DevAssistant Documentation
Release 0.11.0

Bohuslav Kabrda, Petr Hracek

September 26, 2015

Contents

Contents 3
1.1 User Documentation v v i v v i e e e e e e e e e e e e e 3
1.2 Developer Documentation v i vttt e e e e e e e e e e e e e 10
Overview 61

DevAssistant Documentation, Release 0.11.0

DevAssistant - making life easier for developers

Contents 1

DevAssistant Documentation, Release 0.11.0

2 Contents

CHAPTER 1

Contents

1.1 User Documentation

1.1.1 A Brief Intro

DevAssistant - start developing with ease

DevAssistant (http://devassistant.org) can help you with creating and setting up basic projects in various languages,
installing dependencies, setting up environment etc.

It is based on idea of per-{language/framework/...} “assistants” (plugins) with hierarchical structure.

Note: prior to version 0.10.0, DevAssistant has been shipped with a default set of assistants that only worked on
Fedora. We decided to drop this default set and create DAPI, DevAssistant Package Index, https://dapi.devassistant.org/
- an upstream PyPIl/Rubygems-like repository of packaged assistants. DAPI’s main aim is to create a community
around DevAssistant and provide various assistants with good support for various platforms - a task that DevAssistant
core team alone is not able to achieve for a large set of assistants.

This all means that if you get DevAssistant from upstream repo or from PyPI, you will have no assistants installed
by default. To get assistants, search DAPI through web browser or run da pkg search <term> and da pkg
install <assistant package>. Thiswill install one or more DAPs (DevAssistant Packages) with the desired
assistants.

If you want to create your own assistants and upload them to DAPI, see
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant.html and
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant/packaging_and_distributing.html.

There are four main modes of DevAssistant execution. Explanations are provided to better illustrate what each mode
is supposed to do:

create Create new projects - scaffold source code, install dependencies, initialize SCM repos ...

tweak Work with existing projects - add source files, import to IDEs, push to GitHub, ...

prepare Prepare environment for working with existing upstream projects - install dependencies, set up services, ...
extras Tasks not related to a specific project, e.g. enabling services, setting up IDEs, ...

These are some examples of what you can do:

search for assistants that have "Django" in their description
$ da pkg search django
python - Python assistants (library, Django, Flask, GTK3)

install the found "python" DAP, assuming it supports your 0OS/distro

http://devassistant.org
https://dapi.devassistant.org/
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant.html
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant/packaging_and_distributing.html

DevAssistant Documentation, Release 0.11.0

$ da pkg install python

find out if the installed package has documentation
$ da doc python
INFO: DAP "python" has these docs:

INFO: usage.txt

show help
$ da doc python usage.txt

1f the documentation doesn't say it specifically, find out if there is a "create"
assistant in the installed "python" DAP
$ da create -h

ETS

{..., python, ...}

there is, so let's find out if it has any subassistants

$ da create python -h

{..., django, ...}

we found out that there is "django" subassistant, let's find out how to use it
$ da create python django -h

<help text with commandline options>

help text tells us that django assistant doesn't have subassistants and is runnable, let's do it
$ da create python django -n ~/myproject # sets up Django project named "myproject" inside your home

using the same approach with "pkg search", "pkg install" and "da tweak -h",

we find, install and read help for "tweak" assistant that imports projects to eclipse
$ da tweak eclipse -p ~/myproject # run in project dir or use -p to specify path

using the same approach, we find, install and read help for assistant

that tries to prepare environment for a custom upstream project, possibly utilizing

1ts ".devassistant" file

$ da prepare custom -u scm_url -p directory_to_save_to

sometimes, DevAssistant can really do a very special thing for you

$ da extras make-coffee

Should you have some questions, feel free to ask us at Freenode channel #devassistant or on our mail-
ing list (https://lists.fedoraproject.org/mailman/listinfo/devassistant). You can also join our G+ com-
munity (https:/plus.google.com/u/0/communities/112692240128429771916) or follow us on Twitter
(https://twitter.com/dev_assistant).

1.1.2 Installation

If you can, use the packaged version

To install DevAssistant on your machine, there is usually more than one way. If you use a Linux distribution where
DevAssistant is already packaged, we strongly suggest you use the packaged version. Doing so can save you quite a
few headaches with configuration and making sure everything works. This applies especially to Fedora, where it is us,
the DevAssistant development team, who cares about the packaging.

4 Chapter 1. Contents

https://lists.fedoraproject.org/mailman/listinfo/devassistant
https://plus.google.com/u/0/communities/112692240128429771916
https://twitter.com/dev_assistant

DevAssistant Documentation, Release 0.11.0

Install from PyPI

If you don’t wan’t to use the packaged version or there isn’t one for your OS in the first place, you can install DevAs-
sistant from the Python Package Index via the pip tool. In a large majority of distributions, pip is packaged in the
system repositories.

However, even though pip makes sure the specified dependencies are met, it is simply not enough to allow you run
DevAssistant to the fullest extent. To achieve that, you’ll need to do some manual steps:

* Make sure GTK+ version 3 is installed (the package’s name will probably be something like gtk 3)

e Make sure the askpass dialog for OpenSSH is installed (in Fedora, the package is called
openssh-askpass).

* Make sure git is installed.
* Make sure setuptools are installed for the version of Python you intend to use for running DevAssistant

* If you want to use the Docker functionality, you’ll need Docker installed, and a Python client for Docker (on
PyPI, it’s called docker—py). These may not be available on some architectures.

* If you want to use DevAssistant with an RPM-based distribution, you’ll need either YUM or DNF installed.
DNF runs only on Python 3, so you will have to run DevAssistant under Python 3 as well. Furthermore, DNF’s
bindings are most likely in a separate package, in Fedora packaged as python3-dnf).

Run from source

DevAssistant is perfectly runnable from source as well. For this, the same applies as for installing from PyPI, plus you
need to install the contents of requirements.txt (and requirements-py2.txt if you want to run DevAssistant under Python
2) in the root folder of the tarball. To do that, you can run the following command(s) in the unpacked DevAssistant
folder:

pip install —--user -r requirements.txt
pip install —--user -r requirements-py2.txt # Only on Python 2

P. S. We suggest you add the ——user flag so that the packages are installed in the ~/ . 1ocal directory in your home
instead of system-wide. If you perform system-wide pip installations, you risk breaking packages installed by the
system.

1.1.3 So What is an Assistant?

In short, Assistant is a recipe for creating/tweaking a project or setting up the environment in a certain way. DevAs-
sistant is in fact just a core that “runs” Assistants according to certain rules.

Each Assistant specifies a way to achieve a single task, e.g. create a new project in framework X of language Y.

If you want to know more about how this all works, consult Create Your Own Assistant.

Assistant Roles

There are four assistant roles:

creator (create or crt on command line) creates new projects

tweak (tweak or twk on command line) works with existing projects

preparer (prepare or prep on command line) prepares environment for development of upstream projects

extras (extras or extra on command line) performs arbitrary tasks not related to a specific project

1.1. User Documentation 5

DevAssistant Documentation, Release 0.11.0

The main purpose of having roles is separating different types of tasks. It would be confusing to have e.g. python
django assistant (that creates new project) side-by-side with eclipse assistant (that registers existing project into
Eclipse).

You can learn about how to invoke the respective roles below in Creating New Projects, Working with Existing Projects,
Preparing Environment and Extras.

1.1.4 Using Commandline Interface

Getting Assistants

By default, DevAssistant comes with no Assistants pre-installed. If you want to install some, you can get them from
DAPI, DevAssistant Package Index, https://dapi.devassistant.org/.

You can do that from DevAssistant itself. If you want Flask related Assistants, you can run:

$ da pkg serach flask
python - Python assistants (library, Django, Flask, GTK3)

da is the short form of devassistant. You can use either of them, but da is preferred.

pkg is an action for manipulating DAPs - DevAssistant packages. It contains several sub-actions, such as search
used here. To get more info about this python DAP, you can use info:

$ da pkg info python
python-0.10.1

Python assistants (library, Django, Flask, GTK3)

Set of crt assistants for Python. Contains assistants that let you
kickstart new Django or Flask web application, pure Python library or GTK3 app.
Supports both Python 2 and 3.

The following assistants are contained in this DAP:
* crt/python/flask
* crt/python/django
* crt/python/lib
* crt/python/gtk3
* crt/python

If you are satisfied, use install to actually get it:

$ da pkg install python
INFO: Installing DAP python
INFO: Successfully installed DAPs python common_args vim eclipse github

As you can see, the command did not only install the python DAP, but several others. That’s because python
depends on those and cannot work properly without them.

If you want to remove some DAP, use either uninstall or remove (they do the same):

$ da pkg remove python

INFO: Uninstalling DAP python

DAP python and the following files and directories will be removed:
~/.devassistant/meta/python.yaml
~/.devassistant/assistants/crt/python.yaml

6 Chapter 1. Contents

https://dapi.devassistant.org/

DevAssistant Documentation, Release 0.11.0

~/.devassistant/assistants/crt/python
~/.devassistant/files/crt/python
~/.devassistant/icons/crt/python.svg
~/.devassistant/snippets/python.yaml
~/.devassistant/doc/python

Is that OK? [y/N] y

INFO: DAPs python successfully uninstalled

Once in a while, you can update your DAPs. Either all of them like this:

$ da pkg update

INFO: Updating all DAP packages

INFO: Updating DAP git

INFO: DAP git successfully updated.
INFO: Updating DAP common_args

INFO: DAP common_args is already up to date.
INFO: Updating DAP eclipse

INFO: DAP eclipse is already up to date.
INFO: Updating DAP vim

INFO: DAP vim successfully updated.
INFO: Updating DAP github

INFO: DAP github is already up to date.
INFO: Updating DAP tito

INFO: DAP tito successfully updated.

Or if you want to update just some packages, name them:

$ da pkg update git tito

INFO: Updating DAP git

INFO: DAP git successfully updated.
INFO: Updating DAP tito

INFO: DAP tito successfully updated.

Creating New Projects

DevAssistant can help you create your projects with one line in a terminal. For example:

$ da create python django -n foo -e -g

What this line does precisely depends on the author of the Assistant. You can always display help by using da
create python django —h. Running the above command line may do something like this:

* Install Django and all needed dependencies.

* Create a Django project named foo in the current working directory.

* Make any necessary adjustments so that you can run the project and start developing right away.

* The —e switch will make DevAssistant register the newly created projects into Eclipse. This will also cause
installation of Eclipse and PyDev, unless already installed.

* The —g switch will make DevAssistant register the project on Github and push sources there.

Working with Existing Projects

DevAssistant allows you to work with previously created projects. You can do this by using da tweak, as opposed

to da create for creating:

1.1. User Documentation

DevAssistant Documentation, Release 0.11.0

$ da tweak eclipse

As noted above, what an Assistant does depends on its author. In this case, it seems that the Assistant will import an
existing project into Eclipse, possibly installing missing dependencies - to find out if this assumption is correct, run
da tweak eclipse -h andread the help.

Preparing Environment

DevAssistant can set up the environment and install dependencies for development of an already existing project
located in a remote SCM (e.g. Github). There is, for example, the so-called custom prepare assistant, that is supposed
to prepare environment for arbitrary upstream projects. This means that it will checkout the source code from given git
repo and if there is a . devassistant file in the repo, it’ll install dependencies and prepare environment according
to it:

$ da prepare custom -u scm_url

Warning: The custom Assistant executes custom pieces of code from a . devassistant file, so use this only for
projects whose upstreams you trust.

We hope that existance of DAPI will attract people from various upstreams to create prepare Assistants for their
specific projects, so that people could do something like:

$ da prepare openstack

To get development environment prepared for development of OpenStack, etc...

Extras

The last piece of functionality is performing arbitrary tasks that are not related to a specific projects. E.g.:

$ da extras make-coffee

Custom Actions

There are also some custom actions besides pkg, create, tweak, prepare and extras.

* doc - Displays documentation for given DAP. Uses less as pager, if available.:

finds out if "python" DAP has documentation, lists documents if yes
$ da doc python

INFO: LICENSE
INFO: somedoc.txt
INFO: docsubdir/someotherdoc.txt

displays specific document for "python" DAP
$ da doc python docsubdir/someotherdoc.txt

* help- Displays help :)

* version- Displays current DevAssistant version.

8 Chapter 1. Contents

https://dapi.devassistant.org/dap/custom/

DevAssistant Documentation, Release 0.11.0

1.1.5 Using the GUI

The DevAssistant GUI provides the full functionality of Commandline Interface through a Gtk based application.

The GUI provides all Assistant of the same type (creating, tweaking, preparing and extras) in one tab to keep things
organized.

The GUI workflow is dead simple:

» Choose the Assistant that you want to use, click it and possibly choose a proper subassistant (e.g. django for
python).

* The GUI displays a window where you can modify some settings and choose from various Assistant-specific
options.

* Click the “Run” button and then just watch getting the stuff done. If your input is needed (such as confirming
dependencies to install), DevAssistant will ask you, so don’t go get your coffee just yet.

 After all is done, get your coffee and enjoy.

1.1.6 Where are the Assistants located?

You may wonder where DAPs are installed. The short answer is ~/ . devassistant. However, the long answer is
little bit more complicated.

There are two variable defined in DevAssistant: DEVASSISTANT_ HOME and DEVASSISTANT PATH. Be default,
DEVASSISTANT_HOME issetto ~/.devassistant and DEVASSISTANT_PATH contains the following:

e ~/.devassistant
e /usr/local/share/devassistant
e /usr/share/devassistant

DAPs installed from DAPI can be found in DEVASSISTANT_HOME, however, you can run Assistants from all the
locations present in DEVASSISTANT_PATH. If the Assistant with the same name is present in more of them, locations
on the beginning of the list have bigger priority.

Sometimes the values of DEVASSISTANT_HOME and DEVASSISTANT_PATH are different. For example when
installing DAPs as root, ~/ .devassistant is no longer there and /usr/local/share/devassistant is
used as DEVASSISTANT_HOME instead. So all the users can use Assistants installed by root. You can also redefine
the values entirely by using environment variables. The following example will install DAP python to .bah:

$ DEVASSISTANT_HOME=.bah da pkg install python

However, be advised that you cannot use the python Assistants installed this way if you don’t specify the
DEVASSISTANT_HOME variable when running DevAssistant again.

Manipulating DEVASSISTANT_PATH is very similar, but directories defined in that variable are used in addi-
tion to the default ones. If you want to use only the directories in DEVASSISTANT_PATH, define the variable
DEVASSISTANT NO_DEFAULT_PATH. You must then define DEVASSISTANT_HOME too, because its default
value is unset in the process.

Also note that with DEVASSISTANT_NO_DEFAULT_PATH, the DAPs are installed into first directory from
DEVASSISTANT_PATH, notto DEVASSISTANT_HOME.

The pkg command line action works with multiple directories.

* running install always installs to DEVASSISTANT_HOME. However, the installation will not take place if
a package of the same name is present in some location specified in DEVASSISTANT_PATH - to override this
behavior, use the ——reinstall option.

1.1. User Documentation 9

DevAssistant Documentation, Release 0.11.0

e remove/uninstall only removes DAPs from DEVASSISTANT_HOME unless you use the ——all-paths
option. If you want to remove packages from directories where you don’t have write access, perform the action
as root.

* update updates DAPs in DEVASSISTANT_HOME. It may happen that the transaction requires packages in
other locations to be updated too. In that case, those packages will be left untouched, and newer versions will
be installed in DEVASSISTANT_HOME. You may override this behavior by using the ——all-paths option,
but you may need to perform that action as root if you don’t have write access in all the locations.

Note that /usr/share/devassistant is protected from the ——all-paths option because it’s supposed
to be managed by your distribution packaging system. If you want to disable this protection, just add
/usr/share/devassistant tothe DEVASSISTANT_PATH environment variable.

1.2 Developer Documentation

1.2.1 DevAssistant Core

Note: So far, this only covers some bits and pieces of the whole core.

DevAssistant Load Paths
DevAssistant has couple of load path entries, that are searched for assistants, snippets, icons and files used by assis-
tants. In standard installations, there are three paths:

1. “user” path, ~/.devassistant/

2. “local” path, /usr/local/share/devassistant/

3. “system” path, /usr/share/devassistant/

Another path(s) can be added by specifying DEVASSISTANT_PATH environment variable (if more paths are used,
they must be separated by colon). These paths are prepended to the list of standard load paths.

Each load path entry has this structure:

assistants/
crt/
twk/
prep/
extra/
files/
crt/
twk/
prep/
extra/
snippets/
icons/
crt/
twk/
prep/
extra/
snippets/

Icons under icons directory and files in £iles directory “copy” must the structure of assistants directory. E.g.
for assistant assistants/crt/foo/bar.yaml, the icon must be icons/crt/foo/bar.svg and files must
be placed under files/crt/foo/bar/

10 Chapter 1. Contents

DevAssistant Documentation, Release 0.11.0

Assistants Loading Mechanism

DevAssistant loads assistants from all load paths mentioned above (more specifically from
<load_path>/assistants/ only), traversing them in order “user”, “local”, “system”.

When DevAssistant starts up, it loads all assistants from all these paths. It assumes, that Creator assistants are located
under crt subdirectories the same applies to Tweak (twk), Preparer (prep) and Extras (ext ra) assistants.

For example, loading process for Creator assistants looks like this:

1. Load all assistants located in crt subdirectories of each <load path>/assistants/ (donotdescend into
subdirectories). If there are multiple assistants with the same name in different load paths, the first traversed
wins.

2. For each assistant named foo.yaml:

(a) If crt/foo directory doesn’t exist in any load path entry, then this assistant is “leaf”” and therefore can
be directly used by users.

(b) Else this assistant is not leaf and DevAssistant loads its subassistants from the directory, recursively going
from point 1).

Command Runners

Command runners... well, they run commands. They are the functionality that makes DevAssistant powerful, since
they effectively allow you to create callbacks to Python, where you can cope with the hard parts unsuitable for Yaml
assistants.

When DevAssistant executes a run section, it reads commands one by one and dispatches them to their respective
command runners. Every command runner can do whatever it wants - for example, we have a command runner that
creates Github repos.

After a command runner is run, DevAssistant sets LAST_LRES and LAST_RES global variables for usage (these are
rewritten with every command run). These variables represent the logical result of the command (True/False) and
result (a “return value”, something computed), much like with Expressions.

For reference of current commands, see Command Reference.

If you’re missing some cool functionality, you can implement your own command runner and send us a pull request
or include it in £iles shipped with your assistants. Command runners shipped with assistants must be loaded with
load _cmd command runner. Each command must be a class with two classmethods:

from devassistant.command runners import command_runners
from devassistant.logger import logger

NOTE: Command runners included in DA itself are decorated with @register._command_runng
wrapper. If you're shipping your own commands runners with assistants, don't do this
class MyCommandRunner (CommandRunner) :
@classmethod
def matches(cls, c):
return c.comm_type == 'mycomm'

def run(self):
input = self.c.input_res
logger.info ('MyCommandRunner was invoked: {ct}: {ci}'.format (ct=self.c.comm_typs
ci=input))
return (True, len (input))

pI

D

This command runner will run all commands with command type mycomm. For example if your assistant contains:

1.2. Developer Documentation 11

DevAssistant Documentation, Release 0.11.0

run:
- load_cmd: *file_from files_section
- $foo: $(echo "using DevAssistant")
- mycomm: You are $foo!

than DevAssistant will print out something like:

INFO: MyCommandRunner was invoked: mycomm: You are using DevAssistant!

When run, this command returns a tuple with logical result and result. This means you can assign the length of a string
to a variable like this:

run:
- S$thiswillbetrue, $length-~:
- mycomm: Some string.

(Also, LAST_LRES will be set to True and LAST_RES to length of the input string.)

Generally, the matches method should just decide (True/False) whether given command is
runnable or not and the run method should actually run it. The run method should use
devassistant.logger.logger object to log any messages and it can also raise any exception that’s
subclass of devassistant.exceptions.ExecutionException.

The c argument of the mat ches method and the CommandRunner’s ___init__ method (not shown in the example)
isadevassistant.lang.Command object. You can use various attributes of Command:

e comm_type - command type, e.g. mycommn (this will always be stripped of exec flag ~).

e comm - raw command input. The input is raw in the sense that it is uninterpreted. It’s literally the same as what’s
written in assistant yaml file.

e input_res and input_log_res - result and logical result of comm, i.e. interpreted input. This is what you
usually want to use to examine what was passed to your command. See Section Results for rules on interpreting
command input.

* had_exec_flag - True if the command type had exec flag, False otherwise.

Note: input only gets evaluated one time - at time of using input_log_res or input_res. This means, among other
things, that if exec flag is used, the command runner still has to access input_log_res or input_res to actually execute
the input.

1.2.2 Create Your Own Assistant

Create Assistant in Yaml DSL

Tutorial: Creating Your Own Assistant in Yaml DSL

So you want to create your own assistant? There is nothing easier... They say that in all tutorials, right?

This tutorial will guide you through the process of creating simple assistants of different roles - Creator, Tweak,
Preparer, Extras.

This tutorial doesn’t cover everything. Consult Yaml DSL Reference when you’re missing something you really
need to achieve. If you think that DevAssistant misses some functionality that would be useful, open a bug at
https://www.github.com/devassistant/devassistant/issues or send us a pull request.

12 Chapter 1. Contents

https://www.github.com/devassistant/devassistant/issues

DevAssistant Documentation, Release 0.11.0

General Rules Some things are common for all assistant types:

» Each assistant is one Yaml file, that must contain exactly one mapping - the so-called assistant attributes:

fullname: My Assistant
description: This will be part of help for this assistant

* You have to place them in a proper place, see DevAssistant Load Paths and Assistants Loading Mechanism.

* Files (e.g. templates, scripts, PingPong script files etc.) used by assistant should be placed in the same load dir,
e.g. if your assistant is placed at ~/ . devassistant/assistants, DevAssistant will look for files under
~/.devassistant/files.

* As mentioned in DevAssistant Load Paths, there are three main load paths in standard DevAssistant installation,
“system”, “local” and “user”. The “system” dir is used for assistants delivered by your distribution/packaging
system and you shouldn’t touch or add files in this path. The “local” path can be used by system admin to
add system-wide assistants while not touching “system” path. Lastly, “user” path can be used by user to install
assistants just for himself.

* When developing new assistants, that you e.g. put in a separate Git repo and want to work on it, commit, push,
etc, it is best to utilize DEVASSISTANT_PATH bash environment variable, see DevAssistant Load Paths for
more info.

Creating a Simple Creator The title says it all. In this section, we will create a “Creator” assistant, that means an
assistant that will take care of kickstarting a new project. We will write an assistant that creates a project containing a
simple Python script that uses argh Python module. Let’s suppose that we’re writing this assistant for an RPM based
system like Fedora, CentOS or RHEL.

To start, we’ll create a file hierarchy for our new assistant, say in ~/programming and modify
DEVASSISTANT_PATH accordingly. Luckily, there is an assistant that does all this - dap:

da pkg install dap
da create dap -n ~/programming/pyargh --crt
export DEVASSISTANT_PATH=~/programming/pyargh/

Running da create dap scaffolds everything that’s needed to create a DAP package that can be distributed on
DevAssistant Package Index, DAPI, see Packaging and Distributing Your Assistant for more information.

Since this assistant is a “creator”, we need to put it somewhere under ~/programming/assistants/crt/.
Assistants can be organized in a hierarchical structure, so you could have e.g.
~/programming/pyargh/assistants/crt/python-scripts.yaml as a superassistant and
~/programming/pyargh/assistants/crt/python-scripts/pyargs.yaml as its sub-
assistant, but for this example we’ll keep things simple and put pyargh.yaml directly under
~/programming/pyargh/assistants/crt/.

Note, that in pre-0.10.0 DevAssistant versions, it was recommended to hook such assistants in already existing hierar-
chies (e.g. using superassistants provided by someone else). Since 0.10.0, this is no longer recommended. The main
reason for this is that we are introducing a simple upstream packaging and distribution format, as well as “DevAs-
sistant package index” - a central repository of upstream assistant packages. See Packaging and Distributing Your
Assistant for more details. In this concept, each package can only have one superassistant (named as the whole pack-
age is named) in each crt, twk, prep and ext ra and can only place subassistants into hierarchies defined by these.
Package names have to be unique in the DevAssistant Package Index.

Setting it Up So, let’s start writing ~/programming/pyargh/assistants/crt/pyargh.yaml by pro-
viding some initial metadata:

1.2. Developer Documentation 13

https://dapi.devassistant.org/dap/dap/
https://dapi.devassistant.org/

DevAssistant Documentation, Release 0.11.0

fullname: Argh Script Template
description: Create a template of simple script that uses argh library
project_type: [python]

If you now save the file and run da create pyargh -h, you’ll see that your assistant was already recognized by
DevAssistant, although it doesn’t provide any functionality yet. (Including project type in your Creator assistant is not
necessary, but it may bring some benefits - see Project Types.

Dependencies Now, we’ll want to add a dependency on python-argh (which is how the package is called e.g.
on Fedora). You can do this just by adding:

dependencies:
- rpm: [python—-argh]

Now, if you save the file and actually try to run your assistant with da create pyargh, it will install
python—-argh! (Well, assuming it’s not already installed, in which case it will do nothing.) This is really super-cool,
but the assistant still doesn’t do any project setup, so let’s get on with it.

Files Since we want the script to always look the same, we will create a file that our assistant will
copy into proper place. This file should be put into into crt/pyargh subdirectory the files directory
(~/programming/files/crt/pyargh). The file will be called arghscript . py and will have this content:

#!/usr/bin/python2
from argh import x

def main () :
return 'Hello world'

dispatch_command (main)

We will need to refer to this file from our assistant, so let’s open argh.yaml again and add a £iles section:

files:
arghs: &arghs
source: arghscript.py

DevAssistant will — automatically search for this file in the correct directory, that is
~/programming/files/crt/pyargh. If an assistant has more subassistants, e.g.
crt/pyargh/someassistant and these assistants need to share some files, it is reasonable to place them
into ~/programming/files/crt/pyargh and refer to them with relative path like . . /file. foo from the
subassistants. Note, that the two arghs in arghs: &arghs should be the same because of issue 74.

Run Finally, we will be adding a run section, which is the section that does all the hard work. A run section is a
list of commands. Every command is in fact a Yaml mapping with exactly one key and value. The key determines
command type, while value is the command input. For example, c1 is a command type that says that given input
should be run on commandline, 1og_1 is a command type that lets us print the input (message in this case) for user,
etc.

Let’s start writing our run section:

run:
- log_i: Hello, I'm Argh assistant and I will create an argh project for you.

But wait! We don’t know what the project should be called and where it should be placed... Before we finish the run
section, we’ll need to add some arguments to our assistant.

14 Chapter 1. Contents

https://github.com/devassistant/devassistant/issues/74

DevAssistant Documentation, Release 0.11.0

Oh Wait, Arguments! Creating any type of project typically requires some user input, at least name of the project
to be created. To ask user for this sort of information, we can use DevAssistant arguments like this:

args:
name:
flags: [-n, ——name]
required: True
help: 'Name of project to create'

This means that this assistant will have one argument called name. On commandline, it will expect —-n foo or
—-—-name foo and since the argument is required, it will refuse to run without it.

You can now try running da create pyargh -h and you’ll see that the argument is printed out in commandline
help.

Since there are some common arguments that the standard installation of DevAssistant ships with so called “snippets”,
that contain (among other things) definitions of frequentyl used arguments. You can use name argument for Creator
assistants like this:

args:
name:
use: common_args

See Common Assistant Behaviour for more information.

Run Again Now that we’re able to obtain project name (let’s assume that it’s an arbitrary path to a directory where
the argh script should be placed), we can continue. First, we will make sure that the directory doesn’t already exist. If
s0, we need to exit, because we don’t want to overwrite or break something:

run:
- log_i: Hello, I'm Argh assistant and I will create an argh project for you.
- if $(test -e "Sname"):

- log_e: '"$name" already exists, can't proceed.'

There are few things to note here:

e There is a simple if condition with a shell command. If the shell command returns a non-zero value, the
condition will evaluate to false, else it will evaluate to true. So in this case, if something exists at path " $name",
the condition will evaluate to true.

* In any command, we can use value of the name argument by prefixing argument name with $ (so $name or
${name}).

* The 1og_e command type is used to print a message and then abort the assistant execution immediately.

Let’s continue by creating the directory. Add this line to run section:

- cl: mkdir -p "$name"

You may be wondering what will happen, if DevAssistant doesn’t have write permissions or more generally if the
mkdir command just fails. In this case, DevAssistant will exit, printing the output of failed command for user.

Next, we want to copy our script into the directory. We want to name it the same as name of the directory itself. But
what if directory is a path, not simple name? We have to find out the project name and remember it somehow:

- Sproj_name~: $(basename "$name")

What just happened? We assigned output of command basename "S$name" to a new variable proj_name that
we can use from now on. Note the ~ at the end of $proj_name~. This is called execution flag and it says that the
command input should be executed as an expression, not taken as a literal. See Expressions for detailed expressions
reference and Variables and Context to find out more about variables.

1.2. Developer Documentation 15

DevAssistant Documentation, Release 0.11.0

Note: the execution flag makes DevAssistant execute the input as a so-called “execution section”. The input can either
be a string, evaluated as an expression, or a list of commands, evaluated as another “run” section.

So let’s copy the script and make it executable:

- cl: cp *arghs ${name}/${proj_name}.py
- cl: chmod +x ${name}/${proj_name}.py

One more thing to note here: by using rarghs, we reference a file from the £iles section.

Now, we’ll use a super-special command:

- dda_c: "S$name"

What is dda_c? The first part, dda stands for “dot devassistant file”, the second part, _c, says, that we want to
create this file (there are more things that can be done with . devassistant file, see .devassistant Commands). The
“command” part of this call just says where the file should be stored, which is directory $name in our case.

The .devassistant file serves for storing meta information about the project. Amongst other things, it stores
information about which assistant was invoked. This information can later serve to prepare the environment (e.g.
install python—-argh) on another machine. Assuming that we commit the project to a git repository, one just needs
to run da prepare custom —u <repo_url>, and DevAssistant will checkout the project from git and use
information stored in .devassistant to reinstall dependencies. (There is more to this, you can for example add
a custom run section to .devassistant file or add custom dependencies, but this is not covered by this tutorial
(see Project Metainfo: the .devassistant File).

Note: There can be more dependencies sections and run sections in one assistant. To find out more about the rules of
when they’re used and how run sections can call each other, consult dependencies reference and run reference.

Something About Snippets Wait, did we say Git? Wouldn’t it be nice if we could setup a Git repository inside the
project directory and do an initial commit? These things are always the same, which is exactly the type of task that
DevAssistant should do for you.

Previously, we’ve seen usage of argument from snippet. But what if you could use a part of run section from there?
Well, you can. And you’re lucky, since there is a snippet called git .init_add_commit, which does exactly what
we need. This snippet can be found in the git DAP. During development, you can install git DAP using da pkg
install git. Forruntime, you’ll need to add it as dependency to meta . yaml - see meta.yaml explained for more
info on dependencies. We’ll use the snippet like this:

- cl: cd "$name"
- use: git.init_add_commit.run

This calls section run from snippet git_init_add_commit in this place. Note, that all variables are “global”
and the snippet will have access to them and will be able to change their values. However, variables defined in called
snippet section will not propagate into current section.

Finished! It seems that everything is set. It’s always nice to print a message that everything went well, so we’ll do
that and we’re done:

- log_i: Project "S$proj_name" has been created in "S$name".

The Whole Assistant ... looks like this:

fullname: Argh Script Template
description: Create a template of simple script that uses argh library
project_type: [python]

16 Chapter 1. Contents

https://dapi.devassistant.org/dap/git/

DevAssistant Documentation, Release 0.11.0

dependencies:
- rpm: [python-argh]

files:
arghs: &arghs
source: arghscript.py

args:
name:
use: common_args

run:
- log_i: Hello, I'm Argh assistant and I will create an argh project for you.
- 1if $(test -e "Sname"):

- log_e: '"S$name" already exists, cannot proceed.'
- cl: mkdir -p "$name"
- Sproj_name~: $(basename "$name")

- cl: cp *arghs ${name}/${proj_name}.py

- cl: chmod +x *arghs ${name}/${proj_name}.py

- dda_c: "S$name"

- cl: cd "$name"

- use: git_init_add_commit.run

- log_i: Project "S$proj_name" has been created in "$name".

And can be run like this: da create pyargh -n foo/bar.

Creating a Tweak Assistant This section assumes that you've read the previous tutorial and are therefore familiar
with DevAssistant basics. Tweak assistants are meant to work with existing projects. They usually try to look for
.devassistant file of the project, but it is not necessary.

Tweak Assistant Specialties The special behaviour of tweak assistants only applies if you use dda_r in pre_run
section. This command reads .devassistant file from given directory and puts the read variables in global vari-
able context, so they’re available from all the following dependencies and run section.

If tweak assistant reads .devassistant file in pre_run section, DevAssistant tries to search for more
dependencies sections to use. If the project was previously created by crt python django, the en-
gine will install dependencies from sections dependencies_python_django, dependencies_python and
dependencies.

Also, the engine will try to run run_python_django section first, then it will try run_python and then run -
note, that this will only run the first found section and then exit, unlike with dependencies, where all found sections
are used.

— IN PROGRESS —

Yaml DSL Reference

Note: The Yaml DSL has changed significantly in 0.9.0 in backwards incompatible manner. This documentation is
only for version 0.9.0 and later.

This is a reference manual to writing yaml assistants. Yaml assistants use a special DSL defined on this page. For real
examples, have a look at assistants in our Github repo.

Why the hell another DSL? When we started creating DevAssistant and we were asking people who work in various
languages whether they’d consider contributing assistants for those languages, we hit the “I’m not touching

1.2. Developer Documentation 17

https://github.com/devassistant/devassistant-assistants-fed