

DeepStack Beta - Nodejs Guide

DeepStack is an AI server that empowers every developer in the world to
easily build state-of-the-art AI systems both on premise and in the cloud.
The promises of Artificial Intelligence are huge but becoming a machine learning
engineer is hard. DeepStack runs on the docker platform and can be used from any
programming language.

You can learn more about Docker on Docker’s Website [https://docker.io/]
Visit Docker Getting Started [https://docs.docker.com/get-started/] for instructions on setting up and using Docker for the first time.

DeepStack is developed and maintained by DeepQuest AI [https://deepquestai.com/]

[image: _images/image.jpg]

Below, using DeepStack we attempt to classify the scene of the above image

import requests

image_data = open("image.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/scene",files={"image":image_data}).json()

print(response)

Result

{'label': 'highway', 'success': True, 'confidence': 0.63377845}

You simply send in an image by POST and deepstack returns a JSON response detailing the label of
the image as well as the confidence of the prediction on a scale of 0 - 1.

Installing DeepStack - CPU Version

The code above demonstrates using DeepStack to predict the scene of an image,
to run this, you can install DeepStack and start it with a single docker command.

Step 1: Install Docker

If you already have docker installed, you can skip this step.

On Linux

sudo apt-get update
sudo apt-get install curl
curl -fsSL get.docker.com -o get-docker.sh && sh get-docker.sh

On Windows or MacOS

Follow instructions on Docker Getting Started [https://docs.docker.com/get-started/]

Step 2: Install DeepStack

docker pull deepquestai/deepstack

Once installed, you can run DeepStack with the command below

docker run -e VISION-SCENE=True -v localstorage:/datastore -p 80:5000 deepquestai/deepstack

The command above runs deepstack with the scene recognition activated, once this is running, you can run the example above.

Step 3: Activate DeepStack

The first time you run deepstack, you need to activate it following the process below.

Once you initiate the run command above, visit localhost:80/admin in your browser.
The interface below will appear.

[image: _images/deepstack_pre.png]

You can obtain a free activation key from https://register.deepstack.cc [https://register.deepstack.cc/]

Enter your key and click Activate Now

The interface below will appear.

[image: _images/deepstack_activated.png]

This step is only required the first time you run deepstack.

GPU Accelerated Version

DeepStack runs many times faster on machines with NVIDIA GPUS, to install and use the GPU Version,
read Using DeepStack with NVIDIA GPU

HARDWARE AND SOFTWARE REQUIREMENTS

DeepStack runs on any platform with Docker installed.
However, for best performance, the following minimum requirements are highly recommended.

	Intel Core i5 processor

	8 GB RAM

	10 GB Disk Space

	Linux or Windows 10 Pro

NOTE

DeepStack works best on linux Systems

Tutorials:

	Getting Started with DeepStack
	Setting Up DeepStack

	Face Recognition
	Face Registeration

	Face Recognition

	Extracting Faces

	Managing Registered Faces

	Face Detection

	Face Match

	Object Detection

	Scene Recognition

	Using DeepStack with NVIDIA GPU

	DeepStack Beta 2.0 - Release Notes
	Improvements

	Breaking Changes

	DeepStack Beta - Release Notes
	Improvements

	Breaking Changes

Indices and tables

	Index

	Module Index

	Search Page

Getting Started with DeepStack

DeepStack is distributed as a docker image. In this tutorial, we shall
go through the complete process of using DeepStack
to build a Face Recognition system.

Setting Up DeepStack

Follow instructions on read DeepStack Beta - Nodejs Guide to install the CPU Version of DeepStack
If you have a system with Nvidia GPU, follow instruction on read Using DeepStack with NVIDIA GPU to install the GPU Version of DeepStack

To install the GPU Accelerated Version, follow Using DeepStack with NVIDIA GPU

Starting DeepStack

Below we shall run DeepStack with only the FACE features enabled

sudo docker run -e VISION-FACE=True -v localstorage:/datastore -p 80:5000 deepquestai/deepstack

Basic Parameters

-e VISION-FACE=True This enables the face recognition APIs, all apis are disabled by default.

-v localstorage:/datastore This specifies the local volume where deepstack will store all data.

-p 80:5000 This makes deepstack accessible via port 80 of the machine.

NOTE FOR THE GPU VERSION

If you installed the GPU Version, remmember to add the args args –rm –runtime=nvidia
The equivalent run command for the gpu version is

sudo docker run --rm --runtime=nvidia -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack:gpu

Face Recognition

Think of a software that can identity known people by their names. Face Recognition does exactly that. Register a picture of a number of people
and the system will be able to recognize them again anytime.
Face Recognition is a two step process: The first is to register a known face and second is to recognize unknown faces.

REGISTERING A FACE

Here we are building an application that can tell the names of a number of popular celebrities.
First we collect pictures of a number of celebrities and we register them with deepstack

[image: _images/cruise.jpg]

[image: _images/adele.jpg]

[image: _images/elba.jpg]

[image: _images/perri.jpg]

Below we will register the faces with their names

import requests

tom_cruise = open("cruise.jpg","rb").read()
adele = open("adele.jpg","rb").read()
elba = open("elba.jpg","rb").read()
perri = open("perri.jpg","rb").read()

requests.post("http://localhost:80/v1/vision/face/register",files={"image":tom_cruise}, data={"userid":"Tom Cruise"})
requests.post("http://localhost:80/v1/vision/face/register",files={"image":adele}, data={"userid":"Adele"})
requests.post("http://localhost:80/v1/vision/face/register",files={"image":elba}, data={"userid":"Idris Elba"})
requests.post("http://localhost:80/v1/vision/face/register",files={"image":perri}, data={"userid":"Christina Perri"})

Result

{ success: true, message: 'face added' }
{ success: true, message: 'face added' }
{ success: true, message: 'face added' }

{ success: true, message: ‘face updated’ }

RECOGNITION

Now we shall attempt to recognize any of these celebrities using DeepStack.
Below we will send in a whole new picture of Adele and DeepStack will attempt to
predict the name.

[image: _images/test-image.jpg]

Prediction code

const request = require("request")
const fs = require("fs")

image_stream = fs.createReadStream("test-image.jpg")

var form = {"image":image_stream}

request.post({url:"http://localhost:80/v1/vision/face/recognize", formData:form},function(err,res,body){

 response = JSON.parse(body)
 predictions = response["predictions"]
 for(var i =0; i < predictions.length; i++){

 console.log(predictions[i]["userid"])

 }

})

Result

Adele

We have just created a face recognition system. You can try with different people and test on different pictures of them.

The next tutorial is dedicated to the full power of the face recognition api as well as best practices to make the best out of it.

Performance

DeepStack offers three modes allowing you to tradeoff speed for peformance.
During startup, you can specify performance mode to be , “High”,”Medium” and “Low”

The default mode is “Medium”

You can speciy a different mode as seen below

sudo docker run -e MODE=High -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Note the -e MODE=High above

Face Recognition

In the Getting Started, we had an overview of the face recognition API. In this section, we shall explore all the functionalities
of the API.

Face Registeration

The face registeration endpoint allows you to register pictures of person and associate it with a userid.

You can specify multiple pictures per person during registeration.

Example

const request = require("request")
const fs = require("fs")

run_prediction("image1.jpg","User Name")

function run_prediction(image_path,userid){

 image_stream = fs.createReadStream(image_path)

 var form = {"image":image_stream,"userid":userid}

 request.post({url:"http://localhost:80/v1/vision/face/register", formData:form},function(err,res,body){

 response = JSON.parse(body)
 console.log(response)

 })

}

Result

{ success: true, message: 'face added' }

The response above indicates the call was successful. You should always check for the “success” status.
If their is an error in your request, you will receive a response like

{error: 'user id not specified', success: False}

This indicates that you ommited the userid in your request.
If you ommited the image, the response will be

{error: 'No valid image file found', success: False}

Face Recognition

The face registeration endpoint detects all faces in an image and returns the USERID for each face. Note that the USERID was specified
during the registeration phase. If a new face is encountered, the USERID will be unknown.

We shall test this on the image below.

[image: _images/test-image2.jpg]

const request = require("request")
const fs = require("fs")

image_stream = fs.createReadStream("test-image2.jpg")

var form = {"image":image_stream}

request.post({url:"http://localhost:80/v1/vision/face/recognize", formData:form},function(err,res,body){

 response = JSON.parse(body)
 predictions = response["predictions"]
 for(var i =0; i < predictions.length; i++){

 console.log(predictions[i]["userid"])

 }

 console.log(response)

})

Result

Idris Elba
unknown
{ success: true,
predictions:
 [{ confidence: 0.76965684,
 userid: 'Idris Elba',
 y_min: 154,
 x_min: 1615,
 y_max: 682,
 x_max: 1983 },
 { confidence: 0,
 userid: 'unknown',
 y_min: 237,
 x_min: 869,
 y_max: 732,
 x_max: 1214 }] }

As you can see above, the first user is unknown since we did not previously register her, however, Idris Elba was detected as we
registered a picture of his in the previous tutorial.
Note also that the full response contains the coordinates of the faces.

Extracting Faces

The face coordinates allows you to easily extract the detected faces.
Here we shall use the Easy Image [https://www.npmjs.com/package/easyimage/] library to extract the faces and save them

const request = require("request")
const fs = require("fs")
const easyimage = require("easyimage")

image_stream = fs.createReadStream("test-image2.jpg")

var form = {"image":image_stream}

request.post({url:"http://localhost:80/v1/vision/face/recognize", formData:form},function(err,res,body){

 response = JSON.parse(body)
 predictions = response["predictions"]
 for(var i =0; i < predictions.length; i++){
 pred = predictions[i]
 userid = pred["userid"]
 y_min = pred["y_min"]
 x_min = pred["x_min"]
 y_max = pred["y_max"]
 x_max = pred["x_max"]

 easyimage.crop(
 {
 src: "test-image2.jpg",
 dst: userid+".jpg",
 x: x_min,
 cropwidth: x_max - x_min,
 y: y_min,
 cropheight: y_max - y_min,
 }
)
 }
})

Result

[image: _images/Idris-Elba.jpg]

[image: _images/unknown.jpg]

Setting Minimum Confidence

DeepStack recognizes faces by computing the similarity between the embedding of a new face and the set of embeddings of previously registered faces.
By default, the minimum confidence is 0.67. The confidence ranges between 0 and 1.
If the similarity for a new face falls below the min_confidence, unknown will be returned.

The min_confidence parameter allows you to increase or reduce the minimum confidence.

We lower the confidence allowed below.

Example

const request = require("request")
const fs = require("fs")

image_stream = fs.createReadStream("test-image2.jpg")

var form = {"image":image_stream,"min_confidence":0.30}

request.post({url:"http://localhost:80/v1/vision/face/recognize", formData:form},function(err,res,body){

 response = JSON.parse(body)
 predictions = response["predictions"]
 for(var i =0; i < predictions.length; i++){
 pred = predictions[i]
 console.log(pred["userid"])
 }
})

Result

Adele
Idris Elba

By reducing the allowed confidence, the system detects the first face as Adele. The lower the confidence, the more likely
for the system to make mistakes. When the confidence level is high, mistakes are extremely rare, however, the system may
return unknown always if the confidence is too high.

For security related processes such as authentication, set the min_confidence at 0.7 or higher

Managing Registered Faces

The face recognition API allows you to retrieve and delete faces
that has been previously registered with DeepStack.

Listing faces

const request = require("request")

request.post("http://localhost:80/v1/vision/face/list",function(err,res,body){

 response = JSON.parse(body)
 console.log(response)

})

Result

{ success: true, faces: ['Adele', 'Christina Perri', 'Idris Elba', 'Tom Cruise'] }

Deleting a face

const request = require("request")

var form = {"userid":"Idris Elba"}

request.post({url:"http://localhost:80/v1/vision/face/delete", formData:form},function(err,res,body){

 response = JSON.parse(body)
 console.log(response)
})

Result

{success: True}

Having deleted Idris Elba from our database, we shall now attempt to recognize him
in our test image.

const request = require("request")
const fs = require("fs")

image_stream = fs.createReadStream("test-image2.jpg")

var form = {"image":image_stream}

request.post({url:"http://localhost:80/v1/vision/face/recognize", formData:form},function(err,res,body){

 response = JSON.parse(body)
 predictions = response["predictions"]
 for(var i =0; i < predictions.length; i++){
 pred = predictions[i]
 console.log(pred["userid"])
 }
})

Result

unknown
unknown

Face Detection

The face detection API detects faces and returns their coordinates.
It functions similarly to the face recognition API except that it does not
perform recognition.

Example

[image: _images/family.jpg]

const request = require("request")
const fs = require("fs")

image_stream = fs.createReadStream("family.jpg")

var form = {"image":image_stream}

request.post({url:"http://localhost:80/v1/vision/face", formData:form},function(err,res,body){

 response = JSON.parse(body)
 predictions = response["predictions"]

 console.log(response)
})

Result

{ success: true,
 predictions:
 [{ confidence: 0.99990666,
 y_min: 145,
 x_min: 626,
 y_max: 261,
 x_max: 712 },
 { confidence: 0.99986553,
 y_min: 174,
 x_min: 543,
 y_max: 288,
 x_max: 620 },
 { confidence: 0.99986434,
 y_min: 163,
 x_min: 731,
 y_max: 242,
 x_max: 810 },
 { confidence: 0.99899536,
 y_min: 197,
 x_min: 477,
 y_max: 279,
 x_max: 542 }] }

Using the face coordinates, we shall use the Easy Image [https://www.npmjs.com/package/easyimage/] library to extract the faces and save them

const request = require("request")
const fs = require("fs")
const easyimage = require("easyimage")

image_stream = fs.createReadStream("family.jpg")

var form = {"image":image_stream}

request.post({url:"http://localhost:80/v1/vision/face", formData:form},function(err,res,body){

 response = JSON.parse(body)
 predictions = response["predictions"]
 for(var i =0; i < predictions.length; i++){

 pred = predictions[i]
 gender = pred["gender"]
 y_min = pred["y_min"]
 x_min = pred["x_min"]
 y_max = pred["y_max"]
 x_max = pred["x_max"]

 easyimage.crop(
 {
 src: "family.jpg",
 dst: i.toString() + "_.jpg",
 x: x_min,
 cropwidth: x_max - x_min,
 y: y_min,
 cropheight: y_max - y_min,
 }
)

 }
})

Result

[image: _images/image0_female.jpg]

[image: _images/image1_male.jpg]

[image: _images/image2_male.jpg]

[image: _images/image3_female.jpg]

Performance

DeepStack offers three modes allowing you to tradeoff speed for peformance.
During startup, you can specify performance mode to be , “High” , “Medium” and “Low”

The default mode is “Medium”

You can speciy a different mode as seen below

sudo docker run -e MODE=High -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Note the -e MODE=High above

Setting Minimum Confidence

By default, the minimum confidence for detecting faces is 0.45. The confidence ranges between 0 and 1.
If the confidence level for a face falls below the min_confidence, no face is detected.

The min_confidence parameter allows you to increase or reduce the minimum confidence.

We lower the confidence allowed below.

Example

const request = require("request")
const fs = require("fs")

image_stream = fs.createReadStream("family.jpg")

var form = {"image":image_stream, "min_confidence":0.30}

request.post({url:"http://localhost:80/v1/vision/face", formData:form},function(err,res,body){

 response = JSON.parse(body)
 predictions = response["predictions"]

 console.log(response)
})

Face Match

The face detection api compares faces in two different pictures and tells the similarity between them.
A typical use of this is matching identity documents with pictures of a person.

Example

Here we shall compare two pictures of obama

[image: _images/test-image6.jpeg]

[image: _images/test-image7.jpg]

const request = require("request")
const fs = require("fs")

image_stream1 = fs.createReadStream("test-image6.jpeg")
image_stream2 = fs.createReadStream("test-image7.jpg")

var form = {"image1":image_stream1,"image2":image_stream2}

request.post({url:"http://localhost:80/v1/vision/face/match", formData:form},function(err,res,body){

 response = JSON.parse(body)
 console.log(response)
})

Result

{ success: true, similarity: 0.73975885 }

Here we shall compare a picture of Obama with that of Bradley Cooper

[image: _images/test-image6.jpeg]

[image: _images/test-image8.jpg]

const request = require("request")
const fs = require("fs")

image_stream1 = fs.createReadStream("test-image6.jpeg")
image_stream2 = fs.createReadStream("test-image8.jpg")

var form = {"image1":image_stream1,"image2":image_stream2}

request.post({url:"http://localhost:80/v1/vision/face/match", formData:form},function(err,res,body){

 response = JSON.parse(body)
 console.log(response)
})

Result

{ success: true, similarity: 0.4456826 }

As seen above, the match for two different pictures of Obama was very high while the match for Obama and Bradley Cooper was very low.

Performance

DeepStack offers three modes allowing you to tradeoff speed for peformance.
During startup, you can specify performance mode to be , “High” , “Medium” and “Low”

The default mode is “Medium”

You can speciy a different mode as seen below

sudo docker run -e MODE=High -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Note the -e MODE=High above

Object Detection

The object detection API locates and classifies 80 different kinds of objects in a single image.

To use this API, you need to set VISION-DETECTION=True when starting DeepStack

sudo docker run -e VISION-DETECTION=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

If using the GPU Version, run

sudo docker run --rm --runtime=nvidia -e VISION-DETECTION=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack:gpu

Note also that you can have multiple endpoints activated, for example, both face and object detection are activated below

sudo docker run -e VISION-DETECTION=True -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Example

[image: _images/test-image3.jpg]

const request = require("request")
const fs = require("fs")

image_stream = fs.createReadStream("test-image3.jpg")

var form = {"image":image_stream}

request.post({url:"http://localhost:80/v1/vision/detection", formData:form},function(err,res,body){

 response = JSON.parse(body)
 predictions = response["predictions"]
 for(var i =0; i < predictions.length; i++){

 console.log(predictions[i]["label"])

 }

 console.log(response)
})

Result

person
person
dog
{ success: true,
predictions:
[{ confidence: 99,
 label: 'person',
 y_min: 89,
 x_min: 297,
 y_max: 513,
 x_max: 444 },
 { confidence: 99,
 label: 'person',
 y_min: 114,
 x_min: 443,
 y_max: 516,
 x_max: 598 },
 { confidence: 99,
 label: 'dog',
 y_min: 354,
 x_min: 640,
 y_max: 544,
 x_max: 810 }] }

Using the object coordinates, we shall use the Easy Image [https://www.npmjs.com/package/easyimage/] library to extract the faces and save them

const request = require("request")
const fs = require("fs")
const easyimage = require("easyimage")

image_stream = fs.createReadStream("test-image3.jpg")

var form = {"image":image_stream}

request.post({url:"http://localhost:80/v1/vision/detection", formData:form},function(err,res,body){

 response = JSON.parse(body)
 predictions = response["predictions"]
 for(var i =0; i < predictions.length; i++){

 pred = predictions[i]
 label = pred["label"]
 y_min = pred["y_min"]
 x_min = pred["x_min"]
 y_max = pred["y_max"]
 x_max = pred["x_max"]

 easyimage.crop(
 {
 src: "test-image3.jpg",
 dst: i.toString() + "_" + label+"_.jpg",
 x: x_min,
 cropwidth: x_max - x_min,
 y: y_min,
 cropheight: y_max - y_min,
 }
)

 }

})

Result

[image: _images/image0_dog.jpg]

[image: _images/image1_person.jpg]

[image: _images/image2_person.jpg]

Performance

DeepStack offers three modes allowing you to tradeoff speed for peformance.
During startup, you can specify performance mode to be , “High” , “Medium” and “Low”

The default mode is “Medium”

You can speciy a different mode as seen below

sudo docker run -e MODE=High -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Note the -e MODE=High above

Setting Minimum Confidence

By default, the minimum confidence for detecting objects is 0.45. The confidence ranges between 0 and 1.
If the confidence level for an object falls below the min_confidence, no object is detected.

The min_confidence parameter allows you to increase or reduce the minimum confidence.

We lower the confidence allowed below.

Example

const request = require("request")
const fs = require("fs")

image_stream = fs.createReadStream("test-image3.jpg")

var form = {"image":image_stream, "min_confidence":0.30}

request.post({url:"http://localhost:80/v1/vision/detection", formData:form},function(err,res,body){

 response = JSON.parse(body)
 predictions = response["predictions"]

 console.log(response)
})

CLASSES

The following are the classes of objects DeepStack can detect in images

person, bicycle, car, motorcycle, airplane,
bus, train, truck, boat, traffic light, fire hydrant, stop_sign,
parking meter, bench, bird, cat, dog, horse, sheep, cow, elephant,
bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase,
frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove,
skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork,
knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot,
hot dog, pizza, donot, cake, chair, couch, potted plant, bed, dining table,
toilet, tv, laptop, mouse, remote, keyboard, cell phone, microwave,
oven, toaster, sink, refrigerator, book, clock, vase, scissors, teddy bear,
hair dryer, toothbrush.

Scene Recognition

The traffic recognition api classifies an image into one of 365 scenes

To use this API, you need to set VISION-SCENE=True when starting DeepStack

sudo docker run -e VISION-SCENE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

If using the GPU Version, run

sudo docker run --rm --runtime=nvidia -e VISION-SCENE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack:gpu

Note also that you can have multiple endpoints activated, for example, both traffic and scene recognition are activated below

sudo docker run -e VISION-SCENE=True -e VISION-TRAFFIC=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Example

[image: _images/test-image5.jpg]

const request = require("request")
const fs = require("fs")

image_stream = fs.createReadStream("test-image5.jpg")

var form = {"image":image_stream}

request.post({url:"http://localhost:80/v1/vision/scene", formData:form},function(err,res,body){

 response = JSON.parse(body)
 console.log(response)
})

Result

{ success: true, label: 'conference_room', confidence: 73.739815 }

Using DeepStack with NVIDIA GPU

DeepStack GPU Version serves requests 5 - 20 times faster than the CPU version if you have an NVIDIA GPU.

NOTE: THE GPU VERSION IS ONLY SUPPORTED ON LINUX

Before you install the GPU Version, you need to follow the steps below.

Step 1: Setup NVIDIA Drivers and CUDA

Install the NVIDIA Driver

GUIDE: Nvidia Driver Install [http://www.linuxandubuntu.com/home/how-to-install-latest-nvidia-drivers-in-linux/]

Install the CUDA Toolkit

GUIDE: Install CUDA Toolkit [https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html/]

Step 2: Install NVIDIA Docker

The native docker engine does not support GPU access from containers, however nvidia-docker2 modifies your docker install
to support GPU access.

Run the commands below to modify the docker engine

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
sudo apt-key add -

distribution=$(. /etc/os-release;echo IDVERSION_ID)

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update

sudo apt-get install -y nvidia-docker2

sudo pkill -SIGHUP dockerd

If you run into issues, you can refer to this GUIDE [https://devblogs.nvidia.com/gpu-containers-runtime//]

Step 3: Install DeepStack GPU Version

sudo docker pull deepquestai/deepstack:gpu

RUN DeepStack with GPU Access

Once the above steps are complete, when you run deepstack, add the args –rm –runtime=nvidia

sudo docker run --rm --runtime=nvidia -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack:gpu

In the above example, activated only the FACE Api. You can activate multiple endpoints simultaneously as seen below

sudo docker run --rm --runtime=nvidia -e VISION-FACE=True -e VISION-DETECTION=True \
-v localstorage:/datastore -p 80:5000 deepquestai/deepstack:gpu

Here we activated two endpoints at the same time, note that the more endpoints you activate, the more the memory usage of DeepStack.
GPUs have limited memory, hence, you should only activate the features you need.
Your system can hang if the memory is overloaded

DeepStack Beta 2.0 - Release Notes

DeepStack Beta 2.0 features a new face detection engine, significantly improving the face detection and recognition APIS.

Improvements

	New Face Detection Engine

The face detection APIs have been improved to detect faces even when occluded.

	Improved Face Recognition

The face recognition APIs have been improved significantly. Recognized faces now report confidence over 70%.
The default min_confidence is now set to 0.67

	New Face Match API

The new Face Match API allows you to compute the similarity score on two images containing two faces.

	Speed Modes

Speed modes have been introduced to allow you easily tradeoff performance for accuracy.

There are three speed modes, “High” , “Medium” and “Low”

You can specify your speed mode has exemplified below.

sudo docker run -e MODE=High -e VISION-DETECTION=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Note the -**e MODE=High** above

	Minimum Confidence

The “min_confidence” parameter allows you to control the level of confidence of results for objectdetection , facedetection and Face Recognition

Breaking Changes

	TRAFFIC API REMOVED

The traffic api has been removed, a more improved version maybe re-introduced in future versions of DeepStack.

	GENDER API REMOVED

The face detection api no longer return gender information, only bounding boxes are now returned. Gender prediction maybe
re-introduced in future versions of DeepStack..

DeepStack Beta - Release Notes

DeepStack Beta is more optimized for storage, memory, compute and is more accurate.

Improvements

	New Fast GPU Version

We have released the GPU Version of DeepStack, accelerating responses by orders of magnitude if you have
an Nvidia GPU. See Using DeepStack with NVIDIA GPU for setup instructions

	Improved Face Recognition Engine

The face recognition API is now powered by state-of-the-art face recognition engine.

	Better error handling and crash recovery

DeepStack now gracefully handles invalid images and reports errors better.

	50% Reduction in Install Size

The total install size DeepStack is now half the original size.

Breaking Changes

	ENDPOINT ACTIVATION

To avoid unneccesary memory usage. Only endpoints you activate are loaded.

For example, to use any face API, you should run deepstack as below

sudo docker run -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

In this example, you can query all face related APIs, however, you cannot query the object detection API and other endpoints.

You can activate multiple endpoints at once as below

sudo docker run -e VISION-FACE=True -e VISION-SCENE=True -e VISION-TRAFFIC=True \
-v localstorage:/datastore -p 80:5000 deepquestai/deepstack

	FACE RECOGNITION API-MINIMUM CONFIDENCE

The min_distance parameter has been replaced by min_confidence
See Face Recognition for usage instructions

	FACE RECOGNITION API - DATA INCOMPATIBILITY

Any faces registered with the Alpha Version is incompatible with this Version.
You need to re-register previously registered faces.
The new face recognition engine is stable and future releases will remain compatible with
this Version.

	FACE RECOGNITION API - RESPONSES

Face registeration response has been changed from

{'predictions': {'message': 'face added'}, 'success': True}

To

{'message': 'face added', 'success': True}

Face delete response has been changed from

{'success': True, 'message': 'user deleted successfully'}

To

{'success': True}

	SCENE AND TRAFFIC API - RESPONSES

Responses has been changed from

{'success': True, 'predictions': [{'label': 'conference_room', 'confidence': 73.73981475830078}]}

To

{'success': True, 'confidence': 73.73981, 'label': 'conference_room'}

	OBJECT DECTION API - SPEED MODES

Speed Modes have been deprecated.

Index

 Below, using DeepStack we attempt to classify the scene of the above image

const request = require("request")
const fs = require("fs")

image_stream = fs.createReadStream("image.jpg")

var form = {"image":image_stream}

request.post({url:"http://localhost:80/v1/vision/scene", formData:form},function(err,res,body){

response = JSON.parse(body)
console.log(response)

})

Result

{ success: true, label: 'highway', confidence: 63.377846 }

Traffic Recognition

The traffic recognition API classifies an image into one of the following

Sparse traffic

Dense traffic

Accident

Fire

With this, from images of live traffic, you can tell if an accident has occured,
if their is traffic gridlock or if a vehicle is on fire.

To use this API, you need to set VISION-TRAFFIC=True when starting DeepStack

sudo docker run -e VISION-TRAFFIC=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

If using the GPU Version, run

sudo docker run --rm --runtime=nvidia -e VISION-TRAFFIC=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack:gpu

Note also that you can have multiple endpoints activated, for example, both traffic and object detection are activated below

sudo docker run -e VISION-TRAFFIC=True -e VISION-DETECTION=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Example

[image: _images/test-image4.jpg]

const request = require("request")
const fs = require("fs")

image_stream = fs.createReadStream("test-image4.jpg")

var form = {"image":image_stream}

request.post({url:"http://localhost:80/v1/vision/traffic", formData:form},function(err,res,body){

 response = JSON.parse(body)
 console.log(response)
})

Result

{ success: true, label: 'accident', confidence: 0.9488776 }

 _static/up-pressed.png

_static/up.png

_images/Idris-Elba.jpg

_images/adele.jpg

_images/deepstack_pre.png
DeepQuest Al - Google Chrome .= 3 ®3(67%) @) 3:53PM %

. DeepStack

&

DeepStac

Enter Activation Key

Getagey from hiips://register.dee)stack.cc . ‘

Congr: i u have successfully installed DeepStact
line. To activate all the Recognition and
an Activation Key and Enter the Key on'

TR

s |

_images/elba.jpg

_images/cruise.jpg
)

_images/deepstack_activated.png
DeepQuest Al - Google Chrome . = 3 ®3(65%) @) 3:55PM %
A +

W Deepstack Activation Cor x

DeepStack

DeepStac
Activated

Your DeepStack Installation is Activated.

Learn more about DeepStack from the link Below

DEEPQUEST Al

»
= .

_images/family.jpg

_images/image.jpg

_images/image0_dog.jpg

nav.xhtml

 Table of Contents

 		
 DeepStack Beta - Nodejs Guide

 		
 Getting Started with DeepStack

 		
 Setting Up DeepStack

 		
 Face Recognition

 		
 Face Registeration

 		
 Face Recognition

 		
 Extracting Faces

 		
 Managing Registered Faces

 		
 Face Detection

 		
 Face Match

 		
 Object Detection

 		
 Scene Recognition

 		
 Using DeepStack with NVIDIA GPU

 		
 DeepStack Beta 2.0 - Release Notes

 		
 Improvements

 		
 Breaking Changes

 		
 DeepStack Beta - Release Notes

 		
 Improvements

 		
 Breaking Changes

_images/image1_person.jpg

_images/image2_male.jpg

_images/image0_female.jpg

_images/image1_male.jpg

_images/perri.jpg

_images/test-image.jpg

_images/image2_person.jpg

_images/image3_female.jpg

_images/test-image2.jpg
reLFILT
o b

_images/test-image3.jpg

_images/test-image4.jpg

_images/test-image7.jpg

_images/test-image8.jpg

_images/test-image5.jpg

_images/test-image6.jpeg

_static/comment-bright.png

_images/unknown.jpg

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-close.png

_static/file.png

_static/image.jpg

_static/down.png

_static/minus.png

_static/plus.png

