

    
      
          
            
  
Mozilla Delivery Console

Delivery Console is a unified admin UI for the many delivery pipelines to the
browser.



	Developer Documentation
	Developer Setup

	Local Configuration

	Workflow

	Code Style Guidelines

	Updating The Documentation

	Authentication





	Operations Documentation
	Configuration













          

      

      

    

  

    
      
          
            
  
Developer Documentation

These documents describe how to set up Delivery Console and maintain a
development environment for it.



	Developer Setup
	Prerequisites

	Installation

	Therapist





	Local Configuration

	Workflow
	Running Tests

	Linting

	Production Builds

	Redux DevTools





	Code Style Guidelines
	Goals

	Rules





	Updating The Documentation

	Authentication
	Debugging Silent Authentication













          

      

      

    

  

    
      
          
            
  
Developer Setup

The following describes how to set up an instance of the site on your
computer for development.


Prerequisites

This guide assumes you have already installed and set up the following:


	Git [https://git-scm.com/]


	Node.js 8 [https://nodejs.org/en/] and Yarn [https://yarnpkg.com/en/].


	Python 2.7 [https://www.python.org/] or higher




These docs assume a Unix-like operating system, although the site should, in
theory, run on Windows as well. All the example commands given below are
intended to be run in a terminal.




Installation


	Clone this repository or your fork [http://help.github.com/fork-a-repo/]:

git clone https://github.com/mozilla/delivery-console.git
cd delivery-console







	Install the dependencies using yarn:

yarn install









Once you’ve finished these steps, you should be able to start the site by
running:

yarn start





The site should be available at http://localhost:3000/.




Therapist

If you want to automatically enforce Delivery Console’s code style guidelines,
you can use the Therapist [http://therapist.readthedocs.io/en/latest/overview.html] pre-commit hook.

You could install Therapist in a virtualenv [https://virtualenv.pypa.io/en/stable/] using pip but if you are
installing it globally we recommend using pipsi [https://github.com/mitsuhiko/pipsi#how-do-i-get-it]:

pipsi install therapist





After that, you should be able to run the following to set up the git
pre-commit hook:

therapist install





After that, whenever you make a new commit Therapist will check the changed
code. This will save time when submitting pull requests.

If you want Therapist to attempt to automatically fix linting issues you can
install the hook using:

therapist install --fix





If you ever need to bypass Therapist, you can do so by passing
--no-verify to your git commit command.







          

      

      

    

  

    
      
          
            
  
Local Configuration

There are a number of configuration variables that can be
overridden.

For local configuration, variables can simply be passed on the command line when
starting the development server:

$ REACT_APP_OIDC_DOMAIN=my.oidc.domain.example.com yarn start





However, it is recommended that you create a .env file in the root of the
project instead. For example:

REACT_APP_OIDC_DOMAIN=my.oidc.domain.example.com
REACT_APP_OIDC_CLIENT_ID=6YRYpJyS5DnDyxLTRVGCQGCWGo2KNQLX









          

      

      

    

  

    
      
          
            
  
Workflow

The following is a list of things you’ll probably need to do at some point while
working on Delivery Console.


Running Tests

You can run the automated test suite with the following command:

yarn test





If you’d prefer that the tests watch for changes and re-run automatically:

yarn test:watch






Note

If you encounter an error like this, when running yarn test:watch:

▶ yarn run test:jest
yarn run v1.7.0
 $ react-app-rewired test --env=jsdom
 2018-06-20 13:55 node[6928] (FSEvents.framework) FSEventStreamStart: register_with_server: ERROR: f2d_register_rpc() => (null) (-22)
 2018-06-20 13:55 node[6928] (FSEvents.framework) FSEventStreamStart: register_with_server: ERROR: f2d_register_rpc() => (null) (-22)
 2018-06-20 13:55 node[6928] (FSEvents.framework) FSEventStreamStart: register_with_server: ERROR: f2d_register_rpc() => (null) (-22)
 events.js:167
       throw er; // Unhandled 'error' event
       ^

 Error: EMFILE: too many open files, watch
     at FSEvent.FSWatcher._handle.onchange (fs.js:1372:28)
 Emitted 'error' event at:
     at FSEvent.FSWatcher._handle.onchange (fs.js:1378:12)
 error Command failed with exit code 1.
 info Visit https://yarnpkg.com/en/docs/cli/run for documentation about this command.





A probable cause is that you don’t have watchman installed. For example,
on macOS you can fix this by installing…:

$ brew update
$ brew install watchman










Linting

You will need to install Therapist for linting. If
you have installed the pre-commit hook linting will take place with every
commit, however there may be times you want to run the linters manually.

To run the linters on all files that you have changed or added:

therapist use lint





To run the linters on all files in the repo:

therapist use lint:all





To run the linters and attempt to fix issues in files that you have changed or
added:

therapist use fix





To run the linters and attempt to fix issues in all files in the repo:

therapist use fix:all








Production Builds

If you need a production build to debug locally you can create one using:

yarn build








Redux DevTools

In development mode we have integrated Redux DevTools [https://github.com/gaearon/redux-devtools] to help debug issues.
To toggle the DevTools, hit Ctrl-H. You can change the side of the screen
the tools are docked on using Ctrl-Q, and can resize the tools by dragging
the edge of the bar.







          

      

      

    

  

    
      
          
            
  
Code Style Guidelines


Goals


	
	Uniformity in code

	
	If you look at code and can tell who wrote it, that’s not good










	Rules should be automatable


	Code should be easy to read / understand







Rules


Prettier formatting (uniformity)

Delivery Console uses Prettier [https://prettier.io/] to format code. If you set up the
Therapist pre-commit hook, it can handle formatting
your code automatically.




Commenting (uniformity)

Function documentation (jsdoc/docstrings)

/**
 * Given an option and its parent group, update the filter state based on the `isEnabled` prop
 *
 * @param  {Object}  group
 * @param  {Object}  option
 * @param  {Boolean} isEnabled
 */
function selectFilter({ group, option, isEnabled }) {
  return {
    type: group.value === 'text' ? SET_TEXT_FILTER : SET_FILTER,
    group,
    option,
    isEnabled,
  };
}





Rule: Use full width for wrapping comments (80-100 chars)









          

      

      

    

  

    
      
          
            
  
Updating The Documentation

You need to have Python to build the documentation locally.

The documentation is built automatically in our continuous integration every
time a commit is pushed.

To build the documentation, create and activate a Python virtualenv.
For example:

$ virtualenv -p `which python3.6` .venv
$ source .venv/bin/activate





Now install the Sphinx packages:

(.venv) $ pip install -r docs/requirements.txt





Now you should be able to build:

(.venv) $ cd docs
(.venv) $ make html





Watch out for build errors but if all goes well, you can now open the built HTML
files in your browser. E.g.:

(.venv) $ open _build/html/index.html









          

      

      

    

  

    
      
          
            
  
Authentication

By default, authentication takes place on auth.mozilla.auth0.com which is
hosted by Auth0.com.

While you must use Auth0 for authentication you can
override the configuration of
REACT_APP_OIDC_CLIENT_ID and REACT_APP_OIDC_DOMAIN to use another
instance.

You will need to update the backend services (such as Normandy) to use the
same domain as well.


Debugging Silent Authentication

The way the authentication works is that a never-ending loop checks if the
access token has expired, or is about to expire. Actually, it only uses
localStorage.expiresAt to do this. To debug this you can either sit very
patiently and wait till the check ticks again, or you can speed it up manually.
First, to control how often the check ticks, you can override
REACT_APP_CHECK_AUTH_EXPIRY_INTERVAL_SECONDS when starting the dev server:

$ REACT_APP_CHECK_AUTH_EXPIRY_INTERVAL_SECONDS=10 yarn start





That will cause the check to run every 10 seconds.

Secondly, to avoid awaiting for the access token to expire, you can paste this
function into the Web Console:

window.windExpires = hours => {
  let expires = JSON.parse(localStorage.getItem('expiresAt')) - hours * 1000 * 3600;
  localStorage.setItem('expiresAt', JSON.stringify(expires));
};





Now you can type, in the Web Console:

windExpires(1.5)





That will simulate that 1.5 hours on the localStorage.expiresAt has gone
past.







          

      

      

    

  

    
      
          
            
  
Operations Documentation

These documents relate to deploying and maintaining Deliver Console in a server
environment.



	Configuration
	Delivery Console settings













          

      

      

    

  

    
      
          
            
  
Configuration

All configuration happens through environment variables.


Delivery Console settings

An environment variable like REACT_APP_FOO controls the setting FOO.


	
REACT_APP_SENTRY_PUBLIC_DSN

	
	Default

	null





Optional. The DSN for Raven to report errors to Sentry.






	
REACT_APP_NORMANDY_ADMIN_API_ROOT_URL

	
	Default

	https://localhost:8000/api/





The root url for the Normandy API that should be used for users with
access to the Normandy admin.






	
REACT_APP_NORMANDY_READ_ONLY_API_ROOT_URL

	
	Default

	null





The root url for the Normandy API that should be used for users without
access to the Normandy admin. It will be used as a fallback in case the
admin server is inaccesible.






	
REACT_APP_OIDC_CLIENT_ID

	
	Default

	hU1YpGcL82wL04vTPsaPAQmkilrSE7wr





The Auth0 client ID to be used when authenticating.






	
REACT_APP_OIDC_DOMAIN

	
	Default

	auth.mozilla.auth0.com





The Auth0 domain to use for authenticating the user.






	
REACT_APP_OIDC_CALLBACK_URL

	
	Default

	The TLD origin for the current URL





The URL to redirect users back to after the Auth0 authentication dance is
complete.






	
REACT_APP_OIDC_AUDIENCE

	
	Default

	https://${OIDC_DOMAIN}/userinfo





The audience for the access token that is generated by Auth0.






	
REACT_APP_CHECK_AUTH_EXPIRY_INTERVAL_MS

	
	Default

	300000





How often to issue a silent authentication refresh. Technically, when you’re
logged in, an infinite loop is run that refreshes your access token forever.
And this number is the number of milliseconds to sleep between each check.

This number is also used to preemptively trigger a refresh. Meaning, if the
access token hasn’t yet expired but it will in
REACT_APP_CHECK_AUTH_EXPIRY_INTERVAL_MS milliseconds, that triggers an
authentication refresh too.











          

      

      

    

  

    
      
          
            

Index



 E
 


E


  	
      	
    environment variable

      
        	REACT_APP_CHECK_AUTH_EXPIRY_INTERVAL_MS


        	REACT_APP_NORMANDY_ADMIN_API_ROOT_URL


        	REACT_APP_NORMANDY_READ_ONLY_API_ROOT_URL


        	REACT_APP_OIDC_AUDIENCE


        	REACT_APP_OIDC_CALLBACK_URL


        	REACT_APP_OIDC_CLIENT_ID


        	REACT_APP_OIDC_DOMAIN


        	REACT_APP_SENTRY_PUBLIC_DSN


      


  







          

      

      

    

  _static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          Mozilla Delivery Console
        


        		
          Developer Documentation
          
            		
              Developer Setup
              
                		
                  Prerequisites
                


                		
                  Installation
                


                		
                  Therapist
                


              


            


            		
              Local Configuration
            


            		
              Workflow
              
                		
                  Running Tests
                


                		
                  Linting
                


                		
                  Production Builds
                


                		
                  Redux DevTools
                


              


            


            		
              Code Style Guidelines
              
                		
                  Goals
                


                		
                  Rules
                


              


            


            		
              Updating The Documentation
            


            		
              Authentication
              
                		
                  Debugging Silent Authentication
                


              


            


          


        


        		
          Operations Documentation
          
            		
              Configuration
              
                		
                  Delivery Console settings
                


              


            


          


        


      


    
  

_static/comment-bright.png





_static/ajax-loader.gif





