desdeo-vis Documentation
Release v0.1.5-39-gb12b96d

Frankie Robertson

Aug 28, 2018

Contents:

1 desdeo-vis

.1 Installation / Usage v v i e
1.2 Development L i e e e e e e e e e e e e e e
1.2.1 Compilation o e e e e e e e e e e e e
1.2.2 Adding/modifying anotebook L

1.2.3 Known
1.2.4 Release

2 Example notebooks

ISSUES v v v v v e e e e e e e e e e e e e e
PIOCESS v v v o o i e e e e e e e e e e e e e e e e e e e

2.1 Solving the river pollution problem using NIMBUS
2.1 ImPOTES . o o o e e e e e e e e e e e e e e e e
2.1.2 Initial iteration and preference selection oL
2.1.3 Solutions based on preference e
2.1.4 Generating intermediate solutions L. .o Lo
2.2 Solving the cylinder problem using NIMBUS

2.2.1 Imports
222 Getting

3 API documentation
3.1 desdeo_vis.plot

a solutions based on apreference oo

3.2 desdeo_vis.widget L e e

Python Module Index

BN DN = = = e e

DN BB WWwww

N 93

CHAPTER 1

desdeo-vis

Visualisations and Jupyter Notebook enabled preference selection widgets for the DESDEO interactive multiobjective
optimization library.

Currently features:
* Parallel coordinate plots based on Vega v3.

 Preference selection for NIMBUS (first stage only).

1.1 Installation / Usage

Typically you should install this at the same time as DESDEO, by following the instructions there.

1.2 Development

1.2.1 Compilation

Run:

npm run watch

You will need to refresh your browser, and possibly reload the Jupyter kernel to see some changes.

1.2.2 Adding/modifying a notebook

Each notebook has two versions, one in the desdeo_notebooks directory and one in the desdeo_notebooks/
output directory. The version in the prior directory should be scrubbed of all output and is the canonical copy.
Currently they have have to be kept in sync manually, e.g. by regenerating the output notebook from the canon-
ical version. When regenerating, make sure to save widget state with Widgets > Save Notebook Widget
State.

https://github.com/industrial-optimization-group/DESDEO
https://github.com/industrial-optimization-group/DESDEO
https://vega.github.io/
https://github.com/industrial-optimization-group/DESDEO

desdeo-vis Documentation, Release v0.1.5-39-gb12b96d

1.2.3 Known issues

If you are developing using a virtualenv (recommended) you may have trouble widget Javascript from outside the
virtualenv getting picked up, meaning you can’t test your changes. This is a problem when you have installed desdeo-
vis outside the virtualenv either system-wide or per-user. Currently, there’s no clear way to isolate this Javascript, so
the solution is to uninstall the other versions of desdeo-vis and make sure to only install it inside virtualenvs.

1.2.4 Release process

1.

AN

Update the version number in desdeo_vis/_version.py and package. json,andrunnpm install
to update it in package-lock. json too.

Add an entry to HISTORY.md.

Make a release commit.

Make a git tag of this commit with git tag vSVERSION

Push — including the tags with git push && git push —--tags

Upload to PyPI with rm —-rf build/ && python setup.py sdist bdist_wheel and twine
upload dist/=*

Chapter 1. desdeo-vis

CHAPTER 2

Example notebooks

2.1 Solving the river pollution problem using NIMBUS

Welcome to this notebook demonstrating the DESDEO interactive multi-objective optimisation framework.

In this notebook we will consider a toy problem dealing with water quality management, and the pollution produced
by a fishery. We want to maximise the water quality as measured in two locations: the fishery and a downstream city
(the measurements are based on dissolved oxygen concentration). Additionally, we want to maximise the ROI (Return
On Investment) of the fishery. Simultaneously we want to minimise the additional tax which residents of the city must

pay.

To run this example, you need to run each individual code block (the ones saying In [] : to their left) by clicking
on each one and then clicking “Run”. Please refer to the background section of the documentation for information
about NIMBUS.

2.1.1 Imports

This first code snippet simply imports the parts of DESDEO we need for this notebook. We import optimisation meth-
ods, NIMBUS and the RiverPollution problem definition from the desdeo module, and visualisation and preference
selection tools and widgets from the desdeo_vis module.

In [1]: from desdeo.method.NIMBUS import NIMBUS
from desdeo.optimization import SciPyDE
from desdeo.problem.toy import RiverPollution

from desdeo_vis.widget import NimbusPrefWidget, ParplotWidget

2.1.2 Initial iteration and preference selection

First we initialise the RiverPollution problem and the NIMBUS solution method. Then we get an initial result. We can
plot solutions at any time using parplot.

http://desdeo.readthedocs.io/en/latest/background/index.html

desdeo-vis Documentation, Release v0.1.5-39-gb12b96d

In [2]: problem = RiverPollution ()
method = NIMBUS (problem, SciPyDE)
results = method.init_iteration{()

ParplotWidget (results.objective_vars, problem)
ParplotWidget (cur_max_as_min=True, maximized=[True, True, True, False], orig_max_as_min=True, spec={

Next, we will give our first preference based on NIMBUS. We construct a NimbusPrefWidget, save it to a variable
and display it. You can now specify your preferences using the displayed widget. If you’re not sure how to use it, read
the documentation on classification in NIMBUS.

In [3]: pref = NimbusPrefWidget (results.objective_vars, problem)
pref

NimbusPrefWidget (cur_max_as_min=True, maximized=[True, True, True, False], orig_max_as_min=True, spe

2.1.3 Solutions based on preference

We can now generate a new set of results based on this preference. Note that this will raise an
InvalidNimbusPreferencesException if you run it while the above preferences are invalid.

In [4]: results2_all = method.next_iteration(preference=pref.nimbus_clf (method))

ParplotWidget (results2_all.objective_vars, problem)
ParplotWidget (cur_max_as_min=True, maximized=[True, True, True, False], orig_max_as_min=True, spec={
We might choose to generate less extra solutions. . .

In [5]: results2_less = method.next_iteration (preference=pref.nimbus_clf (method), num_scalars=2)

ParplotWidget (results2_less.objective_vars, problem)
ParplotWidget (cur_max_as_min=True, maximized=[True, True, True, False], orig_max_as_min=True, spec={

We can also choose a subset of scalarization functions from NIM, ACH, GUESS, STOM. These are the NIMBUS
scalarization function and the NIMBUS version of the achievement, guess and satisficing trade-off functions respec-
tively.

In [6]: results2_spec = method.next_iteration (preference=pref.nimbus_clf (method), scalars=['NIM', 'GI

ParplotWidget (results2_spec.objective_vars, problem)

ParplotWidget (cur_max_as_min=True, maximized=[True, True, True, False], orig_max_as_min=True, spec={

2.1.4 Generating intermediate solutions

If none of these solutions exactly satisfy us, we can generate and view solutions between two solutions we’ve generated
so far. Here we generate 4 solutions between the solutions generated by the NIMBUS and GUESS scalarisation
functions.

In [7]: results3 = method.between (results2_spec.objective_vars[0], results2_spec.objective_vars[l], -

ParplotWidget (results3.objective_vars, problem)

ParplotWidget (cur_max_as_min=True, maximized=[True, True, True, False], orig_max_as_min=True, spec={

4 Chapter 2. Example notebooks

http://desdeo.readthedocs.io/en/latest/background/classification-in-nimbus.html

desdeo-vis Documentation, Release v0.1.5-39-gb12b96d

2.2 Solving the cylinder problem using NIMBUS

Let’s consider a cell shaped like a cylinder, that is, a circular cross-sectional prism. The shape of the cell is here
determined by two quantities, its radius x; and its height 5. We want to maximize the volume of the cylinder and
minimize the surface area. In addition to this, cylinder’s height should be close to 15 units.

The volume of a cylinder is the product of its base area and height. A cylinder can be cut and unrolled into a rectangle
and the surface area of this rectangle is the product of its height and the perimeter of the circle 2wz x5. The sum
of the cylinder’s two flat circular caps is 27rz%. The total surface area of the cylinder with flat circular ends is then
27rx% + 2w 20,

Three functions can be made from the above information: the one describing the volume of the cylinder, the other
telling the surface area and the last measuring the height difference.

So the problem is:

maximize Volume = w23z
minimize SurfaceArea = 27rx% + 27X T
minimize HeightDiff = |22 — 15.0|

Let’s assume that the cylinder’s height must be greater or equal to its width. This information gives us the following
constraint:

g(x) =2x1 — 22 <0

To run this example, you need to run each individual code block (the ones saying In [] : to their left) by clicking
on each one and then clicking “Run”. Please refer to the background section of the documentation for information
about NIMBUS.

2.2.1 Imports

This first code snippet simply imports the parts of DESDEO we need for this notebook. We import optimisation meth-
ods, NIMBUS and the CylinderProblem problem definition from the desdeo module, and visualisation and preference
selection tools and widgets from the desdeo_vis module.

In [1]: from desdeo.method.NIMBUS import NIMBUS
from desdeo.optimization import SciPyDE
from desdeo.problem.toy import CylinderProblem

from desdeo_vis.widget import NimbusPrefWidget, ParplotWidget

2.2.2 Getting a solutions based on a preference

First we initialise the CylinderProblem problem and the NIMBUS solution method. Then we get an initial result.
We can plot solutions at any time using ParplotWidget.

In [2]: problem = CylinderProblem()
method = NIMBUS (problem, SciPyDE)
results = method.init_iteration ()

ParplotWidget (results.objective_vars, problem)

ParplotWidget (cur_max_as_min=True, maximized=[True, False], orig_max_as_min=True, spec={'S$schema': 'l

2.2. Solving the cylinder problem using NIMBUS 5

http://desdeo.readthedocs.io/en/latest/background/index.html

desdeo-vis Documentation, Release v0.1.5-39-gb12b96d

The first solution we get from NIMBUS is reasonable. However, we want to increase the cylinder’s volume as much
as possible, still keeping the surface area and height difference low.

To do this, first display a NimbusPrefWidget. After executing the cell, a widget will display which you can use as
follows: * For now we let the volume vary freely by selecting <> from the leftmost dropdown. * The next column has
the preferences for the surface area function. We want to know how much the volume will be when the surface area is
less than 1900, so we set the dropdown to >= and type 1900 into the textbox next to it. * For height difference, we
won’t accept a worse solution than the current one, so we set the dropdown to <=.

In [3]: pref = NimbusPrefWidget (results.objective_vars, problem)
pref

NimbusPrefWidget (cur_max_as_min=True, maximized=[True, False], orig_max_as_min=True, spec={'S$schema'
Now we can plot the solutions given by NIMBUS.

In [5]: results2 = method.next_iteration (preference=pref.nimbus_clf (method))

ParplotWidget (results2.objective_vars, problem)
INFEASIBLE 277.360873

ParplotWidget (cur_max_as_min=True, maximized=[True, False], orig_max_as_min=True, spec={'S$schema': ']

6 Chapter 2. Example notebooks

CHAPTER 3

APl documentation

desdeo_vis.plot This module contains the machinery for doing non-
interactive plotting of multidimensional data.
desdeo_vis.widget This module contains Jupyter widgets for interactively

specifying preferences as well as interactively and non-
interactively displaying solutions.

3.1 desdeo_vis.plot

This module contains the machinery for doing non-interactive plotting of multidimensional data. Currently it can
generate VEGA specifications for parallel coordinates plots.

3.2 desdeo_vis.widget

This module contains Jupyter widgets for interactively specifying preferences as well as interactively and non-
interactively displaying solutions.

desdeo-vis Documentation, Release v0.1.5-39-gb12b96d

8 Chapter 3. APl documentation

Python Module Index

d

desdeo_vis.plot,7
desdeo_vis.widget,7

desdeo-vis Documentation, Release v0.1.5-39-gb12b96d

10 Python Module Index

Index

D

desdeo_vis.plot (module), 7
desdeo_vis.widget (module), 7

11

	desdeo-vis
	Installation / Usage
	Development
	Compilation
	Adding/modifying a notebook
	Known issues
	Release process

	Example notebooks
	Solving the river pollution problem using NIMBUS
	Imports
	Initial iteration and preference selection
	Solutions based on preference
	Generating intermediate solutions

	Solving the cylinder problem using NIMBUS
	Imports
	Getting a solutions based on a preference

	API documentation
	desdeo_vis.plot
	desdeo_vis.widget

	Python Module Index

