
django_spanner Documentation
Release 1.1

micropyramid

Sep 12, 2019

Contents

1 Github Repository 3
1.1 Contents . 3

i

ii

django_spanner Documentation, Release 1.1

Django Spanner is a simple package used to deploy and manage Django applications. Django Spanner is a set of
commands used to deploy and manage django projects. It internally uses Fabric. This can also be called as Deploying
Django with Fabric.

• You can use this to deploy & manage any django application with just few configurations. Configure once and
run many times.

• As well as you can deploy & manage single django application on multiple remote servers (multiple staging
servers, multiple live servers). You can specify different configuration for each type of server (stage/live) like
here sample config file

• Also used to manage local django project to install requirements, run make migrations, migrate, take database
backups and many more. . .

This package is developed by MicroPyramid team. Please refer the github repository for the deploy-python source
code. It’s free and open source.

Contents 1

https://www.djangoproject.com/
http://www.fabfile.org/
https://github.com/MicroPyramid/deploy-python/blob/master/deploy_python/sample_config.yaml
https://micropyramid.com/
https://github.com/MicroPyramid/deploy-python

django_spanner Documentation, Release 1.1

2 Contents

CHAPTER 1

Github Repository

Django Spanner - https://github.com/MicroPyramid/deploy-python

1.1 Contents

1.1.1 Features

• Install requirements in a virtualenv.

• Migrate database.

• Execute any management command.

• Rsync files to destination server(stage/live) with and without settings file.

• Deploy the django application to server(Installs requirements, migrates database, rsync files, runs uwsgi server).

• Take database backups(server backups as well as local).

• Restore local and server databases.

• Reset local and server databases.

• Restart server, celery, supervisor, uwsgi.

• Rebuild index, collect static.

Note: You can execute all these commands in local as well as remote servers.

1.1.2 Installation

The recommended way to install the deploy-python into a virtualenv using pip:

3

https://github.com/MicroPyramid/deploy-python

django_spanner Documentation, Release 1.1

pip install deploy-python

Or, install using the latest version from GitHub:

git clone https://github.com/MicroPyramid/deploy-python.git

cd deploy_python

python setup.py install

1.1.3 Setup

• First, create an YAML file similar to sample_config.yaml and fill the configuration details.

• Next, create a file named fabfile.py in your project directory and import all functions(fab commands/tasks)
from deploy_python.

• Finally, call the setup() function with your configuration yaml file path.

Here is an example fabfile -

fabfile.py
from deploy_python.commands import *
setup("config_file_name.yaml")

1.1.4 Commands

Usage

fab <run_local/run_stage/run_live> <command_name>

List Commands - shows the list of all available fab commands

fab -l

Install Requirements

• To install the requirements on your local system:

fab run_local activate_env_install_requirements

(or)

fab activate_env_install_requirements

• To install the requirements on your remote staging servers:

fab run_stage activate_env_install_requirements

• To install the requirements on your remote live servers:

fab run_live activate_env_install_requirements

4 Chapter 1. Github Repository

https://github.com/MicroPyramid/deploy-python/blob/master/deploy_python/sample_config.yaml

django_spanner Documentation, Release 1.1

Rsync project to remote server(stage/live)

To rsync project local files to remote destination server -

• with settings file -

fab <run_stage/run_live> rsync_with_settings

• without settings file -

fab <run_stage/run_live> rsync_without_settings

Deploy To Server

This commands copy local project files to destination(stage/live) servers, installs requirements, applies migrations and
finally runs uWSGI server(both in debug and deployment modes)

fab <run_stage/run_live> deploy_to_server

By default, this command rsyncs project files without settings file and runs touch command for project
uwsgi file under /etc/uwsgi/vassals/ folder.

• To rsync with settings file and to run uwsgi in debug mode:

fab <run_stage/run_live> deploy_to_server:sync_with_setting='true
→˓',debug='true'

Note: It automatically creates project_root, env in server if not exists

Local database backup

fab take_local_backup

Server database backup

fab <run_stage/run_live> take_server_backup

Restore Server database to Local

fab <run_stage/run_live> take_server_backup
fab restore_to_local

Reset Local database

fab reset_local_db

1.1. Contents 5

django_spanner Documentation, Release 1.1

Reset Server database

fab <run_stage/run_live> reset_server_db

Run Management Commands

This function is used to run management commands -

fab <run_local/run_stage/run_live> manage_py:<management_command_name>

• To apply migrations

fab <run_local/run_stage/run_live> migrate

• Execute collect static

fab <run_local/run_stage/run_live> collect_static

• Rebuild search index

fab <run_local/run_stage/run_live> rebuild_index

• To restart celery in remote servers

fab <run_stage/run_live> restart_celery

• To restart supervisorctl in remote servers

fab <run_stage/run_live> restart_supervisior

• To restart uwsgi in remote servers

fab <run_stage/run_live> restart_uwsgi

• To restart remote servers

fab <run_stage/run_live> restart_server

6 Chapter 1. Github Repository

	Github Repository
	Contents

