

 Navigation

 	
 index

 	
 next |

 	DevAssistant 0.9.2 documentation

Welcome to DevAssistant documentation!

DevAssistant - making life easier for developers

Contents

	User Documentation
	DevAssistant and Docker.io

	Developer Documentation
	DevAssistant Core

	Tutorial: Creating Your Own Assistant

	Packaging Your Assistant

	Yaml Assistant Reference

	Run Sections Reference

	Command Reference

	Common Assistant Behaviour

	Snippets

	Project Metainfo: the .devassistant File

	Project Types

Overview

This is documentation for version 0.9.2.

DevAssistant is developer’s best friend (right after coffee).

DevAssistant (http://devassistant.org) can help you with creating and setting up basic projects
in various languages, installing dependencies, setting up environment etc. There are four main
types of functionality provided:

	da create - create new project from scratch

	da modify - take local project and do something with it (e.g. import it to Eclipse)

	da prepare - prepare development environment for an upstream project or a custom task

	da task - perform a custom task not related to a specific project

The first three of these have shortcuts for faster use: “create” can be shortened as “crt”,
“modify” as “mod” and “prepare” as “prep”.

DevAssistant is based on idea of per-{language/framework/...} “assistants” with hierarchical
structure. E.g. you can run:

$ da create python django -n ~/myproject # sets up Django project named "myproject" inside your home dir
$ da create python flask -n ~/flaskproject # sets up Flask project named "flaskproject" inside your home dir
$ da create ruby rails -n ~/alsomyproject # sets up RoR project named "alsomyproject" inside your home dir

DevAssistant also allows you to work with a previously created project, for example
import it to Eclipse:

$ da modify eclipse # run in project dir or use -p to specify path

With DevAssistant, you can also prepare environment for developing upstream projects -
either using project-specific assistants or using “custom” assistant for arbitrary projects
(even those not created by DevAssistant):

$ da prepare custom custom -u scm_url

Warning: The custom assistant executes custom pieces of code from
.devassistant file of the project. Therefore you have to be extra careful
and use this only with projects whose authors you trust.

Last but not least, DevAssistant allows you to perform arbitrary tasks not related to a specific
project:

$ da task <TODO:NOTHING YET>

Should you have some questions, feel free to ask us at Freenode channel #devassistant or on our
mailing list (https://lists.fedoraproject.org/mailman/listinfo/devassistant). You can also join
our G+ community (https://plus.google.com/u/0/communities/112692240128429771916) or follow us on
Twitter (https://twitter.com/dev_assistant).

DevAssistant works on Python 2.6, 2.7 and >= 3.3.

This whole project is licensed under GPLv2+.

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DevAssistant 0.9.2 documentation

User Documentation

Subtopics

	DevAssistant and Docker.io

A Brief Intro

DevAssistant is developer’s best friend (right after coffee).

DevAssistant (http://devassistant.org) can help you with creating and setting up basic projects
in various languages, installing dependencies, setting up environment etc. There are four main
types of functionality provided:

	da create - create new project from scratch

	da modify - take local project and do something with it (e.g. import it to Eclipse)

	da prepare - prepare development environment for an upstream project or a custom task

	da task - perform a custom task not related to a specific project

The first three of these have shortcuts for faster use: “create” can be shortened as “crt”,
“modify” as “mod” and “prepare” as “prep”.

DevAssistant is based on idea of per-{language/framework/...} “assistants” with hierarchical
structure. E.g. you can run:

$ da create python django -n ~/myproject # sets up Django project named "myproject" inside your home dir
$ da create python flask -n ~/flaskproject # sets up Flask project named "flaskproject" inside your home dir
$ da create ruby rails -n ~/alsomyproject # sets up RoR project named "alsomyproject" inside your home dir

DevAssistant also allows you to work with a previously created project, for example
import it to Eclipse:

$ da modify eclipse # run in project dir or use -p to specify path

With DevAssistant, you can also prepare environment for developing upstream projects -
either using project-specific assistants or using “custom” assistant for arbitrary projects
(even those not created by DevAssistant):

$ da prepare custom custom -u scm_url

Warning: The custom assistant executes custom pieces of code from
.devassistant file of the project. Therefore you have to be extra careful
and use this only with projects whose authors you trust.

Last but not least, DevAssistant allows you to perform arbitrary tasks not related to a specific
project:

$ da task <TODO:NOTHING YET>

Should you have some questions, feel free to ask us at Freenode channel #devassistant or on our
mailing list (https://lists.fedoraproject.org/mailman/listinfo/devassistant). You can also join
our G+ community (https://plus.google.com/u/0/communities/112692240128429771916) or follow us on
Twitter (https://twitter.com/dev_assistant).

So What is an Assistant?

In short, assistant is a recipe for creating/modifying a project or setting up
the environment in a certain way. DevAssistant is in fact just a core that “runs”
assistants according to certain rules.

Each assistant specifies a way to achieve a single task, e.g. create a new
project in framework X of language Y.

If you want to know more about how this all works, consult
Yaml Assistant Reference.

Assistant Roles

There are four assistant roles:

	creator (create or crt on command line)

	creates new projects

	modifier (modify or mod on command line)

	works with existing projects

	preparer (prepare or prep on command line)

	prepares environment for development of upstream projects

	task (task on command line)

	performs arbitrary tasks not related to a specific project

The main purpose of having roles is separating different types of tasks.
It would be confusing to have e.g. python django assistant (that
creates new project) side-by-side with eclipse assistant (that registers
existing project into Eclipse).

You can learn about how to invoke the
respective roles below in Creating New Projects,
Modifying Existing Projects and Preparing Environment.

Using Commandline Interface

Creating New Projects

DevAssistant can help you create (that’s crt in the commands below) your
projects with one line in a terminal. For example:

$ da create python django -n foo -e -g

da is the short form of devassistant. You can use either of them, but da is preferred.

This line will do the following:

	Install Django (RPM packaged) and all needed dependencies.

	Create a Django project named foo in the current working directory.

	Make any necessary adjustments so that you can run the project and start developing
right away.

	The -e switch will make DevAssistant register the newly created projects into
Eclipse (tries ~/workspace by default, if you have any other, you need to specify
it as an argument to -e). This will also cause installation of Eclipse and PyDev,
unless already installed.

	The -g switch will make DevAssistant register the project on Github and push
sources there. DevAssistant will ask you for your Github password the first time
you’re doing this and then it will create a Github API token and new SSH keys, so
on any further invocation, this will be fully automatic. Note, that if your
system username differs from your Github username, you must specify the Github username
as an argument to -g.

Modifying Existing Projects

DevAssistant allows you to work with previously created projects. You can do
this by using da modify, as opposed to da create for creating:

$ da modify eclipse

This will import a previously created project into Eclipse (and possibly install
Eclipse and other dependencies implied by the project language). Optionally,
you can pass -p path/to/project if your current working directory is not
the project directory.

Preparing Environment

DevAssistant can set up the environment and install dependencies for
development of an already existing project located
in a remote SCM (e.g. Github). For custom projects you can use the custom assistant.
Note that for projects that don’t have .devassistant file, this will just checkout
the sources:

$ da prepare custom -u scm_url

Warning: The custom assistant executes custom pieces of code from a .devassistant file,
so use this only for projects whose upstreams you trust.

The plan is to also include assistants for well known and largely developed projects
(that, of course, don’t contain a .devassistant file). So in future you should be
able to do something like:

$ da prepare openstack

and it should do everything needed to get you started developing OpenStack in a way
that others do. But this is still somewhere in the future...

Tasks

The last piece of functionality is performing arbitrary tasks that are not related to a specific
projects. E.g.:

$ da task <TODO:NOTHING YET>

Custom Actions

There are also some custom actions besides crt, mod and prep. For
the time being, these are not of high importance, but in future, these will
bring more functionality, such as making coffee for you.

	help

	Displays help, what else?

	version

	Displays current DevAssistant version.

Using the GUI

The DevAssistant GUI provides the full functionality of
Commandline Interface through a Gtk based application.

As opposed to the CLI, which consists of three binaries, the GUI provides all
assistant types (creating, modifying, preparing) in one, each type having
its own page.

The GUI workflow is dead simple:

	Choose the assistant that you want to use, click it and possibly choose
a proper subassistant (e.g. django for python).

	The GUI displays a window where you can modify some settings and choose from
various assistant-specific options.

	Click the “Run” button and then just watch getting the stuff done. If your input
is needed (such as confirming dependencies to install), DevAssistant will
ask you, so don’t go get your coffee just yet.

	After all is done, get your coffee and enjoy.

Currently Supported Assistants

Please note that list of currently supported assistants may vary greatly in different
distributions, depending on available packages etc.

Currently supported assistants with their specialties (if any):

Creating

	C - a simple C project, allows you to create an SRPM and build an RPM by specifying -b

	C++

	Java
- JSF - Java Server Faces project
- Maven - A simple Apache Maven project

	Perl
- Class - Simple class in Perl
- Dancer - Dancer framework project

	PHP
- LAMP - Apache/MySQL/PHP project

	Python - all Python assistants allow you to use --venv switch, which will make
DevAssistant create a project inside a Python virtualenv and install dependencies
there, rather then installing them system-wide from RPM
- Django - Initial Django project, set up to be runnable right away
- Flask - A minimal Flask project with a simple view and script for managing the application
- Library - A custom Python library
- PyGTK - Sample PyGTK project

	Ruby
- Rails - Initial Ruby on Rails project

Modifying

	Eclipse - add an existing project into Eclipse (doesn’t work for some languages/frameworks)

	Vim - install some interesting Vim extensions and make some changes in .vimrc (these
changes will not affect your default configuration, instead you have to use the command
let devassistant=1 after invoking Vim)

Preparing

	Custom - checkout a custom previously created project from SCM (git only so far) and
install needed dependencies

Tasks

<TODO: NOTHING YET>

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DevAssistant 0.9.2 documentation

 	User Documentation

DevAssistant and Docker.io

Note: this document is under construction. The described features are not yet implemented
in DevAssistant and might change significantly before version 0.9.0 is released.

Docker [http://docker.io] is “an open source project to pack, ship and run any application
as a lightweight container”.

A container is basically a lightweight virtual machine, that has all the
dependency installation and system setup done inside it, so they don’t
affect your system.

This page summarizes Docker usage workflow during project development/deployment,
as well as instructions on how to make the steps painless through DevAssistant.

Why Docker?

Development and deployment with Docker, e.g. in a container isolated from your own system,
have several advantages:

	Dependencies are installed only into the container, leaving your system clean.

	System setup is only done inside the container, leaving your system unaffected.

	Your application has a stable runtime environment with a reproducible way of rebuilding
this environment.

	You can develop/deploy multiple applications with conflicting dependency sets/environment
settings on one system - just provide a different container for each application.

	You can easily distribute your application as a built container image - and anyone
can deploy it easily on any system that has Docker.

Terminology

	Image - a file system snapshot that can be “run” as a container

	Container - a running “lightweight virtual machine” that uses an image as its filesystem

It is important to understand that Docker uses layered images. E.g. one image is used as a
base image and there can be many images built on top of it - each of them storing
a different set of filesystem changes. When a container is run, Docker “squashes” the images,
creating a single read-only filesystem for the container. All changes done in the container
are recorded into a new image, that can be saved when container shuts down.

Docker Development/Deployment Workflow

This section summarizes development and deployment workflows for projects using Docker.

Dockerfile

A crucial part of development/deployment workflow is
Dockerfile [http://docs.docker.io/en/latest/use/builder/]. It’s basically a list
of instructions that says how to create an image for your application. It contains:

	Name of base image (this is usually obtained from
Docker index of images [https://index.docker.io/]).

	Zero or more shell commands that install dependencies/set up environment for the application

	List of exported ports (accessible from outside the container), mount points etc.

	A command that copies your application into the image.

Development

Overally, the development workflow looks like this (assuming you have a Dockerfile):

	Build a fresh image.

	Instead of using source code that was copied into the image statically, mount the source
directory from your system. This allows you to edit the code outside of the container
(with your favourite editor/IDE), while running the code inside the container.

	Run the image to get a new container (this is actually done in one command with the
previous step).

Rough equivalent of the above in Docker commandline invocations:

docker build -rm <dir> # <dir> is the directory containing Dockerfile
-v mounts a local directory to the container, -P opens all ports specified in Dockerfile
docker run -v <local_path>:<container_path> -P <image_id>

Deployment

The deployment workflow is quite similar:

	Build a fresh image (from a SCM revision that you want to distribute).

	Distribute the image.

This roughly translates to (if pushing to Docker index [https://index.docker.io/]):

docker build <dir>
docker commit <container_id> myname/myapp
docker push myname/myapp

Implementation in DevAssistant

DevAssistant 0.9.0 comes with support for building Docker images and running Docker containers.
Currently, the only assistant that supports creating new projects with Dockerfile is
crt python django:

da create python django -n foo --docker

but we also have mod docker develop assistant, which is generally usable for any type of
project that ships a Dockerfile. Use it like this:

da modify docker develop [-m MOUNTPOINT] [-i REUSE_IMAGE] [-p PATH]

If used with no arguments, this assistant searches for Dockerfile in current directory,
builds a Docker image, mounts source code (the directory that contains Dockerfile) into it
(mount point is determined based on first found ADD instruction in Dockerfile), runs
a container and attaches to its output, so that you can develop and see the messages from
process running inside the container.

By using the mentioned options, you can:

	override the directory where your sourcecode should be mounted (-m) in the container

	provide an image to use, if you’ve already built one (-i)

	specify path to your project if it’s not in your current directory (-p)

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DevAssistant 0.9.2 documentation

Developer Documentation

	DevAssistant Core

	Tutorial: Creating Your Own Assistant

	Packaging Your Assistant

	Yaml Assistant Reference

	Run Sections Reference

	Command Reference

	Common Assistant Behaviour

	Snippets

	Project Metainfo: the .devassistant File

	Project Types

Talk to Us!

If you want to see where DevAssistant development is going and you want to influence it and send your suggestions and comments, you should really join our ML: https://lists.fedoraproject.org/mailman/listinfo/devassistant.

Overall Design

DevAssistant consists of several parts:

	Core

	Core of DevAssistant is written in Python. It is responsible for
interpreting Yaml Assistants and it provides an API that can be used
by any consumer for the interpretation.

	CL Interface

	CL interface allows users to interact with DevAssistant
on commandline; it consumes the Core API.

	GUI

	(work in progress) GUI allows users to interact with Developer
Assistant from GTK based GUI; it consumes the Core API.

	Assistants

	Assistants are Yaml files with special syntax and semantics (defined
in Yaml Assistant Reference). They are indepent of the Core,
therefore any software distribution can carry its own assistants
and drop them into the directory from where DevAssistant
loads them - they will be loaded on next invocation.
Note, that there is also a possibility to write assistants in Python,
but this is no longer supported and will be removed in near future.

Assistants

Internally, each assistant is represented by instance of
devassistant.yaml_assistant.YamlAssistant. Instances are constructed
by DevAssistant in runtime from parsed yaml files. Each assistant can
have zero or more subassistants. This effectively forms a tree-like
structure. For example:

 MainAssistant
 / \
 / \
 Python Ruby
 / \ / \
 / \ / \
Django Flask Rails Sinatra

This structure is defined by filesystem hierarchy as explained in
Assistants Loading Mechanism

Each assistant can optionally define arguments that it accepts (either
on commandline, or from GUI). For example, you can run
the leftmost path with:

$ da create python [python assistant arguments] django [django assistant arguments]

If an assistant has any subassistants, one of them must be used. E.g.
in the example above, you can’t use just Python assistant, you have to
choose between Django and Flask. If Django would get a subassistant, it
wouldn’t be usable on its own any more, etc.

Assistant Roles

The crt in the above example means, that we’re running an assistant that
creates a project.

There are four assistant roles:

	creator (create or crt on command line)

	creates new projects

	modifier (modify or mod on command line)

	works with existing projects

	preparer (prepare or prep on command line)

	prepares environment for development of upstream projects

	task (task on command line)

	performs arbitrary tasks not related to a specific project

The main purpose of having roles is separating different types of tasks.
It would be confusing to have e.g. python django assistant (that
creates new project) side-by-side with eclipse assistant (that registers
existing project into Eclipse).

Contributing

If you want to contribute (bug reporting, new assistants, patches for core,
improving documentation, ...), please use our Github repo:

	code: https://github.com/bkabrda/devassistant

	issue tracker: https://github.com/bkabrda/devassistant/issues

If you have DevAssistant installed (version 0.8.0 or newer), there is a fair chance that you have
devassistant preparer. Just run da prepare devassistant and it will
checkout our sources and do all the boring stuff that you’d have to do
without DevAssistant.

If you don’t have DevAssistant installed, you can checkout the sources
like this (just copy&paste this to get the job done):

git clone https://github.com/bkabrda/devassistant
get the official set of assistants
cd devassistant
git submodule init
git submodule update

You can find list of core Python dependencies in file requirements.txt. If you want
to write and run tests (you should!), install dependencies from requirements-devel.txt:

pip install -r requirements-devel.txt

On top of that, you’ll need polkit for requesting root privileges for dependency installation
etc. If you want to play around with GUI, you have to install pygobject, too (see how
hard this is compared to da prepare devassistant?)

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DevAssistant 0.9.2 documentation

 	Developer Documentation

DevAssistant Core

Note: So far, this only covers some bits and pieces of the whole core.

DevAssistant Load Paths

DevAssistant has couple of load path entries, that are searched for assistants,
snippets, icons and files used by assistants. In standard installations,
there are three paths:

	“system” path, which is defined by OS distribution (usually
/usr/share/devassistant/) or by Python installation
(sth. like /usr/share/pythonX.Y/devassistant/data/)

	“local” path, /usr/local/share/devassistant/

	“user” path, ~/.devassistant/

Another path(s) can be added by specifying DEVASSISTANT_PATHS environment
variable (if more paths are used, they must be separated by colon). These paths
are prepended to the list of standard load paths.

Each load path entry has this structure:

assistants/
 crt/
 mod/
 prep/
 task/
files/
 crt/
 mod/
 prep/
 task/
 snippets/
icons/
 crt/
 mod/
 prep/
 task/
snippets/

Icons under icons directory and files in files directory “copy”
must the structure of assistants directory. E.g. for assistant
assistants/crt/foo/bar.yaml, the icon must be icons/crt/foo/bar.svg
and files must be placed under files/crt/foo/bar/

Assistants Loading Mechanism

DevAssistant loads assistants from all load paths mentioned above (more
specifically from <load_path>/assistants/ only), traversing them in
order “system”, “local”, “user”.

When DevAssistant starts up, it loads all assistants from all these paths. It
assumes, that Creator assistants are located under crt subdirectories
the same applies to Modifier (mod), Preparer (prep) and Task (task) assistants.

For example, loading process for Creator assistants looks like this:

	Load all assistants located in crt subdirectories of each
<load path>/assistants/ (do not descend into subdirectories).
If there are multiple assistants with the same name in different
load paths, the first traversed wins.

	For each assistant named foo.yaml:
	If crt/foo directory doesn’t exist in any load path entry, then this
assistant is “leaf” and therefore can be directly used by users.

	Else this assistant is not leaf and DevAssistant loads its subassistants
from the directory, recursively going from point 1).

Command Runners

Command runners... well, they run commands. They are the functionality that
makes DevAssistant powerful, since they effectively allow you to create
callbacks to Python, where you can cope with the hard parts unsuitable for
Yaml assistants.

When DevAssistant executes a run section, it reads commands one by one
and dispatches them to their respective command runners. Every command runner
can do whatever it wants - for example, we have a command runner that creates
Github repos.

After a command runner is run, DevAssistant sets LAST_LRES and LAST_RES global variables
for usage (these are rewritten with every command run). These variables represent the logical
result of the command (True/False) and result (a “return value”, something computed),
much like with Expressions.

For reference of current commands, see Command Reference.

If you’re missing some cool functionality, you can implement your own command
runner and send us a pull request. (We’re thinking of creating some sort of
import hook that would allow assistants to import command runners from Python
files outside of DevAssistant, but it’s not on the priority list right now.)
Each command must be a class with two classmethods:

@register_command_runner
class MyCommandRunner(CommandRunner):
 @classmethod
 def matches(cls, c):
 return c.comm_type == 'mycomm'

 @classmethod
 def run(cls, c):
 input = c.input_res
 logger.info('MyCommandRunner was invoked: {ct}: {ci}'.format(ct=c.comm_type,
 ci=input))
 return (True, len(input))

This command runner will run all commands with command type mycomm.
For example if your assistant contains:

run:
- $foo: $(echo "using DevAssistant")
- mycomm: You are $foo!

than DevAssistant will print out something like:

INFO: MyCommandRunner was invoked: mycomm: You are using DevAssistant!

When run, this command returns a tuple with logical result and result. This means
you can assign the length of a string to a variable like this:

run:
$thiswillbetrue, $length~:
- mycomm: Some string.

(Also, LAST_LRES will be set to True and LAST_RES to length of the input string.)

Generally, the matches method should just decide (True/False) whether given
command is runnable or not and the run method should actually run it.
The run method should use devassistant.logger.logger object to log any
messages and it can also raise any exception that’s subclass of
devassistant.exceptions.ExecutionException.

The c argument of both methods is a devassistant.lang.Command
object. You can use various attributes of Command:

	comm_type - command type, e.g. mycomm
(this will always be stripped of exec flag ~).

	comm - raw command input. The input is raw in the sense that it is uninterpreted.
It’s literally the same as what’s written in assistant yaml file.

	had_exec_flag - True if the command type had exec flag, False otherwise.

	input_log_res and input_res - return values of input, see Section Results.

Note: input only gets evaluated one time - at time of using input_log_res or input_res. This
means, among other things, that if exec flag is used, the command runner still has to access
input_log_res or input_res to actually execute the input.

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DevAssistant 0.9.2 documentation

 	Developer Documentation

Tutorial: Creating Your Own Assistant

So you want to create your own assistant? There is nothing easier... They say
that in all tutorials, right?

This tutorial will guide you through the process of creating simple assistants
of different roles - Creator, Modifier,
Preparer.

This tutorial doesn’t cover everything. Consult Yaml Assistant Reference
when you’re missing something you really need to achieve. If you think
that DevAssistant misses some functionality that would be useful, open
a bug at https://www.github.com/bkabrda/devassistant/issues or send us
a pull request.

Common Rules and Gotchas

Some things are common for all assistant types:

	Each assistant is one Yaml file, that must contain exactly one mapping -
the so-called assistant attributes:

fullname: My Assistant
description: This will be part of help for this assistant
...

	You have to place them in a proper place, see DevAssistant Load Paths and
Assistants Loading Mechanism.

	Files (e.g. templates, scripts, etc.) used by assistant should be placed in the same
load dir, e.g. if your assistant is placed at ~/.devassistant/assistants, DevAssistant
will look for files under ~/.devassistant/files.

	As mentioned in DevAssistant Load Paths, there are three main load paths in
standard DevAssistant installation, “system”, “local” and “user”.
The “system” dir is used for assistants delivered by your
distribution/packaging system and you shouldn’t touch or add files in
this path. The “local” path can be used by system admins to add system-wide
assistants while not touching “system” path. Lastly, “user” path can be
used by users to create and use their own assistants. It is up to you where
you place your assistant, but “user” path is usually best for playing around
and development of new assistants. It is also the path that we will use
throughout these tutorials.

Creating a Simple Creator

The title says it all. In this section, we will create a “Creator” assistant,
that means an assistant that will take care of kickstarting a new project.
We will write an assistant that creates a project containing a simple Python
script that uses argh Python module. Let’s suppose that we’re writing
this assistant for an RPM based system like Fedora, CentOS or RHEL.

This assistant is a “creator”, so we have to put it somewhere into
~/.devassistant/assistants/crt/. Since the standard DevAssistant
distribution has a python assistant, it seems logical to make this new
assistant a subassistant of python. That means that the assistant file
will be ~/.devassistant/assistants/crt/python/argh.yaml. It doesn’t
matter that the python assistant actually lives in a different load path,
DevAssistant will hook the argh subassistant properly anyway.

Setting it Up

So, let’s start writing our assistant by providing some initial metadata:

fullname: Argh Script Template
description: Create a template of simple script that uses argh library
project_type: [python]

If you now save the file and run da create python argh -h, you’ll see that
your assistant was already recognized by DevAssistant, although it doesn’t
provide any functionality yet. (Including project type in your Creator assistant
is not necessary, but it may bring some benefits - see Project Types.

Dependencies

Now, we’ll want to add a dependency on python-argh (which is how the
package is called e.g. on Fedora). You can do this just by adding:

dependencies:
- rpm: [python-argh]

Now, if you save the file and actually try to run your assistant with
da create python argh, it will install python-argh! (Well, assuming
it’s not already installed, in which case it will do nothing.) This is
really super-cool, but the assistant still doesn’t do any project setup,
so let’s get on with it.

Files

Since we want the script to always look the same, we will create a file that
our assistant will copy into proper place. This file should be put into
into crt/python/argh subdirectory the files directory
(~/.devassistant/files/crt/python/argh). The file will be called
arghscript.py and will have this content:

#!/usr/bin/python2

from argh import *

def main():
 return 'Hello world'

dispatch_command(main)

We will need to refer to this file from our assistant, so let’s open
argh.yaml again and add a files section:

files:
 arghs: &arghs
 source: arghscript.py

DevAssistant will automatically search for this file in the correct directory,
that is ~/.devassistant/files/crt/python/argh.
If there are e.g. some files common to multiple python subassistants, it
is reasonable to place them into ~/.devassistant/files/crt/python and
refer to them with relative path like ../file.foo

Run

Finally, we will be adding a run section, which is the section that does
all the hard work. A run section is a list of commands. Every command
is in fact a Yaml mapping with exactly one key and value. The key determines
command type, while value is the command input. For example, cl is
a command type that says that given input should be run on commandline,
log_i is a command type that lets us print the input (message in
this case) for user, etc.

Let’s start writing our run section:

run:
- log_i: Hello, I'm Argh assistant and I will create an argh project for you.

But wait! We don’t know what the project should be called and where it
should be placed... Before we finish the run section, we’ll need to add
some arguments to our assistant.

Oh Wait, Arguments!

Creating any type of project typically requires some user input, at least name
of the project to be created. To ask user for this sort of information, we can
use DevAssistant arguments like this:

args:
 name:
 flags: [-n, --name]
 required: True
 help: 'Name of project to create'

This means that this assistant will have one argument called name. On
commandline, it will expect -n foo or --name foo and since the
argument is required, it will refuse to run without it.

You can now try running da create python argh -h and you’ll see that the
argument is printed out in commandline help.

Since there are some common arguments, the standard installation of
DevAssistant ships with so called “snippets”, that contain (among other
things) definitions of frequentyl used arguments. You can use name argument
for Creator assistants like this:

args:
 name:
 use: common_args

Note: up to version 0.8.0, “snippet” can also be used in place of “use”; “snippet” is
obsolete and will be removed in 0.9.0.

Run Again

Now that we can obtain the desired name, let’s continue. Now that we have the
project name (let’s assume that it’s an arbitrary path to a directory where
the argh script should be placed), we can continue. First, we will make sure
that the directory doesn’t already exist. If so, we need to exit, because we
don’t want to overwrite or break something:

run:
- log_i: Hello, I'm Argh assistant and I will create an argh project for you.
- if $(test -e "$name"):
 - log_e: '"$name" already exists, can't proceed.'

There are few things to note here:

	There is a simple if condition with a shell command. If the shell command
returns a non-zero value, the condition will evaluate to false, else it will
evaluate to true. So in this case, if something exists at path "$name",
the condition will evaluate to true.

	In any command, we can use value of the name argument by prefixing
argument name with $ (so $name or ${name}).

	The log_e command type is used to print a message and then abort the
assistant execution immediately.

Let’s continue by creating the directory. Add this line to run section:

- cl: mkdir -p "$name"

You may be wondering what will happen, if DevAssistant doesn’t have write
permissions or more generally if the mkdir command just fails. In this
case, DevAssistant will exit, printing the output of failed command for user.

Next, we want to copy our script into the directory. We want to name it the
same as name of the directory itself. But what if directory is a path, not
simple name? We have to find out the project name and remember it somehow:

- $proj_name~: $(basename "$name")

What just happened? We assigned output of command basename "$name" to
a new variable proj_name that we can use from now on. Note the ~ at the end
of $proj_name~. This is called execution flag and it says that the command input
should be executed as an expression, not taken as a literal. See Expressions
for detailed expressions reference.

Note: the execution flag makes DevAssistant execute the input as a so-called “execution
section”. The input can either be a string, evaluated as an expression, or a list of commands,
evaluated as another “run” section.

So let’s copy the script and make it executable:

- cl: cp *arghs ${name}/${proj_name}.py
- cl: chmod +x ${name}/${proj_name}.py

One more thing to note here: by using *arghs, we reference a file
from the files section.

Now, we’ll use a super-special command:

- dda_c: "$name"

What is dda_c? The first part, dda stands for “dot devassistant file”,
the second part, _c, says, that we want to create this file (there are
more things that can be done with .devassistant file, see .devassistant Commands).
The “command” part of this call just says where the file should be stored,
which is directory $name in our case.

The .devassistant file serves for storing meta information about the
project. Amongst other things, it stores information about which assistant was
invoked. This information can later serve to prepare the environment (e.g.
install python-argh) on another machine. Assuming that we commit the
project to a git repository, one just needs to run
da prepare custom -u <repo_url>, and DevAssistant will checkout the project
from git and use information stored in .devassistant to reinstall
dependencies. (There is more to this, you can for example add a custom
run section to .devassistant file or add custom dependencies,
but this is not covered by this tutorial (not even by reference, so I need to
place TODO here to document it).)

Note: There can be more dependencies sections and run sections in one
assistant. To find out more about the rules of when they’re used and how
run sections can call each other, consult
dependencies reference and
run reference.

Something About Snippets

Wait, did we say git? Wouldn’t it be nice if we could setup a git repository
inside the project directory and do an initial commit? These things are always
the same, which is exactly the type of task that DevAssistant should do for
you.

Previously, we’ve seen usage of argument from snippet. But what if you could
use a part of run section from there? Well, you can. And you’re lucky,
since there is a snippet called git_init_add_commit, which does exactly
what we need. We’ll use it like this:

- cl: cd "$name"
- use: git_init_add_commit.run

This calls section run from snippet git_init_add_commit in this place.
Note, that all variables are “global” and the snippet will have access to them
and will be able to change their values. However, variables defined in called
snippet section will not propagate into current section.

Note: up to version 0.8.0, “call” can also be used in place of “use”; “call” is
obsolete and will be removed in 0.9.0.

Finished!

It seems that everything is set. It’s always nice to print a message that
everything went well, so we’ll do that and we’re done:

- log_i: Project "$proj_name" has been created in "$name".

The Whole Assistant

... looks like this:

fullname: Argh Script Template
description: Create a template of simple script that uses argh library
project_type: [python]

dependencies:
- rpm: [python-argh]

files:
 arghs: &arghs
 source: arghscript.py

args:
 name:
 use: common_args

run:
- log_i: Hello, I'm Argh assistant and I will create an argh project for you.
- if $(test -e "$name"):
 - log_e: '"$name" already exists, cannot proceed.'
- cl: mkdir -p "$name"
- $proj_name~: $(basename "$name")
- cl: cp *arghs ${name}/${proj_name}.py
- cl: chmod +x *arghs ${name}/${proj_name}.py
- dda_c: "$name"
- cl: cd "$name"
- use: git_init_add_commit.run
- log_i: Project "$proj_name" has been created in "$name".

And can be run like this: da create python argh -n foo/bar.

Creating a Modifier

This section assumes that you’ve read the previous tutorial and are therefore
familiar with DevAssistant basics.
Modifiers are meant to modify existing projects, that means projects with
.devassistant file (there is also an option to write assistant that
modifies an arbitrary project without .devassistant, read on).

Modifier Specialties

The special behaviour of modifiers only applies if you use dda_r in pre_run
section. This command reads .devassistant file from given directory and
puts the read variables in global variable context, so they’re available from
all the following dependencies and run section.

If modifier reads .devassistant file in pre_run section, DevAssistant
tries to search for more dependencies sections to use. If the project was
previously created by crt python django, the engine will install dependencies
from sections dependencies_python_django, dependencies_python and dependencies.

Also, the engine will try to run run_python_django section first, then it
will try run_python and then run - note, that this will only run the
first found section and then exit, unlike with dependencies, where all found
sections are used.

– IN PROGRESS –

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DevAssistant 0.9.2 documentation

 	Developer Documentation

Packaging Your Assistant

Note: this functionality is under heavy development and is not fully implemented yet.

So now you know how to create an assistant.
But what if you want to share your assistant with others?

For that you could send them all the files from your assistant and tell them where they belong.
But that would be very unpleasant and that’s why we’ve invented dap.
Dap is a format of extension for DevAssistant that contains custom assistants.
It means DevAssistant Package.

A dap is a tar.gz archive with .dap extension. The name of a dap is always
<package_name>-<version>.dap - i.e. foo-0.0.1.dap.

Directory structure of a dap

The directory structure of a dap copies the structure of ~/.devassistant or
/usr/share/devassistant folder. The only difference is, that it can only contain assistants,
files and icons that that belongs to it’s namespace.

Each dap has an unique name (lat’s say foo) and it can only contain assistants foo or
foo/*. Therefore, the directory structure looks like this:

foo-0.0.1/
 meta.yaml
 assistants/
 {crt,mod,prep,task}/
 foo.yaml
 foo/
 files/
 {crt,mod,prep,task,snippets}/
 foo/
 snippets/
 foo/
 icons/
 {crt,mod,prep,task,snippets}/
 foo.{png,svg}
 foo/
 doc/
 foo/

Note several things:

	Each of this is optional, i.e. you don’t create files or snippets folder if you provide
no files or snippets. Only mandatory thing is meta.yaml (see below).

	Everything goes to the particular folder, just like you’ve learn in the
Tutorial. However, you can only add stuff named as your
dap (means either a folder or a file with a particular extension). If you have more levels of
assistants, such as crt/foo/bar/spam.yaml, you have to include top-level assistants (in this
case both crt/foo.yaml and crt/foo/bar.yaml). And you have to preserve the structure
in other folders as well (i.e. no icons/crt/foo/spam.svg but icons/crt/foo/bar/spam.svg).

	The top level folder is named <package_name>-<version>.

meta.yaml

package_name: foo # required
version: 0.0.1 # required
license: GPLv2 # required
authors: [Bohuslav Kabrda <bkabrda@mailserver.com>, ...] # required
homepage: https://github.com/bkabrda/assistant-foo # optional
summary: Some brief one line text # required
bugreports: <a single URL or email address> # optional
description: |
 Some not-so-brief optional text.
 It can be split to multiple lines.

 BTW you can use **Markdown**.

	package name can contain lowercase letters (ASCII only), numbers, underscore and dash (while it can only start and end with a letter or digit), it has to be unique, several names are reserved by DevAssitant itself (e.g. python, ruby)

	version follows this scheme: <num>[.<num>]*[dev|a|b], where 1.0.5 < 1.1dev < 1.1a < 1.1b < 1.1

	license is specified via license tag used in Fedora https://fedoraproject.org/wiki/Licensing:Main?rd=Licensing#Good_Licenses

	authors is a list of authors with their e-mail addresses (_at_ can be used instead of @)

	homepage is an URL to existing webpage that describes the dap or contains the code (such as in example), only http(s) or ftp is allowed, no IP addresses

	summary and description are self-descriptive in the given example

	bugreports defines where the user should report bugs, it can be either an URL (issue tracker) or an e-mail address (mailing list or personal)

Checking your dap for sanity

Once you have your dap packaged, check it for sanity with daplint tool from daploader.

First, you have to get the daplint tool.
Install daploader [https://pypi.python.org/pypi/daploader/] with pip or easy_install.

pip install daploader

Then you can check your dap with daplint:

daplint foo-0.0.1.dap

Uploading your dap to DevAssistant Package Index

When you are satisfied, you can share your assistant on Dapi [http://dapi.devassistant.org/] (DevAssistant Package Index).

On Dapi [http://dapi.devassistant.org/], log in with Github or Fedora account and follow Upload a Dap [http://dapi.devassistant.org/upload] link in the menu.

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DevAssistant 0.9.2 documentation

 	Developer Documentation

Yaml Assistant Reference

Note: The Yaml DSL has changed significantly in 0.9.0 in backwards incompatible manner.
This documentation is only for version 0.9.0 and later.

This is a reference manual to writing yaml assistants. Yaml assistants
use a special DSL defined on this page. For real examples, have a look
at assistants in our Github repo [https://github.com/bkabrda/devassistant/tree/master/devassistant/assistants/assistants].

	Why the hell another DSL?

	When we started creating DevAssistant and we were asking people who
work in various languages whether they’d consider contributing assistants
for those languages, we hit the “I’m not touching Python” barrier. Since
we wanted to keep the assistants consistent (centralized logging, sharing
common functionality, same backtraces, etc...), we created a new DSL.
So now we have something that everyone complains about, including Pythonists,
which seems to be consistent too ;)

Assistant Roles

For list and description of assistant roles see Assistant Roles.

The role is implied by assistant location in one of the load path directories,
as mentioned in Assistants Loading Mechanism.

All the rules mentioned in this document apply to all types of assistants,
with exception of sections Modifier Assistants, Preparer Assistants and
Task Assistants that talk about specifics of Modifier, resp. Preparer, resp. Task
assistants.

Assistant Name

Assistant name is a short name used on command line, e.g. python. Historically,
it had to be the only top-level yaml mapping in the file, e.g.:

python:
 fullname: Python
 description: Some verbose description

Since DevAssistant 0.9.0, it is preferred to omit it and just provide the assistant
attributes as the top level mapping:

fullname: Python
description: Some verbose description

Assistant name is derived from the filename by stripping the .yaml extension,
e.g. assistant python.yaml file is named python.

Assistant Attributes

Assistant attributes form the top level mapping in Yaml file:

fullname: Python

run:
- cl: mkdir -p $name
- log_i: I'm in $name

List of allowed attributes follows (all of them are optional, and have some
sort of reasonable default, it’s up to your consideration which of them to use):

	fullname

	a verbose name that will be displayed to user (Python Assistant)

	description

	a (verbose) description to show to user (Bla bla create project bla bla)

	dependencies (and dependencies_*)

	specification of dependencies, see below Dependencies

	args

	specification of arguments, see below Args

	files

	specification of used files, see below Files

	project_type

	type of the project, see Project Types

	run (and run_*)

	specification of actual operations, see Run Sections Reference

	pre_run and post_run

	specification of operations to carry out before/after running main run section,
see below Assistants Invocation; follow the rules specified in Run Sections Reference

	files_dir

	directory where to take files (templates, helper scripts, ...) from. Defaults
to base directory from where this assistant is taken + files. E.g. if
this assistant is ~/.devassistant/assistants/crt/path/and/more.yaml,
files will be taken from ~/.devassistant/files/crt/path/and/more by default.

	icon_path

	absolute or relative path to icon of this assistant (will be used by GUI).
If not present, a default path will be used - this is derived from absolute
assistant path by replacing assistants by icons and .yaml by
.svg - e.g. for ~/.devassistant/assistants/crt/foo/bar.yaml,
the default icon path is ~/.devassistant/icons/crt/foo/bar.svg

Assistants Invocation

When you invoke DevAssistant with it will run following assistants sections in following order:

	pre_run

	dependencies

	run (possibly different section for Modifier Assistants)

	post_run

If any of the first three sections fails in any step, DevAssistant will immediately skip to
post_run and the whole invocation will be considered as failed (will return non-zero code
on command line and show “Failed” in GUI).

Dependencies

Yaml assistants can express their dependencies in multiple sections.

	Packages from section dependencies are always installed.

	If there is a section named dependencies_foo, then dependencies from this section are installed
iff foo argument is used (either via commandline or via gui). For example:

$ da python --foo

	These rules differ for Modifier Assistants

Each section contains a list of mappings dependency type: [list, of, deps].
If you provide more mappings like this:

dependencies:
- rpm: [foo]
- rpm: ["@bar"]

they will be traversed and installed one by one. Supported dependency types:

	rpm

	the dependency list can contain RPM packages or YUM groups
(groups must begin with @ and be quoted, e.g. "@Group name")

	use / call (these two do completely same, call is obsolete and will be removed in 0.9.0)

	installs dependencies from snippet/another dependency section of this assistant/dependency
section of superassistant. For example:

dependencies:
- use: foo.dependencies
- use: foo.dependencies_bar # will install dependencies from snippet "foo", section "bar"
- use: self.dependencies_baz # will install dependencies from section "dependencies_baz" of this assistant
- use: super.dependencies # will install dependencies from "dependencies" section of first superassistant that has such section

	if, else

	conditional dependency installation. For more info on conditions see Run Sections Reference.
A very simple example:

dependencies:
- if $foo:
 - rpm: [bar]
- else:
 - rpm: [spam]

Full example:

dependencies: - rpm: [foo, "@bar"]

dependencies_spam:
- rpm: [beans, eggs]
- if $with_spam:
 - use: spam.spamspam
- rpm: ["ham${more_ham}"]

Sometimes your dependencies may get terribly complex - they depend on many
parameters, you need to use them dynamically during run, etc. In these
cases, consider using Dependencies Command in run section.

Args

Arguments are used for specifying commandline arguments or gui inputs.
Every assistant can have zero to multiple arguments.

The args section of each yaml assistant is a mapping of arguments to
their attributes:

args:
 name:
 flags:
 - -n
 - --name
 help: Name of the project to create.

Available argument attributes:

	flags

	specifies commandline flags to use for this argument. The longer flag
(without the --, e.g. name from --name) will hold the specified
commandline/gui value during run section, e.g. will be accessible as $name.

	help

	a help string

	required

	one of {true,false} - is this argument required?

	nargs

	how many parameters this argument accepts, one of {0, ?,*,+}
(e.g. {0, 0 or 1, 0 or more, 1 or more})

	default

	a default value (this will cause the default value to be
set even if the parameter wasn’t used by user)

	action

	one of {store_true, [default_iff_used, value]} - the store_true value
will create a switch from the argument, so it won’t accept any
parameters; the [default_iff_used, value] will cause the argument to
be set to default value value iff it was used without parameters
(if it wasn’t used, it won’t be defined at all)

	use / snippet (these two do completely same, snippet is obsolete and will be removed in 0.9.0)

	name of the snippet to load this argument from; any other specified attributes
will override those from the snippet By convention, some arguments
should be common to all or most of the assistants.
See Common Assistant Behaviour

	preserved

	if set, the value of this argument will be saved and will reappear in the next launch
of devassistant GUI. The attribute string is a key under which the argument value
will be stored. The key should be of the form “scope.argname” so that you can
either share the value across more assistants or avoid collisions if any other
assistant uses an argument with same name but different meaning.
The argument values are stored in “~/.devassistant/.config”.
It is ignored in command-line interface.

Gui Hints

GUI needs to work with arguments dynamically, choose proper widgets and offer
sensible default values to user. These are not always automatically
retrieveable from arguments that suffice for commandline. For example, GUI
cannot meaningfully prefill argument that says it “defaults to current working
directory”. Also, it cannot tell whether to choose a widget for path (with the
“Browse ...” button) or just a plain text field.

Because of that, each argument can have gui_hints attribute.
This can specify that this argument is of certain type (path/str/bool) and
has a certain default. If not specified in gui_hints, the default is
taken from the argument itself, if not even there, a sensible “empty” default
value is used (home directory/empty string/false). For example:

args:
 path:
 flags:
 - [-p, --path]
 gui_hints:
 type: path
 default: $(pwd)/foo

If you want your assistant to work properly with GUI, it is good to use
gui_hints (currently, it only makes sense to use it for path
attributes, as str and bool get proper widgets and default values
automatically).

Files

This section serves as a list of aliases of files stored in one of the
files dirs of DevAssistant. E.g. if your assistant is
assistants/crt/foo/bar.yaml, then files are taken relative to
files/crt/foo/bar/ directory. So if you have a file
files/crt/foo/bar/spam, you can use:

files:
 spam: &spam
 source: spam

This will allow you to reference the spam file in run section as
*spam without having to know where exactly it is located in your
installation of DevAssistant.

Run

Reference for run sections has a separate page: Run Sections Reference.

Modifier Assistants

Modifier assistants are assistants that are supposed to work with
already created project. They must be placed under mod
subdirectory of one of the load paths, as mentioned in
Assistants Loading Mechanism.

There are few special things about modifier assistants:

	They usually utilize dda_r to read the whole .devassistant file (usually from directory
specified by path variable or from current directory). Since version 0.8.0, every modifier
assistant has to do this on its own, be it in pre_run or run section. This also allows you
to modify non-devassistant projects - just don’t use dda_r.

The special rules below only apply if you use dda_t in pre_run section.

	They use dependency sections according to the normal rules + they use all
the sections that are named according to project_type loaded from .devassistant,
e.g. if project_type is [foo, bar], dependency sections
dependencies, dependencies_foo and dependencies_foo_bar will
be used as well as any sections that would get installed according to
specified parameters. The rationale behind this is, that if you have e.g.
eclipse modifier that should work for both python django and
python flask projects, chance is that they have some common dependencies,
e.g. eclipse-pydev. So you can just place these common dependencies in
dependencies_python and you’re done (you can possibly place special
per-framework dependencies into e.g. dependencies_python_django).

	By default, they don’t use run section. Assuming that project_type
is [foo, bar], they first try to find run_foo_bar, then run_foo
and then just run. The first found is used. If you however use cli/gui
parameter spam and section run_spam is present, then this is run instead.

Preparer Assistants

Preparer assistants are assistants that are supposed to checkout sources of upstream
projects and set up environment for them (possibly utilizing their .devassistant file,
if they have one). Preparers must be placed under prep subdirectory of one of the load
paths, as mentioned in Assistants Loading Mechanism.

Preparer assistants commonly utilize the dda_dependencies and dda_run
commands in run section.

Task Assistants

Task assistants are supposed to carry out arbitrary task that are not related to a specific
project. <TODO>

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DevAssistant 0.9.2 documentation

 	Developer Documentation

Run Sections Reference

Run sections are the essence of DevAssistant. They are responsible for
performing all the tasks and actions to set up the environment and
the project itself. For Creator and Preparer assistants, the section named run
is always invoked, Modifier Assistants may invoke different sections
based on metadata in a .devassistant file.

Note, that pre_run and post_run follow the same rules as run sections.
See Assistants Invocation to find out how and when these sections are invoked.

Every section is a sequence of various commands, mostly invocations
of commandline. Each command is a mapping of command type to command input:

run:
- command_runner: command_input
- command_runner_2: another_command_input

Note, that section is a general term used for any sequence of commands. Sections
can have subsections (e.g. in conditions or loops), assuming they follow some rules (see below).

Introduction to Commands and Variables

The list of all supported commands can be found at Command Reference, we only document
the basic usage of the most important commands here. Note, that when you use variables
(e.g. $variable) in command input, they get substituted for their values
(undefined variables will remain unchanged).

	command line invocation:

- cl: mkdir -p $spam

This will invoke a subshell and create a directory named $spam. If the command returns
non-zero return code, DevAssistant will fail.

	logging:

- log_i: Directory $spam created.

This command will log the given message at INFO level - either to terminal or GUI.
You can use similar commands to log at different log levels: log_d for DEBUG,
log_w for WARNING, log_e for ERROR and log_c for CRITICAL. By default,
messages of level INFO and higher are logged. Log messages with levels ERROR and
CRITICAL emit the message and then terminate execution of DevAssistant immediately.

	conditions:

- if not $foo and $(ls /spam/spam/spam):
 - log_i: This gets executed if the condition is satisfied.
- else:
 - log_i: Else this section gets executed.

Conditions work as you’d expect in any programming language - if subsection gets executed if
the condition evaluates to true, otherwise else subsection gets executed. The condition
itself is an expression, see Expressions for detailed reference of expressions.

	loops:

- for $i word_in $(ls):
 - log_i: Found file $i.

Loops probably also work as you’d expect - they’ve got the control variable and an iterable.
Loop iterators are expressions, see Expressions. Note, that you can use two
forms of for loop. If you use word_in, DevAssistant will split the given expression on
whitespace and then iterate over that, while if you use in, DevAssistant will iterate
over single characters of the string.

	variable assignment:

- $foo: "Some literal with value of "foo" variable: $foo"

This shows how to assign a literal value to a variable. It is also possible to assign
the result of another command to a variable, see Section Results for how to
use the execution flag.

Remember to check Command Reference for a comprehensive description of all commands.

Literal Sections vs. Execution Sections

DevAssistant distinguishes two different section types: input sections and
execution sections. Some sections are inherently execution sections:

	all run sections of assistants

	if, else subsections

	for subsections

Generally, execution sections can be either:

	expression (e.g. a Yaml string that gets interpreted as an expression)

or

	section (sequence of commands)

Literal section can be any valid Yaml structure - string, list or mapping.

Section Results

Similarly to expressions, sections return logical result and result:

	literal section
	result is a string/list/mapping with variables substituted for their values

	logical result is False if the structure is empty (empty string, list or mapping),
True otherwise

	execution sections
	result is the result of last command of given section

	logical result is the logical result of last command of given section

Some examples follow:

run:
now we're inherently in an execution section
- if $(ls /foo):
 # now we're also in an execution section, e.g. the below sequence is executed
 - foo:
 # the input passed to "foo" command runner is inherently a literal input, e.g. not executed
 # this means foo command runner will get a mapping with two key-value pairs as input, e.g.:
 # {'some': 'string value', 'with': [...]}
 some: string value
 with: [$list, $of, $substituted, $variables]
- $var: this string gets assigned to "var" with $substituted $variables

If you need to assign the result of an expression or execution section to a variable or pass it to
a command runner, you need to use the execution flag: ~:

run:
- $foo~: ($this or $gets) and $executed_as_expression
- foo~:
 # input of "foo" command runner will be result of the below execution section
 - command_runner: literal_section
 - command_runner_2~:
 # similarly, input of command_runner_2 will be result of the below execution section
 - cr: ci
 - cr2: ci2

Note, that a string starting with the execution flag is also executed as an expression. If you
want to create a literal that starts with ~, just use the escape value for it (~~):

run:
- $foo: ~$(ls) and $bar
- $bar: ~~/some_dir_in_users_home
- log_i: The tilde character (~) only needs to be escaped when starting a string.

Each command specifies its return value in a different way, see Command Reference.

Variables Explained

Initially, variables are populated with values of arguments from the
commandline/gui and there are no other variables defined for creator
assistants. For modifier assistants global variables are prepopulated
with some values read from .devassistant. You can either define
(and assign to) your own variables or change the values of current ones.

Additionally, after each command, variables $LAST_RES and $LAST_LRES are populated
with the result of the last command (these are also the return values of the command) -
see Command Reference

The variable scope works as follows:

	When invoking a different run section (from the current assistant or snippet),
the variables get passed by value (e.g. they don’t get modified for the
remainder of this scope).

	Variables defined in subsections (if, else, for) continue to be available
until the end of the current run section.

All variables are global in the sense that if you call a snippet or another
section, it can see all the arguments that are defined.

Quoting

When using variables that contain user input, they should always be
quoted in the places where they are used for bash execution. That
includes cl* commands, conditions that use bash return values and
variable assignment that uses bash.

Global Variables

In all assistants, a few useful global variables are available. These include:

	$__system_name__ - name of the system, e.g. “linux”

	$__system_version__ - version of the system, e.g. “3.13.3-201.fc20.x86_64”

	$__distro_name__ - name of Linux distro, e.g. “fedora”

	$__distro_version__ - version of Linux distro, e.g. “20”

Note: if any of this information is not available, the corresponding variable will be empty.
Also note, that you can rely on all the variables having lowercase content.

Expressions

Expressions are used in assignments, conditions and as loop “iterables”.
Every expression has a logical result (meaning success - True or
failure - False) and result (meaning output). Logical result
is used in conditions and variable assignments, result is used in
variable assignments and loops.
Note: when assigned to a variable, the logical result of an expression can
be used in conditions as expected; the result is either True or False.

Syntax and semantics:

	$foo
	if $foo is defined:
	logical result: True iff value is not empty and it is not
False

	result: value of $foo

	otherwise:
	logical result: False

	result: empty string

	note: boolean values (e.g. those acquired by argument with action: store_true)
always have an empty string as a result and their value as logical result

	$(commandline command) (yes, that is a command invocation that looks like
running command in a subshell)
	if commandline command has return value 0:
	logical result: True

	otherwise:
	logical result: False

	regardless of logical result, result always contains both stdout
and stderr lines in the order they were printed by commandline command

	as_root $(commandline command) runs commandline command as superuser; DevAssistant
may achieve this differently on different platforms, so the actual way how this is done
is considered to be an implementation detail

	defined $foo - works exactly as $foo, but has logical result
True even if the value is empty or False

	not $foo negates the logical result of an expression, while leaving
result intact

	$foo and $bar
	logical result is the logical conjunction of the two arguments

	result is an empty string if at least one of the arguments is empty, or the latter argument

	$foo or $bar
	logical result is the logical disjunction of the two arguments

	result is the first non-empty argument or an empty string

	literals - "foo", 'foo'
	logical result True for non-empty strings, False otherwise

	result is the string itself, sans quotes

	Note: If you use an expression that is formed by just a literal, e.g. "foo" , then
DevAssistant will fail, since Yaml parser will strip these. Therefore you have to use
'"foo"' .

	$foo in $bar
	logical result is True if the result of the second argument contains the result of the second argument (e.g. “inus” in “Linus Torvalds”) and False otherwise

	result is always the first agument

All these can be chained together, so, for instance, "1.8.1.4" in $(git --version)
and defined $git is also a valid expression

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DevAssistant 0.9.2 documentation

 	Developer Documentation

Command Reference

This page serves as a reference for commands of the DevAssistant Yaml DSL.
Every command consists of a command_type and command_input. After it gets executed,
it sets the LAST_LRES and LAST_RES variables. These are also its return values,
similar to Expressions logical result and result.

	LAST_LRES is the logical result of the run - True/False if successful/unsuccessful

	LAST_RES is the “return value” - e.g. a computed value

In the Yaml DSL, commands are called like this:

command_type: command_input

This reference summarizes commands included in DevAssistant itself in the following format:

command_type - some optional info

	Input: what should the input look like?

	RES: what is LAST_RES set to after this command?

	LRES: what is LAST_LRES set to after this command?

	Example: example usage

Missing something? Commands are your entry point for extending DevAssistant.
If you’re missing some functionality in run sections, just
write a command runner and send us a pull request.

Builtin Commands

There are three builtin commands that are inherent part of DevAssistant Yaml DSL:

	variable assignment

	condition

	loop

All of these builtin commands utilize expressions in some way - these must follow rules in
Expressions.

Variable Assignment

Assign result (and possibly also logical result) of Expressions
to a variable(s).

$<var1>[, $<var2>] - if one variable is given, result of expression (command input)
is assigned. If two variables are given, the first gets assigned logical result and the
second result.

	Input: an expression

	RES: result of the expression

	LRES: logical result of the expression

	Example:

$foo: "bar"
$spam:
- spam
- spam
- spam
$bar: $baz
$success, $list~: $(ls "$foo")

Condition

Conditional execution.

if <expression>, else - conditionally execute one or the other section (if can
stand alone, of course)

	Input: a subsection to run

	RES: RES of last command in the subsection, if this clause is invoked. If not invoked,
RES remains untouched.

	LRES: LRES of last command in the subsection, if this clause is invoked. If not invoked,
LRES remains untouched.

	Example:

if defined $foo:
- log_i: Foo is $foo!
else:
- log_i: Foo is not defined!

Loop

A simple for loop.

for <var>[, <var>] [word_in,in] <expression> - loop over result of the expression. If
word_in is used and <expression> is a string, it will be split on whitespaces and
iterated over; with in, string will be split to single characters and iterated over.
For iterations over lists and mappings, word_in and in behave the same. When iterating
over mapping, two control variables may be provided to get both key and its value.

	Input: a subsection to repeat in loop

	RES: RES of last command of last iteration in the subsection. If there are no interations,
RES is untouched.

	LRES: LRES of last command of last iteration in the subsection. If there are no interations,
RES remains untouched.

	Example:

for $i word_in $(ls):
- log_i: File: $i

$foo:
 1: one
 2: two
for $k, $v in $foo:
- log_i: $k, $v

Ask Commands

User interaction commands, let you ask for password and various other input.

ask_confirm

	Input: mapping containing prompt (short prompt for user) and message
(a longer description of what the user should confirm)

	RES: the confirmation (True or False)

	LRES: same as RES

	Example:

- $confirmed~:
 - ask_confirm:
 message: "Do you think DevAssistant is great?"
 prompt: "Please select yes."

ask_input

	Input: mapping containing prompt (short prompt for user) and optionally message
(a longer description)

	RES: the string that was entered by the user

	LRES: True if non-empty string was provided

	Example:

- $variable:
 - ask_input:
 prompt: "Your name"

ask_password

	Input: mapping containing prompt (short prompt for user)

	This command works the same way as ask_input, but the entered text is
hidden (displayed as bullets)

	RES: the password

	LRES: True if non-empty password was provided

	Example:

- $passwd:
 - ask_password:
 prompt: "Please provide your password"

Command Line Commands

Run commands in subprocesses and receive their output.

cl, cl_[i,r] (these do the same, but appending i logs the command output on INFO level
and appending r runs command as root)

	Input: a string, possibly containing variables and references to files

	RES: stdout + stdin interleaved as they were returned by the executed process

	LRES: always True (if the command fails, the whole DevAssistant execution fails)

	Example:

cl: mkdir ${name}
cl: cp *file ${name}/foo
cl_i: echo "Hey!"
cl_ir: echo "Echoing this as root"
cl_r: mkdir /var/lib/foo

Note: when using r, it’s job of DevAssistant core to figure out what to use as authentication
method. Consider this an implementation detail.

A note on changing current working directory: Due to the way Python interpreter works,
DevAssistant has to specialcase “cd <dir>” command, since it needs to call a special Python
method for changing current working directory of the running interpreter. Therefore you
must always use “cd <dir>” as a single command (do not use “ls foo && cd foo”);
also, using pushd/popd is not supported for now.

Dependencies Command

Install dependencies from given command input.

dependencies

	Input: list of mappings, similar to Dependencies section, but without
conditions and usage of sections from snippets etc.

	RES: command input, but with expanded variables

	LRES: always True (terminates DevAssistant if dependency installation fails)

	Example:

if $foo:
- $rpmdeps: [foo, bar]
else:
- $rpmdeps: []

dependencies:
- rpm: $rpmdeps

.devassistant Commands

Commands that operate with .devassistant file.

dda_c - creates a .devassistant file, should only be used in creator assistants

	Input: directory where the file is supposed to be created

	RES: always True, terminates DevAssistant if something goes wrong

	LRES: always empty string

	Example:

dda_c: ${path}/to/project

dda_r - reads an existing .devassistant file, should be used by modifier and preparer
assistants.Sets some global variables accordingly, most importantly original_kwargs (arguments
used when the project was created) - these are also made available with dda__ prefix (yes,
that’s double underscore).

	Input: directory where the file is supposed to be

	RES: always empty string

	LRES: always True, terminates DevAssistant if something goes wrong

	Example:

dda_r: ${path}/to/project

dda_w - writes a mapping (dict in Python terms) to .devassistant

	Input: list with directory with .devassistant file as a first item and the mapping
to write as the second item. Variables in the mapping will be substituted, you have to use
$$foo (two dollars instead of one) to get them as variables in .devassistant.

	RES: always empty string

	LRES: always True, terminates DevAssistant if something goes wrong

	Example:

dda_w:
- ${path}/to/project
- run:
 - $$foo: $name # name will get substituted from current variable
 - log_i: $$foo

dda_dependencies - installs dependencies from .devassistant file, should be used by
preparer assistants. Utilizes both dependencies of creator assistants that created this project
plus dependencies from dependencies section, if present (this section is evaluated in the
context of current assistant, not the creator).

	Input: directory where the file is supposed to be

	RES: always empty string

	LRES: always True, terminates DevAssistant if something goes wrong

	Example:

dda_dependencies: ${path}/to/project

dda_run - run run section from from .devassistant file, should be used by
preparer assistants. This section is evaluated in the context of current assistant, not the
creator.

	Input: directory where the file is supposed to be

	RES: always empty string

	LRES: always True, terminates DevAssistant if something goes wrong

	Example:

dda_run: ${path}/to/project

Github Command

Manipulate Github repositories.

Github command (github) has many “subcommands”. Subcommands are part of the command input,
see below.

	Input: a string with a subcommand or a two item list, where the first item is a subcommand
and the second item is a mapping that explicitly specifies parameters for the subcommand.

	RES: if command succeeds, either a string with URL of manipulated repo or empty string is
returned (depends on subcommand), else a string with problem description (it is already logged
at WARNING level)

	LRES: True if the Github operation succeeds, False otherwise

	Example:

github: create_repo

github:
- create_and_push
- login: bkabrda
 reponame: devassistant

github: push

github: create_fork

Explanation of individual subcommands follows. Each subcommand takes defined arguments,
whose default values are taken from global context. E.g. create_and_push takes an argument
login. If it is not specified, assistant variable github is used.

	create_repo

	Creates a repo with given reponame (defaults to var name) for a user with
given login (defaults to var github). Optionally accepts private argument
to create repo as private (defaults to var github_private).

	create_and_push

	Same as create_repo, but it also adds a proper git remote to repository in current
working dir and pushes to Github.

	push

	Just does git push -u origin master, no arguments needed.

	create_fork

	Creates a fork of repo at given repo_url (defaults ot var url) under user specified
by login (defaults to var github).

Jinja2 Render Command

Render a Jinja2 template.

jinja_render, jinja_render_dir - render a single template or a directory containing
more templates

	Input: a mapping containing

	template - a reference to file (or a directory if using jinja_render_dir)
in files section

	destination - directory where to place rendered template (or rendered directory)

	data - a mapping of values used to render the template itself

	overwrite (optional) - overwrite the file if it exists? (defaults to false)

	output (optional) - specify a filename of the rendered template (see below for
information on how the filename is costructed if not provided), not used with
jinja_render_dir

	RES: always success string

	LRES: always True, terminates DevAssistant if something goes wrong

	Example:

jinja_render:
 template: *somefile
 destination: ${dest}/foo
 overwrite: yes
 output: filename.foo
 data:
 foo: bar
 spam: spam

jinja_render_dir:
 template: *somedir
 destination: ${dest}/somedir
 data:
 foo: foo!
 spam: my_spam

The filename of the rendered template is created in this way (the first step is omitted
with jinja_render_dir:

	if output is provided, use that as the filename

	else if name of the template endswith .tpl, strip .tpl and use it

	else use the template name

For template syntax reference, see Jinja2 documentation [http://jinja.pocoo.org/docs/].

Logging Commands

Log commands on various levels. Logging on ERROR or CRITICAL logs the message and then terminates the execution.

log_[d,i,w,e,c] (the letters stand for DEBUG, INFO, WARNING, ERROR, CRITICAL)

	Input: a string, possibly containing variables and references to files

	RES: the logged message (with expanded variables and files)

	LRES: always True

	Example:

log_i: Hello $name!
log_e: Yay, something has gone wrong, exiting.

Warning

If you start your log command with an apostrophe or a quotation mark, you must end the line with the same character, and it must not appear elsewhere on the line

SCL Command

Run subsection in SCL environment.

scl [args to scl command] (note: you must use the scriptlet name - usually enable -
because it might vary)

	Input: a subsection

	RES: RES of the last command in the given section

	LRES: LRES of the last command in the given section

	Example:

- scl enable python33 postgresql92:
 - cl_i: python --version
 - cl_i: pgsql --version

Note: currently, this command can’t be nested, e.g. you can’t run scl enable in another
scl enable.

Running Commands as Another User

Run subsection as a different user (how this command runner does this is considered
an implementation detail).
as <username> (note: use as root, to run subsection under superuser)

	Input: a subsection

	RES: output of the whole subsection

	LRES: LRES of the last command in the given section

	Example:

- as root:
 - cl: ls /root
- as joe:
 - log_i~: $(echo "this is run as joe")

Note: This command invokes DevAssistant under another user and passes the whole section to it.
This means some behaviour differences from e.g. scl command, where each command is run in
current assistant. Most importantly, RES of this command is RES of all commands from given
subsection.

Using Another Section

Runs a section specified by command input at this place.

use, call (these two do completely same, call is obsolete and will be removed in 0.9.0)
This can be used to run:

	another section of this assistant (e.g. use: self.run_foo)

	section of superassistant (e.g. use: super.run) - searches all superassistants
(parent of this, parent of the parent, etc.) and runs the first found section of given name

	section from snippet (e.g. use: snippet_name.run_foo)

	Input: a string with section name

	RES: RES of the last command in the given section

	LRES: LRES of the last command in the given section

	Example:

- use: self.run_foo
- use: super.run
- use: a_snippet.run_spam

Normalizing User Input

Replace “weird characters” in user input by underscores.

	Input: a string

	RES: a string with weird characters (e.g. brackets/braces, whitespace, etc) replaced by underscores

	LRES: True

	Example:

- $dir~:
 - normalize: foo!@#$%^bar
- cl: mkdir $dir # creates dir named foo______bar

Setting up Project Directory

Creates a project directory (possibly with a directory containing it) and sets some global variables.

	Input: a mapping of input options, see below

	RES: path of project directory or a directory containing it, if create_topdir is False

	LRES: always True, terminates DevAssistant if something goes wrong

	Example:

- $dir: foo/bar/baz
- setup_project_dir:
 from: $dir
 create_topdir: normalized

Note: as a side effect, this command runner sets 3 global variables for you (their names can
be altered by using arguments contdir_var, topdir_var and topdir_normalized_var):

	contdir - the dir containing project directory (e.g. foo/bar in the example above)

	topdir - the project directory (e.g. baz in the example above)

	topdir_normalized - normalized name (by Normalizing User Input) of the
project directory

Arguments:

	from (required) - a string or a variable containing string with directory name
(possibly a path)

	create_topdir - one of True (default), False, normalized - if False,
only creates the directory containing the project, not the project directory itself
(e.g. it would create only foo/bar in example above, but not the baz directory);
if True, it also creates the project directory itself; if normalized, it creates
the project directory itself, but runs it’s name through Normalizing User Input first

	contdir_var, topdir_var, topdir_normalized_var - names to which the global
variables should be assigned to - note: you have to use variable names without dollar sign here

	accept_path - either True (default) or False - if False, this will terminate
DevAssistant if a path is provided

	on_existing - one of fail (default), pass - if fail, this will terminate
DevAssistant if directory specified by from already exists; if pass, nothing will happen

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DevAssistant 0.9.2 documentation

 	Developer Documentation

Common Assistant Behaviour

Common Parameters of Assistants and Their Meanings

	-e

	Create Eclipse project, optional. Should create .project (or any other
appropriate file) and register project to Eclipse workspace (~/workspace
by default, or the given path if any).

	-g

	Register project on GitHub (uses current user name by default, or given name if any).

	-n

	Name of the project to create, mandatory. Should also be able to accept full or
relative path.

To include these parameters in your assistant with common help strings etc., include
them from common_args.yaml (-n, -g) or eclipse.yaml (-e) snippet:

args:
 name:
 snippet: common_args

Other Conventions

When creating snippets/Python commands, they should operate under the assumption
that current working directory is the project directory (not one dir up or
anywhere else). It is the duty of assistant to switch to that directory. The benefit
of this approach is that you just cd once in assistant and then call all the
snippets/commands, otherwise you’d have to put 2x`cd` in every snippet/command.

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DevAssistant 0.9.2 documentation

 	Developer Documentation

Snippets

Snippets are the DevAssistant’s way of sharing common pieces of assistant code. For example,
if you have two assistants that need to log identical messages, you want the messages
to be in one place, so that you don’t need to change them twice when a change is needed.

Example

Let’s assume we have two assistants like this:

assistants/crt/assistant1.yaml
...
run:
- do: some stuff
- log_i: Creating cool project $name ...
- log_i: Still creating ...
- log_i: I suggest you go have a coffee ...
- do: more stuff

assistants/crt/assistant2.yaml
...
run:
- do: some slightly different stuff
- log_i: Creating cool project $name ...
- log_i: Still creating ...
- log_i: I suggest you go have a coffee ...
- do: more slightly different stuff

So we have two assistants that have three lines of identical code in them - that breaks a widely
known programmer best practice: Don’t do it twice, write a function for it.
In DevAssistant terms, we’ll write a run section and place it in a snippet:

snippets/mysnip.yaml
run:
- log_i: Creating cool project $name ...
- log_i: Still creating ...
- log_i: I suggest you go have a coffee ...

Then we’ll change the two assistants like this (we’ll utilize
“use” command runner):

assistants/crt/assistant1.yaml
...
run:
- do: some stuff
- use: mysnip.run
- do: more stuff

assistants/crt/assistant2.yaml
...
run:
- do: some slightly different stuff
- use: mysnip.run
- do: more slightly different stuff

How Snippets Work

This section summarizes important notes about how snippets are formed and how they work.

Syntax and Sections

Snippets are very much like assistants. They can (but don’t have to) have args,
dependencies* and run* sections - structured in the same manner as in assistants.
A snippet can contain any combination of the above sections (even empty file is a valid snippet).

Variables

When a snippet section is called (this applies to both dependencies* and run*, it gets
a copy of all arguments of its caller - e.g. it can use the variables, it can assign to them,
but they’ll be unchanged in the calling section after the snippet finishes.

Using Snippets and Return Value

As noted above, snippets can hold 3 types of content (args, dependencies* sections
and run* sections), each of which can be used in assistants:

snippets/mysnip.yaml

args:
 foo:
 flags: [-f, --foo]
 help: Foo is foo
 required: True

dependencies:
- rpm: [python3]

run:
- log_i: Spam spam spam

assistants/crt/assistant1.yaml

args:
 foo:
 use: mysnip

dependencies:
- use: mysnip.dependencies

run:
- do: stuff
- use: mysnip.run

Return values (RES and LRES) of snippet are determined by the
use command runner - RES and LRES of last command of the snippet section.

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DevAssistant 0.9.2 documentation

 	Developer Documentation

Project Metainfo: the .devassistant File

Note: .devassistant file changed some of its contents and semantics in version 0.9.0.

Project created by DevAssistant usually get a .devassistant file, see
.devassistant Commands for information on creating and manipulating it by assistants.
This file contains information about a project, such as project type or paramaters
used when this project was created. It can look like this:

devassistant_version: 0.9.0
original_kwargs:
 name: foo
 github: bkabrda
project_type: [python, django]
dependencies:
- rpm: [python-django]

When .devassistant is used

Generally, there are two use cases for .devassistant:

	Modifier assistants read the .devassistant file to get project type
(which is specified by project_type entry) and decide what to
do with this type of project (by choosing a proper run section to
execute and proper dependencies section, see Modifier Assistants).

	When you use the custom preparer with URL to this project
(da prepare custom -u <url>), DevAssistant will checkout the project,
read the data from .devassistant and do few things:

	It will install any dependendencies that it finds in .devassistant. These
dependencies look like normal dependencies section in
assistant, e.g.:

dependencies:
- rpm: [python-spam]

	It will also run a run section from .devassistant, if it is there.
Again, this is a normal run section:

run:
- log_i: Hey, I'm running from .devassistant after checkout!

Generally, when using custom assistant, you have to be extra careful,
since someone could put rm -rf ~ or similar evil command in the run
section. So use it only with projects whose upstream you trust.

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	DevAssistant 0.9.2 documentation

 	Developer Documentation

Project Types

This is a list of official project types that projects should use in their
.devassistant file and Creator assistants should state. If you choose one
of the official project types, there is a good chance that Modifier and Preparer
assistants written by others will work well with projects created by your Creator.

The project type is given as a list of strings - these describe the project from
the most general type to the most specific. E.g:

project_type: [python, django]

If you don’t use project_type in your Creator assistant, it will be automatically
supported to .devassistant: If your assistant is crt/footest/foobar.yaml, project
type in .devassistant will be [footest, foobar]. This means that Modifier and
Preparer assistants written by others may not work well with your project, but otherwise
it does no harm.

Current List of Types

Current project types list follows. If you want anything added in here,
open a bug for us at https://github.com/bkabrda/devassistant/issues.
Note: the list is currently not very thorough and it is meant to grow
as we get requested by assistant developers.

	c

	cpp

	java

	nodejs
	express

	perl
	dancer

	php

	python
	django

	flask

	gtk3

	lib

	ruby
	rails

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	DevAssistant 0.9.2 documentation

Index

 Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

search.html

 Navigation

 		
 index

 		DevAssistant 0.9.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Bohuslav Kabrda, Petr Hracek.
 Created using Sphinx 1.2.2.

