
deslib Documentation
Release 0.2

Rafael Cruz

Apr 24, 2018

Contents

1 Introduction 3

2 Philosophy 5

3 API Reference 7
3.1 User guide . 7
3.2 API Reference . 13
3.3 General examples . 71
3.4 Release history . 77

4 Example 81

5 Citation 83
5.1 References . 83

Python Module Index 85

i

ii

deslib Documentation, Release 0.2

DESlib is an ensemble learning library focusing the implementation of the state-of-the-art techniques for dynamic
classifier and ensemble selection.

DESlib is a work in progress. Contributions are welcomed through its GitHub page: https://github.com/Menelau/
DESlib.

Contents 1

https://github.com/Menelau/DESlib
https://github.com/Menelau/DESlib

deslib Documentation, Release 0.2

2 Contents

CHAPTER 1

Introduction

Dynamic Selection (DS) refers to techniques in which the base classifiers are selected on the fly, according to each
new sample to be classified. Only the most competent, or an ensemble containing the most competent classifiers is
selected to predict the label of a specific test sample. The rationale for such techniques is that not every classifier in
the pool is an expert in classifying all unknown samples; rather, each base classifier is an expert in a different local
region of the feature space.

DS is one of the most promising MCS approaches due to the fact that more and more works are reporting the superior
performance of such techniques over static combination methods. Such techniques have achieved better classification
performance especially when dealing with small-sized and imbalanced datasets. A comprehensive review of dynamic
selection can be found in the following papers12

1 : R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives,” Information Fusion,
vol. 41, pp. 195 – 216, 2018.

2 : A. S. Britto, R. Sabourin, L. E. S. de Oliveira, Dynamic selection of classifiers - A comprehensive review, Pattern Recognition 47 (11) (2014)
3665–3680.

3

deslib Documentation, Release 0.2

4 Chapter 1. Introduction

CHAPTER 2

Philosophy

DESlib was developed with two objectives in mind: to make it easy to integrate Dynamic Selection algorithms to
machine learning projects, and to facilitate research on this topic, by providing implementations of the main DES and
DCS methods, as well as the commonly used baseline methods. Each algorithm implements the main methods in the
scikit-learn API scikit-learn: fit(X, y), predict(X), predict_proba(X) and score(X, y).

The implementation of the DS methods is modular, following a taxonomy defined in1. This taxonomy considers the
main characteristics of DS methods, that are centered in three components:

1. the methodology used to define the local region, in which the competence level of the base classifiers are
estimated (region of competence);

2. the source of information used to estimate the competence level of the base classifiers.

3. the selection approach to define the best classifier (for DCS) or the best set of classifiers (for DES).

This modular approach makes it easy for researchers to implement new DS methods, in many cases requiring only
the implementation of the method estimate_competence, that is, how the local competence of the base classifier is
measured.

5

http://scikit-learn.org/stable/

deslib Documentation, Release 0.2

6 Chapter 2. Philosophy

CHAPTER 3

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

3.1 User guide

This user guide explains how to install DESlib, how to contribute to the library and presents a step-by-step tutorial to
fit and predict new instances using several dynamic selection techniques.

3.1.1 Installation

The library can be installed using pip:

Stable version:

pip install deslib

Latest version (under development):

pip install git+https://github.com/Menelau/DESlib

DESlib is tested to work with Python 3.5, and 3.6. The dependency requirements are:

• scipy(>=0.13.3)

• numpy(>=1.10.4)

• scikit-learn(>=0.19.0)

These dependencies are automatically installed using the pip commands above.

7

deslib Documentation, Release 0.2

3.1.2 Development

DESlib was started by Rafael M. O. Cruz as a way to facilitate research in this topic by providing other researchers a
toolbox with everything that is required to easily develop and compare different dynamic ensemble techniques.

The library is a work in progress. As an open-source project, any type of contribution is welcomed and encouraged!

Contributing to DESlib

You can contribute to the project in several ways:

• Reporting bugs

• Requesting features

• Improving the documentation

• Adding examples to use the library

• Implementing new features and fixing bugs

Reporting Bugs and requesting features

We use Github issues to track all bugs and feature requests; feel free to open an issue if you have found a bug or
wish to see a new feature implemented. Before opening a new issue, please check if the issue is not being currently
addressed: [Issues](https://github.com/Menelau/DESlib/issues)

For reporting bugs:

• Include information of your working environment. This information can be found by running the following code
snippet:

import platform; print(platform.platform())
import sys; print("Python", sys.version)
import numpy; print("NumPy", numpy.__version__)
import scipy; print("SciPy", scipy.__version__)
import sklearn; print("Scikit-Learn", sklearn.__version__)

• Include a [reproducible](https://stackoverflow.com/help/mcve) code snippet or link to a [gist](https://gist.github.
com). If an exception is raised, please provide the traceback.

Documentation

We are glad to accept any sort of documentation: function docstrings, reStructuredText documents (like this one),
tutorials, etc. reStructuredText documents live in the source code repository under the doc/ directory.

You can edit the documentation using any text editor and then generate the HTML output by typing make html
from the doc/ directory. Alternatively, make can be used to quickly generate the documentation without the example
gallery. The resulting HTML files will be placed in _build/html/ and are viewable in a web browser. See the README
file in the doc/ directory for more information.

For building the documentation, you will need to install sphinx and sphinx_rtd_theme. This can be easily done by
installing the requirements for development using the following command:

pip install -r requirements-dev.txt

8 Chapter 3. API Reference

https://github.com/Menelau/DESlib/issues
https://stackoverflow.com/help/mcve
https://gist.github.com
https://gist.github.com

deslib Documentation, Release 0.2

Contributing with code

The preferred way to contribute is to fork the main repository to your account:

1. Fork the [project repository](https://github.com/Menelau/DESlib): click on the ‘Fork’ button near the top of the
page. This creates a copy of the code under your account on the GitHub server.

2. Clone this copy to your local disk:

$ git clone git@github.com:YourLogin/DESlib.git $ cd DESlib

3. Install all requirements for development:

$ pip install -r requirements-dev.txt $ pip install –editable .

4. Create a branch to hold your changes:

$ git checkout -b branch_name

Where branch_name is the new feature or bug to be fixed. Do not work directly on the master branch.

5. Work on this copy on your computer using Git to do the version control. To record your changes in Git, then
push them to GitHub with:

$ git push -u origin branch_name

It is important to assert your code is well covered by test routines (coverage of at least 90%), well documented and
follows PEP8 guidelines.

6. Create a ‘Pull request’ to send your changes for review.

If your pull request addresses an issue, please use the title to describe the issue and mention the issue number in
the pull request description to ensure a link is created to the original issue.

3.1.3 Tutorial

This tutorial will walk you through generating a pool of classifiers and applying several dynamic selection techniques
for the classification of unknown samples. The tutorial assumes that you are already familiar with the Python language
and the scikit-learn library. Users not familiar with either Python and scikit-learn can start by checking out their
tutorials.

Running Dynamic selection with Bagging

In this first tutorial, we do a step-by-step run of the example_bagging.py, that is included in the examples part of the
DESlib.

The first step is to run the example to check if everything is working as intended:

cd examples
python example_bagging.py

This script run six different dynamic selection models: Three DCS (OLA, A-Priori, MCB) and four DES (KNORA-
Union, KNORA-Eliminate, DES-P and META-DES)

The example outputs the classification accuracy of each dataset:

Evaluating DS techniques:
Classification accuracy KNORA-Union: 0.973404255319
Classification accuracy KNORA-Eliminate: 0.968085106383
Classification accuracy DESP: 0.973404255319
Classification accuracy OLA: 0.968085106383

3.1. User guide 9

https://github.com/Menelau/DESlib
mailto:git@github.com
https://docs.python.org/3.5/tutorial/
http://scikit-learn.org/stable/tutorial/index.html

deslib Documentation, Release 0.2

Classification accuracy A priori: 0.973404255319
Classification accuracy MCB: 0.968085106383
Classification accuracy META-DES: 0.973404255319

Code analysis:

The first thing to do is to import the corresponding DCS and DES algorithms that are tested as well as the other
required libraries:

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Perceptron
from sklearn.calibration import CalibratedClassifierCV
from sklearn.ensemble import BaggingClassifier

#importing DCS techniques from DESlib
from deslib.dcs.ola import OLA
from deslib.dcs.a_priori import APriori
from deslib.dcs.mcb import MCB

#import DES techniques from DESlib
from deslib.des.des_p import DESP
from deslib.des.knora_u import KNORAU
from deslib.des.knora_e import KNORAE
from deslib.des.meta_des import METADES

As DESlib is built on top of scikit-learn classifier, code will usually required the import of routines from this library.

Preparing the dataset:

Before exploiting the models, we need to prepare the dataset. We use the breast cancer dataset from scikit learn. The
first step is to normalize the dataset so that it has zero mean and unit variance, which is a common requirement for
many machine learning algorithms. This step can be easily done using the StandardScaler class from scikit-learn.

Following that we divide it into three partitions: Training, Test, and Dynamic Selection (DSEL). We usually call
the dataset that is used for the competence level estimation as the dynamic selection dataset (DSEL) instead of the
validation dataset.

data = load_breast_cancer()
X = data.data
y = data.target
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

Scale the variables to have 0 mean and unit variance
scalar = StandardScaler()
X_train = scalar.fit_transform(X_train)
X_test = scalar.transform(X_test)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train, test_size=0.5)

starting from 0 to L-1 (where L is the number of classes). If your dataset does not follow this requirement, you can use
the LabelEncoder class form scikit-learn to prepare the data. As the datasets loaded from scikit-learn already follow

10 Chapter 3. API Reference

http://scikit-learn.org/stable/tutorial/index.html

deslib Documentation, Release 0.2

this rule, we can skip this step.

Training a pool of classifiers:

The next step is to generate a pool of classifiers. Each implemented method receives as an input a list of classifiers.
This list can be either homogeneous (i.e., all base classifiers are of the same type) or heterogeneous (base classifiers
of different types). The library supports any type of base classifiers from scikit-learn library.

In this example, we generate a pool composed of 10 Perceptron classifiers using the Bagging technique. It is important
to mention that some DS techniques require that the base classifiers are capable of estimating probabilities (i.e.,
implements the predict_proba function). For the Perceptron model, this can be achieved by calibrating the outputs of
the base classifiers using the CalibratedClassifierCV class from scikit-learn.

model = CalibratedClassifierCV(Perceptron(max_iter=10))

Train a pool of 10 classifiers
pool_classifiers = BaggingClassifier(model, n_estimators=10)
pool_classifiers.fit(X_train, y_train)

Building the DS models

Initializing DS techniques Here we initialize the DS techniques. Three DCS and four DES techniques are considered
in this example: The only parameter that is required by the techniques is the pool of classifiers.

DCS techniques
ola = OLA(pool_classifiers)
mcb = MCB(pool_classifiers)
apriori = APriori(pool_classifiers)

DES techniques
knorau = KNORAU(pool_classifiers)
kne = KNORAE(pool_classifiers)
desp = DESP(pool_classifiers)
meta = METADES(pool_classifiers)

All others are optional parameters which can be specified explicitly changed in the instantiation of each method.

Fitting the DS techniques:

The next step is to fit the DS model. We call the function fit to prepare the DS techniques for the classification of
new data by pre-processing the information required to apply the DS techniques, such as, fitting the algorithm used to
estimate the region of competence (k-NN, k-Means) and calculating the source of competence of the base classifiers
for each sample in the dynamic selection dataset.

knorau.fit(X_dsel, y_dsel)
kne.fit(X_dsel, y_dsel)
desp.fit(X_dsel, y_dsel)
ola.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)
apriori.fit(X_dsel, y_dsel)
meta.fit(X_dsel, y_dsel)

3.1. User guide 11

deslib Documentation, Release 0.2

Estimating classification accuracy:

Estimating the classification accuracy of each method is very easy. Each DS technique implements the function score
from scikit-learn in order to estimate the classification accuracy.

print('Classification accuracy OLA: ', ola.score(X_test, y_test))
print('Classification accuracy A priori: ', apriori.score(X_test, y_test))
print('Classification accuracy KNORA-Union: ', knorau.score(X_test, y_test))
print('Classification accuracy KNORA-Eliminate: ', kne.score(X_test, y_test))
print('Classification accuracy DESP: ', desp.score(X_test, y_test))
print('Classification accuracy META-DES: ', apriori.score(X_test, y_test))

However, you may need to calculate the predictions of the model or the estimation of probabilities instead of only
computing the accuracy. Class labels and posterior probabilities can be easily calculated using the predict and pre-
dict_proba methods:

metades.predict(X_test)
metades.predict_proba(X_test)

Changing parameters

Changing the hyper-parameters is very easy. We just need to pass its value when instantiating a new method. For
example, we can change the size of the neighborhood used to estimate the competence level by setting the k value.

DES techniques
knorau = KNORAU(pool_classifiers, k=5)
kne = KNORAE(pool_classifiers, k=5)

Also, we can change the mode DES algorithm works (dynamic selection, dynamic weighting or hybrid) by setting its
mode: .. code-block:: python

meta = METADES(pool_classifiers, Hc=0.8, k=5, mode=’hybrid’)

In this code block, we change the size of the neighborhood (k=5), the value of the sample selection mechanism
(Hc=0.8) and also, state that the META-DES algorithm should work in a hybrid dynamic selection with and weighting
mode. The library accepts the change of several hyper-parameters. A list containing each one for all technique
available as well as its impact in the algorithm is presented in the API Reference.

Applying the Dynamic Frienemy Pruning (DFP)

The library also implements the Dynamic Frienemy Pruning (DFP) proposed in1. So any dynamic selection technique
can be applied using the FIRE (Frienemy Indecision Region Dynamic Ensemble Selection) framework. That is easily
done by setting the DFP to true when initializing a DS technique. In this example, we show how to start the FIRE-
KNORA-U, FIRE-KNORA-E and FIRE-MCB techniques.

fire_knorau = KNORAU(pool_classifiers, DFP=True)
fire_kne = KNORAE(pool_classifiers, DFP=True)
fire_mcb = MCB(pool_classifiers, DFP=True)

We can also set the size of the neighborhood that is used to decide whether the query sample is located in a safe region
or in an indecision region (safe_k):

1 : Oliveira, D.V.R., Cavalcanti, G.D.C. and Sabourin, R., Online Pruning of Base Classifiers for Dynamic Ensemble Selection, Pattern Recog-
nition, vol. 72, December 2017, pp 44-58.

12 Chapter 3. API Reference

api.html

deslib Documentation, Release 0.2

fire_knorau = KNORAU(pool_classifiers, DFP=True, safe_k=3)
fire_kne = KNORAE(pool_classifiers, DFP=True, safe_k=5)
fire_mcb = MCB(pool_classifiers, DFP=True, safe_k=7)

So, the fire_knorau will use a neighborhood composed of 3 samples, fire_knorae of 5 and fire_mcb of 7 in order to
compute whether a given sample is located in a indecision or safe region.

More tutorials on how to use different aspects of the library can be found in examples page

References

3.2 API Reference

This is the full API documentation of the DESlib. Currently the library is divided into four modules:

3.2.1 Dynamic Classifier Selection (DCS)

This module contains the implementation of techniques in which only the base classifier that attained the highest
competence level is selected for the classification of the query. The deslib.dcs provides a set of key dynamic
classifier selection algorithms (DCS).

DCS base class

class deslib.dcs.base.DCS(pool_classifiers, k=7, DFP=False, safe_k=None, with_IH=False,
IH_rate=0.3, selection_method=’best’, diff_thresh=0.1,
rng=<mtrand.RandomState object>)

Base class for a Dynamic Classifier Selection (dcs) method. All dynamic classifier selection classes should
inherit from this class.

Warning: This class should not be used directly, use derived classes instead.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict” and “pre-
dict_proba”.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

3.2. API Reference 13

auto_examples/index.html

deslib Documentation, Release 0.2

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

rng [numpy.random.RandomState instance] Random number generator to assure reproducible
results.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of multiple classifiers using local
accuracy estimates.” IEEE transactions on pattern analysis and machine intelligence 19.4 (1997): 405-410.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

G. Giacinto and F. Roli, Methods for Dynamic Classifier Selection 10th Int. Conference on Image Analysis and
Proc., Venice, Italy (1999), 659-664.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

classify_with_ds(query, predictions, probabilities=None)
Predicts the class label of the corresponding query sample.

If self.selection_method == “all”, the majority voting scheme is used to aggregate the predictions of all
classifiers with the max competence level estimates for each test examples.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
of each base classifier for all test examples. (For methods that always require probabilities
from the base classifiers).

Returns

predicted_label [array of shape = [n_samples]] Predicted class label for each test example.

estimate_competence(query, predictions=None)
estimate the competence of each base classifier for the classification of the query sample.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

predict_proba_with_ds(query, predictions, probabilities)
Predicts the posterior probabilities of the corresponding query sample.

If self.selection_method == “all”, get the probability estimates of the selected ensemble. Otherwise, the
technique gets the probability estimates from the selected base classifier

14 Chapter 3. API Reference

deslib Documentation, Release 0.2

Parameters

query [array of shape = [n_samples, n_features]] The test example

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
of each base classifier for all test examples.

Returns

predicted_proba [array = [n_samples, n_classes]] Probability estimates for all test exam-
ples.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

A posteriori

class deslib.dcs.a_posteriori.APosteriori(pool_classifiers, k=7, DFP=False,
with_IH=False, safe_k=None, IH_rate=0.3,
selection_method=’diff’, diff_thresh=0.1,
rng=<mtrand.RandomState object>)

A Posteriori Dynamic classifier selection.

The A Posteriori method uses the probability of correct classification of a given base classifier 𝑐𝑖 for each
neighbor 𝑥𝑘 with respect to a single class. Consider a classifier 𝑐𝑖 that assigns a test sample to class 𝑤𝑙. Then,
only the samples belonging to class 𝑤𝑙 are taken into account during the competence level estimates. Base
classifiers with a higher probability of correct classification have a higher competence level. Moreover, the
method also weights the influence of each neighbor 𝑥𝑘 according to its Euclidean distance to the query sample.
The closest neighbors have a higher influence on the competence level estimate. In cases where no sample in
the region of competence belongs to the predicted class, 𝑤𝑙, the competence level estimate of the base classifier
is equal to zero.

3.2. API Reference 15

deslib Documentation, Release 0.2

A single classifier is selected only if its competence level is significantly higher than that of the other base
classifiers in the pool (higher than a pre-defined threshold). Otherwise, all classifiers in the pool are combined
using the majority voting rule. The selection methodology can be modified by modifying the hyper-parameter
selection_method.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict” and “pre-
dict_proba”.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

rng [numpy.random.RandomState instance] Random number generator to assure reproducible
results.

References

G. Giacinto and F. Roli, Methods for Dynamic Classifier Selection 10th Int. Conf. on Image Anal. and Proc.,
Venice, Italy (1999), 659-664.

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic classifier selection to dynamic
ensemble selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 for the classification of the query sample using the A
Posteriori method.

The competence level is estimated based on the probability of correct classification of the base classifier
𝑐𝑖, for each neighbor 𝑥𝑘 belonging to a specific class 𝑤𝑙. In this case, 𝑤𝑙 is the class predicted by the
base classifier 𝑐𝑖, for the query sample. This method also weights the influence of each training sample
according to its Euclidean distance to the query instance. The closest samples have a higher influence in
the computation of the competence level. The competence level estimate is represented by the following

16 Chapter 3. API Reference

deslib Documentation, Release 0.2

equation:

𝛿𝑖,𝑗 =

∑︀
x𝑘∈𝜔𝑙

𝑃 (𝜔𝑙 | x𝑘, 𝑐𝑖)𝑊𝑘∑︀𝐾
𝑘=1 𝑃 (𝜔𝑙 | x𝑘, 𝑐𝑖)𝑊𝑘

where 𝛿𝑖,𝑗 represents the competence level of 𝑐𝑖 for the classification of query.

Parameters

query [array cf shape = [n_samples, n_features]] The query sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS method.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

3.2. API Reference 17

deslib Documentation, Release 0.2

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

A Priori

class deslib.dcs.a_priori.APriori(pool_classifiers, k=7, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, selection_method=’diff’,
diff_thresh=0.1, rng=<mtrand.RandomState object>)

A Priori dynamic classifier selection.

The A Priori method uses the probability of correct classification of a given base classifier 𝑐𝑖 for each neighbor
𝑥𝑘 for the competence level estimation. Base classifiers with a higher probability of correct classification have a
higher competence level. Moreover, the method also weights the influence of each neighbor 𝑥𝑘 according to its
Euclidean distance to the query sample. The closest neighbors have a higher influence on the competence level
estimate.

A single classifier is selected only if its competence level is significantly higher than that of the other base
classifiers in the pool (higher than a pre-defined threshold). Otherwise, all classifiers i the pool are combined
using the majority voting rule.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict” and “pre-
dict_proba”.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

18 Chapter 3. API Reference

deslib Documentation, Release 0.2

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

rng [numpy.random.RandomState instance] Random number generator to assure reproducible
results.

References

G. Giacinto and F. Roli, Methods for Dynamic Classifier Selection 10th Int. Conf. on Image Anal. and Proc.,
Venice, Italy (1999), 659-664.

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic classifier selection to dynamic
ensemble selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 for the classification of the query sample using the A
Priori rule:

The competence level is estimated based on the probability of correct classification of the base classifier
𝑐𝑖, considering all samples in the region of competence. This method also weights the influence of each
training sample according to its Euclidean distance to the query instance. The closest samples have a
higher influence in the computation of the competence level. The competence level estimate is represented
by the following equation:

𝛿𝑖,𝑗 =

∑︀𝐾
𝑘=1 𝑃 (𝜔𝑙 | x𝑘 ∈ 𝜔𝑙, 𝑐𝑖)𝑊𝑘∑︀𝐾

𝑘=1 𝑊𝑘

where 𝛿𝑖,𝑗 represents the competence level of 𝑐𝑖 for the classification of query.

Parameters

query [array cf shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

3.2. API Reference 19

deslib Documentation, Release 0.2

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS method.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

20 Chapter 3. API Reference

deslib Documentation, Release 0.2

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

Local Class Accuracy (LCA)

class deslib.dcs.lca.LCA(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None,
IH_rate=0.3, selection_method=’best’, diff_thresh=0.1,
rng=<mtrand.RandomState object>)

Local Class Accuracy (LCA).

Evaluates the competence level of each individual classifiers and select the most competent one to predict the
label of each test sample. The competence of each base classifier is calculated based on its local accuracy with
respect to some output class. Consider a classifier 𝑐𝑖 that assigns a test sample to class 𝑤𝑙. The competence level
of 𝑐𝑖 is estimated by the percentage of the local training samples assigned to class 𝑤𝑙 that it predicts the correct
class label.

The LCA method selects the base classifier presenting the highest competence level. In a case where more than
one base classifier achieves the same competence level, the one that was evaluated first is selected. The selection
methodology can be modified by changing the hyper-parameter selection_method.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support the method “predict”.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

3.2. API Reference 21

deslib Documentation, Release 0.2

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

rng [numpy.random.RandomState instance] Random number generator to assure reproducible
results.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of multiple classifiers using local
accuracy estimates.” IEEE transactions on pattern analysis and machine intelligence 19.4 (1997): 405-410.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 for the classification of the query sample using the local
class accuracy method.

In this algorithm the k-Nearest Neighbors of the test sample are estimated. Then, the local accuracy of the
base classifiers is estimated by its classification accuracy taking into account only the samples from the
class 𝑤𝑙 in this neighborhood. In this case, 𝑤𝑙 is the class predicted by the base classifier 𝑐𝑖, for the query
sample. The competence level estimate is represented by the following equation:

𝛿𝑖,𝑗 =

∑︀
x𝑘∈𝜔𝑙

𝑃 (𝜔𝑙 | x𝑘, 𝑐𝑖)∑︀𝐾
𝑘=1 𝑃 (𝜔𝑙 | x𝑘, 𝑐𝑖)

where 𝛿𝑖,𝑗 represents the competence level of 𝑐𝑖 for the classification of query.

Parameters

query [array cf shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] The competence level estimated
for each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

22 Chapter 3. API Reference

deslib Documentation, Release 0.2

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

3.2. API Reference 23

deslib Documentation, Release 0.2

Multiple Classifier Behaviour (MCB)

class deslib.dcs.mcb.MCB(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None,
IH_rate=0.3, similarity_threshold=0.7, selection_method=’diff’,
diff_thresh=0.1, rng=<mtrand.RandomState object>)

Multiple Classifier Behaviour (MCB).

The MCB method evaluates the competence level of each individual classifiers taking into account the local
accuracy of the base classifier in the region of competence. The region of competence is defined using the k-NN
and behavioral knowledge space (BKS) method. First the k-nearest neighbors of the test sample are computed.
Then, the set containing the k-nearest neighbors is filtered based on the similarity of the query sample and its
neighbors using the decision space (BKS representation).

A single classifier 𝑐𝑖 is selected only if its competence level is significantly higher than that of the other base
classifiers in the pool (higher than a pre-defined threshold). Otherwise, all classifiers in the pool are combined
using the majority voting rule. The selection methodology can be modified by changing the hyper-parameter
selection_method.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support the method “predict”.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

rng [numpy.random.RandomState instance] Random number generator to assure reproducible
results.

References

Giacinto, Giorgio, and Fabio Roli. “Dynamic classifier selection based on multiple classifier behaviour.” Pattern
Recognition 34.9 (2001): 1879-1881.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

Huang, Yea S., and Ching Y. Suen. “A method of combining multiple experts for the recognition of uncon-
strained handwritten numerals.” IEEE Transactions on Pattern Analysis and Machine Intelligence 17.1 (1995):
90-94.

24 Chapter 3. API Reference

deslib Documentation, Release 0.2

Huang, Yea S., and Ching Y. Suen. “The behavior-knowledge space method for combination of multiple classi-
fiers.” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1993.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 for the classification of the query sample using the
Multiple Classifier Behaviour criterion.

The region of competence in this method is estimated taking into account the feature space and the decision
space (using the behaviour knowledge space method [4]). First, the k-Nearest Neighbors of the query
sample are defined in the feature space to compose the region of competence. Then, the similarity in
the BKS space between the query and the instances in the region of competence are estimated using the
following equations:

𝑆(x̃𝑗 , x̃𝑘) =
1

𝑀

𝑀∑︁
𝑖=1

𝑇 (x𝑗 ,x𝑘)

𝑇 (x𝑗 ,x𝑘) =

{︂
1 if 𝑐𝑖(x𝑗) = 𝑐𝑖(x𝑘),
0 if 𝑐𝑖(x𝑗) ̸= 𝑐𝑖(x𝑘).

Where 𝑆(x̃𝑗 , x̃𝑘) denotes the similarity between two samples based on the behaviour knowledge space
method (BKS). Instances with similarity lower than a predefined threshold are removed from the region of
competence. The competence level of the base classifiers are estimated as their classification accuracy in
the final region of competence.

Parameters

query [array cf shape = [n_samples, n_features]] The test samples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

3.2. API Reference 25

deslib Documentation, Release 0.2

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

26 Chapter 3. API Reference

deslib Documentation, Release 0.2

Modified Local Accuracy (MLA)

class deslib.dcs.mla.MLA(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None,
IH_rate=0.3, selection_method=’best’, diff_thresh=0.1,
rng=<mtrand.RandomState object>)

Modified Local Accuracy (MLA).

Similar to the LCA technique. The only difference is that the output of each base classifier is weighted by the
distance between the test sample and each pattern in the region of competence for the estimation of the classifiers
competences. Only the classifier that achieved the highest competence level is select to predict the label of the
test sample x.

The MLA method selects the base classifier presenting the highest competence level. In a case where more than
one base classifier achieves the same competence level, the one that was evaluated first is selected. The selection
methodology can be modified by changing the hyper-parameter selection_method.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support the method “predict”.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

rng [numpy.random.RandomState instance] Random number generator to assure reproducible
results.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of multiple classifiers using local
accuracy estimates.” IEEE transactions on pattern analysis and machine intelligence 19.4 (1997): 405-410.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 for the classification of the query sample using the
Modified Local Accuracy (MLA) method.

3.2. API Reference 27

deslib Documentation, Release 0.2

The competence level of the base classifiers is estimated by its classification accuracy taking into account
only the samples belonging to a given class 𝑤𝑙.In this case, 𝑤𝑙 is the class predicted by the base classifier
𝑐𝑖, for the query sample. This method also weights the influence of each training sample according to its
Euclidean distance to the query instance. The closest samples have a higher influence in the computation
of the competence level. The competence level estimate is represented by the following equation:

𝛿𝑖,𝑗 =

𝐾∑︁
𝑘=1

𝑃 (𝜔𝑙 | x𝑘 ∈ 𝜔𝑙, 𝑐𝑖)𝑊𝑘

where 𝛿𝑖,𝑗 represents the competence level of 𝑐𝑖 for the classification of query.

Parameters

query [array cf shape = [n_samples, n_features]] The query sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

28 Chapter 3. API Reference

deslib Documentation, Release 0.2

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

Overall Local Accuracy (OLA)

class deslib.dcs.ola.OLA(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None,
IH_rate=0.3, selection_method=’best’, diff_thresh=0.1,
rng=<mtrand.RandomState object>)

Overall Classifier Accuracy (OLA).

The OLA method evaluates the competence level of each individual classifiers and select the most competent one
to predict the label of each test sample x. The competence of each base classifier is calculated as its classification
accuracy in the neighborhood of x (region of competence).

The LCA method selects the base classifier presenting the highest competence level. In a case where more than
one base classifier achieves the same competence level, the one that was evaluated first is selected. The selection
methodology can be modified by changing the hyper-parameter selection_method.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support the method “predict”.

3.2. API Reference 29

deslib Documentation, Release 0.2

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

rng [numpy.random.RandomState instance] Random number generator to assure reproducible
results.

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of multiple classifiers using local
accuracy estimates.” IEEE transactions on pattern analysis and machine intelligence 19.4 (1997): 405-410.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
estimate the competence level of each base classifier 𝑐𝑖 for the classification of the query sample.

The competences for each base classifier 𝑐𝑖 is estimated by its classification accuracy considering the k-
Nearest Neighbors (region of competence). The competence level estimate is represented by the following
equation:

𝛿𝑖,𝑗 =
1

𝐾

𝐾∑︁
𝑘=1

𝑃 (𝜔𝑙 | x𝑘 ∈ 𝜔𝑙, 𝑐𝑖)

where 𝛿𝑖,𝑗 represents the competence level of 𝑐𝑖 for the classification of query.

Parameters

query [array cf shape = [m_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

30 Chapter 3. API Reference

deslib Documentation, Release 0.2

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

3.2. API Reference 31

deslib Documentation, Release 0.2

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

Modified Rank

class deslib.dcs.rank.Rank(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None,
IH_rate=0.3, selection_method=’best’, diff_thresh=0.1,
rng=<mtrand.RandomState object>)

Modified Classifier Rank.

The modified classifier rank method evaluates the competence level of each individual classifiers and select
the most competent one to predict the label of each test sample 𝑥. The competence of each base classifier is
calculated as the number of correctly classified samples, starting from the closest neighbor of 𝑥. The classifier
with the highest number of correctly classified samples is considered the most competent.

The Rank method selects the base classifier presenting the highest competence level. In a case where more than
one base classifier achieves the same competence level, the one that was evaluated first is selected. The selection
methodology can be modified by changing the hyper-parameter selection_method.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support the method “predict”.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

selection_method [String (Default = “best”)] Determines which method is used to select the
base classifier after the competences are estimated.

diff_thresh [float (Default = 0.1)] Threshold to measure the difference between the competence
level of the base classifiers for the random and diff selection schemes. If the difference is
lower than the threshold, their performance are considered equivalent.

rng [numpy.random.RandomState instance] Random number generator to assure reproducible
results.

32 Chapter 3. API Reference

deslib Documentation, Release 0.2

References

Woods, Kevin, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of multiple classifiers using local
accuracy estimates.” IEEE transactions on pattern analysis and machine intelligence 19.4 (1997): 405-410.

M. Sabourin, A. Mitiche, D. Thomas, G. Nagy, Classifier combination for handprinted digit recognition, Inter-
national Conference on Document Analysis and Recognition (1993) 163–166.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
estimate the competence level of each base classifier 𝑐𝑖 for the classification of the query sample using
the modified ranking scheme. The rank of the base classifier is estimated by the number of consecutive
correctly classified samples in the defined region of competence.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for the test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

3.2. API Reference 33

deslib Documentation, Release 0.2

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the most competent classifier for the classification of the query sample given the competence level
estimates. Four selection schemes are available.

Best : The base classifier with the highest competence level is selected. In cases where more than one base
classifier achieves the same competence level, the one with the lowest index is selected. This method is
the standard for the LCA, OLA, MLA techniques.

Diff : Select the base classifier that is significantly better than the others in the pool (when the difference
between its competence level and the competence level of the other base classifiers is higher than a prede-
fined threshold). If no base classifier is significantly better, the base classifier is selected randomly among
the member with equivalent competence level.

Random : Selects a random base classifier among all base classifiers that achieved the same competence
level.

ALL : all base classifiers with the max competence level estimates are selected (note that in this case the
DCS technique becomes a DES technique).

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape [n_samples]] Indices of the selected base classifier for
each sample. If the selection_method is set to ‘all’, a boolean matrix is returned, containing
True for the selected base classifiers, otherwise false.

3.2.2 Dynamic Ensemble Selection (DES)

Dynamic ensemble selection strategies refer to techniques that select an ensemble of classifier rather than a single one.
All base classifiers that attain a minimum competence level are selected to compose the ensemble of classifiers. The
deslib.des provides a set of key dynamic ensemble selection algorithms (DES).

34 Chapter 3. API Reference

deslib Documentation, Release 0.2

DES base class

class deslib.des.base.DES(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None,
IH_rate=0.3, mode=’selection’, needs_proba=False)

Base class for a Dynamic Ensemble Selection (DES).

All dynamic ensemble selection techniques should inherit from this class.

Warning: This class should not be instantiated directly, use derived classes instead.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict” and “pre-
dict_proba”.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

needs_proba [Boolean (Default = False)] Determines whether the method always needs base
classifiers that estimate probabilities.

References

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

classify_with_ds(query, predictions, probabilities=None)
Predicts the label of the corresponding query sample.

If self.mode == “selection”, the selected ensemble is combined using the majority voting rule

If self.mode == “weighting”, all base classifiers are used for classification, however their influence in the
final decision are weighted according to their estimated competence level. The weighted majority voting
scheme is used to combine the decisions of the base classifiers.

If self.mode == “hybrid”, A hybrid Dynamic selection and weighting approach is used. First an ensemble
with the competent base classifiers are selected. Then, their decisions are aggregated using the weighted
majority voting rule according to its competence level estimates.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

3.2. API Reference 35

deslib Documentation, Release 0.2

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifier
for all test examples.

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
of each base classifier for all test examples. (For methods that always require probabilities
from the base classifiers).

Returns

predicted_label [array of shape = [n_samples]] Predicted class label for each test example.

estimate_competence(query, predictions)
Estimate the competence of each base classifier ci the classification of the query sample x. Returns an
array containing the level of competence estimated for each base classifier. The size of the vector is equals
to the size of the generated_pool of classifiers.

Parameters

query [array of shape = [n_samples, n_features]] The test examples

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

estimate_competence_from_proba(query, probabilities)
estimate the competence of each base classifier ci the classification of the query sample x, for methods
that require probabilities. Returns an array containing the level of competence estimated for each base
classifier. The size of the vector is equals to the size of the generated_pool of classifiers.

Parameters

query [array cf shape = [n_samples, n_features]] The query sample.

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
of each base classifier for all test examples.

Returns

competences [array = [n_samples, n_classifiers]] Competence level estimated for each base
classifier and test example.

predict_proba_with_ds(query, predictions, probabilities)
Predicts the posterior probabilities of the corresponding query sample.

If self.mode == “selection”, the selected ensemble is used to estimate the probabilities. The average rule
is used to give probabilities estimates.

If self.mode == “weighting”, all base classifiers are used for estimating the probabilities, however their
influence in the final decision are weighted according to their estimated competence level. A weighted
average method is used to give the probabilities estimates.

If self.mode == “Hybrid”, A hybrid Dynamic selection and weighting approach is used. First an ensemble
with the competent base classifiers are selected. Then, their decisions are aggregated using a weighted
average rule to give the probabilities estimates.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifier
for all test examples.

36 Chapter 3. API Reference

deslib Documentation, Release 0.2

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
of each base classifier for all test examples.

Returns

predicted_proba [array = [n_samples, n_classes]] The probability estimates for all test ex-
amples.

select(competences)
Select the most competent classifiers to compose an ensemble for the classification of the query sample X.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Estimated competence level of
each base classifier for each test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is select, False otherwise.

META-DES

class deslib.des.meta_des.METADES(pool_classifiers, meta_classifier=MultinomialNB(alpha=1.0,
class_prior=None, fit_prior=True), k=7, kp=5, Hc=1.0,
selection_threshold=0.5, mode=’selection’, DFP=False,
with_IH=False, safe_k=None, IH_rate=0.3)

Meta learning for dynamic ensemble selection (META-DES).

The META-DES framework is based on the assumption that the dynamic ensemble selection problem can be
considered as a meta-problem. This meta-problem uses different criteria regarding the behavior of a base clas-
sifier 𝑐𝑖, in order to decide whether it is competent enough to classify a given test sample.

The framework performs a meta-training stage, in which, the meta-features are extracted from each instance
belonging to the training and the dynamic selection dataset (DSEL). Then, the extracted meta-features are used
to train the meta-classifier 𝜆. The meta-classifier is trained to predict whether or not a base classifier 𝑐𝑖 is
competent enough to classify a given input sample.

When an unknown sample is presented to the system, the meta-features for each base classifier 𝑐𝑖 in relation to
the input sample are calculated and presented to the meta-classifier. The meta-classifier estimates the compe-
tence level of the base classifier 𝑐𝑖 for the classification of the query sample. Base classifiers with competence
level higher than a pre-defined threshold are selected. If no base classifier is selected, the whole pool is used for
classification.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict” and “pre-
dict_proba”.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

kp [int (Default = 5)] Number of output profiles used to estimate the competence of the base
classifiers.

Hc [float (Default = 1.0)] Sample selection threshold.

selection_threshold [float(Default = 0.5)] Threshold used to select the base classifier. Only the
base classifiers with competence level higher than the selection_threshold are selected to
compose the ensemble.

3.2. API Reference 37

deslib Documentation, Release 0.2

mode [String (Default = “selection”)] Determines the mode of META-des that is used (selec-
tion, weighting or hybrid).

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

References

Cruz, R.M., Sabourin, R., Cavalcanti, G.D. and Ren, T.I., 2015. META-DES: A dynamic ensemble selection
framework using meta-learning. Pattern Recognition, 48(5), pp.1925-1935.

Cruz, R.M., Sabourin, R. and Cavalcanti, G.D., 2015, July. META-des. H: a dynamic ensemble selection tech-
nique using meta-learning and a dynamic weighting approach. In Neural Networks (IJCNN), 2015 International
Joint Conference on (pp. 1-8).

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence_from_proba(query, probabilities)
Estimate the competence of each base classifier 𝑐𝑖 the classification of the query sample. This method
received an array with the pre-calculated probability estimates for each query.

First, the meta-features of each base classifier 𝑐𝑖 for the classification of the query sample are estimated.
These meta-features are passed down to the meta-classifier 𝜆 for the competence level estimation.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
obtained by each each base classifier for each query sample.

Returns

competences [array of shape = [n_samples, n_classifiers]] The competence level estimated
for each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS method.

This method also extracts the meta-features and trains the meta-classifier 𝜆 if the meta-classifier was not
yet trained.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

38 Chapter 3. API Reference

deslib Documentation, Release 0.2

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Selects the base classifiers that obtained a competence level higher than the predefined threshold defined
in self.selection_threshold.

Parameters

competences [array of shape = [n_samples, n_classifiers]] The competence level estimated
for each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is select, False otherwise.

DES Clustering

class deslib.des.des_clustering.DESClustering(pool_classifiers, k=5, pct_accuracy=0.5,
pct_diversity=0.33, more_diverse=True,
metric=’DF’, rng=<mtrand.RandomState
object>)

Dynamic ensemble selection-Clustering (DES-Clustering).

This method selects an ensemble of classifiers taking into account the accuracy and diversity of the base classi-
fiers. The K-means algorithm is used to define the region of competence. For each cluster, the N most accurate

3.2. API Reference 39

deslib Documentation, Release 0.2

classifiers are first selected. Then, the J more diverse classifiers from the N most accurate classifiers are selected
to compose the ensemble.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support the method “predict”.

k [int (Default = 5)] Number of neighbors used to estimate the competence of the base classi-
fiers.

pct_accuracy [float (Default = 0.5)] Percentage of base classifiers selected based on accuracy

pct_diversity [float (Default = 0.33)] Percentage of base classifiers selected based n diversity

more_diverse [Boolean (Default = True)] Whether we select the most or the least diverse clas-
sifiers to add to the pre-selected ensemble

metric [String (Default = ‘df’)] Diversity diversity_func used to estimate the diversity of the
base classifiers. Can be either the double fault (df), Q-statistics (Q), or error correlation
(corr)

rng [numpy.random.RandomState instance] Random number generator to assure reproducible
results.

References

Soares, R. G., Santana, A., Canuto, A. M., & de Souto, M. C. P. “Using accuracy and more_diverse to select
classifiers to build ensembles.” International Joint Conference on Neural Networks (IJCNN)., 2006.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
Get the competence estimates of each base classifier 𝑐𝑖 for the classification of the query sample.

In this case, the competences were already pre-calculated for each cluster. So this method computes the
nearest cluster and get the pre-calculated competences of the base classifiers for the corresponding cluster.

Parameters

query [array of shape = [n_samples, n_features]] The query sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array = [n_samples, n_classifiers]] The competence level estimated for each
base classifier.

fit(X, y)
Train the DS model by setting the Clustering algorithm and pre-processing the information required to
apply the DS methods.

First the data is divided into K clusters. Then, for each cluster, the N most accurate classifiers are first
selected. Then, the J more diverse classifiers from the N most accurate classifiers are selected to compose
the ensemble of the corresponding cluster. An ensemble of classifiers is assigned to each of the K clusters.

Parameters

40 Chapter 3. API Reference

deslib Documentation, Release 0.2

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(query)
Select an ensemble with the most accurate and most diverse classifier for the classification of the query.

The ensemble for each cluster was already pre-calculated in the fit method. So, this method calculates the
closest cluster, and returns the ensemble associated to this cluster.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

Returns

selected_classifiers [array of shape = [n_samples, self.k]] Indices of the selected base clas-
sifier for each test example.

3.2. API Reference 41

deslib Documentation, Release 0.2

Dynamic Ensemble Selection performance (DES-P)

class deslib.des.des_p.DESP(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None,
IH_rate=0.3, mode=’selection’)

Dynamic ensemble selection-Performance(DES-P).

This method selects all base classifiers that achieve a classification performance, in the region of competence,
that is higher than the random classifier (RC). The performance of the random classifier is defined by RC = 1/L,
where L is the number of classes in the problem. If no base classifier is selected, the whole pool is used for
classification.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support the method “predict”.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

References

Woloszynski, Tomasz, et al. “A measure of competence based on random classification for dynamic ensemble
selection.” Information Fusion 13.3 (2012): 207-213.

Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of classifier competence for dynamic
ensemble selection.” Pattern Recognition 44.10 (2011): 2656-2668.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 for the classification of the query sample base on its
local performance.

𝛿𝑖,𝑗 = 𝑃 (𝑐𝑖 | 𝜃𝑗)−
1

𝐿

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

42 Chapter 3. API Reference

deslib Documentation, Release 0.2

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Selects all base classifiers that obtained a local classification accuracy higher than the Random Classifier.
The performance of the random classifier is denoted 1/L, where L is the number of classes in the problem.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

3.2. API Reference 43

deslib Documentation, Release 0.2

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is select, False otherwise.

DES-KNN

class deslib.des.des_knn.DESKNN(pool_classifiers, k=7, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, pct_accuracy=0.5,
pct_diversity=0.3, more_diverse=True, metric=’DF’)

Dynamic ensemble Selection KNN (DES-KNN).

This method selects an ensemble of classifiers taking into account the accuracy and diversity of the base clas-
sifiers. The k-NN algorithm is used to define the region of competence. The N most accurate classifiers in the
region of competence are first selected. Then, the J more diverse classifiers from the N most accurate classifiers
are selected to compose the ensemble.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support the method “predict”.

k [int (Default = 5)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

pct_accuracy [float (Default = 0.5)] Percentage of base classifiers selected based on accuracy

pct_diversity [float (Default = 0.3)] Percentage of base classifiers selected based n diversity

more_diverse [Boolean (Default = True)] Whether we select the most or the least diverse clas-
sifiers to add to the pre-selected ensemble

metric [String (Default = ‘df’)] Diversity diversity_func used to estimate the diversity of the
base classifiers. Can be either the double fault (df), Q-statistics (Q), or error correlation
(corr)

References

Soares, R. G., Santana, A., Canuto, A. M., & de Souto, M. C. P. “Using accuracy and more_diverse to select
classifiers to build ensembles.” International Joint Conference on Neural Networks (IJCNN)., 2006.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
estimate the competence level of each base classifier 𝑐𝑖 for the classification of the query sample.

44 Chapter 3. API Reference

deslib Documentation, Release 0.2

The competence is estimated using the accuracy and diversity criteria. First the classification accuracy of
the base classifiers in the region of competence is estimated. Then the diversity of the base classifiers in
the region of competence is estimated.

The method returns two arrays: One containing the accuracy and the other the diversity of each base
classifier.

Parameters

query [array cf shape = [n_samples, n_features]] The query sample.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

accuracy [array of shape = [n_samples, n_classifiers}] Local Accuracy estimates (compe-
tences) of the base classifiers for all query samples.

diversity [array of shape = [n_samples, n_classifiers}] Average pairwise diversity of each
base classifiers for all test examples.

Notes

This technique uses both the accuracy and diversity information to perform dynamic selection. For this
reason the function returns a dictionary containing these two values instead of a single ndarray containing
the competence level estimates for each base classifier.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

3.2. API Reference 45

deslib Documentation, Release 0.2

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(accuracy, diversity)
Select an ensemble containing the N most accurate ant the J most diverse classifiers for the classification
of the query sample.

Parameters

accuracy [array of shape = [n_samples, n_classifiers]] Local Accuracy estimates (compe-
tence) of each base classifiers for all query samples.

diversity [array of shape = [n_samples, n_classifiers]] Average pairwise diversity of each
base classifiers for all test examples.

Returns

selected_classifiers [array of shape = [n_samples, self.J]] Matrix containing the indices of
the J selected base classifier for each test example.

k-Nearest Output Profiles (KNOP)

class deslib.des.knop.KNOP(pool_classifiers, k=7, DFP=False, with_IH=False, safe_k=None,
IH_rate=0.3)

k-Nearest Output Profiles (KNOP).

This method selects all classifiers that correctly classified at least one sample belonging to the region of com-
petence of the query sample. In this case, the region of competence is estimated using the decisions of the base
classifier (output profiles). Thus, the similarity between the query and the validation samples are measured in
the decision space rather than the feature space. Each selected classifier has a number of votes equals to the
number of samples in the region of competence that it predicts the correct label. The votes obtained by all base
classifiers are aggregated to obtain the final ensemble decision.

Parameters

pool_classifiers [type, the generated_pool of classifiers trained for the corresponding]

classification problem.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

46 Chapter 3. API Reference

deslib Documentation, Release 0.2

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

References

Cavalin, Paulo R., Robert Sabourin, and Ching Y. Suen. “LoGID: An adaptive framework combining local and
global incremental learning for dynamic selection of ensembles of HMMs.” Pattern Recognition 45.9 (2012):
3544-3556.

Cavalin, Paulo R., Robert Sabourin, and Ching Y. Suen. “Dynamic selection approaches for multiple classifier
systems.” Neural Computing and Applications 22.3-4 (2013): 673-688.

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic classifier selection to dynamic
ensemble selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence_from_proba(query, probabilities)
The competence of the base classifiers is simply estimated as the number of samples in the region of
competence that it correctly classified. This method received an array with the pre-calculated probability
estimates for each query.

This information is later used to determine the number of votes obtained for each base classifier.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

probabilities [array of shape = [n_samples, n_classifiers, n_classes]] Probabilities estimates
obtained by each each base classifier for each query sample.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Train the DS model by setting the KNN algorithm and pre-process the information required to apply the
DS methods. In this case, the scores of the base classifiers for the dynamic selection dataset (DSEL) are
pre-calculated to transform each sample in DSEL into an output profile.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

3.2. API Reference 47

deslib Documentation, Release 0.2

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the base classifiers for the classification of the query sample.

Each base classifier can be selected more than once. The number of times a base classifier is selected
(votes) is equals to the number of samples it correctly classified in the region of competence.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is select, False otherwise.

k-Nearest Oracle-Eliminate (KNORA-E)

class deslib.des.knora_e.KNORAE(pool_classifiers, k=7, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3)

k-Nearest Oracles Eliminate (KNORA-E).

This method searches for a local Oracle, which is a base classifier that correctly classify all samples belonging
to the region of competence of the test sample. All classifiers with a perfect performance in the region of
competence are selected (local Oracles). In the case that no classifiers achieve a perfect accuracy, the size of the
region of competence is reduced (by removing the farthest neighbor) and the performance of the classifiers are
re-evaluated. The outputs of the selected ensemble of classifiers is combined using the majority voting scheme.
If no base classifier is selected, the whole pool is used for classification.

Parameters

48 Chapter 3. API Reference

deslib Documentation, Release 0.2

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support the method “predict”.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

References

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic classifier selection to dynamic
ensemble selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
Estimate the competence of the base classifiers. In the case of the KNORA-E technique, the classifiers
are only considered competent when they achieve a 100% accuracy in the region of competence. For each
base, we estimate the maximum size of the region of competence that it is a local oracle. The competence
level estimate is then the maximum size of the region of competence that the corresponding base classifier
is considered a local Oracle.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

3.2. API Reference 49

deslib Documentation, Release 0.2

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Selects all base classifiers that obtained a local accuracy of 100% in the region of competence (i.e., local
oracle). In the case that no base classifiers obtain 100% accuracy, the size of the region of competence is
reduced and the search for the local oracle is restarted.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is select, False otherwise.

Notes

Instead of re-applying the method several times (reducing the size of the region of competence), we com-
pute the number of consecutive correct classification of each base classifier starting from the closest neigh-
bor to the more distant in the estimate_competence function. The number of consecutive correct classi-
fication represents the size of the region of competence in which the corresponding base classifier is an
Local Oracle. Then, we select all base classifiers with the maximum value for the number of consecutive
correct classification. This speed up the selection process.

50 Chapter 3. API Reference

deslib Documentation, Release 0.2

k-Nearest Oracle Union (KNORA-U)

class deslib.des.knora_u.KNORAU(pool_classifiers, k=7, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3)

k-Nearest Oracles Union (KNORA-U).

This method selects all classifiers that correctly classified at least one sample belonging to the region of compe-
tence of the query sample. Each selected classifier has a number of votes equals to the number of samples in the
region of competence that it predicts the correct label. The votes obtained by all base classifiers are aggregated
to obtain the final ensemble decision.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support the method “predict”.

k [int (Default = 7)] Number of neighbors used to estimate the competence of the base classi-
fiers.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

References

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic classifier selection to dynamic
ensemble selection.” Pattern Recognition 41.5 (2008): 1718-1731.

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
The competence of the base classifiers is simply estimated as the number of samples in the region of
competence that it correctly classified.

This information is later used to determine the number of votes obtained for each base classifier.

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

3.2. API Reference 51

deslib Documentation, Release 0.2

fit(X, y)
Prepare the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods

Parameters

X [array of shape = [n_samples, n_features]] The input data.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

predict(X)
Predict the class label for each sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class label for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for sample in X.

Parameters

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Probabilities estimates for each
sample in X.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like, shape = (n_samples, n_features)] Test samples.

y [array-like, shape = (n_samples) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like, shape = [n_samples], optional] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

select(competences)
Select the base classifiers for the classification of the query sample.

Each base classifier can be selected more than once. The number of times a base classifier is selected
(votes) is equals to the number of samples it correctly classified in the region of competence.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

52 Chapter 3. API Reference

deslib Documentation, Release 0.2

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is select, False otherwise.

Probabilistic

class deslib.des.probabilistic.Probabilistic(pool_classifiers, k=None, DFP=False,
with_IH=False, safe_k=None,
IH_rate=0.3, mode=’selection’, selec-
tion_threshold=None)

Base class for a DS method based on the potential function model. ALL DS methods based on the Potential
function should inherit from this class

Warning: This class should not be used directly. Use derived classes instead.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict” and “pre-
dict_proba”.

k [int (Default = None)] Number of neighbors used to estimate the competence of the base
classifiers. If k = None, the whole dynamic selection dataset is used, and the influence of
each sample is based on its distance to the query.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

References

T.Woloszynski, M. Kurzynski, A probabilistic model of classifier competence for dynamic ensemble selection,
Pattern Recognition 44 (2011) 2656–2668.

12. Rastrigin, R. Erenstein, Method of collective recognition, Vol. 595, 1981, (in Russian).

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

estimate_competence(query, predictions=None)
estimate the competence of each base classifier 𝑐𝑖 using the source of competence 𝐶𝑠𝑟𝑐 and the potential
function model. The source of competence 𝐶𝑠𝑟𝑐 for all data points in DSEL is already pre-computed in
the fit() steps.

𝛿𝑖,𝑗 =

∑︀𝑁
𝑘=1 𝐶𝑠𝑟𝑐 𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)

2)

𝑒𝑥𝑝(−𝑑(x𝑘,x𝑞)2)

3.2. API Reference 53

deslib Documentation, Release 0.2

Parameters

query [array of shape = [n_samples, n_features]] The test examples.

predictions [array of shape = [n_samples, n_classifiers]] Predictions of the base classifiers
for all test examples.

Returns

——-

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

fit(X, y)
Train the DS model by setting the KNN algorithm and pre-processing the information required to apply
the DS methods. In the case of probabilistic techniques, the source of competence (C_src) is calculated
for each data point in DSEL in order to speed up the process during the testing phases.

C_src is estimated with the source_competence() function that is overridden by each DS method based on
this paradigm

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

Returns

self

static potential_func(dist)
Gaussian potential function to decrease the influence of the source of competence as the distance between
x𝑘 and the query x𝑞 increases. The function is computed using the following equation:

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑒𝑥𝑝(−𝑑𝑖𝑠𝑡(x𝑘,x𝑞)
2)

where dist represents the Euclidean distance between x𝑘 and x𝑞

Parameters

dist [array of shape = [self.n_samples]] distance between the corresponding sample to the
query

Returns

The result of the potential function for each value in (dist)

select(competences)
Selects the base classifiers that obtained a competence level higher than the predefined threshold. In this
case, the threshold indicates the competence of the random classifier.

Parameters

competences [array of shape = [n_samples, n_classifiers]] Competence level estimated for
each base classifier and test example.

Returns

selected_classifiers [array of shape = [n_samples, n_classifiers]] Boolean matrix containing
True if the base classifier is select, False otherwise.

source_competence()
Method used to estimate the source of competence at each data point.

Each DS technique based on this paradigm should define its computation of C_src

54 Chapter 3. API Reference

deslib Documentation, Release 0.2

Returns

C_src [array of shape = [n_samples, n_classifiers]] The competence source for each base
classifier at each data point.

Randomized Reference Classifier (RRC)

class deslib.des.probabilistic.RRC(pool_classifiers, k=None, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, mode=’selection’)

DES technique based on the Randomized Reference Classifier method (DES-RRC).

Parameters

pool_classifiers [type, the generated_pool of classifiers trained for the corresponding]

classification problem.

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict” and “pre-
dict_proba”.

k [int (Default = None)] Number of neighbors used to estimate the competence of the base
classifiers. If k = None, the whole dynamic selection dataset is used, and the influence of
each sample is based on its distance to the query.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

References

Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of classifier competence for dynamic
ensemble selection.” Pattern Recognition 44.10 (2011): 2656-2668.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

source_competence()
Calculates the source of competence using the randomized reference classifier (RRC) method.

The source of competence C_src at the validation point x𝑘 calculated using the probabilistic model based
on the supports obtained by the base classifier and randomized reference classifier (RRC) model. The
probabilistic modeling of the classifier competence is calculated using the ccprmod function.

Returns

C_src [array of shape = [n_samples, n_classifiers]] The competence source for each base
classifier at each data point.

3.2. API Reference 55

deslib Documentation, Release 0.2

DES-Kullback Leibler

class deslib.des.probabilistic.DESKL(pool_classifiers, k=None, DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3, mode=’selection’)

Dynamic Ensemble Selection-Kullback-Leibler divergence (DES-KL).

This method estimates the competence of the classifier from the information theory perspective. The competence
of the base classifiers is calculated as the KL divergence between the vector of class supports produced by the
base classifier and the outputs of a random classifier (RC). RC = 1/L, L being the number of classes in the
problem. Classifiers with a competence higher than the competence of the random classifier is selected.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict” and “pre-
dict_proba”.

k [int (Default = None)] Number of neighbors used to estimate the competence of the base
classifiers. If k = None, the whole dynamic selection dataset is used, and the influence of
each sample is based on its distance to the query.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

References

Woloszynski, Tomasz, et al. “A measure of competence based on random classification for dynamic ensemble
selection.” Information Fusion 13.3 (2012): 207-213.

Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of classifier competence for dynamic
ensemble selection.” Pattern Recognition 44.10 (2011): 2656-2668.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

source_competence()
Calculates the source of competence using the KL divergence method.

The source of competence C_src at the validation point x𝑘 is calculated by the KL divergence between
the vector of class supports produced by the base classifier and the outputs of a random classifier (RC) RC
= 1/L, L being the number of classes in the problem. The value of C_src is negative if the base classifier
misclassified the instance x𝑘.

Returns

C_src [array of shape = [n_samples, n_classifiers]] The competence source for each base
classifier at each data point.

56 Chapter 3. API Reference

deslib Documentation, Release 0.2

DES-Minimum Difference

class deslib.des.probabilistic.MinimumDifference(pool_classifiers, k=None,
DFP=False, with_IH=False,
safe_k=None, IH_rate=0.3,
mode=’selection’)

Computes the competence level of the classifiers based on the difference between the support obtained by each
class. The competence level at a data point x𝑘 is equal to the minimum difference between the support obtained
to the correct class and the support obtained for different classes.

The influence of each sample xk is defined according to a Gaussian function model[2]. Samples that are closer
to the query have a higher influence in the competence estimation.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict” and “pre-
dict_proba”.

k [int (Default = None)] Number of neighbors used to estimate the competence of the base
classifiers. If k = None, the whole dynamic selection dataset is used, and the influence of
each sample is based on its distance to the query.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

References

[1] B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design
of multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.

[2] Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of classifier competence for dynamic
ensemble selection.” Pattern Recognition 44.10 (2011): 2656-2668.

source_competence()
Calculates the source of competence using the Minimum Difference method.

The source of competence C_src at the validation point x𝑘 calculated by the Minimum Difference between
the supports obtained to the correct class and the support obtained by the other classes

Returns

C_src [array of shape = [n_samples, n_classifiers]] The competence source for each base
classifier at each data point.

3.2. API Reference 57

deslib Documentation, Release 0.2

DES-Exponential

class deslib.des.probabilistic.Exponential(pool_classifiers, k=None, DFP=False,
safe_k=None, with_IH=False, IH_rate=0.3,
mode=’selection’)

The source of competence C_src at the validation point x𝑘 is a product of two factors: The absolute value of the
competence and the sign. The value of the source competence is inverse proportional to the normalized entropy
of its supports vector. The sign of competence is simply determined by correct/incorrect classification of x𝑘 [1].

The influence of each sample x𝑘 is defined according to a Gaussian function model[2]. Samples that are closer
to the query have a higher influence in the competence estimation.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict” and “pre-
dict_proba”.

k [int (Default = None)] Number of neighbors used to estimate the competence of the base
classifiers. If k = None, the whole dynamic selection dataset is used, and the influence of
each sample is based on its distance to the query.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

References

[1] B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design
of multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.

[2] Woloszynski, Tomasz, and Marek Kurzynski. “A probabilistic model of classifier competence for dynamic
ensemble selection.” Pattern Recognition 44.10 (2011): 2656-2668.

source_competence()
The source of competence C_src at the validation point x𝑘 is a product of two factors: The absolute
value of the competence and the sign. The value of the source competence is inverse proportional to the
normalized entropy of its supports vector.The sign of competence is simply determined by correct/incorrect
classification of the instance x𝑘.

Returns

C_src [array of shape = [n_samples, n_classifiers]] The competence source for each base
classifier at each data point.

58 Chapter 3. API Reference

deslib Documentation, Release 0.2

DES-Logarithmic

class deslib.des.probabilistic.Logarithmic(pool_classifiers, k=None, DFP=False,
with_IH=False, safe_k=None, IH_rate=0.3,
mode=’selection’)

This method estimates the competence of the classifier based on the logarithmic difference between the supports
obtained by the base classifier.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict” and “pre-
dict_proba”.

k [int (Default = None)] Number of neighbors used to estimate the competence of the base
classifiers. If k = None, the whole dynamic selection dataset is used, and the influence of
each sample is based on its distance to the query.

DFP [Boolean (Default = False)] Determines if the dynamic frienemy pruning is applied.

with_IH [Boolean (Default = False)] Whether the hardness level of the region of competence
is used to decide between using the DS algorithm or the KNN for classification of a given
query sample.

safe_k [int (default = None)] The size of the indecision region.

IH_rate [float (default = 0.3)] Hardness threshold. If the hardness level of the competence
region is lower than the IH_rate the KNN classifier is used. Otherwise, the DS algorithm is
used for classification.

mode [String (Default = “selection”)] Whether the technique will perform dynamic selection,
dynamic weighting or an hybrid approach for classification.

References

B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design of
multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.

T.Woloszynski, M. Kurzynski, A measure of competence based on randomized reference classifier for dynamic
ensemble selection, in: International Conference on Pattern Recognition (ICPR), 2010, pp. 4194–4197.

source_competence()
The source of competence C_src at the validation point x𝑘 is calculated by logarithm function in the
support obtained by the base classifier.

Returns

C_src [array of shape = [n_samples, n_classifiers]] The competence source for each base
classifier at each data point.

3.2.3 Static ensembles

This module provides the implementation of static ensemble techniques that are usually used as a baseline for the
comparison of DS methods: Single Best (SB), Static Selection (SS) and Oracle. The deslib.static provides a
set of static ensemble methods which are often used as a baseline to compare the performance of dynamic selection
algorithms.

3.2. API Reference 59

deslib Documentation, Release 0.2

Oracle

class deslib.static.oracle.Oracle(pool_classifiers)
Abstract method that always selects the base classifier that predicts the correct label if such classifier exists.
This method is often used to measure the upper-limit performance that can be achieved by a dynamic classifier
selection technique. It is used as a benchmark by several dynamic selection algorithms

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict”.

References

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2004.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

predict(X, y)
Prepare the labels using the Oracle model.

Parameters

X [array of shape = [n_samples, n_features]] The data to be classified

y [array of shape = [n_samples]] Class labels of each sample in X.

Returns

predicted_labels [array of shape = [n_samples]] Predicted class for each sample in X.

score(X, y)
Prepare the labels using the Oracle model.

Parameters

X [array of shape = [n_samples, n_features]] The data to be classified

y [array of shape = [n_samples]] Class labels of each sample in X.

Returns

accuracy [float] Classification accuracy of the Oracle model.

Single Best

class deslib.static.single_best.SingleBest(pool_classifiers)
Classification method that selects the classifier in the pool with highest score to be used for classification.
Usually, the performance of the single best classifier is estimated based on the validation data.

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict”.

60 Chapter 3. API Reference

deslib Documentation, Release 0.2

References

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2004.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

fit(X, y)
Fit the model by selecting the base classifier with the highest accuracy in the dataset. The single best
classifier is kept in self.best_clf and its index is kept in self.best_clf_index.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

predict(X)
Predict the label of each sample in X and returns the predicted label.

Parameters

X [array of shape = [n_samples, n_features]] The data to be classified

Returns

predicted_labels [array of shape = [n_samples]] Predicted class for each sample in X.

predict_proba(X)
Estimates the posterior probabilities for each class for each sample in X. The returned probability estimates
for all classes are ordered by the label of classes.

Parameters

X [array of shape = [n_samples, n_features]] The data to be classified

Returns

predicted_proba [array of shape = [n_samples, n_classes]] Posterior probabilities estimates
for each class.

Static Selection

class deslib.static.static_selection.StaticSelection(pool_classifiers,
pct_classifiers=0.5)

Ensemble model that selects N classifiers with the best performance in a dataset

Parameters

pool_classifiers [list of classifiers] The generated_pool of classifiers trained for the correspond-
ing classification problem. The classifiers should support methods “predict”.

pct_classifiers [float (Default = 0.5)] percentage of base classifier that should be selected by
the selection scheme.

References

Britto, Alceu S., Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of classifiers—a comprehensive
review.” Pattern Recognition 47.11 (2014): 3665-3680.

3.2. API Reference 61

deslib Documentation, Release 0.2

Kuncheva, Ludmila I. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, 2004.

R. M. O. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspec-
tives,” Information Fusion, vol. 41, pp. 195 – 216, 2018.

fit(X, y)
Fit the static selection model by select an ensemble of classifier containing the base classifiers with highest
accuracy in the given dataset.

Parameters

X [array of shape = [n_samples, n_features]] Data used to fit the model.

y [array of shape = [n_samples]] class labels of each example in X.

predict(X)
Predict the label of each sample in X and returns the predicted label.

Parameters

X [array of shape = [n_samples, n_features]] The data to be classified

Returns

predicted_labels [array of shape = [n_samples]] Predicted class for each sample in X.

3.2.4 Utils

Utility functions for ensemble methods such as diversity and aggregation methods. The deslib.util This module
includes various utilities. They are divided into four parts:

deslib.util.aggregation - Implementation of aggregation functions such as majority voting and averaging. Such func-
tions can be applied to any list of classifiers.

deslib.util.diversity - Implementation of different measures of diversity between classifiers.

deslib.util.prob_functions - Functions to estimate the competence of a base classifier based on the probability estimates.

deslib.util.instance_hardness - Functions to measure the hardness level of a given instance

Diversity

This file contains the implementation of key diversity measures found in the ensemble literature:

• Double Fault

• Negative Double fault

• Q-statistics

• Ratio of errors

The implementation are made according to the specifications from the book “Combining Pattern Classifiers”.

deslib.util.diversity.Q_statistic(y, y_pred1, y_pred2)
Calculates the Q-statistics diversity measure between a pair of classifiers. The Q value is in a range [-1, 1].
Classifiers that tend to classify the same object correctly will have positive values of Q, and Q = 0 for two
independent classifiers.

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

62 Chapter 3. API Reference

deslib Documentation, Release 0.2

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

Q [The q-statistic measure between two classifiers]

deslib.util.diversity.agreement_measure(y, y_pred1, y_pred2)
Calculates the agreement measure between a pair of classifiers. This measure is calculated by the frequency that
both classifiers either obtained the correct or incorrect prediction for any given sample

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

agreement [The frequency at which both classifiers agrees]

deslib.util.diversity.compute_pairwise_diversity(targets, prediction_matrix, diver-
sity_func)

Computes the pairwise diversity matrix.

Parameters

targets [array of shape = [n_samples]:] Class labels of each sample in X.

prediction_matrix [array of shape = [n_samples, n_classifiers]:] Predicted class labels for each
classifier in the pool

diversity_func [Function used to estimate the pairwise diversity]

Returns

diversity [array of shape = [n_classifiers]] The average pairwise diversity matrix calculated for
the pool of classifiers

deslib.util.diversity.correlation_coefficient(y, y_pred1, y_pred2)

Calculates the correlation between two classifiers using oracle outputs. coefficient is a value in a range [-1,
1].

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

rho [The correlation coefficient measured between two classifiers]

3.2. API Reference 63

deslib Documentation, Release 0.2

deslib.util.diversity.disagreement_measure(y, y_pred1, y_pred2)
Calculates the disagreement measure between a pair of classifiers. This measure is calculated by the frequency
that only one classifier makes the correct prediction.

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

disagreement [The frequency at which both classifiers disagrees]

deslib.util.diversity.double_fault(y, y_pred1, y_pred2)
Calculates the double fault (df) measure. This measure represents the probability that both classifiers makes the
wrong prediction. A lower value of df means the base classifiers are less likely to make the same error. This
measure must be minimized to increase diversity.

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

df [The double fault measure between two classifiers]

References

Giacinto, Giorgio, and Fabio Roli. “Design of effective neural network ensembles for image classification
purposes.” Image and Vision Computing 19.9 (2001): 699-707.

deslib.util.diversity.negative_double_fault(y, y_pred1, y_pred2)
The negative of the double fault measure. This measure should be maximized for a higher diversity.

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

df [The negative double fault measure between two classifiers]

64 Chapter 3. API Reference

deslib Documentation, Release 0.2

References

Giacinto, Giorgio, and Fabio Roli. “Design of effective neural network ensembles for image classification
purposes.” Image and Vision Computing 19.9 (2001): 699-707.

deslib.util.diversity.ratio_errors(y, y_pred1, y_pred2)
Calculates Ratio of errors diversity measure between a pair of classifiers. A higher value means that the base
classifiers are less likely to make the same errors. The ratio must be maximized for a higher diversity.

Parameters

y [array of shape = [n_samples]:] class labels of each sample.

y_pred1 [array of shape = [n_samples]:] predicted class labels by the classifier 1 for each
sample.

y_pred2 [array of shape = [n_samples]:] predicted class labels by the classifier 2 for each
sample.

Returns

ratio [The q-statistic measure between two classifiers]

References

Aksela, Matti. “Comparison of classifier selection methods for improving committee performance.” Multiple
Classifier Systems (2003): 159-159.

Aggregation

This file contains the implementation of different aggregation functions to combine the outputs of the base classifiers
to give the final decision.

deslib.util.aggregation.average_combiner(classifier_ensemble, X)
Ensemble combination using the Average rule.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.average_rule(predictions)
Apply the average fusion rule to the predicted vector of class supports (predictions).

Parameters

predictions [np array of shape = [n_samples, n_classifiers, n_classes]] vector of class supports
predicted by each base classifier for sample

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

3.2. API Reference 65

deslib Documentation, Release 0.2

deslib.util.aggregation.majority_voting(classifier_ensemble, X)
Apply the majority voting rule to predict the label of each sample in X.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.majority_voting_rule(votes)
Applies the majority voting rule to the estimated votes.

Parameters

votes [array of shape = [n_samples, n_classifiers],] The votes obtained by each classifier for
each sample.

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.maximum_combiner(classifier_ensemble, X)
Ensemble combination using the Maximum rule.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.maximum_rule(predictions)
Apply the product fusion rule to the predicted vector of class supports (predictions).

Parameters

predictions [np array of shape = [n_samples, n_classifiers, n_classes]] vector of class supports
predicted by each base classifier for sample

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.median_combiner(classifier_ensemble, X)
Ensemble combination using the Median rule.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

66 Chapter 3. API Reference

deslib Documentation, Release 0.2

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.median_rule(predictions)
Apply the product fusion rule to the predicted vector of class supports (predictions).

Parameters

predictions [np array of shape = [n_samples, n_classifiers, n_classes]] vector of class supports
predicted by each base classifier for sample

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.minimum_combiner(classifier_ensemble, X)
Ensemble combination using the Minimum rule.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.minimum_rule(predictions)
Apply the product fusion rule to the predicted vector of class supports (predictions).

Parameters

predictions [np array of shape = [n_samples, n_classifiers, n_classes]] vector of class supports
predicted by each base classifier for sample

Returns

list_proba [array of shape = [n_classifiers, n_samples, n_classes]] probabilities predicted by
each base classifier in the ensemble for all samples in X.

deslib.util.aggregation.predict_proba_ensemble(classifier_ensemble, X)
Estimates the posterior probabilities of the give ensemble for each sample in X.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] posterior probabilities estimates for
each samples in X.

deslib.util.aggregation.predict_proba_ensemble_weighted(classifier_ensemble,
weights, X)

Estimates the posterior probabilities for each sample in X.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] containing the ensemble of classifiers used
to estimate the probabilities.

3.2. API Reference 67

deslib Documentation, Release 0.2

weights [array of shape = [n_samples, n_classifiers]] Weights associated to each base classifier
for each sample

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_proba [array of shape = [n_samples, n_classes]] posterior probabilities estimates for
each samples in X.

deslib.util.aggregation.product_combiner(classifier_ensemble, X)
Ensemble combination using the Product rule.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] containing the ensemble of classifiers used
in the aggregation scheme.

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_label [array of shape = [n_classifiers, n_samples, n_classes]] probabilities predicted
by each base classifier in the ensemble for all samples in X.

deslib.util.aggregation.product_rule(predictions)
Apply the product fusion rule to the predicted vector of class supports (predictions).

Parameters

predictions [array of shape = [n_samples, n_classifiers, n_classes]] vector of class supports
predicted by each base classifier for sample

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.weighted_majority_voting(classifier_ensemble, weights, X)
Apply the weighted majority voting rule to predict the label of each sample in X. The size of the weights vector
should be equal to the size of the ensemble.

Parameters

classifier_ensemble [list of shape = [n_classifiers]] containing the ensemble of classifiers used
in the aggregation scheme.

weights [array of shape = [n_samples, n_classifiers]] Weights associated to each base classifier
for each sample

X [array of shape = [n_samples, n_features]] The input data.

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

deslib.util.aggregation.weighted_majority_voting_rule(votes, weights, la-
bels_set=None)

Applies the weighted majority voting rule based on the votes obtained by each base classifier and their respective
weights.

Parameters

votes [array of shape = [n_samples, n_classifiers],] The votes obtained by each classifier for
each sample.

68 Chapter 3. API Reference

deslib Documentation, Release 0.2

weights [array of shape = [n_samples, n_classifiers]] Weights associated to each base classifier
for each sample

labels_set [(Default=None) set with the possible classes in the problem]

Returns

predicted_label [array of shape = [n_samples]] The label of each query sample predicted using
the majority voting rule

Probabilistic Functions

This file contains the implementation of several functions used to estimate the competence level of a base classifiers
based on posterior probabilities predicted for each class.

deslib.util.prob_functions.ccprmod(supports, idx_correct_label, B=20)
Python implementation of the ccprmod.m (Classifier competence based on probabilistic modelling) function.
Matlab code is available at: http://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/
28391/versions/6/previews/ccprmod.m/index.html

Parameters

supports: array of shape = [n_samples, n_classes] containing the supports obtained by the
base classifier for each class.

idx_correct_label: array of shape = [n_samples] containing the index of the correct class.

B [int (Default = 20)] number of points used in the calculation of the competence, higher values
result in a more accurate estimation.

Returns

C_src [array of shape = [n_samples]] representing the classifier competences at each data point

References

T.Woloszynski, M. Kurzynski, A probabilistic model of classifier competence for dynamic ensemble selection,
Pattern Recognition 44 (2011) 2656–2668.

Examples

>>> supports = [[0.3, 0.6, 0.1],[1.0/3, 1.0/3, 1.0/3]]
>>> idx_correct_label = [1,0]
>>> ccprmod(supports,idx_correct_label)
ans = [0.784953394056843, 0.332872292262951]

deslib.util.prob_functions.entropy_func(n_classes, supports, is_correct)
Calculate the entropy in the support obtained by the base classifier. The value of the source competence is inverse
proportional to the normalized entropy of its supports vector and the sign of competence is simply determined
by the correct/incorrect classification.

Parameters

n_classes [int] The number of classes in the problem

supports: array of shape = [n_samples, n_classes] containing the supports obtained by the
base classifier for each class.

3.2. API Reference 69

http://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/28391/versions/6/previews/ccprmod.m/index.html
http://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/28391/versions/6/previews/ccprmod.m/index.html

deslib Documentation, Release 0.2

is_correct: array of shape = [n_samples] array with 1 whether the base classifier predicted
the correct label and -1 otherwise

Returns

C_src [array of shape = [n_samples]] representing the classifier competences at each data point

References

B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design of
multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.

deslib.util.prob_functions.exponential_func(n_classes, support_correct)
Calculate the exponential function based on the support obtained by the base classifier for the correct class label.

Parameters

n_classes [int] The number of classes in the problem

support_correct: array of shape = [n_samples] containing the supports obtained by the base
classifier for the correct class

Returns

C_src [array of shape = [n_samples]] representing the classifier competences at each data point

deslib.util.prob_functions.log_func(n_classes, support_correct)
Calculate the logarithm in the support obtained by the base classifier.

Parameters

n_classes [int] The number of classes in the problem

support_correct: array of shape = [n_samples] containing the supports obtained by the base
classifier for the correct class

Returns

C_src [array of shape = [n_samples]] representing the classifier competences at each data point

References

T.Woloszynski, M. Kurzynski, A measure of competence based on randomized reference classifier for dynamic
ensemble selection, in: International Conference on Pattern Recognition (ICPR), 2010, pp. 4194–4197.

deslib.util.prob_functions.min_difference(supports, idx_correct_label)
The minimum difference between the supports obtained for the correct class and the vector of class supports.
The value of the source competence is negative if the sample is misclassified and positive otherwise.

Parameters

supports: array of shape = [n_samples, n_classes] containing the supports obtained by the
base classifier for each class

idx_correct_label: array of shape = [n_samples] containing the index of the correct class

Returns

C_src [array of shape = [n_samples]] representing the classifier competences at each data point

70 Chapter 3. API Reference

deslib Documentation, Release 0.2

References

B. Antosik, M. Kurzynski, New measures of classifier competence – heuristics and application to the design of
multiple classifier systems., in: Computer recognition systems 4., 2011, pp. 197–206.

deslib.util.prob_functions.softmax(w, theta=1.0)
Takes an vector w of S N-element and returns a vectors where each column of the vector sums to 1, with elements
exponentially proportional to the respective elements in N.

Parameters

w [array of shape = [N, M]]

theta [float (default = 1.0)] used as a multiplier prior to exponentiation.

Returns

dist [array of shape = [N, M]] which the sum of each row sums to 1 and the elements are
exponentially proportional to the respective elements in N

Instance Hardness

This file contains the implementation of different measures of instance hardness.

deslib.util.instance_hardness.hardness_region_competence(neighbors_idx, labels,
safe_k)

Calculate the Instance hardness of the sample based on its neighborhood. The sample is deemed hard to classify
when there is overlap between different classes in the region of competence. This method does not takes into
account the target label of the test sample

This hardness measure is used to select whether use DS or use the KNN for the classification of a given query
sample

Parameters

neighbors_idx [array of shape = [n_samples_test, k]] Indices of the nearest neighbors for each
considered sample

labels [array of shape = [n_samples_train]] labels associated with each training sample

safe_k [int] Number of neighbors used to estimate the hardness of the corresponding region

Returns

hardness [array of shape = [n_samples]] The Hardness level associated with each example.

References

Smith, M.R., Martinez, T. and Giraud-Carrier, C., 2014. An instance level analysis of data complexity. Machine
learning, 95(2), pp.225-256

3.3 General examples

Examples showing how to use different aspect of the library

3.3. General examples 71

deslib Documentation, Release 0.2

3.3.1 Example Random Forest

In this example we use a pool of classifiers generated using the Random Forest method rather than Bagging. We also
show how to change the size of the region of competence, used to estimate the local competence of the base classifiers.

This demonstrates that the library accepts any kind of base classifiers as long as they implement the predict and predict
proba functions. Moreover, any ensemble generation method such as Boosting or Rotation Trees can be used to
generate a pool containing diverse base classifiers. We also included the performance of the RandomForest classifier
as a baseline comparison.

Example of a dcs techniques
from deslib.dcs.ola import OLA
from deslib.dcs.mcb import MCB
from deslib.des.des_p import DESP
from deslib.des.knora_u import KNORAU
from deslib.des.meta_des import METADES
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

Example of a des techniques
from deslib.des.knora_e import KNORAE

if __name__ == "__main__":

Generate a classification dataset
data = load_breast_cancer()
X = data.data
y = data.target
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
RF = RandomForestClassifier()
RF.fit(X_train, y_train)

X_train, X_dsel, y_train, y_dsel = train_test_split(X, y, test_size=0.50)

Training a random forest to be used as the pool of classifiers. We set the
→˓maximum depth of the tree so that it

can estimate probabilities
pool_classifiers = RandomForestClassifier(n_estimators=10, max_depth=5)
pool_classifiers.fit(X_train, y_train)

Initialize a DS technique. Here we specify the size of the region of competence
→˓(5 neighbors)

knorau = KNORAU(pool_classifiers)
kne = KNORAE(pool_classifiers, k=5)
desp = DESP(pool_classifiers, k=5)
ola = OLA(pool_classifiers, k=5)
mcb = MCB(pool_classifiers, k=5)
meta = METADES(pool_classifiers, k=5)

Fit the DS techniques
knorau.fit(X_dsel, y_dsel)
kne.fit(X_dsel, y_dsel)
desp.fit(X_dsel, y_dsel)
meta.fit(X_dsel, y_dsel)
ola.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)

72 Chapter 3. API Reference

deslib Documentation, Release 0.2

Calculate classification accuracy of each technique
print('Classification accuracy RF: ', RF.score(X_test, y_test))
print('Evaluating DS techniques:')
print('Classification accuracy KNORAU: ', knorau.score(X_test, y_test))
print('Classification accuracy KNORA-Eliminate: ', kne.score(X_test, y_test))
print('Classification accuracy DESP: ', desp.score(X_test, y_test))
print('Classification accuracy OLA: ', ola.score(X_test, y_test))
print('Classification accuracy MCB: ', mcb.score(X_test, y_test))
print('Classification accuracy META-DES: ', meta.score(X_test, y_test))

Total running time of the script: (0 minutes 0.000 seconds)

3.3.2 Example Bagging

In this example we show how to apply different DCS and DES techniques for a classification dataset.

A very important aspect in dynamic selection is the generation of a pool of classifiers. A common practice in the
dynamic selection literature is to use the Bagging (Bootstrap Aggregating) method to generate a pool containing base
classifiers that are both diverse and informative.

In this example we generate a pool of classifiers using the Bagging technique implemented on the Scikit-learn library.
Then, we compare the results obtained by combining this pool of classifiers using the standard Bagging combination
approach versus the application of dynamic selection technique to select the set of most competent classifiers

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Perceptron
from sklearn.calibration import CalibratedClassifierCV
from sklearn.ensemble import BaggingClassifier

from deslib.dcs.ola import OLA
from deslib.dcs.a_priori import APriori
from deslib.dcs.mcb import MCB
from deslib.des.des_p import DESP
from deslib.des.knora_u import KNORAU
from deslib.des.knora_e import KNORAE
from deslib.des.meta_des import METADES

if __name__ == "__main__":
Generate a classification dataset
data = load_breast_cancer()
X = data.data
y = data.target
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

Scale the variables to have 0 mean and unit variance
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train, test_size=0.

→˓5)
Considering a pool composed of 10 base classifiers

3.3. General examples 73

deslib Documentation, Release 0.2

Calibrating Perceptrons to estimate probabilities
model = CalibratedClassifierCV(Perceptron(max_iter=100))

Train a pool of 10 classifiers
pool_classifiers = BaggingClassifier(model, n_estimators=100)
pool_classifiers.fit(X_train, y_train)

Initialize the DS techniques
knorau = KNORAU(pool_classifiers)
kne = KNORAE(pool_classifiers)
desp = DESP(pool_classifiers)
ola = OLA(pool_classifiers)
mcb = MCB(pool_classifiers)
apriori = APriori(pool_classifiers)
meta = METADES(pool_classifiers)

Fit the des techniques
knorau.fit(X_dsel, y_dsel)
kne.fit(X_dsel, y_dsel)
desp.fit(X_dsel, y_dsel)

Fit the dcs techniques
ola.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)
apriori.fit(X_dsel, y_dsel)
meta.fit(X_dsel, y_dsel)

Calculate classification accuracy of each technique
print('Evaluating DS techniques:')
print('Classification accuracy KNORA-Union: ', knorau.score(X_test, y_test))
print('Classification accuracy KNORA-Eliminate: ', kne.score(X_test, y_test))
print('Classification accuracy DESP: ', desp.score(X_test, y_test))
print('Classification accuracy OLA: ', ola.score(X_test, y_test))
print('Classification accuracy A priori: ', apriori.score(X_test, y_test))
print('Classification accuracy MCB: ', mcb.score(X_test, y_test))
print('Classification accuracy META-DES: ', meta.score(X_test, y_test))

Total running time of the script: (0 minutes 0.000 seconds)

3.3.3 Example Heterogeneous

In this example we show that the framework can also be used using different classifier models in the pool of classifiers.
Such pool of classifiers are called Heterogeneous.

Here we consider a pool of classifiers composed of a Gaussian Naive Bayes, Perceptron, k-NN, Decision tree Linear
SVM and Gaussian SVM

Importing dynamic selection techniques:
from deslib.dcs.a_posteriori import APosteriori
from deslib.dcs.mcb import MCB
from deslib.dcs.lca import LCA
from deslib.des.probabilistic import RRC
from deslib.des.knop import KNOP
from deslib.des.knora_e import KNORAE

Base classifier models:

74 Chapter 3. API Reference

deslib Documentation, Release 0.2

from sklearn.linear_model import Perceptron
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.calibration import CalibratedClassifierCV

Importing dataset
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import StandardScaler

if __name__ == "__main__":
Generate a classification dataset
data = load_breast_cancer()
X = data.data
y = data.target

split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

Scale the variables to have 0 mean and unit variance
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X, y, test_size=0.5)

model_perceptron = CalibratedClassifierCV(Perceptron(max_iter=100)).fit(X_train,
→˓y_train)

model_linear_svm = CalibratedClassifierCV(LinearSVC()).fit(X_train, y_train)
model_svc = SVC(probability=True).fit(X_train, y_train)
model_bayes = GaussianNB().fit(X_train, y_train)
model_tree = DecisionTreeClassifier().fit(X_train, y_train)
model_knn = KNeighborsClassifier(n_neighbors=5).fit(X_train, y_train)
pool_classifiers = [model_perceptron, model_linear_svm, model_svc, model_bayes,

→˓model_tree, model_knn]

Initializing the DS techniques
knop = KNOP(pool_classifiers)
rrc = RRC(pool_classifiers)
lca = LCA(pool_classifiers)
mcb = MCB(pool_classifiers)
aposteriori = APosteriori(pool_classifiers)

Fitting the techniques
knop.fit(X_dsel, y_dsel)
rrc.fit(X_dsel, y_dsel)
lca.fit(X_dsel, y_dsel)
mcb.fit(X_dsel, y_dsel)
aposteriori.fit(X_dsel, y_dsel)

Calculate classification accuracy of each technique
print('Evaluating DS techniques:')
print('Classification accuracy KNOP: ', knop.score(X_test, y_test))

3.3. General examples 75

deslib Documentation, Release 0.2

print('Classification accuracy RRC: ', rrc.score(X_test, y_test))
print('Classification accuracy LCA: ', lca.score(X_test, y_test))
print('Classification accuracy A posteriori: ', aposteriori.score(X_test, y_test))

Total running time of the script: (0 minutes 0.000 seconds)

3.3.4 Example DFP

In this example we show how to apply the dynamic frienemy pruning (DFP) to different dynamic selection techniques.

The DFP method is an online pruning model which analyzes the region of competence to know if it is composed of
samples from different classes (indecision region). Then, it remove the base classifiers that do not correctly classifies
at least a pair of samples coming from different classes (i.e., the base classifiers that do not cross the local region.

The DFP is shown to significantly improve the performance of several dynamic selection algorithms when dealing
with heavily imbalanced problems, as it avoids the classifiers that are biased towards the majority class in predicting
the label for the query.

import numpy as np
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

Example of dcs techniques:
from deslib.dcs.a_posteriori import APosteriori
from deslib.dcs.lca import LCA
from deslib.dcs.ola import OLA
from deslib.dcs.a_priori import APriori

Example of des techniques:
from deslib.des.meta_des import METADES
from deslib.des.des_p import DESP

rng = np.random.RandomState(654321)

Generate a classification dataset
X, y = make_classification(n_classes=2, n_samples=1000, weights=[0.2, 0.8], random_
→˓state=rng)
split the data into training and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_
→˓state=rng)

Split the data into training and DSEL for DS techniques
X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train, test_size=0.5,
→˓random_state=rng)
Considering a pool composed of 10 base classifiers
pool_classifiers = RandomForestClassifier(n_estimators=10, random_state=rng, max_
→˓depth=10)
pool_classifiers.fit(X_train, y_train)

DS techniques without DFP
apriori = APriori(pool_classifiers)
aposteriori = APosteriori(pool_classifiers)
ola = OLA(pool_classifiers)
lca = LCA(pool_classifiers)
desp = DESP(pool_classifiers)

76 Chapter 3. API Reference

deslib Documentation, Release 0.2

meta = METADES(pool_classifiers)

apriori.fit(X_dsel, y_dsel)
aposteriori.fit(X_dsel, y_dsel)
ola.fit(X_dsel, y_dsel)
lca.fit(X_dsel, y_dsel)
desp.fit(X_dsel, y_dsel)
meta.fit(X_dsel, y_dsel)

print('Evaluating DS techniques:')
print('Classification accuracy of OLA: ', ola.score(X_test, y_test))
print('Classification accuracy of LCA: ', lca.score(X_test, y_test))
print('Classification accuracy of A priori: ', apriori.score(X_test, y_test))
print('Classification accuracy of A posteriori: ', aposteriori.score(X_test, y_test))
print('Classification accuracy of DES-P: ', desp.score(X_test, y_test))
print('Classification accuracy of META-DES: ', meta.score(X_test, y_test))

Testing fire:
fire_apriori = APriori(pool_classifiers, DFP=True)
fire_aposteriori = APosteriori(pool_classifiers, DFP=True)
fire_ola = OLA(pool_classifiers, DFP=True)
fire_lca = LCA(pool_classifiers, DFP=True)
fire_desp = DESP(pool_classifiers, DFP=True)
fire_meta = METADES(pool_classifiers, DFP=True)

fire_apriori.fit(X_dsel, y_dsel)
fire_aposteriori.fit(X_dsel, y_dsel)
fire_ola .fit(X_dsel, y_dsel)
fire_lca.fit(X_dsel, y_dsel)
fire_desp.fit(X_dsel, y_dsel)
fire_meta.fit(X_dsel, y_dsel)

print('Evaluating FIRE-DS techniques:')
print('Classification accuracy of FIRE-OLA: ', fire_ola.score(X_test, y_test))
print('Classification accuracy of FIRE-LCA: ', fire_lca.score(X_test, y_test))
print('Classification accuracy of FIRE-A priori: ', fire_apriori.score(X_test, y_
→˓test))
print('Classification accuracy of FIRE-A posteriori: ', aposteriori.score(X_test, y_
→˓test))
print('Classification accuracy of FIRE-DES-P: ', fire_desp.score(X_test, y_test))
print('Classification accuracy of FIRE-META-DES: ', fire_meta.score(X_test, y_test))

Total running time of the script: (0 minutes 0.000 seconds)

3.4 Release history

3.4.1 Version 0.2

• Second release of the stable API. By Rafael M O Cruz and Luiz G Hafemann.

Changes

• Implemented Label Encoding: labels are no longer required to be integers starting from 0. Categorical (strings)
and non-sequential integers are supported (similarly to scikit-learn).

3.4. Release history 77

https://github.com/Menelau
https://github.com/lghafemann

deslib Documentation, Release 0.2

• Batch processing: Vectorized implementation of predictions. Large speed-up in computation time (100x faster
in some cases).

• Predict proba: only required (in the base estimators) if using methods that rely on probabilities (or if requesting
probabilities from the ensemble).

• Improved documentation: Included additional examples, a step-by-step tutorial on how to use the library.

• New integration tests: Now covering predict_proba, IH and DFP.

• Bug fixes on 1) predict_proba 2) KNOP with DFP.

3.4.2 Version 0.1

API

• First release of the stable API. By Rafael M O Cruz and Luiz G Hafemann.

Implemented methods:

• DES techniques currently available are:

1. META-DES

2. K-Nearest-Oracle-Eliminate (KNORA-E)

3. K-Nearest-Oracle-Union (KNORA-U)

4. Dynamic Ensemble Selection-Performance(DES-P)

5. K-Nearest-Output Profiles (KNOP)

6. Randomized Reference Classifier (DES-RRC)

7. DES Kullback-Leibler Divergence (DES-KL)

8. DES-Exponential

9. DES-Logarithmic

10. DES-Minimum Difference

11. DES-Clustering

12. DES-KNN

• DCS techniques:

1. Modified Classifier Rank (Rank)

2. Overall Locall Accuracy (OLA)

3. Local Class Accuracy (LCA)

4. Modified Local Accuracy (MLA)

5. Multiple Classifier Behaviour (MCB)

6. A Priori Selection (A Priori)

7. A Posteriori Selection (A Posteriori)

• Baseline methods:

1. Oracle

78 Chapter 3. API Reference

https://github.com/Menelau
https://github.com/lghafemann

deslib Documentation, Release 0.2

2. Single Best

3. Static Selection

• Dynamic Frienemy Prunning (DFP)

• Diversity measures

• Aggregation functions

Version 0.1

API

• First release of the stable API. By Rafael M O Cruz and Luiz G Hafemann.

Implemented methods:

• DES techniques currently available are:

1. META-DES

2. K-Nearest-Oracle-Eliminate (KNORA-E)

3. K-Nearest-Oracle-Union (KNORA-U)

4. Dynamic Ensemble Selection-Performance(DES-P)

5. K-Nearest-Output Profiles (KNOP)

6. Randomized Reference Classifier (DES-RRC)

7. DES Kullback-Leibler Divergence (DES-KL)

8. DES-Exponential

9. DES-Logarithmic

10. DES-Minimum Difference

11. DES-Clustering

12. DES-KNN

• DCS techniques:

1. Modified Classifier Rank (Rank)

2. Overall Locall Accuracy (OLA)

3. Local Class Accuracy (LCA)

4. Modified Local Accuracy (MLA)

5. Multiple Classifier Behaviour (MCB)

6. A Priori Selection (A Priori)

7. A Posteriori Selection (A Posteriori)

• Baseline methods:

1. Oracle

2. Single Best

3.4. Release history 79

https://github.com/Menelau
https://github.com/lghafemann

deslib Documentation, Release 0.2

3. Static Selection

• Dynamic Frienemy Prunning (DFP)

• Diversity measures

• Aggregation functions

Version 0.2

• Second release of the stable API. By Rafael M O Cruz and Luiz G Hafemann.

Changes

• Implemented Label Encoding: labels are no longer required to be integers starting from 0. Categorical (strings)
and non-sequential integers are supported (similarly to scikit-learn).

• Batch processing: Vectorized implementation of predictions. Large speed-up in computation time (100x faster
in some cases).

• Predict proba: only required (in the base estimators) if using methods that rely on probabilities (or if requesting
probabilities from the ensemble).

• Improved documentation: Included additional examples, a step-by-step tutorial on how to use the library.

• New integration tests: Now covering predict_proba, IH and DFP.

• Bug fixes on 1) predict_proba 2) KNOP with DFP.

80 Chapter 3. API Reference

https://github.com/Menelau
https://github.com/lghafemann

CHAPTER 4

Example

Here we present an example of the KNORA-E techniques using a random forest to generate the pool of classifiers:

from sklearn.ensemble import RandomForestClassifier
from deslib.des.knora_e import KNORAE

Train a pool of 10 classifiers
pool_classifiers = RandomForestClassifier(n_estimators=10)
pool_classifiers.fit(X_train, y_train)

Initialize the DES model
knorae = KNORAE(pool_classifiers)

Preprocess the Dynamic Selection dataset (DSEL)
knorae.fit(X_dsel, y_dsel)

Predict new examples:
knorae.predict(X_test)

The library accepts any list of classifiers (from scikit-learn) as input, including a list containing different classifier
models (heterogeneous ensembles). More examples to use the API can be found in the examples page.

81

auto_examples/index.html

deslib Documentation, Release 0.2

82 Chapter 4. Example

CHAPTER 5

Citation

If you use DESLib in a scientific paper, please consider citing the following paper:

Rafael M. O. Cruz, Luiz G. Hafemann, Robert Sabourin and George D. C. Cavalcanti DESlib: A Dynamic ensemble
selection library in Python. arXiv preprint arXiv:1802.04967 (2018).

@article{cruz_deslib:2018,
title = {{DESlib}: {A} {Dynamic} ensemble selection library in {Python}},
journal = {arXiv preprint arXiv:1802.04967},
author = {Cruz, Rafael M. O. and Hafemann, Luiz G. and Sabourin, Robert and

→˓Cavalcanti, George D. C.},
year = {2018}

}

5.1 References

83

deslib Documentation, Release 0.2

84 Chapter 5. Citation

Python Module Index

d
deslib.dcs, 13
deslib.dcs.a_posteriori, 15
deslib.dcs.a_priori, 18
deslib.dcs.base, 13
deslib.dcs.lca, 21
deslib.dcs.mcb, 24
deslib.dcs.mla, 27
deslib.dcs.ola, 29
deslib.dcs.rank, 32
deslib.des, 34
deslib.des.base, 35
deslib.des.des_clustering, 39
deslib.des.des_knn, 44
deslib.des.des_p, 42
deslib.des.knop, 46
deslib.des.knora_e, 48
deslib.des.knora_u, 51
deslib.des.meta_des, 37
deslib.des.probabilistic, 55
deslib.static, 59
deslib.static.oracle, 60
deslib.static.single_best, 60
deslib.static.static_selection, 61
deslib.util, 62
deslib.util.aggregation, 65
deslib.util.diversity, 62
deslib.util.instance_hardness, 71
deslib.util.prob_functions, 69

85

deslib Documentation, Release 0.2

86 Python Module Index

Index

A
agreement_measure() (in module deslib.util.diversity), 63
APosteriori (class in deslib.dcs.a_posteriori), 15
APriori (class in deslib.dcs.a_priori), 18
average_combiner() (in module deslib.util.aggregation),

65
average_rule() (in module deslib.util.aggregation), 65

C
ccprmod() (in module deslib.util.prob_functions), 69
classify_with_ds() (deslib.dcs.base.DCS method), 14
classify_with_ds() (deslib.des.base.DES method), 35
compute_pairwise_diversity() (in module

deslib.util.diversity), 63
correlation_coefficient() (in module deslib.util.diversity),

63

D
DCS (class in deslib.dcs.base), 13
DES (class in deslib.des.base), 35
DESClustering (class in deslib.des.des_clustering), 39
DESKL (class in deslib.des.probabilistic), 56
DESKNN (class in deslib.des.des_knn), 44
deslib.dcs (module), 13
deslib.dcs.a_posteriori (module), 15
deslib.dcs.a_priori (module), 18
deslib.dcs.base (module), 13
deslib.dcs.lca (module), 21
deslib.dcs.mcb (module), 24
deslib.dcs.mla (module), 27
deslib.dcs.ola (module), 29
deslib.dcs.rank (module), 32
deslib.des (module), 34
deslib.des.base (module), 35
deslib.des.des_clustering (module), 39
deslib.des.des_knn (module), 44
deslib.des.des_p (module), 42
deslib.des.knop (module), 46
deslib.des.knora_e (module), 48

deslib.des.knora_u (module), 51
deslib.des.meta_des (module), 37
deslib.des.probabilistic (module), 53, 55–59
deslib.static (module), 59
deslib.static.oracle (module), 60
deslib.static.single_best (module), 60
deslib.static.static_selection (module), 61
deslib.util (module), 62
deslib.util.aggregation (module), 65
deslib.util.diversity (module), 62
deslib.util.instance_hardness (module), 71
deslib.util.prob_functions (module), 69
DESP (class in deslib.des.des_p), 42
disagreement_measure() (in module deslib.util.diversity),

63
double_fault() (in module deslib.util.diversity), 64

E
entropy_func() (in module deslib.util.prob_functions), 69
estimate_competence() (deslib.dcs.a_posteriori.APosteriori

method), 16
estimate_competence() (deslib.dcs.a_priori.APriori

method), 19
estimate_competence() (deslib.dcs.base.DCS method), 14
estimate_competence() (deslib.dcs.lca.LCA method), 22
estimate_competence() (deslib.dcs.mcb.MCB method),

25
estimate_competence() (deslib.dcs.mla.MLA method), 27
estimate_competence() (deslib.dcs.ola.OLA method), 30
estimate_competence() (deslib.dcs.rank.Rank method),

33
estimate_competence() (deslib.des.base.DES method), 36
estimate_competence() (deslib.des.des_clustering.DESClustering

method), 40
estimate_competence() (deslib.des.des_knn.DESKNN

method), 44
estimate_competence() (deslib.des.des_p.DESP method),

42
estimate_competence() (deslib.des.knora_e.KNORAE

method), 49

87

deslib Documentation, Release 0.2

estimate_competence() (deslib.des.knora_u.KNORAU
method), 51

estimate_competence() (deslib.des.probabilistic.Probabilistic
method), 53

estimate_competence_from_proba()
(deslib.des.base.DES method), 36

estimate_competence_from_proba()
(deslib.des.knop.KNOP method), 47

estimate_competence_from_proba()
(deslib.des.meta_des.METADES method),
38

Exponential (class in deslib.des.probabilistic), 58
exponential_func() (in module

deslib.util.prob_functions), 70

F
fit() (deslib.dcs.a_posteriori.APosteriori method), 17
fit() (deslib.dcs.a_priori.APriori method), 20
fit() (deslib.dcs.lca.LCA method), 22
fit() (deslib.dcs.mcb.MCB method), 25
fit() (deslib.dcs.mla.MLA method), 28
fit() (deslib.dcs.ola.OLA method), 30
fit() (deslib.dcs.rank.Rank method), 33
fit() (deslib.des.des_clustering.DESClustering method),

40
fit() (deslib.des.des_knn.DESKNN method), 45
fit() (deslib.des.des_p.DESP method), 43
fit() (deslib.des.knop.KNOP method), 47
fit() (deslib.des.knora_e.KNORAE method), 49
fit() (deslib.des.knora_u.KNORAU method), 51
fit() (deslib.des.meta_des.METADES method), 38
fit() (deslib.des.probabilistic.Probabilistic method), 54
fit() (deslib.static.single_best.SingleBest method), 61
fit() (deslib.static.static_selection.StaticSelection

method), 62

H
hardness_region_competence() (in module

deslib.util.instance_hardness), 71

K
KNOP (class in deslib.des.knop), 46
KNORAE (class in deslib.des.knora_e), 48
KNORAU (class in deslib.des.knora_u), 51

L
LCA (class in deslib.dcs.lca), 21
log_func() (in module deslib.util.prob_functions), 70
Logarithmic (class in deslib.des.probabilistic), 59

M
majority_voting() (in module deslib.util.aggregation), 65
majority_voting_rule() (in module

deslib.util.aggregation), 66

maximum_combiner() (in module
deslib.util.aggregation), 66

maximum_rule() (in module deslib.util.aggregation), 66
MCB (class in deslib.dcs.mcb), 24
median_combiner() (in module deslib.util.aggregation),

66
median_rule() (in module deslib.util.aggregation), 67
METADES (class in deslib.des.meta_des), 37
min_difference() (in module deslib.util.prob_functions),

70
minimum_combiner() (in module deslib.util.aggregation),

67
minimum_rule() (in module deslib.util.aggregation), 67
MinimumDifference (class in deslib.des.probabilistic), 57
MLA (class in deslib.dcs.mla), 27

N
negative_double_fault() (in module deslib.util.diversity),

64

O
OLA (class in deslib.dcs.ola), 29
Oracle (class in deslib.static.oracle), 60

P
potential_func() (deslib.des.probabilistic.Probabilistic

static method), 54
predict() (deslib.dcs.a_posteriori.APosteriori method), 17
predict() (deslib.dcs.a_priori.APriori method), 20
predict() (deslib.dcs.lca.LCA method), 22
predict() (deslib.dcs.mcb.MCB method), 25
predict() (deslib.dcs.mla.MLA method), 28
predict() (deslib.dcs.ola.OLA method), 31
predict() (deslib.dcs.rank.Rank method), 33
predict() (deslib.des.des_clustering.DESClustering

method), 41
predict() (deslib.des.des_knn.DESKNN method), 45
predict() (deslib.des.des_p.DESP method), 43
predict() (deslib.des.knop.KNOP method), 47
predict() (deslib.des.knora_e.KNORAE method), 49
predict() (deslib.des.knora_u.KNORAU method), 52
predict() (deslib.des.meta_des.METADES method), 38
predict() (deslib.static.oracle.Oracle method), 60
predict() (deslib.static.single_best.SingleBest method), 61
predict() (deslib.static.static_selection.StaticSelection

method), 62
predict_proba() (deslib.dcs.a_posteriori.APosteriori

method), 17
predict_proba() (deslib.dcs.a_priori.APriori method), 20
predict_proba() (deslib.dcs.lca.LCA method), 23
predict_proba() (deslib.dcs.mcb.MCB method), 25
predict_proba() (deslib.dcs.mla.MLA method), 28
predict_proba() (deslib.dcs.ola.OLA method), 31
predict_proba() (deslib.dcs.rank.Rank method), 33

88 Index

deslib Documentation, Release 0.2

predict_proba() (deslib.des.des_clustering.DESClustering
method), 41

predict_proba() (deslib.des.des_knn.DESKNN method),
45

predict_proba() (deslib.des.des_p.DESP method), 43
predict_proba() (deslib.des.knop.KNOP method), 48
predict_proba() (deslib.des.knora_e.KNORAE method),

50
predict_proba() (deslib.des.knora_u.KNORAU method),

52
predict_proba() (deslib.des.meta_des.METADES

method), 39
predict_proba() (deslib.static.single_best.SingleBest

method), 61
predict_proba_ensemble() (in module

deslib.util.aggregation), 67
predict_proba_ensemble_weighted() (in module

deslib.util.aggregation), 67
predict_proba_with_ds() (deslib.dcs.base.DCS method),

14
predict_proba_with_ds() (deslib.des.base.DES method),

36
Probabilistic (class in deslib.des.probabilistic), 53
product_combiner() (in module deslib.util.aggregation),

68
product_rule() (in module deslib.util.aggregation), 68

Q
Q_statistic() (in module deslib.util.diversity), 62

R
Rank (class in deslib.dcs.rank), 32
ratio_errors() (in module deslib.util.diversity), 65
RRC (class in deslib.des.probabilistic), 55

S
score() (deslib.dcs.a_posteriori.APosteriori method), 17
score() (deslib.dcs.a_priori.APriori method), 20
score() (deslib.dcs.lca.LCA method), 23
score() (deslib.dcs.mcb.MCB method), 26
score() (deslib.dcs.mla.MLA method), 28
score() (deslib.dcs.ola.OLA method), 31
score() (deslib.dcs.rank.Rank method), 34
score() (deslib.des.des_clustering.DESClustering

method), 41
score() (deslib.des.des_knn.DESKNN method), 45
score() (deslib.des.des_p.DESP method), 43
score() (deslib.des.knop.KNOP method), 48
score() (deslib.des.knora_e.KNORAE method), 50
score() (deslib.des.knora_u.KNORAU method), 52
score() (deslib.des.meta_des.METADES method), 39
score() (deslib.static.oracle.Oracle method), 60
select() (deslib.dcs.a_posteriori.APosteriori method), 18
select() (deslib.dcs.a_priori.APriori method), 20

select() (deslib.dcs.base.DCS method), 15
select() (deslib.dcs.lca.LCA method), 23
select() (deslib.dcs.mcb.MCB method), 26
select() (deslib.dcs.mla.MLA method), 29
select() (deslib.dcs.ola.OLA method), 31
select() (deslib.dcs.rank.Rank method), 34
select() (deslib.des.base.DES method), 37
select() (deslib.des.des_clustering.DESClustering

method), 41
select() (deslib.des.des_knn.DESKNN method), 46
select() (deslib.des.des_p.DESP method), 43
select() (deslib.des.knop.KNOP method), 48
select() (deslib.des.knora_e.KNORAE method), 50
select() (deslib.des.knora_u.KNORAU method), 52
select() (deslib.des.meta_des.METADES method), 39
select() (deslib.des.probabilistic.Probabilistic method), 54
SingleBest (class in deslib.static.single_best), 60
softmax() (in module deslib.util.prob_functions), 71
source_competence() (deslib.des.probabilistic.DESKL

method), 56
source_competence() (deslib.des.probabilistic.Exponential

method), 58
source_competence() (deslib.des.probabilistic.Logarithmic

method), 59
source_competence() (deslib.des.probabilistic.MinimumDifference

method), 57
source_competence() (deslib.des.probabilistic.Probabilistic

method), 54
source_competence() (deslib.des.probabilistic.RRC

method), 55
StaticSelection (class in deslib.static.static_selection), 61

W
weighted_majority_voting() (in module

deslib.util.aggregation), 68
weighted_majority_voting_rule() (in module

deslib.util.aggregation), 68

Index 89

	Introduction
	Philosophy
	API Reference
	User guide
	API Reference
	General examples
	Release history

	Example
	Citation
	References

	Python Module Index

