/issues/255
https://github.com/cytopia/devilbox/issues/105#issuecomment-426229921
https://forums.docker.com/t/file-access-in-mounted-volumes-extremely-slow-cpu-bound/8076/281
https://docs.docker.com/docker-for-mac/osxfs-caching/#tuning-with-consistent-cached-and-delegated-configurations

Devilbox Documentation, Release 1.0

5.5 Checklist

1. Devilbox is cloned

2. .env file is created

3. User and group id have been set in .env file

That’s it, you have finished the first section and have a working Devilbox ready to be started.

See also:

Troubleshooting

22 Chapter 5. Install the Devilbox

CHAPTER 6

Start the Devilbox

Congratulations, when you have reached this page everything has been set up and you can now get your hands dirty.

Note: Starting and stopping containers is done via docker-compose. If you have never worked with it before,
have a look at their documentation for , , , , , and commands.

Table of Contents

• The Devilbox startup explained

• Start all container

– Foreground

– Background

• Start some container

– Foreground

– Background

• Open Devilbox intranet

• Checklist

6.1 The Devilbox startup explained

To gain a brief understanding about what is happening under the hood during startup, read ahead or skip directly to:
Start all container.

Startup operations with the same configuration are idempotent, thus consecutive startups will not introduce any new
changes. The following shows the brief startup steps:

23

Devilbox Documentation, Release 1.0

• Docker Compose will automatically pull all necessary Docker images if they do not exist locally.

• Once the HTTPD container start, it will automatically create a Certificate Authority to be used for https connec-
tions and will place it in the ca/ directory.

• The HTTPD container will then look for already available projects and create virtual hosts configurations, apply
vhost-gen templates as well as CA-signed HTTPS certificates.

• Once the Bind container start, it will create a wildcard DNS zone for the given TLD_SUFFIX

• In case MySQL or PgSQL container start, they will populate itself with their required default databases.

Note: Docker images are only pulled if they do not exist. They are not updated automatically. If you want to update
to new Docker images read on: Update the Devilbox.

6.2 Start all container

If you want all provided docker container to be available (as defined in docker-compose.yml), start them all by
not explicitly specifying any image name.

6.2.1 Foreground

For the first startup, foreground start is recommended to see any errors that might occur:

host> docker-compose up

• If you want to gracefully stop all container, hit Ctrl + c

• If you want to kill all container, hit Ctrl + c twice

6.2.2 Background

For consecutive startups you can send them into background (-d):

host> docker-compose up -d

• If you want to gracefully stop all container, enter docker-compose stop

• If you want to kill all container, enter docker-compose kil

6.3 Start some container

If you don’t require all container to be up and running and let’s say just PHP, HTTPD and MYSQL, you must explicitly
specify the image names to start:

6.3.1 Foreground

host> docker-compose up httpd php mysql

• If you want to gracefully stop all started container, hit Ctrl + c

24 Chapter 6. Start the Devilbox

Devilbox Documentation, Release 1.0

• If you want to kill all started container, hit Ctrl + c twice

6.3.2 Background

host> docker-compose up -d httpd php mysql

• If you want to gracefully stop all container, enter docker-compose stop

• If you want to kill all container, enter docker-compose kil

See also:

Available container Have a look at this page to get an overview about all available container and by what name they
have to be specified.

6.4 Open Devilbox intranet

Once docker-compose up has finished and all or the selected container are up and running, you can visit the
Devilbox intranet with your favorite Web browser at http://localhost or http://127.0.0.1.

The Intranet start page will also show you all running and failed containers:

Fig. 1: Devilbox intranet: index dash view for all started container

Fig. 2: Devilbox intranet: index dash view for some started container

6.4. Open Devilbox intranet 25

http://localhost
http://127.0.0.1

Devilbox Documentation, Release 1.0

Important:

Find Docker Toolbox IP address When you are using Docker Toolbox the Devilbox web server port will not be
available on your host computer. You first have to find out on which IP address the Docker Toolbox machine is
serving and use this one instead.

6.5 Checklist

1. Docker container are started successfully with docker-compose up

2. Intranet is reachable via http://localhost, http://127.0.0.1 or Docker Toolbox IP address

See also:

Troubleshooting

26 Chapter 6. Start the Devilbox

CHAPTER 7

Devilbox intranet

The Devilbox intranet is your command & control center showing all kinds of information and settings currently in
effect. It also offers third-party projects to do all sorts of database manipulation.

Table of Contents

• Devilbox tools

– Overview

– Virtual hosts

– Emails

– Databases

– Info pages

• Third-party tools

– Adminer

– phpMyAdmin

– phpPgAdmin

– phpRedMin

– OpcacheGUI

• Settings

– Password protect the intranet

– Disable the intranet

• Checklist

27

Devilbox Documentation, Release 1.0

7.1 Devilbox tools

7.1.1 Overview

The start page is there to check if everything works as expected. It shows all desired Docker containers you wanted to
start and if they succeeded, as well as their ports, mount points and special settings applied via .env.

7.1.2 Virtual hosts

The virtual host page displays all available projects and let’s you know if their configuration is correct, such as DNS
settings or document root.

7.1.3 Emails

The email page displays all emails that would have been sent, but were caught by the integrated email catch-all
functionality.

7.1.4 Databases

There are several database pages for MySQL and NoSQL databases giving you an overview about what is currently in
place, how many databases/schemas and or recors and what size they take up.

The following example shows the database page for MySQL:

7.1.5 Info pages

Info pages also exist for every Docker container which show various settings which are currently applied.

The following example shows you the info page for PHP.

The following example shows you the info page for MySQL:

7.2 Third-party tools

7.2.1 Adminer

(formerly phpMinAdmin) is a full-featured database management tool written in PHP. Conversely to phpMyAdmin, it
consist of a single file ready to deploy to the target server. Adminer is available for MySQL, MariaDB, PostgreSQL,
SQLite, MS SQL, Oracle, Firebird, SimpleDB, Elasticsearch and MongoDB.

7.2.2 phpMyAdmin

is a free software tool written in PHP, intended to handle the administration of MySQL over the Web. phpMyAdmin
supports a wide range of operations on MySQL and MariaDB. Frequently used operations (managing databases, tables,
columns, relations, indexes, users, permissions, etc) can be performed via the user interface, while you still have the
ability to directly execute any SQL statement.

28 Chapter 7. Devilbox intranet

Devilbox Documentation, Release 1.0

Fig. 1: Devilbox intranet: homepage

7.2. Third-party tools 29

Devilbox Documentation, Release 1.0

Fig. 2: Devilbox intranet: available virtual hosts

7.2.3 phpPgAdmin

is a web-based administration tool for PostgreSQL. It is perfect for PostgreSQL DBAs, newbies, and hosting services.

7.2.4 phpRedMin

is a simple web interface to manage and monitor your Redis.

7.2.5 OpcacheGUI

is a clean and responsive interface for Zend OPcache information, showing statistics, settings and cached files, and
providing a real-time update for the information (using jQuery and React).

7.3 Settings

7.3.1 Password protect the intranet

If you share your projects over a LAN, but do not want anybody to view the Devilbox intranet, you can also password
protect it.

See also:

In order to do so, have a look at the following .env variables:

30 Chapter 7. Devilbox intranet

Devilbox Documentation, Release 1.0

Fig. 3: Devilbox intranet: email catch-all overview

7.3. Settings 31

Devilbox Documentation, Release 1.0

Fig. 4: Devilbox intranet: MySQL database overview

• DEVILBOX_UI_PROTECT

• DEVILBOX_UI_PASSWORD

7.3.2 Disable the intranet

If you want a more production-like setup, you can also fully disable the Devilbox intranet. This is achieved internally
by removing the default virtual host which serves the intranet. When the intranet is disabled, there is no way to access
it.

See also:

In order to do so, have a look at the following .env variable:

• DEVILBOX_UI_ENABLE

7.4 Checklist

1. You know what tools are provided by the Devilbox intranet

2. You know how to password protect the Devilbox intranet

3. You know how to disable the Devilbox intranet

See also:

Troubleshooting

32 Chapter 7. Devilbox intranet

Devilbox Documentation, Release 1.0

Fig. 5: Devilbox intranet: php info

7.4. Checklist 33

Devilbox Documentation, Release 1.0

Fig. 6: Devilbox intranet: MySQL info overview

34 Chapter 7. Devilbox intranet

CHAPTER 8

Directory overview

Important: The directory overview only provides you some theoretical, but useful insights about how it all works
together. You should at least read it once to be able to debug any problems you might encounter.

If you have read it already, jump directly to Create your first project

Table of Contents

• Data directory

• Project directory

• Docroot directory

• Domain suffix

• Making sense of it

• Checklist

8.1 Data directory

By default all your projects must be created in the ./data/www/ directory which is inside in your Devilbox git
directory. This can be changed as well, but is outside the scope of this getting started tutorial.

You can verifiy that the path is actually ./data/www/ by checking your .env file:

host> grep HTTPD_DATADIR .env

HOST_PATH_HTTPD_DATADIR=./data/www

35

Devilbox Documentation, Release 1.0

8.2 Project directory

The project directory is a directory directly within the data directory.

This represents one project.

By creating this directory, the web server will create a new virtual host for you. This happens fully automated and
there is nothing else required to do except just to create a directory.

The name of this directory will also be used to build up the final project url together with the domain suffix: http:/
/<project directory>.<domain suffix>

Create as many project directories as you require.

8.3 Docroot directory

The docroot directory is a directory within each project directory from which the webserver will serve the files.

By default this directory must be named htdocs. This can be changed as well, but is outside the scope of this getting
started tutorial.

You can verifiy that the docroot directory is actually htdocs by checking your .env file:

host> grep DOCROOT_DIR .env

HTTPD_DOCROOT_DIR=htdocs

8.4 Domain suffix

The default domain suffix (TLD_SUFFIX variable in .env file) is loc. That means that all your projects will be
available under the following address: http://<project-directory>.loc. This can be changed as well, but
is outside the scope of this getting started tutorial.

You can verifiy that the suffix is actually loc by checking your .env file:

host> grep ^TLD_SUFFIX .env

TLD_SUFFIX=loc

8.5 Making sense of it

Ok, let’s sum it up and make sense of the previously provided information. To better illustrate the behaviour we are
going to use project-1 as our project directory name.

36 Chapter 8. Directory overview

Devilbox Documentation, Release 1.0

Item Example Description
data dir ./data/www Where all of your projects reside.
project dir ./data/www/project-1 A single project. It’s name will be used to create the

url.
docroot dir ./data/www/project-1/

htdocs
Where the webserver looks for files within your project.

domain suf-
fix

loc Suffix to build up your project url.

project url http://project-1.loc Final resulting project url.

data dir

This directory is mounted into the httpd and php container, so that both know where all projects can be found. This
is also the place where you create project directories for each of your projects.

project dir

Is your project and used to generate the virtual host together with the domain suffix.

docroot dir

A directory inside your project dir from where the webserver will actually serve your files.

domain suffix

Used as part of the project url.

8.6 Checklist

1. You know what the data directory is

2. You know what the project directory is

3. You know what the docroot directory is

4. You know what the domain suffix is

5. You know how domains are constructed

8.6. Checklist 37

Devilbox Documentation, Release 1.0

38 Chapter 8. Directory overview

CHAPTER 9

Create your first project

Important: Ensure you have read Directory overview to understand what is going on under the hood.

Note: This section not only applies for one project, it applied for as many projects as you need. There is no limit in
the number of projects.

Table of Contents

• Step 1: visit Intranet vhost page

• Step 2: create a project directory

• Step 3: create a docroot directory

• Step 4: create a DNS entry

• Step 5: visit your project

• Step 6: create a hello world file

• Checklist

• Further examples

9.1 Step 1: visit Intranet vhost page

Before starting, have a look at the vhost page at http://localhost/vhosts.php or http://127.0.0.1/vhosts.php

See also:

Find Docker Toolbox IP address

39

http://localhost/vhosts.php
http://127.0.0.1/vhosts.php

Devilbox Documentation, Release 1.0

It should look like the screenshot below and will actually already provide the information needed to create a new
project.

Fig. 1: Devilbox intranet: no projects created

9.2 Step 2: create a project directory

In your Devilbox git directory, navigate to ./data/www and create a new directory.

Note: Choose the directory name wisely, as it will be part of the domain for that project. For this example we will
use project-1 as our project name.

navigate to your Devilbox git directory
host> cd path/to devilbox

navigate to the data directory
host> cd data/www

create a new project directory named: project-1
host> mkdir project-1

Visit the vhost page again and see what has changed: http://localhost/vhosts.php

So what has happened?

By having created a project directory, the web server container has created a new virtual host. However it has noticed,
that the actual document root directory does not yet exist and therefore it cannot serve any files yet.

9.3 Step 3: create a docroot directory

Note: As desribed in Docroot directory the docroot directory name must be htdocs for now.

Navigate to your newly created project directory and create a directory named htdocs inside it.

40 Chapter 9. Create your first project

http://localhost/vhosts.php

Devilbox Documentation, Release 1.0

Fig. 2: Devilbox intranet: misssing htdocs directory

navigate to your Devilbox git directory
host> cd path/to devilbox

navigate to your above created project directory
host> cd data/www/project-1

create the docroot directory
host> mkdir htdocs

Vist the vhost page again and see what has changed: http://localhost/vhosts.php

Fig. 3: Devilbox intranet: misssing dns record

So what has happened?

By having created the docroot directory, the web server is now able to serve your files. However it has noticed, that
you have no way yet, to actually visit your project url, as no DNS record for it exists yet.

The intranet already gives you the exact string that you can simply copy into your /etc/hosts (or
C:\Windows\System32\drivers\etc for Windows) file on your host operating system to solve this issue.

9.3. Step 3: create a docroot directory 41

http://localhost/vhosts.php

Devilbox Documentation, Release 1.0

9.4 Step 4: create a DNS entry

Note: This step can also be automated via the bundled DNS server to automatically provide catch-all DNS entries to
your host computer, but is outside the scope of this getting started tutorial.

When using native Docker, the Devilbox intranet will provide you the exact string you need to paste into your /etc/
hosts (or C:\Windows\System32\drivers\etc for Windows).

Open your /etc/hosts file with sudo or root privileges
and add the following DNS entry
host> sudo vi /etc/hosts

127.0.0.1 project-1.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

Vist the vhost page again and see what has changed: http://localhost/vhosts.php

Fig. 4: Devilbox intranet: vhost setup successfully

So what has happened?

By having created the DNS record, the Devilbox intranet is aware that everything is setup now and gives you a link to
your new project.

9.5 Step 5: visit your project

On the intranet, click on your project link. This will open your project in a new Browser tab or visit http://project-1.loc

So what has happened?

Everything is setup now, however the webserver is trying to find a index.php file in your document root which does
not yet exist.

So all is left for you to do is to add your HTML or PHP files.

42 Chapter 9. Create your first project

http://localhost/vhosts.php
http://project-1.loc

Devilbox Documentation, Release 1.0

Fig. 5: Devilbox project: misssing index.php or index.html

9.6 Step 6: create a hello world file

Navigate to your docroot directory within your project and create a index.php file with some output.

navigate to your Devilbox git directory
host> cd path/to devilbox

navigate to your projects docroot directory
host> cd data/www/project-1/htdocs

Create a hello world index.php file
host> echo "<?php echo 'hello world';" > index.php

Alternatively create an index.php file in data/www/project-1/htdocs with the following contents:

<?php echo 'hello world';

Visit your project url again and see what has changed: http://project-1.loc

Fig. 6: Devilbox project: hello world on index.php

9.6. Step 6: create a hello world file 43

http://project-1.loc

Devilbox Documentation, Release 1.0

9.7 Checklist

1. Project directory is created

2. Docroot directory is created

3. DNS entry is added to the host operating system

4. PHP files are added to your docroot directory

See also:

Troubleshooting

9.8 Further examples

If you already want to know how to setup specific frameworks on the Devilbox, jump directly to their articles:

See also:

Well tested frameworks on the Devilbox

• Setup CakePHP

• Setup CodeIgniter

• Setup CraftCMS

• Setup Drupal

• Setup Joomla

• Setup Laravel

• Setup Magento 2

• Setup Phalcon

• Setup Photon CMS

• Setup PrestaShop

• Setup Shopware

• Setup Symfony

• Setup Typo3

• Setup Wordpress

• Setup Yii

• Setup Zend

See also:

Generic information for all unlisted frameworks

• Setup other Frameworks

44 Chapter 9. Create your first project

CHAPTER 10

Enter the PHP container

Another core feature of the Devilbox, is to be totally independent of what you have or have not installed on your host
operating system.

The Devilbox already ships with many common developer tools which are installed inside each PHP container, so why
not make use of it.

The only thing you might need to install on your host operating system is your favourite IDE or editor to actually start
coding.

See also:

If you want to find out what tools are available inside the PHP container, visit the following section: Available tools.

Table of Contents

• How to enter

– Linux and MacOS

– Windows

• How to become root

• Tools

– What is available

– How to update them

• Advanced

• Checklist

10.1 How to enter

45

Devilbox Documentation, Release 1.0

Note: You can only enter the PHP container if it is running.

10.1.1 Linux and MacOS

On Linux and MacOS you can simply execute the provided shell script: shell.sh. By doing so it will enter you
into the PHP container and bring you to /shared/httpd.

Execute on the host operating system
host> ./shell.sh

Now you are inside the PHP Linux container
devilbox@php-7.0.19 in /shared/httpd $

10.1.2 Windows

On Windows you have a different script to enter the PHP container: shell.bat. Just run it and it will enter you into
the PHP container and bring you to /shared/httpd.

Execute on the host operating system
C:/Users/user1/devilbox> shell.bat

Now you are inside the PHP Linux container
devilbox@php-7.0.19 in /shared/httpd $

10.2 How to become root

When you enter the container with the provided scripts, you are doing so as the user devilbox. If you do need to
perform any actions as root (such as installing new software), you can use the password-less sudo.

Inside the PHP Linux container as user devilbox
devilbox@php-7.0.19 in /shared/httpd $ sudo su -

Now you are root and can do anything you want
root@php-7.0.19 in /shared/httpd $

Note: As this action is inside a Docker container, there is no difference between Linux, MacOS or Windows. Every
host operating system is using the same Docker container - equal accross all platforms.

10.3 Tools

10.3.1 What is available

There are lots of tools available, for a full overview see Available tools. If you think you are missing a tool, install it
yourself as root, or open up an issue on github to get it backed into the Docker image permanently.

See also:

46 Chapter 10. Enter the PHP container

Devilbox Documentation, Release 1.0

Available tools

10.3.2 How to update them

There is no need to update the tools itself. All Docker images are rebuilt every night and automatically pushed to
Docker hub to ensure versions are outdated at a maximum of 24 hours.

The only thing you have to do, is to update the Docker images itself, simply by pulling a new version.

See also:

Update Docker images

10.4 Advanced

This is just a short overview about the possibility to work inside the container. If you want to dig deeper into this topic
there is also a more advanced tutorial available:

See also:

Work inside the PHP container

10.5 Checklist

• You know how to enter the PHP container on Linux, MacOS or Windows

• You know how to become root inside the PHP container

• You know what tools are available inside the PHP container

• You know how to update the tools by pulling new versions of the Docker images

See also:

Troubleshooting

10.4. Advanced 47

Devilbox Documentation, Release 1.0

48 Chapter 10. Enter the PHP container

CHAPTER 11

Change container versions

One of the core concepts of the Devilbox is to easily change between different versions of a specific service.

Table of Contents

• Implications

– Configuration changes

– Data changes

• Examples

– Change PHP version

* Stop the Devilbox

* Edit the .env file

* Start the Devilbox

– Change web server version

* Stop the Devilbox

* Edit the .env file

* Start the Devilbox

– Change whatever version

• Gotchas

• Checklist

49

Devilbox Documentation, Release 1.0

11.1 Implications

11.1.1 Configuration changes

Be aware that every version has its own configuration files in the cfg/ directory. If you switch to a different version,
you might end up with a different custom configuration. This however only applies, if you have already customized
the configuration for your current service.

See also:

• php.ini

• php-fpm.conf

• apache.conf

• nginx.conf

• my.cnf

11.1.2 Data changes

You also have to be aware that all database services (e.g.: MySQL, PostgreSQL, MongoDB, etc) use a per version data
directory. If you change the database version you might find that you have an empty database when starting another
version.

This is simply a pre-caution to prevent newer versions from upgrading the database files and accidentally making them
incompatible for older versions.

If you want to take your data along, do a backup before switching the version and then re-import after the switch:

See also:

• Backup and restore MySQL

• Backup and restore PostgreSQL

• Backup and restore MongoDB

11.2 Examples

11.2.1 Change PHP version

Stop the Devilbox

Shut down the Devilbox in case it is still running:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Stop all container
host> docker-compose stop

50 Chapter 11. Change container versions

Devilbox Documentation, Release 1.0

Edit the .env file

Open the .env file with your favourite editor and navigate to the PHP_SERVER section. It will look something like
this:

Listing 1: .env

#PHP_SERVER=5.2
#PHP_SERVER=5.3
#PHP_SERVER=5.4
#PHP_SERVER=5.5
#PHP_SERVER=5.6
#PHP_SERVER=7.0
PHP_SERVER=7.1
#PHP_SERVER=7.2
#PHP_SERVER=7.3
#PHP_SERVER=7.4

As you can see, all available values are already there, but commented. Only one is uncommented. In this example it is
7.1, which is the PHP version that will be started, once the Devilbox starts.

To change this, simply uncomment your version of choice and save this file. Do not forget to comment (disable) any
other version.

In order to enable PHP 5.5, you would change the .env file like this:

Listing 2: .env

#PHP_SERVER=5.2
#PHP_SERVER=5.3
#PHP_SERVER=5.4
PHP_SERVER=5.5
#PHP_SERVER=5.6
#PHP_SERVER=7.0
#PHP_SERVER=7.1
#PHP_SERVER=7.2
#PHP_SERVER=7.3
#PHP_SERVER=7.4

Start the Devilbox

Now save the file and you can start the Devilbox again.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Stop all container
host> docker-compose up php httpd bind

See also:

Start the Devilbox

11.2. Examples 51

Devilbox Documentation, Release 1.0

11.2.2 Change web server version

Stop the Devilbox

Shut down the Devilbox in case it is still running:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Stop all container
host> docker-compose stop

Edit the .env file

Open the .env file with your favourite editor and navigate to the HTTPD_SERVER section. It will look something
like this:

Listing 3: .env

#HTTPD_SERVER=apache-2.2
#HTTPD_SERVER=apache-2.4
HTTPD_SERVER=nginx-stable
#HTTPD_SERVER=nginx-mainline

As you can see, all available values are already there, but commented. Only one is uncommented. In this example it is
nginx-stable, which is the web server version that will be started, once the Devilbox starts.

To change this, simply uncomment your version of choice and save this file. Do not forget to comment (disable) any
other version.

In order to enable Apache 2.2, you would change the .env file like this:

Listing 4: .env

HTTPD_SERVER=apache-2.2
#HTTPD_SERVER=apache-2.4
#HTTPD_SERVER=nginx-stable
#HTTPD_SERVER=nginx-mainline

Start the Devilbox

Now save the file and you can start the Devilbox again.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Stop all container
host> docker-compose up php httpd bind

See also:

Start the Devilbox

52 Chapter 11. Change container versions

Devilbox Documentation, Release 1.0

11.2.3 Change whatever version

When you have read how to change the PHP or web server version, it should be fairly simple to change any service
version. It behaves in the exact same way.

The variable names of all available services with changable versions are in the following format:
<SERVICE>_SERVER. Just look through the .env file.

See also:

The following variables control service versions: PHP_SERVER, HTTPD_SERVER, MYSQL_SERVER,
PGSQL_SERVER, REDIS_SERVER, MEMCD_SERVER, MONGO_SERVER

11.3 Gotchas

If two versions are uncommented at the same time, always the last one takes precedence.

Consider this .env file:

Listing 5: .env

#PHP_SERVER=5.2
#PHP_SERVER=5.3
#PHP_SERVER=5.4
PHP_SERVER=5.5
#PHP_SERVER=5.6
PHP_SERVER=7.0
#PHP_SERVER=7.1
#PHP_SERVER=7.2
#PHP_SERVER=7.3
#PHP_SERVER=7.4

Both, PHP 5.5 and PHP 7.0 are uncommented, however, when you start the Devilbox, it will use PHP 7.0 as this value
overwrites any previous ones.

11.4 Checklist

1. Stop the Devilbox

2. Uncomment version of choice in .env

3. Start the Devilbox

See also:

Troubleshooting

11.3. Gotchas 53

Devilbox Documentation, Release 1.0

54 Chapter 11. Change container versions

CHAPTER 12

Setup Auto DNS

If you don’t want to add host records manually for every project, you can also use the bundled DNS server and use it’s
DNS catch-all feature to have all DNS records automatically available.

Important: By default, the DNS server is set to listen on 1053 to avoid port collisions during startup. You need to
change it to 53 in .env via HOST_PORT_BIND.

Table of Contents

• Native Docker

– Prerequisites

– Docker on Linux

– Docker for Mac

– Docker for Windows

• Docker Toolbox

– Prerequisites

– Actual setup

12.1 Native Docker

The webserver as well as the DNS server must be available on 127.0.0.1 or on all interfaces on 0.0.0.0. Addi-
tionally the DNS server port must be set to 53 (it is not by default).

• Ensure LOCAL_LISTEN_ADDR is set accordingly

• Ensure HOST_PORT_BIND is set accordingly

55

Devilbox Documentation, Release 1.0

• No other DNS resolver should listen on 127.0.0.1:53

12.1.1 Prerequisites

First ensure that LOCAL_LISTEN_ADDR is either empty or listening on 127.0.0.1.

Listing 1: .env

host> cd path/to/devilbox
host> vi .env
LOCAL_LISTEN_ADDR=

Then you need to ensure that HOST_PORT_BIND is set to 53.

Listing 2: .env

host> cd path/to/devilbox
host> vi .env
HOST_PORT_BIND=53

Before starting up the Devilbox, ensure that port 53 is not already used on 127.0.0.1.

host> netstat -an | grep -E 'LISTEN\s*$'
tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:43477 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:50267 0.0.0.0:* LISTEN

If you see port 53 already being used as in the above example, ensure to stop any DNS resolver, otherwise it does not
work.

The output should look like this (It is only important that there is no :53.

host> netstat -an | grep -E 'LISTEN\s*$'
tcp 0 0 127.0.0.1:43477 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:50267 0.0.0.0:* LISTEN

12.1.2 Docker on Linux

Your DNS server IP address is 127.0.0.1.

See also:

Add custom DNS server on Linux

12.1.3 Docker for Mac

Your DNS server IP address is 127.0.0.1.

See also:

Add custom DNS server on MacOS

56 Chapter 12. Setup Auto DNS

Devilbox Documentation, Release 1.0

12.1.4 Docker for Windows

Your DNS server IP address is 127.0.0.1.

See also:

Add custom DNS server on Windows

12.2 Docker Toolbox

See also:

Docker Toolbox and the Devilbox

This part applies equally for Docker Toolbox on MacOS and on Windows:

12.2.1 Prerequisites

• LOCAL_LISTEN_ADDR must be empty in order to listen on all interfaces

• HOST_PORT_BIND must be set to 53

You need to create three port-forwards to make the DNS and web server available on your host os:

• Port 80 from the Docker Toolbox virtual machine must be port-forwarded to 127.0.0.1:80 on your host os

• Port 443 from the Docker Toolbox virtual machine must be port-forwarded to 127.0.0.1:443 on your host
os

• Port 53 from the Docker Toolbox virtual machine must be port-forwarded to 127.0.0.1:53 on your host os

Assuming the Docker Toolbox IP is 192.168.99.100 your forwards must be as follows:

From IP From port To IP To port
192.168.99.100 53 127.0.0.1 53
192.168.99.100 80 127.0.0.1 80
192.168.99.100 443 127.0.0.1 443

See also:

• SSH port-forward on Docker Toolbox from host

• Find Docker Toolbox IP address

12.2.2 Actual setup

Important: After settings this up, follow the above guides for Docker for Mac or Docker for Windows to finish the
setup.

12.2. Docker Toolbox 57

Devilbox Documentation, Release 1.0

58 Chapter 12. Setup Auto DNS

CHAPTER 13

Setup valid HTTPS

This page shows you how to use the Devilbox on https and how to import the Certificate Authority into your browser
once, so that you always and automatically get valid SSL certificates for all new projects.

SSL certificates are generated automatically and there is nothing to do from your side.

Fig. 1: Valid HTTPS will automatically be available for all projects

Table of Contents

• TL;DR

• How does it work

– Certificate Authority

– SSL Certificates

• Import the CA into your browser

– Chrome / Chromium

– Firefox

• Further Reading

13.1 TL;DR

Import the Certificate Authority into your browser and you are all set.

59

Devilbox Documentation, Release 1.0

13.2 How does it work

13.2.1 Certificate Authority

When the Devilbox starts up for the first time, it will generate a and will store its public and private key in ./ca/
within the Devilbox git directory.

The keys are only generated if they don’t exist and kept permanently if you don’t delete them manually, i.e. they are
not overwritten.

host> cd path/to/devilbox
host> ls -l ca/
-rw-r--r-- 1 cytopia cytopia 1558 May 2 11:12 devilbox-ca.crt
-rw------- 1 cytopia cytopia 1675 May 2 11:12 devilbox-ca.key
-rw-r--r-- 1 cytopia cytopia 17 May 4 08:35 devilbox-ca.srl

13.2.2 SSL Certificates

Whenever you create a new project directory, multiple things happen in the background:

1. A new virtual host is created

2. DNS is provided via Setup Auto DNS

3. A new SSL certificate is generated for that vhost

4. The SSL certificate is signed by the Devilbox Certificate Authority

By having a SSL certificates signed by the provided CA, you will only have to import the CA into your browser
ones and all current projects and future projects will automatically have valid and trusted SSL certificates without any
further work.

13.3 Import the CA into your browser

Important: Importing the CA into the browser is also recommended and required for the Devilbox intranet page to
work properly. You may also import the CA into your Operating System’s Keystore. Information on that is available
at .

13.3.1 Chrome / Chromium

Open Chrome settings, scroll down to the very bottom and click on Advanced to expand the advanced settings.

Find the setting Manage certificates and open it.

Navigate to the tab setting AUTHORITIES and click on IMPORT.

Select devilbox-ca.crt from within the Devilbox ./ca directory:

As the last step you are asked what permissions you want to grant the newly importat CA. To make sure it works
everywhere, check all options and proceed with OK.

Now you are all set and all generated SSL certificates will be valid from now on.

60 Chapter 13. Setup valid HTTPS

Devilbox Documentation, Release 1.0

Fig. 2: Click on Advanced

13.3.2 Firefox

Open Firefox settings and click on Privacy & Security.

At the very bottom click on the button View Certificates.

In the Authories tab, click on Import.

Select devilbox-ca.crt from within the Devilbox ./ca directory:

As the last step you are asked what permissions you want to grant the newly importat CA. To make sure it works
everywhere, check all options and proceed with OK.

Now you are all set and all generated SSL certificates will be valid from now on.

13.4 Further Reading

See also:

.env variable: DEVILBOX_UI_SSL_CN

13.4. Further Reading 61

Devilbox Documentation, Release 1.0

Fig. 3: Click on Manage certificates

Fig. 4: Click on IMPORT in the AUTHORITIES tab

62 Chapter 13. Setup valid HTTPS

Devilbox Documentation, Release 1.0

Fig. 5: Note: your file manager might look different

13.4. Further Reading 63

Devilbox Documentation, Release 1.0

Fig. 6: Tell Chrome to trust this CA

Fig. 7: Valid HTTPS will automatically be available for all projects

64 Chapter 13. Setup valid HTTPS

Devilbox Documentation, Release 1.0

Fig. 8: Click on Privacy & Security in the left menu bar

13.4. Further Reading 65

Devilbox Documentation, Release 1.0

Fig. 9: Click on View Certificates

66 Chapter 13. Setup valid HTTPS

Devilbox Documentation, Release 1.0

Fig. 10: Click on Import in the Authorities tab

Fig. 11: Note: your file manager might look different

13.4. Further Reading 67

Devilbox Documentation, Release 1.0

Fig. 12: Tell Firefox to trust this CA

Fig. 13: Valid HTTPS will automatically be available for all projects

68 Chapter 13. Setup valid HTTPS

CHAPTER 14

Configure PHP Xdebug

This section explains in depth how to enable and use PHP Xdebug with the Devilbox.

Table of Contents

• Introduction

• Configure PHP container for Xdebug

• Configure your IDE/editor for Xdebug

– Path mapping

– IDE key

– Configuration

14.1 Introduction

In order to have a working Xdebug, you need to ensure two things:

1. PHP Xdebug must be configured and enabled in PHP itself

2. Your IDE/editor must be configured and requires a way talk to PHP

Configuring PHP Xdebug will slightly differ when configuring it for a dockerized environment. This is due to the fact
that Docker versions on different host os have varying implementations of how they connect back to the host.

Most IDE or editors will also require different configurations for how they talk to PHP Xdebug. This is at least most
likely the case for xdebug.idekey.

69

Devilbox Documentation, Release 1.0

14.2 Configure PHP container for Xdebug

14.2.1 Xdebug options explained

Table of Contents

• Example

– default_enable

– remote_enable

– remote_handler

– remote_port

– remote_autostart

– idekey

– remote_log

Example

Consider the following xdebug.ini as an example:

Listing 1: xdebug.ini

xdebug.default_enable=1
xdebug.remote_enable=1
xdebug.remote_handler=dbgp
xdebug.remote_port=9000
xdebug.remote_autostart=1
xdebug.idekey="PHPSTORM"
xdebug.remote_log=/var/log/php/xdebug.log

See also:

default_enable

By enabling this, stacktraces will be shown by default on an error event. It is advisable to leave this setting set to 1.

remote_enable

This switch controls whether Xdebug should try to contact a debug client which is listening on the host and port as set
with the settings xdebug.remote_host and xdebug.remote_port. If a connection can not be established
the script will just continue as if this setting was 0.

remote_handler

Can be either 'php3' which selects the old PHP 3 style debugger output, 'gdb' which enables the GDB like
debugger interface or 'dbgp' - the debugger protocol. The DBGp protocol is the only supported protocol.

70 Chapter 14. Configure PHP Xdebug

Devilbox Documentation, Release 1.0

Note: Xdebug 2.1 and later only support 'dbgp' as protocol.

remote_port

The port to which Xdebug tries to connect on the remote host. Port 9000 is the default for both the client and the
bundled debugclient. As many clients use this port number, it is best to leave this setting unchanged.

remote_autostart

Normally you need to use a specific HTTP GET/POST variable to start remote debugging (see). When this setting
is set to 1, Xdebug will always attempt to start a remote debugging session and try to connect to a client, even if the
GET/POST/COOKIE variable was not present.

idekey

Controls which IDE Key Xdebug should pass on to the DBGp debugger handler. The default is based on environment
settings. First the environment setting DBGP_IDEKEY is consulted, then USER and as last USERNAME. The default
is set to the first environment variable that is found. If none could be found the setting has as default ‘’. If this setting
is set, it always overrides the environment variables.

Important: Many IDE/editors require a specific value for xdebug.idekey. Make sure you pay special attention
to that variable when it comes to configuring your IDE/editor.

remote_log

Keep the exact path of /var/log/php/xdebug.log. You will then have the log file available in the Devilbox log
directory of the PHP version for which you have configured Xdebug.

14.2.2 Configure Xdebug: Docker Toolbox

Docker Toolbox regardless of running on MacOS or Windows requires an additional port-forward from your host
operating system to the Docker Toolbox machine.

Table of Contents

• Prerequisites

• Configure php.ini

Prerequisites

Ensure you know how to customize php.ini values for the Devilbox.

See also:

• php.ini

• Xdebug options explained

14.2. Configure PHP container for Xdebug 71

Devilbox Documentation, Release 1.0

Configure php.ini

The following example show how to configure PHP Xdebug for PHP 5.6:

1. Forward host port 9000 to Docker Toolbox machine

Your IDE/editor will open up port 9000 on your host operating system. PHP Xdebug requires this port to
connect to in order to send Xdebug events. As Docker Toolbox itself runs in a virtual machine, you need
to forward traffic from the same port in that virtual machine back to your host operating system.

See also:

• SSH port-forward on Docker Toolbox from host

• SSH port-forward on host to Docker Toolbox

2. Create xdebug.ini

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Navigate to PHP 5.6 ini configuration directory
host> cd cfg/php-ini-5.6/

Create and open debug.ini file
host> vi xdebug.ini

3. Paste the following content into xdebug.ini

Once the por-forward is up, the configuration matches the one for Docker on Linux

See also:

• CNAME for Docker on Linux

Listing 2: xdebug.ini

; Defaults
xdebug.remote_enable=1
xdebug.remote_port=9000

; The Docker Toolbox way
xdebug.remote_connect_back=0
xdebug.remote_host=docker.for.lin.host.internal

; idekey value is specific to each editor
; Verify with your IDE/editor documentation
xdebug.idekey=PHPSTORM

; Optional: Set to true to auto-start xdebug
xdebug.remote_autostart=false

4. Configure your IDE/editor

See also:

• Configure Xdebug for Atom

• Configure Xdebug for PhpStorm

• Configure Xdebug for Sublime Text 3

• Configure Xdebug for Visual Studio Code

72 Chapter 14. Configure PHP Xdebug

Devilbox Documentation, Release 1.0

Important: Depending on your IDE/editor, you might have to adjust xdebug.idekey in the above
configured xdebug.ini.

5. Restart the Devilbox

Restarting the Devilbox is important in order for it to read the new PHP settings.

14.2.3 Configure Xdebug: Docker on Linux

Docker on Linux allows Xdebug to automatically connect back to the host system without the need of an explicit IP
address.

Table of Contents

• Prerequisites

• Configure php.ini

Prerequisites

Ensure you know how to customize php.ini values for the Devilbox.

See also:

• php.ini

• Xdebug options explained

Configure php.ini

Configuring Xdebug for Docker on Linux is straight forward and you must only pay attention to two variables high-
lighted below.

The following example show how to configure PHP Xdebug for PHP 5.6:

1. Create xdebug.ini

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Navigate to PHP 5.6 ini configuration directory
host> cd cfg/php-ini-5.6/

Create and open debug.ini file
host> vi xdebug.ini

2. Paste the following content into xdebug.ini

Listing 3: xdebug.ini

; Defaults
xdebug.default_enable=1
xdebug.remote_enable=1

(continues on next page)

14.2. Configure PHP container for Xdebug 73

Devilbox Documentation, Release 1.0

(continued from previous page)

xdebug.remote_port=9000

; The Linux way
xdebug.remote_connect_back=1

; idekey value is specific to each editor
; Verify with your IDE/editor documentation
xdebug.idekey=PHPSTORM

; Optional: Set to true to auto-start xdebug
xdebug.remote_autostart=false

3. Configure your IDE/editor

See also:

• Configure Xdebug for Atom

• Configure Xdebug for PhpStorm

• Configure Xdebug for Sublime Text 3

• Configure Xdebug for Visual Studio Code

Important: Depending on your IDE/editor, you might have to adjust xdebug.idekey in the above
configured xdebug.ini.

4. Restart the Devilbox

Restarting the Devilbox is important in order for it to read the new PHP settings.

14.2.4 Configure Xdebug: Docker for Mac

Docker for MacOS requires a well known IP address in order to connect to the host operating system. This can be
achieved with two different approaches described below.

See also:

https://forums.docker.com/t/ip-address-for-xdebug/10460/32

Table of Contents

• Prerequisites

• Configure php.ini: CNAME alias

• Configure php.ini: Host alias

Prerequisites

Ensure you know how to customize php.ini values for the Devilbox and Xdebug is enabled.

See also:

• php.ini

74 Chapter 14. Configure PHP Xdebug

https://forums.docker.com/t/ip-address-for-xdebug/10460/32

Devilbox Documentation, Release 1.0

• Xdebug options explained

Configure php.ini: CNAME alias

Option 1: This option is the easiest to setup, but was also very fragile on many Docker versions.

Docker for Mac received many default CNAMEs throughout its versions. The most recent and active one is host.
docker.internal. Use this CNAME as the remote address for Xdebug to connect to your IDE/editor on your
host os.

See also:

CNAME for Docker for Mac In case host.docker.internal is not resolvable, read on here for alternative
CNAME’s on Docker for Mac

Important: Before you try this approach, verify that the PHP Docker container is actually able to resolve host.
docker.internal:

host> cd path/to/devilbox
host> ./shell.sh
php> ping host.docker.internal

In case it is not resolvable, stick to the host alias address approach.

The following example show how to configure PHP Xdebug for PHP 5.6:

1. Create xdebug.ini

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Navigate to PHP 5.6 ini configuration directory
host> cd cfg/php-ini-5.6/

Create and open debug.ini file
host> vi xdebug.ini

2. Paste the following content into xdebug.ini

Listing 4: xdebug.ini

; Defaults
xdebug.default_enable=1
xdebug.remote_enable=1
xdebug.remote_port=9000

; The MacOS way (CNAME)
xdebug.remote_connect_back=0
xdebug.remote_host=host.docker.internal

; idekey value is specific to each editor
; Verify IDE/editor documentation
xdebug.idekey=PHPSTORM

; Optional: Set to true to auto-start xdebug
xdebug.remote_autostart=false

14.2. Configure PHP container for Xdebug 75

Devilbox Documentation, Release 1.0

3. Configure your IDE/editor

See also:

• Configure Xdebug for Atom

• Configure Xdebug for PhpStorm

• Configure Xdebug for Sublime Text 3

• Configure Xdebug for Visual Studio Code

Important: Depending on your IDE/editor, you might have to adjust xdebug.idekey in the above
configured xdebug.ini.

4. Restart the Devilbox

Restarting the Devilbox is important in order for it to read the new PHP settings.

Configure php.ini: Host alias

Option 2: This is the most general option that should work with any Docker version on MacOS, it does however
require a few changes in your system.

Important: Ensure you have created an Host address alias on MacOS and 10.254.254.254 is aliased to your
localhost.

The following example show how to configure PHP Xdebug for PHP 5.6:

1. Create xdebug.ini

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Navigate to PHP 5.6 ini configuration directory
host> cd cfg/php-ini-5.6/

Create and open debug.ini file
host> vi xdebug.ini

2. Paste the following content into xdebug.ini

Listing 5: xdebug.ini

; Defaults
xdebug.default_enable=1
xdebug.remote_enable=1
xdebug.remote_port=9000

; The MacOS way (host alias)
xdebug.remote_connect_back=0
xdebug.remote_host=10.254.254.254

; idekey value is specific to each editor
; Verify with your IDE/editor documentation
xdebug.idekey=PHPSTORM

(continues on next page)

76 Chapter 14. Configure PHP Xdebug

Devilbox Documentation, Release 1.0

(continued from previous page)

; Optional: Set to true to auto-start xdebug
xdebug.remote_autostart=false

3. Configure your IDE/editor

See also:

• Configure Xdebug for Atom

• Configure Xdebug for PhpStorm

• Configure Xdebug for Sublime Text 3

• Configure Xdebug for Visual Studio Code

Important: Depending on your IDE/editor, you might have to adjust xdebug.idekey in the above
configured xdebug.ini.

4. Restart the Devilbox

Restarting the Devilbox is important in order for it to read the new PHP settings.

14.2.5 Configure Xdebug: Docker for Windows

Docker for Windows requires a well known IP address in order to connect to the host operating system. This can be
achieved with two different approaches described below.

Table of Contents

• Prerequisites

• Configure php.ini: CNAME alias

• Configure php.ini: Get IP manually

Prerequisites

Ensure you know how to customize php.ini values for the Devilbox and Xdebug is enabled.

See also:

• php.ini

• Xdebug options explained

Configure php.ini: CNAME alias

Option 1: This option is the easiest to setup, but was also very fragile on many Docker versions.

Docker for Windows received many default CNAMEs throughout its versions. The most recent and active one is
host.docker.internal. Use this CNAME as the remote address for Xdebug to connect to your IDE/editor on
your host os.

See also:

14.2. Configure PHP container for Xdebug 77

Devilbox Documentation, Release 1.0

CNAME for Docker for Windows In case host.docker.internal is not resolvable, read on here for alternative
CNAME’s on Docker for Windows

Important: Before you try this approach, verify that the PHP Docker container is actually able to resolve host.
docker.internal:

C:\> cd path\to\devilbox
C:\> shell.bat
php> ping host.docker.internal

In case it is not resolvable, stick to the host alias address approach.

The following example show how to configure PHP Xdebug for PHP 5.6:

1. Create xdebug.ini

1. Navigate to the Devilbox directory

2. Navigate to cfg\php-ini-5.6\ directory

3. Create a new file named xdebug.ini

Important: Pay attention that windows is not adding .txt as a file extension.

2. Paste the following content into xdebug.ini

Listing 6: xdebug.ini

; Defaults
xdebug.default_enable=1
xdebug.remote_enable=1
xdebug.remote_port=9000

; The Windows way (CNAME)
xdebug.remote_connect_back=0
xdebug.remote_host=host.docker.internal

; idekey value is specific to each editor
; Verify IDE/editor documentation
xdebug.idekey=PHPSTORM

; Optional: Set to true to auto-start xdebug
xdebug.remote_autostart=false

3. Configure your IDE/editor

See also:

• Configure Xdebug for Atom

• Configure Xdebug for PhpStorm

• Configure Xdebug for Sublime Text 3

• Configure Xdebug for Visual Studio Code

78 Chapter 14. Configure PHP Xdebug

Devilbox Documentation, Release 1.0

Important: Depending on your IDE/editor, you might have to adjust xdebug.idekey in the above
configured xdebug.ini.

4. Restart the Devilbox

Restarting the Devilbox is important in order for it to read the new PHP settings.

Configure php.ini: Get IP manually

Option 2: This is the most general option that should work with any Docker version on Windows. it does however
require a small manual step.

The following example show how to configure PHP Xdebug for PHP 5.6:

1. Gather IP address for Xdebug

On Windows you will have to manually gather the IP address and add it to xdebug.remote_host.

1. Open command line

2. Enter ipconfig

3. Look for the IP4 address in DockerNAT (e.g.: 192.168.246.1)

See also:

Open a terminal on Windows

Important: 192.168.246.1 is meant as an example and will eventually differ on your system. Ensure
you substitute it with the correct IP address.

2. Create xdebug.ini

1. Navigate to the Devilbox directory

2. Navigate to cfg\php-ini-5.6\ directory

3. Create a new file named xdebug.ini

Important: Pay attention that windows is not adding .txt as a file extension.

3. Paste the following content into xdebug.ini

Listing 7: xdebug.ini

; Defaults
xdebug.default_enable=1
xdebug.remote_enable=1
xdebug.remote_port=9000

; The Windows way (IP address)
xdebug.remote_connect_back=0
xdebug.remote_host=192.168.246.1

; idekey value is specific to each editor
; Verify IDE/editor documentation

(continues on next page)

14.2. Configure PHP container for Xdebug 79

Devilbox Documentation, Release 1.0

(continued from previous page)

xdebug.idekey=PHPSTORM

; Optional: Set to true to auto-start xdebug
xdebug.remote_autostart=false

Important: 192.168.246.1 is meant as an example and will eventually differ on your system. Ensure
you substitute it with the correct IP address.

4. Configure your IDE/editor

See also:

• Configure Xdebug for Atom

• Configure Xdebug for PhpStorm

• Configure Xdebug for Sublime Text 3

• Configure Xdebug for Visual Studio Code

Important: Depending on your IDE/editor, you might have to adjust xdebug.idekey in the above
configured xdebug.ini.

5. Restart the Devilbox

Restarting the Devilbox is important in order for it to read the new PHP settings.

The following gives you a step-by-step guide on how to setup PHP Xdebug for the Devilbox depending on what host
operating system you are using.

Be reminded that PHP configuration is always done per version, i.e. having it configured for PHP 7.2, does not enable
it for any other versions.

See also:

• Xdebug options explained

• Configure Xdebug: Docker on Linux

• Configure Xdebug: Docker for Mac

• Configure Xdebug: Docker for Windows

• Configure Xdebug: Docker Toolbox (Mac or Windows)

14.3 Configure your IDE/editor for Xdebug

After you have setup PHP Xdebug as referenced above, you can continue to configure your currently used IDE/editor.

Most IDE/editors will usually be configured in a very similar way, which comes down to two main settings;

14.3.1 Path mapping

The path mapping is a mapping between the file path on your host operating system and the one inside the PHP Docker
container.

80 Chapter 14. Configure PHP Xdebug

Devilbox Documentation, Release 1.0

The path on your host operating system is the one you have set in HOST_PATH_HTTPD_DATADIR. In case you have
set a relative path in .env, ensure to retrieve the absolute path of it when setting up your IDE config.

The path inside the PHP Docker container is always /shared/httpd.

Important: Even though your path in .env for HOST_PATH_HTTPD_DATADIR might be relative (e.g. ./data/
www), you need to get the actualy absolute path of it, when setting up your IDE.

14.3.2 IDE key

This is the value you have set in xdebug.ini for xdebug.idekey. In the example of this tutorial, the value was
set to PHPSTORM.

Configure Xdebug for Atom

Table of Contents

• Prerequisites

• Assumption

• Configuration

Prerequisites

Ensure that xdebug.idekey is set to xdebug.atom in your PHP Xdebug configuration.

See also:

• Configure Xdebug: Docker on Linux

• Configure Xdebug: Docker for Mac

• Configure Xdebug: Docker for Windows

• Configure Xdebug: Docker Toolbox

Assumption

For the sake of this example, we will assume the following paths:

Directory Path
Devilbox git directory /home/cytopia/repo/devilbox
HOST_PATH_HTTPD_DATADIR ./data/www
Resulting local project path /home/cytopia/repo/devilbox/data/www

The Resulting local project path is the path where all projects are stored locally on your host operating system. No
matter what this path is, the equivalent remote path (inside the Docker container) is always /shared/httpd.

14.3. Configure your IDE/editor for Xdebug 81

Devilbox Documentation, Release 1.0

Important: Remember this, when it comes to path mapping in your IDE/editor configuration.

Configuration

1. Install php-debug for Atom

See also:

2. Configure path mapping in config.cson or ui

Listing 8: config.cson

"php-debug":
{

ServerPort: 9000
PathMaps: [

"remotepath;localpath"
"/shared/httpd;/home/cytopia/repo/devilbox/data/www"

]
}

Important: On Windows you have to use \\ as directory separators for the local path mapping. E.g.:
C:\\Users\\projects.

Configure Xdebug for PhpStorm

Table of Contents

• Prerequisites

• Assumption

• Configuration

Prerequisites

Ensure that xdebug.idekey is set to PHPSTORM in your PHP Xdebug configuration.

See also:

• Configure Xdebug: Docker on Linux

• Configure Xdebug: Docker for Mac

• Configure Xdebug: Docker for Windows

• Configure Xdebug: Docker Toolbox

82 Chapter 14. Configure PHP Xdebug

Devilbox Documentation, Release 1.0

Assumption

For the sake of this example, we will assume the following paths:

Directory Path
Devilbox git directory /home/cytopia/repo/devilbox
HOST_PATH_HTTPD_DATADIR ./data/www
Resulting local project path /home/cytopia/repo/devilbox/data/www

The Resulting local project path is the path where all projects are stored locally on your host operating system. No
matter what this path is, the equivalent remote path (inside the Docker container) is always /shared/httpd.

Important: Remember this, when it comes to path mapping in your IDE/editor configuration.

Configuration

1. Ensure Xdebug port is set to 9000

Fig. 1: PHPStorm settings: Xdebug

2. Set path mapping

Create a new PHP server and set a path mapping. This tutorial assumes your local Devilbox projects to
be in ./data/www of the Devilbox git directory:

14.3. Configure your IDE/editor for Xdebug 83

Devilbox Documentation, Release 1.0

Fig. 2: PHPStorm settings: path mapping

Important: Recall the path mapping!

3. Ensure DBGp proxy settings are configured

Configure Xdebug for Sublime Text 3

Table of Contents

• Prerequisites

• Assumption

• Configuration

Prerequisites

Ensure that xdebug.idekey is set to PHPSTORM in your PHP Xdebug configuration.

See also:

• Configure Xdebug: Docker on Linux

84 Chapter 14. Configure PHP Xdebug

Devilbox Documentation, Release 1.0

Fig. 3: PHPStorm settings: DBGp Proxy

• Configure Xdebug: Docker for Mac

• Configure Xdebug: Docker for Windows

• Configure Xdebug: Docker Toolbox

Assumption

For the sake of this example, we will assume the following paths:

Directory Path
Devilbox git directory /home/cytopia/repo/devilbox
HOST_PATH_HTTPD_DATADIR ./data/www
Resulting local project path /home/cytopia/repo/devilbox/data/www

The Resulting local project path is the path where all projects are stored locally on your host operating system. No
matter what this path is, the equivalent remote path (inside the Docker container) is always /shared/httpd.

Important: Remember this, when it comes to path mapping in your IDE/editor configuration.

Configuration

1. Install Xdebug Client

14.3. Configure your IDE/editor for Xdebug 85

Devilbox Documentation, Release 1.0

Use Sublime’s Package Control to search for and install Xdebug Client.

See also:

2. Configure Xdebug.sublime-settings

• Navigate to Tools -> Xdebug -> Settings - User in the menu

• This will open the configuration file in Sublime

Listing 9: Xdebug-sublime-settings

{
"path_mapping": {

"/shared/httpd" : "/home/cytopia/repo/devilbox/data/www"
},
"url": "",
"ide_key": "PHPSTORM",
"host": "0.0.0.0",
"port": 9000

}

Important: Recall the path mapping!

Configure Xdebug for Visual Studio Code

Table of Contents

• Prerequisites

• Assumption

• Configuration

Prerequisites

Ensure that xdebug.idekey is set to PHPSTORM in your PHP Xdebug configuration.

See also:

• Configure Xdebug: Docker on Linux

• Configure Xdebug: Docker for Mac

• Configure Xdebug: Docker for Windows

• Configure Xdebug: Docker Toolbox

Assumption

For the sake of this example, we will assume the following paths:

86 Chapter 14. Configure PHP Xdebug

Devilbox Documentation, Release 1.0

Directory Path
Devilbox git directory /home/cytopia/repo/devilbox
HOST_PATH_HTTPD_DATADIR ./data/www
Resulting local project path /home/cytopia/repo/devilbox/data/www

The Resulting local project path is the path where all projects are stored locally on your host operating system. No
matter what this path is, the equivalent remote path (inside the Docker container) is always /shared/httpd.

Important: Remember this, when it comes to path mapping in your IDE/editor configuration.

Configuration

1. Install vscode-php-debug

See also:

2. Configure launch.json

Listing 10: launch.json

{
"version": "0.2.0",
"configurations": [

{
"name": "Listen for Xbebug",
"type": "php",
"request": "launch",
"port": 9000,
"serverSourceRoot": "/shared/httpd",
"localSourceRoot": "/home/cytopia/repo/devilbox/data/www"

}, {
"name": "Launch currently open script",
"type": "php",
"request": "launch",
"program": "${file}",
"cwd": "${fileDirname}",
"port": 9000

}
]

}

Important: Recall the path mapping!

14.3.3 Configuration

See also:

• Configure Xdebug for Atom

• Configure Xdebug for PhpStorm

• Configure Xdebug for Sublime Text 3

14.3. Configure your IDE/editor for Xdebug 87

Devilbox Documentation, Release 1.0

• Configure Xdebug for Visual Studio Code

88 Chapter 14. Configure PHP Xdebug

CHAPTER 15

Enable/disable PHP modules

Table of Contents

• Enabled PHP modules

• Disable PHP modules

• Roadmap

See also:

https://github.com/devilbox/docker-php-fpm#user-content-php-modules Follow the link to see all available PHP
modules for each different PHP-FPM server version.

15.1 Enabled PHP modules

At the moment all PHP modules are enabled by default except ioncube, So this one is the only one you can currently
enable. To do so follow the steps provided below:

1. Stop the Devilbox

2. Enable modules in .env under PHP_MODULES_ENABLE

Listing 1: .env

Enable Ioncube
PHP_MODULES_ENABLE=ioncube

3. Start the Devilbox

See also:

PHP_MODULES_ENABLE

89

https://github.com/devilbox/docker-php-fpm#user-content-php-modules
http://www.ioncube.com/

Devilbox Documentation, Release 1.0

15.2 Disable PHP modules

If you feel there are currently too many modules loaded and you want to unload some of them by default, you can do
so via a comma separated list in .env.

1. Stop the Devilbox

2. Disable modules in .env under PHP_MODULES_DISABLE

Listing 2: .env

Disable Xdebug, Imagick and Swoole
PHP_MODULES_DISABLE=xdebug,imagick,swoole

3. Start the Devilbox

See also:

PHP_MODULES_DISABLE

15.3 Roadmap

Todo: In order to create a performent, secure and sane default PHP-FPM server, only really required modules should
be enabled by default. The rest is up to the user to enable others as needed.

The current discussion about default modules can be found at the following Github issue. Please participate and give
your ideas: https://github.com/cytopia/devilbox/issues/299

90 Chapter 15. Enable/disable PHP modules

https://github.com/cytopia/devilbox/issues/299

CHAPTER 16

Read log files

The logging behaviour is determined by the value of DOCKER_LOGS inside your .env file. By default logs are
mounted to the host operating system for convenient access.

Table of Contents

• Mounted logs

• Docker logs

• Checklist

16.1 Mounted logs

By default log files for PHP, the webserver and the MySQL server are mounted to the host system into your Dev-
ilbox git directory under ./log/. All logs are separated by service version in the following format: ./log/
<service>-<version>/

The log directory structure would look something like this:

host> cd path/to/devilbox
host> tree log

log/
nginx-stable/

nginx-stable/
defaultlocalhost-access.log
defaultlocalhost-error.log
<project-name>-access.log # Each project has its own access log
<project-name>-error.log # Each project has its own error log

mariadb-10.1/
error.log

(continues on next page)

91

Devilbox Documentation, Release 1.0

(continued from previous page)

query.log
slow.log

php-fpm-7.1/
php-fpm.access
php-fpm.error

Use your favorite tools to view log files such as tail, less, more, cat or others.

Important: Currently logs are only mounted for PHP, HTTPD and MYSQL container. All other services will log to
Docker logs.

16.2 Docker logs

You can also change the behaviour where logs are streamed by setting DOCKER_LOGS to 1 inside your .env file.
When doing logs are sent to Docker logs.

When using this approach, you need to use the docker-compose logs command to view your log files from
within the Devilbox git directory.

host> cd path/to/devilbox
host> docker-compose logs

When you want to continuously watch the log output (such as tail -f), you need to append -f to the command.

host> cd path/to/devilbox
host> docker-compose logs -f

When you only want to have logs displayed for a single service, you can also append the service name (works with or
without -f as well):

host> cd path/to/devilbox
host> docker-compose logs php -f

Important: This currently does not work for the MySQL container, which will always log to file.

16.3 Checklist

1. You know how to switch between file and Docker logs

2. You know where log files are mounted

3. You know how to access Docker logs

92 Chapter 16. Read log files

CHAPTER 17

Email catch-all

17.1 Devilbox Intranet

All your projects can send emails to whatever recipient. You do not have to worry that they will actually being sent.
Each PHP container runs a local postfix mailserver that intercepts all outgoing mails and puts them into a local mailbox
by the user devilbox.

In order to view sent emails open up the devilbox intranet http://localhost/mail.php. There you can also test email
sending and verify that they really stay locally.

In the above image from the intranet you can see that all emails sent to whatever recipient have been caught by the
Devilbox and are available to be read.

17.2 MailHog

Instead of using the very basic Devilbox intranet UI for emails, you can also enable MailHog and use this to view sent
email.s

See also:

Enable and configure MailHog

93

http://localhost/mail.php

Devilbox Documentation, Release 1.0

Fig. 1: Devilbox intranet: email catch-all overview

94 Chapter 17. Email catch-all

CHAPTER 18

Add custom environment variables

If your application requires a variable to determine if it is run under development or production, you can easily add it
and make PHP aware of it.

Table of Contents

• Add custom environment variables

• Use custom environment variables

18.1 Add custom environment variables

This is fairly simple. Any variable inside the .env file is considered an environment variable and automatically known
to PHP.

If you for example require a variable APPLICATION_ENV, with a value of production, you would add the fol-
lowing to the .env file:

Listing 1: .env

APPLICATION_ENV=production

You need to restart the Devilbox for the changes to take effect.

Note: There is already a proposed section inside the .env file at the very bottom to add you custom variables to
differentiate them from the Devilbox required variables.

95

Devilbox Documentation, Release 1.0

18.2 Use custom environment variables

Accessing the above defined environment variable on the PHP side is also fairly simple. You can use the PHP’s built-in
function getenv to obtain the value:

Listing 2: index.php

<?php
// Example use of getenv()
echo getenv('APPLICATION_ENV');
?>

96 Chapter 18. Add custom environment variables

CHAPTER 19

Work inside the PHP container

The Devilbox allows you to completely work inside the PHP container (no matter what version), instead of your host
operating system.

This brings a lot of advantages, such as that you don’t have to install any development tool on your OS or if you are
on Windows, you get a full blown Linux environment.

Additionally, special port-bindings and forwards are in place that allows you to even interchangably work locally or
inside the container without having to alter any php config for database and other connections.

See also:

Available tools

Table of Contents

• Enter the container

– Entering from Linux or MacOS: shell.sh

– Entering from Windows: shell.bat

• Inside the container

– devilbox user

– root user

• Leave the container

• Host to Container mappings

– File and directory Permissions

– Directory mappings

– IP address mappings

– Port mappings

97

Devilbox Documentation, Release 1.0

– DNS mappings

• Checklist

19.1 Enter the container

Entering the computer is fairly simple. The Devilbox ships with two scripts to do that. One for Linux and MacOS
(shell.sh) and another one for Windows (shell.bat).

19.1.1 Entering from Linux or MacOS: shell.sh

Navigate to the Devilbox directory
host> cd /path/to/devilbox

Run provided script
host> ./shell.sh

Now you are inside the PHP Linux container
devilbox@php-7.0.19 in /shared/httpd $

19.1.2 Entering from Windows: shell.bat

Navigate to the Devilbox directory
C:/> cd C:/Users/user1/devilbox

Run provided script
C:/Users/user1/devilbox> shell.bat

Now you are inside the PHP Linux container
devilbox@php-7.0.19 in /shared/httpd $

19.2 Inside the container

19.2.1 devilbox user

By using the provided scripts to enter the container you will become the user devilbox. This user will have the
same uid and gid as the user from your host operating system.

So no matter what files or directories you create inside the container, they will have the same permissions and uid/gid
set your host operating system. This of course also works the other way round.

The uid and gid mappings are controlled via two .env variables called NEW_UID and NEW_GID

See also:

If you want to find out more about synronized container permissions read up here: Syncronize container permissions

98 Chapter 19. Work inside the PHP container

Devilbox Documentation, Release 1.0

19.2.2 root user

Sometimes however it is also necessary to do some actions that require super user privileges. You can always become
root inside the container by either impersonating it or by using sudo to issue commands.

By default sudo is configured to be used without passwords, so you can simply do the following:

As user devilbox inside the container
devilbox@php-7.0.19 in /shared/httpd $ sudo su -

You are now the root user
root@php-7.0.19 in /shared/httpd $

You can also use sudo to run commands with root privileges without having to become root first.

As user devilbox inside the container
devilbox@php-7.0.19 in /shared/httpd $ sudo apt update
devilbox@php-7.0.19 in /shared/httpd $ sudo apt install nmap

19.3 Leave the container

When you are inside the container and want to return to your host operating, just type exit and you are out.

As user devilbox inside the container
devilbox@php-7.0.19 in /shared/httpd $ exit

You are now back on your host operating system
host>

19.4 Host to Container mappings

This section will give you an idea that there is actually no difference from inside the container and on your host
operating system. Directory permissions, IP addresses, ports and DNS entries are fully syncronized allowing you to
switch between container and host without having to change any settings.

19.4.1 File and directory Permissions

The username inside the container (devilbox) might be different from your local host operating system username,
however its actual uid and gid will match. This is to ensure file and directory permissions are synronized inside and
outside the container and no matter from which side you create files and directories, it will always look as if they are
owned by your system user.

The uid and gid mappings are controlled via two .env variables called NEW_UID and NEW_GID

19.4.2 Directory mappings

One thing you should understand is the relation between the directories on your host operating system and the corre-
sponding directory inside the PHP container.

19.3. Leave the container 99

Devilbox Documentation, Release 1.0

The location of the data directory (HOST_PATH_HTTPD_DATADIR) on your host computer is controlled via the
HOST_PATH_HTTPD_DATADIR variable inside the .env file. No matter what location you set it to, inside the
container it will always be mapped to /shared/httpd.

See the following table for a few examples:

Host operating system Inside PHP container
Data dir ./www/data /shared/httpd
Data dir /home/user1/www /shared/httpd
Data dir /var/www /shared/httpd

19.4.3 IP address mappings

The following table shows a mapping of IP addresses of available service from the perspective of your host operating
system and from within the PHP container.

Service IP from host os IP from within PHP container
PHP 127.0.0.1 127.0.0.1
Apache/Nginx 127.0.0.1 127.0.0.1
MySQL 127.0.0.1 127.0.0.1
PostgreSQL 127.0.0.1 127.0.0.1
Redis 127.0.0.1 127.0.0.1
Memcached 127.0.0.1 127.0.0.1
MongoDB 127.0.0.1 127.0.0.1

As you can see, everyhing is available under 127.0.0.1.

The PHP container is using socat to forward the services from all other available containers to its own 127.0.0.1
address.

An example to access the MySQL database from either host or within the PHP container is the same:

Access MySQL from your host operating system
host> mysql -h 127.0.0.1

Access MySQL from within the PHP container
devilbox@php-7.0.19 in /shared/httpd $ mysql -h 127.0.0.1

Important: Do not use localhost to access the services, it does not map to 127.0.0.1 on all cases.

So when setting up a configuration file from your PHP project you would for example use 127.0.0. as the host for
your MySQL database connection:

<?php
// MySQL server connection
mysql_host = '127.0.0.1';
mysql_port = '3306';
mysql_user = 'someusername';
mysql_pass = 'somepassword';
?>

100 Chapter 19. Work inside the PHP container

Devilbox Documentation, Release 1.0

Imagine your PHP framework ships a command line tool to run database migration. You could run it from your host
operating system or from within the PHP container. It would work from both sides as the connection to the database
is exactly the same locally or within the container.

You could also even switch between the Devilbox and a locally installed LAMP stack and still use the same configu-
ration.

Important: The mapping of 127.0.0.1 to your host operating system does not work with Docker Toolbox out of
the box. In order to achieve the same behaviour read up on: Docker Toolbox and the Devilbox.

19.4.4 Port mappings

By default, ports are also synronized between host operating system (the ports that are exposed) and the ports within
the PHP container. This is however also configurable inside the .env file.

Service Port from host os Port from within PHP container
PHP NA 9000
Apache/Nginx 80 80
MySQL 3306 3306
PostgreSQL 5432 5432
Redis 6379 6379
Memcached 11211 11211
MongoDB 27017 27017

19.4.5 DNS mappings

All project DNS records are also available from inside the PHP container independent of the value of TLD_SUFFIX.

The PHP container is hooked up by default to the bundled DNS server and makes use Setup Auto DNS.

See also:

You can achieve the same on your host operating system by explicitly enabling auto-dns. See also: Setup Auto DNS.

19.5 Checklist

1. You know how to enter the PHP container

2. You know how to become root inside the PHP container

3. You know how to leave the container

4. You know that file and directory permissions are synronized

5. You know that 127.0.0.1 is available on your host and inside the PHP container

6. You know that ports are the same inside the container and on your host os

7. You know that project urls are available inside the container and on your host

8. You know about the limitations of Docker Toolbox and the Devilbox

19.5. Checklist 101

Devilbox Documentation, Release 1.0

102 Chapter 19. Work inside the PHP container

CHAPTER 20

Source Code Analysis

This tutorial gives you a general overview how to do static code analysis from within the PHP container.

See also:

• Available tools

• Work inside the PHP container

Table of Contents

• Awesome-ci

• PHPCS

• ESLint

20.1 Awesome-ci

Awesome-ci is a collection of tools for analysing your workspace and its files. You can for example check for:

• git conflicts

• git ignored files that have not been removed from the git index

• trailing spaces and newlines

• non-utf8 files or utf8 files with bom

• windows line feeds

• null-byte characters

• empty files

• syntax errors for various languages

103

Devilbox Documentation, Release 1.0

• inline css or js code

• customized regex

Some of the bundled tools even allow for automatic fixing.

See also:

1. Enter your PHP container
host> ./bash

2. Go to your project folder
devilbox@php-7.0.20 $ cd /shared/httpd/my-project

3. Run the tools
devilbox@php-7.0.20 $ git-conflicts --path=.
devilbox@php-7.0.20 $ git-ignored --path=.
devilbox@php-7.0.20 $ file-cr --path=.
devilbox@php-7.0.20 $ file-crlf --path=.
devilbox@php-7.0.20 $ file-empty --path=.

4. Run tools with more options
devilbox@php-7.0.20 $ syntax-php --path=. --extension=php
devilbox@php-7.0.20 $ syntax-php --path=. --shebang=php

5. Various syntax checks
devilbox@php-7.0.20 $ syntax-bash --path=. --text --extension=sh
devilbox@php-7.0.20 $ syntax-css --path=. --text --extension=css
devilbox@php-7.0.20 $ syntax-js --path=. --text --extension=js
devilbox@php-7.0.20 $ syntax-json --path=. --text --extension=json
devilbox@php-7.0.20 $ syntax-markdown --path=. --text --extension=md
devilbox@php-7.0.20 $ syntax-perl --path=. --text --extension=pl
devilbox@php-7.0.20 $ syntax-php --path=. --text --extension=php
devilbox@php-7.0.20 $ syntax-python --path=. --text --extension=python
devilbox@php-7.0.20 $ syntax-ruby --path=. --text --extension=rb
devilbox@php-7.0.20 $ syntax-scss --path=. --text --extension=scss

20.2 PHPCS

PHPCS is a code style analyser for PHP.

See also:

1. Enter your PHP container
host> ./bash

2. Go to your project folder
devilbox@php-7.0.20 $ cd /shared/httpd/my-project

3. Run it
devilbox@php-7.0.20 $ phpcs .

20.3 ESLint

ESLint is a Javascript static source code analyzer.

104 Chapter 20. Source Code Analysis

Devilbox Documentation, Release 1.0

See also:

1. Enter your PHP container
host> ./bash

2. Go to your project folder
devilbox@php-7.0.20 $ cd /shared/httpd/my-project

3. Run it
devilbox@php-7.0.20 $ eslint .

20.3. ESLint 105

Devilbox Documentation, Release 1.0

106 Chapter 20. Source Code Analysis

CHAPTER 21

Best practice

If you have already operate the Devilbox, this guide is a must have. It will cover common best-practice topics as well
as some tips and tricks you will want to apply.

Table of Contents

• Move data out of Devilbox directory

– Projects

– Databases

* MySQL

* PostgreSQL

* MongoDB

– Version control .env file

– Version control service config files

• PHP project hostname settings

• Timezone

21.1 Move data out of Devilbox directory

One thing you should take into serious consideration is to move data such as your projects as well as persistent data of
databases out of the Devilbox git directory.

The Devilbox git directory should be something that can be safely deleted and re-created without having to worry
about loosing any project data. There could also be the case that you have a dedicated hard-disk to store your projects
or you have your own idea about a directory structure where you want to store your projects.

107

Devilbox Documentation, Release 1.0

21.1.1 Projects

See also:

Move projects to a different directory Follow this guide to keep your projects separated from the Devilbox git direc-
tory.

21.1.2 Databases

Moving your projects out of the Devilbox git directory is one step, you still need to take care about persistent data of
all available databases as well.

Let’s assume you desired location for database storage is at /home/user/workspace/db/.

MySQL

All you have to to is to adjust the path of HOST_PATH_MYSQL_DATADIR in the .env file.

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_MYSQL_DATADIR

Listing 1: .env

HOST_PATH_MYSQL_DATADIR=/home/user/workspace/db/mysql

That’s it, whenever you start up the Devilbox /home/user/workspace/db/mysql/ will be mounted into the
MySQL container.

PostgreSQL

All you have to to is to adjust the path of HOST_PATH_PGSQL_DATADIR in the .env file.

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_PGSQL_DATADIR

Listing 2: .env

HOST_PATH_PGSQL_DATADIR=/home/user/workspace/db/pgsql

That’s it, whenever you start up the Devilbox /home/user/workspace/db/pqsql/ will be mounted into the
PostgreSQL container.

108 Chapter 21. Best practice

Devilbox Documentation, Release 1.0

MongoDB

All you have to to is to adjust the path of HOST_PATH_MONGO_DATADIR in the .env file.

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_MONGO_DATADIR

Listing 3: .env

HOST_PATH_MONGO_DATADIR=/home/user/workspace/db/mongo

That’s it, whenever you start up the Devilbox /home/user/workspace/db/mongo/ will be mounted into the
MongoDB container.

21.1.3 Version control .env file

The .env file is ignored by git, because this is your file to customize and it should be your responsibility to make sure
to backup or version controlled.

One concept you can apply here is to have a separate dotfiles git repository. This is a repository that holds all of your
configuration files such as vim, bash, zsh, xinit and many more. Those files are usually stored inside this repository and
then symlinked to the correct location. By having all configuration files in one place, you can see and track changes
easily as well as bein able to jump back to previous configurations.

In case of the Devilbox .env file, just store this file in your repository and symlink it to the Devilbox git directiry.
This way you make sure that you keep your file, even when the Devilbox git directory is deleted and you also have a
means of keeping track about changes you made.

You could also go further and have several .env files available somewhere. Each of those files holds different
configurations e.g. for different projects or customers.

• env-customer1

• env-php55

• env-project3

You would then simply symlink one of those files to the Devilbox git directory.

21.1.4 Version control service config files

Todo: This will require some changes on the Devilbox and will be implemented shortly.

• Symlink and have your own git directory

• Separate data partition, backups

21.1. Move data out of Devilbox directory 109

Devilbox Documentation, Release 1.0

21.2 PHP project hostname settings

When configuring your PHP projects to use MySQL, PostgreSQL, Redis, Mongo and other services, make sure to set
the hostname of each of those services to 127.0.0.1.

Why is that?

The PHP container port-forwards each service port to its own listen address on 127.0.0.1. The Devilbox also
exposes each of those service ports to the host operating system on 127.0.0.1.

This allows you to keep your project configuration unchanged and have the same behaviour inside the PHP container
and on your host operating system.

Important: Do not mix up localhost with 127.0.0.1. They behave differently! Use 127.0.0.1 and do not
use localhost.

As an example, if you want to access the MySQL database from within the PHP container, you do the following:

Navigate to Devilbox git directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Enter the MySQL console
php> mysql -u root -h 127.0.0.1 -p
mysql>

The very same command applies to access the MySQL database from your host operating system:

Enter the MySQL console
host> mysql -u root -h 127.0.0.1 -p
mysql>

So no matter if you use the Devilbox or have another LAMP stack installed locally on your host operating system, you
do not have to change your configuration files if you stick to this tip.

So any of your projects php files that configure MySQL as an example should point the hostname or IP address of the
MySQL server to 127.0.0.1:

<?php
// MySQL server connection in your project configuration
mysql_host = '127.0.0.1';
mysql_port = '3306';
mysql_user = 'someusername';
mysql_pass = 'somepassword';
?>

See also:

Work inside the PHP container

21.3 Timezone

The TIMEZONE value will affect PHP, web server and MySQL container equally. It does however not affect any other
official Docker container that are used within the Devilbox. This is an issue that is currently still being worked on.

110 Chapter 21. Best practice

Devilbox Documentation, Release 1.0

Feel free to change this to any timezone you require for PHP and MySQL, but keep in mind that timezone values for
databases can be painful, once you want to switch to a different timezone.

A good practice is to always use UTC on databases and have your front-end application calculate the correct time for
the user. This way you will be more independent of any changes.

21.3. Timezone 111

Devilbox Documentation, Release 1.0

112 Chapter 21. Best practice

CHAPTER 22

Customize PHP globally

PHP settings can be applied globally to all projects, but are bound to a specific PHP version. This means every PHP
version can have its own profile of customized settings.

Note: By default, all PHP container use roughly the same settings. This might only differ if some options or modules
do not exist in a specific container.

Table of Contents

• Configure PHP settings globally

– Settings via php.ini

– Settings via php-fpm.conf

• Configure non-overwritable settings globally

• Configure loaded PHP modules

• Configure PHP-FPM service

22.1 Configure PHP settings globally

PHP settings can either be applied in its php.ini configuration file or through the PHP-FPM configuration itself via
php_value and php_flag.

Settings in php.ini are also picked up by the PHP command line tool, whereas php_value and php_flag
settings are only valid for requests over the webserver.

This means you can set different values, when executing command line tasks and when the application is run through
the browser.

113

Devilbox Documentation, Release 1.0

22.1.1 Settings via php.ini

To configure PHP globally via php.ini follow the provided link:

See also:

php.ini

22.1.2 Settings via php-fpm.conf

To configure PHP globally via PHP-FPM follow the provided link:

See also:

php-fpm.conf

22.2 Configure non-overwritable settings globally

Settings defined via php.ini, php_value and php_flag are applied globally, however they can still be over-
written by any project via the PHP function ini_set().

If you want to create PHP settings and force them, so no application can accidentally or on purpose overwrite them,
you need to use php_admin_value and php_admin_flag.

Important: Keep in mind that those settings are not picked up by the command line execution of PHP, but only
through the browser.

To configure PHP globally and non-overwritable via PHP-FPM follow the provided link:

See also:

php-fpm.conf

22.3 Configure loaded PHP modules

The .env file offers the option to specify what PHP modules to enable or disable specifically.

See also:

Enable/disable PHP modules

22.4 Configure PHP-FPM service

You can also configure the PHP-FPM service itself. Settings can be applied for the core service as well as for the pool.
This is useful if you need to adjust performance settings such as number of running child processes, file- and memory
limits, timeouts and many more.

Be sure to read up on the PHP-FPM documentation to understand what you are doing.

See also:

php-fpm.conf

114 Chapter 22. Customize PHP globally

CHAPTER 23

Customize web server globally

Web server settings can be applied globally, which will affect the web server behaviour itself, but not the vhost
configuration. Configuration can be done for each version separetely, which means each web server can have its own
profile of customized settings.

See also:

In order to customize the vhosts, have a look at the following links:

• vhost-gen: Virtual host templates

• vhost-gen: Customize all virtual hosts globally

• vhost-gen: Customize specific virtual host

• vhost-gen: Example: add sub domains

Table of Contents

• Configure Apache

• Configure Nginx

• Devilbox specific settings

23.1 Configure Apache

All settings that usually go into the main httpd.conf or apache2.conf configuration file can be overwritten or
customized separately for Apache 2.2 and Apache 2.4.

See also:

apache.conf

115

Devilbox Documentation, Release 1.0

23.2 Configure Nginx

All settings that usually go into the main nginx.conf configuration file can be overwritten or customized separately
for Nginx stable and Nginx mainline.

See also:

nginx.conf

23.3 Devilbox specific settings

There are certain other settings that are directly managed by the Devilbox’s .env file in order to make other containers
aware of those settings.

Important: Try to avoid to overwrite the .env settings via web server configuration files.

Use the following .env variables to customize this behaviour globally.

See also:

• TLD_SUFFIX

• HOST_PORT_HTTPD

• HOST_PORT_HTTPD_SSL

• HTTPD_TEMPLATE_DIR

• HTTPD_DOCROOT_DIR

116 Chapter 23. Customize web server globally

CHAPTER 24

Connect to host OS

This section explains how to connect from inside a Devilbox container to the host operating system.

Table of Contents

• Prerequisites

• Docker on Linux

• Docker for Mac

– Docker 18.03.0-ce+ and Docker compose 1.20.1+

– Docker 17.12.0-ce+ and Docker compose 1.18.0+

– Docker 17.06.0-ce+ and Docker compose 1.14.0+

• Docker for Windows

– Docker 18.03.0-ce+ and Docker compose 1.20.1+

– Docker 17.06.0-ce+ and Docker compose 1.14.0+

• Docker Toolbox

– Local port forward on Docker Toolbox

– Remote port-forward on host os

– Post steps

24.1 Prerequisites

When you want to connect from inside a Docker container to a port on your host operating system, ensure the host
service is listening on all interfaces for simplicity.

117

Devilbox Documentation, Release 1.0

The following sections will give you the IP address and/or the CNAME where the host os can be reached from within
a container.

24.2 Docker on Linux

If you run Docker on Linux the host IP is always 172.16.238.1, which is the default gateway IP address within
the Devilbox bridge network (see docker-compose.yml).

Important: Ensure services on the host listen on that IP address or on all interfaces.

By default Docker on Linux does not have CNAME’s of the host computer as for example with MacOS or Windows,
therefore two custom CNAME’s have been added by the Devilbox in order to emulate the same behaviour:

• CNAME: docker.for.lin.host.internal

• CNAME: docker.for.lin.localhost

24.3 Docker for Mac

If you run Docker for Mac, an IP address is not necessary as it already provides a CNAME which will always point to
the IP address of your host operating system. Depending on the Docker version this CNAME will differ:

24.3.1 Docker 18.03.0-ce+ and Docker compose 1.20.1+

CNAME: host.docker.internal

24.3.2 Docker 17.12.0-ce+ and Docker compose 1.18.0+

CNAME: docker.for.mac.host.internal

24.3.3 Docker 17.06.0-ce+ and Docker compose 1.14.0+

CNAME: docker.for.mac.localhost

24.4 Docker for Windows

If you run Docker for Windows, an IP address is not necessary as it already provides a CNAME which will always
point to the IP address of your host operating system. Depending on the Docker version this CNAME will differ:

Important: Ensure your firewall is not blocking Docker to host connections.

118 Chapter 24. Connect to host OS

Devilbox Documentation, Release 1.0

24.4.1 Docker 18.03.0-ce+ and Docker compose 1.20.1+

• CNAME: docker.for.win.host.internal

• CNAME: host.docker.internal

24.4.2 Docker 17.06.0-ce+ and Docker compose 1.14.0+

CNAME: docker.for.win.host.localhost

24.5 Docker Toolbox

Note: This section applies for both, Docker Toolbox on MacOS and Docker Toolbox on Windows.

Docker Toolbox behaves the same way as Docker on Linux, with one major difference. The Devilbox IP address or
the custom provided CNAMEs actually refer to the Docker Toolbox machine.

In order to connect from inside the Docker container (which is inside the Docker Toolbox machine) to your host os,
you need to create:

1. either a local port-forward on the Docker Toolbox machine (ssh -L)

2. or a remote port-forward on your host os (ssh -R)

See also:

For both examples we assume the following:

• MySQL database exists on your host os and listens on 127.0.0.1 on port 3306

• Docker Toolbox IP address is 192.168.99.100

• Host IP address where SSH is listening on 172.16.0.1

• Host SSH username is user

• Devilbox Docker container wants to access MySQL on host os

24.5.1 Local port forward on Docker Toolbox

Important: For that to work, your host operating system requires an SSH server to be up and running.

Initiator From host From port To host To port
Docker Toolbox 127.0.0.1 3306 192.168.99.100 3306

From Docker Toolbox forward port 3306 (on host 172.16.0.1) to myself (192.168.99.
→˓100)
toolbox> ssh -L 3306:127.0.0.1:3306 user@172.16.0.1

See also:

• Find Docker Toolbox IP address

24.5. Docker Toolbox 119

Devilbox Documentation, Release 1.0

• SSH into Docker Toolbox

• SSH port-forward on Docker Toolbox from host

24.5.2 Remote port-forward on host os

Important: For that to work, your host operating system requires an SSH client (ssh binary).

Initiator From host From port To host To port
Host os 127.0.0.1 3306 192.168.99.100 3306

From host os forward port 3306 (from loopback 127.0.0.1) to Docker Toolbox (192.168.
→˓99.100)
host> ssh -R 3306:127.0.0.1:3306 docker@192.168.99.100

See also:

• Find Docker Toolbox IP address

• SSH into Docker Toolbox

• SSH port-forward on host to Docker Toolbox

24.5.3 Post steps

With either of the above you have achieved the exact behaviour as Docker on Linux for one single service/port (MySQL
port 3306).

You must now follow the steps for Docker on Linux to actually connect to that service from within the Devilbox
Docker container.

120 Chapter 24. Connect to host OS

CHAPTER 25

Connect to other Docker container

Other Docker container can either be accessed by connecting back to the host os or by adding its image directly to the
Devilbox stack.

Table of Contents

• Any Docker container on host os

• Add Docker container to Devilbox network

• Add Docker container to Devilbox stack

25.1 Any Docker container on host os

1. To connect to any other Docker container on your host os from within the Devilbox Docker container, you first
need to make sure, you are able to connect to your host os from within the Devilbox Docker container.

See also:

Connect to host OS

2. Once you are able to connect to the host os, start any other Docker container and make its port that you want to
access available to your host os by specifying -p. An example with e.g. an external container might look like
this:

host> docker run -d --name=grafana -p 3000:3000 grafana/grafana

You can then connect to your host os on port 3000 from within the Devilbox Docker container and be able to
use it.

121

Devilbox Documentation, Release 1.0

25.2 Add Docker container to Devilbox network

The Devilbox defines its own bridge network, usually called devilbox_app_net.

Note: The name may vary depending on the name of the Devilbox directory. It assembles itself by
<Devilbox_dir_name>_app_net.

1. Start the Devilbox

2. Start your container of choice

host> docker run -d --name mycontainer

3. Attach your container to the Devilbox network

host> docker network connect devilbox_app_net mycontainer

Once you have done that, mycontainer is then part of the internal Devilbox network and is able to resolve Devilbox
container by its name and vice-versa.

4. Connect from Devilbox PHP container to mycontainer

From inside the PHP container, you can then refer to your container by its hostname mycontainer

25.3 Add Docker container to Devilbox stack

Alternatively you can also add any Docker container to the Devilbox network by adding an image it to the Devilbox
stack directly.

See also:

Add your own Docker image

122 Chapter 25. Connect to other Docker container

CHAPTER 26

Connect to external hosts

Connecting from inside a Devilbox Docker container to any external host works out of the box. The only thing you
need is internet/network access and know its hostname or IP address.

Each container has internet access, thus you can curl, fetch, connect to or download any online resources from
within the container.

See also:

• Connect to host OS

• Connect to other Docker container

123

Devilbox Documentation, Release 1.0

124 Chapter 26. Connect to external hosts

CHAPTER 27

Add custom CNAME DNS entries

You can add an infinite number of custom records that will be available in your running Docker container. If Auto-DNS
is turned on, those records will be available on your host operating system as well.

See also:

Setup Auto DNS

Table of Contents

• Why and what?

• How?

27.1 Why and what?

This might be useful if you have an IP address or hostname on your LAN or any other domain which you want to
expose to your container by a different CNAME of your choice.

Think of it as setting your /etc/hosts, but which will be distributed accross all hosts which are using the Devilbox’
bundled DNS server.

27.2 How?

Adjust the EXTRA_HOSTS variable inside .env to add as many CNAME’s as you need.

As an example, to create a CNAME mywebserver.com pointing to 172.16.238.1, change your .env file as
shown below:

125

Devilbox Documentation, Release 1.0

Listing 1: .env

EXTRA_HOSTS=mywebserver.loc=172.16.238.1

See also:

See EXTRA_HOSTS for an in-depth explanation with multiple examples.

126 Chapter 27. Add custom CNAME DNS entries

CHAPTER 28

Add your own Docker image

This section is all about customizing the Devilbox and its Docker images specifically to your needs.

Table of Contents

• Prerequisites

• What information do you need?

• How to add a new service?

– Generic example

* A single new service

* Two new services

– CockroachDB example

• How to start the new service?

• Further reading

28.1 Prerequisites

The new Docker image definition will be added to a file called docker-compose.override.yml. So before
going any further, read the following section that shows you how to create this file for the Devilbox as well as what
pitfalls to watch out for.

See also:

docker-compose.override.yml

127

Devilbox Documentation, Release 1.0

28.2 What information do you need?

1. <name> - A name, which you can use to refer in the docker-compose command

2. <image-name> - The Docker image name itself

3. <image-version> - The Docker image tag

4. <unused-ip-address> - An unused IP address from the devilbox network (found inside
docker-compose.yml)

28.3 How to add a new service?

28.3.1 Generic example

A single new service

Open docker-compose.override.yml with your favourite editor and paste the following snippets into it.

Listing 1: docker-compose.override.yml

version: '2.1'
services:

Your custom Docker image here:
<name>:
image: <image-name>:<image-version>
networks:

app_net:
ipv4_address: <unused-ip-address>

For ease of use always automatically start these:
depends_on:

- bind
- php
- httpd

End of custom Docker image

Note:

• <name> has to be replaced with any name of your choice

• <image-name> has to be replaced with the name of the Docker image

• <image-version> has to be replaced with the tag of the Docker image

• <unused-ip-address> has to be replaced with an unused IP address

Two new services

Listing 2: docker-compose.override.yml

version: '2.1'
services:

Your first custom Docker image here:

(continues on next page)

128 Chapter 28. Add your own Docker image

Devilbox Documentation, Release 1.0

(continued from previous page)

<name1>:
image: <image1-name>:<image1-version>
networks:

app_net:
ipv4_address: <unused-ip-address1>

For ease of use always automatically start these:
depends_on:

- bind
- php
- httpd

End of first custom Docker image
Your second custom Docker image here:
<name2>:
image: <image2-name>:<image2-version>
networks:

app_net:
ipv4_address: <unused-ip-address2>

For ease of use always automatically start these:
depends_on:

- bind
- php
- httpd

End of second custom Docker image

Note:

• <name1> has to be replaced with any name of your choice

• <image1-name> has to be replaced with the name of the Docker image

• <image1-version> has to be replaced with the tag of the Docker image

• <unused-ip-address1> has to be replaced with an unused IP address

Note:

• <name2> has to be replaced with any name of your choice

• <image2-name> has to be replaced with the name of the Docker image

• <image2-version> has to be replaced with the tag of the Docker image

• <unused-ip-address2> has to be replaced with an unused IP address

28.3.2 CockroachDB example

Gather the requirements for the Docker image:

1. Name: cockroach

2. Image: cockroachdb/cockroach

3. Tag: latest

4. IP: 172.16.238.240

Now add the information to docker-compose.override.yml:

28.3. How to add a new service? 129

Devilbox Documentation, Release 1.0

Listing 3: docker-compose.override.yml

version: '2.1'
services:

Your custom Docker image here:
cockroach:
image: cockroachdb/cockroach:latest
command: start --insecure
networks:

app_net:
ipv4_address: 172.16.238.240

For ease of use always automatically start these:
depends_on:

- bind
- php
- httpd

End of custom Docker image

28.4 How to start the new service?

The following will bring up your service including all of its dependent services, as defined with depends_on (bind,
php and httpd). You need to replace <name> with the name you have chosen.

host> docker-compose up <name>

In the example of Cockroach DB the command would look like this

host> docker-compose up cockroach

28.5 Further reading

See also:

• docker-compose.override.yml

• Overwrite existing Docker image

130 Chapter 28. Add your own Docker image

CHAPTER 29

Overwrite existing Docker image

This section is all about customizing the Devilbox and its Docker images specifically to your needs.

Table of Contents

• Prerequisites

• What information do you need?

• How to overwrite a service?

– Generic steps

– Overwrite Docker image for the bind service

• Further reading

29.1 Prerequisites

The new Docker image overwrite will be added to a file called docker-compose.override.yml. So before
going any further, read the following section that shows you how to create this file for the Devilbox as well as what
pitfalls to watch out for.

See also:

docker-compose.override.yml

29.2 What information do you need?

1. The service to overwrite

131

Devilbox Documentation, Release 1.0

29.3 How to overwrite a service?

29.3.1 Generic steps

1. Copy the whole service definition from docker-compose.yml to docker-compose.override.yml

2. Remove anything unecessary

3. Adjust the values you need

29.3.2 Overwrite Docker image for the bind service

The following example is using the bind service and overrides the Docker image to illustrate how this is done :

First you simply copy the while definition of the bind service from docker-compose.yml to
docker-compose.override.yml:

Listing 1: docker-compose.override.yml

version: '2.1'
services:

bind:
image: cytopia/bind:0.11
restart: always
ports:

[local-machine:]local-port:docker-port
- "${LOCAL_LISTEN_ADDR}${HOST_PORT_BIND:-1053}:53"
- "${LOCAL_LISTEN_ADDR}${HOST_PORT_BIND:-1053}:53/udp"

environment:
##
Debug?
##
- DEBUG_ENTRYPOINT=${DEBUG_COMPOSE_ENTRYPOINT}
- DOCKER_LOGS=1

##
Bind settings
##
- WILDCARD_ADDRESS=172.16.238.11
- DNS_FORWARDER=${BIND_DNS_RESOLVER:-8.8.8.8,8.8.4.4}

dns:
- 127.0.0.1

networks:
app_net:

ipv4_address: 172.16.238.100

The second step is to remove everything that you do not need to overwrite:

Listing 2: docker-compose.override.yml

version: '2.1'
services:

bind:
image: cytopia/bind:0.11

132 Chapter 29. Overwrite existing Docker image

Devilbox Documentation, Release 1.0

The last step is to actually adjust the value you want to change for the bind service:

Listing 3: docker-compose.override.yml

version: '2.1'
services:

bind:
image: someother/bind:latest

29.4 Further reading

See also:

• docker-compose.override.yml

• Add your own Docker image

29.4. Further reading 133

Devilbox Documentation, Release 1.0

134 Chapter 29. Overwrite existing Docker image

CHAPTER 30

Custom scripts per PHP version

You can provide custom startup commands via bash scripts to each of the PHP container individually. This may be
useful to specify additional software to install or additional settings to apply during the initial startup.

See also:

• Custom scripts globally (equal for all PHP versions)

• Autostarting NodeJS Apps

Note: Per PHP version scripts are always executed before global scripts.

Table of Contents

• General

– Where

– When

– How

• Examples

– Installing Microsoft ODBC driver

– Running commands as devilbox user

30.1 General

You can add custom shell scripts for each PHP version separately.

135

Devilbox Documentation, Release 1.0

Important: Provided scripts must end by the file extension .sh and should be executable. Anything not ending by
.sh will be ignored.

Important: Provided scripts will be executed by the root user within the PHP container.

30.1.1 Where

Startup scripts can be added to cfg/php-startup-X.Y/. See the directory structure for PHP startup script direc-
tories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep 'php-startup'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-startup-5.2/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-startup-5.3/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-startup-5.4/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-startup-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Apr 3 22:04 php-startup-5.6/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-startup-7.0/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-startup-7.1/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-startup-7.2/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-startup-7.3/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-startup-7.4/

Custom scripts are added by placing a file into cfg/php-startup-X.X/ (where X.X stands for your PHP ver-
sion). The file must end by .sh in order to be executed by the PHP container.

Some of the PHP startup directories contain a few example files with the file suffix -example. If you want to use
them, copy these files to a new name without the -example suffix and ensure they end by .sh.

30.1.2 When

The scripts will be executed by the PHP container during initial startup. Whenever you change your scripts, ensure to
restart the Devilbox.

30.1.3 How

The scripts will always be executed inside the PHP container (Debian Linux) and will be run with root privileges. It
is however possible to drop privileges within the script to have them executed as a normal user.

30.2 Examples

30.2.1 Installing Microsoft ODBC driver

This example will add Microsofts ODBC driver to PHP 7.1. These drivers are required in order to make the PHP
modules pdo_sqlsrv and sqlsrv work. The two mentioned modules are already available in the PHP container,
but are explicitly disabled via PHP_MODULES_DISABLE.

136 Chapter 30. Custom scripts per PHP version

Devilbox Documentation, Release 1.0

They won’t work without the ODBC driver installed, which unfortunately cannot be bundled, as it requires every user
to accept a license/EULA by Microsoft.

Navigate to starup dir of PHP 7.1
host> cd path/to/devilbox/cfg/php-startup-7.1

Create an .sh file
host> touch ms-odbc.sh

Open the file in your favourite editor
host> vi ms-odbc.sh

Paste the following into ms-obbc.sh and ensure to accept the EULA by changing ACCEPT_EULA=N to
ACCEPT_EULA=Y.

Listing 1: cfg/php-startup-7.1/install-ms-odbc.sh

!/bin/bash
#
This script will automatically install the Microsoft ODBC driver for MsSQL
support for PHP during startup.
#
In order for it to work, you must read and accept their License/EULA:
https://odbceula.blob.core.windows.net/eula17/LICENSE172.TXT
#

--
→˓------------
EDIT THE VARIABLE BELOW TO ACCEPT THE EULA (If you agree to their terms)
--
→˓------------

###
Set this to "Y" (capital 'Y') if you accept the EULA.
###
ACCEPT_EULA=N

--
→˓------------
DO NOT EDIT BELOW THIS LINE
--
→˓------------

###
Where to retrieve the deb package
###
MSODBC_URL="https://packages.microsoft.com/debian/8/prod/pool/main/m/msodbcsql17/"

###
Pre-flight check
###
if ["${ACCEPT_EULA}" != "Y"]; then

echo "MS ODBC EULA not accepted. Aborting installation."
exit 0

(continues on next page)

30.2. Examples 137

Devilbox Documentation, Release 1.0

(continued from previous page)

fi

###
EULA accepted, so we can proceed
###

Extract latest *.deb packate
MSODBC_DEB="$(curl -k -sS "${MSODBC_URL}" | grep -Eo 'msodbcsql[-._0-9]+?_amd64\.deb
→˓' | tail -1)"

Download to temporary location
curl -k -sS "${MSODBC_URL}${MSODBC_DEB}" > "/tmp/${MSODBC_DEB}"

Install
ACCEPT_EULA="${ACCEPT_EULA}" dpkg -i "/tmp/${MSODBC_DEB}"

Remove artifacts
rm -f "/tmp/${MSODBC_DEB}"

Important: The script will not work, if you have not accepted the EULA.

30.2.2 Running commands as devilbox user

As mentioned above, all scripts are run by the root user. If you do need something to be executed as the normal user:
devilbox, you can simply su inside the shell script.

The following example will install grunt and start a NodeJS application as the devilbox user for the PHP 7.1 Docker
container only.

Listing 2: cfg/php-startup-7.1/myscript.sh

Install grunt as devilbox user
su -c "npm install grunt" -l devilbox

Start a NodeJS application with pm2 as devilbox user
su -c "cd /shared/httpd/my-node/src/; pm2 start index.js" -l devilbox

138 Chapter 30. Custom scripts per PHP version

CHAPTER 31

Custom scripts globally

You can provide custom startup commands via bash scripts that are executed by all PHP container. This may be useful
to specify additional software to install or additional settings to apply during the initial startup.

See also:

• Custom scripts per PHP version (individually for different PHP versions)

• Autostarting NodeJS Apps

Note: Global scripts are always executed after per PHP version scripts.

Table of Contents

• General

– Where

– When

– How

• Examples

– Running commands as devilbox user

31.1 General

You can add shell scripts that are executed for all PHP container equally.

Important: Provided scripts must end by the file extension .sh and should be executable. Anything not ending by

139

Devilbox Documentation, Release 1.0

.sh will be ignored.

Important: Provided scripts will be executed by the root user within the PHP container.

31.1.1 Where

Startup scripts can be added to autostart/.

host> ls -l path/to/devilbox/

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 autostart/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 backups/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 bash/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 ca/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 cfg/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 compose/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 data/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 docs/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mail/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mod/

Custom scripts are added by placing a file into autostart/. The file must end by .sh in order to be executed by
the PHP container.

31.1.2 When

The scripts will be executed by the PHP container during initial startup. Whenever you change your scripts, ensure to
restart the Devilbox.

31.1.3 How

The scripts will always be executed inside the PHP container (Debian Linux) and will be run with root privileges. It
is however possible to drop privileges within the script to have them executed as a normal user.

31.2 Examples

31.2.1 Running commands as devilbox user

As mentioned above, all scripts are run by the root user. If you do need something to be executed as the normal user:
devilbox, you can simply su inside the shell script.

The following example will install grunt and start a NodeJS application as the devilbox user for whatever PHP
container has been started.

140 Chapter 31. Custom scripts globally

Devilbox Documentation, Release 1.0

Listing 1: autostart/myscript.sh

Install grunt as devilbox user
su -c "npm install grunt" -l devilbox

Start a NodeJS application with pm2 as devilbox user
su -c "cd /shared/httpd/my-node/src/; pm2 start index.js" -l devilbox

31.2. Examples 141

Devilbox Documentation, Release 1.0

142 Chapter 31. Custom scripts globally

CHAPTER 32

Autostarting NodeJS Apps

You can have all of your NodeJS applications spin up automtically as soon as you docker-compose up. This can
be achieved by makeing use of (Node.js Process Manager) and the autostart feature.

See also:

Read more about how to add scripts for autostart commands:

• Custom scripts per PHP version (individually for different PHP versions)

• Custom scripts globally (equal for all PHP versions)

Table of Contents

• Self-built

– Assumption

– The script

• Pre-built

• Reverse proxy NodeJS

32.1 Self-built

Simply add a script ending by .sh to the autostart/ directory that will accomplish this. The following example
will make use of to spin up your NodeJS application.

32.1.1 Assumption

• Path to your NodeJS project (within the Docker container): /shared/httpd/my-node/src

• Name of the JS file to startup: index.js

143

Devilbox Documentation, Release 1.0

32.1.2 The script

Add the following script to autostart/

Listing 1: autostart/myscript.sh

su -c "cd /shared/httpd/my-node/src; pm2 start index.js" -l devilbox

• The whole command is wrapped into su to ensure the application will be started as the user devilbox.

• cd tells it to you enter the directory where index.js can be found

• And finally will take care about starting up your javascript file.

Once the Devilbox is running, you can enter the PHP container and verify with pm2 list that everything is running
as expected.

32.2 Pre-built

Instead of writing multiple scripts for multiple applications, you can also make use of the pre-shipped script that allows
you to start unlimitted NodeJS applications via .

The following script is provided in autostart/run-node-js-projects.sh-example and needs to be
copied to a file ending by .sh

host> cd /path/to/devilbox
host> cd autostart
host> cp run-node-js-projects.sh-example run-node-js-projects.sh

In that newly created file, you can simply add the full paths (path inside the Docker containre) of your Javascript files
that need to be started. There is already one example which is not commented. Change this to your path and add as
many lines as you have projects to startup.

Listing 2: autostart/run-node-js-projects.sh

#!/usr/bin/env bash
#
This is a generic example to startup your NodeJS projects with
pm2 (https://github.com/Unitech/pm2)
#
Important: As everything is run by the root user, you must explicitly direct the
commands to the devilbox user.
#

Add the full paths of your Nodejs projects startup files into this array
Each project separated by a newline and enclosed in double quotes. (No commas!)
Paths are internal paths inside the PHP container.
NODE_PROJECTS=(

#"/shared/httpd/my-rhost/js/index.js"
#"/shared/httpd/my-node-hello-world/name/run.js"
#"/shared/httpd/another-node-project/javascript/run.js"

)

Check if any projects have been defined
(continues on next page)

144 Chapter 32. Autostarting NodeJS Apps

Devilbox Documentation, Release 1.0

(continued from previous page)

if [${#NODE_PROJECTS[@]} -eq 0]; then
echo "No projects defined. Exiting."
exit 0

fi

This loops over the paths, separates base directory and filename and will run it in
→˓the background
as the user devilbox. There shouldn't be any need to change anything here.
for item in ${NODE_PROJECTS[*]}; do

NODE_PATH="$(dirname "${item}")"
NODE_FILE="$(basename "${item}")"

if [! -d "${NODE_PATH}"]; then
>&2 echo "[Warning], skipping startup, directory does not exist: $

→˓{NODE_PATH}"
continue;

fi
if [! -f "${NODE_PATH}/${NODE_FILE}"]; then

>&2 echo "[Warning], skipping startup, file does not exist: ${NODE_
→˓PATH}/${NODE_FILE}"

continue;
fi

echo "su -c \"cd ${NODE_PATH}; pm2 start ${NODE_FILE}\" -l devilbox"
su -c "cd ${NODE_PATH}; pm2 start ${NODE_FILE}" -l devilbox

done

32.3 Reverse proxy NodeJS

If you also want to know how to reverse proxy your NodeJS service and have it available via the web server including
HTTPS support have a look at the following links:

See also:

• Reverse Proxy with HTTPS

• Setup reverse proxy NodeJS

Imagine you have started an application within the PHP container that creates a listening port (e.g.: NodeJS). This
will now only listen on the PHP container and you would have to adjust the docker-compose.yml definition in order to
have that port available outside to your host OS.

Alternatively, there is a simple way to reverse proxy it to the already running web server and even make use of the
already available HTTPS feature.

32.3. Reverse proxy NodeJS 145

Devilbox Documentation, Release 1.0

146 Chapter 32. Autostarting NodeJS Apps

CHAPTER 33

Virtual host templates

Table of Contents

• Overview

– What is it?

– Template files

* Normal virtual host

* Reverse proxy

– Template sections

• Virtual host Templates

– Apache 2.2 template

– Apache 2.4 template

– Nginx template

• Reverse proxy Templates

– Apache 2.2 template

– Apache 2.4 template

– Nginx template

147

Devilbox Documentation, Release 1.0

33.1 Overview

33.1.1 What is it?

vhost-gen templates are yaml files which contain a general definition for a virtual host definition. Those templates
contain placeholders in the form of __<NAME>__ which will be replaced by settings applied to the Devilbox.

See also:

33.1.2 Template files

By default, vhost-gen templates are located within the Devilbox root directory under cfg/vhost-gen/. The tem-
plates file names are suffixed with -example-<type> and are absolutely identical to what is shipped inside each
Devilbox web server Docker container.

Note: Also note that nginx stable and nginx mainline share the same template as their configuration syntax is identical.

Normal virtual host

All template files ending by -example-vhost can be used to customize a normal file serving virtual host.

host> tree -L 1 cfg/vhost-gen/

cfg/vhost-gen/
apache22.yml-example-rproxy
apache22.yml-example-vhost
apache24.yml-example-rproxy
apache24.yml-example-vhost
nginx.yml-example-rproxy
nginx.yml-example-vhost
README.md

0 directories, 7 files

Reverse proxy

All template files ending by -example-rproxy can be used to create a reverse proxy for your project.

host> tree -L 1 cfg/vhost-gen/

cfg/vhost-gen/
apache22.yml-example-rproxy
apache22.yml-example-vhost
apache24.yml-example-rproxy
apache24.yml-example-vhost
nginx.yml-example-rproxy
nginx.yml-example-vhost
README.md

0 directories, 7 files

148 Chapter 33. Virtual host templates

Devilbox Documentation, Release 1.0

33.1.3 Template sections

All vhost-gen templates consist of three sections:

Section Description
vhost This is the part that is actually rendered into the vhost configuration. All other sections will be inserted

into this one.
vhost_typeThe vhost type determines the type of vhost: reverse proxy or document root based vhost. The

Devilbox currently does not support reverse proxy vhost.
features The feature section contains many sub-sections that are replaced into the vhost section before final

rendering.

33.2 Virtual host Templates

These templates can be used to alter the behaviour of the vhost on a per project base or globally.

33.2.1 Apache 2.2 template

Listing 1: apache22.yml-example-vhost

Apache 2.2 vHost Template defintion for vhost-gen.py
#
The 'feature' section contains optional features that can be enabled via
conf.yml and will then be replaced into the main vhost ('structure' section)
into their corresponding position:
#
__XDOMAIN_REQ__
__PHP_FPM__
__ALIASES__
__DENIES__
__STATUS__
#
The features itself also contain variables to be adjusted in conf.yml
and will then be replaced in their corresponding feature section
before being replaced into the vhost section (if enabled):
#
PHP-FPM:
__PHP_ADDR__
__PHP_PORT__
XDomain:
__REGEX__
Alias:
__REGEX__
__PATH__
Deny:
__REGEX__
Status:
__REGEX__
#
Variables to be replaced directly in the vhost configuration can also be set
in conf.yml and include:

(continues on next page)

33.2. Virtual host Templates 149

Devilbox Documentation, Release 1.0

(continued from previous page)

__VHOST_NAME__
__DOCUMENT_ROOT__
__INDEX__
__ACCESS_LOG__
__ERROR_LOG__
__PHP_ADDR__
__PHP_PORT__
#

###
Basic vHost skeleton
###
vhost: |

<VirtualHost __DEFAULT_VHOST__:__PORT__>
ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

__REDIRECT__
__SSL__
__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
</VirtualHost>

###
vHost Type (normal or reverse proxy)
###
vhost_type:

Normal vHost (-p)
docroot: |
Define the vhost to serve files
DocumentRoot "__DOCUMENT_ROOT__"
<Directory "__DOCUMENT_ROOT__">

DirectoryIndex __INDEX__

AllowOverride All
Options All

RewriteEngine on
RewriteBase /

Order allow,deny
Allow from all

</Directory>

Reverse Proxy (-r)
rproxy: |
Define the vhost to reverse proxy
ProxyRequests On

(continues on next page)

150 Chapter 33. Virtual host templates

Devilbox Documentation, Release 1.0

(continued from previous page)

ProxyPreserveHost On
ProxyPass __LOCATION__ __PROXY_PROTO__://__PROXY_ADDR__:__PROXY_PORT____LOCATION__
ProxyPassReverse __LOCATION__ __PROXY_PROTO__://__PROXY_ADDR__:__PROXY_PORT____

→˓LOCATION__

###
Optional features to be enabled in vHost
###
features:

SSL Configuration
ssl: |
SSLEngine on
SSLCertificateFile "__SSL_PATH_CRT__"
SSLCertificateKeyFile "__SSL_PATH_KEY__"
SSLProtocol __SSL_PROTOCOLS__
SSLHonorCipherOrder __SSL_HONOR_CIPHER_ORDER__
SSLCipherSuite __SSL_CIPHERS__

Redirect to SSL directive
redirect: |
RedirectMatch (.*) https://__VHOST_NAME__:__SSL_PORT__$1

PHP-FPM will not be applied to a reverse proxy!
php_fpm: |
PHP-FPM Definition
ProxyPassMatch ^/(.*\.php(/.*)?)$ fcgi://__PHP_ADDR__:__PHP_PORT____DOCUMENT_ROOT_

→˓_/$1 timeout=__PHP_TIMEOUT__

alias: |
Alias Definition
Alias "__ALIAS__" "__PATH____ALIAS__"
<Location "__ALIAS__">
__XDOMAIN_REQ__
</Location>
<Directory "__PATH____ALIAS__">

Order allow,deny
Allow from all

</Directory>

deny: |
Deny Definition
<FilesMatch "__REGEX__">

Order allow,deny
Deny from all

</FilesMatch>

server_status: |
Status Page
<Location __REGEX__>

SetHandler server-status
Order allow,deny
Allow from all

</Location>

xdomain_request: |
(continues on next page)

33.2. Virtual host Templates 151

Devilbox Documentation, Release 1.0

(continued from previous page)

Allow cross domain request from these hosts
SetEnvIf Origin "__REGEX__" AccessControlAllowOrigin=$0
Header add Access-Control-Allow-Origin %{AccessControlAllowOrigin}e

→˓env=AccessControlAllowOrigin
Header always set Access-Control-Allow-Methods "POST, GET, OPTIONS, DELETE, PUT"
Header always set Access-Control-Max-Age "0"
Header always set Access-Control-Allow-Headers "x-requested-with, Content-Type,

→˓origin, authorization, accept, client-security-token"
Added a rewrite to respond with a 200 SUCCESS on every OPTIONS request.
RewriteEngine On
RewriteCond %{REQUEST_METHOD} OPTIONS
RewriteRule ^(.*)$ $1 [R=200,L]

33.2.2 Apache 2.4 template

Listing 2: apache24.yml-example-vhost

Apache 2.4 vHost Template defintion for vhost-gen.py
#
The 'feature' section contains optional features that can be enabled via
conf.yml and will then be replaced into the main vhost ('structure' section)
into their corresponding position:
#
__XDOMAIN_REQ__
__PHP_FPM__
__ALIASES__
__DENIES__
__STATUS__
#
The features itself also contain variables to be adjusted in conf.yml
and will then be replaced in their corresponding feature section
before being replaced into the vhost section (if enabled):
#
PHP-FPM:
__PHP_ADDR__
__PHP_PORT__
XDomain:
__REGEX__
Alias:
__REGEX__
__PATH__
Deny:
__REGEX__
Status:
__REGEX__
#
Variables to be replaced directly in the vhost configuration can also be set
in conf.yml and include:
__VHOST_NAME__
__DOCUMENT_ROOT__
__INDEX__
__ACCESS_LOG__
__ERROR_LOG__

(continues on next page)

152 Chapter 33. Virtual host templates

Devilbox Documentation, Release 1.0

(continued from previous page)

__PHP_ADDR__
__PHP_PORT__
#

###
Basic vHost skeleton
###
vhost: |

<VirtualHost __DEFAULT_VHOST__:__PORT__>
ServerName __VHOST_NAME__
Protocols __HTTP_PROTO__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

__REDIRECT__
__SSL__
__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
</VirtualHost>

###
vHost Type (normal or reverse proxy)
###
vhost_type:

Normal vHost (-p)
docroot: |
Define the vhost to serve files
DocumentRoot "__DOCUMENT_ROOT__"
<Directory "__DOCUMENT_ROOT__">

DirectoryIndex __INDEX__

AllowOverride All
Options All

RewriteEngine on
RewriteBase /

Order allow,deny
Allow from all
Require all granted

</Directory>

Reverse Proxy (-r)
rproxy: |
Define the vhost to reverse proxy
ProxyRequests On
ProxyPreserveHost On
ProxyPass __LOCATION__ __PROXY_PROTO__://__PROXY_ADDR__:__PROXY_PORT____LOCATION__
ProxyPassReverse __LOCATION__ __PROXY_PROTO__://__PROXY_ADDR__:__PROXY_PORT____

→˓LOCATION__ (continues on next page)

33.2. Virtual host Templates 153

Devilbox Documentation, Release 1.0

(continued from previous page)

###
Optional features to be enabled in vHost
###
features:

SSL Configuration
ssl: |
SSLEngine on
SSLCertificateFile "__SSL_PATH_CRT__"
SSLCertificateKeyFile "__SSL_PATH_KEY__"
SSLProtocol __SSL_PROTOCOLS__
SSLHonorCipherOrder __SSL_HONOR_CIPHER_ORDER__
SSLCipherSuite __SSL_CIPHERS__

Redirect to SSL directive
redirect: |
RedirectMatch (.*) https://__VHOST_NAME__:__SSL_PORT__$1

PHP-FPM will not be applied to a reverse proxy!
php_fpm: |
In case for PHP-FPM 5.2 compatibility use 'GENERIC' instead of 'FPM'
https://httpd.apache.org/docs/2.4/mod/mod_proxy_fcgi.html#proxyfcgibackendtype
ProxyFCGIBackendType FPM

PHP-FPM Definition
<FilesMatch \.php$>

Require all granted
SetHandler proxy:fcgi://__PHP_ADDR__:__PHP_PORT__

</FilesMatch>

<Proxy "fcgi://__PHP_ADDR__:__PHP_PORT__/">
ProxySet timeout=__PHP_TIMEOUT__
ProxySet connectiontimeout=__PHP_TIMEOUT__

</Proxy>

If the php file doesn't exist, disable the proxy handler.
This will allow .htaccess rewrite rules to work and
the client will see the default 404 page of Apache
RewriteCond %{REQUEST_FILENAME} \.php$
RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_URI} !-f
RewriteRule (.*) - [H=text/html]

alias: |
Alias Definition
Alias "__ALIAS__" "__PATH____ALIAS__"
<Location "__ALIAS__">
__XDOMAIN_REQ__
</Location>
<Directory "__PATH____ALIAS__">

Order allow,deny
Allow from all
Require all granted

</Directory>

deny: |
(continues on next page)

154 Chapter 33. Virtual host templates

Devilbox Documentation, Release 1.0

(continued from previous page)

Deny Definition
<FilesMatch "__REGEX__">

Order allow,deny
Deny from all

</FilesMatch>

server_status: |
Status Page
<Location __REGEX__>

SetHandler server-status
Order allow,deny
Allow from all
Require all granted

</Location>

xdomain_request: |
Allow cross domain request from these hosts
SetEnvIf Origin "__REGEX__" AccessControlAllowOrigin=$0
Header add Access-Control-Allow-Origin %{AccessControlAllowOrigin}e

→˓env=AccessControlAllowOrigin
Header always set Access-Control-Allow-Methods "POST, GET, OPTIONS, DELETE, PUT"
Header always set Access-Control-Max-Age "0"
Header always set Access-Control-Allow-Headers "x-requested-with, Content-Type,

→˓origin, authorization, accept, client-security-token"
Added a rewrite to respond with a 200 SUCCESS on every OPTIONS request.
RewriteEngine On
RewriteCond %{REQUEST_METHOD} OPTIONS
RewriteRule ^(.*)$ $1 [R=200,L]

33.2.3 Nginx template

Listing 3: nginx.yml-example-vhost

Nginx vHost Template defintion for vhost-gen.py
#
The 'feature' section contains optional features that can be enabled via
conf.yml and will then be replaced into the main vhost ('structure' section)
into their corresponding position:
#
__XDOMAIN_REQ__
__PHP_FPM__
__ALIASES__
__DENIES__
__STATUS__
#
The features itself also contain variables to be adjusted in conf.yml
and will then be replaced in their corresponding feature section
before being replaced into the vhost section (if enabled):
#
PHP-FPM:
__PHP_ADDR__
__PHP_PORT__
XDomain:

(continues on next page)

33.2. Virtual host Templates 155

Devilbox Documentation, Release 1.0

(continued from previous page)

__REGEX__
Alias:
__REGEX__
__PATH__
Deny:
__REGEX__
Status:
__REGEX__
#
Variables to be replaced directly in the vhost configuration can also be set
in conf.yml and include:
__VHOST_NAME__
__DOCUMENT_ROOT__
__INDEX__
__ACCESS_LOG__
__ERROR_LOG__
__PHP_ADDR__
__PHP_PORT__
#

###
Basic vHost skeleton
###
vhost: |

server {
listen __PORT____HTTP_PROTO____DEFAULT_VHOST__;
server_name __VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

__REDIRECT__
__SSL__
__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
}

###
vHost Type (normal or reverse proxy)
###
vhost_type:

Normal vHost (-p)
docroot: |
Define the vhost to serve files
root "__DOCUMENT_ROOT__";
index __INDEX__;

Reverse Proxy (-r)
rproxy: |

(continues on next page)

156 Chapter 33. Virtual host templates

Devilbox Documentation, Release 1.0

(continued from previous page)

Define the vhost to reverse proxy
location __LOCATION__ {

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_pass __PROXY_PROTO__://__PROXY_ADDR__:__PROXY_PORT__;

}

###
Optional features to be enabled in vHost
###
features:

SSL Configuration
ssl: |
ssl_certificate __SSL_PATH_CRT__;
ssl_certificate_key __SSL_PATH_KEY__;
ssl_protocols __SSL_PROTOCOLS__;
ssl_prefer_server_ciphers __SSL_HONOR_CIPHER_ORDER__;
ssl_ciphers __SSL_CIPHERS__;

Redirect to SSL directive
redirect: |
return 301 https://__VHOST_NAME__:__SSL_PORT__$request_uri;

PHP-FPM will not be applied to a reverse proxy!
php_fpm: |
PHP-FPM Definition
location / {

try_files $uri $uri/ /index.php$is_args$args;
}
location ~ \.php?$ {

try_files $uri = 404;
include fastcgi_params;

https://stackoverflow.com/questions/1733306/nginx-errors-readv-and-recv-
→˓failed/51457613#51457613

fastcgi_keep_conn off;

fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
fastcgi_split_path_info ^(.+\.php)(.*)$;

fastcgi_pass __PHP_ADDR__:__PHP_PORT__;
fastcgi_read_timeout __PHP_TIMEOUT__;

fastcgi_index index.php;
fastcgi_intercept_errors on;

}

alias: |
Alias Definition
location ~ __ALIAS__ {

root __PATH__;
__XDOMAIN_REQ__
}

deny: |
(continues on next page)

33.2. Virtual host Templates 157

Devilbox Documentation, Release 1.0

(continued from previous page)

Deny Definition
location ~ __REGEX__ {

deny all;
}

server_status: |
Status Page
location ~ __REGEX__ {

stub_status on;
access_log off;

}

xdomain_request: |
Allow cross domain request from these hosts
if ($http_origin ~* (__REGEX__)) {

add_header "Access-Control-Allow-Origin" "$http_origin";
add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS';
add_header 'Access-Control-Allow-Headers' 'DNT,X-CustomHeader,Keep-Alive,User-

→˓Agent,X-Requested-With,If-Modified-Since,Cache-Control,Content-Type,Content-Range,
→˓Range';

add_header 'Access-Control-Expose-Headers' 'DNT,X-CustomHeader,Keep-Alive,
→˓User-Agent,X-Requested-With,If-Modified-Since,Cache-Control,Content-Type,Content-
→˓Range,Range';

add_header 'Access-Control-Max-Age' 0;
return 200;

}

33.3 Reverse proxy Templates

These templates can be used to change a normal vhost into a reverse proxy project. This might be useful if you use
NodeJs applications for example.

Important: Do not apply those templates globally. They are intended to be used on a per project base.

Note: In order to use the Reverse Proxy templates you will only need to adjust the listening port, everything else
will work as already defined. So you simply need to copy those files into your project directory. Lines that need to be
changed are marked below. The currently set default listening port is 8000.

33.3.1 Apache 2.2 template

Listing 4: apache22.yml-example-rproxy

Apache 2.2 Reverse Proxy Template defintion for vhost-gen.py
#
The 'feature' section contains optional features that can be enabled via
conf.yml and will then be replaced into the main vhost ('structure' section)

(continues on next page)

158 Chapter 33. Virtual host templates

Devilbox Documentation, Release 1.0

(continued from previous page)

into their corresponding position:
#
__XDOMAIN_REQ__
__ALIASES__
__DENIES__
__STATUS__
#
The features itself also contain variables to be adjusted in conf.yml
and will then be replaced in their corresponding feature section
before being replaced into the vhost section (if enabled):
#
XDomain:
__REGEX__
Alias:
__REGEX__
__PATH__
Deny:
__REGEX__
Status:
__REGEX__
#
Variables to be replaced directly in the vhost configuration can also be set
in conf.yml and include:
__VHOST_NAME__
__DOCUMENT_ROOT__
__INDEX__
__ACCESS_LOG__
__ERROR_LOG__
#

###
Basic vHost skeleton
###
vhost: |

<VirtualHost __DEFAULT_VHOST__:__PORT__>
ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
ProxyRequests On
ProxyPreserveHost On
ProxyPass / http://php:8000/
ProxyPassReverse / http://php:8000/

__REDIRECT__
__SSL__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
</VirtualHost>

###
(continues on next page)

33.3. Reverse proxy Templates 159

Devilbox Documentation, Release 1.0

(continued from previous page)

vHost Type (normal or reverse proxy)
###
vhost_type:

docroot: ""
rproxy: ""

###
Optional features to be enabled in vHost
###
features:

SSL Configuration
ssl: |
SSLEngine on
SSLCertificateFile "__SSL_PATH_CRT__"
SSLCertificateKeyFile "__SSL_PATH_KEY__"
SSLProtocol __SSL_PROTOCOLS__
SSLHonorCipherOrder __SSL_HONOR_CIPHER_ORDER__
SSLCipherSuite __SSL_CIPHERS__

Redirect to SSL directive
redirect: |
RedirectMatch (.*) https://__VHOST_NAME__:__SSL_PORT__$1

PHP-FPM left empty, as we are an reverse proxy configuration
php_fpm: ""

alias: |
Alias Definition
Alias "__ALIAS__" "__PATH____ALIAS__"
<Location "__ALIAS__">
__XDOMAIN_REQ__
</Location>
<Directory "__PATH____ALIAS__">

Order allow,deny
Allow from all

</Directory>

deny: |
Deny Definition
<FilesMatch "__REGEX__">

Order allow,deny
Deny from all

</FilesMatch>

server_status: |
Status Page
<Location __REGEX__>

SetHandler server-status
Order allow,deny
Allow from all

</Location>

xdomain_request: |
Allow cross domain request from these hosts
SetEnvIf Origin "__REGEX__" AccessControlAllowOrigin=$0
Header add Access-Control-Allow-Origin %{AccessControlAllowOrigin}e

→˓env=AccessControlAllowOrigin (continues on next page)

160 Chapter 33. Virtual host templates

Devilbox Documentation, Release 1.0

(continued from previous page)

Header always set Access-Control-Allow-Methods "POST, GET, OPTIONS, DELETE, PUT"
Header always set Access-Control-Max-Age "0"
Header always set Access-Control-Allow-Headers "x-requested-with, Content-Type,

→˓origin, authorization, accept, client-security-token"
Added a rewrite to respond with a 200 SUCCESS on every OPTIONS request.
RewriteEngine On
RewriteCond %{REQUEST_METHOD} OPTIONS
RewriteRule ^(.*)$ $1 [R=200,L]

33.3.2 Apache 2.4 template

Listing 5: apache24.yml-example-rproxy

Apache 2.4 Reverse Proxy Template defintion for vhost-gen.py
#
The 'feature' section contains optional features that can be enabled via
conf.yml and will then be replaced into the main vhost ('structure' section)
into their corresponding position:
#
__XDOMAIN_REQ__
__ALIASES__
__DENIES__
__STATUS__
#
The features itself also contain variables to be adjusted in conf.yml
and will then be replaced in their corresponding feature section
before being replaced into the vhost section (if enabled):
#
XDomain:
__REGEX__
Alias:
__REGEX__
__PATH__
Deny:
__REGEX__
Status:
__REGEX__
#
Variables to be replaced directly in the vhost configuration can also be set
in conf.yml and include:
__VHOST_NAME__
__DOCUMENT_ROOT__
__INDEX__
__ACCESS_LOG__
__ERROR_LOG__
#

###
Basic vHost skeleton
###
vhost: |

<VirtualHost __DEFAULT_VHOST__:__PORT__>
(continues on next page)

33.3. Reverse proxy Templates 161

Devilbox Documentation, Release 1.0

(continued from previous page)

ServerName __VHOST_NAME__
Protocols __HTTP_PROTO__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
ProxyRequests On
ProxyPreserveHost On
ProxyPass / http://php:8000/
ProxyPassReverse / http://php:8000/

__REDIRECT__
__SSL__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
</VirtualHost>

###
vHost Type (normal or reverse proxy)
###
vhost_type:

docroot: ""
rproxy: ""

###
Optional features to be enabled in vHost
###
features:

SSL Configuration
ssl: |
SSLEngine on
SSLCertificateFile "__SSL_PATH_CRT__"
SSLCertificateKeyFile "__SSL_PATH_KEY__"
SSLProtocol __SSL_PROTOCOLS__
SSLHonorCipherOrder __SSL_HONOR_CIPHER_ORDER__
SSLCipherSuite __SSL_CIPHERS__

Redirect to SSL directive
redirect: |
RedirectMatch (.*) https://__VHOST_NAME__:__SSL_PORT__$1

PHP-FPM left empty, as we are an reverse proxy configuration
php_fpm: ""

alias: |
Alias Definition
Alias "__ALIAS__" "__PATH____ALIAS__"
<Location "__ALIAS__">
__XDOMAIN_REQ__
</Location>
<Directory "__PATH____ALIAS__">

Order allow,deny
(continues on next page)

162 Chapter 33. Virtual host templates

Devilbox Documentation, Release 1.0

(continued from previous page)

Allow from all
Require all granted

</Directory>

deny: |
Deny Definition
<FilesMatch "__REGEX__">

Order allow,deny
Deny from all

</FilesMatch>

server_status: |
Status Page
<Location __REGEX__>

SetHandler server-status
Order allow,deny
Allow from all
Require all granted

</Location>

xdomain_request: |
Allow cross domain request from these hosts
SetEnvIf Origin "__REGEX__" AccessControlAllowOrigin=$0
Header add Access-Control-Allow-Origin %{AccessControlAllowOrigin}e

→˓env=AccessControlAllowOrigin
Header always set Access-Control-Allow-Methods "POST, GET, OPTIONS, DELETE, PUT"
Header always set Access-Control-Max-Age "0"
Header always set Access-Control-Allow-Headers "x-requested-with, Content-Type,

→˓origin, authorization, accept, client-security-token"
Added a rewrite to respond with a 200 SUCCESS on every OPTIONS request.
RewriteEngine On
RewriteCond %{REQUEST_METHOD} OPTIONS
RewriteRule ^(.*)$ $1 [R=200,L]

33.3.3 Nginx template

Listing 6: nginx.yml-example-rproxy

Nginx Reverse Proxy Template defintion for vhost-gen.py
#
The 'feature' section contains optional features that can be enabled via
conf.yml and will then be replaced into the main vhost ('structure' section)
into their corresponding position:
#
__XDOMAIN_REQ__
__ALIASES__
__DENIES__
__STATUS__
#
The features itself also contain variables to be adjusted in conf.yml
and will then be replaced in their corresponding feature section
before being replaced into the vhost section (if enabled):
#

(continues on next page)

33.3. Reverse proxy Templates 163

Devilbox Documentation, Release 1.0

(continued from previous page)

XDomain:
__REGEX__
Alias:
__REGEX__
__PATH__
Deny:
__REGEX__
Status:
__REGEX__
#
Variables to be replaced directly in the vhost configuration can also be set
in conf.yml and include:
__VHOST_NAME__
__DOCUMENT_ROOT__
__INDEX__
__ACCESS_LOG__
__ERROR_LOG__
#

###
Basic vHost skeleton
###
vhost: |

server {
listen __PORT____HTTP_PROTO____DEFAULT_VHOST__;
server_name __VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
location / {

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_pass http://php:8000;

}

__REDIRECT__
__SSL__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
}

###
vHost Type (normal or reverse proxy)
###
vhost_type:

docroot: ""
rproxy: ""

###
Optional features to be enabled in vHost
###

(continues on next page)

164 Chapter 33. Virtual host templates

Devilbox Documentation, Release 1.0

(continued from previous page)

features:

SSL Configuration
ssl: |
ssl_certificate __SSL_PATH_CRT__;
ssl_certificate_key __SSL_PATH_KEY__;
ssl_protocols __SSL_PROTOCOLS__;
ssl_prefer_server_ciphers __SSL_HONOR_CIPHER_ORDER__;
ssl_ciphers __SSL_CIPHERS__;

Redirect to SSL directive
redirect: |
return 301 https://__VHOST_NAME__:__SSL_PORT__$request_uri;

PHP-FPM left empty, as we are an reverse proxy configuration
php_fpm: ""

alias: |
Alias Definition
location ~ __ALIAS__ {

root __PATH__;
__XDOMAIN_REQ__
}

deny: |
Deny Definition
location ~ __REGEX__ {

deny all;
}

server_status: |
Status Page
location ~ __REGEX__ {

stub_status on;
access_log off;

}

xdomain_request: |
Allow cross domain request from these hosts
if ($http_origin ~* (__REGEX__)) {

add_header "Access-Control-Allow-Origin" "$http_origin";
add_header 'Access-Control-Allow-Methods' 'GET, POST, OPTIONS';
add_header 'Access-Control-Allow-Headers' 'DNT,X-CustomHeader,Keep-Alive,User-

→˓Agent,X-Requested-With,If-Modified-Since,Cache-Control,Content-Type,Content-Range,
→˓Range';

add_header 'Access-Control-Expose-Headers' 'DNT,X-CustomHeader,Keep-Alive,
→˓User-Agent,X-Requested-With,If-Modified-Since,Cache-Control,Content-Type,Content-
→˓Range,Range';

add_header 'Access-Control-Max-Age' 0;
return 200;

}

33.3. Reverse proxy Templates 165

Devilbox Documentation, Release 1.0

166 Chapter 33. Virtual host templates

CHAPTER 34

Customize all virtual hosts globally

Table of Contents

• Prerequisite

• Apply templates globally to all vhosts

– Apache 2.2

– Apache 2.4

– Nginx stable and Nginx mainline

34.1 Prerequisite

Ensure you have read and understood how vhost-gen templates work and where to find them

See also:

Virtual host templates

34.2 Apply templates globally to all vhosts

When applying those templates, you do it globally for all projects. The only exception is if you have already a specific
vhost template for a project in place.

See also:

Customize specific virtual host

In order for template files to be picked up by the web server they must be copied to their correct filename.

167

Devilbox Documentation, Release 1.0

Web server Example template Template name
Apache 2.2 apache22.yml-example-vhost apache22.yml
Apache 2.4 apache24.yml-example-vhost apache24.yml
Nginx stable nginx.yml-example-vhost nginx.yml
Nginx mainline nginx.yml-example-vhost nginx.yml

Important: Do not use *.yml-example-rproxy templates for global configuration. These are only intended to
be used on a per project base.

Note: If you simply copy the files to their corresponding template file name, nothing will change as those templates
reflect the same values the web servers are using.

34.2.1 Apache 2.2

1. Navigate to cfg/vhost-gen/ inside the Devilbox directory

2. Copy apache22.yml-example-vhost to apache22.yml and restart the Devilbox

3. Whenever you adjust apache22.yml, you need to restart the Devilbox

34.2.2 Apache 2.4

1. Navigate to cfg/vhost-gen/ inside the Devilbox directory

2. Copy apache24.yml-example-vhost to apache24.yml and restart the Devilbox

3. Whenever you adjust apache24.yml, you need to restart the Devilbox

34.2.3 Nginx stable and Nginx mainline

1. Navigate to cfg/vhost-gen/ inside the Devilbox directory

2. Copy nginx.yml-example-vhost to nginx.yml and restart the Devilbox

3. Whenever you adjust nginx.yml, you need to restart the Devilbox

168 Chapter 34. Customize all virtual hosts globally

CHAPTER 35

Customize specific virtual host

Table of Contents

• vhost-gen

– What is vhost-gen

– Where do I find templates

– How does it work

– How to apply templates to a specific project

* 1. Retrieve or set template directory value

* 2. Copy webserver template to project template directory

* 3. Adjust template

* 4. Make Devilbox pick up those changes

• Templates explained

– Ensure yaml files are valid

– Template variables

* Global variables

* vHost type variable

* Feature variables

– Template structure

* 1. vhost:

* 2. vhost_type:

* 3. features:

169

Devilbox Documentation, Release 1.0

• Apply Changes

– Rename project directory

– Restart the Devilbox

• Further readings

35.1 vhost-gen

35.1.1 What is vhost-gen

vhost-gen is a python script which is able to dynamically generate Apache 2.2, Apache 2.4 and Nginx virtual host
or reverse proxy configuration files.

It is intended to be used by other means of automation such as change of directories or change of listening ports.

See also:

If you intend to use vhost-gen for your own projects, have a look at its project page and its sister projects:

•

•

•

35.1.2 Where do I find templates

The latest version of vhost-gen templates are shipped in the Devilbox git directory under cfg/vhost-gen/.

35.1.3 How does it work

By default new virtual hosts are automatically generated and enabled by vhost-gen and watcherp using the vanilla
templates which are glued into the webserver Docker images. The used templates are exactly the same as what you
will find in cfg/vhost-gen/.

This ensures to have equal and sane default virtual host for all of your projects. If you want to have a different virtual
host configuration for a specific project of yours, you can copy a corresponding template into your project directory
and adjust it to your needs.

35.1.4 How to apply templates to a specific project

Customizing a virtual host via vhost-gen template is generally done in four steps:

1. Retrieve or set template directory value in .env.

2. Copy webserver template to project template directory

3. Adjust template

4. Make Devilbox pick up those changes

170 Chapter 35. Customize specific virtual host

Devilbox Documentation, Release 1.0

Let’s assume the following default values and one project named project-1:

Variable Value
Devilbox path /home/user/devilbox
Templates to copy from /home/user/devilbox/cfg/vhost-gen
Project name project-1
HTTPD_TEMPLATE_DIR .devilbox (default value)
HOST_PATH_HTTPD_DATADIR ./data/www (default value)

Those assumed settings will result in the following directory paths which must be created by you:

What Path
Project directory path /home/user/devilbox/data/www/project-1/
Project template path /home/user/devilbox/data/www/project-1/.devilbox/

1. Retrieve or set template directory value

By default the HTTPD_TEMPLATE_DIR value is .devilbox. This is defined in the .env file. Feel free to change
it to whatever directory name you prefer, but keep in mind that it will change the Project template path which you
need to create yourself.

For this example we will keep the default value for the sake of simplicity: .devilbox.

Note: The HTTPD_TEMPLATE_DIR value is a global setting and will affect all projects.

2. Copy webserver template to project template directory

First you need to ensure that the HTTPD_TEMPLATE_DIR exists wihin you project.

Navigate to the Devilbox directory
host> cd /home/user/devilbox

Create template directory in your project
host> mkdir ./data/www/project-1/.devilbox

Then you can copy the templates.

host> cp cfg/vhost-gen/*.yml-example ./data/www/project-1/.devilbox

Note: You actually only need to copy the template of your chosen webserver (either Apache 2.2, Apache 2.4 or
Nginx), however it is good practice to copy all templates and also adjust all templates synchronously. This allows you
to change web server versions and still keep your virtual host settings.

3. Adjust template

At this stage you can start adjusting the template. Either do that for the webserver version you have en-
abled via HTTPD_SERVER: /home/user/devilbox/data/www/project-1/.devilbox/apache22.
yml. /home/user/devilbox/data/www/project-1/.devilbox/apache24.yml, /home/user/
devilbox/data/www/project-1/.devilbox/nginx.yml or do it for all of them synchronously.

35.1. vhost-gen 171

Devilbox Documentation, Release 1.0

Note: What exactly to change will be explained later.

4. Make Devilbox pick up those changes

Whenever you change a project vhost template or the HTTPD_TEMPLATE_DIR value, you need to restart the Devil-
box.

Note: It is also possible to do it without a restart which will be explained later.

35.2 Templates explained

Before the templates are explained, have a look at the following table to find out what template needs to be in place
for what webserver version.

Webserver Template
Apache 2.2 apache22.yml
Apache 2.4 apache24.yml
Nginx stable nginx.yml
Nginx mainline nginx.yml

Note: Nginx stable and mainline share the same template as their syntax has no special differences, whereas Apache
2.2 and Apache 2.4 have slight differences in syntax and therefore require two different templates.

35.2.1 Ensure yaml files are valid

Warning: Pay close attention that you do not use TAB (\t) characters for indenting the vhost-gen yaml files.
Some editors might automatically indent using TABs, so ensure they are replaced with spaces. If TAB characters
are present, those files become invalid and won’t work. https://github.com/cytopia/devilbox/issues/142

You can use the bundled yamllint binary inside the container to validate your config.

Navigate to the Devilbox directory
host> cd /home/user/devilbox

Enter the PHP container
host> ./shell.sh

Go to your project's template directory
devilbox@php-7.0.19 in /shared/httpd $ cd project-1/.devilbox

Check the syntax of apache22.yml
devilbox@php-7.0.19 in /shared/httpd/project-1/.devilbox $ yamllint apache22.yml

(continues on next page)

172 Chapter 35. Customize specific virtual host

https://github.com/cytopia/devilbox/issues/142

Devilbox Documentation, Release 1.0

(continued from previous page)

108:81 error line too long (90 > 80 characters) (line-length)
139:81 error line too long (100 > 80 characters) (line-length)
140:81 error line too long (84 > 80 characters) (line-length)
142:81 error line too long (137 > 80 characters) (line-length)

Long line errors can safely be ignored.

35.2.2 Template variables

Every uppercase string which begins with __ and ends by __ (such as __PORT__) is a variable that will be replaced
by a value. Variables can contain a string, a multi-line string or can also be replaced to an empty value.

Global variables

There are global variables that are determined by the command line arguments of vhost-gen itself or are elsewhere
replaced by the Devilbox webserver container such as:

• __PORT__

• __DEFAULT_VHOST__

• __VHOST_NAME__

• __ACCESS_LOG__

• __ERROR_LOG__

vHost type variable

There are also two variables that will be replaced according to the type of the vhost - either a normal vhost or a reverse
proxy vhost.

• __VHOST_DOCROOT__

• __VHOST_PROXY__

The Devilbox always uses a normal vhost by default, so the __VHOST_DOCROOT__ variable will be replaced
by what the vhost_type.docroot section provides. The vhost_type.rproxy will be ignored and
__VHOST_PROXY__ will be replaced by an empty string.

Feature variables

All other variables will be replaced by what is provided in the features: section. All subsections of features:
have corresponding variables in the following form:

Feature directive Variable name pattern
lower_case: __UPPER_CASE__

As an example, the contents of the features.php_fpm: section will be replaced into the __PHP_FPM__ vari-
able.

35.2. Templates explained 173

Devilbox Documentation, Release 1.0

35.2.3 Template structure

Each vhost-gen template has three main yaml directives:

1. vhost:

2. vhost_type:

3. features:

1. vhost:

The vhost: directive will contain the final resulting virtual host configuration that will be applied by the webserver.
Each of its containing variables will be substituted and its content will be copied to a webserver configuration file.

By default the vhost: section has variables from global scope, from the vhost_type: section and from the
features: section.

You can also fully hard-code your webserver configuration without any variables. This way you can specify a fully
self-brewed webserver configuration. An example for Apache 2.2 could look like this:

vhost: |
<VirtualHost *:80>

ServerName example.com

CustomLog "/var/log/apache/access.log" combined
ErrorLog "/var/log/apache/error.log"

DocumentRoot "/shared/httpd/project-1/htdocs"
<Directory "/shared/httpd/project-1/htdocs">

DirectoryIndex index.php

AllowOverride All
Options All

RewriteEngine on
RewriteBase /

Order allow,deny
Allow from all

</Directory>

ProxyPassMatch ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/shared/httpd/project-1/
→˓htdocs/$1
</VirtualHost>

2. vhost_type:

The vhost_type: contains docroot and rproxy. The Devilbox only makes use of docroot which holds the
definition of a normal vhost. Its content will be replaced into the __VHOST_DOCROOT__ variable.

The rproxy section will be ignored and the __VHOST_RPROXY__ variable will contain an empty value.

vHost Type section Variable to be replaced into
docroot: __VHOST_DOCROOT__
rproxy: __VHOST_RPROXY__ (empty)

174 Chapter 35. Customize specific virtual host

Devilbox Documentation, Release 1.0

3. features:

This section contains directives that will all be replaced into vhost: variables.

Feature section Variable to be replaced into
php_fpm: __PHP_FPM__
alias: __ALIASES__
deny: __DENIES__
server_status: __SERVER_STATUS__
xdomain_request: __XDOMAIN_REQ__

35.3 Apply Changes

After having edited your vhost-gen template files, you still need to apply these changes. This can be achieved in two
ways:

1. Rename your project directory back and forth

2. Restart the Devilbox

35.3.1 Rename project directory

Navigate to the data directory
host> /home/user/devilbox/data/www

Rename your project to something else
host> mv project-1 project-1.tmp

Rename your project to its original name
host> mv project-1.tmp project-1

If you want to understand what is going on right now, check the docker logs for the web server.

Navigate to the devilbox directory
host> /home/user/devilbox

Check docker logs
host> docker-compose logs httpd

httpd_1 | vhostgen: [2018-03-18 11:46:52] Adding: project-1.tmp.loc
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] ADD: succeeded: /shared/httpd/
→˓project-1.tmp
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] DEL: succeeded: /shared/httpd/
→˓project-1
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] TRIGGER succeeded: /usr/local/
→˓apache2/bin/httpd -k restart

httpd_1 | vhostgen: [2018-03-18 11:46:52] Adding: project-1loc
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] ADD: succeeded: /shared/httpd/
→˓project-1
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] DEL: succeeded: /shared/httpd/
→˓project-1.tmp
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] TRIGGER succeeded: /usr/local/
→˓apache2/bin/httpd -k restart

35.3. Apply Changes 175

Devilbox Documentation, Release 1.0

What happened?

The directory changes have been noticed and a new virtual host has been created. This time however your new vhost-
gen template has been read and the changes have applied.

Note: Renaming a project directory will only affect a single project. In case your change the value of
HTTPD_TEMPLATE_DIR it will affect all projects and you would have to rename all project directories. In this
case it is much faster to just restart the Devilbox.

35.3.2 Restart the Devilbox

Stop the Devilbox and start it up again.

35.4 Further readings

See also:

Have a look at the following examples which involve customizing vhost-gen templates:

• Virtual host templates

• Example: add sub domains

176 Chapter 35. Customize specific virtual host

CHAPTER 36

Virtual host vs Reverse Proxy

Note: Ensure you have read Virtual host templates

Table of Contents

• Motivation

• Benefits

• Creating a reverse proxy

36.1 Motivation

By default, all virtual hosts will simply serve files located in your document root directory within your project directory.
Sometimes however your project is already its own server that will serve requests through a listening network port.
(e.g. a running NodeJS application). This listening port will however only be available inside the PHP container (or
any other container) you have added to the Devilbox and the webserver is not aware of this.

For this kind of project you will want to create a reverse proxy which simply forwards the requests incoming to
the webserver to your application (either to the PHP container to a specific port or to any other container you have
attached).

36.2 Benefits

By using the already available web server to reverse proxy requests to your service you will be able to have all the
current features for you application such as:

• Have it displayed in the intranet page

177

Devilbox Documentation, Release 1.0

• Have standardized domain names

• Have valid HTTPS

36.3 Creating a reverse proxy

Creating a reverse proxy is as simply as copying the vhost-gen templates to your project directory.

In order to make your life simple there are a few generic docs that get you started and let you know more about the
theory behind it:

See also:

• Reverse Proxy with HTTPS

• Reverse Proxy for custom Docker

If this is too generic you can also have a look at two specific examples to setup fully automated Reverse Proxies
including autostarting your application on docker-compose up.

See also:

• Setup reverse proxy NodeJS

• Setup reverse proxy Sphinx docs

178 Chapter 36. Virtual host vs Reverse Proxy

CHAPTER 37

Example: add sub domains

This tutorial gives you a brief overview how to serve your project under one subdomain via the project directory name
as well as how to serve one project with multiple subdomains with a customized virtual host config via vhost-gen.

Table of Contents

• Simple sub domains for one project

– Example

* Prerequisite

* Directory structure

• Complex sub domains for one project

– Prerequisite

– Apache 2.2

* Adding www sub domain

· Step 1: Add DNS entry

· Step 2: Adjust apache22.yml

· Step 3: Apply new changes

* Adding catch-all sub domain

· Step 1: Add DNS entry

· Step 2: Adjust apache22.yml

· Step 3: Apply new changes

– Apache 2.4

– Nginx

179

Devilbox Documentation, Release 1.0

* Adding www sub domain

· Step 1: Add DNS entry

· Step 2: Adjust nginx.yml

· Step 3: Apply new changes

* Adding catch-all sub domain

· Step 1: Add DNS entry

· Step 2: Adjust nginx.yml

· Step 3: Apply new changes

– Apply changes

– Checklist

37.1 Simple sub domains for one project

When you just want to serve your project under different sub domains, you simply name your project directory by the
name of it. See the following examples how you build up your project URL.

Project dir TLD_SUFFIX Project URL
my-test loc http://my-test.loc
www.my-test loc http://www.my-test.loc
t1.www.my-test loc http://t1.www.my-test.loc
my-test local http://my-test.local
www.my-test local http://www.my-test.local
t2.www.my-test local http://t2.www.my-test.local

Whatever name you want to have in front of the TLD_SUFFIX is actually just the directory you create. Generically,
it looks like this:

Project dir TLD_SUFFIX Project URL
<dir-name> <tld> http://<dir-name>.<tld>

Important: The project directories must be real directories and not symlinks! See example below for how to set it
up.

37.1.1 Example

Prerequisite

Let’s assume the following settings.

180 Chapter 37. Example: add sub domains

Devilbox Documentation, Release 1.0

Variable Value
TLD_SUFFIX loc
HTTPD_DOCROOT_DIR htdocs
Project name / directory my-test
Sub domain 1 / directory api.my-test
Sub domain 2 / directory www.my-test

• Project which holds the data is my-test

• Web root of my-test is in my-test/FRAMEWORK/public

• Same project should be available under api.my-test and www.my-test

Directory structure

host> tree -L 2
.

my-test
FRAMEWORK
htdocs -> FRAMEWORK/public

api.my-test
htdocs -> ../my-test/FRAMEWORK/public

www.my-test
htdocs -> ../my-test/FRAMEWORK/public

• my-test, api.my-test and www.my-test must be normal directories (not symlinks).

• The framework data resided in my-test.

• Each projects htdocs directory is a symlink pointing to the web root of the framework in my-test

With this structure you will have three domains available pointing to the same project:

• http://my-test.loc

• http://api.my-test.loc

• http://www.my-test.loc

37.2 Complex sub domains for one project

When you want to have more complex sub domains for one project (such as in the case of Wordpress multi-sites), you
will need to customize your virtual host config for this project and make the web server allow to serve your files by
different server names.

Each web server virtual host is auto-generated by a tool called . vhost-gen allows you to overwrite its default
generation process via templates. Those templates can be added to each project, giving you the option to customize
the virtual host of this specific project.

Note:

Virtual host templates Ensure you have read and understand how to customize virtual hosts globally with
vhost-gen.

Customize all virtual hosts globally Ensure you have read and understand how to customize virtual hosts globally
with vhost-gen.

37.2. Complex sub domains for one project 181

http://my-test.loc
http://api.my-test.loc
http://www.my-test.loc

Devilbox Documentation, Release 1.0

Customize specific virtual host Ensure you have read and understand how to customize your virtual host with
vhost-gen.

HTTPD_TEMPLATE_DIR Ensure you know what this variable does inside your .env file.

Important: When adjusting vhost-gen templates for a project you have to do one of the following:

• Restart the devilbox

• Or rename your project directory to some other name and then rename it back to its original name.

More information here: Apply Changes

Warning: Pay close attention that you do not use TAB (\t) characters for indenting the vhost-gen yaml files.
Some editors might automatically indent using TABs, so ensure they are replaced with spaces. If TAB characters
are present, those files become invalid and won’t work. https://github.com/cytopia/devilbox/issues/142

You can use the bundled yamllint binary inside the container to validate your config.

See also:

• Work inside the PHP container

• Available tools

37.2.1 Prerequisite

Let’s assume the following settings.

Variable Value
Devilbox path /home/user/devilbox
HTTPD_TEMPLATE_DIR .devilbox
HOST_PATH_HTTPD_DATADIR ./data/www
TLD_SUFFIX loc
Project name/directory project-1 (Ensure it exist)

Ensure that the default vhost-gen templates have been copied to your projects template directory:

Navigate to the Devilbox directory
host> cd ./home/user/devilbox

Create template directory in your project
host> mkdir ./data/www/project-1/.devilbox

Copy vhost-gen templates
host> cp cfg/vhost-gen/*.yml ./data/www/project-1/.devilbox

By having done all prerequisite, your project should be available under http://my-project-1.loc

Now you are all set and we can dive into the actual configuration.

182 Chapter 37. Example: add sub domains

https://github.com/cytopia/devilbox/issues/142
http://my-project-1.loc

Devilbox Documentation, Release 1.0

37.2.2 Apache 2.2

Adding www sub domain

Let’s also make this project available under http://www.my-project-1.loc

Step 1: Add DNS entry

The first step would be to add an additional DNS entry for www.my-project-1.loc. See here how to do that for
Linux, MacOS or Windows: Step 4: create a DNS entry

DNS is in place, however when you visit http://www.my-project-1.loc, you will end up seeing the Devilbox intranet,
because this is the default host when no match has been found.

Step 2: Adjust apache22.yml

Next you will have to adjust the Apache 2.2 vhost configuration template. The current default template looks similar
to the one shown below (Note: Only the vhost: sub section is shown here).

Listing 1: /home/user/devilbox/data/www/project-
1/.devilbox/apache22.yml

vhost: |
<VirtualHost __DEFAULT_VHOST__:__PORT__>

ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
</VirtualHost>

All you will have to do, is to add a‘‘ServerAlias‘‘ directive:

Listing 2: /home/user/devilbox/data/www/project-
1/.devilbox/apache22.yml

vhost: |
<VirtualHost __DEFAULT_VHOST__:__PORT__>

ServerName __VHOST_NAME__
ServerAlias www.__VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

__VHOST_DOCROOT__
__VHOST_RPROXY__

(continues on next page)

37.2. Complex sub domains for one project 183

http://www.my-project-1.loc
http://www.my-project-1.loc

Devilbox Documentation, Release 1.0

(continued from previous page)

__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
</VirtualHost>

Step 3: Apply new changes

The last step is to actually to apply those changes. This is equal for all web servers. Go to Apply changes and follow
the steps.

Afterwards you can go and visit http://www.my-project-1.loc and you should see the same page as if you visit http:
//my-project-1.loc

Adding catch-all sub domain

Let’s also make this project available under any sub domain.

Step 1: Add DNS entry

The first step would be to add DNS entries for all sub domains you require. See here how to do that for Linux, MacOS
or Windows: Step 4: create a DNS entry

This however is not really convenient. If you have basically infinite sub domains (via catch-all), you should consider
using Auto-DNS instead: Setup Auto DNS.

Step 2: Adjust apache22.yml

Next you will have to adjust the Apache 2.2 vhost configuration template. The current default template looks similar
to the one shown below (Note: Only the vhost: sub section is shown here).

Listing 3: /home/user/devilbox/data/www/project-
1/.devilbox/apache22.yml

vhost: |
<VirtualHost __DEFAULT_VHOST__:__PORT__>

ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives

(continues on next page)

184 Chapter 37. Example: add sub domains

http://www.my-project-1.loc
http://my-project-1.loc
http://my-project-1.loc

Devilbox Documentation, Release 1.0

(continued from previous page)

__CUSTOM__
</VirtualHost>

All you will have to do, is to add a ServerAlias directive which does catch-all:

Listing 4: /home/user/devilbox/data/www/project-
1/.devilbox/apache22.yml

vhost: |
<VirtualHost __DEFAULT_VHOST__:__PORT__>

ServerName __VHOST_NAME__
ServerAlias *.__VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
</VirtualHost>

Step 3: Apply new changes

The last step is to actually to apply those changes. This is equal for all web servers. Go to Apply changes and follow
the steps.

37.2.3 Apache 2.4

The procedure for Apache 2.4 is exactly the same as for Apache 2.2, even the syntax is identical. The only difference
is that you need to adjust apache24.yml instead of apache22.yml.

Just go up one section: Apache 2.2

37.2.4 Nginx

The procedure for Nginx is also exactly the same as for Apache 2.4, however the syntax of its nginx.yml file is
slightly different, that’s why the whole tutorial will be repeated here fitted for Nginx.

Adding www sub domain

Let’s also make this project available under http://www.my-project-1.loc

Step 1: Add DNS entry

The first step would be to add an additional DNS entry for www.my-project-1.loc. See here how to do that for
Linux, MacOS or Windows: Step 4: create a DNS entry

37.2. Complex sub domains for one project 185

http://www.my-project-1.loc

Devilbox Documentation, Release 1.0

DNS is in place, however when you visit http://www.my-project-1.loc, you will end up seeing the Devilbox intranet,
because this is the default host when no match has been found.

Step 2: Adjust nginx.yml

Next you will have to adjust the Nginx vhost configuration template. The current default template looks similar to the
one shown below (Note: Only the vhost: sub section is shown here).

Listing 5: /home/user/devilbox/data/www/project-
1/.devilbox/nginx.yml

vhost: |
server {

listen __PORT____DEFAULT_VHOST__;
server_name __VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
}

All you will have to do, is to extend the server_name directive:

186 Chapter 37. Example: add sub domains

http://www.my-project-1.loc

Devilbox Documentation, Release 1.0

Listing 6: /home/user/devilbox/data/www/project-
1/.devilbox/nginx.yml

vhost: |
server {

listen __PORT____DEFAULT_VHOST__;
server_name __VHOST_NAME__ www.__VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
}

Step 3: Apply new changes

The last step is to actually to apply those changes. This is equal for all web servers. Go to Apply changes and follow
the steps.

Afterwards you can go and visit http://www.my-project-1.loc and you should see the same page as if you visit http:
//my-project-1.loc

Adding catch-all sub domain

Let’s also make this project available under any sub domain.

Step 1: Add DNS entry

The first step would be to add DNS entries for all sub domains you require. See here how to do that for Linux, MacOS
or Windows: Step 4: create a DNS entry

This however is not really convenient. If you have basically infinite sub domains (via catch-all), you should consider
using Auto-DNS instead: Setup Auto DNS.

Step 2: Adjust nginx.yml

Next you will have to adjust the Nginx vhost configuration template. The current default template looks similar to the
one shown below (Note: Only the vhost: sub section is shown here).

Listing 7: /home/user/devilbox/data/www/project-
1/.devilbox/nginx.yml

vhost: |
server {

(continues on next page)

37.2. Complex sub domains for one project 187

http://www.my-project-1.loc
http://my-project-1.loc
http://my-project-1.loc

Devilbox Documentation, Release 1.0

(continued from previous page)

listen __PORT____DEFAULT_VHOST__;
server_name __VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
}

All you will have to do, is to extend the server_name directive with a catch-all:

Listing 8: /home/user/devilbox/data/www/project-
1/.devilbox/nginx.yml

vhost: |
server {

listen __PORT____DEFAULT_VHOST__;
server_name __VHOST_NAME__ *.__VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

__VHOST_DOCROOT__
__VHOST_RPROXY__
__PHP_FPM__
__ALIASES__
__DENIES__
__SERVER_STATUS__

Custom directives
__CUSTOM__
}

Step 3: Apply new changes

The last step is to actually to apply those changes. This is equal for all web servers. Go to Apply changes and follow
the steps.

37.2.5 Apply changes

After having edited your vhost-gen template files, you still need to apply these changes. This can be achieved in two
ways:

1. Restart the Devilbox

2. Rename your project directory back and forth

Let’s cover the second step

188 Chapter 37. Example: add sub domains

Devilbox Documentation, Release 1.0

Navigate to the data directory
host> /home/user/devilbox/data/www

Rename your project to something else
host> mv project-1 project-1.tmp

Rename your project to its original name
host> mv project-1.tmp project-1

If you want to understand what is going on right now, check the docker logs for the web server.

Navigate to the devilbox directory
host> /home/user/devilbox

Check docker logs
host> docker-compose logs httpd

httpd_1 | vhostgen: [2018-03-18 11:46:52] Adding: project-1.tmp.loc
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] ADD: succeeded: /shared/httpd/
→˓project-1.tmp
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] DEL: succeeded: /shared/httpd/
→˓project-1
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] TRIGGER succeeded: /usr/local/
→˓apache2/bin/httpd -k restart

httpd_1 | vhostgen: [2018-03-18 11:46:52] Adding: project-1loc
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] ADD: succeeded: /shared/httpd/
→˓project-1
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] DEL: succeeded: /shared/httpd/
→˓project-1.tmp
httpd_1 | watcherd: [2018-03-18 11:46:52] [OK] TRIGGER succeeded: /usr/local/
→˓apache2/bin/httpd -k restart

What happened?

The directory changes have been noticed and a new virtual host has been created. This time however your new vhost-
gen template has been read and the changes have applied.

37.2.6 Checklist

1. Template files are copied from cfg/vhost-gen/* to your project template dir (as specified in .env via
HTTPD_TEMPLATE_DIR)

2. Ensure the vhost-gen yaml files are valid (No tab characters)

3. When templates are edited, the Devilbox is either restarted or the project directory is renamed to something else
and then renamed back to its original name

37.2. Complex sub domains for one project 189

Devilbox Documentation, Release 1.0

190 Chapter 37. Example: add sub domains

CHAPTER 38

Reverse Proxy with HTTPS

Imagine you have started an application within the PHP container that creates a listening port (e.g.: NodeJS). This
will now only listen on the PHP container and you would have to adjust the docker-compose.yml definition in order to
have that port available outside to your host OS.

Alternatively, there is a simple way to reverse proxy it to the already running web server and even make use of the
available HTTPS feature.

See also:

Read more about how to autostart applications:

• Custom scripts per PHP version (individually for different PHP versions)

• Custom scripts globally (equal for all PHP versions)

Table of Contents

• Walkthrough

– Assumption

– Copy vhost-gen templates

– Adjust port

* Adjust Apache 2.2 template

* Adjust Apache 2.4 template

* Adjust Nginx template

– Restart the Devilbox

– Start your application

– Visit your project

191

Devilbox Documentation, Release 1.0

38.1 Walkthrough

38.1.1 Assumption

Let’s imagine you have started an application in the PHP container with the following settings:

• TLD_SUFFIX: loc

• Project directory inside PHP container: /shared/httpd/my-app

• HOST_PATH_HTTPD_DATADIR on the host: ./data/www

• HTTPD_TEMPLATE_DIR: .devilbox

• Listening port: 8081

• Listening host: php (any of the PHP container)

• Resulting vhost name: my-app.loc

38.1.2 Copy vhost-gen templates

The reverse vhost-gen templates are available in cfg/vhost-gen:

host> tree -L 1 cfg/vhost-gen/

cfg/vhost-gen/
apache22.yml-example-rproxy
apache22.yml-example-vhost
apache24.yml-example-rproxy
apache24.yml-example-vhost
nginx.yml-example-rproxy
nginx.yml-example-vhost
README.md

0 directories, 7 files

For this example we will copy all *-example-rproxy files into /shared/httpd/my-app/.devilbox to
ensure this will work with all web servers.

host> cd /path/to/devilbox
host> cp cfg/vhost-gen/apache22.yml-example-rproxy data/www/my-app/.devilbox/apache22.
→˓yml
host> cp cfg/vhost-gen/apache24.yml-example-rproxy data/www/my-app/.devilbox/apache24.
→˓yml
host> cp cfg/vhost-gen/nginx.yml-example-rproxy data/www/my-app/.devilbox/nginx.yml

38.1.3 Adjust port

By default, all vhost-gen templates will forward requests to port 8000 into the PHP container. Our current example
however uses port 8081, so we must change that accordingly for all three templates.

Adjust Apache 2.2 template

Open the apache22.yml vhost-gen template in your project:

192 Chapter 38. Reverse Proxy with HTTPS

Devilbox Documentation, Release 1.0

host> cd /path/to/devilbox
host> vi data/www/my-app/.devilbox/apache22.yml

Find the two lines with ProxyPass and ProxyPassReverse and change the port from 8000 to 8081

Listing 1: data/www/my-app/.devilbox/apache22.yml

... more lines above ...

###
Basic vHost skeleton
###
vhost: |

<VirtualHost __DEFAULT_VHOST__:__PORT__>
ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
ProxyRequests On
ProxyPreserveHost On
ProxyPass / http://php:8081/
ProxyPassReverse / http://php:8081/

... more lines below ...

Adjust Apache 2.4 template

Open the apache24.yml vhost-gen template in your project:

host> cd /path/to/devilbox
host> vi data/www/my-app/.devilbox/apache24.yml

Find the two lines with ProxyPass and ProxyPassReverse and change the port from 8000 to 8081

Listing 2: data/www/my-app/.devilbox/apache24.yml

... more lines above ...

###
Basic vHost skeleton
###
vhost: |

<VirtualHost __DEFAULT_VHOST__:__PORT__>
ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
ProxyRequests On
ProxyPreserveHost On
ProxyPass / http://php:8081/
ProxyPassReverse / http://php:8081/

(continues on next page)

38.1. Walkthrough 193

Devilbox Documentation, Release 1.0

(continued from previous page)

... more lines below ...

Adjust Nginx template

Open the nginx.yml vhost-gen template in your project:

host> cd /path/to/devilbox
host> vi data/www/my-app/.devilbox/nginx.yml

Find the lines with proxy_pass and change the port from 8000 to 8081

Listing 3: data/www/my-app/.devilbox/nginx.yml

... more lines above ...

###
Basic vHost skeleton
###
vhost: |

server {
listen __PORT____DEFAULT_VHOST__;
server_name __VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
location / {

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_pass http://php:8081;

}

... more lines below ...

38.1.4 Restart the Devilbox

Now for the changes to take affect, simply restart the Devilbox (or start if not yet running):

host> cd /path/to/devilbox

Stop the Devilbox
host> docker-compose stop
host> docker-compose rm -f

Start the Devilbox (PHP and HTTPD container only)
host> docker-compose up -d php httpd bind

38.1.5 Start your application

Enter the PHP container and start your application which creates the listening port in port 8081.

194 Chapter 38. Reverse Proxy with HTTPS

Devilbox Documentation, Release 1.0

See also:

This can also be automated to happen automatically during docker-compose up via:

• Custom scripts per PHP version (individually for different PHP versions)

• Custom scripts globally (equal for all PHP versions)

• Example: Autostarting NodeJS Apps

38.1.6 Visit your project

That’s it, your service application will now be available via:

• http://my-app.loc

It will also be available on HTTPS. This is by default and automatically:

• https://my-app.loc

See also:

Setup valid HTTPS

And is even shown as a project in the Devilbox intranet:

• http://localhost/vhosts.php

• https://localhost/vhosts.php

38.1. Walkthrough 195

http://my-app.loc
https://my-app.loc
http://localhost/vhosts.php
https://localhost/vhosts.php

Devilbox Documentation, Release 1.0

196 Chapter 38. Reverse Proxy with HTTPS

CHAPTER 39

Reverse Proxy for custom Docker

Imagine you have added a custom service container to the Devilbox which has a project that is available via http on a
very specific port in that container.

You do not want to expose this port to the host system, but rather want to make it available via the bundled web server
and also be able to see it on the Devilbox intranet vhost section.

Additionally you want the project to make use of the same DNS naming scheme and also have HTTPS for it.

You can easily achieve this by setting up a reverse proxy for it.

See also:

Add your own Docker image

Table of Contents

• Walkthrough

– Assumption

– Create virtual directory

– Copy vhost-gen templates

– Adjust port

* Adjust Apache 2.2 template

* Adjust Apache 2.4 template

* Adjust Nginx template

– Restart the Devilbox

– Visit your project

197

Devilbox Documentation, Release 1.0

39.1 Walkthrough

39.1.1 Assumption

Let’s imagine you have added a custom Python Docker image to the Devilbox which starts up a Django application
listening on port 3000.

• TLD_SUFFIX: loc

• Desired DNS name: my-pthon.loc

• HOST_PATH_HTTPD_DATADIR on the host: ./data/www

• HTTPD_TEMPLATE_DIR: .devilbox

• Listening port: 3000

• Listening host: python (hostname of the Python container)

39.1.2 Create virtual directory

In order to create a reverse proxy for that custom container, you must add a virtual project directory without any data
in it. This directory is purely for the purpose of determining the DNS name and for having the vhost-gen configuration
in.

Navigate to the HOST_PATH_HTTPD_DATADIR directory and create your project

host> cd /path/to/devilbox
host> cd /path/to/devilbox/data/www

Create the project directory
host> mkdir my-python

Create the htdocs directory (to have a valid project for the Intranet page)
host> mkdir my-python/htdocs

Create the vhost-gen directory (to be apply to apply custom templates)
host> mkdir my-python/.devilbox

This part is now sufficient to have the project visible on the Devilbox intranet.

39.1.3 Copy vhost-gen templates

The reverse vhost-gen templates are available in cfg/vhost-gen:

host> tree -L 1 cfg/vhost-gen/

cfg/vhost-gen/
apache22.yml-example-rproxy
apache22.yml-example-vhost
apache24.yml-example-rproxy
apache24.yml-example-vhost
nginx.yml-example-rproxy
nginx.yml-example-vhost
README.md

(continues on next page)

198 Chapter 39. Reverse Proxy for custom Docker

Devilbox Documentation, Release 1.0

(continued from previous page)

0 directories, 7 files

For this example we will copy all *-example-rproxy files into /shared/httpd/my-python/.devilbox
to ensure this will work with all web servers.

host> cd /path/to/devilbox
host> cp cfg/vhost-gen/apache22.yml-example-rproxy data/www/my-python/.devilbox/
→˓apache22.yml
host> cp cfg/vhost-gen/apache24.yml-example-rproxy data/www/my-python/.devilbox/
→˓apache24.yml
host> cp cfg/vhost-gen/nginx.yml-example-rproxy data/www/my-python/.devilbox/nginx.yml

39.1.4 Adjust port

By default, all vhost-gen templates will forward requests to port 8000 into the PHP container. Our current example
however uses port 3000 and host python, so we must change that accordingly for all three templates.

Adjust Apache 2.2 template

Open the apache22.yml vhost-gen template in your project:

host> cd /path/to/devilbox
host> vi data/www/my-python/.devilbox/apache22.yml

Find the two lines with ProxyPass and ProxyPassReverse and change the port from 8000 to 3000 and host
php to python:

Listing 1: data/www/my-python/.devilbox/apache22.yml

... more lines above ...

###
Basic vHost skeleton
###
vhost: |

<VirtualHost __DEFAULT_VHOST__:__PORT__>
ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
ProxyRequests On
ProxyPreserveHost On
ProxyPass / http://python:3000/
ProxyPassReverse / http://python:3000/

... more lines below ...

Adjust Apache 2.4 template

Open the apache24.yml vhost-gen template in your project:

39.1. Walkthrough 199

Devilbox Documentation, Release 1.0

host> cd /path/to/devilbox
host> vi data/www/my-python/.devilbox/apache24.yml

Find the two lines with ProxyPass and ProxyPassReverse and change the port from 8000 to 3000 and host
php to python:

Listing 2: data/www/my-python/.devilbox/apache24.yml

... more lines above ...

###
Basic vHost skeleton
###
vhost: |

<VirtualHost __DEFAULT_VHOST__:__PORT__>
ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
ProxyRequests On
ProxyPreserveHost On
ProxyPass / http://python:3000/
ProxyPassReverse / http://python:3000/

... more lines below ...

Adjust Nginx template

Open the nginx.yml vhost-gen template in your project:

host> cd /path/to/devilbox
host> vi data/www/my-python/.devilbox/nginx.yml

Find the line with proxy_pass and change the port from 8000 to 3000 and host php to python:

Listing 3: data/www/my-python/.devilbox/nginx.yml

... more lines above ...

###
Basic vHost skeleton
###
vhost: |

server {
listen __PORT____DEFAULT_VHOST__;
server_name __VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
location / {

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;

(continues on next page)

200 Chapter 39. Reverse Proxy for custom Docker

Devilbox Documentation, Release 1.0

(continued from previous page)

proxy_pass http://python:3000;
}

... more lines below ...

39.1.5 Restart the Devilbox

Now for the changes to take affect, simply restart the Devilbox (or start if not yet running):

host> cd /path/to/devilbox

Stop the Devilbox
host> docker-compose stop
host> docker-compose rm -f

Start the Devilbox (Your Python container and the PHP and HTTPD container only)
host> docker-compose up -d php httpd bind python

39.1.6 Visit your project

That’s it, your service application will now be available via:

• http://my-python.loc

It will also be available on HTTPS. This is by default and automatically:

• https://my-python.loc

See also:

Setup valid HTTPS

And is even shown as a project in the Devilbox intranet:

• http://localhost/vhosts.php

• https://localhost/vhosts.php

39.1. Walkthrough 201

http://my-python.loc
https://my-python.loc
http://localhost/vhosts.php
https://localhost/vhosts.php

Devilbox Documentation, Release 1.0

202 Chapter 39. Reverse Proxy for custom Docker

CHAPTER 40

Enable all additional container

Besides providing basic LAMP/MEAN stack container, which are well integrated into the Devilbox intranet, the
Devilbox also ships additional pre-configured container that can easily be enabled.

Table of Contents

• Available additional container

• Enable all additional container

• Configure additional container

40.1 Available additional container

The following table shows you the currently additional available container:

Container Name Hostname IP Address
Blackfire blackfire blackfire 172.16.238.200
MailHog mailhog mailhog 172.16.238.201
RabbitMQ rabbit rabbit 172.16.238.210
Solr solr solr 172.16.238.220

40.2 Enable all additional container

Copy docker-compose.override.yml-all into the root of the Devilbox git directory.

host> cp compose/docker-compose.override.yml-all docker-compose.override.yml

203

Devilbox Documentation, Release 1.0

That’s it, if you docker-compose up, all container will be started. This however is not adviced as it will eat up a
lot of resources. You are better off by selectively specifying the container you want to run.

See also:

Start the Devilbox

40.3 Configure additional container

The additional container also provide many configuration options just as the default ones do. That includes, but is not
limited to:

• Image version

• Exposed ports

• Mount points

• And various container specific settings

In order to fully customize each container, refer to their own documentation section:

See also:

• Enable and configure Blackfire

• Enable and configure MailHog

• Enable and configure RabbitMQ

• Enable and configure Solr

204 Chapter 40. Enable all additional container

CHAPTER 41

Enable and configure Blackfire

This section will guide you through getting Blackfire integrated into the Devilbox.

See also:

•

•

• Enable all additional container

Table of Contents

• Overview

– Available overwrites

– Blackfire settings

– Blackfire env variables

• Instructions

– 1. Copy docker-compose.override.yml

– 2. Adjust env settings (required)

– 3. Start the Devilbox

• TL;DR

205

Devilbox Documentation, Release 1.0

41.1 Overview

41.1.1 Available overwrites

The Devilbox ships various example configurations to overwrite the default stack. Those files are located under
compose/ in the Devilbox git directory.

docker-compose.override.yml-all has all examples combined in one file for easy copy/paste. However,
each example also exists in its standalone file as shown below:

host> tree -L 1 compose/
compose/

docker-compose.override.yml-all
docker-compose.override.yml-blackfire
docker-compose.override.yml-mailhog
docker-compose.override.yml-rabbitmq
docker-compose.override.yml-solr
README.md

0 directories, 6 files

See also:

Enable all additional container

41.1.2 Blackfire settings

In case of Blackfire, the file is compose/docker-compose.override.yml-blackfire. This file must be
copied into the root of the Devilbox git directory.

What How and where
Example com-
pose file

compose/docker-compose.override.yml-all or compose/
docker-compose.override.yml-blackfire

Container IP ad-
dress

172.16.238.200

Container host
name

blackfire

Container name blackfire
Mount points none
Exposed port none
Available at n.a.
Further configu-
ration

BLACKFIRE_SERVER_ID and BLACKFIRE_SERVER_TOKEN must be set via .env

41.1.3 Blackfire env variables

Additionally the following .env variables can be created for easy configuration:

Variable Default value Description
BLACKFIRE_SERVER_ID id A valid server id is required in order to use blackfire.
BLACKFIRE_SERVER_TOKEN token A valid server token is required in order to use blackfire.
BLACKFIRE_SERVER latest Controls the Blackfire version to use.

206 Chapter 41. Enable and configure Blackfire

Devilbox Documentation, Release 1.0

41.2 Instructions

41.2.1 1. Copy docker-compose.override.yml

Copy the Blackfire Docker Compose overwrite file into the root of the Devilbox git directory. (It must be at the same
level as the default docker-compose.yml file).

host> cp compose/docker-compose.override.yml-blackfire docker-compose.override.yml

See also:

• docker-compose.override.yml

• Add your own Docker image

• Overwrite existing Docker image

41.2.2 2. Adjust env settings (required)

By default Blackfire is using some dummy values for BLACKFIRE_SERVER_ID and BLACK-
FIRE_SERVER_TOKEN. You must however aquire valid values and set the in your .env file in order for
Blackfire to properly start. Those values can be obtained at their official webpage.

Listing 1: .env

BLACKFIRE_SERVER_ID=<valid server id>
BLACKFIRE_SERVER_TOKEN=<valid server token>

#BLACKFIRE_SERVER=1.12.0
#BLACKFIRE_SERVER=1.13.0
#BLACKFIRE_SERVER=1.14.0
#BLACKFIRE_SERVER=1.14.1
#BLACKFIRE_SERVER=1.15.0
#BLACKFIRE_SERVER=1.16.0
#BLACKFIRE_SERVER=1.17.0
#BLACKFIRE_SERVER=1.17.1
#BLACKFIRE_SERVER=1.18.0
BLACKFIRE_SERVER=latest

See also:

.env file

41.2.3 3. Start the Devilbox

The final step is to start the Devilbox with Blackfire.

Let’s assume you want to start php, httpd, bind and blackfire.

host> docker-compose up -d php httpd bind blackfire

See also:

Start the Devilbox

41.2. Instructions 207

Devilbox Documentation, Release 1.0

41.3 TL;DR

For the lazy readers, here are all commands required to get you started. Simply copy and paste the following block
into your terminal from the root of your Devilbox git directory:

Copy compose-override.yml into place
cp compose/docker-compose.override.yml-blackfire docker-compose.override.yml

Create .env variable
echo "BLACKFIRE_SERVER_ID=<valid server id>" >> .env
echo "BLACKFIRE_SERVER_TOKEN=<valid server token>" >> .env

echo "#BLACKFIRE_SERVER=1.12.0" >> .env
echo "#BLACKFIRE_SERVER=1.13.0" >> .env
echo "#BLACKFIRE_SERVER=1.14.0" >> .env
echo "#BLACKFIRE_SERVER=1.14.1" >> .env
echo "#BLACKFIRE_SERVER=1.15.0" >> .env
echo "#BLACKFIRE_SERVER=1.16.0" >> .env
echo "#BLACKFIRE_SERVER=1.17.0" >> .env
echo "#BLACKFIRE_SERVER=1.17.1" >> .env
echo "#BLACKFIRE_SERVER=1.18.0" >> .env
echo "BLACKFIRE_SERVER=latest" >> .env

Start container
docker-compose up -d php httpd bind blackfire

208 Chapter 41. Enable and configure Blackfire

CHAPTER 42

Enable and configure MailHog

This section will guide you through getting MailHog integrated into the Devilbox.

See also:

•

•

• Enable all additional container

Table of Contents

• Overview

– Available overwrites

– MailHog settings

– MailHog env variables

• Instructions

– 1. Copy docker-compose.override.yml

– 2. Adjust PHP settings

– 3. Adjust .env settings (optional)

– 4. Start the Devilbox

– 5. Start using it

• TL;DR

209

Devilbox Documentation, Release 1.0

42.1 Overview

42.1.1 Available overwrites

The Devilbox ships various example configurations to overwrite the default stack. Those files are located under
compose/ in the Devilbox git directory.

docker-compose.override.yml-all has all examples combined in one file for easy copy/paste. However,
each example also exists in its standalone file as shown below:

host> tree -L 1 compose/
compose/

docker-compose.override.yml-all
docker-compose.override.yml-blackfire
docker-compose.override.yml-mailhog
docker-compose.override.yml-rabbitmq
docker-compose.override.yml-solr
README.md

0 directories, 6 files

See also:

Enable all additional container

42.1.2 MailHog settings

In case of MailHog, the file is compose/docker-compose.override.yml-mailhog. This file must be
copied into the root of the Devilbox git directory.

What How and where
Example com-
pose file

compose/docker-compose.override.yml-all or compose/
docker-compose.override.yml-mailhog

Container IP ad-
dress

172.16.238.201

Container host
name

mailhog

Container name mailhog
Mount points none
Exposed port 8025 (can be changed via .env)
Available at http://localhost:8025
Further configu-
ration

php.ini settings need to be applied per version

42.1.3 MailHog env variables

Additionally the following .env variables can be created for easy configuration:

Variable Default value Description
HOST_PORT_MAILHOG 8025 Controls the host port on which MailHog will be available at.
MAILHOG_SERVER latest Controls the MailHog version to use.

210 Chapter 42. Enable and configure MailHog

Devilbox Documentation, Release 1.0

42.2 Instructions

42.2.1 1. Copy docker-compose.override.yml

Copy the MailHog Docker Compose overwrite file into the root of the Devilbox git directory. (It must be at the same
level as the default docker-compose.yml file).

host> cp compose/docker-compose.override.yml-mailhog docker-compose.override.yml

See also:

• docker-compose.override.yml

• Add your own Docker image

• Overwrite existing Docker image

42.2.2 2. Adjust PHP settings

The next step is to tell PHP that it should use a different mail forwarder.

Let’s assume you are using PHP 7.2.

Navigate to the PHP ini configuration directory of your chosen version
host> cd cfg/php-ini-7.2

Create and open a new *.ini file
host> vi mailhog.ini

Add the following content to the newly created ini file:

Listing 1: mailhog.ini

[mail function]
sendmail_path = '/usr/local/bin/mhsendmail --smtp-addr="mailhog:1025"'

See also:

php.ini

42.2.3 3. Adjust .env settings (optional)

By Default MailHog is using the host port 8025, this can be adjusted in the .env file. Add HOST_PORT__MAILHOG
to .env and customize its value.

Additionally also the MailHog version can be controlled via MAILHOG_SERVER.

Listing 2: .env

HOST_PORT_MAILHOG=8025
MAILHOG_SERVER=latest

See also:

.env file

42.2. Instructions 211

Devilbox Documentation, Release 1.0

42.2.4 4. Start the Devilbox

The final step is to start the Devilbox with MailHog.

Let’s assume you want to start php, httpd, bind and mailhog.

host> docker-compose up -d php httpd bind mailhog

See also:

Start the Devilbox

42.2.5 5. Start using it

• Once the Devilbox is running, visit http://localhost:8025 in your browser.

• Any email send by any of the Devilbox managed projects will then appear in MailHog

42.3 TL;DR

For the lazy readers, here are all commands required to get you started. Simply copy and paste the following block
into your terminal from the root of your Devilbox git directory:

Copy compose-override.yml into place
cp compose/docker-compose.override.yml-mailhog docker-compose.override.yml

Create php.ini
echo "[mail function]" > cfg/php-ini-7.2/mailhog.ini
echo "sendmail_path = '/usr/local/bin/mhsendmail --smtp-addr=\"mailhog:1025\"'" >>
→˓cfg/php-ini-7.2/mailhog.ini

Create .env variable
echo "HOST_PORT_MAILHOG=8025" >> .env
echo "MAILHOG_SERVER=latest" >> .env

Start container
docker-compose up -d php httpd bind mailhog

212 Chapter 42. Enable and configure MailHog

http://localhost:8025

CHAPTER 43

Enable and configure RabbitMQ

This section will guide you through getting RabbitMQ integrated into the Devilbox.

See also:

•

•

• Enable all additional container

Table of Contents

• Overview

– Available overwrites

– RabbitMQ settings

– RabbitMQ env variables

• Instructions

– 1. Copy docker-compose.override.yml

– 2. Adjust .env settings (optional)

– 4. Start the Devilbox

• TL;DR

213

Devilbox Documentation, Release 1.0

43.1 Overview

43.1.1 Available overwrites

The Devilbox ships various example configurations to overwrite the default stack. Those files are located under
compose/ in the Devilbox git directory.

docker-compose.override.yml-all has all examples combined in one file for easy copy/paste. However,
each example also exists in its standalone file as shown below:

host> tree -L 1 compose/
compose/

docker-compose.override.yml-all
docker-compose.override.yml-blackfire
docker-compose.override.yml-mailhog
docker-compose.override.yml-rabbitmq
docker-compose.override.yml-solr
README.md

0 directories, 6 files

See also:

Enable all additional container

43.1.2 RabbitMQ settings

In case of RabbitMQ, the file is compose/docker-compose.override.yml-rabbitmq. This file must be
copied into the root of the Devilbox git directory.

What How and where
Example com-
pose file

compose/docker-compose.override.yml-all or compose/
docker-compose.override.yml-rabbitmq

Container IP ad-
dress

172.16.238.210

Container host
name

rabbit

Container name rabbit
Mount points ./data/rabbit (can be changed via .env)
Exposed port 5672 and 15672 (can be changed via .env)
Available at http://localhost:15672 (Admin WebUI)
Further configu-
ration

none

43.1.3 RabbitMQ env variables

Additionally the following .env variables can be created for easy configuration:

214 Chapter 43. Enable and configure RabbitMQ

Devilbox Documentation, Release 1.0

Variable Default value Description
HOST_PORT_RABBIT 5672 Controls the host port on which RabbitMQ API will be available

at.
HOST_PORT_RABBIT_MGMT 15672 Controls the host port on which RabbitMQ Admin WebUI will

be available at.
RABBIT_SERVER management Controls the RabbitMQ version to use.
HOST_PATH_RABBIT_DATADIR./data/

rabbit
Default mount point for persistent data.

RABBIT_DEFAULT_VHOST my_vhost Default RabbitMQ vhost name. (not a webserver vhost name)
RABBIT_DEFAULT_USER guest Default username for Admin WebUI.
RABBIT_DEFAULT_PASS guest Default password for Admin WebUI.

43.2 Instructions

43.2.1 1. Copy docker-compose.override.yml

Copy the RabbitMQ Docker Compose overwrite file into the root of the Devilbox git directory. (It must be at the same
level as the default docker-compose.yml file).

host> cp compose/docker-compose.override.yml-rabbitmq docker-compose.override.yml

See also:

• docker-compose.override.yml

• Add your own Docker image

• Overwrite existing Docker image

43.2.2 2. Adjust .env settings (optional)

RabbitMQ is using sane defaults, which can be changed by adding variables to the .env file and assigning custom
values.

Add the following variables to .env and adjust them to your needs:

Listing 1: .env

RabbitMQ version to choose
#RABBIT_SERVER=3.6
#RABBIT_SERVER=3.6-management
#RABBIT_SERVER=3.7
#RABBIT_SERVER=3.7-management
#RABBIT_SERVER=latest
RABBIT_SERVER=management

RABBIT_DEFAULT_VHOST=my_vhost
RABBIT_DEFAULT_USER=guest
RABBIT_DEFAULT_PASS=guest

HOST_PORT_RABBIT=5672
HOST_PORT_RABBIT_MGMT=15672
HOST_PATH_RABBIT_DATADIR=./data/rabbit

43.2. Instructions 215

Devilbox Documentation, Release 1.0

See also:

.env file

43.2.3 4. Start the Devilbox

The final step is to start the Devilbox with RabbitMQ.

Let’s assume you want to start php, httpd, bind, rabbit.

host> docker-compose up -d php httpd bind rabbitmq

See also:

Start the Devilbox

43.3 TL;DR

For the lazy readers, here are all commands required to get you started. Simply copy and paste the following block
into your terminal from the root of your Devilbox git directory:

Copy compose-override.yml into place
cp compose/docker-compose.override.yml-rabbitmq docker-compose.override.yml

Create .env variable
echo "# RabbitMQ version to choose" >> .env
echo "#RABBIT_SERVER=3.6" >> .env
echo "#RABBIT_SERVER=3.6-management" >> .env
echo "#RABBIT_SERVER=3.7" >> .env
echo "#RABBIT_SERVER=3.7-management" >> .env
echo "#RABBIT_SERVER=latest" >> .env
echo "RABBIT_SERVER=management" >> .env
echo "RABBIT_DEFAULT_VHOST=my_vhost" >> .env
echo "RABBIT_DEFAULT_USER=guest" >> .env
echo "RABBIT_DEFAULT_PASS=guest" >> .env
echo "HOST_PORT_RABBIT=5672" >> .env
echo "HOST_PORT_RABBIT_MGMT=15672" >> .env
echo "HOST_PATH_RABBIT_DATADIR=./data/rabbit" >> .env

Start container
docker-compose up -d php httpd bind rabbit

216 Chapter 43. Enable and configure RabbitMQ

CHAPTER 44

Enable and configure Solr

This section will guide you through getting Solr integrated into the Devilbox.

See also:

•

•

• Enable all additional container

Table of Contents

• Overview

– Available overwrites

– Solr settings

– Solr env variables

• Instructions

– 1. Copy docker-compose.override.yml

– 2. Adjust .env settings (optional)

– 4. Start the Devilbox

• TL;DR

217

Devilbox Documentation, Release 1.0

44.1 Overview

44.1.1 Available overwrites

The Devilbox ships various example configurations to overwrite the default stack. Those files are located under
compose/ in the Devilbox git directory.

docker-compose.override.yml-all has all examples combined in one file for easy copy/paste. However,
each example also exists in its standalone file as shown below:

host> tree -L 1 compose/
compose/

docker-compose.override.yml-all
docker-compose.override.yml-blackfire
docker-compose.override.yml-mailhog
docker-compose.override.yml-rabbitmq
docker-compose.override.yml-solr
README.md

0 directories, 6 files

See also:

Enable all additional container

44.1.2 Solr settings

In case of Solr, the file is compose/docker-compose.override.yml-solr. This file must be copied into
the root of the Devilbox git directory.

What How and where
Example com-
pose file

compose/docker-compose.override.yml-all or compose/
docker-compose.override.yml-solr

Container IP ad-
dress

172.16.238.220

Container host
name

solr

Container name solr
Mount points none
Exposed port 8983 (can be changed via .env)
Available at http://localhost:8983 (API and Admin WebUI)
Further configu-
ration

none

44.1.3 Solr env variables

Additionally the following .env variables can be created for easy configuration:

Variable Default value Description
HOST_PORT_SOLR 8983 Controls the host port on which Solr API and WebUIwill be available at.
SOLR_SERVER latest Controls the Solr version to use.
SOLR_CORE_NAME devilbox Default Solr core name

218 Chapter 44. Enable and configure Solr

Devilbox Documentation, Release 1.0

44.2 Instructions

44.2.1 1. Copy docker-compose.override.yml

Copy the Solr Docker Compose overwrite file into the root of the Devilbox git directory. (It must be at the same level
as the default docker-compose.yml file).

host> cp compose/docker-compose.override.yml-solr docker-compose.override.yml

See also:

• docker-compose.override.yml

• Add your own Docker image

• Overwrite existing Docker image

44.2.2 2. Adjust .env settings (optional)

Solr is using sane defaults, which can be changed by adding variables to the .env file and assigning custom values.

Add the following variables to .env and adjust them to your needs:

Listing 1: .env

Solr version to choose
#SOLR_SERVER=5
#SOLR_SERVER=6
#SOLR_SERVER=7
SOLR_SERVER=latest

SOLR_CORE_NAME=devilbox
HOST_PORT_SOLR=8983

See also:

.env file

44.2.3 4. Start the Devilbox

The final step is to start the Devilbox with Solr.

Let’s assume you want to start php, httpd, bind, solr.

host> docker-compose up -d php httpd bind solr

See also:

Start the Devilbox

44.3 TL;DR

For the lazy readers, here are all commands required to get you started. Simply copy and paste the following block
into your terminal from the root of your Devilbox git directory:

44.2. Instructions 219

Devilbox Documentation, Release 1.0

Copy compose-override.yml into place
cp compose/docker-compose.override.yml-solr docker-compose.override.yml

Create .env variable
echo "# Solr version to choose" >> .env
echo "#SOLR_SERVER=5" >> .env
echo "#SOLR_SERVER=6" >> .env
echo "#SOLR_SERVER=7" >> .env
echo "SOLR_SERVER=latest" >> .env
echo "SOLR_CORE_NAME=devilbox" >> .env
echo "HOST_PORT_SOLR=8983" >> .env

Start container
docker-compose up -d php httpd bind solr

220 Chapter 44. Enable and configure Solr

CHAPTER 45

Shared Devilbox server in LAN

Devilbox as a shared development, staging or CI server is setup in a similar way as you would do locally. The only
three important parts to take care of are:

1. Project access to deploy/update code

2. Handle DNS entries

3. Share Devilbox CA

Table of Contents

• Prerequisites

• Project access

– SSH

* Copy via sftp

* Manually git pull/checkout

* Automated git pull/checkout

– Samba

• Handle DNS records

– Use a real domain

– Handle DNS records in your own DNS server

– Run a second instance of the Devilbox DNS server

* Manual DNS settings

* DHCP distributed

· Self-managed DHCP server

221

Devilbox Documentation, Release 1.0

· DSL box / LAN or WIFI router

– Add hosts entries for every project

• Share Devilbox CA

45.1 Prerequisites

This walk-through will use the following example values:

LAN / Network Devilbox server TLD_SUFFX LOCAL_LISTEN_ADDR
192.168.0.0/24 192.168.0.12 loc 192.168.0.12 or empty

See also:

• TLD_SUFFIX

• LOCAL_LISTEN_ADDR

45.2 Project access

45.2.1 SSH

Enable and start an SSH server and give access to whatever system or user requires it. This can be done directly on
the host system or via various other Docker container that offer ssh server.

Copy via sftp

If your SSH server is setup, users can use their sftp clients to deploy code updates. This however is not encouraged
and you should use git or any other version control system.

Manually git pull/checkout

When using git, users can directly ssh into the shared Devilbox server and git pull or git checkout
<branch> on their projects.

Automated git pull/checkout

In case you are using a staging or CI server, use Jenkins jobs or other automation tools (e.g. Ansible) to auto-deploy
via SSH.

45.2.2 Samba

For a shared development server, you could also setup Samba network shares for each projects and have users deploy
their code via Samba.

222 Chapter 45. Shared Devilbox server in LAN

Devilbox Documentation, Release 1.0

45.3 Handle DNS records

There are multiple ways of having DNS records available accross the LAN.

Before you read on, have a quick look on the decision Matrix to find the best method for your use-case.

Method Sub-method Outcome
Real domain All network devices will have Auto DNS
Own DNS server All network devices will have Auto DNS
Devilbox DNS
server

Manual Every network device must configure its DNS settings
DHCP dis-
tributed

All network devices will have Auto DNS

Hosts entry Every network device must manually set hosts entries for each project. (Does
not work for phones)

Important: When using a shared Devilbox server and another Devilbox setup on your local computer, ensure that
you are using different TLD_SUFFIX in order to not confuse DNS records.

45.3.1 Use a real domain

(This will allow all devices on the network to have Auto-DNS)

If you own a real domain, such as my-company.com, you can create a wildcard DNS record for a subdomain,
such as *.dev.my-company.com which must point to 192.168.0.12.. This should be done in your hosting
provider’s DNS configuration pannel.

You must then also change the TLD_SUFFIX to that subdomain.

Listing 1: .env

TLD_SUFFIX=dev.my-company.com

45.3.2 Handle DNS records in your own DNS server

(This will allow all devices on the network to have Auto-DNS)

If your LAN already provides its own customizable DNS server, you can setup a new wildcard DNS zone for *.loc
which points to 192.168.0.12.

45.3.3 Run a second instance of the Devilbox DNS server

If the above two methods for automated DNS records don’t apply to you, you will need to run a second stand-alone
Docker container of the Devilbox DNS server.

Run this container permantently on the shared Devilbox server with the following command:

host> docker run -d \
--restart unless-stopped \
-p 53:53/tcp \
-p 53:53/udp \

(continues on next page)

45.3. Handle DNS records 223

Devilbox Documentation, Release 1.0

(continued from previous page)

-e WILDCARD_DNS='loc=192.168.0.12' \
-t cytopia/bind

See also:

https://github.com/cytopia/docker-bind

Now there are two ways to consume the DNS records on your local machine:

1. Manual

2. DHCP distributed

Manual DNS settings

(Each device on the network needs to manually set the DNS server)

When using this approach, you have to manually add the DNS server (IP: 192.168.0.12) to your host operating
system.

Important: Keep in mind that you have to do this for every machine within the network which wants to access the
shared Devilbox server.

See also:

• Add custom DNS server on Linux

• Add custom DNS server on MacOS

• Add custom DNS server on Windows

• Add custom DNS server on Android

• Add custom DNS server on iPhone

DHCP distributed

(This will allow all devices on the network to have Auto-DNS)

This is the automated and more pain-free approach, as all devices within the network will be able to access projects
on the shared Devilbox server.

Self-managed DHCP server

If you run your own DHCP server within a network, you probably know how to add other DNS servers. The only
thing you should keep in mind is, that the Devilbox DNS server should be the first in the list.

DSL box / LAN or WIFI router

Most SOHO networks probably use some vendor router which has a web interface. Generally speaking, you need to
find the DNS/DHCP settings in its web interface and add the Devilbox DNS server as the first in the list (192.168.
0.12).

See also:

224 Chapter 45. Shared Devilbox server in LAN

https://github.com/cytopia/docker-bind
https://en.wikipedia.org/wiki/Small_office/home_office

Devilbox Documentation, Release 1.0

• Change DNS server in Fritzbox

45.3.4 Add hosts entries for every project

(Each device on the network needs to manually set the hosts entries for every single projcet)

As you also do for the Devilbox locally when not using Auto-DNS, you can do as well for remote computer. Just edit
your local hosts file and add one DNS entry for every project on the shared Devilbox server.

Keep in mind that this time you will have to use 192.168.0.12 instead of 127.0.0.1.

See also:

• Add project hosts entry on Linux

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

45.4 Share Devilbox CA

The last step to also have valid HTTPS connections on your shared Devilbox server is to copy the CA onto your local
machine and import it into your browser or system.

See also:

Setup valid HTTPS

45.4. Share Devilbox CA 225

https://en.avm.de/service/fritzbox/fritzbox-7390/knowledge-base/publication/show/165_Configuring-different-DNS-servers-in-the-FRITZ-Box/

Devilbox Documentation, Release 1.0

226 Chapter 45. Shared Devilbox server in LAN

CHAPTER 46

Use external databases

Table of Contents

• Why

• Database on host os

• Database on network

• Database on internet

46.1 Why

Some people or companies might have concerns with dockerized databases and rather rely on good old host-based
database setups. There could already be a database cluster in your network or you rather want to use AWS RDS or
other cloud-based solutions.

There are many reasons for having an external database.

46.2 Database on host os

Note: If the local database is listening on an IP address that is reachable over your current LAN, you can directly skip
to: Database on network

In order to use an already existing database that is running on the host os, you need to make sure the following is met:

1. Be able to connect to the host os from inside the container

See also:

227

Devilbox Documentation, Release 1.0

Connect to host OS

2. Configure your application to use the IP/CNAME of the host os

3. When starting the Devilbox, explicitly specify the service to use and exclude the databases:

Explicitly specify services to start (otherwise all will start)
Omit the database
host> docker-compose up -d php httpd bind redis

See also:

Start the Devilbox

46.3 Database on network

In order to use an already existing database that is running on the network, you need to make sure the following is met:

1. Configure your application to use the IP/CNAME of the database host

2. When starting the Devilbox, explicitly specify the service to use and exclude the databases:

Explicitly specify services to start (otherwise all will start)
Omit the database
host> docker-compose up -d php httpd bind redis

See also:

Start the Devilbox

46.4 Database on internet

In order to use an already existing database that is running on the network, you need to make sure the following is met:

1. Configure your application to use the IP/CNAME of the database host

2. When starting the Devilbox, explicitly specify the service to use and exclude the databases:

Explicitly specify services to start (otherwise all will start)
Omit the database
host> docker-compose up -d php httpd bind redis

See also:

Start the Devilbox

228 Chapter 46. Use external databases

CHAPTER 47

Checkout different Devilbox release

You now have the devilbox downloaded at the latest version (git master branch). This is also recommended as
it receives bugfixes frequently. If you however want to stay on a stable release, you need to check out a specific git
tag.

Lets say you want your devilbox setup to be at release 0.12.1, all you have to do is to check out this specific git tag.

host> cd path/to/devilbox
host> git checkout 0.12.1

Warning: Whenever you check out a different version, make sure that your .env file is up-to-date with the
bundled env-example file. Different Devilbox releases might require different settings to be available inside
the .env file. Refer to the next section for how to create the .env file.

229

Devilbox Documentation, Release 1.0

230 Chapter 47. Checkout different Devilbox release

CHAPTER 48

Remove stopped container

48.1 Why should I?

If you simply docker-compose stop in order to stop all containers, they are still preserved in the docker ps
-a process list and still have state.

In case you change any path variables inside the .env file (or silently due to git updates), you need to completely
re-create the state.

This is done by first fully removing the container and then simply starting it again.

48.2 How to do it?

host> docker-compose stop
host> docker-compose rm

48.3 When to do it?

Whenever path values inside the .env file change.

231

Devilbox Documentation, Release 1.0

232 Chapter 48. Remove stopped container

CHAPTER 49

Update the Devilbox

If you are in the initial install process, you can safely skip this section and come back once you actually want to update
the Devilbox.

Table of Contents

• Update git repository

– Stop container

– Case 1: Update master branch

– Case 2: Checkout release tag

– Keep .env file in sync

– Keep vhost-gen templates in sync

– Recreate container

• Update Docker images

– Update one Docker image

– Update all currently set Docker images

– Update all available Docker images for all versions

• Checklist git repository

• Checklist Docker images

233

Devilbox Documentation, Release 1.0

49.1 Update git repository

49.1.1 Stop container

Before updating your git branch or checking out a different tag or commit, make sure to properly stop all devilbox
containers:

Stop containers
host> cd path/to/devilbox
host> docker-compose stop

Ensure containers are stopped
host> docker-compose ps

49.1.2 Case 1: Update master branch

If you simply want to update the master branch, do a git pull origin master:

Update master branch
host> cd path/to/devilbox
host> git pull origin master

49.1.3 Case 2: Checkout release tag

If you want to checkout a specific release tag (such as 0.12.1), do a git checkout 0.12.1:

Checkout release
host> cd path/to/devilbox
host> git checkout 0.12.1

49.1.4 Keep .env file in sync

Important: Whenever you check out a different version, make sure that your .env file is up-to-date with the bundled
env-example file. Different Devilbox releases might require different settings to be available inside the .env file.

You can also compare your current .env file with the provided env-example file by using your favorite diff editor:

host> vimdiff .env env-example

host> diff .env env-example

host> meld .env env-example

49.1.5 Keep vhost-gen templates in sync

234 Chapter 49. Update the Devilbox

Devilbox Documentation, Release 1.0

Important: Whenever you check out a different version, make sure that the vhost-gen templates that have been
copied to any virtual hosts are up-to-date with the templates provided in cfg/vhost-gen/.

49.1.6 Recreate container

Whenever the path of a volume changes (either due to upstream changes in git or due to you changing it manually in
the .env file) you need to remove the stopped container and have them fully recreated during the next start.

Remove anonymous volumes
host> cd path/to/devilbox
host> docker-compose rm

See also:

Remove stopped container

49.2 Update Docker images

Updating the git branch shouldn’t be needed to often, most changes are actually shipped via newer Docker images,
so you should frequently update those.

This is usually achieved by issueing a docker pull command with the correct image name and image version or
docker-compose pull for all currently selected images in .env file. For your convenience there is a shell script
in the Devilbox git directory: update-docker.sh which will update all available Docker images at once for every
version.

Note: The Devilbox own Docker images (Apache, Nginx, PHP and MySQL) are even built every night to ensure
latest security patches and tool versions are applied.

49.2.1 Update one Docker image

Updating or pulling a single Docker image is accomplished by docker pull <image>:<tag>. This is not very
handy as it is quite troublesome to do it separately per Docker image.

You first need to find out the image name and then also the currently used image tag.

host> grep 'image:' docker-compose.yml

image: cytopia/bind:0.11
image: devilbox/php-fpm:${PHP_SERVER:-7.0}-work
image: devilbox/${HTTPD_SERVER:-nginx-stable}:0.13
image: cytopia/${MYSQL_SERVER:-mariadb-10.1}:latest
image: postgres:${PGSQL_SERVER:-9.6}
image: redis:${REDIS_SERVER:-3.2}
image: memcached:${MEMCD_SERVER:-latest}
image: mongo:${MONGO_SERVER:-latest}

After having found the possible candidates, you will still have to find the corresponding value inside the ..env file.
Let’s do it for the PHP image:

49.2. Update Docker images 235

Devilbox Documentation, Release 1.0

host> grep '^PHP_SERVER' .env

PHP_SERVER=5.6

So now you can substitute the ${PHP_SERVER} variable from the first command with 5.6 and finally pull a newer
version:

host> docker pull devilbox/php-fpm:5.6-work

Not very efficient.

49.2.2 Update all currently set Docker images

This approach is using docker-compose pull to update all images, but only for the versions that are actually set
in .env.

host> docker-compose pull

Pulling bind (cytopia/bind:0.11)...
Pulling php (devilbox/php-fpm:5.6-work)...
Pulling httpd (devilbox/apache-2.2:0.13)...
Pulling mysql (cytopia/mysql-5.7:latest)...
Pulling pgsql (postgres:9.6)...
Pulling redis (redis:4.0)...
Pulling memcd (memcached:1.5.2)...
Pulling mongo (mongo:3.0)...

This is most likely the variant you want.

49.2.3 Update all available Docker images for all versions

In case you also want to pull/update every single of every available Devilbox image, you can use the provided shell
script, which has all versions hardcoded and pulls them for you:

host> ./update-docker.sh

49.3 Checklist git repository

1. Ensure containers are stopped and removed/recreated (docker-compose stop && docker-compose
rm)

2. Ensure desired branch, tag or commit is checked out or latest changes are pulled

3. Ensure .env file is in sync with env-example file

4. Ensure all of your custom applied vhost-gen templates are in sync with the default templates

49.4 Checklist Docker images

1. Ensure docker-compose pull or ./update-docker.sh is executed

236 Chapter 49. Update the Devilbox

CHAPTER 50

Remove the Devilbox

If you want to completely remove the Devilbox follow this tutorial.

Table of Contents

• Backups

– Dump databases

– Shutdown the Devilbox

– Backup configuration files

– Backup data and dumps

• Remove the Devilbox

– Remove Devilbox containers

– Remove Devilbox network

– Remove Devilbox git directory

• Revert your system changes

– AutoDNS

– Manual DNS entries

– Remove Devilbox CA from your browser

50.1 Backups

Before deleting the Devilbox git directory, ask yourself if you want to make backups of all customizations you have
done so far as well as of all data that may be present within that directory.

237

Devilbox Documentation, Release 1.0

50.1.1 Dump databases

Before shutting down the Devilbox, do a final backup of all of your databases:

See also:

• Backup and restore MySQL

• Backup and restore PostgreSQL

• Backup and restore MongoDB

Dumps will end up in backups/.

50.1.2 Shutdown the Devilbox

Before attempting to backup any file system data, make sure the Devilbox is properly shutdown.

host> docker-compose stop

50.1.3 Backup configuration files

You should now backup the following configuration files:

• Backup your customized .env file

• Backup your customized .docker-compose.override.yml file

• Backup your customized bash configuration from bash/

• Backup all custom service configurations from cfg/

• Backup the Devilbox root certificate from ca/

50.1.4 Backup data and dumps

You should now backup the following data:

• Backup any backups created in backups/

• Backup any project or Docker data from data/

50.2 Remove the Devilbox

If you have followed the backup routine, you can continue deleting all created components.

50.2.1 Remove Devilbox containers

Navigate to the Devilbox git directory and remove all Devilbox container:

host> docker-compose rm -f

238 Chapter 50. Remove the Devilbox

Devilbox Documentation, Release 1.0

50.2.2 Remove Devilbox network

1. List all existing Docker networks via

host> docker network ls

NETWORK ID NAME DRIVER SCOPE
0069843ff0c3 bridge bridge local
...
9c8d4a84cf2d devilbox_app_net bridge local

2. Find the NETWORK ID of the Devilbox network and delete it:

host> docker network rm 9c8d4a84cf2d

50.2.3 Remove Devilbox git directory

You can simply delete the whole Devilbox git directory

50.3 Revert your system changes

50.3.1 AutoDNS

Revert any changes you have done for Auto-DNS to work.

See also:

Setup Auto DNS

50.3.2 Manual DNS entries

Revert any changes you have done in /etc/hosts (or C:\Windows\System32\drivers\etc for Windows)

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

50.3.3 Remove Devilbox CA from your browser

Remove the Devilbox CA from your browser

See also:

• Setup valid HTTPS

50.3. Revert your system changes 239

Devilbox Documentation, Release 1.0

240 Chapter 50. Remove the Devilbox

CHAPTER 51

Backup and restore MySQL

Backup and restore will be necessary when you are going to switch MySQL versions. Each version has its own data
directory and is fully indepentend of other versions. In case you want to switch to a different version, but still want
to have your MySQL databases present, you must first backup the databases of your current version and import them
into the new version.

There are multiple ways to backup and restore. Chose the one which is most convenient for you.

Table of Contents

• Backup

– Mysqldump-secure

* List backups

* *.info files

– mysqldump

– phpMyAdmin

– Adminer

• Restore

– mysql

* *.sql file

* *.sql.gz file

* *.sql.tar.gz file

– phpMyAdmin

– Adminer

241

Devilbox Documentation, Release 1.0

51.1 Backup

There are many different options to backup your MySQL database including some for the command line and some
for using the Web interface. The recommended and fastest method is to use mysqldump-secure, as it will also
add info files (*.info) to each database recording checksums, dump date, dump options as well as the server version it
came from.

51.1.1 Mysqldump-secure

is bundled, setup and ready to use in every PHP container. You can run it without any arguments and it will dump
each available database as a separated compressed file. Backups will be located in ./backups/mysql/ inside the
Devilbox git directory or in /shared/backups/mysql/ inside the PHP container.

To have your backups in place is just three commands away:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Run mysqldump-secure
devilbox@php-7.1.6 in /shared/httpd $ mysqldump-secure

[INFO] (OPT): Logging enabled
[INFO] (OPT): MySQL SSL connection disabled
[INFO] (OPT): Compression enabled
[INFO] (OPT): Encryption disabled
[INFO] (OPT): Deletion disabled
[INFO] (OPT): Nagios log disabled
[INFO] (OPT): Info files enabled
[INFO] (SQL): 1/3 Skipping: information_schema (DB is ignored)
[INFO] (SQL): 2/3 Dumping: mysql (0.66 MB) 1 sec (0.13 MB)
[INFO] (SQL): 3/3 Skipping: performance_schema (DB is ignored)
[OK] Finished successfully

List backups

Let’s see where to find the backups inside the PHP container:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Show directory output
devilbox@php-7.1.6 in /shared/httpd $ ls -l /shared/backups/mysql/

-rw-r--r-- 1 devilbox 136751 Jun 17 13:31 2017-06-17_13-31__mysql.sql.gz
-rw-r--r-- 1 devilbox 2269 Jun 17 13:31 2017-06-17_13-31__mysql.sql.gz.info

Let’s do the same again and see where to find the backups in the Devilbox git directory

242 Chapter 51. Backup and restore MySQL

Devilbox Documentation, Release 1.0

Navigate to the Devilbox directory
host> cd path/to/devilbox

Show directory output
host> ls -l backups/mysql/

-rw-r--r-- 1 cytopia 136751 Jun 17 13:31 2017-06-17_13-31__mysql.sql.gz
-rw-r--r-- 1 cytopia 2269 Jun 17 13:31 2017-06-17_13-31__mysql.sql.gz.info

*.info files

The *.info file will hold many useful information in case you need to debug any problems occured during backups.
Let’s have a look at one of them:

host> cat ./backups/mysql/2017-06-17_13-31__mysql.sql.gz.info

Listing 1: 2017-06-17_13-31__mysql.sql.gz.info

; mysqldump-secure backup record
; Do not alter this file!
; Creation of this file can be turned off via config file.

; ==
; = Local system information
; ==
[mysqldump-secure]
version = /usr/local/bin/mysqldump-secure (0.16.3)
vdate = 2016-08-18
config = /etc/mysqldump-secure.conf

[system]
uname = Linux 4.4.0-79-generic
hostname =
user = devilbox
group = devilbox

[tools]
mysqldump = /usr/bin/mysqldump (10.14 Distrib 5.5.52-MariaDB) [for Linux (x86_64)]
mysql = /usr/bin/mysql (15.1 Distrib 5.5.52-MariaDB) [for Linux (x86_64) using
→˓readline 5.1]
compressor = /usr/bin/gzip (gzip 1.5)
encryptor = Not used

; ==
; = Database / File information
; ==
[database]
db_name = mysql
db_size = 687326 Bytes (0.66 MB)
tbl_cnt = 30

[file]
file_path = /shared/backups/mysql
file_name = 2017-06-17_13-31__mysql.sql.gz
file_size = 136751 Bytes (0.13 MB)

(continues on next page)

51.1. Backup 243

Devilbox Documentation, Release 1.0

(continued from previous page)

file_chmod = 0644
file_owner = devilbox
file_group = devilbox
file_mtime = 1497699116 (2017-06-17 13:31:56 CEST [+0200])
file_md5 = 8d1a6c38f81c691bc4b490e7024a4f72
file_sha = 11fb85282ea866dfc69d29dc02a0418bebfea30e7e566c3c588a50987aceac2f

; ==
; = Dump procedure information
; ==
[mysqldump]
encrypted = 0
compressed = 1
arguments = --opt --default-character-set=utf8 --events --triggers --routines --hex-
→˓blob --complete-insert --extended-insert --compress --lock-tables --skip-quick
duration = 1 sec

[compression]
compressor = gzip
arguments = -9 --stdout

[encryption]
encryptor =
algorithm =
pubkey =

; ==
; = Server information
; ==
[connection]
protocol = mysql via TCP/IP
secured = No SSL
arguments = --defaults-file=/etc/mysqldump-secure.cnf

[server]
hostname = 001b3750b549
port = 3306
replica = master
version = MariaDB 10.1.23-MariaDB MariaDB Server

51.1.2 mysqldump

is bundled with each PHP container and ready to use. To backup a database named my_db_name follow the below
listed example which shows you how to do that from within the PHP container:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the backup
devilbox@php-7.1.6 in /shared/httpd $ mysqldump -h mysql -u root -p my_db_name > /
→˓shared/backups/mysql/my_db_name.sql

To find out more about the configuration and options of mysqldump, visit its project page under:

244 Chapter 51. Backup and restore MySQL

Devilbox Documentation, Release 1.0

51.1.3 phpMyAdmin

If you do not like to use the command line for backups, you can use . It comes bundled with the devilbox intranet.

51.1.4 Adminer

If you do not like to use the command line for backups, you can use . It comes bundled with the devilbox intranet.

51.2 Restore

51.2.1 mysql

In order to restore or import mysql databases on the command line, you need to use the mysql binary. Here are a few
examples for different file types:

*.sql file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ mysql -h mysql -u root -p my_db_name < /shared/
→˓backups/mysql/my_db_name.sql

*.sql.gz file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ zcat /shared/backups/mysql/my_db_name.sql.gz |
→˓mysql -h mysql -u root -p my_db_name

*.sql.tar.gz file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ tar xzOf /shared/backups/mysql/my_db_name.sql.
→˓tar.gz | mysql -h mysql -u root -p my_db_name (continues on next page)

51.2. Restore 245

Devilbox Documentation, Release 1.0

(continued from previous page)

51.2.2 phpMyAdmin

supports importing many different formats out-of-the-box. Simply select the compressed or uncompressed file and
press Go in the import section of the web interface.

51.2.3 Adminer

supports importing of plain (*.sql) or gzipped compressed (*.sql.gz) files out-of-the-box. Simply select the
compressed or uncompressed file and press Execute in the import section of the web interface.

246 Chapter 51. Backup and restore MySQL

CHAPTER 52

Backup and restore PostgreSQL

Backup and restore will be necessary when you are going to switch PostgreSQL versions. Each version has its own
data directory and is fully indepentend of other versions. In case you want to switch to a different version, but still
want to have your PostgreSQL databases present, you must first backup the databases of your current version and
import them into the new version.

There are multiple ways to backup and restore. Chose the one which is most convenient for you.

Table of Contents

• Backup

– pg_dump

– phpPgAdmin

– Adminer

• Restore

– psql

* *.sql file

* *.sql.gz file

* *.sql.tar.gz file

– phpPgAdmin

– Adminer

247

Devilbox Documentation, Release 1.0

52.1 Backup

52.1.1 pg_dump

is bundled with each PHP container and reay to use. To backup a database named my_db_name follow the below
listed example:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Run pg_dump
devilbox@php-7.1.6 in /shared/httpd $ pg_dump -h pgsql -U postgres -W my_db_name > /
→˓shared/backups/pgsql/my_db_name.sql

52.1.2 phpPgAdmin

If you do not like to use the command line for backups, you can use . It comes bundled with the devilbox intranet.

52.1.3 Adminer

If you do not like to use the command line for backups, you can use . It comes bundled with the devilbox intranet.

52.2 Restore

52.2.1 psql

In order to restore or import PostgreSQL databases on the command line, you need to use . Here are a few examples
for different file types:

*.sql file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ psql -h pgsql -U postgres -W my_db_name < /
→˓shared/backups/pgsql/my_db_name.sql

*.sql.gz file

248 Chapter 52. Backup and restore PostgreSQL

Devilbox Documentation, Release 1.0

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ zcat /shared/backups/pgsql/my_db_name.sql.gz |
→˓psql -h pgsql -U postgres -W my_db_name

*.sql.tar.gz file

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the import
devilbox@php-7.1.6 in /shared/httpd $ tar xzOf /shared/backups/pgsql/my_db_name.sql.
→˓tar.gz | psql -h pgsql -U postgres -W my_db_name

52.2.2 phpPgAdmin

supports importing many different formats out-of-the-box. Simply select the compressed or uncompressed file and
press Go in the import section of the web interface.

52.2.3 Adminer

supports importing of plain (*.sql) or gzipped compressed (*.sql.gz) files out-of-the-box. Simply select the
compressed or uncompressed file and press Execute in the import section of the web interface.

52.2. Restore 249

Devilbox Documentation, Release 1.0

250 Chapter 52. Backup and restore PostgreSQL

CHAPTER 53

Backup and restore MongoDB

Backup and restore will be necessary when you are going to switch MongoDB versions. Each version has its own data
directory and is fully indepentend of other versions. In case you want to switch to a different version, but still want to
have your MongoDB databases present, you must first backup the databases of your current version and import them
into the new version.

There are multiple ways to backup and restore. Chose the one which is most convenient for you.

Table of Contents

• Backup

– mongodump

• Restore

– mongorestore

53.1 Backup

53.1.1 mongodump

is bundled with each PHP container and reay to use. To backup all databases follow the below listed example:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Run mongodump
devilbox@php-7.1.6 in /shared/httpd $ mongodump --out /shared/backups/mongo

251

Devilbox Documentation, Release 1.0

53.2 Restore

53.2.1 mongorestore

is bundled with each PHP container and ready to use. To restore all MongoDB databases follow the below listed
example:

Navigate to the Devilbox directory
host> cd path/to/devilbox

Enter the PHP container
host> ./shell.sh

Start the restore/import from /shared/backups/mongo
devilbox@php-7.1.6 in /shared/httpd $ mongorestore /shared/backups/mongo

252 Chapter 53. Backup and restore MongoDB

CHAPTER 54

.env file

All docker-compose configuration is done inside the .env file which simply defines key-value pairs evaluated by
docker-compose.yml.

If this file does not exist at the root of your Devilbox git directory, then copy env-example to .env to initially
create it with sane defaults.

See also:

what is the file?

Note: Use your browsers search function to quickly find the desired variable name.

Important: Any change of .env requires a restart of the Devilbox.

Table of Contents

• Core settings

– DEBUG_COMPOSE_ENTRYPOINT

– DOCKER_LOGS

– DEVILBOX_PATH

– LOCAL_LISTEN_ADDR

– TLD_SUFFIX

– EXTRA_HOSTS

– NEW_UID

– NEW_GID

253

Devilbox Documentation, Release 1.0

– TIMEZONE

• Intranet settings

– DNS_CHECK_TIMEOUT

– DEVILBOX_UI_SSL_CN

– DEVILBOX_UI_PROTECT

– DEVILBOX_UI_PASSWORD

– DEVILBOX_UI_ENABLE

• Docker image versions

– PHP_SERVER

– HTTPD_SERVER

– MYSQL_SERVER

– PGSQL_SERVER

– REDIS_SERVER

– MEMCD_SERVER

– MONGO_SERVER

• Docker host mounts

– MOUNT_OPTIONS

– HOST_PATH_HTTPD_DATADIR

* Example

* Mapping

– HOST_PATH_MYSQL_DATADIR

– HOST_PATH_PGSQL_DATADIR

– HOST_PATH_MONGO_DATADIR

• Docker host ports

– HOST_PORT_HTTPD

– HOST_PORT_HTTPD_SSL

– HOST_PORT_MYSQL

– HOST_PORT_PGSQL

– HOST_PORT_REDIS

– HOST_PORT_MEMCD

– HOST_PORT_MONGO

– HOST_PORT_BIND

• Container settings

– PHP

* PHP_MODULES_ENABLE

254 Chapter 54. .env file

Devilbox Documentation, Release 1.0

* PHP_MODULES_DISABLE

* Custom variables

– Web server

* HTTPD_DOCROOT_DIR

* HTTPD_TEMPLATE_DIR

* HTTPD_TIMEOUT_TO_PHP_FPM

– MySQL

* MYSQL_ROOT_PASSWORD

* MYSQL_GENERAL_LOG

– PostgreSQL

* PGSQL_ROOT_USER

* PGSQL_ROOT_PASSWORD

– Redis

* REDIS_ARGS

· Example: Adding password protection

· Example: Increasing verbosity

· Example: Combining options

– Bind

* BIND_DNS_RESOLVER

* BIND_DNSSEC_VALIDATE

* BIND_LOG_DNS

* BIND_TTL_TIME

* BIND_REFRESH_TIME

* BIND_RETRY_TIME

* BIND_EXPIRY_TIME

* BIND_MAX_CACHE_TIME

54.1 Core settings

54.1.1 DEBUG_COMPOSE_ENTRYPOINT

This variable controls the docker-compose log verbosity during service startup. When set to 1 verbose output as well
as executed commands are shown. When set to 0 only warnings and errors are shown.

Name Allowed values Default value
DEBUG_COMPOSE_ENTRYPOINT 0 or 1 1

54.1. Core settings 255

Devilbox Documentation, Release 1.0

54.1.2 DOCKER_LOGS

This variable controls the output of logs. Logs can either go to file and will be available under ./log/ inside the
Devilbox git directory or they can be forwarded to Docker logs and will then be send to stdout and stderr.

Name Allowed values Default value
DOCKER_LOGS 1 or 0 0

When DOCKER_LOGS is set to 1, output will go to Docker logs, otherwise if it is set to 0 the log output will go to
files under ./log/.

The ./log/ directory itself will contain subdirectories in the form <service>-<version> which will then hold
all available log files.

Note: Log directories do not exist until you start the Devilbox and will only be created for the service versions you
have enabled in .env.

The log directory structure would look something like this:

host> cd path/to/devilbox
host> tree log

log/
nginx-stable/

nginx-stable/
defaultlocalhost-access.log
defaultlocalhost-error.log
<project-name>-access.log # Each project has its own access log
<project-name>-error.log # Each project has its own error log

mariadb-10.1/
error.log
query.log
slow.log

php-fpm-7.1/
php-fpm.access
php-fpm.error

When you want to read logs sent to Docker logs, you can do so via the following command:

host> cd path/to/devilbox
host> docker-compose logs

When you want to continuously watch the log output (such as tail -f), you need to append -f to the command.

host> cd path/to/devilbox
host> docker-compose logs -f

When you only want to have logs displayed for a single service, you can also append the service name (works with or
without -f as well):

host> cd path/to/devilbox
host> docker-compose logs php -f

Important: Currently this is only implemented for PHP-FPM and HTTPD Docker container. MySQL will always

256 Chapter 54. .env file

Devilbox Documentation, Release 1.0

output its logs to file and all other official Docker container always output to Docker logs.

54.1.3 DEVILBOX_PATH

This specifies a relative or absolute path to the Devilbox git directory and will be used as a prefix for all Docker mount
paths.

• Relative path: relative to the devilbox git directory (Must start with .)

• Absolute path: Full path (Must start with /)

The only reason you would ever want change this variable is when you are on MacOS and relocate your project files
onto an NFS volume due to performance issues.

Warning:

Remove stopped container Whenever you change this value you have to stop the Devilbox and also remove the
stopped container via docker-compose rm.

Name Allowed values Default value
DEVILBOX_PATH valid path .

54.1.4 LOCAL_LISTEN_ADDR

This variable specifies you host computers listening IP address for exposed container ports. If you leave this variable
empty, all exposed ports will be bound to all network interfaces on your host operating system, which is also the default
behaviour. If you only want the exposed container ports to be bound to a specific IP address (such as 127.0.0.1),
you can add this IP address here, but note, in this case you must add a trailing colon (:).

Name Allowed values Default value
LOCAL_LISTEN_ADDR IP address empty

Examples:

Value Meaning
127.0.0.1: only expose ports on your host os on 127.0.0.1. Note the trailing :
192.168.0.1: only expose ports on your host os on 192.168.0.1. Note the trailing :
0.0.0.0: listen on all host computer interfaces / IP addresses

listen on all host computer interfaces / IP addresses

Note: When using Docker Toolbox, you must leave this variable empty, in order to have the exposed ports
available on the external interface of the virtual machine.

54.1.5 TLD_SUFFIX

This variable controls all of your projects domain suffix.

54.1. Core settings 257

Devilbox Documentation, Release 1.0

Name Allowed values Default value
TLD_SUFFIX alpha-num string loc

Your project domains are built together out of the project directory name and the TLD_SUFFIX. The formula is like
this: http://<project-dir>.<TLD_SUFFIX>.

You can even use official tld’s and have your nameserver point to an internal LAN id, to make this project visible to
everyone in your corporate LAN.

How does it look?

Project dir TLD_SUFFIX Project URL
my-test loc http://my-test.loc
example loc http://example.loc
www.test loc http://www.test.loc
my-test local http://my-test.local
example local http://example.local
www.test local http://www.test.local

Warning: Do not use dev as a domain suffix (I know, it’s tempting). It has been registered by and they advertise
the which makes your browser redirect every http request to https.

See also:

Warning: Do not use localhost as a domain suffix. There is an RFC draft to make sure all localhost requests,
including their sub domains should be redirected to the systems loopback interface. Docker has already released a
commit preventing the use of localhost on MacOS.

See also: and

Warning: Do not use official domain endings such as .com, .org, .net, etc. If you do, all name resolutions
to any .com address (e.g.: google.com) will be resolved to the Devilbox’s PHP server IP address.

The bundled DNS server does a catch-all on the given TLD_SUFFIX and resolves everything below it to the PHP
container.

54.1.6 EXTRA_HOSTS

This variable allows you to add additional DNS entries from hosts outside the Devilbox network, such as hosts running
on your host operating system, the LAN or from the internet.

Name Allowed values Default value
EXTRA_HOSTS comma separated host mapping empty

Adding hosts can be done in two ways:

1. Add DNS entry for an IP address

2. Add DNS entry for a hostname/CNAME which will be mapped to whatever IP address it will resolve

258 Chapter 54. .env file

Devilbox Documentation, Release 1.0

The general structure to add extra hosts looks like this

Single host
EXTRA_HOSTS='hostname=1.1.1.1'
EXTRA_HOSTS='hostname=CNAME'

Multiple hosts
EXTRA_HOSTS='hostname1=1.1.1.1,hostname2=2.2.2.2'
EXTRA_HOSTS='hostname1=CNAME1,hostname2=CNAME2'

• The left side represents the name by which the host will be available by

• The right side represents the IP address by which the new name will resolve to

• If the right side is a CNAME itself, it will be first resolved to an IP address and then the left side will resolve to
that IP address.

A few examples for adding extra hosts:

1. One entry:
The following extra host 'loc' is added and will always point to 192.168.0.7.
When reverse resolving '192.168.0.7' it will answer with 'tld'.
EXTRA_HOSTS='loc=192.168.0.7'

2. One entry:
The following extra host 'my.host.loc' is added and will always point to 192.168.0.
→˓9.
When reverse resolving '192.168.0.9' it will answer with 'my.host'.
EXTRA_HOSTS='my.host.loc=192.168.0.9'

3. Two entries:
The following extra host 'tld' is added and will always point to 192.168.0.1.
When reverse resolving '192.168.0.1' it will answer with 'tld'.
A second extra host 'example.org' is added and always redirects to 192.168.0.2
When reverse resolving '192.168.0.2' it will answer with 'example.org'.
EXTRA_HOSTS='tld=192.168.0.1,example.org=192.168.0.2'

4. Using CNAME's for resolving:
The following extra host 'my.host' is added and will always point to whatever
IP example.org resolves to.
When reverse resolving '192.168.0.1' it will answer with 'my.host'.
EXTRA_HOSTS='my.host=example.org'

See also:

This resembles the feature of to add external links.

See also:

Connect to external hosts

54.1.7 NEW_UID

This setting controls one of the core concepts of the Devilbox. It overcomes the problem of syncronizing file and
directory permissions between the Docker container and your host operating system.

You should set this value to the user id of your host operating systems user you actually work with. How do you find
out your user id?

54.1. Core settings 259

Devilbox Documentation, Release 1.0

host> id -u
1000

In most cases (on Linux and MacOS), this will be 1000 if you are the first and only user on your system, however it
could also be a different value.

Name Allowed values Default value
NEW_UID valid uid 1000

The Devilbox own containers will then pick up this value during startup and change their internal user id to the one
specified. Services like PHP-FPM, Apache and Nginx will then do read and write operation of files with this uid, so
all files mounted will have permissions as your local user and you do not have to fix permissions afterwards.

See also:

Syncronize container permissions Read up more on the general problem of trying to have syncronized permissions
between the host system and a running Docker container.

54.1.8 NEW_GID

This is the equivalent to user id for groups and addresses the same concept. See NEW_UID.

How do you find out your group id?

host> id -g
1000

In most cases (on Linux and MacOS), this will be 1000 if you are the first and only user on your system, however it
could also be a different value.

Name Allowed values Default value
NEW_GID valid gid 1000

See also:

Syncronize container permissions Read up more on the general problem of trying to have syncronized permissions
between the host system and a running Docker container.

54.1.9 TIMEZONE

This variable controls the system as well as service timezone for the Devilbox’s own containers. This is especially
useful to keep PHP and database timezones in sync.

Name Allowed values Default value
TIMEZONE valid timezone Europe/Berlin

Have a look at Wikipedia to get a list of valid timezones:

Note: It is always a good practice not to assume a specific timezone anyway and store all values in UTC (such as
time types in MySQL).

260 Chapter 54. .env file

Devilbox Documentation, Release 1.0

54.2 Intranet settings

54.2.1 DNS_CHECK_TIMEOUT

The Devilbox intranet validates if every project has a corresponding DNS record (either an official DNS record, one
that came from its own Auto-DNS or an /etc/hosts entry). By doing so it queries the DNS record based on
<project-dir>.<TLD_SUFFIX>. In case it does not exist, the query itself might take a while and the intranet
page will be unresponsive during that time. In order to avoid long waiting times, you can set the DNS query time-out
in seconds after which the query should stop and report as unsuccessful. The default is 1 second, wich should be fairly
sane for all use-cases.

Name Allowed values Default value
DNS_CHECK_TIMEOUT integers 1

54.2.2 DEVILBOX_UI_SSL_CN

When accessing the Devilbox intranet via https it will use an automatically created SSL certificate. Each SSL
certificate requires a valid Common Name, which must match the virtual host name.

This setting let’s you specify by what name you are accessing the Devilbox intranet. The default is localhost,
but if you have created your own alias, you must change this value accordingly. Also note that multiple values are
possible and must be separated with a comma. When you add an asterisk (*.) to the beginning, it means it will create
a wildcard certificate for that hostname.

Name Allowed values Default value
DEVILBOX_UI_SSL_CN comma separated list of

CN’s
localhost,*.localhost,devilbox,*.
devilbox

Examples:

• DEVILBOX_UI_SSL_CN=localhost

• DEVILBOX_UI_SSL_CN=localhost,*.localhost

• DEVILBOX_UI_SSL_CN=localhost,*.localhost,devilbox,*.devilbox

• DEVILBOX_UI_SSL_CN=intranet.example.com

See also:

Setup valid HTTPS

54.2.3 DEVILBOX_UI_PROTECT

By setting this variable to 1, the Devilbox intranet will be password protected. This might be useful, if you share your
running Devilbox instance accross a LAN, but do not want everybody to have access to the intranet itself, just to the
projects you actually provide.

Name Allowed values Default value
DEVILBOX_UI_PROTECT 0 or 1 0

54.2. Intranet settings 261

Devilbox Documentation, Release 1.0

Note: Also pay attention to the next env var, which will control the password for the login:
DEVILBOX_UI_PASSWORD.

54.2.4 DEVILBOX_UI_PASSWORD

When the devilbox intranet is password-protected via DEVILBOX_UI_PROTECT, this is the actual password by
which it will be protected.

Name Allowed values Default value
DEVILBOX_UI_PASSWORD any string password

54.2.5 DEVILBOX_UI_ENABLE

In case you want to completely disable the Devilbox intranet, such as when running it on production, you need to set
this variable to 0.

By disabling the intranet, the webserver will simply remove the default virtual host and redirect all IP-based requests
to the first available virtual host, which will be you first project when ordering their names alphabetically.

Name Allowed values Default value
DEVILBOX_UI_ENABLE 0 or 1 1

54.3 Docker image versions

The following settings reflect one of the main goals of the Devilbox: being able to run any combination of all container
versions.

Note: Any change for those settings requires a restart of the devilbox.

54.3.1 PHP_SERVER

This variable choses your desired PHP-FPM version to be started.

Name Allowed values Default
value

PHP_SERVERphp-fpm-5.2 php-fpm-5.3 php-fpm-5.4 php-fpm-5.5 php-fpm-5.6
php-fpm-7.0 php-fpm-7.1 php-fpm-7.2 php-fpm-7.3 php-fpm-7.4

php-fpm-7.
2

Important: PHP 5.2 is available to use, but it is not officially supported. The Devilbox intranet does not work with
this version as PHP 5.2 does not support namespaces. Furthermore PHP 5.2 does only work with Apache 2.4, Nginx
stable and Nginx mainline. It does not work with Apache 2.2. Use at your own risk.

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

262 Chapter 54. .env file

Devilbox Documentation, Release 1.0

Listing 1: .env

host> grep PHP_SERVER .env

#PHP_SERVER=php-fpm-5.2
#PHP_SERVER=php-fpm-5.3
#PHP_SERVER=php-fpm-5.4
#PHP_SERVER=php-fpm-5.5
#PHP_SERVER=php-fpm-5.6
#PHP_SERVER=php-fpm-7.0
PHP_SERVER=php-fpm-7.1
#PHP_SERVER=php-fpm-7.2
#PHP_SERVER=php-fpm-7.3
#PHP_SERVER=php-fpm-7.4

54.3.2 HTTPD_SERVER

This variable choses your desired web server version to be started.

Name Allowed values Default value
HTTPD_SERVER apache-2.2 apache-2.4 nginx-stable nginx-mainline nginx-stable

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

Listing 2: .env

host> grep HTTPD_SERVER .env

#HTTPD_SERVER=apache-2.2
#HTTPD_SERVER=apache-2.4
HTTPD_SERVER=nginx-stable
#HTTPD_SERVER=nginx-mainline

54.3.3 MYSQL_SERVER

This variable choses your desired MySQL server version to be started.

Name Allowed values Default value
MYSQL_SERVER mysql-5.5 mysql-5.6 mariadb-10.2 percona-5.7 and many

more
mariadb-10.
1

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

Listing 3: .env

host> grep MYSQL_SERVER .env

#MYSQL_SERVER=mysql-5.5
#MYSQL_SERVER=mysql-5.6

(continues on next page)

54.3. Docker image versions 263

Devilbox Documentation, Release 1.0

(continued from previous page)

#MYSQL_SERVER=mysql-5.7
#MYSQL_SERVER=mysql-8.0
#MYSQL_SERVER=mariadb-5.5
#MYSQL_SERVER=mariadb-10.0
MYSQL_SERVER=mariadb-10.1
#MYSQL_SERVER=mariadb-10.2
#MYSQL_SERVER=mariadb-10.3
#MYSQL_SERVER=percona-5.5
#MYSQL_SERVER=percona-5.6
#MYSQL_SERVER=percona-5.7

54.3.4 PGSQL_SERVER

This variable choses your desired PostgreSQL server version to be started.

Name Allowed values Default value
PGSQL_SERVER 9.1 9.2 9.3 9.4 and many more 9.6

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

Listing 4: .env

host> grep PGSQL_SERVER .env

#PGSQL_SERVER=9.1
#PGSQL_SERVER=9.2
#PGSQL_SERVER=9.3
#PGSQL_SERVER=9.4
#PGSQL_SERVER=9.5
PGSQL_SERVER=9.6
#PGSQL_SERVER=10.0

Note: This is the official PostgreSQL server which might already have other tags available, check their official website
for even more versions.

54.3.5 REDIS_SERVER

This variable choses your desired Redis server version to be started.

Name Allowed values Default value
REDIS_SERVER 2.8 3.0 3.2 4.0 and many more 4.0

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

264 Chapter 54. .env file

Devilbox Documentation, Release 1.0

Listing 5: .env

host> grep REDIS_SERVER .env

#REDIS_SERVER=2.8
#REDIS_SERVER=3.0
#REDIS_SERVER=3.2
REDIS_SERVER=4.0

Note: This is the official Redis server which might already have other tags available, check their official website for
even more versions.

54.3.6 MEMCD_SERVER

This variable choses your desired Memcached server version to be started.

Name Allowed values Default value
MEMCD_SERVER 1.4.21 1.4.22 1.4.23 1.4.24 and many more 1.5.2

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

Listing 6: .env

host> grep MEMCD_SERVER .env

#MEMCD_SERVER=1.4.21
#MEMCD_SERVER=1.4.22
#MEMCD_SERVER=1.4.23
#MEMCD_SERVER=1.4.24
#MEMCD_SERVER=1.4.25
#MEMCD_SERVER=1.4.26
#MEMCD_SERVER=1.4.27
#MEMCD_SERVER=1.4.28
#MEMCD_SERVER=1.4.29
#MEMCD_SERVER=1.4.30
#MEMCD_SERVER=1.4.31
#MEMCD_SERVER=1.4.32
#MEMCD_SERVER=1.4.33
#MEMCD_SERVER=1.4.34
#MEMCD_SERVER=1.4.35
#MEMCD_SERVER=1.4.36
#MEMCD_SERVER=1.4.37
#MEMCD_SERVER=1.4.38
#MEMCD_SERVER=1.4.39
#MEMCD_SERVER=1.5.0
#MEMCD_SERVER=1.5.1
MEMCD_SERVER=1.5.2
#MEMCD_SERVER=latest

Note: This is the official Memcached server which might already have other tags available, check their official website
for even more versions.

54.3. Docker image versions 265

Devilbox Documentation, Release 1.0

54.3.7 MONGO_SERVER

This variable choses your desired MongoDB server version to be started.

Name Allowed values Default value
MONGO_SERVER 2.8 3.0 3.2 3.4 and many more 3.4

All values are already available in the .env file and just need to be commented or uncommented. If multiple values
are uncommented, the last uncommented variable one takes precedences:

Listing 7: .env

host> grep MONGO_SERVER .env

#MONGO_SERVER=2.8
#MONGO_SERVER=3.0
#MONGO_SERVER=3.2
MONGO_SERVER=3.4
#MONGO_SERVER=3.5

Note: This is the official MongoDB server which might already have other tags available, check their official website
for even more versions.

54.4 Docker host mounts

The Docker host mounts are directory paths on your host operating system that will be mounted into the running
Docker container. This makes data persistent accross restarts and let them be available on both sides: Your host
operating system as well as inside the container.

This also gives you the choice to edit data on your host operating system, such as with your favourite IDE/editor and
also inside the container, by using the bundled tools, such as downloading libraries with composer and others.

Being able to do that on both sides, removes the need to install any development tools (except your IDE/editor) on
your host and have everything fully encapsulated into the containers itself.

54.4.1 MOUNT_OPTIONS

This variable allows you to add custom mount options/flags to all mounted directories. Initially only rw or ro are
applied to mount points, you can however extend this before starting up the Devilbox.

Name Allowed values Default value
MOUNT_OPTIONS valid mount option empty

If you are on Linux with SELinux enabled, you will want to set this value to ,z to modify SELinux labels in order to
share mounts among multiple container.

See also:

•

•

266 Chapter 54. .env file

Devilbox Documentation, Release 1.0

•

Important: When adding custom mount options, ensure to start with a leading ,, as those options are prepended to
already existing options.

MOUNT_OPTIONS=,z
MOUNT_OPTIONS=,cached

54.4.2 HOST_PATH_HTTPD_DATADIR

This is an absolute or relative path (relative to Devilbox git directory) to your data directory.

See also:

Data directory

By default, all of your websites/projects will be stored in that directory. If however you want to separate your data
from the Devilbox git directory, do change the path to a place where you want to store all of your projects on your host
computer.

• Relative path: relative to the devilbox git directory (Must start with .)

• Absolute path: Full path (Must start with /)

Name Allowed values Default value
HOST_PATH_HTTPD_DATADIR valid path ./data/www

Example

If you want to move all your projects to /home/myuser/workspace/web/ for example, just set it like this:

Listing 8: .env

HOST_PATH_HTTPD_DATADIR=/home/myuser/workspace/web

Mapping

No matter what path you assign, inside the PHP and the web server container your data dir will always be /shared/
httpd/.

Warning: Do not create any symlinks inside your project directories that go outside the data dir. Anything which
is outside this directory is not mounted into the container.

Warning:

Remove stopped container Whenever you change this value you have to stop the Devilbox and also remove the
stopped container via docker-compose rm.

54.4. Docker host mounts 267

Devilbox Documentation, Release 1.0

54.4.3 HOST_PATH_MYSQL_DATADIR

This is an absolute or relative path (relative to Devilbox git directory) to your MySQL data directory.

• Relative path: relative to the devilbox git directory (Must start with .)

• Absolute path: Full path (Must start with /)

Name Allowed values Default value
HOST_PATH_MYSQL_DATADIR valid path ./data/mysql

Each MySQL, MariaDB or PerconaDB version will have its own subdirectory, so when first running MySQL 5.5 and
then starting MySQL 5.6, you will have a different database with different data.

Having each version separated from each other makes sure that you don’t accidently upgrade from a lower to a higher
version which might not be reversable. (MySQL auto-upgrade certain older data files to newer, but this process does
not necessarily work the other way round and could result in failues).

The directory structure will look something like this:

host> ls -l ./data/mysql/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mariadb-10.0/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mariadb-10.1/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mariadb-10.2/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mariadb-10.3/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mysql-5.5/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mysql-5.6/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mysql-5.7/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 mysql-8.0/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 percona-5.5/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 percona-5.6/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 percona-5.7/

Warning:

Remove stopped container Whenever you change this value you have to stop the Devilbox and also remove the
stopped container via docker-compose rm.

54.4.4 HOST_PATH_PGSQL_DATADIR

This is an absolute or relative path (relative to Devilbox git directory) to your PostgreSQL data directory.

• Relative path: relative to the devilbox git directory (Must start with .)

• Absolute path: Full path (Must start with /)

Name Allowed values Default value
HOST_PATH_PGSQL_DATADIR valid path ./data/pgsql

Each PostgreSQL version will have its own subdirectory, so when first running PostgreSQL 9.1 and then starting
PostgreSQL 10.0, you will have a different database with different data.

Having each version separated from each other makes sure that you don’t accidently upgrade from a lower to a higher
version which might not be reversable.

The directory structure will look something like this:

268 Chapter 54. .env file

Devilbox Documentation, Release 1.0

host> ls -l ./data/pgsql/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.1/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.2/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.3/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.4/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.5/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 9.6/

Warning:

Remove stopped container Whenever you change this value you have to stop the Devilbox and also remove the
stopped container via docker-compose rm.

54.4.5 HOST_PATH_MONGO_DATADIR

This is an absolute or relative path (relative to Devilbox git directory) to your MongoDB data directory.

• Relative path: relative to the devilbox git directory (Must start with .)

• Absolute path: Full path (Must start with /)

Name Allowed values Default value
HOST_PATH_MONGO_DATADIR valid path ./data/mongo

Each MongoDB version will have its own subdirectory, so when first running MongoDB 2.8 and then starting Mon-
goDB 3.5, you will have a different database with different data.

Having each version separated from each other makes sure that you don’t accidently upgrade from a lower to a higher
version which might not be reversable.

The directory structure will look something like this:

host> ls -l ./data/mongo/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 2.8/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 3.0/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 3.2/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 3.4/
drwxrwxr-x 6 48 48 4096 Jun 21 08:47 3.5/

Warning:

Remove stopped container Whenever you change this value you have to stop the Devilbox and also remove the
stopped container via docker-compose rm.

54.5 Docker host ports

All describned host ports below are ports that the Docker container expose on your host operating system. By default
each port will be exposed to all interfaces or IP addresses of the host operating system. This can be controlled with
LOCAL_LISTEN_ADDR.

How to list used ports on Linux and MacOS

54.5. Docker host ports 269

Devilbox Documentation, Release 1.0

Open a terminal and type the following:

host> netstat -an | grep 'LISTEN\s'
tcp 0 0 127.0.0.1:53585 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:37715 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:58555 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:48573 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:34591 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:8000 0.0.0.0:* LISTEN

How to list used ports on Windows

Open the command prompt and type the following:

C:\WINDOWS\system32> netstat -an
Proto Local Address Foreign Address State
TCP 0.0.0.0:80 0.0.0.0:0 LISTENING
TCP 0.0.0.0:145 0.0.0.0:0 LISTENING
TCP 0.0.0.0:445 0.0.0.0:0 LISTENING
TCP 0.0.0.0:1875 0.0.0.0:0 LISTENING

Warning:

Docker Toolbox and the Devilbox When using Docker Toobox ensure that ports are exposed to all interfaces. See
LOCAL_LISTEN_ADDR

Warning: Before setting the ports, ensure that they are not already in use on your host operating system by other
services.

54.5.1 HOST_PORT_HTTPD

The port to expose for the web server (Apache or Nginx). This is usually 80. Set it to something else if 80 is already
in use on your host operating system.

Name Allowed values Default value
HOST_PORT_HTTPD 1 - 65535 80

54.5.2 HOST_PORT_HTTPD_SSL

The port to expose for the web server (Apache or Nginx) for HTTPS (SSL) requests. This is usually 443. Set it to
something else if 443 is already in use on your host operating system.

Name Allowed values Default value
HOST_PORT_HTTPD_SSL 1 - 65535 443

54.5.3 HOST_PORT_MYSQL

The port to expose for the MySQL server (MySQL, MariaDB or PerconaDB). This is usually 3306. Set it to something
else if 3306 is already in use on your host operating system.

270 Chapter 54. .env file

Devilbox Documentation, Release 1.0

Name Allowed values Default value
HOST_PORT_MYSQL 1 - 65535 3306

54.5.4 HOST_PORT_PGSQL

The port to expose for the PostgreSQL server. This is usually 5432. Set it to something else if 5432 is already in use
on your host operating system.

Name Allowed values Default value
HOST_PORT_PGSQL 1 - 65535 5432

54.5.5 HOST_PORT_REDIS

The port to expose for the Redis server. This is usually 6379. Set it to something else if 6379 is already in use on your
host operating system.

Name Allowed values Default value
HOST_PORT_REDIS 1 - 65535 5432

54.5.6 HOST_PORT_MEMCD

The port to expose for the Memcached server. This is usually 11211. Set it to something else if 11211 is already in
use on your host operating system.

Name Allowed values Default value
HOST_PORT_MEMCD 1 - 65535 11211

54.5.7 HOST_PORT_MONGO

The port to expose for the MongoDB server. This is usually 27017. Set it to something else if 27017 is already in use
on your host operating system.

Name Allowed values Default value
HOST_PORT_MONGO 1 - 65535 27017

54.5.8 HOST_PORT_BIND

The port to expose for the BIND DNS server. This is usually 53. Set it to something else if 53 is already in use on
your host operating system.

Name Allowed values Default value
HOST_PORT_BIND 1 - 65535 1053

54.5. Docker host ports 271

Devilbox Documentation, Release 1.0

Warning: As you might have noticed, BIND is not set to its default port 53 by default, but rather to 1053. This
is because some operating system already have a local DNS resolver running on port 53 which would result in a
failure when this BIND server is starting.

You only need to set BIND to port 53 when you want to use the Auto-DNS feautre of the Devilbox. When doing
so, read this article with care: Setup Auto DNS.

54.6 Container settings

54.6.1 PHP

PHP_MODULES_ENABLE

Enable any non-standard PHP modules in a comma separated list.

Name Allowed values Default value
PHP_MODULES_ENABLE comma separated list of module names empty

Note: Currently only ioncube is available to enable.

Example:

Listing 9: .env

Enable ionCube
PHP_MODULES_ENABLE=ioncube

PHP_MODULES_DISABLE

Disable any PHP modules in a comma separated list.

Name Allowed values Default value
PHP_MODULES_DISABLEcomma separated list of

module names
blackfire,oci8,PDO_OCI,pdo_sqlsrv,
sqlsrv,rdkafka,swoole

Example:

Listing 10: .env

Disable Xdebug, Imagick and Swoole
PHP_MODULES_DISABLE=xdebug,imagick,swoole

Custom variables

The PHP container itself does not offer any variables, however you can add any key-value pair variable into the .env
file which will automatically be available to the started PHP container and thus in any of your PHP projects.

272 Chapter 54. .env file

Devilbox Documentation, Release 1.0

If your application requires a variable to determine if it is run under development or production, for example:
APPLICATION_ENV, you can just add this to the .env file:

Listing 11: .env

host> grep APPLICATION_ENV .env

APPLICATION_ENV=development

Within your php application/file you can then access this variable via the getenv function:

Listing 12: index.php

<?php
// Example use of getenv()
echo getenv('APPLICATION_ENV');
?>

This will then output development.

Note: Add as many custom environment variables as you require.

See also:

Add custom environment variables

54.6.2 Web server

HTTPD_DOCROOT_DIR

This variable specifies the name of a directory within each of your project directories from which the web server will
serve the files.

Together with the HOST_PATH_HTTPD_DATADIR and your project directory, the HTTPD_DOCROOT_DIRwill built
up the final location of a virtual hosts document root.

Name Allowed values Default value
HTTPD_DOCROOT_DIR valid dir name htdocs

Example 1

• devilbox git directory location: /home/user-1/repo/devilbox

• HOST_PATH_HTTPD_DATADIR: ./data/www (relative)

• Project directory: my-first-project

• HTTPD_DOCROOT_DIR: htdocs

The location from where the web server will serve files for my-first-project is then: /home/user-1/repo/
devilbox/data/www/my-first-project/htdocs

Example 2

• devilbox git directory location: /home/user-1/repo/devilbox

• HOST_PATH_HTTPD_DATADIR: /home/user-1/www (absolute)

54.6. Container settings 273

Devilbox Documentation, Release 1.0

• Project directory: my-first-project

• HTTPD_DOCROOT_DIR: htdocs

The location from where the web server will serve files for my-first-project is then: /home/user-1/www/
my-first-project/htdocs

Directory structure: default

Let’s have a look how the directory is actually built up:

Project directory
host> ls -l data/www/my-first-project/
total 4
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 htdocs/

htdocs directory inside your project directory
host> ls -l data/www/my-first-project/htdocs
total 4
-rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 index.php

By calling your proect url, the index.php file will be served.

Directory structure: nested symlink

Most of the time you would clone or otherwise download a PHP framework, which in most cases has its own www
directory somewhere nested. How can this be linked to the htdocs directory?

Let’s have a look how the directory is actually built up:

Project directory
host> ls -l data/www/my-first-project/
total 4
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 cakephp/
lrwxrwxrwx 1 cytopia cytopia 15 Mar 17 09:36 htdocs -> cakephp/webroot/

htdocs directory inside your project directory
host> ls -l data/www/my-first-project/htdocs
total 4
-rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 index.php

As you can see, the web server is still able to server the files from the htdocs location, this time however, htdocs
itself is a symlink pointing to a much deeper and nested location inside an actual framework directory.

HTTPD_TEMPLATE_DIR

This variable specifies the directory name (which is just in your project directory, next to the HTTPD_DOCROOT_DIR
directory) in which you can hold custom web server configuration files.

Every virtual host (which represents a project) can be fully customized to its own needs, independently of other
virtual hosts.

This directory does not exist by default and you need to create it. Additionally you will also have to populate it with
one of three yaml-based template files.

Name Allowed values Default value
HTTPD_TEMPLATE_DIR valid dir name .devilbox

Let’s have a look at an imaginary project directory called my-first-project:

274 Chapter 54. .env file

Devilbox Documentation, Release 1.0

Project directory
host> ls -l data/www/my-first-project/
total 4
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 htdocs/

Inside this your project directory you will need to create another directory which is called .devilbox by default. If
you change the HTTPD_TEMPLATE_DIR variable to something else, you will have to create a directory by whatever
name you chose for that variable.

Project directory
host> cd data/www/my-first-project/
host> mkdir .devilbox
host> ls -l
total 4
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 .devilbox/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 htdocs/

Now you need to copy the vhost-gen templates into the .devilbox directory. The templates are available in the
Devilbox git directory under cfg/vhost-gen/.

By copying those files into your project template directory, nothing will change, these are the default templates that
will create the virtual host exactly the same way as if they were not present.

Navigate into the devilbox directory
host> cd path/to/devilbox

Copy templates to your project directory
host> cp cfg/vhost-gen/*.yml data/www/my-first-project/.devilbox/

Let’s have a look how the directory is actually built up:

Project directory
host> ls -l data/www/my-first-project/
total 4
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 .devilbox/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 12 23:05 htdocs/

template directory inside your project directory
host> ls -l data/www/my-first-project/htdocs/.devilbox
total 4
-rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 apache22.yml
-rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 apache24.yml
-rw-r--r-- 1 cytopia cytopia 87 Mar 12 23:05 nginx.yml

The three files apache22.yml, apache24.yml and nginx.yml let you customize your web servers virtual
host to anything from adding rewrite rules, overwriting directory index to even changing the server name or adding
locations to other assets.

See also:

The whole process is based on a project called . A virtual host generator for Apache 2.2, Apache 2.4 and any Nginx
version.

See also:

Customize your virtual host When you want to find out more how to actually customize each virtual host to its own
need, read up more on:

• vhost-gen: Virtual host templates

54.6. Container settings 275

Devilbox Documentation, Release 1.0

• vhost-gen: Customize all virtual hosts globally

• vhost-gen: Customize specific virtual host

• vhost-gen: Example: add sub domains

HTTPD_TIMEOUT_TO_PHP_FPM

This variable specifies after how many seconds the webserver should quit an unanswered connection to PHP-FPM.

Ensure that this value is higher than PHP’s max_execution_time, otherwise the PHP script could still run and
the webserver will simply drop the connection before getting an answer by PHP.

If HTTPD_TIMEOUT_TO_PHP_FPM is smaller then max_execution_time and a script runs longer than
max_execution_time, you will get a: 504 Gateway timeout in the browser.

If HTTPD_TIMEOUT_TO_PHP_FPM is greater then max_execution_time and a script runs longer than
max_execution_time, you will get a proper PHP error message in the browser.

Name Allowed values Default value
HTTPD_TIMEOUT_TO_PHP_FPM positive integer 180

54.6.3 MySQL

MYSQL_ROOT_PASSWORD

If you start a MySQL container for the first time, it will setup MySQL itself with this specified password. If you do
change the root password to something else, make sure to also set it accordingly in .env, otherwise the devilbox will
not be able to connect to MySQL and will not be able to display information inside the bundled intranet.

Name Allowed values Default value
MYSQL_ROOT_PASSWORD any string empty (no password)

Warning: Keep this variable in sync with the actual MySQL root password.

MYSQL_GENERAL_LOG

This variable controls the logging behaviour of the MySQL server (MySQL, MariaDB and PerconaDB). As the Dev-
ilbox is intended to be used for development, this feature is turned on by default.

Name Allowed values Default value
MYSQL_GENERAL_LOG 0 or 1 0

MySQL documentation: “The general query log is a general record of what mysqld is doing. The server writes
information to this log when clients connect or disconnect, and it logs each SQL statement received from clients.
The general query log can be very useful when you suspect an error in a client and want to know exactly what
the client sent to mysqld.”

–

276 Chapter 54. .env file

Devilbox Documentation, Release 1.0

54.6.4 PostgreSQL

PGSQL_ROOT_USER

If you start a PostgreSQL container for the first time, it will setup PostgreSQL itself with a specified username and
password. If you do change the root username or password to something else, make sure to also set it accordingly in
.‘‘env,‘‘ otherwise the devilbox will not be able to connect to PostgreSQL and will not be able to display information
inside the bundled intranet.

Name Allowed values Default value
PGSQL_ROOT_USER alphabetical string postgres

Warning: Keep this variable in sync with the actual PostgreSQL username.

PGSQL_ROOT_PASSWORD

If you start a PostgreSQL container for the first time, it will setup PostgreSQL itself with a specified username and
password. If you do change the root username or password to something else, make sure to also set it accordingly in
.‘‘env,‘‘ otherwise the devilbox will not be able to connect to PostgreSQL and will not be able to display information
inside the bundled intranet.

Name Allowed values Default value
PGSQL_ROOT_PASSWORD any string empty (no password)

Warning: Keep this variable in sync with the actual PostgreSQL password.

54.6.5 Redis

REDIS_ARGS

This option lets you add extra startup parameters to Redis. This could include adding a password protection to Redis
or increasing its verbosity.

Name Allowed values Default value
REDIS_ARGS valid redis-server startup parameter empty

Example: Adding password protection

REDIS_ARGS=--requirepass my-redis-root-password

Important: Do not quote the password and do not use spaces inside the password.

54.6. Container settings 277

Devilbox Documentation, Release 1.0

Example: Increasing verbosity

REDIS_ARGS=--loglevel verbose

Example: Combining options

REDIS_ARGS=--loglevel verbose --requirepass my-redis-root-password

54.6.6 Bind

BIND_DNS_RESOLVER

This variable holds a comma separated list of IP addresses of DNS servers. By default using Google’s DNS server as
they are pretty fast.

Name Allowed values Default value
BIND_DNS_RESOLVER comma separated list of IP addresses 8.8.8.8,8.8.4.4

The devilbox is using its own DNS server internally (your host computer can also use it for Auto-DNS) in order
to resolve custom project domains defined by TLD_SUFFIX. To also be able to reach the internet from within the
Container there must be some kind of upstream DNS server to ask for queries.

Some examples:

BIND_DNS_RESOLVER='8.8.8.8'
BIND_DNS_RESOLVER='8.8.8.8,192.168.0.10'

Note: If you don’t trust the Google DNS server, then set it to something else. If you already have a DNS server inside
your LAN and also want your custom DNS (if any) to be available inside the containers, set the value to its IP address.

BIND_DNSSEC_VALIDATE

This variable controls the DNSSEC validation of the DNS server. By default it is turned off.

Name Allowed values Default value
BIND_DNSSEC_VALIDATE no, auto, yes no

• yes - DNSSEC validation is enabled, but a trust anchor must be manually configured. No validation will
actually take place.

• no - DNSSEC validation is disabled, and recursive server will behave in the “old fashioned” way of performing
insecure DNS lookups, until you have manually configured at least one trusted key.

• auto - DNSSEC validation is enabled, and a default trust anchor (included as part of BIND) for the DNS root
zone is used.

278 Chapter 54. .env file

Devilbox Documentation, Release 1.0

BIND_LOG_DNS

This variable controls if DNS queries should be shown in Docker log output or not. By default no DNS queries are
shown.

Name Allowed values Default value
BIND_LOG_DNS 1 or 0 0

If enabled all DNS queries are shown. This is useful for debugging.

BIND_TTL_TIME

This variable controls the DNS TTL in seconds. If empty or removed it will fallback to a sane default.

Name Allowed values Default value
BIND_TTL_TIME integer empty

See also:

•

•

BIND_REFRESH_TIME

This variable controls the DNS Refresh time in seconds. If empty or removed it will fallback to a sane default.

Name Allowed values Default value
BIND_REFRESH_TIME integer empty

See also:

BIND_RETRY_TIME

This variable controls the DNS Retry time in seconds. If empty or removed it will fallback to a sane default.

Name Allowed values Default value
BIND_RETRY_TIME integer empty

See also:

BIND_EXPIRY_TIME

This variable controls the DNS Expiry time in seconds. If empty or removed it will fallback to a sane default.

Name Allowed values Default value
BIND_EXPIRY_TIME integer empty

See also:

54.6. Container settings 279

Devilbox Documentation, Release 1.0

BIND_MAX_CACHE_TIME

This variable controls the DNS Max Cache time in seconds. If empty or removed it will fallback to a sane default.

Name Allowed values Default value
BIND_MAX_CACHE_TIME integer empty

See also:

280 Chapter 54. .env file

CHAPTER 55

docker-compose.yml

This file is the core of the Devilbox and glues together all Docker images.

It is very tempting to just change this file in order to add new services to the already existing once. However your git di-
rectory will become dirty and you will always have to stash your changes before pulling new features from remote. To
overcome this Docker Compose offers a default override file (docker-compose.override.yml) that let’s you
specify custom changes as well as completely new services without having to touch the default docker-compose.
yml.

See also:

To find out more read docker-compose.override.yml

281

Devilbox Documentation, Release 1.0

282 Chapter 55. docker-compose.yml

CHAPTER 56

docker-compose.override.yml

The docker-compose.override.yml is the configuration file where you can override existing settings from
docker-compose.yml or even add completely new services.

By default, this file does not exist and you must create it. You can either copy the existing docker-compose.
override.yml-example or create a new one.

Table of Contents

• Create docker-compose.override.yml

– Copy example file

– Create new file from scratch

• Further reading

See also:

56.1 Create docker-compose.override.yml

56.1.1 Copy example file

host> cd path/to/devilbox
host> cp docker-compose.override.yml-example docker-compose.override.yml

56.1.2 Create new file from scratch

1. Create an empty file within the Devilbox git directory named docker-compose.override.yml

2. Retrieve the currently used version from the existing docker-compose.yml file

283

Devilbox Documentation, Release 1.0

3. Copy this version line to your newly created docker-compose.override.yml at the very top

Create an empty file
host> cd path/to/devilbox
host> touch docker-compose.override.yml

Retrieve the current version
host> grep ^version docker-compose.yml
version: '2.1'

Add this version line to docker-compose.override.yml
host> echo "version: '2.1'" > docker-compose.override.yml

Let’s see again how this file should look like now:

Listing 1: docker-compose.override.yml

version: '2.1'

Note: The documentation might be outdated and the version number might already be higher. Rely on the output of
the grep command.

56.2 Further reading

To dive deeper into this topic and see how to actually add new services or overwrite existing services follow the below
listed links:

See also:

• Add your own Docker image

• Overwrite existing Docker image

284 Chapter 56. docker-compose.override.yml

CHAPTER 57

apache.conf

Apache 2.2 and Apache 2.4 both come with their default vendor configuration. This might not be the ideal setup for
some people, so you have the chance to change any of those settings, by supplying custom configurations.

See also:

If you are rather using Nginx, have a look at: nginx.conf

Important: You could actually also create virtual hosts here, but it is recommended to use the Devilbox Auto-vhost
generation feature. If you want to custimize your current virtual hosts have a look at:

• vhost-gen: Virtual host templates

• vhost-gen: Customize all virtual hosts globally

• vhost-gen: Customize specific virtual host

• vhost-gen: Example: add sub domains

Table of Contents

• General

• Examples

– Adjust KeepAlive settings for Apache 2.2

– Limit HTTP headers and GET size for Apache 2.4

57.1 General

You can set custom apache.conf configuration options for each Apache version separately. See the directory structure
for Apache configuration directories inside ./cfg/ directory:

285

Devilbox Documentation, Release 1.0

host> ls -l path/to/devilbox/cfg/ | grep 'apache'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 apache-2.2/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 apache-2.4/

Customization is achieved by placing a file into cfg/apache-X.X/ (where X.X stands for your Apache version).
The file must end by .conf in order to be sourced by the web server.

Each of the Apache configuration directories already contain an example file: devilbox-custom.
conf-example, that can simply be renamed to devilbox-custom.conf. This file holds some example values
that can be adjusted or commented out.

In order for the changes to be applied, you will have to restart the Devilbox.

57.2 Examples

57.2.1 Adjust KeepAlive settings for Apache 2.2

The following examples shows you how to change the KeepAlive, the MaxKeepAliveRequests as well as the
KeepAliveTimeout values of Apache 2.2.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to Apache 2.2 config directory
host> cd cfg/apache-2.2

Create new conf file
host> touch keep_alive.conf

Now add the following content to the file:

Listing 1: keep_alive.conf

KeepAlive On
KeepAliveTimeout 10
MaxKeepAliveRequests 100

In order to apply the changes you need to restart the Devilbox.

Note: The above is just an example demonstration, you probably need other values for your setup. So make sure to
understand how to configure Apache, if you are going to change any of those settings.

57.2.2 Limit HTTP headers and GET size for Apache 2.4

The following examples shows you how to limit the amount of headers the client can send to the server as well as
changing the maximum URL GET size by adjusting LimitRequestFields, LimitRequestFieldSize and LimitRequest-
Line for Apache 2.4.

Navigate to the Devilbox directory
host> cd path/to/devilbox

(continues on next page)

286 Chapter 57. apache.conf

https://httpd.apache.org/docs/2.2/mod/core.html#keepalive
https://httpd.apache.org/docs/2.2/mod/core.html#maxkeepaliverequests
https://httpd.apache.org/docs/2.2/mod/core.html#keepalivetimeout
http://httpd.apache.org/docs/current/mod/core.html#limitrequestfields
http://httpd.apache.org/docs/current/mod/core.html#limitrequestfieldsize
http://httpd.apache.org/docs/current/mod/core.html#limitrequestline
http://httpd.apache.org/docs/current/mod/core.html#limitrequestline

Devilbox Documentation, Release 1.0

(continued from previous page)

Navigate to Apache 2.4 config directory
host> cd cfg/apache-2.4

Create new conf file
host> touch limits.conf

Now add the following content to the file:

Listing 2: limits.conf

Limit amount of HTTP headers a client can send to the server
LimitRequestFields 20
LimitRequestFieldSize 4094

URL GET size
LimitRequestLine 2048

In order to apply the changes you need to restart the Devilbox.

Note: The above is just an example demonstration, you probably need other values for your setup. So make sure to
understand how to configure Apache, if you are going to change any of those settings.

57.2. Examples 287

Devilbox Documentation, Release 1.0

288 Chapter 57. apache.conf

CHAPTER 58

nginx.conf

Nginx stable and Nginx mainline both come with their default vendor configuration. This might not be the ideal setup
for some people, so you have the chance to change any of those settings, by supplying custom configurations.

See also:

If you are rather using Apache, have a look at: apache.conf

Important: You could actually also create virtual hosts here, but it is recommended to use the Devilbox Auto-vhost
generation feature. If you want to custimize your current virtual hosts have a look at:

• vhost-gen: Virtual host templates

• vhost-gen: Customize all virtual hosts globally

• vhost-gen: Customize specific virtual host

• vhost-gen: Example: add sub domains

Table of Contents

• General

• Examples

– Adjust KeepAlive settings for Nginx stable

– Adjust timeout settings for Nginx mainline

58.1 General

You can set custom nginx.conf configuration options for each Nginx version separately. See the directory structure for
Nginx configuration directories inside ./cfg/ directory:

289

Devilbox Documentation, Release 1.0

host> ls -l path/to/devilbox/cfg/ | grep 'nginx'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 nginx-mainline/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 nginx-stable/

Customization is achieved by placing a file into cfg/nginx-X/ (where X stands for your Nginx flavoour). The file
must end by .conf in order to be sourced by the web server.

Each of the Nginx configuration directories already contain an example file: devilbox-custom.
conf-example, that can simply be renamed to devilbox-custom.conf. This file holds some example values
that can be adjusted or commented out.

In order for the changes to be applied, you will have to restart the Devilbox.

58.2 Examples

58.2.1 Adjust KeepAlive settings for Nginx stable

The following examples shows you how to change the keepalive, the keepalive_requests as well as the
keepalive_timeout values of Nginx stable.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to Nginx stable config directory
host> cd cfg/nginx-stable

Create new conf file
host> touch keep_alive.conf

Now add the following content to the file:

Listing 1: keep_alive.conf

keepalive 10;
keepalive_timeout 10s;
keepalive_requests 100;

In order to apply the changes you need to restart the Devilbox.

Note: The above is just an example demonstration, you probably need other values for your setup. So make sure to
understand how to configure Nginx, if you are going to change any of those settings.

58.2.2 Adjust timeout settings for Nginx mainline

The following examples shows you how to adjust various timeout settings for Nginx mainline by adjusting
client_body_timeout, client_header_timeout and send_timeout directives.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to Nginx mainline config directory
(continues on next page)

290 Chapter 58. nginx.conf

http://nginx.org/en/docs/http/ngx_http_upstream_module.html#keepalive
https://nginx.org/en/docs/http/ngx_http_core_module.html#keepalive_requests
https://nginx.org/en/docs/http/ngx_http_core_module.html#keepalive_timeout
https://nginx.org/en/docs/http/ngx_http_core_module.html#client_body_timeout
https://nginx.org/en/docs/http/ngx_http_core_module.html#client_header_timeout
https://nginx.org/en/docs/http/ngx_http_core_module.html#send_timeout

Devilbox Documentation, Release 1.0

(continued from previous page)

host> cd cfg/nginx-mainline

Create new conf file
host> touch timeouts.conf

Now add the following content to the file:

Listing 2: timeouts.conf

client_body_timeout 60s;
client_header_timeout 60s;
send_timeout 60s;

In order to apply the changes you need to restart the Devilbox.

Note: The above is just an example demonstration, you probably need other values for your setup. So make sure to
understand how to configure Nginx, if you are going to change any of those settings.

58.2. Examples 291

Devilbox Documentation, Release 1.0

292 Chapter 58. nginx.conf

CHAPTER 59

php.ini

php.ini changes are global to all projects, but will only affect the currently selected PHP version.

Table of Contents

• General

• Examples

– Change memory_limit for PHP 7.1

– Change timeout values for PHP 5.6

59.1 General

You can set custom php.ini configuration options for each PHP version separately. See the directory structure for PHP
configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep 'php-ini'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-5.2/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-5.3/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-5.4/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Apr 3 22:04 php-ini-5.6/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-7.0/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-7.1/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-7.2/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-7.3/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-ini-7.4/

Customization is achieved by placing a file into cfg/php-ini-X.X/ (where X.X stands for your PHP version).
The file must end by .ini in order to be sourced by the PHP-FPM server.

293

Devilbox Documentation, Release 1.0

Each of the PHP ini configuration directories already contains two example files: devilbox-php.ini-default
and devilbox-php.ini-xdebug.

devilbox-php.ini-default

This file holds the exact settings that are currently in place by each PHP-FPM container. Copy it (do not simply rename
it) to a different file ending by .ini and start adjusting it.

devilbox-php.ini-xdebug

This file holds some sane example configuration to get you started with Xdebug. Copy it (do not simply rename it) to
a different file ending by .ini and start adjusting it.

Important: For Xdebug to work, there are other changes requires as well: Configure PHP Xdebug

How to apply the settings

In order for the changes to be applied, you will have to restart the Devilbox.

59.2 Examples

59.2.1 Change memory_limit for PHP 7.1

The following examples shows you how to change the memory_limit of PHP 7.1 to 4096 MB.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 7.1 config directory
host> cd cfg/php-ini-7.1

Create new ini file
host> touch memory_limit.ini

Now add the following content to the file:

Listing 1: memory_limit.ini

[PHP]
memory_limit = 4096M

In order to apply the changes you need to restart the Devilbox. You can validate that the changes have taken place by
visiting the Devilbox intranet phpinfo page.

59.2.2 Change timeout values for PHP 5.6

The following examples shows you how to change the max_execution_time and max_input_time of PHP 5.6.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 5.6 config directory
host> cd cfg/php-ini-5.6

(continues on next page)

294 Chapter 59. php.ini

https://secure.php.net/manual/en/ini.core.php#ini.memory-limit
https://secure.php.net/manual/en/info.configuration.php#ini.max-execution-time
https://secure.php.net/manual/en/info.configuration.php#ini.max-input-time

Devilbox Documentation, Release 1.0

(continued from previous page)

Create new ini file
host> touch timeouts.ini

Now add the following content to the file:

Listing 2: timeouts.ini

[PHP]
max_execution_time = 180
max_input_time = 180

In order to apply the changes you need to restart the Devilbox. You can validate that the changes have taken place by
visiting the Devilbox intranet phpinfo page.

59.2. Examples 295

Devilbox Documentation, Release 1.0

296 Chapter 59. php.ini

CHAPTER 60

php-fpm.conf

php-fpm.conf changes are global to all projects, but will only affect the currently selected PHP version.

Table of Contents

• General

• Examples

– Change rlimit core for master process for PHP 7.1

– Change child process on pool www for PHP 5.6

– Set non-overwritable php.ini values for PHP 7.0

60.1 General

You can set custom php-fpm.conf configuration options for each PHP version separately. These changes affect the
PHP-FPM process itself, global as well as pool specific configuration can be set.

Note: The default PHP-FPM pool is called www in case you want to make changes to it.

See the directory structure for PHP-FPM configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep 'php-fpm'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-5.2/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-5.3/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-5.4/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Apr 3 22:04 php-fpm-5.6/

(continues on next page)

297

Devilbox Documentation, Release 1.0

(continued from previous page)

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-7.0/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-7.1/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-7.2/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-7.3/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 php-fpm-7.4/

Customization is achieved by placing a file into cfg/php-fpm-X.X/ (where X.X stands for your PHP version).
The file must end by .conf in order to be sourced by the PHP-FPM server.

Each of the PHP-FPM conf configuration directories already contains three example file: devilbox-fpm.
conf-default, devilbox-fpm.conf-pm_dynamic and devilbox-fpm.conf-pm_ondemand.

devilbox-fpm.conf-default

This file holds the exact settings that are currently in place by each PHP-FPM container. Copy it (do not simply rename
it) to a different file ending by .conf and start adjusting it.

devilbox-fpm.conf-pm_dynamic

This file holds some sane example configuration to switch PHP-FPM scheduler to dynamic (The default is
ondemand). Copy it (do not simply rename it) to a different file ending by .conf and start adjusting it.

devilbox-fpm.conf-pm_ondemand

This file holds the current default values for the PHP-FPM scheduler which is using ondemand. Copy it (do not
simply rename it) to a different file ending by .conf and start adjusting it.

How to apply the settings

In order for the changes to be applied, you will have to restart the Devilbox.

See also:

To find out about all available PHP-FPM directives, global or pool specific have a look at its documentation: https:
//secure.php.net/manual/en/install.fpm.configuration.php

60.2 Examples

60.2.1 Change rlimit core for master process for PHP 7.1

The following examples shows you how to change the rlimit_core of PHP-FPM 7.1 master process to 100.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 7.1 config directory
host> cd cfg/php-fpm-7.1

Create new conf file
host> touch rlimit.conf

Now add the following content to the file:

298 Chapter 60. php-fpm.conf

https://secure.php.net/manual/en/install.fpm.configuration.php
https://secure.php.net/manual/en/install.fpm.configuration.php
https://secure.php.net/manual/en/install.fpm.configuration.php#rlimit-core-master

Devilbox Documentation, Release 1.0

Listing 1: rlimit.conf

[global]
rlimit_core = 100

Important: Note the [global] section.

In order to apply the changes you need to restart the Devilbox.

60.2.2 Change child process on pool www for PHP 5.6

The following examples shows you how to change the pm, pm.max_children, pm.start_servers, pm.min_spare_servers
and pm.max_spare_servers of PHP-FPM 5.6 on pool www.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 5.6 config directory
host> cd cfg/php-fpm-5.6

Create new conf file
host> touch www_server.conf

Now add the following content to the file:

Listing 2: www_server.conf

[www]
; Pool config
pm = dynamic
pm.max_children = 10
pm.start_servers = 3
pm.min_spare_servers = 2
pm.max_spare_servers = 5

Important: Note the [www] section.

In order to apply the changes you need to restart the Devilbox.

60.2.3 Set non-overwritable php.ini values for PHP 7.0

You can also set php.ini values that cannot be overwritten by php.ini or the ini_set() function of PHP. This
might be useful to make sure a specific value is enforced and will not be changed by some PHP frameworks on-the-fly.

This is achieved by php_admin_flag and php_admin_value that are parsed directly to PHP-FPM.

See also:

https://secure.php.net/manual/en/install.fpm.configuration.php

The following example will disable built-in PHP functions globally and non-overwriteable for PHP 7.0.

60.2. Examples 299

https://secure.php.net/manual/en/install.fpm.configuration.php#pm
https://secure.php.net/manual/en/install.fpm.configuration.php#pm.max-children
https://secure.php.net/manual/en/install.fpm.configuration.php#pm.start-servers
https://secure.php.net/manual/en/install.fpm.configuration.php#pm.min-spare-servers
https://secure.php.net/manual/en/install.fpm.configuration.php#pm.max-spare-servers
https://secure.php.net/manual/en/install.fpm.configuration.php

Devilbox Documentation, Release 1.0

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PHP 7.0 config directory
host> cd cfg/php-fpm-7.0

Create new conf file
host> touch admin.conf

Now add the following content to the file:

Listing 3: admin.conf

[www]
php_admin_value[disable_functions] = link,symlink,popen,exec,system,shell_exec

Important: Note the [www] section.

Important: This kind of setting only has affects PHP files served through PHP-FPM, when you run php on the
command line, this setting will be ignored.

Important: Be aware that none of your projects can use the above disabled functions anymore. They will simply not
exist for PHP 7.0 after that configuration took affect.

In order to apply the changes you need to restart the Devilbox.

300 Chapter 60. php-fpm.conf

CHAPTER 61

my.cnf

my.ini changes are global to all projects, but will only affect the currently selected MySQL version.

Important: When using Docker Toolbox and the Devilbox on Windows, *.cnf files must have read-only file
permissions, otherwise they are not sourced by the MySQL server.

Make sure to chmod 0444 *.cnf after adding your values.

Table of Contents

• General

• Examples

– Change key_buffer_size for MySQL 5.5

– Change timeout and packet size for PerconaDB 5.7

61.1 General

You can set custom MySQL options via your own defined my.cnf files for each version separately. See the directory
structure for MySQL configuration directories inside ./cfg/ directory:

host> ls -l path/to/devilbox/cfg/ | grep -E 'mysql|mariadb|percona'

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mariadb-10.0/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mariadb-10.1/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mariadb-10.2/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mariadb-10.3/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mysql-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mysql-5.6/

(continues on next page)

301

Devilbox Documentation, Release 1.0

(continued from previous page)

drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mysql-5.7/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 mysql-8.0/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 percona-5.5/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 percona-5.6/
drwxr-xr-x 2 cytopia cytopia 4096 Mar 5 21:53 percona-5.7/

Customization is achieved by placing a file into cfg/mysql-X.X/, cfg/mariadb-X.X/ or cfg/
percona-X-X (where X.X stands for your MySQL version). The file must end by .cnf in order to be sourced
by the MySQL server.

Each of the MySQL cnf configuration directories already contain an example file: devilbox-custom.
cnf-example, that can simply be renamed to devilbox-custom.cnf. This file holds some example values
that can be adjusted or commented out.

In order for the changes to be applied, you will have to restart the Devilbox.

61.2 Examples

61.2.1 Change key_buffer_size for MySQL 5.5

The following examples shows you how to change the key_buffer_size of MySQL 5.5 to 16 MB.

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to MySQL 5.5 config directory
host> cd cfg/mysql-5.5

Create new cnf file
host> touch key_buffer_size.cnf

Now add the following content to the file:

Listing 1: memory_limit.cnf

[mysqld]
key_buffer_size=16M

In order to apply the changes you need to restart the Devilbox. You can validate that the changes have taken place by
visiting the Devilbox intranet MySQL info page.

61.2.2 Change timeout and packet size for PerconaDB 5.7

The following examples shows you how to change the wait_timeout and max_allowed_packet of PerconaDB 5.7

Navigate to the Devilbox directory
host> cd path/to/devilbox

Navigate to PerconaDB 5.7 config directory
host> cd cfg/percona-5.7

Create new ini file
host> touch timeouts.cnf

302 Chapter 61. my.cnf

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_key_buffer_size
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_wait_timeout
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet

Devilbox Documentation, Release 1.0

Now add the following content to the file:

Listing 2: timeouts.cnf

[mysqld]
max_allowed_packet=256M
wait_timeout = 86400

In order to apply the changes you need to restart the Devilbox. You can validate that the changes have taken place by
visiting the Devilbox intranet MySQL info page.

61.2. Examples 303

Devilbox Documentation, Release 1.0

304 Chapter 61. my.cnf

CHAPTER 62

bashrc.sh

Each PHP container is using bash as its default shell. If you do not like the way it is currently configured, you can add
your own configuration files to overwrite settings.

See also:

Work inside the PHP container

Table of Contents

• Directory mapping

• Examples

– Custom aliases

– Custom vim configuration

62.1 Directory mapping

Inside the Devilbox git directory you will find a directory called bash/. Every file inside this directory ending by
*.sh will be source by your bash shell, allowing for a customized bash configuration. All files not ending by *.sh
will be ignored and can be used to create config files for other programs.

The bash/ directory will be mounted into the PHP container to /etc/bashrc-devilbox.d/.

Host OS path Docker path
./bash/ /etc/bashrc-devilbox.d/

305

Devilbox Documentation, Release 1.0

62.2 Examples

62.2.1 Custom aliases

Let’s say you want to add some custom shell aliases. All you have to do is create any file ending by .sh and place it
into the ./bash/ directory:

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Create a new file
host> touch ./bash/aliases.sh

Add some content to the file
host> vi ./bash/aliases.sh

Listing 1: ./bash/aliases.sh

alias l='ls -a'
alias ll='ls -al'
alias www='cd /shared/httpd'

62.2.2 Custom vim configuration

The .vimrc is usually place directly in the users home directory and the Devilbox does not offer any mounts directly
to that directory, however you can use a trick with shell aliases to use vim with a different config file by default.

First of all, place your favorite .vimrc into the ./bash/ directory

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Copy your vim config to the ./bash directory
host> cp ~/.vimrc bash/.vimrc

Right now, this is not going to do anything and as .vimrc is not ending by .sh it is also ignored by the shell itself.
What is now left to do, is make vim itself always use this config file.

As you can see from the above stated directory mapping, the .vimrc file will end up under: /etc/
bashrc-devilbox.d/.vimrc inside the PHP container, so just create a shell alias for vim that will always
use this file:

Navigate to the Devilbox git directory
host> cd path/to/devilbox

Create a new file
host> touch ./bash/vim.sh

Add your vim alias
host> vi ./bash/vim.sh

306 Chapter 62. bashrc.sh

Devilbox Documentation, Release 1.0

Listing 2: ./bash/vim.sh

alias vim='vim -u /etc/bashrc-devilbox.d/.vimrc'

Whenever you start vim inside any PHP container, it will automatically use the provided vim configuration file.

This trick will work for all tools that require configuration files.

62.2. Examples 307

Devilbox Documentation, Release 1.0

308 Chapter 62. bashrc.sh

CHAPTER 63

Setup CakePHP

This example will use composer to install CakePHP from within the Devilbox PHP container.

After completing the below listed steps, you will have a working CakePHP setup ready to be served via http and https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install CakePHP

– 4. Symlink webroot

– 5. Add MySQL Database

– 6. Configure database connection

– 7. DNS record

– 8. Open your browser

63.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-cake /shared/httpd/my-cake my_cake loc http://my-cake.loc https://my-cake.loc

309

http://my-cake.loc
https://my-cake.loc

Devilbox Documentation, Release 1.0

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

63.2 Walk through

It will be ready in eight simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install CakePHP via composer

4. Symlink webroot directory

5. Add MySQL database

6. Configure datbase connection

7. Setup DNS record

8. Visit http://my-cake.loc in your browser

63.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

63.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-cake

See also:

TLD_SUFFIX

310 Chapter 63. Setup CakePHP

http://my-cake.loc

Devilbox Documentation, Release 1.0

63.2.3 3. Install CakePHP

Navigate into your newly created vhost directory and install CakePHP with composer.

devilbox@php-7.0.20 in /shared/httpd $ cd my-cake
devilbox@php-7.0.20 in /shared/httpd/my-cake $ composer create-project --prefer-dist
→˓cakephp/app cakephp

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-cake $ tree -L 1
.

cakephp

1 directory, 0 files

63.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-cake $ ln -s cakephp/webroot/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-cake $ tree -L 1
.

cakephp
htdocs -> cakephp/webroot

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

63.2.5 5. Add MySQL Database

devilbox@php-7.0.20 in /shared/httpd/my-cake $ mysql -u root -h 127.0.0.1 -p -e
→˓'CREATE DATABASE my_cake;'

63.2.6 6. Configure database connection

devilbox@php-7.0.20 in /shared/httpd/my-cake $ vi cakephp/config/app.php

63.2. Walk through 311

Devilbox Documentation, Release 1.0

Listing 1: cakephp/config/app.php

<?php
'Datasources' => [

'default' => [
'className' => 'Cake\Database\Connection',
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,
'host' => '127.0.0.1',
/**
* CakePHP will use the default DB port based on the driver selected

* MySQL on MAMP uses port 8889, MAMP users will want to uncomment

* the following line and set the port accordingly

*/
//'port' => 'non_standard_port_number',
'username' => 'root',
'password' => 'secret',
'database' => 'my_cake',
'encoding' => 'utf8',
'timezone' => 'UTC',
'flags' => [],
'cacheMetadata' => true,

?>

63.2.7 7. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 2: /etc/hosts

127.0.0.1 my-cake.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

63.2.8 8. Open your browser

All set now, you can visit http://my-cake.loc or https://my-cake.loc in your browser.

See also:

Setup valid HTTPS

312 Chapter 63. Setup CakePHP

http://my-cake.loc
https://my-cake.loc

CHAPTER 64

Setup CodeIgniter

This example will use wget to install CodeIgniter from within the Devilbox PHP container.

After completing the below listed steps, you will have a working CodeIgniter setup ready to be served via http and
https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Download CodeIgniter

– 4. Symlink webroot

– 5. Add MySQL Database

– 6. Configure database connection

– 7. DNS record

– 8. Open your browser

64.1 Overview

The following configuration will be used:

313

Devilbox Documentation, Release 1.0

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-ci /shared/httpd/my-ci my_ci loc http://my-ci.loc https://my-ci.loc

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

64.2 Walk through

It will be ready in eight simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Download CodeIgniter

4. Symlink webroot directory

5. Add MySQL database

6. Configure datbase connection

7. Setup DNS record

8. Visit http://my-ci.loc in your browser

64.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

64.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-ci

314 Chapter 64. Setup CodeIgniter

http://my-ci.loc
https://my-ci.loc
http://my-ci.loc

Devilbox Documentation, Release 1.0

See also:

TLD_SUFFIX

64.2.3 3. Download CodeIgniter

Navigate into your newly created vhost directory and install CodeIgniter.

devilbox@php-7.0.20 in /shared/httpd $ cd my-ci
devilbox@php-7.0.20 in /shared/httpd/my-ci $ wget https://github.com/bcit-ci/
→˓CodeIgniter/archive/3.1.8.tar.gz
devilbox@php-7.0.20 in /shared/httpd/my-ci $ tar xfvz 3.1.8.tar.gz

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-ci $ tree -L 1
.

3.1.8.tar.gz
CodeIgniter-3.1.8

1 directory, 1 file

64.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-ci $ ln -s CodeIgniter-3.1.8/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-ci $ tree -L 1
.

3.1.8.tar.gz
CodeIgniter-3.1.8
htdocs -> CodeIgniter-3.1.8

2 directories, 1 file

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

64.2.5 5. Add MySQL Database

devilbox@php-7.0.20 in /shared/httpd/my-ci $ mysql -u root -h 127.0.0.1 -p -e 'CREATE
→˓DATABASE my_ci;'

64.2. Walk through 315

Devilbox Documentation, Release 1.0

64.2.6 6. Configure database connection

devilbox@php-7.0.20 in /shared/httpd/my-ci $ vi htdocs/application/config/database.php

Listing 1: htdocs/application/config/database.php

<?php
$db['default'] = array(

'dsn' => '',
'hostname' => '127.0.0.1',
'username' => 'root',
'password' => '',
'database' => 'my_ci',
'dbdriver' => 'mysqli',
'dbprefix' => '',
'pconnect' => FALSE,
'db_debug' => (ENVIRONMENT !== 'production'),
'cache_on' => FALSE,
'cachedir' => '',
'char_set' => 'utf8',
'dbcollat' => 'utf8_general_ci',
'swap_pre' => '',
'encrypt' => FALSE,
'compress' => FALSE,
'stricton' => FALSE,
'failover' => array(),
'save_queries' => TRUE

);

64.2.7 7. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 2: /etc/hosts

127.0.0.1 my-ci.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

64.2.8 8. Open your browser

All set now, you can visit http://my-ci.loc or https://my-ci.loc in your browser.

See also:

Setup valid HTTPS

316 Chapter 64. Setup CodeIgniter

http://my-ci.loc
https://my-ci.loc

CHAPTER 65

Setup CraftCMS

This example will use composer to install CraftCMS from within the Devilbox PHP container.

After completing the below listed steps, you will have a working CraftCMS setup ready to be served via http and https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install CraftCMS

– 4. Symlink webroot

– 5. Add MySQL Database

– 6. DNS record

– 7. Run setup wizard

* 7.1 Via command line tool

* 7.2 Via browser

– 8. Open your browser

65.1 Overview

The following configuration will be used:

317

Devilbox Documentation, Release 1.0

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-craft /shared/httpd/my-craft my_craft loc http://my-craft.loc https://my-craft.loc

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

65.2 Walk through

It will be ready in eight simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install CraftCMS via composer

4. Symlink webroot directory

5. Add MySQL database

6. Setup DNS record

7. Run setup wizard

8. Visit http://my-craft.loc in your browser

65.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

65.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-craft

318 Chapter 65. Setup CraftCMS

http://my-craft.loc
https://my-craft.loc
http://my-craft.loc

Devilbox Documentation, Release 1.0

See also:

TLD_SUFFIX

65.2.3 3. Install CraftCMS

Navigate into your newly created vhost directory and install CraftCMS with composer.

devilbox@php-7.0.20 in /shared/httpd $ cd my-craft
devilbox@php-7.0.20 in /shared/httpd/my-craft $ composer create-project craftcms/
→˓craft craftcms

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-craft $ tree -L 1
.

craftcms

1 directory, 0 files

65.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-craft $ ln -s craftcms/web/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-craft $ tree -L 1
.

craftcms
htdocs -> craftcms/web

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

65.2.5 5. Add MySQL Database

devilbox@php-7.0.20 in /shared/httpd/my-craft $ mysql -u root -h 127.0.0.1 -p -e
→˓'CREATE DATABASE my_craft CHARACTER SET utf8 COLLATE utf8_unicode_ci;'

65.2.6 6. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

65.2. Walk through 319

Devilbox Documentation, Release 1.0

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-craft.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

65.2.7 7. Run setup wizard

After everything is setup, you need to run the setup wizard. CraftCMS bundles a commandline tool that you can use.

7.1 Via command line tool

devilbox@php-7.0.20 in /shared/httpd/my-craft $ php craftcms/craft setup

Which database driver are you using? [mysql,pgsql,?]: mysql
Database server name or IP address: [localhost] 127.0.0.1
Database port: [3306]
Database username: [root]
Database password:
Database name: my_craft
Database table prefix:
Testing database credentials... success!
Saving database credentials to your .env file... done

Install Craft now? (yes|no) [yes]:

Username: [admin]
Email: admin@devilbox.org
Password:
Confirm:
Site name: craftcms
Site URL: [@web] my-craft.loc
Site language: [en-US]

...

*** installed Craft successfully (time: 14.660s)

7.2 Via browser

If you do not feel too comfortable on the command line, you can also run the setup wizard via the browser. See their
official documentation for screenshots.

See also:

To open the setup wizard, visit: http://my-craft.loc/admin/install or https://my-craft.loc/admin/install

320 Chapter 65. Setup CraftCMS

http://my-craft.loc/admin/install
https://my-craft.loc/admin/install

Devilbox Documentation, Release 1.0

• Driver: MySQL

• Server: 127.0.0.1

• Port: 3306

• Username: root

• Password: your MySQL password

• Database Name: my_craft

• Prefix: leave empty

Important: When chosing the Database server, use 127.0.0.1 as the hostname.

65.2.8 8. Open your browser

All set now, you can visit http://my-craft.loc or https://my-craft.loc in your browser.

See also:

Setup valid HTTPS

65.2. Walk through 321

http://my-craft.loc
https://my-craft.loc

Devilbox Documentation, Release 1.0

322 Chapter 65. Setup CraftCMS

CHAPTER 66

Setup Drupal

This example will use drush to install Drupal from within the Devilbox PHP container.

After completing the below listed steps, you will have a working Drupal setup ready to be served via http and https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Drupal

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

66.1 Overview

The following configuration will be used:

Project
name

VirtualHost directory Database TLD_SUFFIX Project URL

my-drupal /shared/httpd/my-
drupal

my_drupal loc http://my-drupal.loc https://my-drupal.
loc

323

http://my-drupal.loc
https://my-drupal.loc
https://my-drupal.loc

Devilbox Documentation, Release 1.0

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

66.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Drupal via drush

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-drupal.loc in your browser

66.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

66.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-drupal

See also:

TLD_SUFFIX

324 Chapter 66. Setup Drupal

http://my-drupal.loc

Devilbox Documentation, Release 1.0

66.2.3 3. Install Drupal

Navigate into your newly created vhost directory and install Drupal with drush.

devilbox@php-7.0.20 in /shared/httpd $ cd my-drupal
devilbox@php-7.0.20 in /shared/httpd/my-drupal $ drush dl drupal

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-drupal $ tree -L 1
.

drupal-8.3.3

1 directory, 0 files

66.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-drupal $ ln -s drupal-8.3.3/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-drupal $ tree -L 1
.

drupal-8.3.3
htdocs -> CodeIgniter-3.1.8

2 directories, 0 fils

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

66.2.5 5. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-drupal.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

66.2. Walk through 325

Devilbox Documentation, Release 1.0

66.2.6 6. Open your browser

Open your browser at http://my-drupal.loc or https://my-drupal.loc and follow the Drupal installation steps.

Note: When asked about MySQL hostname, choose 127.0.0.1.

See also:

Setup valid HTTPS

326 Chapter 66. Setup Drupal

http://my-drupal.loc
https://my-drupal.loc

CHAPTER 67

Setup Joomla

This example will use wget to install Joomla from within the Devilbox PHP container.

After completing the below listed steps, you will have a working Joomla setup ready to be served via http and https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Download and extract Joomla

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

67.1 Overview

The following configuration will be used:

Project
name

VirtualHost directory Database TLD_SUFFIX Project URL

my-joomla /shared/httpd/my-
joomla

n.a. loc http://my-joomla.loc https://my-joomla.
loc

327

http://my-joomla.loc
https://my-joomla.loc
https://my-joomla.loc

Devilbox Documentation, Release 1.0

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

67.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Download and extract Joomla

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-joomla.loc in your browser

67.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

67.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-joomla

See also:

TLD_SUFFIX

328 Chapter 67. Setup Joomla

http://my-joomla.loc

Devilbox Documentation, Release 1.0

67.2.3 3. Download and extract Joomla

Navigate into your newly created vhost directory and install Joomla.

devilbox@php-7.0.20 in /shared/httpd $ cd my-joomla
devilbox@php-7.0.20 in /shared/httpd/my-joomla $ wget -O joomla.tar.gz https://
→˓downloads.joomla.org/cms/joomla3/3-8-0/joomla_3-8-0-stable-full_package-tar-gz?
→˓format=gz
devilbox@php-7.0.20 in /shared/httpd/my-joomla $ mkdir joomla
devilbox@php-7.0.20 in /shared/httpd/my-joomla $ tar xvfz joomla.tar.gz -C joomla/

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-joomla $ tree -L 1
.

joomla.tar.gz
joomla

1 directory, 1 file

67.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-joomla $ ln -s joomla/ htdocs

How does the directory structure look after symlinking it:

devilbox@php-7.0.20 in /shared/httpd/my-joomla $ tree -L 1
.

joomla.tar.gz
joomla
htdocs -> joomla

2 directories, 1 file

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

67.2.5 5. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

67.2. Walk through 329

Devilbox Documentation, Release 1.0

Listing 1: /etc/hosts

127.0.0.1 my-joomla.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

67.2.6 6. Open your browser

All set now, you can visit http://my-joomla.loc or https://my-joomla.loc in your browser.

See also:

Setup valid HTTPS

330 Chapter 67. Setup Joomla

http://my-joomla.loc
https://my-joomla.loc

CHAPTER 68

Setup Laravel

This example will use laravel to install Laravel from within the Devilbox PHP container.

After completing the below listed steps, you will have a working Laravel setup ready to be served via http and https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Laravel

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

68.1 Overview

The following configuration will be used:

Project
name

VirtualHost directory Database TLD_SUFFIX Project URL

my-laravel /shared/httpd/my-
laravel

n.a. loc http://my-laravel.loc https://my-laravel.
loc

331

http://my-laravel.loc
https://my-laravel.loc
https://my-laravel.loc

Devilbox Documentation, Release 1.0

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

68.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Laravel

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-laravel.loc in your browser

68.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

68.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-laravel

See also:

TLD_SUFFIX

332 Chapter 68. Setup Laravel

http://my-laravel.loc

Devilbox Documentation, Release 1.0

68.2.3 3. Install Laravel

Navigate into your newly created vhost directory and install Laravel with laravel cli.

devilbox@php-7.0.20 in /shared/httpd $ cd my-laravel
devilbox@php-7.0.20 in /shared/httpd/my-laravel $ laravel new laravel-project

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-laravel $ tree -L 1
.

laravel-project

1 directory, 0 files

68.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-laravel $ ln -s laravel-project/public/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-laravel $ tree -L 1
.

laravel-project
htdocs -> laravel-project/public

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

68.2.5 5. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-laravel.loc

This will ensure that your host operating system’s browser will direct any calls on http://my-laravel.loc or
https://my-laravel.loc to the Devilbox which is listening on 127.0.0.1.

See also:

• Add project hosts entry on MacOS

68.2. Walk through 333

Devilbox Documentation, Release 1.0

• Add project hosts entry on Windows

• Setup Auto DNS

68.2.6 6. Open your browser

Open your browser at http://my-laravel.loc or https://my-laravel.loc

See also:

Setup valid HTTPS

334 Chapter 68. Setup Laravel

http://my-laravel.loc
https://my-laravel.loc

CHAPTER 69

Setup Magento 2

This example will use git and composer to install Magento 2 from within the Devilbox PHP container.

After completing the below listed steps, you will have a working Magento 2 setup ready to be served via http and
https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Magento 2

– 4. Symlink webroot

– 5. Add MySQL Database

– 7. DNS record

– 8. Open your browser

69.1 Overview

The following configuration will be used:

335

Devilbox Documentation, Release 1.0

Project
name

VirtualHost directory Database TLD_SUFFIX Project URL

my-magento /shared/httpd/my-
magento

my_magento loc http://my-magento.loc https:
//my-magento.loc

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

69.2 Walk through

It will be ready in eight simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Magento 2 via git and composer

4. Symlink webroot directory

5. Add MySQL database

6. Setup DNS record

7. Visit http://my-magento.loc in your browser

69.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

69.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.1.20 in /shared/httpd $ mkdir my-magento

336 Chapter 69. Setup Magento 2

http://my-magento.loc
https://my-magento.loc
https://my-magento.loc
http://my-magento.loc

Devilbox Documentation, Release 1.0

See also:

TLD_SUFFIX

69.2.3 3. Install Magento 2

Navigate into your newly created vhost directory and install Magento 2 with git.

devilbox@php-7.1.20 in /shared/httpd $ cd my-magento

Download Magento 2 via git
devilbox@php-7.1.20 in /shared/httpd/my-magento $ git clone https://github.com/
→˓magento/magento2

Checkout the latest stable git tag
devilbox@php-7.1.20 in /shared/httpd/my-magento $ cd magento2
devilbox@php-7.1.20 in /shared/httpd/my-magento/magento2 $ git checkout 2.2.5

Install dependencies with Composer
devilbox@php-7.1.20 in /shared/httpd/my-magento/magento2 $ composer install

How does the directory structure look after installation:

devilbox@php-7.1.20 in /shared/httpd/my-magento $ tree -L 1
.

magento2

1 directory, 0 files

69.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.1.20 in /shared/httpd/my-magento $ ln -s magento2/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.1.20 in /shared/httpd/my-magento $ tree -L 1
.

magento2
htdocs -> magento2

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

69.2. Walk through 337

Devilbox Documentation, Release 1.0

69.2.5 5. Add MySQL Database

devilbox@php-7.1.20 in /shared/httpd/my-magento $ mysql -u root -h 127.0.0.1 -p -e
→˓'CREATE DATABASE my_magento;'

69.2.6 7. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-magento.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

69.2.7 8. Open your browser

All set now, you can visit http://my-magento.loc or https://my-magento.loc in your browser and follow the installation
steps.

Important: Use 127.0.0.1 for the MySQL database hostname.

See also:

Setup valid HTTPS

338 Chapter 69. Setup Magento 2

http://my-magento.loc
https://my-magento.loc

CHAPTER 70

Setup Phalcon

This example will use phalcon to install Phalcon from within the Devilbox PHP container.

After completing the below listed steps, you will have a working Phalcon setup ready to be served via http and https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Phalcon

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

– 7. Create custom vhost config file (Nginx Only)

70.1 Overview

The following configuration will be used:

Project
name

VirtualHost directory Database TLD_SUFFIX Project URL

my-phalcon /shared/httpd/my-
phalcon

n.a. loc http://my-phalcon.loc https:
//my-phalcon.loc

339

http://my-phalcon.loc
https://my-phalcon.loc
https://my-phalcon.loc

Devilbox Documentation, Release 1.0

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

70.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Phalcon

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-phalcon.loc in your browser

7. (Nginx) Create custom vhost config file

70.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

70.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-phalcon

See also:

TLD_SUFFIX

340 Chapter 70. Setup Phalcon

http://my-phalcon.loc

Devilbox Documentation, Release 1.0

70.2.3 3. Install Phalcon

Navigate into your newly created vhost directory and install Phalcon with phalcon cli.

devilbox@php-7.0.20 in /shared/httpd $ cd my-phalcon
devilbox@php-7.0.20 in /shared/httpd/my-phalcon $ phalcon project phalconphp

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-phalcon $ tree -L 1
.

phalconphp

1 directory, 0 files

70.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-phalcon $ ln -s phalconphp/public/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-phalcon $ tree -L 1
.

phalconphp
htdocs -> phalconphp/public

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

70.2.5 5. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-phalcon.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

70.2. Walk through 341

Devilbox Documentation, Release 1.0

70.2.6 6. Open your browser

Open your browser at http://my-phalcon.loc or https://my-phalcon.loc

See also:

Setup valid HTTPS

70.2.7 7. Create custom vhost config file (Nginx Only)

By default routes will not work if using Nginx. To fix this, you will need to create a custom vhost configuration.

In your project folder, you will need to create a folder called .devilbox unless you changed HTTPD_TEMPLATE_DIR
in your .env

Copy the default nginx config from ./cfg/vhost-gen/nginx.yml-example-vhost to ./data/www/my-
project/.devilbox/nginx.yml

Carefully edit the nginx.yml file and change:

try_files $uri $uri/ /index.php$is_args$args; to try_files $uri $uri/ /index.
php?_url=$uri&$args;

and

location ~ \.php?$ { to location ~ [^/]\.php(/|$) {

save the file as nginx.yml and ensure not to use any tabs in the file or devilbox will not use the custom configuration.
You can use yamllint nginx.yml whilst inside the Devilbox shell to check the file before restarting devilbox.

342 Chapter 70. Setup Phalcon

http://my-phalcon.loc
https://my-phalcon.loc

CHAPTER 71

Setup Photon CMS

This example will use photon cli to install Photon CMS from within the Devilbox PHP container.

After completing the below listed steps, you will have a working Laravel setup ready to be served via http and https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Photon

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

71.1 Overview

The following configuration will be used:

Project
name

VirtualHost directory Database TLD_SUFFIX Project URL

my-photon /shared/httpd/my-
photon

blog loc http://my-photon.loc https://my-photon.
loc

343

http://my-photon.loc
https://my-photon.loc
https://my-photon.loc

Devilbox Documentation, Release 1.0

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

71.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Photon

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-photon.loc in your browser

71.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

71.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-photon

See also:

TLD_SUFFIX

344 Chapter 71. Setup Photon CMS

http://my-photon.loc

Devilbox Documentation, Release 1.0

71.2.3 3. Install Photon

Navigate into your newly created vhost directory and install Photom CMS with photon cli.

Note: During the installation you will be asked for the MySQL hostname, username and password. Ensure not to
specify localhost, but instead use 127.0.0.1 for the hostname. Additionally, provide a pair of credentials that
has permissions to create a database or create the database itself beforehand.

devilbox@php-7.0.20 in /shared/httpd $ cd my-photon
devilbox@php-7.0.20 in /shared/httpd/my-photon $ photon new blog
...What is your mysql hostname? [localhost] 127.0.0.1
...What is your mysql username? [root]root
...What is your mysql password? []

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-photon $ tree -L 1
.

blog

1 directory, 0 files

71.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-photon $ ln -s blog/public/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-photon $ tree -L 1
.

blog
htdocs -> blog/public

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

71.2.5 5. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

71.2. Walk through 345

Devilbox Documentation, Release 1.0

Listing 1: /etc/hosts

127.0.0.1 my-photon.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

71.2.6 6. Open your browser

Open your browser at http://my-photon.loc or https://my-photon.loc

See also:

Setup valid HTTPS

346 Chapter 71. Setup Photon CMS

http://my-photon.loc
https://my-photon.loc

CHAPTER 72

Setup PrestaShop

This example will use git and composer to install PrestaShop from within the Devilbox PHP container.

After completing the below listed steps, you will have a working PrestaShop setup ready to be served via http and
https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install PrestaShop

– 4. Symlink webroot

– 5. Add MySQL Database

– 6. DNS record

– 7. Open your browser

72.1 Overview

The following configuration will be used:

347

Devilbox Documentation, Release 1.0

Project
name

VirtualHost directory Database TLD_SUFFIX Project URL

my-presta /shared/httpd/my-
presta

my_presta loc http://my-presta.loc https://my-presta.
loc

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

72.2 Walk through

It will be ready in eight simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install PrestaShop via git and composer

4. Symlink webroot directory

5. Add MySQL database

6. Configure datbase connection

7. Setup DNS record

8. Visit http://my-presta.loc in your browser

72.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

72.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

348 Chapter 72. Setup PrestaShop

http://my-presta.loc
https://my-presta.loc
https://my-presta.loc
http://my-presta.loc

Devilbox Documentation, Release 1.0

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-presta

See also:

TLD_SUFFIX

72.2.3 3. Install PrestaShop

Navigate into your newly created vhost directory and install PrestaShop with git and composer.

devilbox@php-7.0.20 in /shared/httpd $ cd my-presta

Download PrestaShop with git
devilbox@php-7.0.20 in /shared/httpd/my-presta $ git clone https://github.com/
→˓PrestaShop/PrestaShop

Checkout the latest stable git tag
devilbox@php-7.0.20 in /shared/httpd/my-presta $ cd PrestaShop
devilbox@php-7.0.20 in /shared/httpd/my-presta $ git checkout 1.7.4.2

Install dependencies with Composer
devilbox@php-7.0.20 in /shared/httpd/my-presta $ composer install

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-presta $ tree -L 1
.

PrestaShop

1 directory, 0 files

72.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-presta $ ln -s PrestaShop/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-presta $ tree -L 1
.

PrestaShop
htdocs -> PrestaShop

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

72.2. Walk through 349

Devilbox Documentation, Release 1.0

72.2.5 5. Add MySQL Database

devilbox@php-7.0.20 in /shared/httpd/my-presta $ mysql -u root -h 127.0.0.1 -p -e
→˓'CREATE DATABASE my_presta;'

72.2.6 6. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-presta.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

72.2.7 7. Open your browser

All set now, you can visit http://my-presta.loc or https://my-presta.loc in your browser and follow the installation steps.

See also:

Setup valid HTTPS

350 Chapter 72. Setup PrestaShop

http://my-presta.loc
https://my-presta.loc

CHAPTER 73

Setup Shopware

This example will use git to install Shopware from within the Devilbox PHP container.

After completing the below listed steps, you will have a working Laravel setup ready to be served via http and https.

See also:

•

•

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Download Shopware

– 4. Symlink webroot

– 5. Add MySQL Database

– 6. DNS record

– 7. Follow install steps in your browser

• Encountered problems

73.1 Overview

The following configuration will be used:

351

Devilbox Documentation, Release 1.0

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-sw /shared/httpd/my-sw my_sw loc http://my-sw.loc https://my-sw.loc

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

73.2 Walk through

It will be ready in seven simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Download Shopware via git

4. Symlink webroot directory

5. Add MySQL database

6. Setup DNS record

7. Follow installation steps in http://my-sw.loc in your browser

73.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

73.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-sw

See also:

TLD_SUFFIX

352 Chapter 73. Setup Shopware

http://my-sw.loc
https://my-sw.loc
http://my-sw.loc

Devilbox Documentation, Release 1.0

73.2.3 3. Download Shopware

Navigate into your newly created vhost directory and install Shopware with git.

devilbox@php-7.0.20 in /shared/httpd $ cd my-sw
devilbox@php-7.0.20 in /shared/httpd/my-sw $ git clone https://github.com/shopware/
→˓shopware

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-sw $ tree -L 1
.

shopware

1 directory, 0 files

73.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-sw $ ln -s shopware/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-sw $ tree -L 1
.

shopware
htdocs -> shopware

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

73.2.5 5. Add MySQL Database

devilbox@php-7.0.20 in /shared/httpd/my-sw $ mysql -u root -h 127.0.0.1 -p -e 'CREATE
→˓DATABASE my_sw;'

73.2.6 6. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

73.2. Walk through 353

Devilbox Documentation, Release 1.0

Listing 1: /etc/hosts

127.0.0.1 my-sw.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

73.2.7 7. Follow install steps in your browser

All set now, you can visit http://my-sw.loc or https://my-sw.loc in your browser and follow the installation steps as
described in the :

Important: When setting up database connection use the following values:

• Database server: 127.0.0.1

• Database user: root (if you don’t have a dedicated user already)

• Database pass: by default the root password is empty

• Database name: my_sw

See also:

Setup valid HTTPS

73.3 Encountered problems

By the time of writing (2018-07-07) Shopware had loading issues with the combination of PHP 5.6 and Apache
2.4. Use any other combination.

See also:

https://github.com/cytopia/devilbox/issues/300

354 Chapter 73. Setup Shopware

http://my-sw.loc
https://my-sw.loc
https://github.com/cytopia/devilbox/issues/300

CHAPTER 74

Setup Symfony

This example will use symfony to install Symfony from within the Devilbox PHP container.

After completing the below listed steps, you will have a working Symfony setup ready to be served via http and https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Symfony

– 4. Symlink webroot

– 5. Enable Symfony prod (app.php)

– 6. DNS record

– 7. Open your browser

74.1 Overview

The following configuration will be used:

Project
name

VirtualHost directory Database TLD_SUFFIX Project URL

my-symfony /shared/httpd/my-
symfony

n.a. loc http://my-symfony.loc https:
//my-symfony.loc

355

http://my-symfony.loc
https://my-symfony.loc
https://my-symfony.loc

Devilbox Documentation, Release 1.0

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

74.2 Walk through

It will be ready in seven simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Symfony

4. Symlink webroot directory

5. Enable Symfony prod (app.php)

6. Setup DNS record

7. Visit http://my-symfony.loc in your browser

74.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

74.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-symfony

See also:

TLD_SUFFIX

356 Chapter 74. Setup Symfony

http://my-symfony.loc

Devilbox Documentation, Release 1.0

74.2.3 3. Install Symfony

Navigate into your newly created vhost directory and install Symfony with symfony cli.

devilbox@php-7.0.20 in /shared/httpd $ cd my-symfony
devilbox@php-7.0.20 in /shared/httpd/my-symfony $ symfony new symfony

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-symfony $ tree -L 1
.

symfony

1 directory, 0 files

74.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-symfony $ ln -s symfony/web/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-sw $ tree -L 1
.

symfony
htdocs -> symfony/web

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

74.2.5 5. Enable Symfony prod (app.php)

devilbox@php-7.0.20 in /shared/httpd/my-symfony $ cd symfony/web
devilbox@php-7.0.20 in /shared/httpd/my-symfony/symfony/web $ ln -s app.php index.php

74.2.6 6. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

74.2. Walk through 357

Devilbox Documentation, Release 1.0

Listing 1: /etc/hosts

127.0.0.1 my-symfony.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

74.2.7 7. Open your browser

Open your browser at http://my-symfony.loc or https://my-symfony.loc

See also:

Setup valid HTTPS

358 Chapter 74. Setup Symfony

http://my-symfony.loc
https://my-symfony.loc

CHAPTER 75

Setup Typo3

This example will use composer to install Typo3 from within the Devilbox PHP container.

After completing the below listed steps, you will have a working Laravel setup ready to be served via http and https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Typo3

– 4. Symlink webroot

– 5. DNS record

– 6. Create FIRST_INSTALL file

– 7. Open your browser

– 8. Step through guided web installation

75.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-typo /shared/httpd/my-typo my_typo loc http://my-typo.loc https://my-typo.loc

359

http://my-typo.loc
https://my-typo.loc

Devilbox Documentation, Release 1.0

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

75.2 Walk through

It will be ready in eight simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Typo3 via composer

4. Symlink webroot directory

5. Setup DNS record

6. Create FIRST_INSTALL file

7. Open your browser

8. Step through guided web installation

75.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

75.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-typo

See also:

TLD_SUFFIX

360 Chapter 75. Setup Typo3

Devilbox Documentation, Release 1.0

75.2.3 3. Install Typo3

Navigate into your newly created vhost directory and install Typo3 with composer.

devilbox@php-7.0.20 in /shared/httpd $ cd my-typo
devilbox@php-7.0.20 in /shared/httpd/my-typo $ composer create-project typo3/cms-base-
→˓distribution typo3

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-typo $ tree -L 1
.

typo3

1 directory, 0 files

75.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-typo $ ln -s typo3/public htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-typo $ tree -L 1
.

typo3
htdocs -> typo3/public

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

75.2.5 5. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-typo.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

75.2. Walk through 361

Devilbox Documentation, Release 1.0

• Setup Auto DNS

75.2.6 6. Create FIRST_INSTALL file

To continue installing via the guided web install, you need to create a file called FIRST_INSTALL in the document
root.

devilbox@php-7.0.20 in /shared/httpd/my-typo $ touch htdocs/FIRST_INSTALL

75.2.7 7. Open your browser

Open your browser at http://my-typo.loc or https://my-typo.loc.

See also:

Setup valid HTTPS

75.2.8 8. Step through guided web installation

1. Select database

• Connection: Manually configured MySWQL TCP/IP connection

• Username: root

• Password

• Host: 127.0.0.1

• Port: 3306

2. Select database

• Create a new database: typo3

3. Create Administrative User / Specify Site Name

• Username: admin

• Password: choose a secure password

• Site name: My Typo

4. Installation complete

• Create empty starting page

362 Chapter 75. Setup Typo3

http://my-typo.loc
https://my-typo.loc

CHAPTER 76

Setup Wordpress

This example will use git to install Wordpress from within the Devilbox PHP container.

After completing the below listed steps, you will have a working Laravel setup ready to be served via http and https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Download Wordpress via git

– 4. Symlink webroot

– 5. Add MySQL Database

– 6. DNS record

– 7. Open your browser

76.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-wp /shared/httpd/my-wp my_wp loc http://my-wp.loc https://my-wp.loc

363

http://my-wp.loc
https://my-wp.loc

Devilbox Documentation, Release 1.0

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

76.2 Walk through

It will be ready in seven simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Download Wordpress via git

4. Symlink webroot directory

5. Add MySQL database

6. Setup DNS record

7. Visit http://my-wp.loc in your browser

76.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

76.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-wp

See also:

TLD_SUFFIX

364 Chapter 76. Setup Wordpress

http://my-wp.loc

Devilbox Documentation, Release 1.0

76.2.3 3. Download Wordpress via git

Navigate into your newly created vhost directory and install Wordpress with git.

devilbox@php-7.0.20 in /shared/httpd $ cd my-wp
devilbox@php-7.0.20 in /shared/httpd/my-wp $ git clone https://github.com/WordPress/
→˓WordPress wordpress.git

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-wp $ tree -L 1
.

wordpress.git

1 directory, 0 files

76.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-wp $ ln -s wordpress.git/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-wp $ tree -L 1
.

wordpress.git
htdocs -> wordpress.git

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

76.2.5 5. Add MySQL Database

devilbox@php-7.0.20 in /shared/httpd/my-cake $ mysql -u root -h 127.0.0.1 -p -e
→˓'CREATE DATABASE my_wp;'

76.2.6 6. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

76.2. Walk through 365

Devilbox Documentation, Release 1.0

Listing 1: /etc/hosts

127.0.0.1 my-wp.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

76.2.7 7. Open your browser

Open your browser at http://my-wp.loc or https://my-wp.loc and follow the installation steps.

See also:

Setup valid HTTPS

(1/7) Choose your desired Wordpress language

(2/7) Read pre-installation information

(3/7) Setup database connection

Important: Choose 127.0.0.1 as the database host

(4/7) Database setup post screen

(5/7) Start Wordpress installation

(6/7) Installation success view

(7/7) Login to Admin panel

366 Chapter 76. Setup Wordpress

http://my-wp.loc
https://my-wp.loc

Devilbox Documentation, Release 1.0

Fig. 1: Wordpress installation: Choose language

76.2. Walk through 367

Devilbox Documentation, Release 1.0

Fig. 2: Wordpress installation: Overview

368 Chapter 76. Setup Wordpress

Devilbox Documentation, Release 1.0

Fig. 3: Wordpress installation: Setup database

Fig. 4: Wordpress installation: Database setup finished

76.2. Walk through 369

Devilbox Documentation, Release 1.0

Fig. 5: Wordpress installation: Installation

370 Chapter 76. Setup Wordpress

Devilbox Documentation, Release 1.0

Fig. 6: Wordpress installation: Installation finished

Fig. 7: Wordpress installation: Login

76.2. Walk through 371

Devilbox Documentation, Release 1.0

372 Chapter 76. Setup Wordpress

CHAPTER 77

Setup Yii

This example will use composer to install Yii from within the Devilbox PHP container.

After completing the below listed steps, you will have a working Laravel setup ready to be served via http and https.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Yii2 via composer

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

77.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-yii /shared/httpd/my-yii n.a. loc http://my-yii.loc https://my-yii.loc

Note:

373

http://my-yii.loc
https://my-yii.loc

Devilbox Documentation, Release 1.0

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

77.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Yii2 via composer

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-wp.loc in your browser

77.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

77.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-yii

See also:

TLD_SUFFIX

77.2.3 3. Install Yii2 via composer

Navigate into your newly created vhost directory and install Yii2 with composer.

devilbox@php-7.0.20 in /shared/httpd $ cd my-yii
devilbox@php-7.0.20 in /shared/httpd/my-yii $ composer create-project --prefer-dist --
→˓stability=dev yiisoft/yii2-app-basic yii2-dev (continues on next page)

374 Chapter 77. Setup Yii

http://my-wp.loc

Devilbox Documentation, Release 1.0

(continued from previous page)

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-yii $ tree -L 1
.

yii2-dev

1 directory, 0 files

77.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-yii $ ln -s yii2-dev/web/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-yii $ tree -L 1
.

yii2-dev
htdocs -> yii2-dev/web

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

77.2.5 5. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-yii.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

77.2. Walk through 375

Devilbox Documentation, Release 1.0

77.2.6 6. Open your browser

Open your browser at http://my-yii.loc or https://my-yii.loc

See also:

Setup valid HTTPS

376 Chapter 77. Setup Yii

http://my-yii.loc
https://my-yii.loc

CHAPTER 78

Setup Zend

This example will use composer to install Zend from within the PHP container.

See also:

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Install Zend via composer

– 4. Symlink webroot

– 5. DNS record

– 6. Open your browser

78.1 Overview

The following configuration will be used:

Project name VirtualHost directory Database TLD_SUFFIX Project URL
my-zend /shared/httpd/my-zend n.a. loc http://my-zend.loc https://my-zend.loc

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

377

http://my-zend.loc
https://my-zend.loc

Devilbox Documentation, Release 1.0

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

78.2 Walk through

It will be ready in six simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Install Zend via composer

4. Symlink webroot directory

5. Setup DNS record

6. Visit http://my-wp.loc in your browser

78.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

78.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-zend

See also:

TLD_SUFFIX

78.2.3 3. Install Zend via composer

Navigate into your newly created vhost directory and install Zend with composer.

devilbox@php-7.0.20 in /shared/httpd $ cd my-zend
devilbox@php-7.0.20 in /shared/httpd/my-zend $ composer create-project --prefer-dist
→˓zendframework/skeleton-application zend

378 Chapter 78. Setup Zend

http://my-wp.loc

Devilbox Documentation, Release 1.0

How does the directory structure look after installation:

devilbox@php-7.0.20 in /shared/httpd/my-zend $ tree -L 1
.

zend

1 directory, 0 files

78.2.4 4. Symlink webroot

Symlinking the actual webroot directory to htdocs is important. The web server expects every project’s document
root to be in <vhost dir>/htdocs/. This is the path where it will serve the files. This is also the path where
your frameworks entrypoint (usually index.php) should be found.

Some frameworks however provide its actual content in nested directories of unknown levels. This would be impossi-
ble to figure out by the web server, so you manually have to symlink it back to its expected path.

devilbox@php-7.0.20 in /shared/httpd/my-zend $ ln -s zend/public/ htdocs

How does the directory structure look after symlinking:

devilbox@php-7.0.20 in /shared/httpd/my-zend $ tree -L 1
.

zend
htdocs -> zend/public

2 directories, 0 files

As you can see from the above directory structure, htdocs is available in its expected path and points to the frame-
works entrypoint.

78.2.5 5. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 1: /etc/hosts

127.0.0.1 my-zend.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

78.2.6 6. Open your browser

Open your browser at http://my-zend.loc or https://my-zend.loc

See also:

78.2. Walk through 379

http://my-zend.loc
https://my-zend.loc

Devilbox Documentation, Release 1.0

Setup valid HTTPS

380 Chapter 78. Setup Zend

CHAPTER 79

Setup other Frameworks

The setup instructions and frameworks shown in this section are only meant as an example and the list is in no way
complete.

The Devilbox itself is a normal development stack and is capable of running any framework, CMS or custom written
PHP software.

If you wish to see more install guides, open up an issue at Github: https://github.com/cytopia/devilbox/issues

381

https://github.com/cytopia/devilbox/issues

Devilbox Documentation, Release 1.0

382 Chapter 79. Setup other Frameworks

CHAPTER 80

Setup reverse proxy NodeJS

This example will walk you through creating a NodeJS hello world application, which is started automatically on
docker-compose up via , will be proxied to the web server and can be reached via valid HTTPS.

Note: It is also possible to attach a leight-weight NodeJS container to the Devilbox instead of running this in the PHP
container. See here for details: Reverse Proxy for custom Docker

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Create NodeJS application

– 4. Create virtual docroot directory

– 5. Add reverse proxy vhost-gen config files

* 5.1 Create vhost-gen template directory

* 5.2 Copy vhost-gen templates

* 5.3 Adjust ports

· 5.3.1 Adjust Apache 2.2 template

· 5.3.2 Adjust Apache 2.4 template

· 5.3.3 Adjust Nginx template

– 6. Create autostart script

383

Devilbox Documentation, Release 1.0

– 7. DNS record

– 8. Restart the Devilbox

– 9. Open your browser

• Managing NodeJS

80.1 Overview

The following configuration will be used:

Project name VirtualHost direc-
tory

Database TLD_SUFFIX Project URL

my-node /shared/httpd/my-
node

• loc http://my-node.loc
https://my-node.loc

Additionally we will set the listening port of the NodeJS appliation to 4000 inside the PHP container.

We also want NodeJS running regardless of which PHP container will bestarted (global autostart).

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

80.2 Walk through

It will be ready in nine simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Create NodeJS hello world application

4. Create virtual docroot directory

5. Add reverse proxy vhost-gen config files

6. Create autostart script

7. Setup DNS record

8. Restart the Devilbox

9. Visit http://my-node.loc in your browser

384 Chapter 80. Setup reverse proxy NodeJS

http://my-node.loc
https://my-node.loc
http://my-node.loc

Devilbox Documentation, Release 1.0

80.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

80.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-node

See also:

TLD_SUFFIX

80.2.3 3. Create NodeJS application

Navigate to your project directory
devilbox@php-7.0.20 in /shared/httpd $ cd my-node

Create a directory which will hold the source code
devilbox@php-7.0.20 in /shared/httpd/my-node $ mkdir src

Create the index.js file with your favourite editor
devilbox@php-7.0.20 in /shared/httpd/my-node/src $ vi index.js

Listing 1: index.js

// Load the http module to create an http server.
var http = require('http');

// Configure our HTTP server to respond with Hello World to all requests.
var server = http.createServer(function (request, response) {
response.writeHead(200, {"Content-Type": "text/plain"});
response.end("Hello World\n");

});

// Listen on port 3000
server.listen(3000);

80.2. Walk through 385

Devilbox Documentation, Release 1.0

80.2.4 4. Create virtual docroot directory

Every project for the Devilbox requires a htdocs directory present inside the project dir. For a reverse proxy this is
not of any use, but rather only for the Intranet vhost page to stop complaining about the missing htdocs directory.
So that’s why this is only a virtual directory which will not hold any data.

Navigate to your project directory
devilbox@php-7.0.20 in /shared/httpd $ cd my-node

Create the docroot directory
devilbox@php-7.0.20 in /shared/httpd/my-node $ mkdir htdocs

See also:

HTTPD_DOCROOT_DIR

80.2.5 5. Add reverse proxy vhost-gen config files

5.1 Create vhost-gen template directory

Before we can copy the vhost-gen templates, we must create the .devilbox template directory inside the project
directory.

Navigate to your project directory
devilbox@php-7.0.20 in /shared/httpd $ cd my-node

Create the .devilbox template directory
devilbox@php-7.0.20 in /shared/httpd/my-node $ mkdir .devilbox

See also:

HTTPD_TEMPLATE_DIR

5.2 Copy vhost-gen templates

Now we can copy and adjust the vhost-gen reverse proxy files for Apache 2.2, Apache 2.4 and Nginx.

The reverse vhost-gen templates are available in cfg/vhost-gen:

host> tree -L 1 cfg/vhost-gen/

cfg/vhost-gen/
apache22.yml-example-rproxy
apache22.yml-example-vhost
apache24.yml-example-rproxy
apache24.yml-example-vhost
nginx.yml-example-rproxy
nginx.yml-example-vhost
README.md

0 directories, 7 files

For this example we will copy all *-example-rproxy files into /shared/httpd/my-node/.devilbox to
ensure this will work with all web servers.

386 Chapter 80. Setup reverse proxy NodeJS

Devilbox Documentation, Release 1.0

host> cd /path/to/devilbox
host> cp cfg/vhost-gen/apache22.yml-example-rproxy data/www/my-node/.devilbox/
→˓apache22.yml
host> cp cfg/vhost-gen/apache24.yml-example-rproxy data/www/my-node/.devilbox/
→˓apache24.yml
host> cp cfg/vhost-gen/nginx.yml-example-rproxy data/www/my-node/.devilbox/nginx.yml

5.3 Adjust ports

By default, all vhost-gen templates will forward requests to port 8000 into the PHP container. Our current example
however uses port 4000, so we must change that accordingly for all three templates.

5.3.1 Adjust Apache 2.2 template

Open the apache22.yml vhost-gen template in your project:

host> cd /path/to/devilbox
host> vi data/www/my-node/.devilbox/apache22.yml

Find the two lines with ProxyPass and ProxyPassReverse and change the port from 8000 to 4000

Listing 2: data/www/my-node/.devilbox/apache22.yml

... more lines above ...

###
Basic vHost skeleton
###
vhost: |

<VirtualHost __DEFAULT_VHOST__:__PORT__>
ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
ProxyRequests On
ProxyPreserveHost On
ProxyPass / http://php:4000/
ProxyPassReverse / http://php:4000/

... more lines below ...

5.3.2 Adjust Apache 2.4 template

Open the apache24.yml vhost-gen template in your project:

host> cd /path/to/devilbox
host> vi data/www/my-node/.devilbox/apache24.yml

Find the two lines with ProxyPass and ProxyPassReverse and change the port from 8000 to 4000

80.2. Walk through 387

Devilbox Documentation, Release 1.0

Listing 3: data/www/my-node/.devilbox/apache24.yml

... more lines above ...

###
Basic vHost skeleton
###
vhost: |

<VirtualHost __DEFAULT_VHOST__:__PORT__>
ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
ProxyRequests On
ProxyPreserveHost On
ProxyPass / http://php:4000/
ProxyPassReverse / http://php:4000/

... more lines below ...

5.3.3 Adjust Nginx template

Open the nginx.yml vhost-gen template in your project:

host> cd /path/to/devilbox
host> vi data/www/my-node/.devilbox/nginx.yml

Find the lines with proxy_pass and change the port from 8000 to 4000

Listing 4: data/www/my-node/.devilbox/nginx.yml

... more lines above ...

###
Basic vHost skeleton
###
vhost: |

server {
listen __PORT____DEFAULT_VHOST__;
server_name __VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
location / {

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_pass http://php:4000;

}

... more lines below ...

388 Chapter 80. Setup reverse proxy NodeJS

Devilbox Documentation, Release 1.0

80.2.6 6. Create autostart script

For NodeJS applications, the Devilbox already bundles an autostart template which you can use and simply just add
the path of your NodeJS application. This template does nothing by default as its file name does not end by .sh.
So let’s have a look at the template from autostart/run-node-js-projects.sh-example. The location
where you will have to add your path is highlighted:

Listing 5: autostart/run-node-js-projects.sh-example

#!/usr/bin/env bash
#
This is a generic example to startup your NodeJS projects with
pm2 (https://github.com/Unitech/pm2)
#
Important: As everything is run by the root user, you must explicitly direct the
commands to the devilbox user.
#

Add the full paths of your Nodejs projects startup files into this array
Each project separated by a newline and enclosed in double quotes. (No commas!)
Paths are internal paths inside the PHP container.
NODE_PROJECTS=(

#"/shared/httpd/my-rhost/js/index.js"
#"/shared/httpd/my-node-hello-world/name/run.js"
#"/shared/httpd/another-node-project/javascript/run.js"

)

Check if any projects have been defined
if [${#NODE_PROJECTS[@]} -eq 0]; then

echo "No projects defined. Exiting."
exit 0

fi

This loops over the paths, separates base directory and filename and will run it in
→˓the background
as the user devilbox. There shouldn't be any need to change anything here.
for item in ${NODE_PROJECTS[*]}; do

NODE_PATH="$(dirname "${item}")"
NODE_FILE="$(basename "${item}")"

if [! -d "${NODE_PATH}"]; then
>&2 echo "[Warning], skipping startup, directory does not exist: $

→˓{NODE_PATH}"
continue;

fi
if [! -f "${NODE_PATH}/${NODE_FILE}"]; then

>&2 echo "[Warning], skipping startup, file does not exist: ${NODE_
→˓PATH}/${NODE_FILE}"

continue;
fi

echo "su -c \"cd ${NODE_PATH}; pm2 start ${NODE_FILE}\" -l devilbox"
su -c "cd ${NODE_PATH}; pm2 start ${NODE_FILE}" -l devilbox

done

80.2. Walk through 389

Devilbox Documentation, Release 1.0

So in order to proceed copy this file inside the autostart/ directory of the Devilbox git directory to a new file
ending by .sh

host> cd /path/to/devilbox

Navigate to the autostart directory
host> cd autostart

Copy the template
host> cp run-node-js-projects.sh-example run-node-js-projects.sh

Adjust the template and add your path:
host> vi run-node-js-projects.sh

Listing 6: autostart/run-node-js-projects.sh

... more lines above ...

Add the full paths of your Nodejs projects startup files into this array
Each project separated by a newline and enclosed in double quotes. (No commas!)
Paths are internal paths inside the PHP container.
NODE_PROJECTS=(

"/shared/httpd/my-node/js/index.js"
)

... more lines below ...

See also:

• Custom scripts per PHP version (individually for different PHP versions)

• Custom scripts globally (equal for all PHP versions)

• Autostarting NodeJS Apps

80.2.7 7. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 7: /etc/hosts

127.0.0.1 my-node.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

80.2.8 8. Restart the Devilbox

Now for those changes to take affect, you will have to restart the Devilbox.

390 Chapter 80. Setup reverse proxy NodeJS

Devilbox Documentation, Release 1.0

host> cd /path/to/devilbox

Stop the Devilbox
host> docker-compose down
host> docker-compose rm -f

Start the Devilbox
host> docker-compose up -d php httpd bind

80.2.9 9. Open your browser

All set now, you can visit http://my-node.loc or https://my-node.loc in your browser. The NodeJS application has been
started up automatically and the reverse proxy will direct all requests to it.

See also:

Setup valid HTTPS

80.3 Managing NodeJS

If you have never worked with , I suggest to visit their website and get familiar with the available commands. A quick
guide is below:

Navigate to Devilbox git directory
host> cd /path/to/devilbox

Enter the PHP container
host> ./shell.sh

List your running NodeJS apps
devilbox@php-7.0.20 in /shared/httpd $ pm2 list

App name id version mode pid status restart uptime cpu mem
→˓ user watching

index 0 N/A fork 1906 online 0 42h 0% 39.7 MB
→˓ devilbox disabled

80.3. Managing NodeJS 391

http://my-node.loc
https://my-node.loc

Devilbox Documentation, Release 1.0

392 Chapter 80. Setup reverse proxy NodeJS

CHAPTER 81

Setup reverse proxy Sphinx docs

This example will walk you through creating a Sphinx documentation, which is started automatically on
docker-compose up, will be proxied to the web server and can be reached via valid HTTPS.

Note: It is also possible to attach a leight-weight Python container to the Devilbox instead of running this in the PHP
container. See here for details: Reverse Proxy for custom Docker

Table of Contents

• Overview

• Walk through

– 1. Enter the PHP container

– 2. Create new vhost directory

– 3. Create basic Sphinx project

– 4. Create virtual docroot directory

– 5. Add reverse proxy vhost-gen config files

* 5.1 Create vhost-gen template directory

* 5.2 Copy vhost-gen templates

* 5.3 Adjust ports

· 5.3.1 Adjust Apache 2.2 template

· 5.3.2 Adjust Apache 2.4 template

· 5.3.3 Adjust Nginx template

– 6. Create autostart script

393

Devilbox Documentation, Release 1.0

– 7. DNS record

– 8. Restart the Devilbox

– 9. Open your browser

81.1 Overview

The following configuration will be used:

Project name VirtualHost direc-
tory

Database TLD_SUFFIX Project URL

my-sphinx /shared/httpd/my-
sphinx

• loc http://my-sphinx.
loc https:
//my-sphinx.loc

Additionally we will set the listening port of the Sphinx appliation to 4000 inside the PHP container.

We also want Sphinx running and autostarted only in the PHP 7.2 container (local autostart) and have all its required
Python packages installed during docker-compose up.

Note:

• Inside the Devilbox PHP container, projects are always in /shared/httpd/.

• On your host operating system, projects are by default in ./data/www/ inside the Devilbox git directory. This
path can be changed via HOST_PATH_HTTPD_DATADIR.

81.2 Walk through

It will be ready in nine simple steps:

1. Enter the PHP container

2. Create a new VirtualHost directory

3. Create basic Sphinx project

4. Create virtual docroot directory

5. Add reverse proxy vhost-gen config files

6. Create autostart script

7. Setup DNS record

8. Restart the Devilbox

9. Visit http://my-sphinx.loc in your browser

394 Chapter 81. Setup reverse proxy Sphinx docs

http://my-sphinx.loc
http://my-sphinx.loc
https://my-sphinx.loc
https://my-sphinx.loc
http://my-sphinx.loc

Devilbox Documentation, Release 1.0

81.2.1 1. Enter the PHP container

All work will be done inside the PHP container as it provides you with all required command line tools.

Navigate to the Devilbox git directory and execute shell.sh (or shell.bat on Windows) to enter the running
PHP container.

host> ./shell.sh

See also:

• Enter the PHP container

• Work inside the PHP container

• Available tools

81.2.2 2. Create new vhost directory

The vhost directory defines the name under which your project will be available. (<vhost dir>.TLD_SUFFIX
will be the final URL).

devilbox@php-7.0.20 in /shared/httpd $ mkdir my-sphinx

See also:

TLD_SUFFIX

81.2.3 3. Create basic Sphinx project

Navigate to your project directory
devilbox@php-7.0.20 in /shared/httpd $ cd my-sphinx

Create a directory which will hold the documentation source code
devilbox@php-7.0.20 in /shared/httpd/my-sphinx $ mkdir doc

Create a basic Sphinx configuration file:

Listing 1: /shared/httpd/my-sphinx/doc/conf.py

source_suffix = '.rst'
master_doc = 'index'
html_theme = 'default'

exclude_patterns = [
u'_build/*'

]

Create the table of contents file:

Listing 2: /shared/httpd/my-sphinx/doc/index.rst

.. :hidden:

My Docs

(continues on next page)

81.2. Walk through 395

Devilbox Documentation, Release 1.0

(continued from previous page)

Description

.. toctree::
:maxdepth: 2

page1

Create the first page page1:

Listing 3: /shared/httpd/my-sphinx/doc/page1.rst

Page 1

Hello world

81.2.4 4. Create virtual docroot directory

Every project for the Devilbox requires a htdocs directory present inside the project dir. For a reverse proxy this is
not of any use, but rather only for the Intranet vhost page to stop complaining about the missing htdocs directory.
So that’s why this is only a virtual directory which will not hold any data.

Navigate to your project directory
devilbox@php-7.0.20 in /shared/httpd $ cd my-sphinx

Create the docroot directory
devilbox@php-7.0.20 in /shared/httpd/my-sphinx $ mkdir htdocs

See also:

HTTPD_DOCROOT_DIR

81.2.5 5. Add reverse proxy vhost-gen config files

5.1 Create vhost-gen template directory

Before we can copy the vhost-gen templates, we must create the .devilbox template directory inside the project
directory.

Navigate to your project directory
devilbox@php-7.0.20 in /shared/httpd $ cd my-sphinx

Create the .devilbox template directory
devilbox@php-7.0.20 in /shared/httpd/my-sphinx $ mkdir .devilbox

See also:

HTTPD_TEMPLATE_DIR

396 Chapter 81. Setup reverse proxy Sphinx docs

Devilbox Documentation, Release 1.0

5.2 Copy vhost-gen templates

Now we can copy and adjust the vhost-gen reverse proxy files for Apache 2.2, Apache 2.4 and Nginx.

The reverse vhost-gen templates are available in cfg/vhost-gen:

host> tree -L 1 cfg/vhost-gen/

cfg/vhost-gen/
apache22.yml-example-rproxy
apache22.yml-example-vhost
apache24.yml-example-rproxy
apache24.yml-example-vhost
nginx.yml-example-rproxy
nginx.yml-example-vhost
README.md

0 directories, 7 files

For this example we will copy all *-example-rproxy files into /shared/httpd/my-sphinx/.devilbox
to ensure this will work with all web servers.

host> cd /path/to/devilbox
host> cp cfg/vhost-gen/apache22.yml-example-rproxy data/www/my-sphinx/.devilbox/
→˓apache22.yml
host> cp cfg/vhost-gen/apache24.yml-example-rproxy data/www/my-sphinx/.devilbox/
→˓apache24.yml
host> cp cfg/vhost-gen/nginx.yml-example-rproxy data/www/my-sphinx/.devilbox/nginx.yml

5.3 Adjust ports

By default, all vhost-gen templates will forward requests to port 8000 into the PHP container. Our current example
however uses port 4000, so we must change that accordingly for all three templates.

5.3.1 Adjust Apache 2.2 template

Open the apache22.yml vhost-gen template in your project:

host> cd /path/to/devilbox
host> vi data/www/my-sphinx/.devilbox/apache22.yml

Find the two lines with ProxyPass and ProxyPassReverse and change the port from 8000 to 4000

Listing 4: data/www/my-sphinx/.devilbox/apache22.yml

... more lines above ...

###
Basic vHost skeleton
###
vhost: |

<VirtualHost __DEFAULT_VHOST__:__PORT__>
ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined

(continues on next page)

81.2. Walk through 397

Devilbox Documentation, Release 1.0

(continued from previous page)

ErrorLog "__ERROR_LOG__"

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
ProxyRequests On
ProxyPreserveHost On
ProxyPass / http://php:4000/
ProxyPassReverse / http://php:4000/

... more lines below ...

5.3.2 Adjust Apache 2.4 template

Open the apache24.yml vhost-gen template in your project:

host> cd /path/to/devilbox
host> vi data/www/my-sphinx/.devilbox/apache24.yml

Find the two lines with ProxyPass and ProxyPassReverse and change the port from 8000 to 4000

Listing 5: data/www/my-sphinx/.devilbox/apache24.yml

... more lines above ...

###
Basic vHost skeleton
###
vhost: |

<VirtualHost __DEFAULT_VHOST__:__PORT__>
ServerName __VHOST_NAME__

CustomLog "__ACCESS_LOG__" combined
ErrorLog "__ERROR_LOG__"

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
ProxyRequests On
ProxyPreserveHost On
ProxyPass / http://php:4000/
ProxyPassReverse / http://php:4000/

... more lines below ...

5.3.3 Adjust Nginx template

Open the nginx.yml vhost-gen template in your project:

host> cd /path/to/devilbox
host> vi data/www/my-sphinx/.devilbox/nginx.yml

Find the lines with proxy_pass and change the port from 8000 to 4000

398 Chapter 81. Setup reverse proxy Sphinx docs

Devilbox Documentation, Release 1.0

Listing 6: data/www/my-sphinx/.devilbox/nginx.yml

... more lines above ...

###
Basic vHost skeleton
###
vhost: |

server {
listen __PORT____DEFAULT_VHOST__;
server_name __VHOST_NAME__;

access_log "__ACCESS_LOG__" combined;
error_log "__ERROR_LOG__" warn;

Reverse Proxy definition (Ensure to adjust the port, currently '8000')
location / {

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_pass http://php:4000;

}

... more lines below ...

81.2.6 6. Create autostart script

Remember, we only wanted to have our Sphinx application run on the PHP 7.2 container, so we will create a autostart
script only for that container.

Navigate to cfg/php-startup-7.2/ in the Devilbox git directory and create a new shell script ending by .sh

Navigate to the Devilbox git directory
host> cd /path/to/devilbox

Nagivate to startup directory for PHP 7.2 and create the script
host> cd cfg/php-startup-7.2/
host> vi my-sphinx.sh

Listing 7: cfg/php-startup-7.2/my-sphinx.sh

#!/usr/bin/env bash

Install required Python modules as root user
pip install sphinx sphinx-autobuild

Autostart Sphinx by devilbox user on Port 4000 and sent it to backgroun with '&'
sh -c "cd /shared/httpd/my-sphinx; sphinx-autobuild . _build/html -p 4000 -H 0.0.0.0"
→˓-l devilbox &

See also:

• Custom scripts per PHP version (individually for different PHP versions)

• Custom scripts globally (equal for all PHP versions)

• Autostarting NodeJS Apps

81.2. Walk through 399

Devilbox Documentation, Release 1.0

81.2.7 7. DNS record

If you have Auto DNS configured already, you can skip this section, because DNS entries will be available automati-
cally by the bundled DNS server.

If you don’t have Auto DNS configured, you will need to add the following line to your host operating systems
/etc/hosts file (or C:\Windows\System32\drivers\etc on Windows):

Listing 8: /etc/hosts

127.0.0.1 my-node.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Setup Auto DNS

81.2.8 8. Restart the Devilbox

Now for those changes to take affect, you will have to restart the Devilbox.

host> cd /path/to/devilbox

Stop the Devilbox
host> docker-compose down
host> docker-compose rm -f

Start the Devilbox
host> docker-compose up -d php httpd bind

81.2.9 9. Open your browser

All set now, you can visit http://my-sphinx.loc or https://my-sphinx.loc in your browser. The Sphinx application has
been started up automatically and the reverse proxy will direct all requests to it.

See also:

Setup valid HTTPS

400 Chapter 81. Setup reverse proxy Sphinx docs

http://my-sphinx.loc
https://my-sphinx.loc

CHAPTER 82

Syncronize container permissions

One main problem with a running Docker container is to synchronize the ownership of files in a mounted volume
in order to preserve security (Not having to use chmod 0777 or root user).

This problem will be addressed below by using a PHP-FPM docker image as an example.

82.1 Unsyncronized permissions

Consider the following directory structure of a mounted volume. Your hosts computer uid/gid are 1000 which does
not have a corresponding user/group within the container. Fortunately the tmp/ directory allows everybody to create
new files in it, because its permissions are 0777.

[Host] | [Container]
--
→˓----
$ ls -l | $ ls -l
-rw-r--r-- user group index.php | -rw-r--r-- 1000 1000 index.php
drwxrwxrwx user group tmp/ | drwxrwxrwx 1000 1000 tmp/

Your web application might now have created some temporary files (via the PHP-FPM process) inside the tmp/
directory:

[Host] | [Container]
--
→˓----
$ ls -l tmp/ | $ ls -l tmp/
-rw-r--r-- 96 96 _tmp_cache01.php | -rw-r--r-- www www _tmp_cache01.php
-rw-r--r-- 96 96 _tmp_cache02.php | -rw-r--r-- www www _tmp_cache01.php

On the Docker container side everything is still fine, but on your host computers side, those files now show a user id
and group id of 96, which is in fact the uid/gid of the PHP-FPM process running inside the container. On the host side
you have just lost write/delete access to those files and will now have to use sudo in order to delete/edit those files.

401

Devilbox Documentation, Release 1.0

82.2 It gets even worse

Consider your had created the tmp/ directory on your host only with 0775 permissions:

[Host] | [Container]
--
→˓----
$ ls -l | $ ls -l
-rw-r--r-- user group index.php | -rw-r--r-- 1000 1000 index.php
drwxrwxr-x user group tmp/ | drwxrwxr-x 1000 1000 tmp/

If your web application now wants to create some temporary files (via the PHP-FPM process) inside the tmp/ direc-
tory, it will fail due to lack of permissions.

82.3 The solution

To overcome this problem, it must be made sure that the PHP-FPM process inside the container runs under the same
uid/gid as your local user that mouns the volumes and also wants to work on those files locally. However, you never
know during Image build time what user id this would be. Therefore it must be something that can be changed during
startup of the container.

This is achieved in the Devilbox’s containers by two environment variables that can be provided during startup in order
to change the uid/gid of the PHP-FPM user prior starting up PHP-FPM process.

$ docker run -e NEW_UID=1000 -e NEW_GID=1000 -it devilbox/php-fpm:7.2-work
[INFO] Changing user 'devilbox' uid to: 1000
root $ usermod -u 1000 devilbox
[INFO] Changing group 'devilbox' gid to: 1000
root $ groupmod -g 1000 devilbox
[INFO] Starting PHP 7.2.0 (fpm-fcgi) (built: Oct 30 2017 12:05:19)

When NEW_UID and NEW_GID are provided to the startup command, the container will do a usermod and
groupmod prior starting up in order to assign new uid/gid to the PHP-FPM user. When the PHP-FPM process
finally starts up it actually runs with your local system user and making sure permissions will be in sync from now on.

Note: To tackle this on the PHP-FPM side is only half a solution to the problem. The same applies to a web
server Docker container when you offer file uploads. They will be uploaded and created by the web servers uid/gid.
Therefore the web server itself must also provide the same kind of solution.

402 Chapter 82. Syncronize container permissions

CHAPTER 83

Available container

Note:

Start the Devilbox Find out how to start some or all container.

The following tables give you an overview about all container that can be started. When doing a selective start, use
the Name value to specify the container to start up.

83.1 Core container

These container are well integrated into the Devilbox intranet and are considered core container:

Container Name Hostname IP Address
DNS bind bind 172.16.238.100
PHP php php 172.16.238.10
Apache, Nginx httpd httpd 172.16.238.11
MySQL, MariaDB, PerconaDB mysql mysql 172.16.238.12
PostgreSQL pgsql pgsql 172.16.238.13
Redis redis redis 172.16.238.14
Memcached memcd memcd 172.16.238.15
MongoDB mongo mongo 172.16.238.16

83.2 Additional container

Additional container that are not yet integrated into the Devilbox intranet are also available. Those container come
via docker-compose.override.yml and must explicitly be enabled. They are disabled by default to prevent
accidentally starting too many container and making your computer unresponsive.

403

Devilbox Documentation, Release 1.0

Container Name Hostname IP Address
Blackfire blackfire blackfire 172.16.238.200
MailHog mailhog mailhog 172.16.238.201
RabbitMQ rabbit rabbit 172.16.238.210
Solr solr solr 172.16.238.220

See also:

• Enable all additional container

• Enable and configure Blackfire

• Enable and configure MailHog

• Enable and configure RabbitMQ

• Enable and configure Solr

404 Chapter 83. Available container

CHAPTER 84

Available tools

Each PHP container version brings the same tools, so you can safely switch versions without having to worry to have
less or more tools available.

See also:

Work inside the PHP container

The PHP container is your workhorse and these are your tools:

Binary Tool
ansible
various binaries
brew
codecept
composer
dep
drush
drupal
eslint
git
git-flow
gulp
grunt
jsonlint
laravel
linkcheck
mdl
mdlint
mongo* Various MongoDB client tools
mysql* Various MySQL client tools
mysqldump-secure
node

Continued on next page

405

Devilbox Documentation, Release 1.0

Table 1 – continued from previous page
Binary Tool
npm
pg* Various PostgreSQL client tools
phalcon
php-cs-fixer
phpcs
phpcbf
phpunit
photon
pm2
redis* Various Redis client tools
sass
scss-lint
ssh
symfony
tig
webpack
wp
yamllint
yarn

Note: If you are in need of other tools, open up an issue at and ask for it, this can usually be implemented very
quickly.

See also:

If you ever feel those tools are out-dated, simply update your Docker images. Docker images are built every night to
ensure latest tools and security patches: Update Docker images

406 Chapter 84. Available tools

CHAPTER 85

Troubleshooting

This section will contain common problems and how to resolve them. It will grow over time once there are more
issues reported.

See also:

• How To

• FAQ

Important:

Update the Devilbox Issues are constantly being fixed. Before attempting to spend too much time digging into your
issue, make sure you are running the latest git changes and have pulled the latest Docker images.

Also keep in mind that configuration files might change, so ensure to diff the default ones against your currently
active ones for added, removed or changed values.

Table of Contents

• General

– Sudden unexplained problems on Windows

– Address already in use

– Unable to finish Pulling as unauthorized: incorrect username or password

– localhost or 127.0.0.1 not found

– ERROR: Version in “./docker-compose.yml” is unsupported

• Performance

– Performance issues on Docker for Mac

• DNS issues

407

Devilbox Documentation, Release 1.0

– zone ‘localhost’: already exists previous definition

• SSL issues

– unable to get local issuer certificate

• Web server issues

– Warning: DocumentRoot [/var/www/default/htdocs/] does not exist

– 403 forbidden

* File and directory permissions

* Shared volumes

– 504 Gateway timeout

• PHP issues

– Fatal error: Cannot redeclare go()

• Database issues

– Invalid bind mount spec

– [Warning] World-writable config file ‘/etc/mysql/docker-default.d/my.cnf’ is ignored

85.1 General

85.1.1 Sudden unexplained problems on Windows

In case something stopped working for no reason, check out other Docker container. If you experience similar issues
as well, check for any unattended Windows updates or updates to Docker itself. If those exist, try to revert them and
see if that was the cause.

I heard many bug stories from fellow Windows users so far. A good contact point for that is the Docker forum itself:
https://forums.docker.com/c/docker-for-windows

A few general things you should always do before attempting to open up issues are:

1. Used default settings from env-example

Try using the exact settings from env-example as variables might have been updated in git.

Ensure everything is stopped
host> cp env-example .env

2. Clean, updated and minimal start

Ensure everything is stopped
host> docker-compose stop
host> docker-compose kill
host> docker-compose rm -f

Ensure everything is updated
host> docker-compose pull

Start again
host> docker-compose up php httpd bind

408 Chapter 85. Troubleshooting

https://forums.docker.com/c/docker-for-windows

Devilbox Documentation, Release 1.0

3. Reset Docker credentials:

As it might sound strange, this fix might indeed solve a lot of problems on Windows. Go to your Docker
settings and reset your credentials.

4. Shared volumes:

Ensure all your Devilbox data (Devilbox directory and project directory) are within the volumes that are
shared by Docker. If not add those in the Docker settings.

85.1.2 Address already in use

One of the Docker container wants to bind to a port on the host system which is already taken. Figure out what service
is listening on your host system and shut it down or change the port of the affected service in the Devilbox .env file.

Some examples of common error messages:

Error starting userland proxy: Bind for 0.0.0.0:80: unexpected error (Failure
→˓EADDRINUSE)

85.1.3 Unable to finish Pulling as unauthorized: incorrect username or password

This error might occur if you are already logged into a different Docker repository. To fix this error, sign out of your
currently logged in repository and try again.

See also:

https://github.com/cytopia/devilbox/issues/223

85.1.4 localhost or 127.0.0.1 not found

If you are using Docker Toolbox, the Devilbox intranet is not available on localhost or 127.0.0.1, but rather on the IP
address of the Docker Toolbox machine.

See also:

Find Docker Toolbox IP address

85.1.5 ERROR: Version in “./docker-compose.yml” is unsupported

This simply means your Docker and/or Docker Compose versions are outdated.

See also:

Prerequisites

85.2 Performance

85.2.1 Performance issues on Docker for Mac

By default Docker for Mac has performance issues on mounted directories with a lot of files inside. To overcome this
issue you can apply different kinds of caching options to the mount points.

See also:

85.2. Performance 409

https://github.com/cytopia/devilbox/issues/223

Devilbox Documentation, Release 1.0

• OSX: Performance

• MOUNT_OPTIONS

85.3 DNS issues

85.3.1 zone ‘localhost’: already exists previous definition

bind_1 | /etc/bind/devilbox-wildcard_dns.localhost.conf:1:
zone 'localhost': already exists previous definition:
/etc/bind/named.conf.default-zones:10

This error occurs when using localhost as the TLD_SUFFIX.

See also:

• TLD_SUFFIX

• https://github.com/cytopia/devilbox/issues/291

85.4 SSL issues

85.4.1 unable to get local issuer certificate

Errors occurred when trying to connect to www.example.com:
cURL error 77: error setting certificate verify locations: CAfile: certificate ./ca/
→˓cacert.pem CApath: /etc/ssl/certs

This issue might arise if you set TLD_SUFFIX to an official top level domain such as .com. What happens is that the
bundled DNS server does a catch-all on the TLD and redirects all name resolution to the Devilbox’s PHP container IP
address.

If you want to access https://www.example.com in that case, the request goes to the PHP container which does
not have a valid SSL certificate for that domain.

Do not user official TLD’s for TLD_SUFFIX.

See also:

• TLD_SUFFIX

• https://github.com/cytopia/devilbox/issues/275

85.5 Web server issues

85.5.1 Warning: DocumentRoot [/var/www/default/htdocs/] does not exist

This error is most likely to only occur on Docker for Windows and is just a result of not working volumes mounts.

See also:

https://forums.docker.com/t/volume-mounts-in-windows-does-not-work/10693

410 Chapter 85. Troubleshooting

https://github.com/cytopia/devilbox/issues/291
https://github.com/cytopia/devilbox/issues/275
https://forums.docker.com/t/volume-mounts-in-windows-does-not-work/10693

Devilbox Documentation, Release 1.0

85.5.2 403 forbidden

This error might occur for the Devilbox intranet or custom created projects.

File and directory permissions

On of the cause could be wrongly set file and directory permissions.

First ensure the cloned git directory is readable for users, groups and others.

For the Devilbox intranet, ensure the .devilbox/ directory is readable for users, groups and others. Also check
files and directories within.

For projects, ensure an index.php or index.html exists and that all files and directories are readable for users,
groups and others.

Shared volumes

This might additionally occur on MacOS or Windows due to the Devilbox and/or its projects not being in the standard
location of Docker Shared volumes.

Check your Docker settings to allow shared volumes for the path of the Devilbox and its projects.

85.5.3 504 Gateway timeout

This error occurs when the upstream PHP-FPM server takes longer to execute a script, than the timeout value set in
the web server for PHP-FPM to answer.

For that to fix one must increase the PHP-FPM/Proxy timeout settings in the .env file.
HTTPD_TIMEOUT_TO_PHP_FPM

See also:

• HTTPD_TIMEOUT_TO_PHP_FPM

• https://github.com/cytopia/devilbox/issues/280

• https://github.com/cytopia/devilbox/issues/234

85.6 PHP issues

85.6.1 Fatal error: Cannot redeclare go()

If you encounter this error, it is most likely that your current project declares the PHP function go() and that you
have enabled the swoole module which also provides an implementation of that function.

To mitigate that issue, make sure that the swoole module is disabled in .env.

See also:

• PHP_MODULES_DISABLE

• https://github.com/getkirby/kirby/issues/643

85.6. PHP issues 411

https://github.com/cytopia/devilbox/issues/280
https://github.com/cytopia/devilbox/issues/234
https://github.com/getkirby/kirby/issues/643

Devilbox Documentation, Release 1.0

85.7 Database issues

85.7.1 Invalid bind mount spec

This error might occure after changing the path of MySQL, PgSQL, Mongo or any other data directory.

When you change any paths inside .env that affect Docker mountpoints, the container need to be removed and re-
created during the next startup. Removing the container is sufficient as they will always be created during run if they
don’t exist.

In order to remove the container do the following:

host> cd path/to/devilbox
host> docker-compose stop

Remove the stopped container (IMPORTANT!)
After the removal it will be re-created during next run
host> docker-compose rm -f

See also:

Remove stopped container

85.7.2 [Warning] World-writable config file ‘/etc/mysql/docker-default.d/my.cnf’ is
ignored

This warning might occur when using Docker Toolbox and the Devilbox on Windows and trying to apply custom
MySQL configuration files. This will also result in the configuration file not being source by the MySQL server.

To fix this issue, you will have to change the file permission of your custom configuration files to read-only by applying
the following chmod command.

Nagivate to devilbox git directory
host> cd path/to/devilbox

Navigate to the MySQL config directory (e.g.: MySQL 5.5)
host> cd cfg/mysql-5.5

Make cnf files read only
host> chmod 0444 *.cnf

See also:

• my.cnf

• https://github.com/cytopia/devilbox/issues/212

412 Chapter 85. Troubleshooting

https://github.com/cytopia/devilbox/issues/212

CHAPTER 86

FAQ

Find common questions and answers here.

See also:

• How To

• Troubleshooting

Table of Contents

• General

– Are there any differences between native Docker and Docker Toolbox?

– Why are mounted MySQL data directories separated by version?

– Why are mounted PostgreSQL data directories separated by version?

– Why are mounted MongoDB data directories separated by version?

– Why do the user/group permissions of log/ or cfg/ directories show 1000?

– Can I not just comment out the service in the .env file?

– Are there any required services that must/will always be started?

– What PHP Modules are available?

• Configuration

– Can I change the MySQL root password?

– Can I change php.ini?

– Can I change my.cnf?

– Can I change the project virtual host domain .loc?

– Can I just start PHP and MySQL instead of all container?

413

Devilbox Documentation, Release 1.0

– Do I always have to edit /etc/hosts for new projects?

• Compatibility

– Does it work with CakePHP?

– Does it work with Codeigniter?

– Does it work with CraftCMS?

– Does it work with Drupal?

– Does it work with Joomla?

– Does it work with Laravel?

– Does it work with Magento?

– Does it work with Phalcon?

– Does it work with Photon CMS?

– Does it work with PrestaShop?

– Does it work with Shopware?

– Does it work with Symfony?

– Does it work with Typo3?

– Does it work with Wordpress?

– Does it work with Yii?

– Does it work with Zend?

– Does it work with other Frameworks?

86.1 General

86.1.1 Are there any differences between native Docker and Docker Toolbox?

Yes, read Docker Toolbox and the Devilbox to find out more.

86.1.2 Why are mounted MySQL data directories separated by version?

This is just a pre-caution. Imagine they would link to the same datadir. You start the Devilbox with mysql 5.5, create
a database and add some data. Now you decide to switch to mysql 5.7 and restart the devilbox. The newer mysql
version will probably upgrade the data leaving it unable to start with older mysql versions.

86.1.3 Why are mounted PostgreSQL data directories separated by version?

See: Why are mounted MySQL data directories separated by version?

86.1.4 Why are mounted MongoDB data directories separated by version?

See: Why are mounted MySQL data directories separated by version?

414 Chapter 86. FAQ

Devilbox Documentation, Release 1.0

86.1.5 Why do the user/group permissions of log/ or cfg/ directories show 1000?

Uid and Gid are set to 1000 by default. You can alter them to match the uid/gid of your current user. Open the .env
file and change the sections NEW_UID and NEW_GID. When you start up the devilbox, the PHP container will use
these values for its user.

See also:

NEW_UID and NEW_GID

86.1.6 Can I not just comment out the service in the .env file?

No, don’t do this. This will lead to unexpected behaviour (different versions will be loaded). The .env file allows
you to configure the devilbox, but not to start services selectively.

86.1.7 Are there any required services that must/will always be started?

Yes. http and php will automatically always be started (due to dependencies inside docker-compose.yml) if
you specify them or not.

86.1.8 What PHP Modules are available?

The Devilbox is a development stack, so it is made sure that a lot of PHP modules are available out of the box in order
to work with many different frameworks.

Available PHP modules can be seen at the PHP Docker image repository.

See also:

https://github.com/devilbox/docker-php-fpm

86.2 Configuration

86.2.1 Can I change the MySQL root password?

Yes, you can change the password of the MySQL root user. If you do so, you must also set the new password in your
.env file. See MYSQL_ROOT_PASSWORD for how to change this value.

86.2.2 Can I change php.ini?

Yes, php.ini directives can be changed for each PHP version separately. See php.ini

86.2.3 Can I change my.cnf?

Yes, my.cnf directives can be changed for each MySQL version separately. See my.cnf

86.2. Configuration 415

https://github.com/devilbox/docker-php-fpm

Devilbox Documentation, Release 1.0

86.2.4 Can I change the project virtual host domain .loc?

Yes, the .env variable TLD_SUFFIX can be changed to whatever domain or subdomain you want. See TLD_SUFFIX.

Warning: Be aware not to use dev or localhost. See TLD_SUFFIX for more details. Also do not use any
official domain TLDs such as com, net, org, etc.

86.2.5 Can I just start PHP and MySQL instead of all container?

Yes, every Docker container is optional. The Devilbox allows for selective startup. See Start the Devilbox.

86.2.6 Do I always have to edit /etc/hosts for new projects?

You need a valid DNS entry for every project that points to the Httpd server. As those records don’t exists by default,
you will have to create them. However, the Devilbox has a bundled DNS server that can automate this for you. The
only thing you have to do for that to work is to add this DNS server’s IP address to your /etc/resolv.conf. See
Setup Auto DNS for detailed instructions.

86.3 Compatibility

86.3.1 Does it work with CakePHP?

Yes, see Setup CakePHP

86.3.2 Does it work with Codeigniter?

Yes, see Setup CodeIgniter

86.3.3 Does it work with CraftCMS?

Yes, see Setup CraftCMS

86.3.4 Does it work with Drupal?

Yes, see Setup Drupal

86.3.5 Does it work with Joomla?

Yes, see Setup Joomla

86.3.6 Does it work with Laravel?

Yes, see Setup Laravel

416 Chapter 86. FAQ

Devilbox Documentation, Release 1.0

86.3.7 Does it work with Magento?

Yes, see Setup Magento 2

86.3.8 Does it work with Phalcon?

Yes, see Setup Phalcon

86.3.9 Does it work with Photon CMS?

Yes, see Setup Photon CMS

86.3.10 Does it work with PrestaShop?

Yes, see Setup PrestaShop

86.3.11 Does it work with Shopware?

Yes, see Setup Shopware

86.3.12 Does it work with Symfony?

Yes, see Setup Symfony

86.3.13 Does it work with Typo3?

Yes, see Setup Typo3

86.3.14 Does it work with Wordpress?

Yes, see Setup Wordpress

86.3.15 Does it work with Yii?

Yes, see Setup Yii

86.3.16 Does it work with Zend?

Yes, see Setup Zend

86.3.17 Does it work with other Frameworks?

Yes, see Setup other Frameworks

86.3. Compatibility 417

Devilbox Documentation, Release 1.0

418 Chapter 86. FAQ

CHAPTER 87

How To

The How to section gathers information about various topics, that might need to be done at some point throughout the
installation and configuration.

See also:

• FAQ

• Troubleshooting

87.1 Add custom DNS server on Android

Adding custom DNS server on Android works out of the box for each connected Wi-Fi network separately. There is
no need to install external Apps.

Table of Contents

• Change DNS server in Android directly

• Change DNS server with Third-Party App

87.1.1 Change DNS server in Android directly

1. Navigate to Settings -> Wi-Fi

2. Press and hold on the Wi-Fi network you want to change

3. Choose Modify network

4. Scroll down and click on Advanced options

5. Scroll down and click on DHCP

6. Click on Static

419

Devilbox Documentation, Release 1.0

Fig. 1: Android: Wi-Fi list

420 Chapter 87. How To

Devilbox Documentation, Release 1.0

Fig. 2: Android: Advanced options

87.1. Add custom DNS server on Android 421

Devilbox Documentation, Release 1.0

Fig. 3: Android: Select DHCP options

422 Chapter 87. How To

Devilbox Documentation, Release 1.0

Fig. 4: Android: Select static DHCP options

87.1. Add custom DNS server on Android 423

Devilbox Documentation, Release 1.0

7. Scroll down and change the DNS server IP for DNS 1 (the first DNS server in the list)

Fig. 5: Android: Add custom DNS server

87.1.2 Change DNS server with Third-Party App

If the above does not work for you or you just want another App that makes it even easier to change DNS settings, you
can search the Playstore for many available DNS changer Apps. They also work on non-rooted Androids.

See also:

87.2 Add custom DNS server on iPhone

Adding custom DNS server on iPhone works out of the box for each connected Wi-Fi network separately. There is no
need to install external Apps.

Table of Contents

• Change DNS server in iPhone directly

• Change DNS server with Third-Party App

424 Chapter 87. How To

Devilbox Documentation, Release 1.0

87.2.1 Change DNS server in iPhone directly

1. Navigate to Settings -> Wi-Fi

2. Tap on your active Wi-Fi connection

Fig. 6: iPhone: Wi-Fi list

3. Scroll down and tap on Configure DNS

4. Select Manual

5. Add your DNS server IP (ensure it is the first in the list)

87.2.2 Change DNS server with Third-Party App

If the above does not work for you or you just want another App that makes it even easier to change DNS settings, you
can search the AppStore for many available DNS changer Apps. They also work on non-rooted iPhones.

See also:

87.3 Add custom DNS server on Linux

On Linux the DNS settings can be controlled by various different methods. Two of them are via Network Manager
and systemd-resolved. Choose on of the methods depending on your local setup.

87.3. Add custom DNS server on Linux 425

Devilbox Documentation, Release 1.0

Fig. 7: iPhone: Wi-Fi list

426 Chapter 87. How To

Devilbox Documentation, Release 1.0

Fig. 8: iPhone: Wi-Fi list

87.3. Add custom DNS server on Linux 427

Devilbox Documentation, Release 1.0

Fig. 9: iPhone: Wi-Fi list

428 Chapter 87. How To

Devilbox Documentation, Release 1.0

Table of Contents

• Assumption

• Non permanent solution

• Network Manager

• systemd-resolved

87.3.1 Assumption

This tutorial is using 127.0.0.1 as the DNS server IP address, as it is the method to setup Auto DNS for your local
Devilbox.

87.3.2 Non permanent solution

When you just want to try out to add a new DNS server without permanent settings, you should use this option.

Note: Non permanent means, the settings will be gone when your DHCP release will be renewed, reconnecting to
the network, restarting the network service, logging out or rebooting your machine.

1. Open /etc/resolv.conf with root or sudo privileges with your favourite editor on your host operating
sustem:

host> sudo vi /etc/resolv.conf

2. Add your new nameserver directive above all existing nameserver directives:

Listing 1: /etc/resolv.conf

Generated by NetworkManager
search intranet
nameserver 127.0.0.1
nameserver 192.168.0.10

3. It will work instantly after saving the file

87.3.3 Network Manager

(This is a permanent solution and needs to be reverted when you don’t need it anymore)

Edit /etc/dhcp/dhclient.conf with root or sudo privileges and add an instruction, which tells your local
DHCP client that whenever any of your DNS servers are changed, you always want to have an additional entry, which
is the one from the Devilbox (127.0.0.1).

Add the following line to to the very beginning to /etc/dhcp/dhclient.conf:

87.3. Add custom DNS server on Linux 429

Devilbox Documentation, Release 1.0

Listing 2: /etc/dhcp/dhclient.conf

prepend domain-name-servers 127.0.0.1;

When you do that for the first time, you need to restart the network-manager service.

Via service command
host> sudo service network-manager restart

Or the systemd way
host> sudo systemctl restart network-manager

This will make sure that whenever your /etc/resolv.conf is deployed, you will have 127.0.0.1 as the first entry and
also make use of any other DNS server which are deployed via the LAN’s DHCP server.

If the Devilbox DNS server is not running, it does not affect the name resolution, because you will still have other
entries in /etc/resolv.conf.

87.3.4 systemd-resolved

(This is a permanent solution and needs to be reverted when you don’t need it anymore)

In case you are using systemd-resolved instead of NetworkManager, add the following line to the very beginning to
/etc/resolv.conf.head:

Listing 3: /etc/resolv.conf.head

nameserver 127.0.0.1

Prevent NetworkManager from modifying /etc/resolv.conf and leave everything to systemd-resolved by
adding the following line under the [main] section of /etc/NetworkManager/NetworkManager.conf

Listing 4: /etc/NetworkManager/NetworkManager.conf

dns=none

As a last step you will have to restart systemd-resolved.

host> sudo systemctl stop systemd-resolved
host> sudo systemctl start systemd-resolved

Once done, you can verify if the new DNS settings are effective:

host> systemd-resolve --status

See also:

87.4 Add custom DNS server on MacOS

Table of Contents

• Assumption

430 Chapter 87. How To

Devilbox Documentation, Release 1.0

• Network preferences

87.4.1 Assumption

This tutorial is using 127.0.0.1 as the DNS server IP address, as it is the method to setup Auto DNS for your local
Devilbox.

87.4.2 Network preferences

1. Open System Preferences

2. Go to Network

3. Select your active connected interface

4. Click on DNS tab

5. Add new DNS server by clicking the + sign

6. Add 127.0.0.1 as the first entry

87.5 Add custom DNS server on Windows

Table of Contents

• Assumption

• Network preferences

87.5.1 Assumption

This tutorial is using 127.0.0.1 as the DNS server IP address, as it is the method to setup Auto DNS for your local
Devilbox.

87.5.2 Network preferences

On Windows, you need to change your active network adapter. See the following screenshots for how to do it.

In the last screenshot, you will have to add 127.0.0.1 as your Preferred DNS server.

87.6 Add project hosts entry on Linux

On Linux, custom DNS entries can be added to the /etc/hosts and will take precedence over the same entries
provided by any DNS server.

Table of Contents

87.5. Add custom DNS server on Windows 431

Devilbox Documentation, Release 1.0

Fig. 10: MacOS: network settings

Fig. 11: Windows: network connections

432 Chapter 87. How To

Devilbox Documentation, Release 1.0

Fig. 12: Windows: ethernet properties

Fig. 13: Windows: internet protocol properties

• Assumption

– Step by step

87.6.1 Assumption

In order to better illustrate the process, we are going to use two projects as an example. See the following table for
project directories and TLD_SUFFIX.

Project directory TLD_SUFFIX Project URL Required DNS name
project-1 loc http://project-1.loc project-1.loc
www.project-1 loc http://www.project-1.loc www.project-1.loc

Step by step

When using Docker on Linux you can use 127.0.0.1 for the IP address.

1. Open /etc/hosts with root privileges or via sudo with your favorite editor

host> sudo vi /etc/hosts

2. Add DNS records for the above listed examples:

87.6. Add project hosts entry on Linux 433

http://project-1.loc
http://www.project-1.loc

Devilbox Documentation, Release 1.0

Listing 5: /etc/hosts

127.0.0.1 project-1.loc
127.0.0.1 www.project-1.loc

3. Safe the file and verify the DNS entries with the ping command

host> ping -c1 project-1.loc

PING project-1.loc (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.066 ms

host> ping -c1 www.project-1.loc

PING www.project-1.loc (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.066 ms

87.7 Add project hosts entry on MacOS

On MacOS, custom DNS entries can be added to the /etc/hosts and will take precedence over the same entries
provided by any DNS server.

Table of Contents

• Assumption

– Docker for Mac

– Docker Toolbox

87.7.1 Assumption

In order to better illustrate the process, we are going to use two projects as an example. See the following table for
project directories and TLD_SUFFIX.

Project directory TLD_SUFFIX Project URL Required DNS name
project-1 loc http://project-1.loc project-1.loc
www.project-1 loc http://www.project-1.loc www.project-1.loc

Docker for Mac

When using Docker for Mac you can use 127.0.0.1 for the IP address.

1. Open /etc/hosts with admistrative privileges or via sudo with your favorite editor

host> sudo vi /etc/hosts

2. Add DNS records for the above listed examples:

434 Chapter 87. How To

http://project-1.loc
http://www.project-1.loc

Devilbox Documentation, Release 1.0

Listing 6: /etc/hosts

127.0.0.1 project-1.loc
127.0.0.1 www.project-1.loc

3. Safe the file and verify the DNS entries with the ping command

host> ping -c1 project-1.loc

PING project-1.loc (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.066 ms

host> ping -c1 www.project-1.loc

PING www.project-1.loc (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.066 ms

Docker Toolbox

When using the Docker Toolbox, you cannot use 127.0.0.1 for DNS entries, but rather need to use the IP address
of the Docker Toolbox machine instead.

See also:

Find Docker Toolbox IP address

For this example we will assume the Docker Toolbox IP address is 192.168.99.100.

1. Open /etc/hosts with admistrative privileges or via sudo with your favorite editor

host> sudo vi /etc/hosts

2. Add DNS records for the above listed examples:

Listing 7: /etc/hosts

192.168.99.100 project-1.loc
192.168.99.100 www.project-1.loc

3. Safe the file and verify the DNS entries with the ping command

host> ping -c1 project-1.loc

PING project-1.loc (192.168.99.100) 56(84) bytes of data.
64 bytes from localhost (192.168.99.100): icmp_seq=1 ttl=64 time=0.066 ms

host> ping -c1 www.project-1.loc

PING www.project-1.loc (192.168.99.100) 56(84) bytes of data.
64 bytes from localhost (192.168.99.100): icmp_seq=1 ttl=64 time=0.066 ms

87.8 Add project hosts entry on Windows

On Windows, custom DNS entries can be added to the C:\Windows\System32\drivers\etc and will take
precedence over the same entries provided by any DNS server.

87.8. Add project hosts entry on Windows 435

Devilbox Documentation, Release 1.0

Table of Contents

• Assumption

– Docker for Windows

– Docker Toolbox

87.8.1 Assumption

In order to better illustrate the process, we are going to use two projects as an example. See the following table for
project directories and TLD_SUFFIX.

Project directory TLD_SUFFIX Project URL Required DNS name
project-1 loc http://project-1.loc project-1.loc
www.project-1 loc http://www.project-1.loc www.project-1.loc

Docker for Windows

When using Docker for Windows you can use 127.0.0.1 for the IP address.

1. Open C:\Windows\System32\drivers\etc with admistrative privileges via notepad.exe or any
other text editor.

2. Add DNS records for the above listed examples:

Listing 8: C:WindowsSystem32driversetc

127.0.0.1 project-1.loc
127.0.0.1 www.project-1.loc

3. Safe the file and verify the DNS entries with the ping command

host> ping -c1 project-1.loc

PING project-1.loc (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.066 ms

host> ping -c1 www.project-1.loc

PING www.project-1.loc (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.066 ms

Docker Toolbox

When using the Docker Toolbox, you cannot use 127.0.0.1 for DNS entries, but rather need to use the IP address
of the Docker Toolbox machine instead.

See also:

Find Docker Toolbox IP address

For this example we will assume the Docker Toolbox IP address is 192.168.99.100.

436 Chapter 87. How To

http://project-1.loc
http://www.project-1.loc

Devilbox Documentation, Release 1.0

1. Open C:\Windows\System32\drivers\etc with admistrative privileges via notepad.exe or any
other text editor.

2. Add DNS records for the above listed examples:

Listing 9: C:WindowsSystem32driversetc

192.168.99.100 project-1.loc
192.168.99.100 www.project-1.loc

3. Safe the file and verify the DNS entries with the ping command

host> ping -c1 project-1.loc

PING project-1.loc (192.168.99.100) 56(84) bytes of data.
64 bytes from localhost (192.168.99.100): icmp_seq=1 ttl=64 time=0.066 ms

host> ping -c1 www.project-1.loc

PING www.project-1.loc (192.168.99.100) 56(84) bytes of data.
64 bytes from localhost (192.168.99.100): icmp_seq=1 ttl=64 time=0.066 ms

87.9 Find your user id and group id on MacOS

Table of Contents

• Docker for Mac vs Docker Toolbox

– Docker for Mac

– Docker Toolbox

• Find uid and gid

– Find your user id (uid)

– Find your group id (gid)

87.9.1 Docker for Mac vs Docker Toolbox

Docker for Mac

On Docker for Mac (native Docker) you can open up any terminal you prefer, there are no other requirements.

Docker Toolbox

On Docker Toolbox it is important that you open up a Docker environment prepared terminal window.

See also:

• Open a terminal on MacOS

87.9. Find your user id and group id on MacOS 437

Devilbox Documentation, Release 1.0

87.9.2 Find uid and gid

Open the correct terminal as described above and type the following commands:

Find your user id (uid)

host> id -u

Find your group id (gid)

host> id -g

87.10 Find your user id and group id on Windows

Table of Contents

• Docker for Windows

• Docker Toolbox

– Find your user id (uid)

– Find your group id (gid)

87.10.1 Docker for Windows

On Docker for Windows it is not necessary to change uid and gid in your .env file.

Note: Docker for Windows is internally using network shares (SMB) to mount Docker volumes. This does not require
to syncronize file and directoriy permissions via uid and gid.

87.10.2 Docker Toolbox

On Docker Toolbox it is important that you open up a Docker environment prepared terminal window.

See also:

• Open a terminal on Windows

Find your user id (uid)

Type the following command to retrieve the correct uid.

host> id -u

438 Chapter 87. How To

Devilbox Documentation, Release 1.0

Find your group id (gid)

Type the following command to retrieve the correct gid.

host> id -g

87.11 Find Docker and Docker Compose version

Open a terminal and type the following:

Get Docker version
host> docker --version

Get Docker Compose version
host> docker-compose --version

See also:

• Open a terminal on MacOS

• Open a terminal on Windows

87.12 Move projects to a different directory

No matter if your projects are already in a different location or if you want to move them out of the Devilbox git
directory now, you can do that in a few simple steps.

Table of Contents

• Projects in an absolute path

• Projects adjacent to Devilbox directory

87.12.1 Projects in an absolute path

So let’s assume all of your projects are already in place under /home/user/workspace/web/. Now you decide
to use the Devilbox, but still want to keep your projects where they are at the moment.

All you have to to is to adjust the path of HOST_PATH_HTTPD_DATADIR in the .env file.

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_HTTPD_DATADIR

87.11. Find Docker and Docker Compose version 439

Devilbox Documentation, Release 1.0

Listing 10: .env

HOST_PATH_HTTPD_DATADIR=/home/user/workspace/web

That’s it, whenever you start up the Devilbox, /home/user/workspace/web/ will be mounted into the PHP and
the web server container into /shared/httpd/.

87.12.2 Projects adjacent to Devilbox directory

Consider the following directory setup:

|
+- devilbox/
|
+- projects/

|
+ project1/
| |
| + htdocs/
|
+ project2/

|
+ htdocs/

Independently of where the Devilbox directory is located, you can achieve this structure via relative path settings.

All you have to to is to adjust the path of HOST_PATH_HTTPD_DATADIR in the .env file.

Navigate to Devilbox git directory
host> cd path/to/devilbox

Open the .env file with your favourite editor
host> vim .env

Now Adjust the value of HOST_PATH_HTTPD_DATADIR

Listing 11: .env

HOST_PATH_HTTPD_DATADIR=../projects

That’s it, whenever you start up the Devilbox, your project directory will be mounted into the PHP and the web server
container into /shared/httpd/.

87.13 Host address alias on MacOS

In order for Xdebug to work on Docker for MacOS, the container needs a well known IP address for its Xdebug remote
host. This is achieved by adding an alias to the loopback device.

Table of Contents

• One-time alias

• Boot persistent alias

440 Chapter 87. How To

Devilbox Documentation, Release 1.0

87.13.1 One-time alias

In order to create this alias for testing purposes, which does not survive reboots, you can issue the command manually
with sudo or root privileges.

host> sudo ifconfig lo0 alias 10.254.254.254

87.13.2 Boot persistent alias

If you want to have this alias persistent across reboot, you need to download and enable a plist file:

Download the plist into the correct location
host> sudo curl -o \

/Library/LaunchDaemons/org.devilbox.docker_10254_alias.plist \
https://raw.githubusercontent.com/devilbox/xdebug/master/osx/org.devilbox.

→˓docker_10254_alias.plist

Enable without reboot
host> sudo launchctl load /Library/LaunchDaemons/org.devilbox.docker_10254_alias.plist

See also:

• Configure PHP Xdebug

•

•

87.14 Docker Toolbox and the Devilbox

Docker Toolbox is a legacy solution to bring Docker to systems which don’t natively support Docker. This is achieved
by starting a virtualized Linux instance (e.g.: inside VirtualBox) and have Docker run inside this machine.

You don’t have to take care about setting up the virtual machine, this is done automatically with the provided setup
file (Windows and MacOS).

However, there are a few stumbling blocks you need to pay attention to in order to use the Devilbox at its full potential.

See also:

Docker Toolbox

•

•

•

•

Table of Contents

• Devilbox listening address configuration

• Find the Docker Toolbox IP address

• Project DNS record pitfalls

87.14. Docker Toolbox and the Devilbox 441

Devilbox Documentation, Release 1.0

• Auto-DNS via port forwarding

– How does Auto-DNS work?

– How to fix it for Docker Toolbox

• Mount shared folders

– MacOS

– Windows

87.14.1 Devilbox listening address configuration

First thing you need to make sure is that the LOCAL_LISTEN_ADDR variable from your .env file is empty. When
it is empty all services bind to all IP addresses inside the virtual machine and thus being able to be seen from outside
the virtual machine (your host operating system).

You can verifiy that the variable is actually empty by checking your .env file:

host> grep ^LOCAL_LISTEN_ADDR .env

LOCAL_LISTEN_ADDR=

Important: The variable should exist, but there should not be any value after the equal sign.

See also:

.env file

87.14.2 Find the Docker Toolbox IP address

The Devilbox intranet will not be available under 127.0.0.1 or localhost as it does not run on your host
operating system, but on a virtualized Linux machine which has a different IP address.

To find out the IP address on which Docker Toolbox is running you have to use the docker-machine command.
Open a terminal and type the following:

host> docker-machine ip default
192.168.99.100

The above example outputs 192.168.99.100, but this might be different on your machine.

In this example I would then paste http://192.168.99.100 in the web browsers address bar to reach the Dev-
ilbox intranet.

See also:

• Open a terminal on MacOS

• Open a terminal on Windows

• Find Docker Toolbox IP address

442 Chapter 87. How To

Devilbox Documentation, Release 1.0

87.14.3 Project DNS record pitfalls

When creating manual DNS records per project, you have to keep in mind that you cannot use 127.0.0.1 for the
IP address part. You have to use the IP address of the Docker Toolbox virtual machine as was shown in the above
example.

Assuming the Docker Toolbox IP address is: 192.168.99.100, you have to create DNS records as follows:

Listing 12: /etc/resolv.conf or C:\Windows\System32\drivers\etc

192.168.99.100 project.loc

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

• Find Docker Toolbox IP address

87.14.4 Auto-DNS via port forwarding

In order to make Auto-DNS for projects work as it does for native Docker implementations you will have to do some
prior configuration.

How does Auto-DNS work?

Auto-DNS is a catch-all DNS resolver for your chosen TLD_SUFFIX that will redirect any domain to 127.0.0.1.
Unfortunately Docker Toolbox does not listen on that IP address.

How to fix it for Docker Toolbox

To overcome this problem, you will have to create three port forwards on your host operating system from the Docker
machine IP address for DNS (port 53), http (port 80) and https (port 443) to 127.0.0.1 on your host os.

Assuming the Docker Toolbox IP address is 192.168.99.100 the three port forwards must be as follows:

From IP From port To IP To port
192.168.99.100 53 127.0.0.1 53
192.168.99.100 80 127.0.0.1 80
192.168.99.100 443 127.0.0.1 443

See also:

• Find Docker Toolbox IP address

• SSH port-forward on Docker Toolbox from host

• Setup Auto DNS

87.14.5 Mount shared folders

Docker Toolbox will automatically set up a shared directory between your host operating system and the virtual Linux
machine. Only files and directories within this shared directory can be used to be mounted into Docker container. If

87.14. Docker Toolbox and the Devilbox 443

Devilbox Documentation, Release 1.0

you plan to mount files or directories outside of this default path you have to create a new shared directory as described
below.

MacOS

When you want to have your projects reside not somewhere in the /Users directory, ensure you have read, understood
and applied the following:

“By default, Toolbox only has access to the /Users directory and mounts it into the VMs at /Users.
If your project lives elsewhere or needs access to other directories on the host filesystem, you can add
them.”

See also:

Windows

When you want to have your projects reside not somewhere in the C:\Users directory, ensure you have read,
understood and applied the following:

“By default, Toolbox only has access to the C:\Users directory and mounts it into the VMs at /c/
Users. If your project lives elsewhere or needs access to other directories on the host filesystem, you
can add them, using the VirtualBox UI.”

See also:

87.15 Find Docker Toolbox IP address

Table of Contents

• Get IP address

• What to do with it

87.15.1 Get IP address

1. Open an environment prepared Terminal

2. Enter the following command to get the IP address of the Docker Toolbox virtual machine:

host> docker-machine ip default

192.168.99.100

The above example outputs 192.168.99.100, but this might be a different IP address on your machine.

See also:

• Open a terminal on MacOS

• Open a terminal on Windows

444 Chapter 87. How To

Devilbox Documentation, Release 1.0

87.15.2 What to do with it

The Docker Toolbox IP address is the address where the Devilbox intranet as well as all of its projects will be available
at.

• Use it to access the intranet via your browser (http://192.168.99.100 in this example)

• Use it for manual DNS entries

See also:

• Add project hosts entry on MacOS

• Add project hosts entry on Windows

87.16 SSH into Docker Toolbox

Table of Contents

• Requirements

• Manual

– Gather all information

– Gather specific information

– SSH into Docker Toolbox

• Automated

87.16.1 Requirements

You shell must have an SSH client (the ssh command or equivalent).

See also:

• Open a terminal on MacOS

• Open a terminal on Windows

• Find Docker Toolbox IP address

87.16.2 Manual

Before going to use the automated approach, you should understand how to fetch all required information via the
docker-machine command.

Gather all information

1. Get active Toolbox machine name

host> docker-machine active
default

87.16. SSH into Docker Toolbox 445

Devilbox Documentation, Release 1.0

2. Print all information

host> docker-machine -D ssh default
Host : localhost
Port : 51701
User : docker
Key : .docker\machine\machines\default\id_rsa

Gather specific information

1. Get active Toolbox machine name

host> docker-machine active
default

2. Get SSH username (Using machine name default from above)

host> docker-machine inspect default --format={{.Driver.SSHUser}}
docker

3. Get SSH public key (Using machine name default from above)

host> docker-machine inspect default --format={{.Driver.SSHKeyPath}}
.docker\machine\machines\default\id_rsa

4. Get local SSH port (Using machine name default from above)

host> docker-machine inspect default --format={{.Driver.SSHPort}}
51701

5. Get Docker Toolbox IP address (Using machine name default from above)

host> docker-machine ip default
192.168.99.100

SSH into Docker Toolbox

Now with the above gathered information you can ssh into Docker Toolbox in two different ways:

1. via local port-forwarded ssh port (automatically forwarded by Docker Toolbox)

host> ssh -i .docker\machine\machines\default\id_rsa -p 51701 docker@127.0.0.1

2. via Docker Toolbox IP address

host> ssh -i .docker\machine\machines\default\id_rsa docker@192.168.99.100

87.16.3 Automated

Instead of typing all of the above manually each time, you can also create a small bash script to automate this.

1. Create a file ssh-docker.sh and add the following to it:

446 Chapter 87. How To

Devilbox Documentation, Release 1.0

Listing 13: ssh-docker.sh

#!/bin/bash
docker_machine_name=$(docker-machine active)
docker_ssh_user=$(docker-machine inspect $docker_machine_name --format={{.Driver.
→˓SSHUser}})
docker_ssh_key=$(docker-machine inspect $docker_machine_name --format={{.Driver.
→˓SSHKeyPath}})
docker_ssh_port=$(docker-machine inspect $docker_machine_name --format={{.Driver.
→˓SSHPort}})

ssh -i $docker_ssh_key -p $docker_ssh_port $docker_ssh_user@localhost

2. Run it:

host> bash ssh-docker.sh

See also:

87.17 SSH port-forward on Docker Toolbox from host

Note: This is a Local SSH port-forward (ssh -L)

Table of Contents

• Requirements

• Overview

– General command

– Command example

• Examples

– Make host-based MySQL available on Docker Toolbox

– Make host-based PgSQL available on Docker Toolbox

87.17.1 Requirements

You host operating system must have an SSH server installed, up and running.

See also:

• Open a terminal on MacOS

• Open a terminal on Windows

• Find Docker Toolbox IP address

• SSH into Docker Toolbox

•

87.17. SSH port-forward on Docker Toolbox from host 447

Devilbox Documentation, Release 1.0

87.17.2 Overview

This is a local SSH port-forward (ssh -L). In other words, the Docker Toolbox machine will make a port locally
available from somewhere else. Therefore the process must be initiated on the Docker Toolbox machine.

General command

The following represents the general structure of a local ssh port-forward:

ssh -L <DockerToolbox_Port>:<HostOS_SRV_IP>:<HostOS_SRV_Port> <HostOS_SSH_USER>@
→˓<HostOS_SSH_IP>

<DockerToolbox_Port> The port on the Docker Toolbox machine the service should be made available
<HostOS_SRV_IP> The IP address on the host os, where the service is currently listening
<HostOS_SRV_PORT> The port on the host os, where the service is bound to
<HostOS_SSH_USER> The username of the host os SSH server for the connection
<HostOS_SSH_IP> The IP address of the host at which the SSH server is reachable

Command example

Making 127.0.0.1:10000 from host os available on 0.0.0.0:8080 on Docker Toolbox machine:

ssh -L 8080:127.0.0.1:10000 user@172.16.0.1

8080 Docker Toolbox should make the port available on itself on this port
127.0.0.1 The service currently listens on that IP address on the host os
10000 The service is currently bound to that port on the host os
user The username of the host os SSH server for the connection
172.16.0.1 The IP address of the host at which the SSH server is reachable

87.17.3 Examples

For this example we assume the following information:

• Docker Toolbox IP address is 192.168.99.100

• Host os IP address where SSH server is listening is 172.16.0.1

• Host SSH username is user

Make host-based MySQL available on Docker Toolbox

1. Gather the IP address on your host os where the SSH server is listening

2. SSH into the Docker Toolbox machine

3. Forward: 127.0.0.1:3306 from host os to 0.0.0.0:3306 on Docker Toolbox

toolbox> ssh -L 3306:127.0.0.1:3306 user@172.16.0.1

448 Chapter 87. How To

Devilbox Documentation, Release 1.0

Make host-based PgSQL available on Docker Toolbox

1. Gather the IP address on your host os where the SSH server is listening

2. SSH into the Docker Toolbox machine

3. Forward: 127.0.0.1:5432 from host os to 0.0.0.0:5432 on Docker Toolbox

toolbox> ssh -L 5432:127.0.0.1:5432 user@172.16.0.1

87.18 SSH port-forward on host to Docker Toolbox

Note: This is a Remote SSH port-forward (ssh -R)

Table of Contents

• Requirements

• Overview

– General command

– Command example

• Examples

– Make host-based MySQL available on Docker Toolbox

– Make host-based PgSQL available on Docker Toolbox

87.18.1 Requirements

You shell must have an SSH client (the ssh command or equivalent).

See also:

• Open a terminal on MacOS

• Open a terminal on Windows

• Find Docker Toolbox IP address

• SSH into Docker Toolbox

•

87.18.2 Overview

This is a remote SSH port-forward (ssh -R). In other words, the host os will make the port remotely availabl on
the Docker Toolbox machine. Therefore the process must be initiated on the host os.

87.18. SSH port-forward on host to Docker Toolbox 449

Devilbox Documentation, Release 1.0

General command

The following represents the general structure of a remote ssh port-forward:

ssh -R <DockerToolbox_Port>:<HostOS_SRV_IP>:<HostOS_SRV_Port> <DockerToolbox_SSH_USER>
→˓@<DockerToolbox_SSH_IP>

<DockerToolbox_Port> The port on the Docker Toolbox machine the service should be made avail-
able

<HostOS_SRV_IP> The IP address on the host os, where the service is currently listening
<HostOS_SRV_PORT> The port on the host os, where the service is bound to
<DockerToolbox_SSH_USER> The username of the host os SSH server for the connection
<DockerToolbox_SSH_IP> The IP address of the host at which the SSH server is reachable

Command example

Making 127.0.0.1:10000 from host os available on 0.0.0.0:8080 on Docker Toolbox machine:

ssh -R 8080:127.0.0.1:10000 docker@192.168.99.100

8080 Docker Toolbox should make the port available on itself on this port
127.0.0.1 The service currently listens on that IP address on the host os
10000 The service is currently bound to that port on the host os
docker The username of the Docker Toolbox SSH server for the connection
192.168.99.100 The IP address of the Docker Toolbox at which the SSH server is reachable

87.18.3 Examples

For this example we assume the following information:

• Docker Toolbox IP address is 192.168.99.100

• Docker Toolbox SSH username is docker

Make host-based MySQL available on Docker Toolbox

1. Open a terminal on your host os

2. Forward: 127.0.0.1:3306 from host os to 0.0.0.0:3306 on Docker Toolbox

toolbox> ssh -R 3306:127.0.0.1:3306 docker@192.168.99.100

Make host-based PgSQL available on Docker Toolbox

1. Open a terminal on your host os

2. Forward: 127.0.0.1:5432 from host os to 0.0.0.0:5432 on Docker Toolbox

toolbox> ssh -R 5432:127.0.0.1:5432 docker@192.168.99.100

450 Chapter 87. How To

Devilbox Documentation, Release 1.0

87.19 Open a terminal on MacOS

See also:

Open a terminal on Windows

Table of Contents

• Docker for Mac

• Docker Toolbox

– Via Launcher

– Different terminal

87.19.1 Docker for Mac

Docker for Mac (the native Docker implementation) does not have any special requirements for initial environment
variable setup. Simply open your terminal of choice from the Launchpad (Terminal.app or iTerm.app).

See also:

87.19.2 Docker Toolbox

Docker Toolbox provides a launcher to open an environment prepared terminal, but you can also do it manually with
a terminal of your choice.

Via Launcher

1. Open the Launchpad and locate the Docker Quickstart Terminal icon.

2. Click the icon to launch a Docker Quickstart Terminal window.

The terminal does a number of things to set up Docker Quickstart Terminal for you.

Last login: Sat Jul 11 20:09:45 on ttys002
bash '/Applications/Docker Quickstart Terminal.app/Contents/Resources/Scripts/start.sh
→˓'
Get http:///var/run/docker.sock/v1.19/images/json?all=1&filters=%7B%22dangling%22%3A
→˓%5B%22true%22%5D%7D: dial unix /var/run/docker.sock: no such file or directory. Are
→˓you trying to connect to a TLS-enabled daemon without TLS?
Get http:///var/run/docker.sock/v1.19/images/json?all=1: dial unix /var/run/docker.
→˓sock: no such file or directory. Are you trying to connect to a TLS-enabled daemon
→˓without TLS?
-bash: lolcat: command not found

mary at meepers in ~
$ bash '/Applications/Docker Quickstart Terminal.app/Contents/Resources/Scripts/start.
→˓sh'
Creating Machine dev...
Creating VirtualBox VM...
Creating SSH key...
Starting VirtualBox VM...

(continues on next page)

87.19. Open a terminal on MacOS 451

Devilbox Documentation, Release 1.0

Fig. 14: Copyright docs.docker.com

452 Chapter 87. How To

Devilbox Documentation, Release 1.0

(continued from previous page)

Starting VM...
To see how to connect Docker to this machine, run: docker-machine env dev
Starting machine dev...
Setting environment variables for machine dev...

.
==

===
/"""""""""""""""""___/ ===

~~~ {~~ ~~~~ ~~~ ~~~~ ~~~ ~ / ===- ~~~
\______ o __/
\ \ __/
\____\_______/

The Docker Quick Start Terminal is configured to use Docker with the "default" VM.

You can now use this terminal window to apply all your Docker and Devilbox related commands.

Different terminal

If you rather want to use a different terminal, you can accomplish the same behaviour.

1. Open your terminal of choice

2. Type the following to prepare environment variables

$(docker-machine env default)

You can now use this terminal window to apply all your Docker and Devilbox related commands.

See also:

87.20 Open a terminal on Windows

See also:

Open a terminal on MacOS

Table of Contents

• Docker for Windows

• Docker Toolbox

87.20.1 Docker for Windows

Docker for Windows (the native Docker implementation) does not have any special requirements for initial environ-
ment variable setup. Simply open either

• Command Prompt

• PowerShell

87.20. Open a terminal on Windows 453



Devilbox Documentation, Release 1.0

Important: Do not open PowerShell ISE

See also:

87.20.2 Docker Toolbox

1. On your Desktop, find the Docker QuickStart Terminal icon.

Fig. 15: Copyright docs.docker.com

2. Click the Docker QuickStart icon to launch a pre-configured Docker Toolbox terminal.

If the system displays a User Account Control prompt to allow VirtualBox to make changes to your computer.
Choose Yes.

Fig. 16: Copyright docs.docker.com

454 Chapter 87. How To



Devilbox Documentation, Release 1.0

The terminal runs a special bash environment instead of the standard Windows command prompt. The
bash environment is required by Docker.

You can now use this terminal window to apply all your Docker and Devilbox related commands.

See also:

87.20. Open a terminal on Windows 455



Devilbox Documentation, Release 1.0

456 Chapter 87. How To



CHAPTER 88

Blogs, Videos and Use-cases

Table of Contents

• Official videos

• Conferences

– DrupalCamp Ghent 2018

• Blog posts

• Use-cases

– Joomla’s Continuous Integration

• Add your story

88.1 Official videos

The official videos might be a bit old, but are still valid and a good start, even if the intranet UI has changed a bit.

88.2 Conferences

88.2.1 DrupalCamp Ghent 2018

Simple local development with Devilbox:

•

•

457



Devilbox Documentation, Release 1.0

458 Chapter 88. Blogs, Videos and Use-cases

https://www.youtube.com/watch?v=reyZMyt2Zzo
https://www.youtube.com/watch?v=e-U-C5WhxGY


Devilbox Documentation, Release 1.0

88.3 Blog posts

The following shows a list of blogs that give a nice and objective introduction to the Devilbox.

Title Language
English
German

88.4 Use-cases

88.4.1 Joomla’s Continuous Integration

Joomla has created a as their project using a modified version of the Devilbox.

88.5 Add your story

Have you written a valuable blog about the Devilbox or do you have a fancy use-case? If so, submit a pull request and
add it.

88.3. Blog posts 459



Devilbox Documentation, Release 1.0

460 Chapter 88. Blogs, Videos and Use-cases



CHAPTER 89

Artwork

The Devilbox provides official logos and banners to be used for articles, blogs and others by the following license:

Images are available as opaque and transparent versions:

If you feel like designing a new logo for the Devilbox or just want to grab a copy of any of the images go to its artwork
repository on github.

See also:

https://github.com/devilbox/artwork

461

https://github.com/devilbox/artwork
https://github.com/devilbox/artwork

	Read first
	Shell commands
	Examples
	Checklists
	Where to start?

	Features
	Projects
	Service and version choice
	Configuration
	Intranet
	Dockerized
	Others

	Devilbox purpose
	Why did I built this?
	Automation is key
	Issues with Docker encountered
	Today’s state
	Tomorrow’s state

	Prerequisites
	Supported host OS
	Required software
	Docker installation
	Post installation
	Optional previous knowledge

	Install the Devilbox
	Download the Devilbox
	Create .env file
	Set uid and gid
	OS specific setup
	Checklist

	Start the Devilbox
	The Devilbox startup explained
	Start all container
	Start some container
	Open Devilbox intranet
	Checklist

	Devilbox intranet
	Devilbox tools
	Third-party tools
	Settings
	Checklist

	Directory overview
	Data directory
	Project directory
	Docroot directory
	Domain suffix
	Making sense of it
	Checklist

	Create your first project
	Step 1: visit Intranet vhost page
	Step 2: create a project directory
	Step 3: create a docroot directory
	Step 4: create a DNS entry
	Step 5: visit your project
	Step 6: create a hello world file
	Checklist
	Further examples

	Enter the PHP container
	How to enter
	How to become root
	Tools
	Advanced
	Checklist

	Change container versions
	Implications
	Examples
	Gotchas
	Checklist

	Setup Auto DNS
	Native Docker
	Docker Toolbox

	Setup valid HTTPS
	TL;DR
	How does it work
	Import the CA into your browser
	Further Reading

	Configure PHP Xdebug
	Introduction
	Configure PHP container for Xdebug
	Configure your IDE/editor for Xdebug

	Enable/disable PHP modules
	Enabled PHP modules
	Disable PHP modules
	Roadmap

	Read log files
	Mounted logs
	Docker logs
	Checklist

	Email catch-all
	Devilbox Intranet
	MailHog

	Add custom environment variables
	Add custom environment variables
	Use custom environment variables

	Work inside the PHP container
	Enter the container
	Inside the container
	Leave the container
	Host to Container mappings
	Checklist

	Source Code Analysis
	Awesome-ci
	PHPCS
	ESLint

	Best practice
	Move data out of Devilbox directory
	PHP project hostname settings
	Timezone

	Customize PHP globally
	Configure PHP settings globally
	Configure non-overwritable settings globally
	Configure loaded PHP modules
	Configure PHP-FPM service

	Customize web server globally
	Configure Apache
	Configure Nginx
	Devilbox specific settings

	Connect to host OS
	Prerequisites
	Docker on Linux
	Docker for Mac
	Docker for Windows
	Docker Toolbox

	Connect to other Docker container
	Any Docker container on host os
	Add Docker container to Devilbox network
	Add Docker container to Devilbox stack

	Connect to external hosts
	Add custom CNAME DNS entries
	Why and what?
	How?

	Add your own Docker image
	Prerequisites
	What information do you need?
	How to add a new service?
	How to start the new service?
	Further reading

	Overwrite existing Docker image
	Prerequisites
	What information do you need?
	How to overwrite a service?
	Further reading

	Custom scripts per PHP version
	General
	Examples

	Custom scripts globally
	General
	Examples

	Autostarting NodeJS Apps
	Self-built
	Pre-built
	Reverse proxy NodeJS

	Virtual host templates
	Overview
	Virtual host Templates
	Reverse proxy Templates

	Customize all virtual hosts globally
	Prerequisite
	Apply templates globally to all vhosts

	Customize specific virtual host
	vhost-gen
	Templates explained
	Apply Changes
	Further readings

	Virtual host vs Reverse Proxy
	Motivation
	Benefits
	Creating a reverse proxy

	Example: add sub domains
	Simple sub domains for one project
	Complex sub domains for one project

	Reverse Proxy with HTTPS
	Walkthrough

	Reverse Proxy for custom Docker
	Walkthrough

	Enable all additional container
	Available additional container
	Enable all additional container
	Configure additional container

	Enable and configure Blackfire
	Overview
	Instructions
	TL;DR

	Enable and configure MailHog
	Overview
	Instructions
	TL;DR

	Enable and configure RabbitMQ
	Overview
	Instructions
	TL;DR

	Enable and configure Solr
	Overview
	Instructions
	TL;DR

	Shared Devilbox server in LAN
	Prerequisites
	Project access
	Handle DNS records
	Share Devilbox CA

	Use external databases
	Why
	Database on host os
	Database on network
	Database on internet

	Checkout different Devilbox release
	Remove stopped container
	Why should I?
	How to do it?
	When to do it?

	Update the Devilbox
	Update git repository
	Update Docker images
	Checklist git repository
	Checklist Docker images

	Remove the Devilbox
	Backups
	Remove the Devilbox
	Revert your system changes

	Backup and restore MySQL
	Backup
	Restore

	Backup and restore PostgreSQL
	Backup
	Restore

	Backup and restore MongoDB
	Backup
	Restore

	.env file
	Core settings
	Intranet settings
	Docker image versions
	Docker host mounts
	Docker host ports
	Container settings

	docker-compose.yml
	docker-compose.override.yml
	Create docker-compose.override.yml
	Further reading

	apache.conf
	General
	Examples

	nginx.conf
	General
	Examples

	php.ini
	General
	Examples

	php-fpm.conf
	General
	Examples

	my.cnf
	General
	Examples

	bashrc.sh
	Directory mapping
	Examples

	Setup CakePHP
	Overview
	Walk through

	Setup CodeIgniter
	Overview
	Walk through

	Setup CraftCMS
	Overview
	Walk through

	Setup Drupal
	Overview
	Walk through

	Setup Joomla
	Overview
	Walk through

	Setup Laravel
	Overview
	Walk through

	Setup Magento 2
	Overview
	Walk through

	Setup Phalcon
	Overview
	Walk through

	Setup Photon CMS
	Overview
	Walk through

	Setup PrestaShop
	Overview
	Walk through

	Setup Shopware
	Overview
	Walk through
	Encountered problems

	Setup Symfony
	Overview
	Walk through

	Setup Typo3
	Overview
	Walk through

	Setup Wordpress
	Overview
	Walk through

	Setup Yii
	Overview
	Walk through

	Setup Zend
	Overview
	Walk through

	Setup other Frameworks
	Setup reverse proxy NodeJS
	Overview
	Walk through
	Managing NodeJS

	Setup reverse proxy Sphinx docs
	Overview
	Walk through

	Syncronize container permissions
	Unsyncronized permissions
	It gets even worse
	The solution

	Available container
	Core container
	Additional container

	Available tools
	Troubleshooting
	General
	Performance
	DNS issues
	SSL issues
	Web server issues
	PHP issues
	Database issues

	FAQ
	General
	Configuration
	Compatibility

	How To
	Add custom DNS server on Android
	Add custom DNS server on iPhone
	Add custom DNS server on Linux
	Add custom DNS server on MacOS
	Add custom DNS server on Windows
	Add project hosts entry on Linux
	Add project hosts entry on MacOS
	Add project hosts entry on Windows
	Find your user id and group id on MacOS
	Find your user id and group id on Windows
	Find Docker and Docker Compose version
	Move projects to a different directory
	Host address alias on MacOS
	Docker Toolbox and the Devilbox
	Find Docker Toolbox IP address
	SSH into Docker Toolbox
	SSH port-forward on Docker Toolbox from host
	SSH port-forward on host to Docker Toolbox
	Open a terminal on MacOS
	Open a terminal on Windows

	Blogs, Videos and Use-cases
	Official videos
	Conferences
	Blog posts
	Use-cases
	Add your story

	Artwork

