Desfire for Python Documentation
Release 0.1.0

Mikko Ohtamaa

March 31, 2016

Contents

MIFARE DESFire for Python

1.1 Features. e
1.2 Background.
1.3 Author
1.4 Credits e

21 UbuntuLinux.

3.1 PCSCexample

4.1 Typesof Contributions
42 GetStarted!

5.1 DevelopmentLead
52 Contributors

Installation

Usage

3.2 Continuous card connection
Contributing

4.3 Pull Request Guidelines
Credits

History

6.1 0.2(2016-03-30) « o o v e
6.2 0.1(2016-03-07) « o v v oo e

Indices and tables

2.2 Androidand Kivyo 0.

19} W W W W W

9]

N

13

..................... 13
..................... 14
..................... 14

15

..................... 15
..................... 15

17

..................... 17
..................... 17

19

Desfire for Python Documentation, Release 0.1.0

Contents:

Contents 1

Desfire for Python Documentation, Release 0.1.0

2 Contents

CHAPTER 1

MIFARE DESFire for Python

This package provides MIFARE DESFire native communication protocol for NFC cards.
Source code: https://github.com/miohtama/desfire
Documentation: https://desfire.readthedocs.org

In photo: MIFARE DESFire EVI 8kB blank card with Identive CLOUD 4500 F Dual Interface Reader

1.1 Features

¢ Compatibile with USB-based NFC readers via PCSC interface. PCSC API is available on Linux, OSX and
Windows. Linux support includes support for Raspberry Pi.

* Compatibile with Android mobile phones and their built-in NFC readers. This is done using Kivy cross appli-
cation Python framework and native Android APIs via pyjnius Python to Java bridging.

* Only some of the commands are implemented in the current alpha quality version, please feel free to add more.

* Compatible with Python 2 and Python 3

1.2 Background

The communication protocol specification is not public. The work is based on reverse engineering existing open
source DESFire projects, namely Android host card emulation for DESFire and MIFARE SDK.

1.3 Author

Mikko Ohtamaa.

1.4 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

https://en.wikipedia.org/wiki/MIFARE
https://github.com/miohtama/desfire
https://desfire.readthedocs.org
https://kivy.org/
https://github.com/kivy/pyjnius
http://stackoverflow.com/a/24069446/315168
https://github.com/jekkos/android-hce-desfire
https://www.mifare.net/en/products/tools/mifare-sdk/
https://opensourcehacker.com
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

Desfire for Python Documentation, Release 0.1.0

4 Chapter 1. MIFARE DESFire for Python

CHAPTER 2

Installation

Install with pip to your virtualenv.

2.1 Ubuntu Linux

Install libraries using a Python virtual environment.

You need pyscard and it’s dependencies. For Ubuntu:

apt install swig swig3.0 libpcsclite-dev pcscd

pyscard must be installed by hand (see issue):

Need github registerd SSH pubkey

git clone git@github.com:LudovicRousseau/pyscard.git
cd pyscard

python setup.py develop

Then install desfire:

‘pip install desfire

2.2 Android and Kivy

TODO

https://packaging.python.org/en/latest/installing/#optionally-create-a-virtual-environment
https://pypi.python.org/pypi/pyscard
https://github.com/LudovicRousseau/pyscard/issues/15

Desfire for Python Documentation, Release 0.1.0

6 Chapter 2. Installation

CHAPTER 3

Usage

The library provides abstraction over DESFire command set. The communication with a NFC card must be done with
an underlying library or API. DESFire provides adapters for different connection methods.

* Create a native connection to NFC card using underlying libraries
* Wrap this connection to proper adapter as desfire.device.Device subclass
e Create adesfire.protocol .DESFire object for the device

e Usedesfire.protocol.DESFire API methods

3.1 PCSC example

Below is an example how to interface with DESFire API using pcscd daemon and pycard library. It should work on
OSX, Linux and Windows including Raspberry Pi:

#! /usr/bin/env python
from _ future import print_function

import functools
import logging
import time
import sys

from smartcard.System import readers

from smartcard.CardMonitoring import CardMonitor, CardObserver

from smartcard.util import toHexString

from smartcard.CardConnectionObserver import ConsoleCardConnectionObserver

from desfire.protocol import DESFire
from desfire.pcsc import PCSCDevice

#: Setup logging subsystem later
logger = None

IGNORE_EXCEPTIONS = (KeyboardInterrupt, MemoryError,)

def catch_gracefully():
"""Function decorator to show any Python exceptions occured inside a function.

http://linux.die.net/man/8/pcscd
http://pyscard.sourceforge.net/

Desfire for Python Documentation, Release 0.1.0

Use when the underlying thread main loop does not provide satisfying exception outpi

mmn

def _outer (func):

@functools.wraps (func)
def _inner(xargs, =*xkwargs):
try:
return func(xargs, xxkwargs)
except Exception as e:
if isinstance (e, IGNORE_EXCEPTIONS) :
raise
else:
logger.error ("Catched exception
logger.exception (e)

)

$s when running %s", e, func)

return _inner

return _outer

class MyObserver (CardObserver) :
"""Observe when a card is inserted. Then try to run DESFire application listing agal

We need to have our own exception handling for this as the

main loop of pyscard doesn't seem to do any exception output by default
@Qcatch_gracefully ()

def update (self, observable, actions):

(addedcards, removedcards) = actions

for card in addedcards:
logger.info ("+ Inserted: 2s", toHexString(card.atr))

connection = card.createConnection ()
connection.connect ()

This will log raw card traffic to console
connection.addObserver (ConsoleCardConnectionObserver ())

connection object itself is CardConnectionDecorator wrapper
and we need to address the underlying connection object

directly

logger.info ("Opened connection %s", connection.component)

desfire = DESFire (PCSCDevice (connection.component))
applications = desfire.get_applications/()

for app_id in applications:
logger.info ("Found application 0x206x", app_id)

if not applications:
logger.info ("No applications on the card")

for card in removedcards:
logger.info ("- Removed: %s", toHexString(card.atr))

def main () :

8 Chapter 3. Usage

nst it.mnmre

Desfire for Python Documentation, Release 0.1.0

global logger

logging.basicConfig(level=logging.DEBUG)
logger = logging.getlogger (__name_)

logger.info("Insert MIFARE Desfire card to any reader to get its applications.")

available_reader = readers|()
logger.info ("Available readers: $%s", available_reader)
if not available_reader:

sys.exit ("No smartcard readers detected")

cardmonitor = CardMonitor ()
cardobserver = MyObserver ()
cardmonitor.addObserver (cardobserver)

while True:
time.sleep (1)

don't forget to remove observer, or the
monitor will poll forever...
cardmonitor.deleteObserver (cardobserver)

if name == "__main__ ":
main ()

3.2 Continuous card connection

Here is another more advanced example. When the card is attached to the reader, keep connecting to the card contin-

uously and decrease it’s stored value file 1 credit per second until we have consumed all the credit.

#! /usr/bin/env python
from _ future import print_function

import functools
import logging
import time
import sys
import threading

from rainbow_logging handler import RainbowLoggingHandler

from smartcard.System import readers

from smartcard.CardMonitoring import CardMonitor, CardObserver

from smartcard.util import toHexString

from smartcard.CardConnectionObserver import ConsoleCardConnectionObserver
from smartcard.Exceptions import CardConnectionException

from desfire.protocol import DESFire
from desfire.pcsc import PCSCDevice

#: Setup logging subsystem later
logger = None

3.2. Continuous card connection

Desfire for Python Documentation, Release 0.1.0

IGNORE_EXCEPTIONS = (KeyboardInterrupt, MemoryError,)

FOOBAR_APP_ID = 0x121314
FOOBAR_STORED_VALUE_FILE_ID = 0x01

#: FOOBAR consumer thread
consumer = None

def setup_logging():

Setup Python root logger to DEBUG level

logger = logging.getLogger ()

logger.setLevel (logging.DEBUG)

formatter = logging.Formatter ("[¢ (asctime)s] % (name)s § (funch

Add colored log handlign to sys.stderr
handler = RainbowLoggingHandler (sys.stderr)
handler.setFormatter (formatter)
logger.addHandler (handler)

def catch_gracefully():
"""Function decorator to show any Python exceptions occured inside a function.

Use when the underlying thread main loop does not provide satisfying exception outpl
mmn

def _outer (func):

@functools.wraps (func)
def _inner (xargs, *xkwargs):
try:
return func(xargs, =**kwargs)
except Exception as e:
if isinstance (e, IGNORE_EXCEPTIONS) :
raise
else:
logger.error ("Catched exception %s when running %s", e, func)
logger.exception (e)

return _inner

return _outer

class ConsumerThread (threading.Thread) :
"""Keep debiting down stored value file on the card until its done."""

def _ init__ (self):
super (ConsumerThread, self).__init__ ()

#: Array of cards with open connection in connection attribute
self.cards = set ()
self.alive = True

def attach_card(self, card):
self.cards.add(card)

me) s () : ¢ (1lineno)d\t % (1he

10 Chapter 3. Usage

Desfire for Python Documentation, Release 0.1.0

def detach_card(self, card):
if card in self.cards:
self.cards.remove (card)

Qcatch_gracefully ()
def run(self):

while self.alive:

List of cards where we have lost connetion
remove_cards = []

for card in self.cards:
card_id = toHexString(card.atr)
desfire = DESFire (PCSCDevice (card.connection))
try:
desfire.select_application (FOOBAR_APP_ID)
value = desfire.get_value (FOOBAR_STORED_VALUE_FILE_ID)
if value > O:
logger.info ("Card: %s value left: 2d", card_id, value)
desfire.debit_value (FOOBAR_STORED_VALUE_FILE_ID, 1)
desfire.commit ()
else:
logger.info ("No value left on card: 2s", card_id)

except CardConnectionException:
Lost the card in the middle of transit

logger.warn ("Consumer lost the card %s", card_id)
remove_cards.append (card)

finally:
pass

for ¢ in remove_cards:
card_id = toHexString(card.atr)
logger.debug ("Consumer removing a bad card from itself: %s", card_id)
self.detach_card(c)

time.sleep (1)
class MyObserver (CardObserver) :
"""Observe when a card is inserted. Then try to run DESFire application listing agal

@catch_gracefully ()
def update (self, observable, actions):

(addedcards, removedcards) = actions

for card in addedcards:
logger.info ("+ Inserted: ¢s", toHexString(card.atr))

connection = card.createConnection ()
connection.connect ()
card.connection = connection.component

This will log raw card traffic to console
connection.addObserver (ConsoleCardConnectionObserver ())

3.2. Continuous card connection 11

nst it.mnmre

Desfire for Python Documentation, Release 0.1.0

connection object itself is CardConnectionDecorator wrapper
and we need to address the underlying connection object

directly

logger.debug ("Opened connection %s", connection.component)

desfire = DESFire (PCSCDevice (connection.component))
applications = desfire.get_applications/()

if FOOBAR_APP_ID in applications:
consumer.attach_card(card)
else:

logger.warn ("DESFire card doesn't have the required application. Maybe q

for card in removedcards:
logger.info ("- Removed: ¢s", toHexString(card.atr))
consumer .detach_card(card)

def main() :
global logger
global consumer

setup_logging ()
logger = logging.getlogger (__name__)

logger.info("Insert MIFARE Desfire card to any reader to get its applications.")

available_reader = readers/()
logger.info ("Available readers: %s", available_reader)
if not available_reader:

sys.exit ("No smartcard readers detected")

consumer = ConsumerThread ()
consumer.start ()

cardmonitor = CardMonitor ()
cardobserver = MyObserver ()
cardmonitor.addObserver (cardobserver)

try:
while True:
time.sleep(l)
finally:
consumer.alive = False

don't forget to remove observer, or the
monitor will poll forever...
cardmonitor.deleteObserver (cardobserver)

if name == "__main__":
main ()

Lot properly

12 Chapter 3. Usage

CHAPTER 4

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

4.1 Types of Contributions

4.1.1 Report Bugs

Report bugs at https://github.com/miohtama/desfire/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

4.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

4.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

4.1.4 Write Documentation

Desfire for Python could always use more documentation, whether as part of the official Desfire for Python docs, in
docstrings, or even on the web in blog posts, articles, and such.

4.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/miohtama/desfire/issues.

If you are proposing a feature:

13

https://github.com/miohtama/desfire/issues
https://github.com/miohtama/desfire/issues

Desfire for Python Documentation, Release 0.1.0

 Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.2 Get Started!

Ready to contribute? Here’s how to set up desfire for local development.

1.
2.

Fork the desfire repo on GitHub.

Clone your fork locally:

$ git clone git@github.com:your_name_here/desfire.git

Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv desfire
$ cd desfire/
$ python setup.py develop

Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 desfire tests
$ python setup.py test
S tox

To get flake8 and tox, just pip install them into your virtualenv.

Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

Submit a pull request through the GitHub website.

4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

L.
2.

The pull request should include tests.

If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check https://travis-
ci.org/miohtama/desfire/pull_requests and make sure that the tests pass for all supported Python versions.

14

Chapter 4. Contributing

https://travis-ci.org/miohtama/desfire/pull_requests
https://travis-ci.org/miohtama/desfire/pull_requests

CHAPTER 5

Credits

5.1 Development Lead

* Mikko Ohtamaa <mikko @opensourcehacker.com>

5.2 Contributors

None yet. Why not be the first?

15

mailto:mikko@opensourcehacker.com

Desfire for Python Documentation, Release 0.1.0

16 Chapter 5. Credits

CHAPTER 6

History

6.1 0.2 (2016-03-30)

¢ Added data file read and write

6.2 0.1 (2016-03-07)

* First release on PyPI.

17

Desfire for Python Documentation, Release 0.1.0

18 Chapter 6. History

CHAPTER 7

Indices and tables

¢ genindex
* modindex

e search

19

	MIFARE DESFire for Python
	Features
	Background
	Author
	Credits

	Installation
	Ubuntu Linux
	Android and Kivy

	Usage
	PCSC example
	Continuous card connection

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines

	Credits
	Development Lead
	Contributors

	History
	0.2 (2016-03-30)
	0.1 (2016-03-07)

	Indices and tables

